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Abstract

We show that equivalence of deterministic top-down tree-to-string transducers is decidable, thus solving a long
standing open problem in formal language theory. We also present efficient algorithms for subclasses: polynomial
time for total transducers with unary output alphabet (over a given top-down regular domain language), and co-
randomized polynomial time for linear transducers; these results are obtained using techniques from multi-linear
algebra. For our main result, we prove that equivalence can be certified by means of inductive invariants using
polynomial ideals. This allows us to construct two semi-algorithms, one searching for a proof of equivalence, one
for a witness of non-equivalence.

I. INTRODUCTION

Transformations of structured data are at the heart of functional programming [1], [2], [3], [4], [5] and also
application areas such as compiling [6], document processing [7], [8], [9], [10], [11], [12], [13], automatic
translation of natural languages [14], [15], [16], [17] or even cryptographic protocols [18]. The most fundamental
model of such transformations is given by (finite-state tree) transducers [19], [6]. Transducers traverse the input
by means of finitely many mutually recursive functions — corresponding to finitely many states. Accordingly,
these transducers are also known as top-down tree transducers [20], [21] or, if additional parameters are used
for accumulating output values, macro tree transducers [22]. Here we only deal with deterministic transducers
and denote them DT and DMT, respectively (equivalence is undecidable already for very restricted classes of
non-deterministic transducers [23]).

When the output is produced in a structured way, i.e., in the case of tree-to-tree transducers, the properties,
at least of transducers without parameters, are fairly well understood. An algorithm for deciding equivalence of
DTs already dates back to the 80s [24]. More recently, canonical forms have been provided allowing for effective
minimization [25] as well as Gold-style learning of transformations from examples [26]. In various applications,
though, the output is not generated in a structured way. This may be the case when general scripting languages
are employed [27], non-tree operations are required [28] or simply, because the result is a string.

Assume, e.g., that we want to generate a valid XML document from an internal tree-like representation where
the elements of the document do not only have tags and contents but also attributes. The output for the input tree

frame(
defs(height(20), defs(width(50), end)),
content(button(”Do not press!”), . . .)

)

then should look like:
〈frame height = 20 width = 50〉

〈button〉Do not press!〈/button〉
. . .

〈/frame〉



This translation could be accomplished by a tree-to-string transducer with, among others, the following rules:

q(frame(x1, x2)) → 〈frame q1(x1)q(x2)〈/frame〉
q1(end) → 〉

q1(defs(x1, x2)) → q2(x1)q1(x2)
q2(height(x1)) → height = q3(x1)
q2(width(x1)) → width = q3(x1)
q(button(x1)) → 〈button〉q3(x1)〈/button〉

. . .

According to the peculiarities of XML, arbitrary many attribute value pairs may be positioned inside the start tag
of an element. The given rules generate the closing bracket of the start tag from the node end which terminates
the list of attribute definitions. At the expense of an empty right-hand side, the closing bracket could also be
generated by the rule for the tag frame directly. In this case, the two first rules should be replaced with:

q(frame(x1, x2)) → 〈frame q1(x1)〉q(x2)〈/frame〉
q1(end) → ε

while all remaining rules stay the same. This example indicates that already simple tasks for structured data may
be solved by transducers processing their inputs in different ways.

Following the tradition since [29], we denote tree-to-string transducers by prefixing the letter y (which stands
for “yield”). In [9], [28] dedicated transducers for XML have been introduced. Beyond the usual operations on
trees, these transducers also support concatenation of outputs. Decidability of equivalence for these transducers
has been open. Since they can be simulated by tree-to-string transducers, our main result implies that equivalence
is decidable for both classes of transducers.

Amazingly little has been known so far for tree-to-string transducers, perhaps due to their multitude of ways
how the same string can possibly be produced. As a second example, consider the transducer M with initial state
q, on input trees with a ternary symbol f and a leaf symbol a, defined by:

q(f(x1, x2, x3)) → q(x3)aq1(x2)bq(x2)
q1(f(x1, x2, x3)) → q1(x3)q1(x2)q1(x2)ba
q1(e) → ba
q(e) → ab.

Furthermore, let M ′ be the transducer with single state q′ and the rules:

q′(f(x1, x2, x3)) → abq′(x2)q′(x2)q′(x3)
q′(e) → ab.

Some thought reveals that the transducers M and M ′ are equivalent, although the output is generated in a quite
“un-aligned” way with respect to x2, x3. Note that these two transducers do not fall into any class of tree-to-
string transducers for which equivalence has been known to be decidable so far. One class where equivalence
is already known to be decidable, are the linear and order-preserving deterministic tree-to-string transducers as
studied in [30]. A transducer is linear, if each input variable xi occurs at most once in every right-hand side.
A transducer is order-preserving if the variables xi appear in ascending order (from left to right) in each right-
hand side. Equivalence for these can be decided by a reduction to Plandowski’s result [31] even in polynomial
time [30]. This class of transducers is sufficiently well-behaved so that periodicity and commutation arguments
over the output strings can be applied to derive canonical normal forms [32] and enable Gold-style learning [33].
Apart from these stronger normal form results, equivalence itself can indeed be solved for a much larger class of
tree-to-string translations, namely for those definable in MSO logic [34], or equivalently, by macro tree-to-string
translations of linear size increase [35]. This proof gracefully uses Parikh’s theorem and the theory of semi-linear
sets. More precisely, for a Parikh language L (this means L, if the order of symbols is ignored, is equivalent to



a regular language) it is decidable whether there exists an output string with equal number of a’s and b’s (for
given letters a 6= b). The idea of the proof is to construct L which contains anbm if and only if, on input t,
transducer M1 outputs a at position n and transducer M2 outputs b at position m.

Our main result generalizes the result of [34] by proving that equivalence of unrestricted deterministic top-
down tree-to-string transducers is decidable. By that, it solves an intriguing problem which has been open for at
least thirty-five years [29]. The difficulty of the problem may perhaps become apparent as it encompasses not
only the equivalence problem for MSO definable transductions, but also the famous HDT0L sequence equivalence
problem [36], [37], [38], the latter is the sub-case when the input is restricted to monadic trees [39]. Opposed
to the attempts, e.g., in [30], we refrain from any arguments based on the combinatorial structure of finite state
devices or output strings. We also do not follow the line of arguments in [34] based on semi-linear sets. Instead, we
proceed in two stages. In the first stage, we consider transducers with unary output alphabets only (Sections III–
V). In this case, a produced output string can be represented by its length, thus turning the transducers effectively
into tree-to-integer transducers. For a given input tree, the output behavior of the states of such a unary yDT is
collected into a vector. Interestingly, the output vector for an input tree turns out to be a multi-affine transformation
of the corresponding output vectors of the input subtrees. As the property we are interested in can be expressed
as an affine equality to be satisfied by output vectors, we succeed in replacing the sets of reachable output vectors
of the transducer by their affine closures. This observation allows us to apply exact fixpoint techniques as known
from abstract interpretation of programs [40], to effectively compute these affine closures and thus to decide
equivalence. In the next step, we generalize these techniques to a larger class of transducers, namely, unary
non-self-nested transducers. These are transducers which additionally have parameters, but may use these only
in a restricted way. Although they are more expressive than unary yDTs, the effect of the transducer for for each
input symbol still is multi-affine and therefore allows a similar (yet more expensive) construction as for unary
yDTs for deciding equivalence. In the final step, we ultimately show that the restriction of non-self-nestedness can
be lifted. Then however, multi-affinity is no longer available. In order to attack this problem, we turn it upside
down: instead of maintaining affine spaces generated by sets of input trees, we maintain their dual, namely
suitable properties satisfied by input trees. Indeed, we show that inductive invariants based on conjunctions of
polynomial equalities are sufficient for proving equivalence. This result is obtained by representing conjunctions
of equalities by polynomial ideals [41] and applying Hilbert’s basis theorem to prove that finite conjunctions
suffice. We also require compatibility of polynomial ideals with Cartesian products, a property which may be
of independent interest. For the specific case of monadic input alphabets, we obtain a decision procedure which
resembles techniques for effectively proving polynomial program invariants by means of weakest pre-conditions
[42], [43]. For non-monadic input symbols, we obtain two semi-decision procedures, one enumerating all potential
proofs of equivalence, while the other searches for counter-examples.

Having established decidability for all yDMTs with unary output alphabet, we indicate in the second stage how
these transducers are able to simulate yDTs with multiple output symbols when these are viewed as digits in
a suitable number system (section VI). The corresponding construction maps linear yDTs into unary non-self-
nested yDMTs, and general yDTs into general unary yDMTs. In this way, our algorithms for deciding equivalence
of unary transducers immediately give rise to algorithms for deciding equivalence of linear and general yDTs,
respectively. While decidability of (in-)equivalence for linear yDTs has been known (via the result of [34]), the
resulting randomized polynomial complexity bounds are new. No other method, on the other hand, allows to
decide equivalence of unrestricted yDTs.

