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Abstract

The Lovász Local Lemma is a seminal result in probabilisticcombinatorics. It gives a sufficient
condition on a probability space and a collection of events for the existence of an outcome that simul-
taneously avoids all of those events. Finding such an outcome by an efficient algorithm has been an
active research topic for decades. Breakthrough work of Moser and Tardos (2009) presented an efficient
algorithm for a general setting primarily characterized bya product structure on the probability space.

In this work we present an efficient algorithm for a much more general setting. Our main assumption
is that there exist certain functions, calledresampling oracles, that can be invoked to address the unde-
sired occurrence of the events. We show that, inall scenarios to which the original Lovász Local Lemma
applies, there exist resampling oracles, although they arenot necessarily efficient. Nevertheless, for es-
sentially all known applications of the Lovász Local Lemmaand its generalizations, we have designed
efficient resampling oracles. As applications of these techniques, we present new results for packings of
Latin transversals, rainbow matchings and rainbow spanning trees.

http://arxiv.org/abs/1504.02044v3
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1 Introduction

The Lovász Local Lemma (LLL) is a powerful tool with numerous uses in combinatorics and theoretical
computer science. If a given probability space and collection of events satisfy a certain condition, then the
LLL asserts the existence of an outcome that simultaneouslyavoids those events. The classical formulation
of the LLL [15, 37] is as follows.

Let Ω be a probability space with probability measureµ. LetE1, . . . , En be certain “undesired” events
in that space. LetG be an undirected graph with vertex set[n] = {1, . . . , n}. The edges ofG are denoted
E(G). Let Γ(i) = { j 6= i : {i, j} ∈ E(G) } be the neighbors of vertexi. Also, letΓ+(i) = Γ(i) ∪ {i}
and letΓ+(I) =

⋃

i∈I Γ
+(i) for I ⊆ [n].

Theorem 1.1(General Lovász Local Lemma [15, 37]). Suppose that the events satisfy the following condi-
tion that controls their dependences

Pr
µ
[Ei | ∩j∈JEj] = Pr

µ
[Ei] ∀i ∈ [n], J ⊆ [n] \ Γ+(i) (Dep)

and the following criterion that controls their probabilities

∃x1, . . . , xn ∈ (0, 1) such that Pr
µ
[Ei] ≤ xi

∏

j∈Γ(i)

(1− xj) ∀i ∈ [n]. (GLL)

ThenPrµ[
⋂n

i=1Ei] > 0.

An equivalent statement of (Dep) is that the eventEi must be independent of the joint distribution
on the events{ Ej : j 6∈ Γ+(i) }. When (Dep) holds,G is called adependency graph. The literature
contains several dependency conditions generalizing (Dep) and criteria generalizing (GLL) under which the
conclusion of the theorem remains true. We will discuss several such generalizations below.

The LLL can also be formulated [6] in terms of a directed dependency graph instead of an undirected
graph, but nearly all applications of which we are aware involve an undirected graph. Accordingly, our
work focuses primarily on the undirected case, but we will mention below which of our results extend to the
directed case.

Algorithms. Algorithms to efficiently find an outcome in
⋂n

i=1Ei have been the subject of research for
several decades. In 2008, a nearly optimal result was obtained by Moser [29] for a canonical application
of the LLL, the bounded-degreek-SAT problem. Shortly thereafter, Moser and Tardos [30] extended that
result to a general scenario called the “variable model” in whichΩ consists of independent variables, each
Ei depends on a subset of the variables, and eventsEi andEj are adjacent inG if there is a variable on
which they both depend. Clearly the resulting graph is a dependency graph. The Moser-Tardos algorithm is
extremely simple: after drawing an initial sample of the variables, it repeatedly checks if any undesired event
occurs, thenresamplesany such event. Resampling an event means that the variableson which it depends
receive fresh samples according toµ. Moser and Tardos prove that, if the (GLL) condition is satisfied, this
algorithm will produced the desired outcome after at most

∑n
i=1

xi

1−xi
resampling operations, in expectation.

Numerous extensions of the Moser-Tardos algorithm have been proposed. These extensions can handle
more general criteria [24, 33, 1, 25], derandomization [13], exponentially many events [20], distributed
scenarios [14], etc. However, these results are restrictedto the Moser-Tardos variable model and hence
cannot be viewed as algorithmic proofs of the LLL in full generality. There are many known scenarios for
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the LLL and its generalizations that fall outside the scope of the variable model [26, 27]. Section 3 discusses
several such scenarios, including random permutations, matchings and spanning trees.

