
Uniform generation of random regular graphs∗

Pu Gao†

Monash University
jane.gao@monash.edu

Nicholas Wormald‡

Monash University
nick.wormald@monash.edu

Abstract

We develop a new approach for uniform generation of combinatorial objects, and
apply it to derive a uniform sampler REG for d-regular graphs. REG can be imple-
mented such that each graph is generated in expected time O(nd3), provided that
d = o(

√
n). Our result significantly improves the previously best uniform sampler,

which works efficiently only when d = O(n1/3), with essentially the same running time
for the same d. We also give a linear-time approximate sampler REG*, which generates
a random d-regular graph whose distribution differs from the uniform by o(1) in total
variation distance, when d = o(

√
n).

1 Introduction

Research on uniform generation of random graphs is almost as old as modern comput-
ing. Tinhofer [17] gave a generation algorithm in which the probabilities of the graphs are
computed a posteriori. In theory, this could be used to produce any desired distribution by
rejection sampling, but no explicit bounds on the time complexity of this method are known.
The earliest method useful in practice for achieving exactly uniform generation arose from
the enumeration methods of Békéssy, Békéssy and Komlós [1], Bender and Canfield [3] and
Bollobás [4]. This works in linear expected time for graphs with bounded maximum degree
d, though the multiplicative constant behaves like e(d−1)

2/4 as a function of d (making it
rather impractical for moderately large d, even d = 12). It generalises easily to a simple
algorithm for uniform generation of graphs with given degrees. (See, for example, [18], which
in addition gives an algorithm for 3-regular graphs that has linear deterministic time.) The
algorithm starts by generating a pairing, to be defined below, uniformly at random. If the
corresponding graph is simple then it is outputted. Otherwise, the algorithm is restarted.

A big advance on exactly uniform generation, which significantly relaxed the constraint
on the maximum degree, was by McKay and Wormald [12]. Their algorithm efficiently and
uniformly generates random graphs with given degrees as long as the maximum degree is
O(M1/4) where M is the total degree. A case of particular interest is the generation of

∗The conference version will appeared in Proc. FOCS 2015.
†Research supported by NSERC while this author was affiliated with University of Waterloo.
‡Research supported by Australian Laureate Fellowships grant FL120100125.

1

ar
X

iv
:1

51
1.

01
17

5v
2

 [
m

at
h.

C
O

]
 1

2
Ja

n
20

21

d-regular graphs, where the expected running time is O(nd3), for any d = O(n1/3). This is
currently the best exactly uniform sampler for regular graphs and graphs with given degrees.

When uniform generation of some class of objects seems difficult, a fallback position is to
investigate approximate solutions. One approach is to use the Markov Chain Monte Carlo
(MCMC) method. In this, an ergodic Markov chain on the set of graphs with given degrees
is designed so that the stationary distribution is uniform. Then, the random graph obtained
after taking a sufficiently large number of steps (i.e. the so-called mixing time of the chain)
has distribution that is close to uniform. Jerrum and Sinclair [9] gave a fully polynomial time
approximation scheme (FPTAS) for approximate uniform generation of graphs with given
degrees. Their algorithm works for a large class of degree sequences. In particular, it works
for all regular graphs. The bound on the mixing time, and hence the runtime of the algorithm
required for any guarantee of approximation to the uniform distribution, is a polynomial in n
(and is not specified, nor optimised, in their paper). Kannan, Tetali and Vempala [10] used
another Markov chain, whose transitions are defined by switching two properly chosen edges
in a certain way, to approximately sample random regular bipartite graphs. Again, they
proved that the mixing time is polynomial in n without specifying an asymptotic bound.
This Markov chain was further extended by Cooper, Dyer and Greenhill [5] for generation
of random d-regular graphs. They showed that the mixing time is then bounded by roughly
d24n9 log n. Very recently, Greenhill [6] extended that result to the non-regular case, with
a bound on the mixing time of ∆14M10 logM where ∆ and M denote the maximum and
total degrees respectively. This result applies only for 3 ≤ ∆ ≤ 1

4

√
M . These MCMC-based

algorithms generate every graph with a probability within a factor 1 ± ε of the probability
in the uniform distribution, and ε > 0 can be made arbitrarily small by running the chain
sufficiently long. So the output of such algorithms is almost as good as that from an exactly
uniform sampler, for any practical use. However, the provable bounds on the degree of the
polynomials involved are too high for any practical use. Actually, there is a general belief
that MCMC algorithms such as this do mix much faster, and produce near-uniform results
much more quickly, than what has been proved. If this were proved, they could give practical
algorithms for approximately uniform generation. Without such a proof, one can only guess
the accuracy of the results.

There is a variation of MCMC called coupling from the past [15], which is capable of
producing a target distribution precisely. However, it is often hard to prove useful bounds
on the running time, and the method has not been successfully applied to generating random
graphs given degrees.

There are algorithms faster than the MCMC-based ones, that generate graphs with a
weaker approximation of the distribution to the uniform. Steger and Wormald [16] gave an
O(d2n)-time algorithm that generates random d-regular graphs for d up to n1/28, where all
graphs are generated with asymptotically the same probability. Kim and Vu [11] proved
that the same algorithm works to the same extent for all d ≤ n1/3−ε. Bayati et al. [2]
subsequently modified and extended it for the non-regular case, under certain conditions,
and generated random d-regular graphs for all d ≤ n1/2−ε, but with a weaker approximation
to uniform (bounding the total variation distance by o(1)). Using a different approach,
Zhao [19] obtained an O(dn)-time approximate algorithm, which can generate d-regular
graphs for d = o(n1/3) under weak approximation (bounding the total variation distance).
These algorithms are much faster than using MCMC, but the approximation (to the uniform)

2

is achieved only asymptotically as n→∞. Thus, whereas MCMC permits the approximation
error to be made arbitrarily small for graphs of a fixed size by running on the chain sufficiently
long, the approximation error in [2, 11, 16, 19] depends on n and cannot be improved by
more computation.

The main purpose of the present paper is to introduce a new general framework of
uniform generation of combinatorial structures. We will apply it in this paper to the special,
nevertheless particularly interesting, case of random d-regular graphs on n vertices. The
result is an algorithm, REG, effective for d = o(

√
n). This significantly improves the bounds

on d in [12]. REG is an exactly uniform sampler and thus there is no uncontrollable distortion
as in [2, 11, 16, 19]. Moreover, its expected running time per graph generated is O(nd3) (the
same as [12]), which remains quite practical, comparing favourably with the quite impractical
running time bounds of MCMC samplers.

Theorem 1. Algorithm REG generates d-regular graphs uniformly at random.

Theorem 2. REG can be implemented so that for 1 ≤ d = o(
√
n), the expected time

complexity for generating a graph is O(nd3).

The same time complexity seems likely to apply under the weaker assumption that d =
O(
√
n), as one might expect comparing with the constraint d = O(n1/3) in [12]. However,

this is not proved here, the difficulty being that the generation method is different and the
analysis is now much more intricate.

In some applications, one might care more for a low time complexity than a perfect
uniform sampling. As a byproduct of Theorem 1, by omitting a particular feature of REG
that requires excessive computation, we will obtain a simpler, linear-time algorithm (that is,
linear in the output size, which is the number of edges) called REG*, which approximately
generates a random d-regular graph. REG* will be defined in Section 10. The total variation
distance between the distribution of the output of REG* and the uniform distribution is
bounded as follows.

Theorem 3. Algorithm REG* randomly generates a d-regular graph whose total variation
distance from the uniform distribution is o(1), for any d = o(

√
n). Moreover, the expected

number of steps required for generating a graph is O(dn).

This improves the running time O(nd2) of [2], and the range d = o(n1/3) of [19], while
achieving a quality of output distribution similar to both. A similar modification to the
algorithm of [12] would achieve the same result, provided that d = O(n1/3).

We outline our general framework in Section 3. The framework includes several operations
and parameters that will be defined in accordance with the types of combinatorial structures
to be generated. For the application in the present paper, this framework is used in each of
the three phases of the main algorithm, called REG, that is a uniform sampler for d-regular
graphs on n vertices. The framework requires operations and parameters to be defined for
the various phases of REG. These are given in Sections 7.2 and 7.4 and at the beginning
of Sections 7.3, 9.1 and 9.2. The full structure of this paper is explained at the end of the
following section, after the new ideas have been discussed in relation to the algorithm DEG
of [12].

3

We note that several papers have adapted the approach of [12] for generation of other
structures (e.g. McKay and Wormald [13]), and also for enumeration (e.g. Greenhill and
McKay [7]). Such works have not led to improvements in the result [12] achieves for d-
regular graphs. We expect the ideas introduced here will filter out to improved results for
several kinds of structures, including graphs with non-regular degree sequences. Such issues
will be examined elsewhere.

2 The old and the new

In this section we first summarise the procedure DEG used in [12], which provides some
of the foundations required for applying our method to regular graphs. We then highlight
the new ideas used in REG, and give a skeleton description of that algorithm. Finally, we
describe the layout of the paper in relation to exposing the new framework and defining and
analysing REG and REG*.

For generating random graphs with given degrees, we use the pairing model, first intro-
duced in [4], defined as follows. Let d = (d1, . . . , dn) be a degree sequence (thus

∑n
i=1 di is

always assumed to be even). Represent each vertex i ∈ [n] as a bin vi. Place di distinct
points in bin vi for every 1 ≤ i ≤ n. Take a uniformly random perfect matching of the

∑
i di

points. This perfect matching is called a pairing; each pair of points joined in the matching
is called a pair of the pairing. Note that each pairing P corresponds to a multigraph with
degree sequence d, denoted by G(P), obtained by regarding each pair in the pairing as an
edge. Moreover, by a simple counting argument, we see that every simple graph of degree
sequence d corresponds to the same number of pairings. Thus, letting Φ denote the whole
set of pairings and B ⊆ Φ the set of pairings corresponding to simple graphs, if an algorithm
can generate a pairing P ∈ B uniformly at random, then G(P) has the uniform distribution
over all graphs with degree sequence d.

Given a pairing P , and two vertices i and j, the set of pairs between i and j in P , if
non-empty, is called an edge, i.e. edge ij, and the size of the set is the multiplicity of ij. If
the multiplicity of ij is 1, then ij is a single edge; otherwise it is a multi-edge. In particular,
we say ij is a double edge, a triple edge, or a quadruple edge, if its multiplicity is two, three,
or four respectively. An edge ij with i = j is called a loop at i.

Outline of DEG

The algorithm DEG begins by generating a uniformly random pairing P0 ∈ Φ. An
appropriate set A ⊆ Φ is pre-defined, such that pairings in A have no multi-edges other
than double non-loop edges, and have limited numbers of double edges and loops. If P0 /∈ A,
then the algorithm terminates. We call this an initial rejection. The set A is chosen in such a
way that P(P0 ∈ A) is bounded away from 0. This is possible when d = O(n1/3). If no initial
rejection occurs, two phases are applied in turn. In the first phase, called loop reduction, P0

is used to obtain a uniformly random pairing P1 ∈ A with no loops but the same number of
double edges as P0. Then, starting with P1, the algorithm enters the double-edge reduction
phase, and obtains a uniformly random pairing P2 ∈ B. (Recall that B denotes the set of
pairings associated with simple graphs.) Thus, in each phase, the number of undesirable
structures (which are in turn loops and double edges) is reduced to 0. Termination is also
possible during the phases, due to rejection aimed at maintaining uniformity. In that case,

4

no pairing is outputted by the algorithm. Otherwise, the pairing outputted by the last phase
is the output of the algorithm. Naturally, the algorithm is repeated until output occurs.

For exposition purposes, we focus on the second phase, which starts from a pairing
P1 ∈ A. In particular, P1 has no loops and at most i1 double edges, where i1 is specified in
the definition of A. Then P1 is distributed uniformly at random (u.a.r.) in

⋃
0≤i≤i1 Si, where

Si denotes the set of pairings in A containing exactly i double edges. (In the present paper,
these sets are called strata.) We will describe how, with probability bounded away from 0,
we can use P1 to u.a.r. generate a pairing in S0 (note that S0 = B in the second phase).

Initially, the algorithm sets P = P1. There is an inductive step which assumes that,
conditional on P ∈ Si, P occurs uniformly at random in Si. The algorithm then randomly
performs a certain kind of operation called a switching, that produces a pairing P ′ ∈ Si−1,
and then P is reset equal to P ′. (The definition of the switching is perhaps not necessary
at this point, but the curious reader may consult Figure 2, Section 7.2.) The general idea is
to reject P ′ with a small probability, which is a function of P and P ′, so that P ′ becomes a
uniformly random member of Si−1 if not rejected. This process is iterated until reaching some
P ∈ S0 which is then outputted as P2 by DEG. By induction, P2 is uniformly distributed
over S0.