II. PRELIMINARIES

For a finite set S, we denote by |S| its cardinality. For m ∈ N let [m] denote the set {1, . . . ,m}. A ranked
alphabet Σ is a finite set of symbols each with an associated natural number called rank. By a(m) we denote
that a is of rank m and by Σ(m) the set of symbols in Σ of rank m. For an m-tuple t and i ∈ [m] we denote
by ti the ith component of t. The set TΣ of trees over Σ is the smallest set T such that if t ∈ Tm for m ≥ 0
then also f t ∈ T for all f ∈ Σ(m). For the tree f() we also write f . Thus a tree consists of a symbol of rank



m together with an m-tuple of trees. We fix the sets of input variables X = {x1, x2, . . . } and formal parameters
Y = {y1, y2, . . . } where for m ∈ N, Xm = {x1, . . . , xm} and Ym = {y1, . . . , ym}.

A (deterministic top-down) tree automaton (DTTA for short) is a tuple A = (P,Σ, p0, ρ) where P is a finite
set of states, Σ a ranked alphabet, p0 ∈ P the initial state, and ρ the transition function. For every f ∈ Σ(m)

and p ∈ P , ρ(p, f) is undefined or is in Pm. The transition function allows to define for each p ∈ P the set
dom(p) ⊆ TΣ by letting f t ∈ dom(p) for f ∈ Σ(m), m ≥ 0, and t ∈ T mΣ iff ρ(p, f) = p and ti ∈ dom(pi) for
i ∈ [m]. The language L(A) of A is given by L(A) = dom(p0). The size |A| of A is defined as |P |+ |Σ|+ |ρ|
where |ρ| =

∑
m≥0 |ρ−1(Pm)| · (m+ 1).

Let l ≥ 0. A deterministic macro tree-to-string transducer (with l parameters) (yDMT for short) is a tuple
M = (Q,Σ,∆, q0, δ), where Q is a ranked alphabet of states all of rank l + 1, Σ is a ranked alphabet of input
symbols, ∆ is an alphabet of output symbols, q0 ∈ Q is the initial state, and δ is the transition function. For
every q ∈ Q, m ≥ 0, and f ∈ Σ(m), δ(q, f) is either undefined or is in R, where R is the smallest set such that
ε ∈ R and if T, T1, . . . , Tl ∈ R, then also
(i) aT ∈ R for a ∈ ∆,

(ii) yjT ∈ R for j ∈ [l], and
(iii) q′(xi, T1, . . . , Tl)T ∈ R for q′ ∈ Q and i ∈ [m].
Again, we represent the fact that δ(q, f) = T also by the rule:

q(f(x1, . . . , xm), y1, . . . , yl)→ T.

A state q ∈ Q induces a partial function [[q]]M from TΣ to total functions (∆∗)l → ∆∗ defined recursively as
follows. Let t = f t with f ∈ Σ(m), m ≥ 0, and t ∈ T mΣ . Here, we consider a call-by-value (or inside-out) mode
of evaluation for the arguments of states. Thus for w ∈ (∆∗)l, [[q]]M (t)(w) is defined whenever δ(q, f) = T
for some T and for each occurrence of a subtree q′(xi, T1, . . . , Tl) in T , [[q′]]M (ti) is also defined. In this case,
the output is obtained by evaluating T in call-by-value order with ti taken for xi and wj for yj . In function
applications (especially for higher-order) we often leave out parenthesis; e.g. we write [[T ]]M tw for [[T ]]M (t)(w).
We obtain,

[[q]]M (f t)w = [[T ]]M tw

where the evaluation function [[T ]]M is defined as follows:

[[ε]]M tw = ε
[[aT ′]]M tw = a [[T ′]]M tw

[[yjT
′]]M tw = wj [[T ′]]M tw

[[q′(xi, T1, . . . , Tl)T
′]]M tw = [[q′]]M ti ([[T1]] tw, . . . , [[Tl]] tw) [[T ′]]M tw.

The transducer M realizes the (partial) translation M : TΣ → ∆∗ which, for t ∈ TΣ, is defined as M(t) =
[[q0]]M (t)(ε, . . . , ε) if [[q0]]M (t) is defined and is undefined otherwise; the domain of this translation is denoted
dom(M). The yDMT M is a deterministic top-down tree-to-string transducer (yDT for short) if l = 0. The yDMT

M is total if δ(q, f) is defined for all q ∈ Q and f ∈ Σ, and M is unary if |∆| = 1. In the latter case, the
output can also be represented by a number, namely, the length of the output. Finally, a yDMT is self-nested, if
there is a right-hand side T in δ so that T contains an occurrence of a tree q′(xi, T1, . . . , Tl) where one of the
trees Tj contains another tree q′′(xi, T ′1, . . . , T

′
l ) for the same xi. A yDMT is called non-self-nested, if it is not

self-nested.
As for DTTAs, we define the size |M | of a yDT or yDMT M as the sum of the sizes of the involved alphabets,

here Q,Σ and ∆, together with the size of the corresponding transition function where the size of a transition
δ(q, f) = T is one plus the sum of numbers of occurrences of output symbols, parameters, and states in T .

In the following three sections, we consider transducers with unary output alphabet ∆ = {d} only. In this case,
we prefer to let the transducer produce the lengths of the output directly. Then, the right-hand sides T may no
longer contain symbols d, but constant numbers c (representing dc). Likewise, concatenation is replaced with



addition. For convenience, we also allow multiplication with constants to compactly represent repeated addition
of the same subterm.

Example 1: Consider the yDMT with set Q = {q0, q} of states and initial state q0 and the following transition
rules:

q0(f(x1, x2), y1) → q(x1, q(x2, d))
q(a(x1), y1) → y1q(x1, y1)
q(e, y1) → ε

where the output is considered as a string. This yDMT is non-self-nested and realizes a translation τ which maps
each input tree f(an(e), am(e)) to the string in dn·m. As the output alphabet is unary, we prefer to represent the
output length by these rules:

q0(f(x1, x2), y1) → q(x1, q(x2, 1))
q(a(x1), y1) → y1 + q(x1, y1)
q(e, y1) → 0.

A DTTA accepting the domain of the given yDMT may use states from {p0, p} with initial state p0 where

ρ(p0, f) = (p, p) ρ(p, a) = p ρ(p, e) = ().

Thus, right-hand sides T now are constructed according to the grammar:

T ::= c | yj | q(xi, T1, . . . , Tl) | T1 + T2 | c · T ′

where the non-negative numbers c may be taken from some fixed range {0, 1, . . . , h}. The size |T | then is defined
as the size of T as an expression, i.e.,

|c| = |yj | = 1
|q(xi, T1, . . . , Tl)| = 2 + |T1|+ . . .+ |Tl|

|T1 + T2| = |T1|+ |T2|
|c · T ′| = 2 + |T ′|.

Thus, e.g., for T = 2 + 3 · q(x1, 1, 0), |T | = 4 + |q(x1, 1, 0)| = 4 + 4 = 8.

From Arbitrary to Binary Input Alphabets. Here we state a technical lemma that allows to restrict the
rank of output symbols of our transducers to two. Let Σ be a ranked alphabet and ⊥ a special symbol not in Σ.
By bin(Σ) we denote the ranked alphabet {⊥(0)} ∪ {σ(2) | σ ∈ Σ}. For sequences s of trees over Σ we define
their binary encoding bin(s) as: bin(s) = ⊥ if s is the empty sequence, and bin(s) = σ(bin(t1t2 · · · tm), bin(s′))
if s = σ(t1, . . . , tm)s′ with σ ∈ Σ(m), m ≥ 0, t1, . . . , tm ∈ TΣ, and s′ ∈ T ∗Σ . Likewise for S ⊆ TΣ, bin(S) =
{bin(s) | s ∈ S}. Note that this encoding corresponds to the first-child-next-sibling encoding of unranked trees,
here applied to ranked trees.

As an example, consider the tree t = f(b, g(c), h(b, c)). Then the encoding bin(t) is given by:

bin(t) = f(b(⊥, g(c(⊥,⊥), h(b(⊥, c(⊥,⊥)),⊥))),⊥)

Lemma 1: Let M = (Q,Σ,∆, q0, δ) be a yDMT and let m be the maximal rank of symbols in Σ. Then a
yDMT M ′ = (Q′, bin(Σ),∆, q′0, δ

′) together with a DTTA B can be constructed in time polynomial in |M | such
that

(1) bin(dom(M)) = L(B) ∩ dom(M ′),
(2) M ′(bin(t)) = M(t)) for all t ∈ dom(M),
(3) |Q′| = m|Q|,
(4) M ′ is a total yDT if M is.
The proof of this lemma can be found in the Appendix of [44].