Recently two efficient algorithms have been developed that go beyond the variable model. Harris and
Srinivasan [21] extend the Moser-Tardos algorithm to a scenario involving random permutations that origi-
nates in work of Erdős and Spencer [16]. Achlioptas and Iliopoulos [2] developed a novel algorithmic “flaw
correction” framework which allows one to model various applications of the LLL in a flexible manner.
They show how this captures several applications of the LLL outside the variable model, and even some
results that might be beyond typical formulations of the LLL. In contrast to the other results mentioned
here, their framework does not involve an underlying measureµ and is not directly tied to the probabilistic
setting of the LLL. This has some benefits, but also some restrictions that seem to prevent it from recover-
ing the LLL in full generality, In particular, their publication [2] does not claim a formal connection with
Theorem 1.1. Section 1.5 contains further discussion of therelated work.

1.1 Our contributions

The primary motivating question for this work is whether there is an “algorithmic proof” of the Lovász
Local Lemma in general probability spaces. We answer this question in the following sense: We propose an
algorithmic framework for the general Lovász Local Lemma,based on a new notion ofresampling oracles.
In this framework, we present an algorithm that finds a point in

⋂n
i=1 Ei (avoiding all undesired events) ef-

ficiently, if given access to three types of subroutines outlined below (the most crucial one being resampling
oracles). Whether these subroutines can be implemented efficiently is an instance-dependent issue, and we
discuss this further below. However, we show that the existence of such subroutines is guaranteed by the
assumptions of the Lovász Local Lemma. In particular, our algorithm provides a new proof of Theorem 1.1
(with no further assumptions), and several generalizations thereof, as described below. Algorithmically, we
reduce the problem of finding a point in

⋂n
i=1Ei to the problem of implementing the three subroutines that

we discuss next.

1.1.1 Algorithmic assumptions

In order to discuss algorithms for the LLL in full generality, one must assume some form of access to the
probability space at hand. It is natural to assume that one can efficiently sample fromµ, and efficiently check
whether a given eventEi occurs. However, even under these assumptions, finding the desired output can be
computationally hard. (We show an example demonstrating this in Section 2.2.) Therefore, our framework
assumes the existence of one more subroutine that can be usedby our algorithm. This leads us to the notion
of resampling oracles.

Let us introduce some notation. An atomic eventω in the probability spaceΩ will be called astate. We
write ω ∼ µ to denote that a random stateω is distributed according toµ, andω ∼ µ|Ei

to denote that the
distribution isµ conditioned onEi. The resampling oracles are defined with respect to a graphG on [n]
with neighborhood structureΓ (not necessarily satisfying the (Dep) condition).

The three subroutines required by our algorithm are as follows.

• Sampling fromµ: There is a subroutine that provides an independent random stateω ∼ µ.

• Checking events:For eachi ∈ [n], there is a subroutine that determines whetherω ∈ Ei.

• Resampling oracles:For eachi ∈ [n], there is a randomized subroutineri : Ω → Ω with the following
properties.
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(R1) If Ei is an event andω ∼ µ|Ei
, thenri(ω) ∼ µ. (The oracleri removes conditioning onEi.)

(R2) For anyj /∈ Γ+(i), if ω 6∈ Ej then alsori(ω) 6∈ Ej . (Resampling an event cannot cause new
non-neighbor events to occur.)

When these conditions hold, we say thatri is a resampling oracle for eventsE1, . . . , En and graphG.

If efficiency concerns are ignored, the first two subroutinestrivially exist. We show that (possibly
inefficient) resampling oracles exist if and only if a certain relaxation of (Dep) holds (see Section 1.3).

Main Result. Our main result is that we can find a point in
⋂n

i=1 Ei efficiently, whenever the three subrou-
tines above have efficient implementations.

Theorem (Informal). Consider any probability space, any eventsE1, . . . , En, and any undirected graphG
on vertex set[n]. If (GLL) is satisfied and if the three subroutines described above areavailable, then our
algorithm finds a state in

⋂n
i=1Ei efficiently in terms of the number of calls to these subroutines.

We make a more precise statement in the following section. Wenote that this theorem does not assume
that (Dep) holds, and the existence of resampling oracles isactually a strictly weaker condition. Thus, our
algorithm provides a new proof of Theorem 1.1 (the existential LLL) under its original assumptions.