We next consider the probability of rejection, which is crucial. Switchings are defined in
such a way that the number f(P) of switchings that can be performed on P depends only
weakly on anything other than how many double edges P contains. A parameter mf (i) is
specified such that

mf (i) ≥ max
P∈Si

f(P).

In discussing the inductive step, we condition on the event P ∈ Si. Firstly one of the f(P)
switchings is chosen u.a.r., and with probability f(P)/mf (i) the switching is performed, to
obtain P ′ ∈ Si−1. Otherwise, with the remaining probability, the algorithm terminates. We
call this termination an f-rejection (where ‘f’ stands for ‘forward’). Since P is uniformly
distributed in Si, the probability that P ′ ∈ Si−1 is generated at this point by the switching
is |Si|−1m−1f b(P ′), where b(P ′) is the number of switchings that lead to P ′ from pairings in
Si. At this point, the algorithm accepts P ′ with probability mb(i− 1)/b(P ′) where mb(i− 1)
is a pre-determined parameter satisfying

mb(i− 1) ≤ min
P ′′∈Si−1

b(P ′′).

If P ′ is not accepted, the algorithm terminates, and this is called a b-rejection (where ‘b’
stands for ‘backward’). The probability that a given pairing P ′ ∈ Si−1 was produced is now
|Si|−1mf (i)

−1mb(i− 1), which does not depend on P ′ ∈ Si−1. Thus, if it reaches this point,
the algorithm has generated a uniformly random member of Si−1, and the inductive step is
finished.

The range of applicable degree sequences for DEG is determined by the probability of
rejection at some time during the algorithm. In [12], the bound d = O(n1/3) for d-regular
graphs could not be weakened because the probability of rejection would get too close to 1.
This is caused by the probability of f-rejection becoming too large, due to the increasing gap
between the typical value of f(P) and its maximum, mf .

5

The first phase, loop reduction, is similar, except that of course a different switching is
used. There are less loops than double edges in expectation, so the crucial phase to improve,
in order to relax the upper bound on d, is the second phase.

New features in REG

Our new approach extends that used in DEG, introducing some major new features in
both the algorithm specification and its analysis, employed specifically in the double-edge
reduction phase. For one thing, we narrow the gap between mf and the average value of
f(P) by permitting certain switchings, called class B, that do not have the desired effect
on the number of double edges. The total number of permitted switchings is then less
dependent on P , and f(P) increases on average. The result is a lower probability of f-
rejection. The other new feature of the algorithm, which we call boosting, raises the value of
mb by occasionally performing a different type of switching that targets the creation of some
otherwise under-represented elements of a set Si. This reduces the probability of having a
b-rejection. These changes necessitate several associated alterations to the algorithm. The
most notable alterations are: (i) the algorithm no longer proceeds through the sets Si step-
by-step, decreasing i by 1 at each step, though this is still the most common type of step;
(ii) unlike in [12], the probability that a pairing is reached in the algorithm (at all, or at a
given step) no longer depends only on the set Si to which it belongs; (iii) not all switchings
to pairings in such a set will be performed with the same probability. As a result of these
changes, the analysis of the algorithm is entirely different. In particular, we are forced to
relinquish maintaining the property that, at each step, conditional upon the current pairing
being within the set Si, it is distributed uniformly in that set (except for the case i = 0).
Instead, we focus on the expected numbers of visits to the states in the associated Markov
chain.

The rest of the story

As in [12], a set Aγ ⊆ Φ is specified such that P(Aγ) is bounded away from zero. Here,
γ > 0 is a pre-determined constant. It can be altered for better performance of the algorithm
for particular n and d using the results of this paper. A uniformly random pairing P ∈ Φ
is generated, and initial rejection is performed if P /∈ Aγ. Pairings in Aγ will in general
contain loops, and double and triple non-loop edges, but no other multi-edges. Three phases
are performed sequentially, for reduction of loops, then triple edges, and finally double edges.

Since the new features of REG will be useful in other contexts, we set up a general
framework for the description of a phase in Section 3. This new framework results in a
different analysis from [12], which will be given in Section 5, with a glossary provided as
Section 4. The proof that each phase ends with a uniformly random object of the required
type is rather involved, so an example appropriate to the double-edge reduction phase is
given in Section 6. This includes an illustration of how to set some of the parameters of a
phase appropriately. Since the only nontrivial phase in REG is for double-edge reduction, the
definitions of the switchings and other parameters in this phase, and the analysis required
for bounding the time complexity, is done in Section 7.

With this out of the way, the basic anatomy of REG is completed in Sections 8 and
Section 9. In Section 8, we specify the set Aγ of pairings that do not trigger initial rejection,
and bound the probability of an initial rejection. Then, in Section 9, we define the first
two phases, for reductions of loops and of triple edges respectively. These two phases are

6

much simpler than phase 3. The switchings employed in these two phases are the same as
used in [12], and are defined in Section 9. The analysis is similar to that in [12], though we
now have a higher upper bound on degree. The probability of a rejection occurring in these
phases is also bounded.

Finally in Section 10, we prove the main theorem by bounding the expected running
time. This is basically determined by the task of computing the probability of rejection, in
particular b(P). By ignoring rejections (carrying on regardless), we will obtain the approxi-
mate sampler REG* in Section 10. We prove that REG* runs in linear time in expectation
for generating one random regular graph, and bound the total variation distance between
the distribution of the output of REG* and the uniform distribution.

3 General description of a phase

We present here the definition of a phase that will be common to any application of our
approach to reducing the number of occurrences of an undesired configuration (for instance,
a double edge), by using repetitions of operations, called switchings here, that can be defined
to suit the application.

A phase begins with a set Φ1 partitioned into sets
⋃

0≤i≤i1 Si, called strata, for some
integer i1 ≥ 0. For each P ∈ Φ1, set S(P) = i if Si contains P . A set of possible operations,
called switchings, is specified. Each switching converts some P ∈ Φ1 to another element
of Φ1. Each switching has both a type and a class. The set of possible types is denoted
T , and the set of possible classes is denoted C. The phase begins with a random element
P ∈ Φ1 with a known distribution π0, and either outputs a uniformly random element of S0,
or terminates with no output (rejection). The parameters specified for the phase are ρτ (i),
mτ (i) and mα(i), for each switching type τ and class α, and each i ≤ i1.

The parameters ρτ (i) satisfy
∑

τ ρτ (i) ≤ 1 for each i. If an element P ∈ Si (i > 0) arises
during the phase, a switching type τ is chosen with probability ρτ (i). If

∑
τ ρτ (i) < 1, a

rejection will occur with the remaining probability; we call this a t-rejection (where ‘t’ stands
for ‘type’).

Given a switching type τ and an element P , the number of switchings of type τ that can
be applied to P is denoted by fτ (P). The parameters mτ (i) satisfy

mτ (i) ≥ max
P∈Si

fτ (P).

Similarly, for a switching class α, the number of switchings of class α that can be applied to
other elements to produce P is denoted by bα(P). The parameters mα(i) satisfy

mα(i) ≤ min
P∈Si

bα(P).

The phase consists of repetitions of a switching step, specified as follows.

Given P ∈ Si,

(i) If i = 0, output P .

7

(ii) Choose a type: choose τ with probability ρτ (i), and with the remaining probability,
1−
∑

τ ρτ (i), perform a t-rejection. Then select u.a.r. one of the type τ switchings that
can be performed on P .

(iii) Let P ′ be the element that the selected switching would produce if applied to P , let
α be the class of the selected switching and let i′ = S(P ′). Perform an f-rejection
with probability 1 − fτ (P)/mτ (i) and then perform a b-rejection with probability
1−mα(i′)/bα(P ′);

(iv) if no rejection occurred, replace P with P ′.

The switching step is repeated until the phase terminates, which happens whenever an
element P ∈ S0 is reached or a rejection occurs.

Note that in each switching step only a switching type is selected, not a switching class.
Only after a switching is chosen in (ii) is the class of the switching determined.

To complete the definition of a phase, it is sufficient to specify Φ1, i1, the sets Si, the set
of switchings and their types and classes, and the numbers ρτ (i), mτ (i) and mτ (i). These
parameters will be carefully chosen in such a way that the expected number of times that a
given element in Si is visited during the phase depends only on i. Given this, and the fact
that termination of the phase occurs as soon as S0 is reached, it follows that the element
outputted is distributed u.a.r. from S0. Subject to this, in choosing the parameters we also
aim to keep the probability of rejection small.

4 Glossary

For the benefit of the notation-weary reader, we list some terms already defined, and some
soon to be defined.

For any element P :
σ(P) is the expected number of times the algorithm passes through P (defined in Page 10).
fτ (P) is number of ways that a switching of type τ can be performed on P (defined in

Page 7).
bα(P) is number of switchings of class α that produce P (defined in Page 7).
Pt is the element obtained after step t, if no rejection has occurred.
qP,P ′ is the transition probability from P to P ′.
S−τ,α(P): the set of elements that can produce P using a type τ , class α switching (defined

in Page 24).

For P ∈ Si:
ρτ (i) is probability of choosing switching type τ to apply to P ∈ Si (first appearing in

Page 7).
σ(i) is such that σ(P) = σ(i) for all P ∈ Si under constraints to be enforced (first

appearing in (7)).
S(P) is another name for i. (That is, the index of the stratum containing P .)

Special states in the Markov chain:

8

R: a state denoting that rejection has occurred.
F : each element in S0 has transition probability 1 to F .

In a phase:
Φ1: the set of all possible elements arising in the phase.
i1: the maximum integer i such that Si ∈ Φ1.
T : the set of switching types.
C: the set of switching classes.
mτ (i): pre-determined parameters satisfying fτ (P) ≤ mτ (i) for every P ∈ Si (first

appearing in Page 7).
mα(i): pre-determined parameters satisfying bα(P) ≥ mα(i) for every P ∈ Si (first

appearing in Page 7).

5 General analysis of a phase

In this section we lay the groundwork for specification of the predefined parameters described
in Section 3, in such a way that the algorithm performs the desired uniform sampling.
Consider a phase with specified switchings and parameters Si, ρτ (i), mτ (i) and mα(i) for all
appropriate i and τ , as well as a specified value of i1. Assume that

ρτ (i) ≥ 0 for all 0 ≤ i ≤ i1 and all τ ∈ T ; (1)∑
τ∈T

ρτ (i) ≤ 1 for all 0 ≤ i ≤ i1; (2)

fτ (P) ≤ mτ (i) for all 0 ≤ i ≤ i1, P ∈ Si and for each τ ∈ T ; (3)

bα(P) ≥ mα(i) for all 0 ≤ i ≤ i1, P ∈ Si and for each α ∈ C. (4)

Recall that Φ1 =
⋃i1
i=0 Si. The parameters determine a Markov chain, denoted by M , on

states Φ1 ∪ {R,F}, where R and F are two artificially introduced absorbing states. The
chain moves from an element P directly to R if rejection occurs in a switching step from P
to P ′ (rather than to P ′ being considered at the time of rejection), and it moves to F with
probability 1 in the next step after reaching any element in S0. We refer to the state at step
t as Pt, permitting Pt = R or F .

We make the following assumption about M :

(A1) all states in Φ1 are transient in M .

Let Q be the matrix of transition probabilities between all states of M in Φ1. Thus Q =
(qP,P ′) where qP,P ′ is the transition probability from P to P ′.

The transition probability qP,P ′ can be computed as follows. Assume P ∈ Si and that
S is a type τ , class α switching that converts P into P ′ ∈ Sj. Condition on state P being
reached in M . Then, from part (ii) of the switching step, the probability that S is chosen
equals ρτ (i)/fτ (P). Hence, from part (iii), the probability S is performed and neither t- nor
f-rejection occurs is ρτ (i)/mτ (i). On the other hand, the probability that b-rejection does
not occur is mα(j)/bα(P ′). Hence,

qP,P ′ =
∑
(τ,α)

Nτ,α(P, P ′)
ρτ (i)mα(j)

mτ (i) bα(P ′)
, (5)

9

where Nτ,α(P, P ′) is the number of switchings of type τ and class α that convert P to P ′.
By assumption (A1), Q is the submatrix of the transition matrix that refers to the

transient states. Hence, the matrix (I − Q)−1 exists. Indeed, this matrix is known as the
fundamental matrix of M , and it is clearly equal to I + Q + Q2 + · · · . (An easy argument
shows that this series is convergent because these states are transient.) Moreover, the (P, P ′)
entry of (I − Q)−1 is clearly the expected number of visits to state P ′ given that the chain
starts in state P (where being in the initial state is counted as a visit). Given a (row) vector
~π0 for the initial distribution of the transient states, define σ(P) to be the expected number
of times that P is visited in M . Then the vector ~σ, composed of the values σ(P), is given
by

~π0(I −Q)−1 = ~σ. (6)

A key feature of our approach is to specify ρτ (i) in such a way that σ(P) depends only on
S(P), i.e., there are fixed numbers σ(i) (0 ≤ i ≤ i1) such that

for all i, and all P ∈ Si, σ(P) = σ(i). (7)

To aid in finding such ρτ easily, we require that, for a given switching S, the expected number
of switching steps during the phase in which S is chosen in (ii) for which f-rejection does
not occur in (iii) is some number qα(j) depending only on the class α of S and the set Sj
containing the element it creates. Considering the derivation of (5), this is equivalent to
requiring that, for all j and α,

σ(i)ρτ (i)

mτ (i)
= qα(j) for all (i, j, τ, α) ∈ S (8)

where S is the set of all (i, j, τ, α) for which there exists a switching of type τ and class α
taking an element in Si to an element in Sj.