III. UNARY TRANSDUCERS WITHOUT PARAMETERS

We first consider a single unary total yDT and show that equivalence of two states relative to a DTTA can be
decided in polynomial time. This result then is extended to decide equivalence of two not necessarily total unary
yDTs. Let M = (Q,Σ, {d}, q0, δ) be a total unary yDT, and A = (P,Σ, p0, ρ) a DTTA. Assume that Q = [n]
for some natural number n. Our goal is to decide for given q, q′ ∈ Q whether or not [[q]]M (t) = [[q′]]M (t) for all
t ∈ L(A). For every t ∈ TΣ and q ∈ Q, [[q]]M (t) = dr with r ∈ N, i.e., [[q]]M can be seen as a tree-to-integer
translation mapping t to r; we denote r by [[t]]q and write [[t]] for the vector ([[t]]1, . . . , [[t]]n) ∈ Nn, or, more
generally, in Qn. For a vector v ∈ Qn we again denote its ith component by vi. Then for q ∈ Q, m ≥ 0,
f ∈ Σ(m), and t1, . . . , tm ∈ TΣ, the output [[f(t1, . . . , tm)]]q ∈ Q can be computed arithmetically by

[[f(t1, . . . , tm)]]q = [[δ(q, f)]]M ([[t1]], . . . , [[tm]]) (1)

where for T ∈ (∆ ∪Q(Xm))∗ and a vector x = (x1, . . . ,xm) of vectors xi ∈ Qn the number [[T ]]M x is given
by:

[[c]]M x = c
[[j(xi)]]M x = xij
[[T ′1 + T ′2]]M x = [[T ′1]]M x + [[T ′2]]M x
[[c · T ′]]M x = c · [[T ′]]M x.

By structural induction on T , we conclude that

[[T ]]M x = b0 +

m∑
i=1

n∑
j=1

bij · xij

for suitable numbers b0, bij ∈ Q. Thus, [[T ]]M and hence also [[δ(q, f)]]M constitutes a multi-affine mapping from
(Qn)m toQ. Technically, a multi-affine mapping H is affine in each argument. This means that the transformation
H ′ corresponding to the kth argument and fixed x1, . . . ,xk−1,xk+1, . . . ,xm, which is defined by:

H ′(x′) = H(x1, . . . ,xk−1,x
′,xk+1, . . . ,xm)

is affine, i.e.,

H ′(y0 +

n∑
r=1

λr(yr − y0)) = H ′(y0) +

n∑
r=1

λr(H
′(yr)−H ′(y0))

holds for vectors y0, . . . ,yn ∈ Qn and λ1, . . . , λn ∈ Q. Accordingly, we define the (output) semantics of f ∈ Σ
of arity m as the function [[f ]] : (Qn)m → Qn by:

[[f ]] x = ([[δ(1, f)]]M x, . . . , [[δ(n, f)]]M x) (2)

which again is multi-affine.
Theorem 2: Let Σ be a fixed ranked alphabet, and A a DTTA over Σ. Let M a total unary yDT with input

alphabet Σ, and q, q′ states of M . It is decidable in polynomial time whether or not [[q]]M (t) = [[q′]]M (t) for all
t ∈ L(A).

Proof: By repeated application of the transformations [[f ]], f ∈ Σ, every tree t ∈ TΣ gives rise to a vector
[[t]] ∈ Qn. For a set S ⊆ TΣ, let [[S]] = {[[t]] | t ∈ S}. Then two states q, q′ are equivalent relative to S ⊆ TΣ

iff Hqq′(v) = 0 for all v = (v1, . . . ,vn) ∈ [[S]], where the function Hqq′ is given by Hqq′(v) = vq − vq′ . The
set of vectors in [[L(A)]] can be characterized by means of a constraint system. Consider the collection of sets
Vp, p ∈ P , which are the least sets with

Vp ⊇ [[f ]](Vp1 , . . . , Vpm) (3)

whenever ρ(p, f) = (p1, . . . , pm) holds. Then {[[t]] | t ∈ L(A)} is precisely given by the set Vp0 .



forall (p ∈ P ) Bp := ∅;
repeat

done := true;
forall (p, p1, . . . , pm ∈ P, f ∈ Σ with ρ(p, f) = (p1, . . . , pm))

forall ((v1, . . . ,vm) ∈ Bp1 × . . .×Bpm)
v := [[f ]](v1, . . . ,vm);
if v 6∈ aff(Bp)

Bp :=Bp ∪ {v};
done := false;

until (done = true);

Figure 1. Computing bases for the closures aff({[[t]] | t ∈ dom(p)}), p ∈ P .

For a set V ⊆ Qn of n-dimensional vectors, let aff(V ) denote the affine closure of V . This set is obtained
from V by adding all affine combinations of elements in V :

aff(V ) = {s0 +

r∑
j=1

λj · (sj − s0) | r ≥ 0, s0, . . . , sr ∈ V, λ1, . . . , λr ∈ Q}.

Every set V ⊆ Qn has a subset B ⊆ V of cardinality at most n + 1 such that the affine closures of B and V
coincide. A set B with this property of minimal cardinality is also called affine basis of aff(V ). For an affine
function H : Qn → Q such as Hqq′ and every subset V ⊆ Qn, the following three statements are equivalent:

1) H(v) = 0 for all v ∈ V ;
2) H(v) = 0 for all v ∈ aff(V );
3) H(v) = 0 for all v ∈ B if B is any subset of V with aff(B) = aff(V ).

Instead of verifying that H(v) = 0 holds for all elements v of Vp0 , it suffices to test H(v) = 0 for all elements
v of an affine basis B ⊆ Vp0 . Accordingly, we are done if we succeed in computing an affine basis of the set
aff(Vp0). It is unclear, though, how the least solution Vp, p ∈ P , of the constraint system (3) can be computed.
Instead of computing this least solution, we propose to consider the least solution of the constraint system (3),
not over arbitrary subsets but over affine subsets of Qn only. Like the set P(Qn) of all subsets of Q (ordered by
subset inclusion), the set A(Qn) of all affine subsets of Q (still ordered by subset inclusion) forms a complete
lattice, but where the least upper bound operation is not given by set union. Instead, for a family B of affine
sets, the least affine set containing all B ∈ B is given by:⊔

B = aff(
⋃
B).

We remark that affine mappings commute with least upper bounds, i.e., for every affine mapping F : Qn → Qn,

F (
⊔
B) = F (aff(

⋃
B)) = aff(F (

⋃
B))

= aff({F (v)) | v ∈
⋃
B})

=
⊔
{F (B) | B ∈ B}.

Let Vp, p ∈ P , and V ]
p , p ∈ P, denote the least solutions of (3) w.r.t. the complete lattices P(Qn) and A(Qn),

respectively. Since for each f ∈ Σ, [[f ]] is affine in each of its arguments, it follows by the transfer lemma of
[45] (see also [46]), that

aff(Vp) = V ]
p (p ∈ P ).

The complete lattice A(Qn), on the other hand, satisfies the ascending chain condition. This means that every
increasing sequence of affine subsets is ultimately stable. Therefore, the least solution V ]

p , p ∈ P, of the constraint
system (3) over A(Qn) can be effectively computed by fixpoint iteration. One such fixpoint iteration algorithm



is presented in Figure 1. Each occurring affine subset of Qn is represented by a basis. For the resulting basis
Bp0 of the affine subset V ]

p0 = aff(Vp0) we finally may check whether or not Hqq′(v) = 0 for all v ∈ Bp0 , which
completes the procedure.

The algorithm of Figure 1 starts with empty sets Bp for all p ∈ P . Then it repeatedly performs one round
through all transitions ρ(p, f) = (p1, . . . , pm) of A while the flag done is false. For each transition ρ(p, f) =
(p1, . . . pm), the transformation [[f ]] is applied to every m-tuple v = (v1, . . . ,vm) with vi ∈ Bpi . The resulting
vectors then are added to Bp — whenever they are not yet contained in the affine closure aff(Bp) of Bp. The
iteration terminates when during a full round of the repeat-until loop, no further element has been added to any
of the Bp.

In the following, we assume a uniform cost measure where arithmetic operations are counted as 1. Thus,
evaluating a right-hand side δ(q, f) takes time at most proportional to the number of symbols occurring in
δ(q, f). Concerning the complexity of the algorithm, we note:

• The algorithm performs at most h · (n+ 1) rounds on the repeat-until loop (h and n are the number of states
of A and M , respectively);

• In each round of the repeat-until loop, for each transition of A, at most (n + 1)m tuples are considered (m
is the maximal arity of an input symbol);

• for each encountered vector, time O(n3) is sufficient to check whether the vector is contained in the affine
closure of the current set Bp (see, e.g., chapter 28.1 of [47]).

Accordingly, a full round of the repeat-until loop can be executed in time O(|A| · |M | ·nm) — giving us an upper
complexity bound O(|A| · |M | · hnm+4) for the algorithm where m can be chosen as 2, according to Lemma 1.