1.2 Our algorithm: MaximalSetResample

A striking aspect of the work of Moser and Tardos [30] is the simplicity and flexibility of their algorithm
— in each iteration,any eventEi that occurs can be resampled. We propose a different algorithm that is
somewhat less flexible, but whose analysis seems to be simpler in our scenario. Roughly speaking, our
algorithm proceeds in iterations where in each iteration weresample events that form an independent set
in G. The independent set is generated by a greedy algorithm thatadds a vertexi and resamplesEi, if i
is not adjacent to the previously selected vertices andEi occurs in the current state. This is repeated until
no events occur. Pseudocode for this procedure is shown in Algorithm 1. Nearly identical algorithms have
been proposed before, particularly parallel algorithms [30, 24], although our interest lies not in the parallel
aspects but rather in making the LLL (and its stronger variants) algorithmic in our general setting.

Algorithm 1 MaximalSetResample uses resampling oracles to output a stateω ∈
⋂n

i=1 Ei. It requires the
three subroutines described in Section 1.1.1: samplingω ∼ µ, checking if an eventEi occurs, and the
resampling oraclesri.

1: Initialize ω with a random state sampled fromµ;
2: t := 0;
3: repeat
4: t := t+ 1;
5: Jt := ∅
6: while there isi /∈ Γ+(Jt) such thatω ∈ Ei do
7: Let i be the minimum index satisfying that condition;
8: Jt := Jt ∪ {i};
9: ω := ri(ω); ⊲ ResampleEi

10: end while
11: until Jt = ∅;
12: return ω.
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Our algorithmic proof of the LLL amounts to showing that MaximalSetResample terminates, at which
pointω ∈

⋂n
i=1Ei clearly holds. Our bound on the running time of MaximalSetResample is shown by the

following theorem, which is proven in Section 5. We note thatour bound is at most quadratic in the quantity
∑n

i=1
xi

1−xi
which was the bound proved by Moser and Tardos [30].

Theorem 1.2. Suppose that the eventsE1, . . . , En satisfy(GLL) and that the three subroutines described
above in Section 1.1.1 are available. Then the expected number of calls to the resampling oracles before
MaximalSetResample terminates isO

(
∑n

i=1
xi

1−xi

∑n
j=1 log

1
1−xj

)

.

1.3 Generalizing the dependency condition

Erdős and Spencer [16] showed that Theorem 1.1 still holds when (Dep) is generalized to1

Pr
µ
[Ei | ∩j∈JEj ] ≤ Pr

µ
[Ei] ∀i ∈ [n], J ⊆ [n] \ Γ+(i). (Lop)

They playfully called this the “lopsidependency” condition, and calledG a “lopsidependency graph”. This
more general condition enables several interesting uses ofthe LLL in combinatorics and theoretical com-
puter science, e.g., existence of Latin transversals [16] and optimal thresholds for satisfiability [18].

Recall that Theorem 1.2 did not assume (Dep) and instead assumed the existence of resampling oracles.
It is natural to wonder how the latter assumption relates to lopsidependency. We show that the existence
of resampling oracles is equivalent to a condition that we call lopsided association, and whose strength lies
strictly between (Dep) and (Lop). The lopsided associationcondition is

Pr
µ
[Ei ∩ F ] ≥ Pr

µ
[Ei] · Pr

µ
[F ] ∀i ∈ [n],∀F ∈ Fi (LopA)

whereFi contains all eventsF whose indicator variable is a monotone non-decreasing function of the
indicator variables of(Ej : j /∈ Γ+(i)). We call a graph satisfying (LopA) alopsided association graph
for eventsE1, . . . , En.

Theorem (Informal). Resampling oracles exist for eventsE1, . . . , En and a graphG if and only ifG is a
lopsided association graph for eventsE1, . . . , En.

This equivalence follows essentially from LP duality: The existence of a resampling oracle can be
formulated as atransportation problemfor which the lopsided association condition is exactly thenecessary
and sufficient condition for a feasible transportation to exist. Section 2.1 proves this result in detail.

As remarked above, the dependency conditions are related by(Dep)⇒ (LopA) ⇒ (Lop). The first
implication is obvious since (Dep) implies thatEi is independent ofF in (LopA). To see the second
implication, simply takeF =

⋃

j∈J Ej for anyJ ⊆ [n] \Γ+(i) to obtain thatPrµ[Ei | ∪j∈JEj ] ≥ Prµ[Ei].
Although lopsided association is formally a stronger assumption than lopsidependency, every use of the LLL
with lopsidependency that we have studied actually satisfies the stronger lopsided association condition. We
demonstrate this in Section 3 by designing efficient resampling oracles for those scenarios. Consequently,
Theorem 1.2 makes the LLL efficient in those scenarios.