Rewrite (6) as ~σ = ~π0 + ~σQ, and note from (5) that the component of ~σQ referring to
(i.e. indexed by) P ′ ∈ Sj is∑

P

σ(P)qP,P ′ =
∑

(τ,α,P)

σ(P)Nτ,α(P, P ′)
ρτ (S(P))mα(j)

mτ (S(P)) bα(P ′)
,

where the sum is over all τ , α and P for which there is at least one type τ , class α switching
that converts P into P ′. By (7) and (8), this summation is∑

(τ,α,P)

Nτ,α(P, P ′)
qα(j)mα(j)

bα(P ′)
=
∑
α

qα(j)mα(j)

since for each α ∈ C, the number of class α switchings that converts some element P to P ′

is
∑

τ,P Nτ,α(P, P ′), which is bα(P ′) by definition. Thus, provided that (7) and (8) hold, (6)
is equivalent to

σ(P) = ~π0(P) +
∑
α∈C

qα(j)mα(j) for all j and P ∈ Sj. (9)

Noting that (6) determines ~σ, we have proved the following lemma.

10

Lemma 4. Suppose that for given numbers ρτ (i), mα(j) and mτ (j) (i, j ∈ [0, i1], τ ∈ T ,
α ∈ C) satisfying the conditions (1)–(4), there is a simultaneous solution (σ(i), qα(i))0≤i≤i1
to equations (8) and (9). Then, for each i ∈ [0, i1], the expected number of visits to any given
element in Si is σ(i).

Henceforth in this paper, we assume that the initial distribution is uniform over Φ1, that
is, ~π0(j) = |Φ1|−1 for all j ∈ Φ1.
Remark. Consider the case that there is exactly one type τ and one class α of switchings
involved in a phase, and each switching converts an element in Si+1 to another element in
Si for some i ≥ 0. Then we may simply set ρτ (i) = 1 for every 0 ≤ i ≤ i1. Clearly (A1) is
satisfied, as there is no cycling in the Markov chain, and (8) and (9) combine to give

σ(j) =
1

|Φ1|
+

σ(j + 1)

mτ (j + 1)
·mα(j).

Uniformity is guaranteed as σ(j) can be inductively computed from σ(j+ 1). This inductive
approach is exactly the essence of DEG described in Section 2, and hence the method in [12]
is a special case of our general method, obtained by setting ρτ (i) = 1. It is the possibility of
using different types and classes of switchings, the flexibility of setting non-trivial values to
ρτ (i), and the much more flexible choice of Markov chains permitting cycling, that provides
the power of the approach in the present paper.

6 An example: calculating ρ and proving uniformity

The parameters mτ (i) and mα(i) will be specified, depending on the particular application,
such that (3) and (4) are satisfied. The tightness of these bounds on max fτ (P) and min bα(P)
effectively influence the efficiency of the phase, as tighter bounds yield smaller rejection
probabilities in substep (iii) of a switching step. However, a major task of the design of
the phase is to set ρτ (i) properly to ensure (8), as well as to minimize the probability of
a t-rejection. We achieve this by deducing a system of equations and inequalities that the
parameters ρτ (i) and the variables σ(j) must satisfy. Then, we find a desirable solution to
the system, bearing in mind the rejection probabilities, and set the value of ρτ (i) accordingly.
We illustrate this by considering a particular example, developing the analysis in the previous
section, which we can use later since it applies to phase 3 of REG, where double edges are
eliminated.

We assume that Φ1 = ∪i1i=0Si and all strata have been specified, as well as parameters
mτ (i) and mα(i) satisfying (3) and (4). We assume that T = {I, II} and C = {A,B} and
there will be three kinds of switchings in the phase: IA (type I, class A), converting an
element in Sj+1 to an element in Sj; IB (type I, class B), maintaining in the same stratum;
and IIB (type II, class B), converting from Sj−1 to Sj. See Figure 1 for an illustration of
the possible transitions into Sj. If j is such that Sj−1 or Sj+1 does not exist in Φ1, the
corresponding stratum is omitted from the diagram. Additionally, there is no IIB switching
from S0 to S1, and the Markov chain always transits from an element in S0 to F in the next
step.

We have no need to define Sj here, nor the switchings involved. What they are in the
case of phase 3 of REG will be revealed in Section 7.

11

Figure 1: Transitions into Sj

From Figure 1, we see that (8) with α = B in the two cases i = j and i = j − 1 implies
that the expected number of times that a given Class B switching produces P ∈ Sj (including
the time it is b-rejected, in part (iii) of the switching step, if that occurs) is

qB(j) =
σ(j)ρI(j)

mI(j)
=
σ(j − 1)ρII(j − 1)

mII(j − 1)
(1 ≤ j ≤ i1), (10)

and at times we will use either of these quantities in place of qB(j). For similar reasons,

qA(j) = σ(j + 1)ρI(j + 1)/mI(j + 1) (0 ≤ j ≤ i1 − 1). (11)

It is convenient to set
xj = σ(j)|Φ1|, (12)

whence, recalling that ~π0(j) = |Φ1|−1, substitution of (10) and (11) into (9) gives

xj = 1 +
xj+1ρI(j + 1)

mI(j + 1)
·mA(j) +

xjρI(j)

mI(j)
·mB(j) (1 ≤ j ≤ i1 − 1). (13)

We need separate equations for j ∈ {0, i1} as (10) does not hold for j = 0 and (11) does
not hold for j = i1. No P ∈ S0 can be reached by any class B switching, because whenever
any element in S0 is reached, the Markov chain proceeds to state F in the very next step.
Therefore, qB(0) = 0. Similarly, no element P ∈ Si1 can be reached via a type A switching
because Φ1 does not contain Si1+1. Therefore, qA(i1) = 0. So for j = i1 or 0 we have in place
of (13) provided i1 > 0

xi1 = 1 +
xi1ρI(i1)

mI(i1)
·mB(i1), x0 = 1 +

x1ρI(1)

mI(1)
·mA(0). (14)

Moreover, the second equality in (10) implies

ρII(j) = ρI(j + 1)
xj+1

xj
· mII(j)

mI(j + 1)
for all 0 ≤ j ≤ i1 − 1. (15)

As boundary cases, we require

ρI(0) = ρII(0) = 0, ρII(i1) = 0, (16)

12

where the first two equalities are required because every element in S0 is forced to transit to
F once it is reached, and the last because Φ1 does not contain Si1+1. Equations (13)–(16)
determine a system that will be required to have a solution. In general, the system will
be underdetermined, and this freedom can be used for the convenience of specifying some
values of the ρτ variables, to have values suitable for our purpose (in which we aim to keep
the probability of rejection to a minimum), and then solving for the remaining variables.
However, we will also require that

ρI(i) + ρII(i) ≤ 1, ρI(i), ρII(i) ≥ 0 for all 0 ≤ i ≤ i1. (17)

This condition ensures that ρτ (i) satisfy (1) and (2), as required if they are to be used as
probabilities. Naturally, it needs to be checked in any particular case that a solution of the
desired type exists.

For any solution (ρ∗τ (j), x
∗
j) of the system (13)–(17), we may set ρτ (j) equal to ρ∗τ (j)

for every 0 ≤ j ≤ i1 and each τ ∈ {I, II}. Then (σ(j), qα(j))0≤j≤i1 for α ∈ {A,B} can
be computed using x∗j and (12), (10) and (11). Thus, (σ(j), qα(j))0≤j≤i1 is a solution to
equations (8) and (9), and so by Lemma 4, the expected number of visits to any given
element in any stratum Si is σ(i). Recall that the phase finishes as soon as an element of S0
is reached. Hence, every element in S0 is reached at most once, and the probability that a
given P ∈ S0 is reached is equal to σ(0), the same for all P ∈ S0. Thus, we have proved the
following.

Lemma 5. Assume that (ρ∗τ (i), x
∗
i) is a solution to system (13)–(17). Set ρτ (i) to be ρ∗τ (i)

for every 1 ≤ i ≤ i1 as the type probabilities in the phase. Assume that no rejection occurs
during the algorithm. Then the last element visited in the phase is distributed uniformly at
random in S0.

7 Phase 3: double edge reduction

We now turn to giving the explicit construction of the algorithm REG, and its analysis. We
will analyse the three phases of the algorithm, essentially applying the general framework in
Section 5 to each phase of REG. We begin with Phase 3, which is the most interesting phase
and has been partially described in Section 6. It was this phase of double-edge reduction
that determined the range of d for which DEG runs efficiently in [12]. To improve the
range of d in [12] we need to allow more flexible Markov chains, which motivates the new
approach in Section 5. For phase 3 of REG, there will be two types (I and II) of switchings
involved, categorized into two classes A and B. The transitions between (Si)0≤i≤i1 caused by
performing these switchings are exactly as described in Section 6, which lead to system (13)–
(17). To complete the specification of phase 3, we will specify Φ1, Si and i1, and the set of
switchings for this phase. We will analyse these switchings to obtain appropriate parameters
mτ (i) and mα(i) as required for the system (13)–(17). After that, we will specify values for
the variables ρI(i) and show that, given these, the whole system has a solution. Then, in
Section 7.5, we bound the probability that phase 3, once begun, terminates in a rejection.

13

7.1 Specifying Φ1, Si and i1

As described before, if no initial rejection happens, then the algorithm enters phases that
sequentially reduces the numbers of loops, triple edges and double edges to zero. Uniformity
of the distribution of the output of each phase is guaranteed. Let γ > 0 be a pre-specified
constant. With the foresight of the definition of Aγ in Section 8, and Lemma 14, define

i1 =

⌊
(1 + γ)

(d− 1)2

4

⌋
. (18)

For the analysis here, we may assume that the algorithm enters phase 3 with a pairing P0

uniformly distributed in Φ1 defined by

Φ1 = {P ∈ Φ : P contains at most i1 double edges, and no other multi-edges or loops}.

We will verify this assumption in Lemma 19 in Section 9 below. Define Si to be the set of
pairings in Φ1 containing exactly i double edges. So Φ1 = ∪0≤i≤i1Si.

7.2 Definition of the switchings

As indicated in Section 6, there are two types of switchings, I and II, in phase 3. The two
types are different versions of the same basic switching operation, which we call a d-switching,
defined as follows to act upon a pairing P that contains at least one double edge. As in
Figure 2, pick a double edge with parallel pairs {1, 2} and {3, 4}, with points 1 and 3 in
the same vertex u1 and points 2 and 4 in the same vertex v2. Also pick another two pairs
{5, 6} and {7, 8}, that represent single edges (recalling that we have assumed Φ contains no
pairings with loops), and let u2, v2, u3 and v3 denote the vertices containing the points 5,
6, 7 and 8 respectively. If all six vertices ui, vi, 1 ≤ i ≤ 3, are distinct, then a d-switching
replaces the pairs {1,2}, {3,4}, {5,6} and {7,8} by {1,5}, {3,7}, {2,6} and {4,8}, producing
the situation in the right side of Figure 2.