The base algorithm as presented in the proof of Theorem 2, can be further improved as follows:

• We replace the Round-robin iteration by a worklist iteration which re-schedules the evaluation of a transition
of A for a state p′ ∈ P and an input symbol f only if Bpi for one of the states pi in ρ(p′, f) has been updated.

• We keep track of the set of tuples which have already been processed for a given pair (p′, f), f an input
symbol and p′ state of A. This implies that throughout the whole fixpoint iteration, for each such pair (p′, f),
inclusion in the affine closure must only be checked for (n+ 1)m tuples.

• For a non-empty affine basis B, we can maintain a single element v′ ∈ B, together with a basis of the linear
space LB corresponding to B, spanned by the vectors (v− v′), v ∈ B\{v′}. By maintaining a basis of LB in
Echelon form, membership in aff(B) can be tested in time O(n2).

Applying these three optimizations, the overall complexity comes down to O(|A| · |M | · nm+2).
So far, we have compared the output behavior of two states of a unary total yDT M relative to some DTTA

only. Our decision procedure for equivalence, however, readily extends to arbitrary unary yDTs. Note that the
exponential upper bound of Theorem 3 is sharp, since non-emptiness for unary yDTs is already EXPTIME-complete
(see Theorem 9 of [39]).

Theorem 3: Equivalence for (possibly partial) unary yDTs can be decided in deterministic exponential time.
If the transducers are linear, then the algorithm runs in polynomial time.

Proof: First, we, w.l.o.g., may assume that we are given two states q0, q
′
0 of a single yDT, and the task

is to decide whether the partial mappings [[q0]]M and [[q′0]]M coincide, i.e., whether (1) [[q0]]M (t) is defined iff
[[q′0]]M (t) is defined, and (2) [[q0]]M (t) = [[q′0]]M (t) whenever both are defined. In order to decide the former task,
we construct DTTAs A,A′ where the languages of A and A′ are precisely given by the domains of the translations
[[q0]]M and [[q′0]]M , respectively.

The set of states and transitions of A can be determined as the smallest subset P of sets Q′ ⊆ [n] together
with the partial function ρ as follows. First, {q0} ∈ P which also serves as the initial state of A. Then for every
element Q′ ∈ P and every input symbol f ∈ Σ of some arity m, where δ(q, f) is defined for each q ∈ Q′,
every set Q′i is contained in P for i = 1, . . . ,m, where Q′i is the set of all states q′ ∈ [n] such that q′(xi) occurs



in the right-hand side δ(q, f) for some q ∈ Q′. In this case then ρ has the transition ρ(Q′, f) = Q′1 . . . Q
′
m.

The DTTA A′ is obtained by starting with the initial state {q′0} instead of {q0}, and subsequently proceeding
analogously to the construction of A. Assume that the number of states of A and A′ are q and q′, respectively.
Then property (1) is satisfied iff L(A) = L(A′). This can be verified in time polynomial in the sizes of A and
A′. Now assume that L(A) = L(A′). Then we construct a total yDT M ′ from M by adding to the transition
function of M a transition q(f(x1, . . . , xm)) → ε for every state q and input symbol f — where M does not
yet provide a transition. By construction, [[q]]M ′(t) = [[q]]M (t) whenever [[q]]M (t) is defined. Therefore for every
t ∈ L(A), [[q0]]M ′(t) = [[q′0]]M ′(t) iff [[q0]]M (t) = [[q′0]]M (t). Using the algorithm of Theorem 2, the latter can be
decided in time polynomial in the sizes of A and M ′.

The size of the DTTA A characterizing the domain of the yDT M is at most exponential in the size of M . In
case, however, that M is linear, the size of the corresponding automaton A is at most linear in the size of M .
From that, the complexity bounds of the theorem follow.
Theorems 2 and 3 can be applied to decide Abelian equivalence of yDTs with arbitrary output alphabet. Abelian
equivalence of two deterministic tree-to-string transducers means that the outputs for every input tree coincide
up to the ordering of output symbols.

IV. NON-SELF-NESTED UNARY TRANSDUCERS WITH PARAMETERS

We consider unary non-self-nested yDMTs and show that their equivalence problem can be solved in co-
randomized polynomial time. This implies equivalence with the same complexity for (arbitrary) linear yDTs.

Deterministic macro tree-to-string transducers (yDMT) combine yDT with the nesting present in macro gram-
mars. Each state of a yDMT takes a fixed number of parameters (of type output tree). Recall that a yDMT is
non-self-nested if whenever q′(xj , . . .) occurs nested in q(xi, . . .) implies that i 6= j. Note that non-self-nested
yDMTs are strictly more powerful than yDTs as shown in the following lemma.

Lemma 4: The translation of Example 1, which is realized by a non-self-nesting unary yDMT, cannot be
realized by any yDT.

Proof: For convenience, we prove a slightly stronger result, namely, that this translation also cannot be
realized by any yDT even if it is equipped with regular look-ahead (a yDTR). Assume for a contradiction, that a
given yDTR N realizes the translation of M where N has a finite set Q of states and uses the finite bottom-up
automaton B for providing look-ahead information about the input. Let n1 6= n2 so that an1(e) and an2(e)
correspond to the same look-ahead state of B. Then for i = 1, 2 and j = 1, 2,

N(f(ani(e), anj (e))) = c+
∑

q∈Q cq[[q]]N (ani(e)) +
∑

q∈Q c
′
q[[q]]N (anj (e))

for suitable numbers c, cq, c′q (independent of i, j). For j = 1, 2, consider the difference in the outputs:

∆j = N(f(an1(e), anj (e)))−N(f(an2(e), anj (e)))
=

∑
q∈Q cq([[q]]N (an1(e))− [[q]]N (an2(e)))

and observe that it is independent of j. According to our assumption, N realizes the translation of M . Therefore,

0 = ∆1 −∆2

= (n1 − n2) · n1 − (n1 − n2) · n2

= (n1 − n2) · (n1 − n2)
6= 0

— a contradiction. Hence the translation of M cannot be realized by any yDTR.
As in the case for unary yDTs, we first consider total unary yDMTs only, but relative to a DTTA A. Assume

that a unary yDMT M is given by M = ([n],Σ, {d}, i0, δ). Recall that we assume that all states have exactly
l + 1 parameters where the first one is the input tree and the remaining l parameters accumulate output strings,
i.e., numbers. The output for a state q and an m-ary input symbol f ∈ Σ, then is given by:

[[f(t1, . . . , tm)]]qy = [[T ]]M ([[t1]] y, . . . , [[tm]] y) (4)



when q(f(x1, . . . , xm), y1, . . . , yl) → T is a rule of M , and y is a vector of parameters in Ql. Here, [[T ′]] x y
for a vector x = (x1, . . . ,xm) of vectors xi ∈ (Ql → Q)n is defined by:

[[c]]M x y = c
[[yk]]M x y = yk
[[c · T ′]]M x y = c · [[T ′]] x y
[[T ′1 + T ′2]]M x y = [[T ′1]]M x y + [[T ′2]]M x y
[[j(xi, T

′
1, . . . , T

′
l )]] x y = xij([[T

′
1]]M x y, . . . , [[T ′l ]]M x y).

By structural induction, we verify that for all input trees t ∈ TΣ and all states q of the yDMT M , [[t]]q is an
affine function Ql → Q, i.e., [[t]]q y = vq0 + vq1y1 + . . . + vqlyl for suitable vqj ∈ Q. Accordingly, [[t]] can be
represented as the two-dimensional matrix v = (vqj) ∈ Qn×(l+1).

Now assume that the arguments xi, i = 1, . . . ,m, are all vectors of affine functions Ql → Q, and let x denote
the triply indexed set (xijk) of coefficients in Q (i = 1, . . . ,m, j = 1, . . . , n and k = 0, . . . , l) representing these
functions. Then

[[f ]]q x y = r
(f)
q0 + r

(f)
q1 · y1 + . . .+ r

(f)
ql · yl (5)

where r
(f)
qk is a polynomial over the variables x. Thus, [[f ]] can be represented by the matrix r(f) = (r

(f)
jk ) ∈

Q[x]n×(l+1).
Example 2: Consider the yDMT M from Example 1 which we extend to a total yDMT by adding the rules

q0(a(e), y1)→ 0 q0(e, y1)→ 0 q(f(x1, x2), y1)→ 0

Then we obtain:
[[f ]]q0(x1,x2)(y1) = x1q0 + x1q1 · (x2q0 + x2q1 · 1)

= x1q0 + x1q1 · x2q0 + x1q1 · x2q1

[[a]]q(x1)(y1) = y1 + x1q0 + x1q1 · y1

= x1q0 + (1 + x1q1) · y1

[[e]]q()(y1) = 0.