As remarked above, Section 2.2 describes a scenario in which(Dep) and (GLL) are satisfied for a
dependency graphG but finding a stateω ∈

⋂n
i=1 Ei is computationally hard, assuming standard complexity

theoretic beliefs. In that scenario resampling oracles must necessarily exist since (Dep) is satisfied, but they

1 More precisely, (Lop) should be restricted toJ for whichPrµ[∩j∈JEj ] > 0. However that restriction is ultimately unneces-
sary because, in the context of the LLL, the theorem of Erdősand Spencer implies thatPrµ[∩j∈[n]Ej ] > 0.
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cannot be efficiently implemented due to the computational hardness. Therefore the equivalence between
(LopA) and resampling oracles comes with no efficiency guarantees. Nevertheless in all lopsidependency
scenarios that we have encountered in applications of the LLL, efficient implementations of the resampling
oracles arise naturally from existing work, or can be devised with modest effort. In particular this is the case
for random permutations, perfect matchings in complete graphs, and spanning trees in complete graphs, as
discussed in Section 3.

1.4 Generalizing the LLL criterion

In the early papers on the LLL [15, 37], the (GLL) criterion relating the dependency graphG and the
probabilitiesPrµ[Ei] was shown to be a sufficient condition to ensure thatPrµ[

⋂n
i=1Ei] > 0. Shearer [36]

discovered a more general criterion that ensures the same conclusion. In fact, Shearer’s criterion is the best
possible: whenever his criterion is violated, there exist acorresponding measureµ and eventsE1, . . . , En

for whichPrµ[
⋂n

i=1Ei] = 0.
Section 5 formally defines Shearer’s criterion and uses it ina fundamental way to prove Theorem 1.2.

Moreover, we give an algorithmic proof of the LLL under Shearer’s criterion instead of the (GLL) criterion.
This algorithm is efficient in typical situations, althoughthe efficiency depends on Shearer’s parameters.
The following simplified result is stated formally and proven in Section 5.5.

Theorem (Informal). Suppose that a graphG and the probabilitiesPrµ[E1], . . . ,Prµ[En] satisfy Shearer’s
criterion with ǫ slack, and that the three subroutines described in Section 1.1.1 are available. Then the
expected number of calls to the resampling oracles by MaximalSetResample isO(nǫ log

1
ǫ ).

We also prove a more refined bound valid for any probabilitiessatisfying Shearer’s criterion. This bound
is similar to the bound obtained by Kolipaka and Szegedy [24]; see Section 5.5 for details.

Unfortunately Shearer’s criterion is unwieldy and has not seen much use in applications of the LLL.
Recently several researchers have proposed criteria of intermediate strength between (GLL) and Shearer’s
criterion [8, 25]. The first of these, called thecluster expansioncriterion, was originally devised by Bissacot
et al. [8], and is based on insights from statistical physics. This criterion has given improved results in
several applications of the local lemma [9, 21, 31]. Previous algorithmic work has also used the cluster
expansion criterion in the variable model [1, 33] and for permutations [21].

We give a new, elementary proof that the cluster expansion criterion implies Shearer’s criterion. In con-
trast, the previous proof is analytic and requires several ideas from statistical physics [8]. As a consequence,
we obtain the first purely combinatorial proof that the existential LLL holds under the cluster expansion
criterion. Another consequence (Theorem 1.3) is an algorithm for the LLL under the cluster expansion cri-
terion, obtained using our algorithmic results under Shearer’s criterion. This generalizes Theorem 1.2 by
replacing (GLL) with the cluster expansion criterion, stated below as (CLL). To state the result, we require
additional notation: letInd denote the family of independent sets in the graphG.

Theorem 1.3. Suppose that the eventsE1, . . . , En satisfy the following criterion

∃y1, . . . , yn > 0 such that Pr
µ
[Ei] ≤

yi
∑

J⊆Γ+(i),J∈Ind

∏

j∈J yj
. (CLL)

and that the three subroutines described in Section 1.1.1 are available. Then the expected number of calls
to the resampling oracles before MaximalSetResample terminates isO

(
∑n

i=1 yi
∑n

j=1 ln(1 + yj)
)

.
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1.5 Techniques and related work

The breakthrough work of Moser and Tardos [29, 30] stimulated a string of results on algorithms for the
LLL. This section reviews the results that are most relevantto our work. Several interesting techniques play
a role in the analyses of these previous algorithms. These can be roughly categorized as theentropy method
[28, 2], witness treesor witness sequences[30, 21, 24] andforward-looking combinatorial analysis[19].

Moser [29, 28] developed the entropy method to analyze a verysimple algorithm for the “symmetric”
LLL [15], which incorporates the maximum degree ofG and a uniform bound onPrµ[Ei]. The entropy
method roughly shows that, if the algorithm runs for a long time, a transcript of the algorithm’s actions
provides a compressed representation of the algorithm’s random bits, which is unlikely due to entropy
considerations.