We emphasise that the specification of the labels in the above and later switching defini-
tions is significant, in that when we come to count the ways that a switching can be applied
to a pairing, each distinct valid way of assigning the labels 1, 2, . . . and u1, v2, u2 . . . induces
a different switching.

u2 u1 u3

v2 v1 v3

u2 u1 u3

v2 v1 v3

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 2: A type I switching

Type I switching. If the d-switching operation does not create more than one new double
edge, it is a valid type I switching. The class of a type I switching depends on how many
new double edges it creates. If none, it is in class A, whilst if there is one, then it is in class

14

B (as in Figure 3). Note that the class of a switching is not chosen; when a random type I
switching is chosen in part (ii) of a switching step, the class is determined after the switching
is chosen. For a type I class B switching, there was an existing pair between u1 and ui or
between v1 and vi (i = 2, 3) before the d-switching was applied. For purposes of counting
type I class B switchings, the existing pair is then labelled {9, 10}, where 9 is in u1 (or v1 as
the case may be). Of course, this pair remains after the switching is applied. See Figure 3
for an example.

u2 u1 u3

v2 v1 v3

u2 u1 u3

v2 v1 v3

1

2

3

4

5

6

7

8 2 4

5

6 8

9 10

1 3 7

9 10

Figure 3: A type I switching of class B

Type II switching. If exactly two new double edges, both incident with u1 or both incident
with v1, are created by performing a d-switching, then it is a valid type II switching. For
counting purposes, the existing pairs that become part of double edges are labelled {9, 10}
and {11, 12}, with 9 and 12 both in u1 or both in v1. (See Figure 4.) A type II switching
is always in class B. Note that the choice of placing point 10 in u2 or in u3, say, leads to
different type II switchings arising from the same d-switching. See Figures 4 and 5 for an
example.

u2 u1 u3

v2 v1 v3

u2 u1 u3

v2 v1 v3

1

2

3

4

5

6

7

8 2 4

5

6 8

9 10

1 3 7

9 1011 12 11 12

Figure 4: A type II switching

u2 u1 u3

v2 v1 v3

u2 u1 u3

v2 v1 v3

1

2

3

4

5

6

7

8 2 4

5

6 8

12 11

1 3 7

12 1110 9 10 9

Figure 5: A different type II switching

We close this subsection by elaborating on the need for the various types and classes
of switchings. The type I class A switching is the same switching used in [14] to decrease
the number of double edges by one. There, choices of the d-switching are not allowed if

15

u is adjacent to u1 or u2 or if v is adjacent to v1 or v2. This makes it hard to bound the
f-rejection probability away from 1 unless d = O(n1/3). In order to permit d to be larger, we
permit the d-switching if at most one new double edge is created. These are the type I class
B switchings. However, permitting these switchings causes a problem. Each one creates a
2-path containing exactly one double edge. Among all pairings in a stratum Si, the number
of such 2-paths can vary immensely, which could lead to a large b-rejection probability. For
instance, consider the extreme case where d is even, i = (d/2)(d/2 + 1) and P ∈ Si is a
pairing such that all the i double edges in P are contained in an isolated clique of order
d/2 + 1. Then the number of ways to reach P via a type I, class B switching is 0. If there
were no class B switchings of any other types, this would force mα(i) to equal 0, and hence
in part (iii) of the general switching step, all class B switchings would be given b-rejection,
rendering them useless. In order to repair this situation, we introduce the type II switching
(of class B), which boosts the probability of such pairings being reached.

7.3 Specifying mτ(i) and mα(i)

For any positive integer k, we define Mk = n[d]k, where [x]k denotes the falling factorial,
x(x− 1) · · · (x− k + 1). Define

mI(i) = 4i(M1 − 4i)2 (19)

mII(i) = 16i(d− 1)2(d− 2)(d− 3) (20)

mA(i) = M2
2 −M2(d− 1)(16i+ 3d2 + d+ 6) (21)

mB(i) = 16i(d− 2)M2 − 16id(8id+ 9d2 + 3d3). (22)

The next lemma shows that these provide the required bounds on fτ (P) and bα(i), as
given by (3) and (4).

Lemma 6. In phase 3, for every P ∈ Si,

(i) fτ (P) ≤ mτ (i) for every 1 ≤ i ≤ i1 and τ ∈ {I, II};

(ii) bα(i) ≥ mα(i) for every 0 ≤ i ≤ i1 and α ∈ {A,B} such that (α, i) 6= (A, i1).

Proof. Let P ∈ Si. Then P has i double edges. For an upper bound on fτ (P), there are
4i ways to choose a double edge and label its points 1, 2, 3 and 4. The number of choices
for each of u2v2 and u3v3 is at most M1 − 4i, since their end points cannot be in any of
the i double edges. Thus fI(P) ≤ mI(i). For the type II switching, we may assume by
symmetry that u1, rather than v1, contains points 9 and 12, and that the point 10 lies in
vertex u3 rather than u2. These give four choices. There are again 4i ways to choose 1, 2, 3
and 4. Then — recalling that each vertex contains precisely d points — there are at most
(d− 2)(d− 3) ways to choose the two points 9 and 12 in u1 as points 1 and 3 are excluded
from the options, at most d − 1 ways to choose point 5 in u2 and at most d − 1 ways to
choose point 7 in u3. Hence, fII(P) ≤ 4 · 4i(d− 2)(d− 3)(d− 1)2 = mII(i). This shows (i).

For (ii), consider P ∈ Si, where 0 ≤ i ≤ i1 − 1. Then bA(P) is the number of class
A switchings that produce P . To determine such a switching, we may choose two 2-paths,

16

{5,1}, {3,7} and {6,2}, {4,8}, as in the right hand side of Figure 2. The number of these
arising (with these labels) from the specification of valid class A switchings is M2

2 −X, where
M2 is clearly the total number of 2-paths, and X counts the choices such that at least one
of the following occurs:

(a) either of the 2-paths has a pair contained in a double edge;

(b) both of the 2-paths consist of only pairs representing single edges, and they share at
least one vertex;

(c) all six vertices ui, vi are distinct, and there is an edge between ui and vi for some
i ∈ {1, 2, 3}.

We only need to bound X from above. For (a), by symmetry we consider the case that
u1u3 is a double edge (see the right side of Figure 3) and we multiply the bound of the
number of such choices by four. There are 4i ways to label point 3 contained in a double
edge. Then, there are d− 1 ways to choose another point in u1. That bounds the number of
2-paths containing a pair which is part of a double edge. The number of ways to choose the
other 2-path is M2. This gives the bound 4 · 4i(d− 1)M2 = 16i(d− 1)M2 for (a).

For (b), all ui are distinct and so are all vj. So, there are 9 choices for i and j for the
common vertex ui = vj. Consider the case u2 = v2. There are at most M2 ways to choose
points 5, 1, 3 and 7. There are d ways to choose point 6 (note that point 6 does not need to
be distinct from point 5 as this is a bad case counted in M2

2 as well) and then d− 1 ways to
choose point 4. This gives a bound M2d(d− 1). It is easy to see that the same bound holds
for each of the other eight cases. So the number of choices for (b) is at most 9M2d(d− 1).

For (c), first consider the case that u2v2 is an edge. There are at most M2 ways to choose
points 5,1,3,7. Since u2v2 is an edge, there are at most (d− 1)2 ways to choose point 6 and
then d− 1 ways to choose point 4. This gives at most M2(d− 1)3 choices for the case that
u2v2 is an edge. By symmetry, the same bound holds for the case that u3 is adjacent to v3.
For the case u1 = v1, we have at most (d−2)(d−1) ways to choose point 2 and then at most
d − 2 ways to choose point 4, resulting in a bound M2(d − 1)(d − 2)2. Hence, the number
of choices for (c) is at most M2(2(d− 1)3 + (d− 1)(d− 2)2). Adding the three cases, we get
X ≤M2(d− 1)(16i+ 3d2 + d+ 6), and so bA(P) ≥M2

2 −X ≥ mA(i).
Finally, to bound bB(P) from below, we estimate the number of class B switchings pro-

ducing P . Note that these can be of either type, I or II. Specifying such a switching involves
labelling six vertices and 10 or 12 points, depending on the type of switching, as described
in the right hand sides of Figures 3 and 4. By symmetry, we only discuss the case that point
9 is in u1 and point 10 is in u3, and multiply the resulting bound by 4. Choose a double
edge z and choose a point in z and label it 3 (in 4i ways). This determines the points 7,
9 and 10. Choose another point in u1 and label it 1 (in d − 2 ways, as points 3 and 9 are
already specified in u1). The mate of 1 is labelled 5. If {1, 5} represents a single edge, this
corresponds to a type I switching. Otherwise, it is in a double edge, and this corresponds
to a type II switching (with points 11 and 12 uniquely determined). In each case, another
2-path can be chosen in at most M2 ways. In all, the number of ways to validly choose all
these points is 4i(d− 2)M2 − Y where Y accounts for choices such that at least one of

(a’) the second 2-path also contains a double edge

17

(b’) the two 2-paths share at least one vertex;

or (c) above holds. Similar to the previous argument, the number of choices satisfying (a’)
is at most 2 · 4id · 4id, where factor 2 accounts for whether pair {6,2} or {4,8} is contained
in a double edge. The number satisfying (b’) is at most 9 · 4id · d2, and for (c) it is at most
3 · 4id · d3. Hence, Y ≤ 32i2d2 + 36id3 + 12id4 and so (recalling the factor 4 from the start)

bB(P) ≥ 4 (4i(d− 2)M2 − Y) = mB(i).

7.4 Fixing ρτ(i)

We assume that d ≥ 2 in the rest of the paper as the case d = 1 is trivial: in that case a
random pairing immediately gives a random simple 1-regular graph.

With the definition of the three kinds of switchings (IA, IB and IIB) in Section 7.2, the
transitions among strata Sj in the Markov chain is exactly as in the example in Section 6.
Recalling the description in Section 6, in order to define ρτ (i), it is sufficient to specify a
solution (ρ∗τ (i), x

∗
i) of the system (13)–(17). We have some latitude here because the system

is underdetermined. To keep the probability of t-rejection small in every step, it is desirable
to find a solution such that 1 − (ρ∗I(i) + ρ∗II(i)) is as small as possible. We prove that the
system has a unique solution such that ρ∗I(i) = 1− ε for all 1 ≤ i ≤ i1, for some 0 < ε < 1,
at least for n sufficiently large.

Lemma 7. Let 0 < γ < 1 be fixed, which determines i1 via (18), and ε > 0. Assume that
each of the following holds:

4(1 + γ)(d− 1)2(d− 2)(d− 3)

dn
(
dn− 7d2 + 7d− 10− 4γ(d− 1)2

) ≤ ε < 1; (23)

dn− 7d2 + 7d− 10− 4γ(d− 1)2 > 0; (24)

(d− 2)(d− 1)n− (2(1 + γ)d(d− 1)2 + 9d2 + 3d3) > 0. (25)

Then, with the values of mτ (i) and mα(i) defined in Section 7.3, the system (13)–(17) has a
unique solution (ρ∗τ (i), x

∗
i) satisfying ρ∗I(i) = 1− ε > 0 for every 1 ≤ i ≤ i1. For fixed γ > 0,

and n sufficiently large, there is an ε satisfying (23) with ε = O(d2/n2).

Proof. For 1 ≤ i ≤ i1 we set ρ∗I(i) = 1− ε, which is positive by (23), and necessarily set
ρ∗I(0) = 0 and ρ∗II(i1) = 0 by (16). Then (14) determines x∗i1 . Then for every 0 ≤ i ≤ i1 − 1,
the value of x∗i is determined recursively, in decreasing order of the value of i, by (13)
and (14). Equation (25) ensures that mB(i) > 0. Moreover, mB(i) < mI(i) for every i,
which we will justify below. It follows then that x∗i > 0 for each i. From here, each ρ∗II(i) for
0 ≤ i ≤ i1 − 1 is determined using (15), and is moreover strictly positive for 1 ≤ i ≤ i1 − 1
because x∗i > 0 for 0 ≤ i ≤ i1. Note also that ρ∗II(0) = 0 because mII(0) = 0 by (20) and
this is consistent with (16).

We have shown that all of x∗i , ρ
∗
τ (i) are uniquely determined. It only remains to show

that mB(i) < mI(i) and (ρ∗τ (i), x
∗
i) satisfies (17). First note that

mA(i) ≥ mA(i1) ≥ M2
2 −M2(d− 1)

(
4(1 + γ)(d− 1)2 + 3d2 + d+ 6

)
= d(d− 1)2n

(
dn− 7d2 + 7d− 10− 4γ(d− 1)2

)
(26)

18

which is positive by (24).
By (13),

x∗i+1

x∗i
≤ mI(i+ 1)

mA(i)(1− ε)
, (27)

and hence by (15),

ρ∗II(i) = (1− ε)
x∗i+1

x∗i
· mII(i)

mI(i+ 1)
≤ mII(i)

mA(i)
.

By (20) and (21), and using i ≤ i1 ≤ (1 + γ)(d− 1)2/4,

ρ∗II(i) ≤
4(1 + γ)(d− 1)4(d− 2)(d− 3)

mA(i)
,

which is at most ε by (26) and (23). Hence ρ∗I(i) + ρ∗II(i) ≤ 1 as required for (17). In the
first paragraph of this proof it was observed that ρ∗I(i) and ρ∗II(i) are both nonnegative.