In this section, we first examine the case that the yDMT M is non-self-nested (such as the yDMT from Example 1).
Then each polynomial r(f)

jk in (5) is a sum of products:

a · xi1j1k1 · . . . · xisjsks
where the i1, . . . , is are pairwise distinct, i.e., each argument xi contributes at most one factor to each product.
We conclude that the transformation [[f ]] is multi-affine. This means that the mapping [[f ]] when applied to an
mtuple of values in Qn×(l+1) (i.e., vectors of affine functions) is an affine function of each of the xi and y, when
the other arguments are kept constant. Thus, [[f ]] commutes with affine combinations in any of the arguments xi
and, for each sequence x1, . . . ,xm of matrices in Qn×(l+1), again results in an affine function of y.

As in the case of yDT transducers, we can construct a constraint system analogously to the system of
constraints (3) whose unknowns are indexed with the states from the automaton A — only that now each
unknown Vp receives a set of values in Qn×(l+1) (vectors of affine transformations) instead of values in Qn (plain
vectors). This constraint system has a least solution where the value for Vp is the set of all affine transformations
[[t]], t ∈ dom(p).

The two states q0, q
′
0 are equivalent with empty parameters relative to A iff H([[t]]) = 0 for all t ∈ L(A)

where H(v) = vq00 − vq′00 for v = (vqk) ∈ Qn×(l+1) (recall that for the affine function vq = (vq0, . . . ,vql),
vq(0, . . . , 0) = vq0). As in the last section, the function H for testing equivalence of states, is affine.

For a set V ⊆ Qn×(l+1) of matrices, let aff(V ) denote the affine closure of V . This closure is defined
analogously as for vectors. Only note that now an affine basis of the affine closure of V may have up to n·(l+1)+1



elements (compared to n + 1 in the last section). Now let H denote any affine function H : Qn×(l+1) → Q.
Analogously to the last section, for every set V ⊆ Qn×(l+1), H(v) = 0 holds for all v ∈ V iff H(v) = 0 holds
for all v in a basis of aff(V ). We conclude that it suffices to determine for each state p′ of A, an affine basis
Bp′ of the set Vp′ and then verify that H(v) = 0 for all v ∈ Bp0 if p0 is the initial state of A. With a similar
algorithm as in the last section this is possible using a polynomial number of arithmetic operations only — given
that the maximal arity of input symbols is bounded. Therefore, we obtain:

Theorem 5: Assume that M is a non-self-nested total unary yDMT and A is a DTTA. Then for every pair q, q′

of states of M , it is decidable whether q and q′ are equivalent relative to A. If the arity of input symbols is
bounded by a constant, the algorithm requires only a polynomial number of arithmetic operations.
In case of non-self-nested yDMTs and multi-affine functions, the lengths of occurring numbers, however, can no
longer be ignored. In order to calculate an upper bound to the occurring numbers, we first note that for each
state p′ of A, the basis of aff(Vp′) as calculated by our algorithm, is of the form [[t]] for a tree in L(A) of depth
at most ((l+ 1) ·n+ 1) ·h if n, l and h are the numbers of states and parameters of M , and the number of states
of A, respectively. Concerning the lengths of occurring numbers, we prove:

Lemma 6: Assume that M is a non-self-nesting unary yDMT M where the ranks of input symbols are bounded
by m, and the constants occurring in right-hand sides of rules are bounded by h. Then

[[q]]M (t)(y1, . . . ,yl) ≤ (h+ 1)(|M |·(m+1))N · b

if N is the depth of t and b is the maximum of the argument numbers y1, . . . ,yl.
Proof: The proof is by induction on the depth of t. Thus, assume that t = f t with t = (t1, . . . , tm), m ≥ 0,

and assume that the induction hypothesis holds for the ti. Let q(f(x1, . . . , xm), y1, . . . , yl)→ T be a rule of M .
Then for y = (y1, . . . ,yl),

[[q]]M (t)y = [[T ]]M t y

For T let a(T ) denote the nesting depth of calls q(xi, . . .). Note that a(T ) ≤ m since M is assumed to be
non-self-nesting. Since |T | ≤ |M |, and the depth of each ti is less than the depth of t, the assertion follows from
the following claim:

([[T ]]M t y) ≤ (h+ 1)|T |·(a(T )+1)·(|M |·(m+1))N−1 · b

if N is the maximal depth of a tree ti. The proof of this claim is again by induction, but now on the structure
of right-hand side T .

If T is a constant or equals yj for some j, the claim obviously holds. In case T equals a sum T1 + T2 or a
scalar product c · T ′, the claim also follows easily from the inductive hypothesis. It remains to consider the case
where T = q′(xi, T1, . . . , Tl). By inductive hypothesis for the Ti, we find that for every i,

[[Ti]]M t y ≤ (h+ 1)|Ti|·a(T )·(|M |·(m+1))N−1 · b

since the nesting depth of each Ti is at most a(T )− 1. Therefore,

[[q′(xi, T1, . . . , Tl)]]M t y)
= [[q′]]M (ti) ([[T1]]M t y, . . . , [[Tl]]M t y)

≤ (h+ 1)(|M |·(m+1))N−1 · (h+ 1)|T |·a(M)·(|M |·(m+1))N−1 · b
≤ (h+ 1)(|M |·(m+1))N−1+|T |·a(M)·(|M |·(m+1))N−1 · b
≤ (h+ 1)|T |·(a(M)+1)·(|M |·(m+1))N−1 · b

since |Ti| ≤ |T | and the nesting-depthes of any of the |Ti| is bounded by a(T )− 1. This completes the proof.
Accordingly, the bit length Z(N) of numbers occurring in [[t]] for trees of depth N is bounded by O((|M | ·

(m + 1))N ) where m is the maximal rank of an input symbol. This means that, for m > 1, the bit lengths of
occurring numbers can only be bounded by an exponential in the sizes of M and A. Still, in-equivalence can be
decided in randomized polynomial time:



Theorem 7: In-equivalence of states of a non-self-nested total unary yDMT relative to a DTTA, is decidable
in randomized polynomial time, i.e., there is a polynomial probabilistic algorithm which in case of equivalence,
always returns false, while in case of non-equivalence returns true with probability at least 0.5.

Proof: Assume that M is a non-self-nested total unary yDMT and A a DTTA. Our goal is to decide whether
or not [[q0]]M (t) = [[q′0]]M (t) for all t ∈ L(A). Now let k denote any prime number. Then the set of integers
modulo k, Zk, again forms a field. This means that we can realize the algorithm for determining affine closures
of the sets Vp as well as the check whether an affine mapping H returns 0 for all elements of an affine basis
now over Zk. The resulting algorithm allows us to decide whether the outputs for q0, q

′
0 coincide for all inputs

from L(A) modulo the prime number k by using polynomially many operations on numbers of length O(log(k))
only. In particular, if non-equivalence is found, then q0, q

′
0 cannot be equivalent relative to A over Q either.

Let 2D be an upper bound to Z(n · (l + 1) + 1) · h) (n, l the number of states of M and the number of
parameters of states of M , respectively, and h the number of states of A) where D is polynomial in the sizes of
M and A. Then we have:

Lemma 8: q0, q
′
0 are equivalent relative to A iff q0, q

′
0 are equivalent relative to A modulo 2D distinct primes.

Proof: Assume that the latter holds. Then the product already of the smallest 2D primes vastly exceeds 22D

.
Therefore by the Chinese remainder theorem, H([[t]]) = 0 holds also over Q for all t ∈ L(A) of depth at most
(n · (l + 1) + 1) · h. Therefore, q0, q

′
0 must be equivalent.

Clearly, if q0 and q′0 are equivalent relative to L(A), then they are also equivalent relative to L(A) modulo every
prime number k. Therefore now assume that q0 and q′0 are not equivalent relative to L(A). Let K denote the set
of all primes k so that q0 and q′0 are still equivalent relative to L(A) modulo k. By lemma 8, this set has less
than 2D elements. Now consider the interval [0, D · eD]. Note that each number in this range has polynomial
length only. When D is suitably large, this interval contains at least eD ≥ 4 · 2D prime numbers (see, e.g., [48]).
Therefore, with probability at least 0.75, a prime randomly drawn from this range is not contained in K and
therefore witnesses that q0 and q′0 are not equivalent relative to L(A). Since a random prime can be drawn in
polynomial time with probability 0.75, and 0.75 · 0.75 ≥ 0.5, the assertion of the theorem follows.

V. GENERAL UNARY TRANSDUCERS WITH PARAMETERS

In the following, we drop the restriction that the yDMT M is necessarily non-self-nesting. Then the polynomials
p

(f)
jk are no longer necessarily multi-linear in the variables x1, . . . ,xm. Accordingly, techniques based on affine

closures of the sets [[dom(p)]] are no longer appropriate.
Instead, we propose to generally reason about properties satisfied by the elements of the sets [[dom(p)]]. Let

z = {zqk | q = 1, . . . , n, k = 0, . . . , l} denote a fresh set of variables. The key concept which we introduce here
is the notion of an inductive invariant of M relative to the DTTA A. As candidate invariants we only require
conjunctions of equalities r .