Following this, Moser and Tardos [30] showed that a similar algorithm will produce a state in
⋂n

i=1 Ei,
assuming the independent variable model and the (GLL) criterion. This paper is primarily responsible for
the development of witness trees, and proved the “witness tree lemma”, which yields an extremely elegant
analysis in the variable model. The witness tree lemma has further implications. For example, it allows one
to analyze separately for each event its expected number of resamplings. Moser and Tardos also extended
the variable model to incorporate a limited form of lopsidependency, and showed that their analysis still
holds in that setting.

The main advantage of our result over the Moser-Tardos result is that we address the occurrence of
an event through the abstract notion of resampling oracles rather than directly resampling the variables of
the variable model. Furthermore we give efficient implementations of resampling oracles for essentially all
known probability spaces to which the LLL has been applied. Asignificant difference with our work is
that we do not have an analogue of the witness tree lemma; our approach provides a simpler analysis when
the LLL criterion has slack but requires a more complicated analysis to remove the slack assumption. As
a consequence, our bound on the number of resampling oracle calls is larger than the Moser-Tardos bound.
Our lack of a witness tree lemma is inherent. Appendix A showsthat the witness tree lemma is false in the
abstract scenario of resampling oracles.

The Moser-Tardos algorithm is known to terminate under criteria more general than (GLL), while still
assuming the variable model. Pegden [33] showed that the cluster expansion criterion suffices, whereas
Kolipaka and Szegedy [24] showed more generally that Shearer’s criterion suffices. We also extend our
analysis to the cluster expansion criterion as well as Shearer’s criterion, in the more general context of
resampling oracles. Our bounds on the number of resampling operations are somewhat weaker than those
of [33, 24], but the increase is at most quadratic.

Kolipaka and Szegedy [24] present another algorithm, called GeneralizedResample, whose analysis
proves the LLL under Shearer’s condition for arbitrary probability spaces. GeneralizedResample is similar
to MaximalSetResample in that they both work with abstract distributions and that they repeatedly choose
a maximal independent setJ of undesired events to resample. However, the way that the bad events are
resampled is different: GeneralizedResample needs to sample from µ|∩

j 6∈Γ+(J)Ej
, which is a complicated

operation that seems difficult to implement efficiently. Thus MaximalSetResample can be viewed as a
variant of GeneralizedResample that can be made efficient inall known scenarios.

Harris and Srinivasan [21] show that the Moser-Tardos algorithm can be adapted to handle certain events
in a probability space involving random permutations. Their method for resampling an event is based on
the Fischer-Yates shuffle. This scenario can also be handledby our framework; their resampling method
perfectly satisfies the criteria of a resampling oracle. TheHarris-Srinivasan’s result is stronger than ours
in that they do prove an analog of the witness tree lemma. Consequently their algorithm requires fewer
resamplings than ours, and they are able to derive parallel variants of their algorithm. The work of Harris
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and Srinivasan is technically challenging, and generalizing it to a more abstract setting seems daunting.
Achlioptas and Iliopoulos [2, 3] proposed a general framework for finding “flawless objects”, based on

actions for addressing flaws. We call this the A-I framework.They show that, under certain conditions,
a random walk over such actions rapidly converges to a flawless object. This naturally relates to the LLL
by viewing each eventEi as a flaw. At the same time, the A-I framework is not tied to the probabilistic
formulation of the LLL, and can derive results, such as the greedy algorithm for vertex coloring, that seem
to be outside the scope of typical LLL formulations, such as Theorem 1.1. The A-I framework [2, 3] has
other restrictions and does not claim to recover any particular form of the LLL. Nevertheless, the framework
can accommodate applications of the LLL where lopsidependency plays a role, such as rainbow matchings
and rainbow Hamilton cycles. In contrast, our framework embraces the probabilistic formulation and can
recover the original existential LLL (Theorem 1.1) in full generality, even incorporating Shearer’s general-
ization. The A-I analysis [2] is inspired by Moser’s entropymethod. Technically, it entails an encoding of
random walks by “witness forests” and combinatorial counting thereof to estimate the length of the random
walk. The terminology of witness forests is reminiscent of the witness trees of Moser and Tardos, but con-
ceptually they are different in that the witness forests grow “forward in time” rather than backward. This is
conceptually similar to “forward-looking combinatorial analysis”, which we discuss next.

Giotis et al. [19] show that a variant of Moser’s algorithm gives an algorithmic proof in the variable
model of the symmetric LLL. While this result is relatively limited when compared to the results above,
their analysis is a clear example of forward-looking combinatorial analysis. Whereas Moser and Tardos
use abackward-lookingargument to find witness trees in the algorithm’s “log”, Giotis et al. analyze a
forward-lookingstructure: the tree of resampled events and their dependencies, looking forward in time.
This viewpoint seems more natural and suitable for extensions.