To prove mB(i) < mI(i), noting that mB(i) < 16id4(n/d−3) and mI(i) > 4i(dn−d2)2 =
4id4(n/d−1)2, it is sufficient to prove that 4(n/d−3) < (n/d−1)2. This inequality is trivially
true as (n/d− 1)2 − 4(n/d− 3) = (n/d− 3)2 + 4 > 0.

The last claim in the lemma is immediate since d = o(
√
n).

Note that the proof of Lemma 7 provides a computation scheme for a solution to sys-
tem (13)–(15) with initial conditions (16). It is solved by iterated substitutions in O(i1) =
O(d2) steps.

Let γ > 0 and ε be chosen to satisfy (23) and (24). Then γ will be used to define Aγ in
Section 8. To complete the definition of phase 3 of REG, as foreshadowed in Section 6, we
then set ρτ (i) for phase 3 to be the solution determined in Lemma 7. Our main concern in
this paper is for large n, but there is a technical issue here. If no such γ and ε satisfy (23)
and (24), REG would not be technically defined. This is circumvented by defining (in
Section 8) i1 = 0 in that case. Then the system (13)–(17) has the trivial solution, and phase
3 does, and needs to do, nothing.

7.5 Probability of rejection

Assume that γ and ε are chosen to satisfy (23)–(24). By Lemma 7, (13)–(17) has a solution
and this properly defines ρτ (i).

We are assuming that γ is fixed, and ε = O(d2/n2) has been chosen as described at the
end of the previous subsection. Our next task is to bound the number of switching steps that
the algorithm will perform in phase 3, in expectation, per graph generated. The key points
to consider are the distribution of the number of steps in the phase, and the probability of
rejection occurring during the phase.

Lemma 8. The number of switching steps in phase 3 is O(i1), both in expectation for suffi-
ciently large n, and with probability 1−O(n−2).

Proof. Let t ≥ i1 be an integer. Assume that phase 3 contains at least t switching steps.
Among the first t switching steps, let x denote the number of times that the number of
double edges does not decrease. Since it increases by at most 1 per step, and the number

19

of double edges in P0 is at most i1, we have i1 + x − (t − x) ≥ 0. It follows then that
x ≥ (t − i1)/2. If a switching does not decrease the number of double edges, it must be
either of type I and class B, or of type II. The probability of performing a type II switching
for any given switching step in phase 3 (conditional upon the history of the process) is
ρII(i), which is at most ε = O(d2/n2). Assume that a type I switching is applied to a pairing
P ∈ Si for some 1 ≤ i ≤ i1 in a switching step. It is easy to see that fI(P) = Ω(iM2

1) (see
a more accurate lower bound for fI(P) in the proof of Lemma 12 below), and similarly the
number of type I class B switchings that can be applied to P is O(id2M1). Thus, conditional
upon the chosen type of switching being I, the probability that the switching is in class B
is O(d2/M1) = O(d/n). Combining the above two cases, the probability that the number of
double edges does not decrease in a given switching step is O(d/n). Hence, the probability
that x ≥ (t− i1)/2 is at most(

t

(t− i1)/2

)(
O(d/n)

)(t−i1)/2 ≤ 2t
(
O(d/n)

)(t−i1)/2.
Putting t = 17i1, it is clear that the above probability is O(n−2) (for all sufficiently large d it
is clear that choosing t = 3i1 suffices; choosing t = 17i1 allows to get the uniform probability
bound for cases such as d = 2). Hence, with probability 1 − O(n−2), phase 3 contains at
most 17i1 switching steps. The expected number of switching steps in phase 3 is at most

2i1 +
∑
t≥2i1

t2t
(
O(d/n)

)t/4
= 2i1 +O(1).

Lemma 9. The probability that phase 3 terminates with a t-rejection is O(d4/n2).

Proof. By our choice of ρτ (i), in each switching step of phase 3, a t-rejection occurs with
probability at most max1≤i≤i1(1− ρI(i)− ρII(i)) ≤ 1− ρI(i) = ε = O(d2/n2). By Lemma 8,
the total number of switching steps in phase 3 is O(i1) with probability 1 − O(n−2). This
implies that the probability of a t-rejection during phase 3 is O(n−2+i1d

2/n2) = O(d4/n2).

Before attempting to bound the probability of an f-rejection or b-rejection in phase 3,
we prove two technical lemmas about properties of a random pairing in Si. Given a set of
pairs S, let V (S) denote the set of vertices that are incident with S. We say a set of pairs
K excommunicate S if all pairs in K are single edges, V (K) ∩ V (S) = ∅, and no vertex in
V (K) is adjacent to a vertex in V (S).

Lemma 10. Let u, v be two specified vertices. Assume P is a random pairing of Si condi-
tional on containing uv as a single edge (or a double edge, or that u is not adjacent to v).
Let x be a randomly selected pair in P . The probability that one end vertex of x is adjacent
to u, and the other adjacent to v, and all four vertices are distinct, is O(d2/n2).

Proof. The proof is basically the same for all three cases, so it is enough to assume that
uv is a double edge. Label the pairs in the edge uv as {1,2} and {3,4}, with points 1 and
3 in u. We will use a “subsidiary” switching. To select a random pair x, we may let it be
the pair containing a randomly selected point. Let the end points of x be labelled 5 and 6,
the vertex containing 5 labelled u1 and the one containing 6 labelled v1. We will bound the
probability that u1 is adjacent to u and v1 is adjacent to v by O(d2/n2). The lemma then

20

follows by symmetry. So far we have only exposed pairs in the edge uv and pair x, and we
can assume that all four vertices involved are distinct. All other points are paired uniformly
at random in P conditional on P ∈ Si.

Pick a point 7 from u1, a point 8 from u, a point 9 from v1 and a point 10 from v. We next
estimate the probability that y = {7, 8} and z = {9, 10} are pairs in P , and both represent
single edges.

Let C1 be the set of pairings that contain the pairs {2i−1, 2i} for all 1 ≤ i ≤ 5, such that
y and z represent single edges. For any P ∈ C1, pick sequentially another two single-edge
pairs labelled {11,12} and {13,14} that each excommunicates all previously chosen/exposed
pairs. Perform a switching of pairs as in Figure 6. Then the number of valid switchings is
Θ(M2

1), since there are M1 −O(d2) = M1 − o(n) ∼M1 options for each of these two single-
edge pairs. Let C be the set of pairings in Si containing {u, v} as a double edge, as well as
the pair x. Observe that each subsidiary switching produces a pairing in Si and indeed in
C. For any pairing P ′ ∈ C, at most one subsidiary switching can produce P ′, because all
points 1 ≤ i ≤ 10 are specified and so are points 11 ≤ i ≤ 14. Hence, the probability that a
random P ∈ C contains pairs y and z as single-edge pairs is

|C1|
|C|

= O(1/M2
1).

There are at most d4 ways to choose points 7 ≤ i ≤ 10. Thus, the probability that u1 is
adjacent to u with a single edge and v1 is adjacent to v with a single edge is O(d4/M2

1) =
O(d2/n2).

11 12

7 8

1

2

3

4

5

6

9 10

13 14

11 12

7 8

1

2

3

4

5

6

9 10

13 14

x

y

z

Figure 6: A subsidiary switching

Next, we bound the probability that u1 is adjacent to u via a double edge. Pick points 7
and 9 from u1 and 8 and 10 from u. We first bound the probability that {7, 8} and {9, 10}
form a double edge u1u. Suppose the pairing P does contain {7, 8} and {9, 10} (as on the
left side of Figure 7). Pick sequentially another two 2-paths that each excommunicates all
previous chosen/exposed pairs. Switch some of the pairs as in Figure 7. In this case, the
number of possible switchings is Θ(M2

2). On the other hand, the number of switchings that
produce any given pairing in C is O(i). This is because all points 1 ≤ i ≤ 10 are specified
and so are their mates, and there are i ways to choose the double edge to play the role of
the one on the right side of Figure 7 created by the switching. Hence, the probability that
{7,8} and {9,10} are both pairs in P is O(i/M2

2). There are at most d4 ways to choose

21

points 7, 8, 9, and 10. Hence, the probability that u1 is adjacent to u with a double edge is
O(id4/M2

2) = O(i/n2). By symmetry, the probability that v1 is adjacent to v with a double
edge is also O(i/n2).

Noting that i ≤ i1 = O(d2), this probability is O(d2/n2). This completes the proof.

7 8

1

2

3

4

5

6

9

10 7 8

1

2

3

4

5

6

9

10

x x

Figure 7: Another subsidiary switching

Lemma 11. Let P be a random pairing in Si with i ≥ 2. The expected number of pairs of
double edges sharing a common vertex is O(i2/n).

Proof. Let u, u1 and u2 be three distinct vertices. Pick four points in u, two points in u1
and two points in u2. Label these points as in Figure 8. We estimate the probability that
pairs {2i−1, 2i} for all 1 ≤ i ≤ 4 are in P . Let C1 be the set of pairings containing these four
pairs. For any P ∈ C1, consider the following switching. Choose sequentially four 2-paths,
each of which excommunicates all previously chosen and exposed pairs. Switch these pairs
as in Figure 8. There are Ω(M4

2) ways to perform such a switching for every pairing in C1,
whereas for every pairing P ′ ∈ Si (i ≥ 2), the number of switchings producing P ′ is O(i2),
as all points 1 ≤ i ≤ 8 are specified and there are O(i2) ways to choose the two double edges
as on the right side of Figure 8. Hence, the probability that P contains pairs {2i− 1, 2i} for
all 1 ≤ i ≤ 4 is O(i2/M4

2). The number of ways to choose u, u1 and u2 and then to choose
points 1 ≤ i ≤ 8 is at most M4M

2
2 . By linearity, the expected number of pairs of double

edges sharing a common vertex is O(M4M
2
2 · i2/M4

2) = O(i2/n).

12

34

5 6

7 8
uu1 u2

1
2

3
4

5
6

7
8

uu1 u2

Figure 8: Switching away a pair of double edges sharing a common vertex

22

7.5.1 Probability of an f-rejection

Recall that Pt is the pairing obtained after the t-th switching step of phase 3. For a given
pairing P , conditional on Pt = P , we bound the probability an f-rejection occurs at the (t+1)-
th switching step. Assume P ∈ Si; the probability that a type I switching is performed on
P and is f-rejected, is

ρI(i)

(
1− fI(P)

mI(i)

)
.

On the other hand, the probability that a type II switching is performed on P and is f-
rejected is O(d2/n2), as ρII(i) = O(d2/n2) by Lemma 7. Taking the union bound over all
switching steps, the probability of an f-rejection during phase 3 is at most∑

t≥0

∑
1≤i≤i1

∑
P∈Si

P(Pt = P)

(
ρI(i)

(
1− fI(P)

mI(i)

)
+O(d2/n2)

)
.

Note that
∑

t≥0 P(Pt = P) is the expected number of times that P is reached, which is σ(i)
for every P ∈ Si by Lemma 4. Hence, the above probability is∑

1≤i≤i1

∑
P∈Si

σ(i)

(
ρI(i)

(
1− fI(P)

mI(i)

))
+
∑

1≤i≤i1

|Si|σ(i) ·O(d2/n2). (28)

Since ρI(i) ≤ 1 always, and since by Lemma 8,∑
1≤i≤i1

|Si|σ(i) = O(i1) = O(d2), (29)

the probability of an f-rejection during phase 3 is at most∑
1≤i≤i1

∑
P∈Si

σ(i)

(
1− fI(P)

mI(i)

)
+O(d4/n2). (30)

We will prove the following lemma by bounding the first term of (30).

Lemma 12. The probability of an f-rejection during phase 3 is O(d2/n).

Proof. By (30), it is sufficient to bound
∑

1≤i≤i1
∑

P∈Si σ(i) (1− fI(P)/mI(i)) by O(d2/n).
Note that ∑

1≤i≤i1

∑
P∈Si

σ(i)

(
1− fI(P)

mI(i)

)
=
∑

1≤i≤i1

σ(i)|Si| · E
(

1− fI(P)

mI(i)

)
,

where the above expectation is taken on a random pairing P ∈ Si. It will be sufficient to
show that this expectation is O(1/n) for every 1 ≤ i ≤ i1, since then∑

1≤i≤i1

σ(i)|Si| · E
(

1− fI(P)

mI(i)

)
= O(i1/n) = O(d2/n)

and the lemma follows.
Assume P ∈ Si. Let X = mI(i) − fI(P). Pick and label pairs and vertices as in the

description of the type I switching (see Figure 2). Here, X counts choices and labellings such
that any of the following occur:

23

(a) the six vertices are not all distinct;

(b) the vertices are distinct and at least two new double edges are created after performing
the switching;

(c) some triple edge is created by the switching because there is a double edge already
between u1 and u2 or u3, or between v1 and v2 or v3.