= 0 where r ∈ Q[z] is a polynomial over the variables z with rational coefficients.
Instead of referring to such a conjunction directly, it is mathematically more convenient to consider the ideal
generated from the polynomials in the conjunction. Formally, an ideal of a ring R is a subset J ⊆ R such that
for all a, a′ ∈ J, a + a′ ∈ J and for all a ∈ J and r ∈ R, r · a ∈ J . The smallest ideal containing a set S of
elements, is the set 〈S〉 = {

∑k
j=1 rj · sj | k ≥ 0, r1, . . . , rk ∈ R, s1, . . . , sk ∈ S}. The smallest ideal containing

ideals J1, J2 is their sum J1 + J2 = {s1 + s2 | s1 ∈ J1, s2 ∈ J2}.
Using ideals instead of conjunctions of polynomial equalities is justified because for every S ⊆ Q[z] and every

v ∈ Qn×(l+1), it holds that s(v) = 0 for all s ∈ 〈S〉 iff s(v) = 0 for all s ∈ S.
An inductive invariant I of the yDMT M relative to A is a family of ideals Ip ⊆ Q[z], p ∈ P , such that for all

transitions ρ(p, f) = (p1, . . . , pm),

Ip ⊆ {r′ ∈ Q[z] | r′[r(f)/z] ∈ 〈Ip1(x1) ∪ . . . ∪ Ipm(xm)〉} (6)

holds where we used [v/z] to denote the substitution of the expressions vjk for the variables zjk. Likewise for
an ideal J ⊆ Q[z], J(xi) denotes the ideal:

J(xi) = {s[xi/z] | s ∈ J}.



The constraint (6) for the transition ρ(p, f) = (p1, . . . , pm) formalizes the following intuition. For every polyno-
mial r′, the polynomial r′[r(f)/z] can be understood as the weakest precondition of r′ w.r.t. the semantics r(f) of
the input symbol f . It is a polynomial in the variables x where the variables in xi refer to the ith argument of f .
The constraint (6) therefore expresses that the weakest precondition of every polynomial in Ip can be generated
from the polynomials provided by I for the states pi — after the variables z therein have been appropriately
renamed with xi.

We verify for every inductive invariant I that each polynomial in the ideal Ip constitutes a valid property of
all input trees in dom(p). This means:

Theorem 9: Assume that I is an inductive invariant of the yDMT M relative to A. Then for every state p of
A and polynomial r′ ∈ Ip, r′([[t]]) = 0 holds for all t ∈ dom(p).

Proof: By structural induction on t, we prove that r′([[t]]) = 0 holds. Assume that ρ(p, f) = (p1, . . . , pm)
and t = f(t1, . . . , tm) where (by induction hypothesis) for every i = 1, . . . ,m and every r′ ∈ Ipi , r′([[ti]]) = 0

holds. Since [[t]]qk = r
(f)
qk ([[t1]], . . . , [[tm]]), we have that

r′([[t]]) = r′[r(f)/z]([[t1]], . . . , [[tm]])

Since I is inductive, r′[r(f)/z] can be rewritten as a sum:

r′[r(f)/z] =

m∑
i=1

ui∑
µi=1

r′iµi
siµi

[xi/z]

for suitable polynomials r′iµi
where for i = 1, . . . ,m, all siµi

∈ Ipi . Therefore for all µi, siµi
([[ti]]) = 0, and thus

r′([[t]]) = r′[r(f)/z]([[t1]], . . . , [[tm]]) = 0.

We conclude that every inductive invariant I with r′ ∈ Ip provides us with a certificate that r′([[t]]) = 0 holds
for all t ∈ dom(p). In the next step, we convince ourselves that the reverse implication also holds, i.e., for all
polynomials r′ for which r′([[t]]) = 0 holds for all t ∈ dom(p), an inductive invariant I exists with r′ ∈ Ip. In
order to prove this statement, we consider the family Ī of ideals Īp, p ∈ P , where

Īp = {r′ ∈ Q[z] | ∀ t ∈ dom(p). r′([[t]]) = 0}.

Thus, Īp is the set of all polynomials which represent a polynomial property of trees in dom(p). We next prove
that Ī is indeed an inductive invariant.

Theorem 10: Ī is an inductive invariant of the yDMT M relative to A.
Proof: For any set V ⊆ Qn×(l+1) of vectors, let I(V ) denote the set of polynomials r′ over z which

vanish on V , i.e., with r′(v) = 0 for all v ∈ V . We remark that for disjoint sets of variables x1, . . . ,xm with
xi = {xijk | j = 1, . . . , n, k = 0, . . . , l}, and arbitrary sets Vi ⊆ Qn×(l+1),

I(V1 × . . .× Vm) = 〈I(V1)(x1) ∪ . . . ∪ I(Vm)(xm)〉 (7)

holds when considered as ideals of Q[x] = Q[x1 ∪ . . . ∪ xm]. This means that the set of polynomials which
vanish on the Cartesian product V1 × . . . × Vm is exactly given by the ideal in Q[x] which is generated by the
polynomials in Q[xi] which vanish on the set Vi (i = 1, . . . ,m).

We remark that the ideal of Q[x] generated from I(Vi)(xi) is exactly given by I(>i−1 × Vi ×>m−i) where
> = Qn×(l+1). Accordingly, equality (7) can be rewritten to:

I(V1 × . . .× Vm) =

m∑
i=1

I(>i−1 × Vi ×>m−i).

Thus, equality (7) is a consequence of the following lemma, which we could not find in the literature. Although
formulated for Q, the lemma holds (with the same proof) for any field.



Lemma 11: Let V1 ⊆ Qm1 , V2 ⊆ Qm2 be subsets of vectors, with m1,m2 positive integers. Then

I(V1 × V2) = I(V1 ×Qm2) + I(Qm1 × V2).

Proof of Lemma 11: Since V1×V2 ⊆ V1×Qm2 , it follows that I1 := I(V1×Qm2) ⊆ I(V1×V2). Likewise,
I2 := I(Qm1 × V2) ⊆ I(V1 × V2), and the inclusion “⊇” follows.

The proof of the reverse inclusion uses Gröbner bases (for basic notions and concepts on Gröbner bases see
the textbook by Becker and Weisspfenning [41]). Let x = {x1 . . . ,xm1+m2

} a suitable finite set of variables.
Fix a monomial ordering on the polynomial ring Q[x]. With respect to this monomial ordering, let G1, G2 be
Gröbner bases of I1 and I2, respectively. Clearly G1 ∪ G2 generates the sum I1 + I2. Since I1 is generated
by polynomials in Q[x1, . . . ,xm1

], we have G1 ⊂ Q[x1, . . . ,xm1
], and also G2 ⊂ Q[xm1+1, . . . ,xm1+m2

]. It
follows by Buchberger’s criterion (see [41, Section 5.5]) that G1∪G2 is a Gröbner basis of I1 + I2. This implies
that each polynomial f ∈ Q[x] has a unique normal form g := nf(f), which (by definition) has no monomial
that is divisible by the leading monomial of any polynomial in G1 ∪ G2, and which satisfies f − g ∈ I1 + I2.
Moreover, if f ∈ I1 + I2 then g = 0.

For the proof of the reverse inclusion, take f ∈ Q[x] that does not lie in I1 + I2. So g := nf(f) 6= 0. We
have to show f /∈ I(V1 × V2), so we have to find v ∈ V1 and w ∈ V2 such that f(v,w) 6= 0. Considered as a
polynomial in the variables x1, . . . ,xm1

, g has a nonzero term cxe11 · · ·x
em1
m1 with c ∈ Q[xm1+1, . . . ,xm1+m2

].
Since none of the monomials of c are divisible by any leading monomial of a polynomial from G2, the Gröbner
basis property of G2 implies c /∈ I2, so there exists w ∈ V2 such that c(w) 6= 0.

Now consider the polynomial gw := g(x1, . . . ,xm1
,w) ∈ Q[x1, . . . ,xm1

]. This is nonzero since one of
its coefficients, c(w), is nonzero. Moreover, no monomial from gw is divisible by any leading monomial of a
polynomial from G1, so gw /∈ I1, implying that there is a vector v ∈ V1 with gw(v) 6= 0. This means g(v,w) 6= 0.
But (f − g)(v,w) = 0 since f − g ∈ I1 + I2 ⊆ I(V1 × V2), so we obtain f(v,w) 6= 0, finishing the proof.
For each state p of A, let Vp = {[[t]] | t ∈ dom(p)}. Then the ideal Īp is exactly given by Īp = I(Vp). Assume
that r′ ∈ Īp and ρ(p, f) = (p1, . . . , pm) holds. Then for all tuples of trees (t1, . . . , tm) with ti ∈ dom(pi)
(i = 1, . . . ,m), r′([[f(t1, . . . , tm)]]) = 0 holds. Therefore,

r′[r(f)/z](v1, . . . ,vm) = 0

holds for all (v1, . . . ,vm) ∈ Vp1 × . . .× Vpm . Therefore,

r′[r(f)/z] ∈ I(Vp1 × . . .× Vpm)
= 〈I(Vp1)(x1) ∪ . . . ∪ I(Vpm)(xm)〉 by (7)
= 〈Ī(x1) ∪ . . . ∪ Ī(xm)〉.