Our approach can be roughly described asforward-looking analysiswith a careful modification of the
Moser-Tardos algorithm, formulated in the framework of resampling oracles. Our main conceptual con-
tribution is the simple definition of the resampling oracles, which allows the resamplings to be readily in-
corporated into the forward-looking analysis. Our modification of the Moser-Tardos algorithm is designed
to combine this analysis with the technology of “stable set sequences” [24], defined in Section 5.1, which
allows us to accommodate various LLL criteria, including Shearer’s criterion. This plays a fundamental role
in the full proof of Theorem 1.2.

Our second contribution is a technical idea concerning slack in the LLL criteria. This idea is a perfectly
valid statement regarding the existential LLL as well, although we will exploit it algorithmically. One
drawback of the forward-looking analysis is that it naturally leads to an exponential bound on the number
of resamplings, unless there is some slack in the LLL criterion; this same issue arises in [2, 19]. Our idea
eliminates the need for slack in the (GLL) and (CLL) criteria. We prove that, even if (GLL) or (CLL) are
tight, we can instead perform our analysis using Shearer’s criterion, which is never tight because it defines
an open set. For example, consider the familiar case of Theorem 1.1, and suppose that (GLL) holds with
equality, i.e.,Prµ[Ei] = xi

∏

j∈Γ(i)(1− xj) for all i. We show that the conclusion of the LLL remains true

even if each eventEi actually had the larger probabilityPrµ[Ei] ·
(

1 + (2
∑

i
xi

1−xi
)−1
)

. The proof of this
fact crucially uses Shearer’s criterion and it does not seemto follow from more elementary tools [15, 37].

Follow-up work. Subsequently, Achlioptas and Iliopoulos generalized their framework further to incor-
porate our notion of resampling oracles [4]. This subsequent work can be viewed as a unification of their
framework and ours; it has the benefit of both capturing the framework of resampling oracles and allowing
some additional flexibility (in particular, the possibility of regenerating the measureµ approximately rather
than exactly). We remark that this work is still incomparable with ours, primarily due to the facts that our
analysis is performed in Shearer’s more general setting, and that our algorithm is efficient even when the

8



LLL criteria are tight.

Organization. The rest of the paper is organized as follows. In Section 2, wediscuss the connection between
resampling oracles and the assumptions of the Lovász LocalLemma. We also show here that resampling
oracles as well as the LLL itself can be computationally hardin general. In Section 3, we show concrete
examples of efficient implementations of resampling oracles. In Section 4 we discuss several applications
of these resampling oracles. Finally, in Section 5 we present the full analysis of our algorithm.

2 Resampling oracles: existence and efficiency

The algorithms in this paper make no reference to the lopsidependency condition (Lop) and instead assume
the existence of resampling oracles. In Section 2.1 we show that there is a close relationship between these
two assumptions: the existence of a resampling oracle for each event is equivalent to the condition (LopA),
which is a strengthening of (Lop).

We should emphasize that theefficiency of an implementationof a resampling oracle is a separate issue.
There is no general guarantee that resampling oracles can beimplemented efficiently. Indeed, as we show
in Section 2.2, there are applications of the LLL such that the resampling oracles are hard to implement
efficiently, and finding a state avoiding all events is computationally hard, under standard computational
complexity assumptions.

Nevertheless, this is not an issue in common applications ofthe LLL: resampling oracles exist and can be
implemented efficiently in all uses of the LLL of which we are aware, even those involving lopsidependency.
Section 3 has a detailed discussion of several scenarios.

2.1 Existence of resampling oracles

This section proves an equivalence lemma connecting resampling oracles with the notion of lopsided asso-
ciation. First, let us define formally what we call a resampling oracle.

Definition 2.1. LetE1, . . . , En be events on a spaceΩ with a probability measureµ, and letG = ([n], E)
be a graph with neighbors ofi ∈ [n] denoted byΓ(i). Letri be a randomized procedure that takes a state
ω ∈ Ω and outputs a stateri(ω) ∈ Ω. We say thatri is a resampling oracle forEi with respect toG, if

(R1) For ω ∼ µ|Ei
, we obtainri(ω) ∼ µ. (The oracleri removes conditioning onEi.)

(R2) For anyj /∈ Γ+(i) = Γ(i) ∪ {i}, if ω 6∈ Ej then alsori(ω) 6∈ Ej . (Resampling an event cannot cause
new non-neighbor events to occur.)