It is easy to see that the number of choices for (a) is O(idM1). For (b), there are two
sub-cases (we use u ∼ v to denote that u is adjacent to v).

(b1) u1 ∼ u2 and u1 ∼ u3, or v1 ∼ v2 and v1 ∼ v3, or u1 ∼ u2 and v1 ∼ v3, or u1 ∼ u3 and
v1 ∼ v2;

(b2) u1 ∼ u3 and v1 ∼ v3, or u1 ∼ u2 and v1 ∼ v2.

It is straightforward to see that the number of choices for (b1) is at most O(id4). For (b2),
we consider a random P ∈ Si which contains u1v1 as a double edge. Let x be a random
pair chosen uniformly from P ; with u2 and v2 denoting its end vertices. By Lemma 10,
the probability that u1 is adjacent to u2 and v1 is adjacent to v2 is O(d2/n2). Hence, the
expected number of choices for (b2) is O(iM2

1 · d2/n2), as there are O(i) ways to choose u1v1
and label their end points, M2

1 ways to sequentially choose two random pairs, uniformly
at random and with repetition, and by the above argument, the probability that one of
these two pairs forcing (b2) is O(d2/n2). By (19) and since i ≤ i1 = O(d2) = o(M1),
iM2

1 · d2/n2 = mI(i) ·O(d2/n2).
We can count the possibilities for (c) by first choosing a vertex (for u1 or v1) incident with

two double edges — by Lemma 11 there are O(i2/n) ways to do this in expectation — and
then choosing the remaining pairs to be switched, in O(dM1) ways. For a random P ∈ Si,
the expected number of type I switchings satisfying (c) is therefore O(i2dM1/n) = o(idM1)
since i = O(d2) = o(n).

Combining the three bounds, we find that EX = O(idM1 + id4)+mI(i) ·O(d2/n2) and so
since d2 = o(n) we have E (1− fI(P)/mI(i)) is O(idM1 + id4)/mI(i) +O (d2/n2) = O(1/n),
as desired.

7.5.2 Probability of a b-rejection

Let S−τ,α(P) denote the set of pairings that can produce P using a type τ , class α switching.
Now, we bound the probability of a b-rejection during phase 3. Given P ∈ Si, we consider

a pairing P ′ ∈ S−I,A(P). Then P ′ must be in Si+1. Conditional on Pt−1 = P ′, the probability
that the switching S, which converts P ′ to P , is chosen and is not f-rejected at the t-th
switching step is

ρI(i+ 1)

mI(i+ 1)
.

Conditional on that, the probability that P is b-rejected is 1−mA(i)/bA(P). Similarly, for
any P ′ ∈ S−I,B(P) ∪ S−II,B(P), conditional on Pt−1 = P ′, the probability that the switching
converting P ′ to P is chosen at the t-th switching and is not f-rejected but is b-rejected is

ρI(i)

mI(i)

(
1− mB(i)

bB(P)

)
,

24

if P ′ ∈ S−I,B(P), and is

ρII(i− 1)

mII(i− 1)

(
1− mB(i)

bB(P)

)
.

if P ′ ∈ S−II,B(P). Hence, by the union bound, the probability that a b-rejection occurs during
phase 3 is at most∑

t≥1

∑
0≤i≤i1−1

∑
P∈Si

∑
P ′∈S−I,A(P)

P(Pt−1 = P ′)
ρI(i+ 1)

mI(i+ 1)

(
1− mA(i)

bA(P)

)

+
∑
t≥1

∑
1≤i≤i1

∑
P∈Si

(
1− mB(i)

bB(P)

) ∑
P ′∈S−I,B(P)

P(Pt−1 = P ′)
ρI(i)

mI(i)

+
∑

P ′∈S−II,B(P)

P(Pt−1 = P ′)
ρII(i− 1)

mII(i− 1)

=

∑
0≤i≤i1−1

∑
P∈Si

∑
P ′∈S−I,A(P)

σ(i+ 1)
ρI(i+ 1)

mI(i+ 1)

(
1− mA(i)

bA(P)

)

+
∑

1≤i≤i1

∑
P∈Si

(
1− mB(i)

bB(P)

) ∑
P ′∈S−I,B(P)

σ(i)
ρI(i)

mI(i)
+

∑
P ′∈S−II,B(P)

σ(i− 1)
ρII(i− 1)

mII(i− 1)

 .

By (10), σ(i)ρI(i)/mI(i) = σ(i− 1)ρII(i− 1)/mII(i− 1) for every 1 ≤ i ≤ i1. So, using
ρI(i) ≤ 1, the probability of a b-rejection during phase 3 is at most

∑
0≤i≤i1−1

∑
P∈Si

 ∑
P ′∈S−I,A(P)

σ(i+ 1)

mI(i+ 1)

(
1− mA(i)

bA(P)

)
+
∑

1≤i≤i1

∑
P∈Si

 ∑
P ′∈S−I,B(P)∪S−II,B(P)

σ(i)

mI(i)

(
1− mB(i)

bB(P)

) . (31)

By the definition of bα(P) for α ∈ {A,B},

|S−I,A(P)| = bA(P), |S−I,B(P) ∪ S−II,B(P)| = bB(P).

Then, the above expression equals∑
0≤i≤i1−1

∑
P∈Si

σ(i+ 1)

mI(i+ 1)

(
bA(P)−mA(i)

)
+
∑

1≤i≤i1

∑
P∈Si

σ(i)

mI(i)

(
bB(P)−mB(i)

)
. (32)

By (27) and recalling that x∗j = σ(j)/|Φ1|,

σ(i+ 1)

mI(i+ 1)
= O

(
σ(i)

mA(i)

)
, (33)

25

whereas by (19) and (22),

σ(i)

mI(i)
=

σ(i)

mB(i)

mB(i)

mI(i)
=

σ(i)

mB(i)
·O
(
idM2

iM2
1

)
=

σ(i)

mB(i)
·O(d/n). (34)

Substituting bounds (33) and (34) into (32) yields∑
0≤i≤i1

∑
P∈Si

O(σ(i))

(
bA(P)−mA(i)

mA(i)
+ (d/n)

(
bB(P)−mB(i)

mB(i)

))
=
∑

1≤i≤i1

O(σ(i)|Si|)
(
EbA(P)−mA(i)

mA(i)
+ (d/n)

(
EbB(P)−mB(i)

mB(i)

))
, (35)

by noting that bA(P) = 0 for P ∈ Si1 and bB(P) = mB(0) = 0 for P ∈ S0, and by resetting
mA(i1) = 0 as the first term in (32) does not include i = i1. By bounding these expectations
we will prove the following lemma.

Lemma 13. The probability of a b-rejection during phase 3 is O(d2/n).

Proof. We first bound EbA(P) from above for a random P ∈ Si. Clearly M2
2 is an upper

bound. However, we can exclude from it the choices of the pair of 2-paths such that

(a) Exactly one of these four pairs is contained in a double edge and the two paths do not
share any vertex;

(b) All of the four pairs in the 2-paths represent single edges, and the two paths are
vertex-disjoint, and ui is adjacent to vi for exactly one of i = 1, 2, 3.

Clearly, the sets of pairings counted in (a) and (b) do not intersect. Let Xa and Xb denote
the sizes of these two sets. Then bA(P) ≤M2

2 −Xa−Xb. We wish to estimate lower bounds
for Xa and Xb.

For (a), consider the case that the pair {3,7} is contained in a double edge, as on the
right side of Figure 3. There are 4i ways to choose point 3. That choice automatically
sets points 7,9 and 10. Then, there are (d − 2) ways to pick point 1, which sets point 5 as
well. Given the choice of the first 2-path, there are M2 − O(d2 + id) ways to choose the
other 2-path so that it does not use any vertex ui, and it does not use a pair contained in
a double edge. Hence, by symmetry, Xa = 16i(d− 2)(M2 − O(d2 + id))− O(X ′), where X ′

counts choices where one of the two 2-paths uses two pairs such that each pair is contained
in a double edge. By Lemma 11, E(X ′) = O(M2i

2/n) = O(d6), as i ≤ i1 = O(d2), and
the expected number of choices for the 2-paths with both pairs contained in double edges
is O(i2/n), whereas M2 bounds the number of choices for the other 2-path. Now, we have
EXa ≥ 16i(d− 2)(M2 −O(d2 + id))−O(d6).

For (b), there are M2 ways to choose the first path and then approximately 2(d− 1)3 +
(d−2)2(d−1) ways to choose the other 2-path. So, Xb = M2(2(d−1)3 +(d−2)2(d−1))−Y ,
where Y counts the choices of the two 2-paths such that

(c) the two paths are not vertex disjoint, or

26

(d) they are vertex-disjoint, and one of the two paths contains a double edge and ui ∼ vi
for some i, or

(e) they are vertex-disjoint, and at least two of uivi are edges.

The number of choices for (c) is O(M2d
2); the number of choices for (d) is O(id4). For (e),

first consider the case that u1v1 and u2v2 are edges. There are O(M1) choices for the edge
u1v1. Consider a random pairing P ∈ Si that contains u1v1 as an edge. Pick a random pair x
in P . Denote its end vertices by u2 and v2. By Lemma 10, the probability that u1 ∼ u2 and
v1 ∼ v2 is O(d2/n2). Thus, the expected number of such choices for u1, u2, v1, v2 and pairs
between them is O(M2

1 ·d2/n2). After fixing these, there are O(d2) ways to choose edges u1u3
and v1v3. This gives O(M2

1d
4/n2) = O(d6) for the number of choices such that u1 ∼ v1 and

ui ∼ vi for some i = 2, 3 by symmetry. Lastly, consider the case that ui ∼ vi for i = 2 and
3. There are at most n2 ways to choose u1 and v1. Then, randomly pick 2 pairs and denote
their end vertices by u2 and v2, and u3 and v3 respectively. A trivial adaptation of the proof
as Lemma 10 shows that the probability that the four edges u1ui and v1vi for i = 2, 3 are
present is O(d4/n4). Hence, the number of choices in this case is O(n2 ·M2

1 · d4/n4) = O(d6).
This gives

EXb = 2M2(d− 1)3 +M2(d− 2)2(d− 1)−O(M2d
2 + id4 + d6) = 3M2d

3 +O(M2d
2 + d6),

using that i ≤ i1 = O(d2).
Combining (a) and (b), EbA(P) ≤M2

2−16idM2−3M2d
3+O(d6+M2d

2). Recall from (21)
that mA(i) = M2

2 −M2d(16i+ 9d+ 3d2). So, EbA(P)−mA(i) = O(d6 +M2d
2).

It is easy to see that bB(P) ≤ 16i(d− 2)M2 for every P ∈ Si. Hence, by (22),

E(bB(P)−mB(i)) = O(id4).

By (35), the probability of a b-rejection during phase 3 is∑
1≤i≤i1

O(σ(i)|Si|)
(
d6 +M2d

2

mA(i)
+ (d/n)

(
id4

mB(i)

))
.

It is easy to see that mA(i) = Ω(M2
2) and mB(i) = Ω(idM2) by (22) and the assumption

that d2 = O(n). So the above probability is bounded by

O(1/n)
∑

1≤i≤i1

σ(i)|Si| = O(i1/n) = O(d2/n),

by (29). The lemma follows.

8 Initial rejection: defining Aγ
Here we define Aγ, after some preliminaries. It is easy to see that

|Φ| = (M1 − 1)!! :=

M1/2−1∏
i=0

(M1 − 2i− 1),

27

and the probability that a random P ∈ Φ contains a given set of s pairs is

(M1 − 2s− 1)!!

(M1 − 1)!!
=

s−1∏
i=0

1

M1 − 1− 2i
. (36)

Let D(P), L(P) and T (P) denote the number of double edges, loops and triple edges,
respectively, in a pairing in P ∈ Φ. Define

Aγ = {P ∈ Φ : D(P) ≤ BD, L(P) ≤ BL, T (P) ≤ BT}

where

BL = max{dlog dne, 4d}, BT = max{dlog dne, dd3/ne}, BD =

⌊
(1 + γ)

(d− 1)2

4

⌋
, (37)

noting that the definition of BD agrees with the definition of i1 in (18), and subject to the
following proviso. If γ is such that no ε satisfies the conditions in Lemma 7 for phase 3, we
replace the bound on D(P) by the condition D(P) = 0. That is, i1 = 0 for phase 3. (This
will increase the probability of initial rejection, but only for n = O(d), as discussed after
Lemma 7.)