As a consequence, Ī satisfies the constraints (6) and therefore is an inductive invariant of M relative to A.
The inductive invariant Ī is the largest invariant and, accordingly, the greatest fixpoint of the inclusions (6).

Since the set of polynomial ideals in Q[x] has unbounded decreasing chains, it is unclear whether Ī can be
effectively computed.

Let us first consider the case where the input alphabet of M (and thus also of A) is monadic. Then the variables
from z can be reused for the copy x1 of variables for the first (and only) argument of f ∈ Σ(1), implying that
every polynomial r

(f)
qk can be considered as a constant or a polynomial again over the variables z. Thus, the

constraints in (6) to be satisfied by an inductive invariant I , can be simplified to:

Ip ⊆ {r′ ∈ Q[z] | r′(r(b)) = 0} if ρ(p, b) = () (8)

Ip ⊆ {r′ ∈ Q[z] | r′[r(f)/z] ∈ Ip1} if ρ(p, f) = p1 (9)

According to the second constraint, the demand for an equality r′ .= 0 to hold at p is transformed by the monadic
input symbol f into the demand for the equality r′[r(f)/z]

.
= 0 to hold at p1. The propagation of these demands



generated for the equality H .
= 0 to hold at p0 can be expressed by the following system of constraints:

Ip0 ⊇ 〈H〉
Ip1 ⊇ {r′[r(f)/z] | r′ ∈ Ip} if ρ(p, f) = p1 (10)

Recall that Hilbert’s basis theorem implies that each ideal J ⊆ Q[z] can be represented by a finite set of
polynomials s1, . . . , su so that J = 〈s1, . . . , su〉 and likewise, that each increasing chain J0 ⊆ J1 ⊆ . . . of ideals
is ultimately stable. Therefore, the system (10) has a least solution, which is attained after finitely many fixpoint
iterations. We claim:

Lemma 12: Assume that I is the least solution of the system of constraints (10). Then I is an inductive
invariant iff for each transition ρ(p, b) = () of A, r′(r(b)) = 0 for all r′ ∈ Ip. In this case, it is the least inductive
invariant I ′ with H ∈ I ′p0 . Otherwise, no inductive invariant with this property exists.

Proof: We have that I is a solution of (10) iff I satisfies the constraints (9). Moreover, r′(r(b)) = 0 for all
r′ ∈ Ip′ holds for all ρ(p, b) = () of A iff I satisfies the constraints (8). Therefore, I is an inductive invariant
with H ∈ Ip0 , iff these two assumptions are met.

Now assume that I is the least solution of (10). If it passes all tests on the transitions ρ(p, b), it therefore must
be the least inductive invariant I ′ with H ∈ I ′p0 . If it does not pass all tests, then there cannot be any inductive
invariant I ′ with H ∈ I ′p0 . This can be seen as follows. Assume for a contradiction that there is an inductive
invariant I ′ with H ∈ I ′p0 . Since I ′ satisfies the constraints in (9), I ′ is also a solution of (10). Therefore, Ip ⊆ I ′p
for all states p of A. Now since already I does not pass all tests on transitions ρ(p, b) = (), then I ′ cannot
pass all these tests either. But then I ′ does not satisfy the constraints (9) and therefore fails to be an inductive
invariant — contradiction.
Since the least solution of system (10) can effectively be computed and the tests required by Lemma 12 can also
be effectively performed, we obtain:

Theorem 13: For a total unary yDMT M with a monadic input alphabet, it is decidable whether or not two
states are equivalent relative to a DTTA A.

Proof: Let H denote the polynomial zj00 − zj′00. Then H([[t′]]) = 0 for all t′ ∈ dom(p0) holds iff H ∈ Īp0 .
Now, H ∈ Ip0 for some inductive invariant I iff H ∈ I ′p0 for the least inductive invariant I ′ which, by Lemma 12
can be effectively computed. Since membership of a polynomial in an ideal can be effectively decided, the claim
of the theorem follows.
In the following, we finally drop also the assumption that the yDMT has a monadic input alphabet. What we keep
is the assumption that the output alphabet is unary. For this case, we prove that equivalence is still decidable. An
indicator for the extra complication due to non-monadic input symbols is that we are only able to provide two
semi-algorithms, one which provides a proof of equivalence if equivalence holds, and another which provides an
input tree for which the output differ — whenever non-equivalence holds.
In case of non-monadic input symbols, it is no longer clear whether computing the greatest solution of constraint
system (6) can be replaced by computing the least solution over some suitably defined alternative constraint system
over ideals. What we still know is that every ideal of Q[z] can be represented by a finite set of polynomials with
coefficients, which can be chosen from Z. Since the validity of the inclusions (6) can be effectively decided for
any given candidate invariant I , the set of all inductive invariants of M relative to A is recursively enumerable.
Accordingly, if zj00 − zj′00 = 0 holds for all vectors [[t]], t ∈ dom(p0), an inductive invariant certifying this fact,
will eventually be found in the enumeration. In this way, we obtain a semi-decision procedure for equivalence
of the states j0, j′0 of M relative to A. The fact, on the other hand, that zj00 − zj′00 = 0 does not hold for all
[[t]], t ∈ dom(p0), is witnessed by a specific tree t ∈ dom(p0) for which [[t]]j00 − [[t]]j′00 6= 0. Since dom(p0) is
recursively enumerable as well, we obtain another semi-decision procedure, now for non-equivalence of states
j0, j

′
0 of M relative to A. Putting these two semi-decision procedures together, we obtain:

Theorem 14: Assume that M is a total yDMT with unary output alphabet, A is a DTTA. Then it is decidable
whether or not two states j0, j′0 of M are equivalent relative to A.



In the same way as in the last section, Theorem 14 provides us with a decision procedure for possibly partial
unary yDMTs. We obtain our main technical result:

Theorem 15: Equivalence for (possibly partial) unary yDMTs is decidable.

VI. FROM yDT TO UNARY yDMT

In the following, we show that every total yDT can be simulated by a total yDMT with a unary output alphabet
and polynomial size. This is the content of the next lemma. Assume that the output alphabet is given by ∆ = [s].
By considering the elements of ∆ as non-zero digits of the number system with base s + 1, each element
w ∈ ∆∗ can be uniquely represented by a natural number. If w = w1 . . . wk, wj ∈ [s], this number is given by
[w]s+1 =

∑k
j=1wj · (s+ 1)j . In particular, [ε]s+1 = 0, i.e., the empty string is represented by 0. We have:

Lemma 16: Assume that M is a total yDT with set [n] of states and output alphabet [s]. Then a unary yDMT

N with the same set of states and a single parameter, can be constructed in polynomial time so that for every
state q ∈ [n] and input tree t, [[q]]N (t)(ε) = [[[q]]M (t)]s+1.

Moreover, if M is linear, then N is non-self-nested.
Proof: Let M = (Q,Σ,∆, q0, R) where Q = [n]. We define N = (Q,Σ, {d}, q0, R

′) as follows. For every
rule q(f(x1, . . . , xk)) → T in R we let the rule q(f(x1, . . . , xk), y1) → U [T ] be in R′. The parameter y1 is
meant to contain the right context (in unary). The mapping U [T ] is defined as follows:

U [aT ] = a+ (s+ 1) · U [T ]
U [q′(xi)T ] = q′(xi,U [T ])
U [ε] = y1.

For the yDMT N we prove the following invariant:

[[q]]N (t)([w]s+1) = [[[q]]M (t) w]s+1.