Next, let us define the notion of a lopsided association graph. We denote byEi[ω] the {0, 1}-valued
function indicating whetherEi occurs at a stateω ∈ Ω.

Definition 2.2. A graphGwith neighborhood functionΓ is a lopsided association graph for eventsE1, . . . , En

if
Pr
µ
[Ei ∩ F ] ≥ Pr

µ
[Ei] · Pr

µ
[F ] ∀i ∈ [n],∀F ∈ Fi (LopA)

whereFi contains all eventsF such thatF [ω] is a monotone non-decreasing function of the functions
(Ej [ω] : j /∈ Γ+(i) ).

Lemma 2.3. Consider a fixedi ∈ [n] and assumePrµ[Ei] > 0. The following statements are equivalent.
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(a) There exists a resampling oracleri satisfying the conditions(R1) and (R2) with respect to a neighbor-
hoodΓ+(i) (ignoring issues of computational efficiency).

(b) Prµ[Ei ∩ F ] ≥ Prµ[Ei] · Prµ[F ] for any eventF ∈ Fi.

Corollary 2.4. Resampling oraclesr1, . . . , rn exist for eventsE1, . . . , En with respect to a graphG if and
only if G is a lopsided association graph forE1, . . . , En. Both statements imply that the lopsidependency
condition(Lop) holds.

Proof (of Lemma 2.3). (a)⇒ (b): Consider the coupled states(ω, ω′) whereω ∼ µ|Ei
andω′ = ri(ω). By

(R1),ω′ ∼ µ. For any eventF ∈ Fi, if F does not occur atω then it does not occur atω′ either, due to (R2).
This establishes that

Pr
µ
[F ] = Eω′∼µ[F [ω′]] ≤ Eω∼µ|Ei

[F [ω]] = Pr
µ
[F | Ei],

which impliesPrµ[F ∩ Ei] ≥ Prµ[F ] · Prµ[Ei]. In particular this implies (Lop), by takingF =
⋃

j∈J Ej.
(b)⇒ (a): We begin by formulating the existence of a resampling oracle as the followingtransportation

problem. Consider a bipartite graph(U ∪ W,E), whereU andW are disjoint,U represents all the states
ω ∈ Ω satisfyingEi, andW represents all the statesω ∈ Ω. Edges represent the possible actions of
the resampling oracle:(u,w) ∈ E if u satisfies every event among(Ej : j /∈ Γ+(i) ) thatw satisfies.
Each vertex has an associated weight: Forw ∈ W , we definepw = Prµ[w], and foru ∈ U , pu =
Prµ[u]/Prµ[Ei], i.e, pu is the probability ofu conditioned onEi. We claim that the resampling oracleri
exists if and only if there is an assignmentfuw of values to the edges such that

∑

w:(u,w)∈E fuw = pu ∀u ∈ U
∑

u:(u,w)∈E fuw = pw ∀w ∈ W

fuw ≥ 0 ∀u ∈ U, w ∈ W.

(1)

Such an assignment is called a feasible transportation. Given such a transportation, the resampling oracle is
defined naturally by following each edge fromu ∈ U with probabilityfuw/pu, and the resulting distribution
on W is pw. Conversely, for a resampling oracle which, for a given state u ∈ U , generatesw ∈ W with
probabilityquw, we definefuw = puquw. This assignment satisfies (1).

Our goal at this point is show that (b) implies feasibility of(1). A condition that is equivalent to (1),
but more convenient for our purposes, can be determined fromLP duality [34, Theorem 21.11]. A feasible
transportation exists if and only if

(2.1)
∑

u∈U pu =
∑

w∈W pw
(2.2)

∑

u∈A pu ≤
∑

w∈Γ(A) pw ∀A ⊆ U,
(2)

whereΓ(A) = { w ∈ W : ∃u ∈ A s.t.(u,w) ∈ E }. This is an extension of Hall’s condition for the exis-
tence of a perfect matching.

Our goal at this point is show that (b) implies feasibility of(2). Let us now simplify (2). Fix anyA ⊆
U . The neighborhoodΓ(A) consists of states satisfying at most those events among{ Ej : j /∈ Γ+(i) }
satisfied by some state inA. ThusΓ(A) corresponds to an eventF ′ such thatF ′[ω] is a non-increasing
function of(Ej [ω] : j /∈ Γ+(i) ). Next observe that, if the set of events among{ Ej : j ∈ Γ+(i) } satisfied
by u′ ∈ U is a subset of those satisfied byu ∈ U , thenΓ(u′) ⊆ Γ(u). Suppose that, for eachu ∈ A, we
add toA all such verticesu′. Doing so can only increase the left-hand side of (2.2), but does not increase
the right-hand side asΓ(A) remains unchanged (sinceΓ(u′) ⊆ Γ(u)). Furthermore, the resulting setA
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corresponds to the same eventF ′, but restricted to the states inU . Let us call such a setA non-increasing.
Let (2∗) denote the simplification of (2) in which we restrict to non-increasingA. We have argued that (2)
and (2∗) are equivalent.