Lemma 14. Assume d = o(
√
n). For any γ > 0, the probability of an initial rejection is at

most 1/(1 + γ) + o(1).

Proof. By [14, Lemma 3.2], the probability that a random pairing P ∈ Φ contains more
than BL single loops or more than BT triple edges, or any multi-edge other than double or
triple edges, is O(d2/n) = o(1). We also have

ED =
∑

1≤i<j≤n

(
d
2

)(
d
2

)
2!

(M1 − 1)(M1 − 3)
= (1 + o(1))(d− 1)2/4.

By Markov’s inequality, the probability that a random pairing P ∈ Φ has at least (1+γ)(d−
1)2/4 double edges is at most 1/(1 + γ) + o(1). The lemma follows, recalling again that by
the remarks after Lemma 7, the condition D(P) = 0 will only be imposed for n = O(d).

9 Reduction of loops and triple edges

Let P0 be a random pairing in Φ. If P0 ∈ Aγ, then REG sequentially enters phases 1 and 2
where the loops and triple edges will be switched away, one at a time. In each of these two
phases, all switchings have the same type and class. Moreover, these are the same switchings
as used for enumeration purposes in [14]. In view of the remark below Lemma 4, phase 1
will be the same as the corresponding phase in the algorithm DEG of [12]. Phase 2 is similar
to phase 1, just with different switchings. (For the range of d considered in [12] there are no
triple edges in pairings in A and so DEG has no phase of reduction of triple edges.)

We define the switchings and analyse the rejection probabilities for phases 1 and 2 in
Sections 9.1 and 9.2 respectively. This analysis is similar to that in [12].

28

9.1 Phase 1: loop reduction

In this phase, only one type of switching is used, which is defined as follows.
Type L switching. Let P be a pairing containing at least one loop. Pick a loop from P

and label its end points by 1 and 2. Pick another two pairs y and z, both of which represent
single non-loop edges, and label their end points by 3 and 4, and 5 and 6 respectively. Let
the vertices containing these points be labelled as in Figure 9. The type L switching replaces
these pairs by {1,3}, {4,6} and {2,5}. This switching is valid only if the five vertices vi
(1 ≤ i ≤ 5) are all distinct, and there are no new multi-edges or loops created after its
performance. All type L switchings are in class A.

v1

v2

v3

v4

v5

1 2

3

4

5

6

v1

v2

v3

v4

v5

1 2

3

4

5

6

y z

x

Figure 9: type L switching

Note that a type L switching always reduces the number of loops in a pairing by one.
In this phase, Si is the set of pairings in Aγ with exactly i loops, and i1 is set equal to BL

defined in (37). Here, Φ1 = Aγ, which is ∪0≤i≤i1Si. We set ρL(i) = 1 for every 1 ≤ i ≤ i1.
Define

mL(i) = 2iM2
1

mA(i) = M2M1 − 2dM1(3i+ 6BD + 9BT + 3d+ d2). (38)

Lemma 15. During the loop reduction phase, for each P ∈ Si, fL(P) ≤ mL(i) and bA(P) ≥
mA(i).

Proof. We first prove the upper bound. Let P ∈ Si. The number of ways to choose a loop
and label its end points in P is 2i. Then, the number of ways to choose another two pairs
and label their end points is at most M2

1 . This shows that fL(P) ≤ mL(i) for any P ∈ Si.
Next we prove the lower bound. Given P ∈ Si, bA(P) is the number of type L switchings

that produce P . To count such switchings, we need to specify a 2-path and label the points
inside by {3,1} and {2,5}, together with another pair representing a single edge, whose end
points are labelled by 4 and 6, and label all vertices containing these points as on the right
side of Figure 9. Moreover, the five vertices must be distinct. There are M2 ways to pick
the 2-path and M1 ways to pick the other pair. We need to exclude every choice in which
at least one of the following holds:

(a) the 2-path contains a loop, or a double edge, or a triple edge;

(b) pair {4, 6} is a loop or is contained in a multi-edge;

29

(c) pair {4, 6} share a vertex with the 2-path;

(d) v2 and v3 are adjacent or v4 and v5 are adjacent.

We first show that the number of choices for (a) is at most 2(2idM1+4BDdM1+6BTdM1),
starting with the choices in which {1,3} is a loop. There are 2i ways to choose a loop and
label their end points by 1 and 3. Then, there are at most d ways to choose 2 and 5 as v1, the
vertex containing point 1 has degree d. So the number of ways to choose the 2-path and x so
that {1,3} is a loop is at most 2idM1. Similarly, the number of ways to choose such a path
and a pair so that {1, 3} is contained in a double edge or a triple edge is at most 4BDdM1

and 6BTdM1 respectively as there are at most BD double edges and BT triple edges. The
extra factor 2 accounts for the case that {2,5} is a loop or is contained in a double or triple
edge. Hence, the number of choices for (a) is at most 2dM1(2i+ 4BD + 6BT).

The number of choices for (b) is at most M2(2i + 4BD + 6BT), for (c) is at most 6M2d
and for (d) is at most 2M2d

2. Hence, using M2 ≤ dM1,

bA(P) ≥ M2M1 − 2dM1(2i+ 4BD + 6BT)−M2(2i+ 4BD + 6BT + 6d+ 2d2)

≥ M2M1 − 2dM1(3i+ 6BD + 9BT + 3d+ d2) = mA(i).

Let Φ′ = {P ∈ Aγ : L(P) = 0}.

Lemma 16. Assume that the algorithm is not rejected initially or during the loop reduction
phase and that P ′ is the output after phase 1. Then P ′ is uniformly distributed in Φ′.

Proof. Let Pt be the pairing obtained after the t-th switching step in phase 1. We prove
by induction that Pt is uniformly distributed in the stratum that contains Pt for every t.
As the algorithm is not initially rejected, P0 is uniformly distributed in Aγ, and thus is
uniformly distributed in the stratum containing P0, providing the base case. Assume that
t ≥ 1, and Pt−1 is uniformly distributed in Si, where i = L(Pt−1). Recall that S−L,A(P) is the
set of pairings that can be switched to P via a type L switching (and recall that all type L
switchings are of class A). By (5), for every P ∈ Si−1,

P(Pt = P) =
∑

P ′∈S−L,A(P)

P(Pt−1 = P ′)
mA(i− 1)

mL(i)bA(P)
,

as every P ′ ∈ S−L,A(P) must be in Si. Since Pt−1 is uniformly distributed in Si by the

inductive hypothesis, we have P(Pt−1 = P ′) = 1/|Si|. On the other hand, bA(P) = |S−L,A(P)|
as all class A switchings are of type L. Immediately we have that

P(Pt = P) =
mA(i− 1)

|Si|mL(i)
,

which is independent of P . So Pt is uniformly distributed in Si−1. Inductively, P ′ is uniformly
distributed in S0, which is Φ′.

Lemma 17. The overall probability that either an f- or b-rejection occurs in phase 1 is
O((d2 + d log2 n)/n).

30

Proof. We estimate the probability that an f-rejection occurs at a given step. Assume
that P ∈ Si. Then, fL(P) = mL(i)−X(P), where X(P) is the number of choices of a loop
and the two pairs {3, 4} and {5, 6} so that

(a) {3, 4} or {5, 6} is a loop or is contained in a multi-edge — at most 2 · 2iM1(2i+ 4BD +
6BT);

(b) v1 ∈ {v2, v3, v4, v5} — at most 4 · 2idM1;

(c) v1 is adjacent to v2 or v4; or v3 is adjacent to v5 — at most 2 · 2iM1d
2 + 2iM1d

2.

Hence, X(P) ≤ 2iM1(4i + 8BD + 12BT + 4d + 3d2). Then, the probability that P is
f-rejected is

1− fL(P)

mL(i)
=
X(P)

mL(i)
=

4i+ 8BD + 12BT + 4d+ 3d2

M1

≤ 4i1 + 8BD + 12BT + 4d+ 3d2

M1

.

As the number of loops decreases by one in each step and L(P) ≤ i1 = BL, the total number
of steps in phase 1 is at most i1. Hence, the overall probability of an f-rejection in phase 1
is at most

i1(4i1 + 8BD + 12BT + 4d+ 3d2)

M1

.

By (37), this is at most O((d2 + d log2 n)/n).
On the other hand, to assess b-rejection, assume P ∈ Si. It is obvious that bA(P) ≤

M2M1. Hence, by (38) the probability that P is b-rejected is

1− mA(i)

bA(P)
≤ 2dM1(3i+ 6BD + 9BT + 3d+ d2)

M2M1 − 2dM1(3i+ 6BD + 9BT + 3d+ d2)
.

As i ≤ i1 = BL and by (37), 2dM1(3i1 + 6BD + 9BT + 3d+ d2) < M2M1/2 for all sufficiently
large n. Therefore, the probability that P is b-rejected is at most

4(3i1 + 6BD + 9BT + 3d+ d2)

(d− 1)n
.

As there are at most i1 steps, the overall probability that a b-rejection occurs in phase 1 is
at most

4i1(3i1 + 6BD + 9BT + 3d+ d2)

(d− 1)n
= O((d2 + d log2 n)/n).

9.2 Phase 2: triple edge reduction

In this phase, we start with a pairing P0 uniformly distributed in Φ1 = {P ∈ Aγ : L(P) = 0},
which is a valid assumption at the start of phase 2 by Lemma 16. We will use one type of
switching, called type T, defined as follows.

Type T switching. Let P be a pairing containing at least one triple edge. Pick a triple
edge from P and label its end points as in Figure 10. Pick another three pairs x, y and
z, all of which represent single edges, and label their end points as in Figure 10. A type

31

v3 v4

8
x

v5 v6

10
y

v1 v2
6

v7 v8

12
z

1

2

3

4

5

7

9

11

v3 v4

8

v5 v6

10

v1 v2
6

v7 v8

12

1

2

3

4

5

7

9

11

Figure 10: type T switching

T switching manipulates the pairs as in the figure. This switching is valid only if the eight
vertices involved as in the figure are all distinct, and there are no new multi-edges or loops
created by its action. All type T switchings are of class A.

In this phase, i1 is set equal to BT defined in (37), and hence Φ1 = ∪0≤i≤i1Si where Si is
the set of pairings in Φ1 containing exactly i triple edges. As only one type of switching is
involved, we set ρT (i) = 1 for every 1 ≤ i ≤ i1.

Define

mT (i) = 12iM3
1

mA(i) = M2
3 − 4M3d

2(6BD + 9i+ 4d+ d2). (39)

Lemma 18. During phase 2, for each P ∈ Si, fT (P) ≤ mT (i) and bA(P) ≥ mA(i).

Proof. The upper bound is trivial. There are i ways to choose a triple edge and then 12
ways to label their end points and then at most M3

1 ways to choose the other 3 pairs.
For the lower bound, recall that for any P ∈ Si, bA(P) is the number of type T switchings

that produce P . To count these, we choose two 3-stars and label their end points as on the
right side of Figure 10. The number of such choices is M2

3 . Some of these choices are
excluded:

(a) one of the 3-stars contains a double edge or a triple edge — at most 6M3(4BDd
2+6id2);

(b) the two 3-stars share a vertex — at most 16M3d
3;

(c) there is an edge between v2i−1 and v2i for some i = 1, 2, 3, 4 — at most 4M3d
4.

Hence, bA(P) ≥M2
3 − 4M3d

2(6BD + 9i+ 4d+ d2) = mA(i).

Analogous to the proof of Lemma 16 we have the following lemma, where Φ′′ = {P ∈
Φ1 : T (P) = 0}.

Lemma 19. Assume that no rejection occurs initially or during phase 1 or 2. Then, the
output of phase 2 is a pairing uniformly distributed in Φ′′.

Lemma 20. The probability that either an f-rejection or a b-rejection occurs during phase
2 is O(d4/n2 + d log2 n/n).

32

Proof. We estimate the probability of an f-rejection in each step. Assume P ∈ Si and
recall the type T switchings in Figure 10; fT (P) = mT (i)−X(P) where X(P) is the number
of choices of the triple edge and pairs such that

(a) x or y or z is contained in a multi-edge — at most 3 · 12iM2
1 (4BD + 6i);

(b) the triple edge is adjacent to x or y or z — at most 12 · 12idM2
1 ;

(c) v1 is adjacent to v3 or v5 or v7; or v2 is adjacent to v4 or v6 or v8 — at most 6 ·12id2M2
1 .

Hence, X(P) ≤ 72iM2
1 (2BD + 3i+ 2d+ d2). So, using i ≤ i1 = BT , the probability that

P is f-rejected is

1− fT (P)

mT (i)
=
X(P)

mT (i)
≤ 72iM2

1 (2BD + 3i+ 2d+ d2)

12iM3
1

≤ 6(2BD + 3i1 + 2d+ d2)

M1

.