From that, the statement follows by choosing q = q0 and w = ε. In order to prove the invariant, we proceed by
induction on the structure of t. So assume that t = f(t1, . . . , tm),m ≥ 0, where δ(q, f) = T . By induction, we
may assume that the invariant already holds for t1, . . . , tk and all output words w. Then we prove that for all
subsequences T ′ of T and all words w ∈ [s]∗ the following invariant holds:

[[U [T ′]]]N t ([w]s+1) = [[[T ′]]M t w]s+1

where t = (t1, . . . , tm). The invariant for t follows because [[q]]N (t) (y1) = [[U [T ]]]N t (y1) and [[q]]M (t) =
[[T ]]M t. If T ′ = ε, we have that

[[[ε]]M t w]s+1 = [w]s+1 = [[U [ε]]]N t ([w]s+1)

and the invariant holds.
If T ′ = aT ′′ for some output symbol a ∈ [s], we have that

[[[aT ′′]]M t w]s+1 = [a[[T ′′]]M t w]s+1

= a+ (s+ 1) · [[[T ′′]]M t w]s+1

= a+ (s+ 1) · [[U [T ′′]]]N t ([w]s+1) by induction for T ′′

= [[U [aT ′′]]]N t ([w]s+1)

and the invariant holds, by induction, for T ′′.
Therefore, it remains to consider the case where T ′ = q′(xi)T

′′. Then:

[[[q′(xi)T
′′]]M t w]s+1 = [[[q′]]M (ti)[[T

′′]]M t w]s+1

= [[q′]]N (ti)([[[T
′′]]M t w]s+1) by induction for ti and w′ = [[T ′′]]M t w

= [[q′]]N (ti)([[U [T ′′]]]N t ([w]s+1)) by induction for T ′′

= [[U [q′(xi)T
′′]]]N t ([w]s+1)



and the assertion follows. — Obviously, if M is linear then N is non-self-nested.
Lemma 16 allows to apply our decision procedures for unary yDMTs to decide equivalence for yDTs with arbitrary
output alphabets. Via Lemma 16, equivalence for linear (possibly partial) yDTs is reduced to equivalence of non-
self-nested unary yDMTs, while equivalence for arbitrary (possibly partial and non-linear) yDTs is reduced to
equivalence of general unary yDMTs. In summary, we obtain:

Theorem 17: Equivalence of arbitrary yDTs is decidable. If the yDTs are linear and the ranks of their input
symbols are bounded, in-equivalence is decidable in randomized polynomial time.

The second part of Theorem 17 follows from Theorem 7 and Lemma 1. One particular subcase of Theorem 17
is when the input alphabet is monadic. This case is known to be equivalent to the sequence equivalence problem
of HDT0L systems [39], [38]. By Lemma 16, this problem can be reduced to the equivalence problem for unary
yDMTs with monadic output alphabet, for which a direct algorithm based on fixpoint iteration over polynomial
ideals has been presented in the last section. The equivalence problem for yDTs with non-monadic input alphabets,
as shown to be decidable in Theorem 17, seems to be significantly more difficult.

Tree transducers can be equipped with regular look-ahead. For top-down transducers this increases the expres-
sive power. A top-down or macro tree-to-string transducer with regular look-ahead (yDTR and yDMTR) consists
of an ordinary such transducer together with a complete deterministic bottom-up tree automaton B. A rule is
of the form q(f(x1 : p1, . . . , xm : pm)) → T where T is as before, and the pi are states of B. The rule is
applicable to an input tree f t if B arrives in state pi on input tree ti. Our result extends to look-ahead, using the
technique shown in [25]: one changes the input to contain state information of B and changes the transducer to
check the correctness of the information). By a result of [49] the class yDTR is equal to the class of tree-to-string
translations of macro transducers which use each parameter in a rule precisely once (and have look-ahead). In
fact, by the results of [50] we can state the result in terms of yDMTR that are finite-copying in the parameters
(yDMTRfcps). This means that there exists a k such that for every s, q (of rank l + 1), and j ∈ [l], the number of
occurrences of yj in [[q]](s) is ≤ k.

Corollary 18: Equivalence of yDTRs and yDMTRfcps is decidable.

VII. RELATED WORK

Decision procedures for equivalence of deterministic tree transducers have been provided for various sub-classes
of transducers (see, e.g., [39] for a recent survey). The equivalence problem for yDTs has already been mentioned
as a difficult open question in [29]. Still, little progress on the question has been made for tree transducers where
the outputs are unstructured strings. The strongest result known so far is the decidability of equivalence for MSO
definable tree-to-string transductions [34]; this class is equal to yDMTs of linear size increase [35]. For the specific
sub-class of linear yDTs, we obtain an algorithm with by far better complexity bounds as those provided by the
construction in [34]. General MSO definable tree-to-string transductions on the other hand, can be simulated
by yDTs with regular look-ahead (see [50], [49]). Since equivalence of yDTs with regular look-ahead can be
reduced to equivalence of yDTs without look-ahead but relative to a DTTA, our decidability result encompasses
the decidability result for MSO definable tree-to-string transductions. It is more general, since yDTs may have
more than linear size increase and thus may not be MSO definable. The same holds true for arbitrary yDMTs with
unary output alphabet. It is unclear how or whether the suggested methods can be generalized to the equivalence
problem of unrestricted yDTs.

The methods employed to obtain our novel results have the following predecessors. The algorithm for deciding
equivalence in the case of non-self-nested yDMTs is related to the algorithm in [51] for deciding ambiguity
equivalence of non-deterministic finite tree automata. Two automata are ambiguity equivalent if they agree for
each input tree, in the numbers of accepting runs. While vector spaces and multi-linear mappings were sufficient
in case of finite automata, we required affine spaces and multi-affine mappings in case of linear yDTs.

The known algorithm for deciding equivalence of yDTs with monadic alphabet is based on a reduction to the
HDT0L sequence equivalence problem. The latter can be solved [38] via establishing an increasing chain of finite
sets of word equations which are guaranteed to eventually agree in their sets of solutions. Instead, our elegant



direct algorithm for monadic unary yDMTs is related to an algorithm effective program verification. In [42], [43]
a decision procedure is presented which allows to check whether a given polynomial equality is invariably true at
a given program point of a polynomial program, i.e., a program with non-deterministic branching and polynomial
assignments of numerical variables. Similar to the new algorithm for every state p of the DTTA, the verification
algorithm characterizes the required conjunction of polynomial equalities at each program point by polynomial
ideals. These ideals then are characterized as the least solution of a set of constraints which closely resembles
those in equation (10). To the best of our knowledge, the algorithm for solving the equivalence problem in the
unrestricted case, is completely new.

VIII. CONCLUSION

We have presented algorithms for deciding equivalence of deterministic top-down tree-to-string transducers. For
yDTs with general output alphabets, we provided a construction which encode outputs over arbitrary output
alphabets into outputs over a unary alphabet. This construction required to introduce an extra parameter. For
arbitrary yDTs, it results in yDMTs with unary output alphabet, which are non-self-nested whenever the original
yDT is linear. For the case of non-self-nested unary yDMTs, we showed that multi-affine mappings and affine
spaces are sufficient to decide equivalence, whereas in the general case, we had to resort to polynomial ideals.

The key concept which helped us to arrive at a decision procedure in the general case, are inductive invariants
certifying assertions. While such invariants can be automatically inferred for monadic input alphabets, we were
less explicit for non-monadic input alphabets. Here, we only proved that an inductive invariant certifying a
polynomial equality exists, whenever the equality holds. Since the set of all inductive invariants is recursively
enumerable, decidability of equivalence of arbitary yDMTs with unary output alphabet follows. This result means
that Abelian equivalence, i.e., equivalence up to the ordering of symbols in the output, is decidable for general
yDMTs. The same holds true for growth equivalence where only the lengths of output strings matter.

By means of our simulation of arbitrary output alphabets with unary ones, we obtain a randomized polynomial
algorithm for deciding in-equivalence of linear yDTs. The strongest result, however, is decidability of equivalence
of general yDTs with arbitrary output alphabets. Still, our decision procedure leaves room for improvement. So,
we would like to replace guessing of the inductive invariant with an explicit method of construction, and this,
perhaps, within provable time bounds. Also, the equivalence problem for yDMTs with unary output alphabet being
solved, the equivalence problem as stated in [29] for yDMTs with arbitrary output alphabets remains open.
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[3] J. Voigtländer, A. Kühnemann, Composition of functions with accumulating parameters, J. Funct. Program. 14 (3)
(2004) 317–363.

[4] J. Voigtländer, Tree transducer composition as program transformation, Ph.D. thesis, TU Dresden (2005).

[5] K. Matsuda, K. Inaba, K. Nakano, Polynomial-time inverse computation for accumulative functions with multiple data
traversals, in: PEPM, 2012, pp. 5–14.
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[18] R. Küsters, T. Wilke, Transducer-based analysis of cryptographic protocols, Inf. Comput. 205 (12) (2007) 1741–1776.

[19] S. Maneth, Models of tree translation, Ph.D. thesis, University of Leiden (2003).

[20] J. W. Thatcher, Generalized sequential machine maps, J. Comput. Syst. Sci. 4 (4) (1970) 339–367.

[21] W. C. Rounds, Mappings and grammars on trees, Mathematical Systems Theory 4 (3) (1970) 257–287.

[22] J. Engelfriet, H. Vogler, Macro Tree Transducers, Journal of Computer and System Sciences (JCSS) 31 (1985) 71–146.

[23] T. V. Griffiths, The unsolvability of the equivalence problem for lambda-free nondeterministic generalized machines,
J. ACM 15 (3) (1968) 409–413.
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