As T (P0) ≤ i1, the number of steps in phase 2 is at most i1 and hence, by (37), the overall
probability of an f-rejection in phase 2 is at most

6i1(2BD + 3i1 + 2d+ d2)

M1

= O(d4/n2 + d log2 n/n).

On the other hand, for P ∈ Si, mA(i) ≤ bA(P) ≤ M2
3 . Using (39), the probability that

P is b-rejected is

1− mA(i)

bA(P)
≤ 4d2(6BD + 9i+ 4d+ d2)

M3 − 4d2(6BD + 9i+ 4d+ d2)
.

It is easy to see that 4M3d
2(6BD + 9i1 + 4d+ d2) ≤M2

3/2 for all sufficiently large n. Hence,
the above probability is at most

8d2(6BD + 9i1 + 4d+ d2)

M3

= O(d/n+ log n/dn).

So the overall probability of a b-rejection in phase 2 is at most i1 · O(d/n + log n/dn) =
O(d4/n2 + d log2 n/n).

10 REG* and proof of Theorems 1, 2 and 3

REG possesses several complicated features to achieve uniformity of the output distribution
in each phase. Some of these involve time-consuming computations such as finding the
probability of a b-rejection. By omitting some of these features, we obtain a simpler sampler
REG*.

REG* starts by repeatedly generating a random pairing P ∈ Φ until P ∈ Aγ with γ = 1
(or any positive number). Then, REG* sequentially enters the three phases for reduction of
loops, triple edges and double edges. In each phase, there will be only one type of switchings:
types L and T for phases 1 and 2 respectively and type I for phase 3. Each phase consists of
a sequence of switching steps in which a random switching is chosen and performed. Output
the resulting pairing if it is in S0.

33

In other words, REG* is a simplification of REG by omitting f- or b-rejections in each
phase, and by discarding type II switchings in phase 3. Therefore, there is no need to
choose switching types in each switching step as in REG. As a result, there is no need of
pre-computation for solving (13)–(17), and there is no t-rejection any more.

First we prove Theorem 3, assuming Theorem 1.

Proof of Theorem 3. The probability of REG terminating with an f-rejection, a t-rejection
of a b-rejection is o(1) by Lemmas 9, 12 and 13 respectively in phase 3, and similarly for
the other phases. The probability of REG performing a type II switching in phase 3 is
o(1) by Lemma 8 and the fact that ρII(i) = O(d2/n2) as specified just after Lemma 7.
So, conditioning on the two algorithms generating the same initial pairing with no initial
rejection, in an event with probability 1− o(1), REG* has the same output as REG, which
is uniformly distributed. In the remaining cases, an event of conditional probability o(1),
either some rejection occurs in REG and REG* carries on regardless, or a type II switching
is performed in REG and REG* produces some output (exactly what is irrelevant). Bearing
in mind that initial rejection occurs with probability bounded away from 1 by Lemma 14,
it follows that the total variation distance between the output of REG* and the uniform
distribution is o(1).

It is easy to see that uniformly generating a pairing P ∈ Φ takes O(dn) steps, and so does
verification of P ∈ Aγ with γ = 1, when using appropriate data structures. By Lemma 14,
P ∈ Aγ with probability 1/2 + o(1), and so it takes O(dn) steps in expectation until a
random P ∈ Aγ is generated. The total number of switching steps in all phases is bounded
by O(BL + BD + BT) = O(d2 + log n) in expectation and each switching step takes O(1)
unit of time. Thus, the total time complexity of REG* is O(dn + d2 + log n) = O(dn) in
expectation.

Now we turn to REG. We first prove the uniformity of the output distribution.

Proof of Theorem 1. The uniform distribution of the output of REG is guaranteed by
Lemmas 5 and 19, since the parameters ρτ (i) are set for REG, just after Lemma 7, using a
solution (ρ∗τ (i), x

∗
i) of the system (13)–(17). (Recall that if the system had no solution, phase

3 was made redundant by requiring D(P) = 0 in the definition of Aγ in Section 8.)

Finally, we estimate the time complexity of REG. Implementing a switching step as
described in Section 3 would apparently require knowledge of fτ (P) and bα(P). However, we
first observe that there is no need to compute fτ (P). This number is only used to compute
the f-rejection probability at substep (iii) of a switching step. Take the type I switching in
phase 2 as an example. Rather than computing fI(P), we can just randomly pick a double
edge and label its ends, and then uniformly at random pick two pairs, with repetition, from
the total M1/2 − 2i pairs other than those contained in a double edge, and then randomly
label their ends. The total number of choices is exactly mI(i). Perform the switching if it is
valid, and perform an f-rejection otherwise. The probability of an f-rejection is then exactly
1 − fI(P)/mI(i). It is easy to see that this holds for all other types of switchings, by the
way we defined each mτ (i).

Proof of Theorem 2. We have shown that generating a pairing P ∈ Φ uniformly at
random takes O(dn) steps. By Lemma 14, P ∈ Aγ with probability γ/(1 + γ) + o(1), and
so it takes O(dn/γ) steps in expectation until a random P ∈ Aγ is generated. To set the
parameters ρτ (i), we need to compute a solution to system (13)–(17). Using the computation

34

scheme in Lemma 7, the computation time is O(BD) = O(d2), as remarked below Lemma 7.
To generate a random graph, we repeat REG until there is a run in which rejection

does not occur. By Lemmas 17, 20, 9, 12 and 13, the probability that a rejection occurs
during any of the three phases is o(1). Thus, it is sufficient to bound the time complexity
of each phase in one run of REG. Each phase consists of a sequence of switching steps, and
as observed above, we only need to consider the computation time of bα(P). Phase 3 is the
most crucial since it runs for the greatest number, O(d2), of switching steps in expectation.
The same ideas suffice easily for the other phases. An implementation that does the job is
described in [12, Theorem 4]. Briefly, it goes as follows. Data structures are maintained that
require an initial computation time of O(nd3) for the input pairing. These data structures
record, for instance, how many 3-paths join each given pair of vertices. (Note that the
number of nonzero instances of this is O(nd3).) They also record how many 3-paths join
a pair of vertices using a given point, and some other counts relating to 2-paths, 3-paths
starting with a double edge, pairs of 3-paths joining each two given vertices, and similar.
These data structures can be initialised in time O(nd3) by starting at each vertex in turn
and investigating each 3-path leading from it. Moreover, they can be updated in time O(d2)
for each switching step. This is because each switching step alters O(1) pairs, each of which
would affect O(d2) of the numbers being recorded (e.g. the number of 3-paths between two
vertices). As the total number of switching steps in this phase is O(d2) in expectation, this
requires O(d4) steps in expectation throughout all the switchings of the phase. These data
structures are used for implementing a scheme explained in [12] to calculate the number
of switchings of class A that could produce the pairing P ′ that was actually produced in
a switching step. For a pair of 2-paths not to appear as those in the right hand side of
Figure 2, there must be some “coincidence” occurring: either one of the edges shown is a
double edge, or there is a coincidence of vertices, or some edge joins u2 to v2, or similar. The
number of pairs of 2-paths satisfying any prescribed set of coincidences can be calculated
using the data structures, and then one proceeds by inclusion-exclusion. For instance (one
of the “hardest” cases) is when both u2v2 and u3v3 are edges. To count these configurations,
we count pairs of 3-paths joining u1 to v1. Instances where these two 3-paths intersect
accidentally are accommodated as part of the whole inclusion-exclusion scheme. A bounded
number of cases need to be considered, and each can be calculated in constant time from
the appropriate data structures. (A very large bound on the number of cases is supplied
in [12], but actually they can be described by approximately 20 different graphs showing
the way that two 2-paths can intersect or have adjacent corresponding pairs of vertices, not
counting the options for where double edges may occur among the edges of the 2-paths.)
As a result, the most time-consuming part is the initialisation of the data structure, which
takes O(nd3) time. Maintaining the data structure in the subsequent switching steps takes
only O(d4) = o(nd3) time.

Computational note. If the constraints in Lemma 7 are not satisfied, the algorithm
terminates whenever the number of double edges is greater than 0, according to the definition
of Aγ in Section 8. For practical purposes it may be of interest to know when they cannot
be satisfied for any choice of γ > 0 and ε, as the algorithm then becomes equivalent to DEG
and it may take many repetitions before a successful output occurs. We note that, for d > 3,

35

the equation
4(d− 1)2(d− 2)(d− 3) = dn(dn− 7d2 + 7d− 10)

is quadratic in n with a unique positive solution:

x(d) :=
7

2
d− 7

2
+ 5/d+ (1/2d)

√
65d4 − 210d3 + 461d2 − 412d+ 196).

Letting x(d) denote that solution, there will clearly exist a choice of ε and γ satisfying (23)
and (24), provided that n > x(d). This bound and (25) are both satisfied if n is at least
69, 64, 64, 66, 69 for d = 4, 5, 6, 7, 8 respectively. For such n, the extra power of the algorithm
comes into play. Of course, the lower bound is asymptotically linear in d.

References

[1] A. Békéssy, P. Békéssy and J. Komlós, Asymptotic enumeration of regular matrices,
Studia Sci. Math. Hungar. 7 (1972), 343–353.

[2] M. Bayati, J.H. Kim, and A. Saberi, A sequential algorithm for generating random
graphs, Algorithmica 58 (2010), 860–910.

[3] E.A. Bender and E.R. Canfield, The asymptotic number of labeled graphs with given
degree sequences, J. Combin. Theory, Ser. A 24 (1978), 296–307.

[4] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs, European J. Combin. 1 (1980), 311–316.

[5] C. Cooper, M. Dyer, and C. Greenhill, Sampling regular graphs and a peer-to-peer net-
work, Combin. Probab. Comput., 16(4):557–593, 2007; Corrigendum: arXiv:1203.6111.

[6] C. Greenhill, The switch markov chain for sampling irregular graphs, Proc. SODA
(2014), 1564–1572.

[7] C. Greenhill and B. McKay, Asymptotic enumeration of sparse multigraphs with given
degrees, SIAM J. Discrete Math. 27 (2013), 2064–2089.

[8] S. Janson, The probability that a random multigraph is simple, Combin. Probab.
Comput., 18 (2009), 205–225.

[9] M. Jerrum and A. Sinclair, Fast uniform generation of regular graphs, Theoret. Comput.
Sci. 73 (1990), 91–100.

[10] R. Kannan, P. Tetali and S. Vempala, Simple Markov-chain algorithms for generating
bipartite graphs and tournaments, Random Structures Algorithms 14 (1999), 293–308.

[11] J.H. Kim and V.H. Vu, Generating random regular graphs, Combinatorica 26 (2006),
683–708.

[12] B.D. McKay and N.C. Wormald, Uniform generation of random regular graphs of
moderate degree, J. Algorithms 11 (1990), 52–67.

36

http://arxiv.org/abs/1203.6111

[13] B.D. McKay and N.C. Wormald, Uniform generation of random Latin rectangles, J.
Combin. Math. Combin. Comput. 9 (1991), 179–186.

[14] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of graphs
with degrees o(

√
n), Combinatorica 11 (1991), 369–382.

[15] J. Propp and D. Wilson, Coupling from the past: a user’s guide, Microsurveys in
Discrete Probability 41 (1998), 181–192.

[16] A. Steger and N.C. Wormald, Generating random regular graphs quickly, Combin.
Probab. Comput. 8 (1999), 377–396.

[17] G. Tinhofer, On the generation of random graphs with given properties and known
distribution, Appl. Comput. Sci., Ber. Prakt. Inf. 13 (1979), 265–297.

[18] N.C. Wormald, Generating random regular graphs, J. Algorithms 5 (1984), 247–280.

[19] J.Y. Zhao, Expand and Contract: Sampling graphs with given degrees and other com-
binatorial families, arXiv:1308.6627.

37

http://arxiv.org/abs/1308.6627

	1 Introduction
	2 The old and the new
	3 General description of a phase
	4 Glossary
	5 General analysis of a phase
	6 An example: calculating and proving uniformity
	7 Phase 3: double edge reduction
	7.1 Specifying 1, Si and i1
	7.2 Definition of the switchings
	7.3 Specifying m(i) and m(i)
	7.4 Fixing (i)
	7.5 Probability of rejection
	7.5.1 Probability of an f-rejection
	7.5.2 Probability of a b-rejection

	8 Initial rejection: defining A
	9 Reduction of loops and triple edges
	9.1 Phase 1: loop reduction
	9.2 Phase 2: triple edge reduction

	10 REG* and proof of Theorems 1, 2 and 3