Our goal at this point is show that (b) implies feasibility of(2∗). One may easily see that (b) is equivalent
to

Pr
µ
[F ∩ Ei] ≤ Pr

µ
[F ] · Pr

µ
[Ei] ∀F ∈ Fi.

AssumingPr[Ei] > 0, we can rewrite this asPrµ[F | Ei] ≤ Prµ[F ] ∀F ∈ Fi. Now consider using this
inequality withF = F ′ for eachF ′ corresponding to some non-increasing setA ⊆ U . We then have
Prµ[F

′ | Ei] =
∑

u∈A pu andPrµ[F ′] =
∑

w∈Γ(A) pw. This verifies the feasibility of (2∗). �

2.1.1 Example: monotone events on lattices

This section presents an example of a setting where Lemma 2.3implies the existence of a non-trivial re-
sampling oracle, even though the lopsided association graph is empty. This setting was previously known
to have connections to the existential LLL [26]. The probability space here isΩ = {0, 1}M , viewed in the
natural way as the Boolean lattice with operations∧ (meet) and∨ (join), and with the partial order denoted
≥. Let µ : {0, 1}M → [0, 1] be a probability distribution, i.e.,

∑

x∈{0,1}M µ(x) = 1. We assume thatµ is
log-supermodular, meaning that

µ(x ∨ y)µ(x ∧ y) ≥ µ(x)µ(y) ∀x, y ∈ {0, 1}M .

As an example, any product distribution is log-supermodular. Consider monotone increasing eventsEi, i.e.,
such thatx′ ≥ x ∈ Ei ⇒ x′ ∈ Ei. Note that any monotone increasing function of such events is again
monotone increasing. It follows directly from the FKG inequality [6] that condition (b) of Lemma 2.3 is
satisfied for such events with anemptylopsided association graph. Therefore, a resampling oracle exists in
this setting. However, the explicit description of its operation might be complicated and we do not know
whether it can be implemented efficiently in general.

Alternatively, the existence of the resampling oracle can be proved directly, using a theorem of Hol-
ley [22, Theorem 6]. The resampling oracle is described in Algorithm 2. The reader can verify that this
satisfies the assumptions (R1) and (R2), using Holley’s Theorem.

Algorithm 2 Resampling oracle for a monotone increasing eventE. Let ν be the function guaranteed by
Theorem 2.5 whenµ1(x) =

µ(x)1x∈E∑
e∈E µ(e) , µ2(y) = µ(y), and1x∈E is the indicator function ofx ∈ E.

1: Function rE(x):
2: If x 6∈ E, fail .
3: Randomly selecty with probability ν(x,y)∑

y′ ν(x,y
′) .

4: return y.

Theorem 2.5(Holley’s Theorem). Letµ1 andµ2 be probability measures on{0, 1}M satisfying

µ1(x ∨ y)µ2(x ∧ y) ≥ µ1(x)µ2(y) ∀x, y ∈ {0, 1}M .
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Then there exists a probability distributionν : {0, 1}M × {0, 1}M → R satisfying

µ1(x) =
∑

y ν(x, y)

µ2(y) =
∑

x ν(x, y)

ν(x, y) = 0 unlessx ≥ y.

2.2 Computational hardness of the LLL

This section considers whether the LLL can always be made algorithmic. We show that, even in fairly
simple scenarios where the LLL applies, finding the desired output can be computationally hard, a fact that
surprisingly seems to have been overlooked. We first observethat the question of algorithmic efficiency
must be stated carefully otherwise hardness is trivial.

A trivial example.Given a Boolean formulaφ, let the probability space beΩ = {0, 1}, and letµ be the
uniform measure onΩ. There is a single eventE1 defined to beE1 = {1} if φ is satisfiable, andE1 = {0} if
φ is not satisfiable. SincePr[E1] = 1/2, the (GLL) criterion holds trivially withx1 = 1/2. The LLL gives
the obvious conclusion that there is a stateω /∈ E. Yet, finding this state requires deciding satisfiability of
φ, which is NP-complete.

The reason that this example is trivial is that even decidingwhether the undesired event has occurred is
computationally hard. A more meaningful discussion of LLL efficiency ought to rule out this trivial example
by considering only scenarios that satisfy some reasonableassumptions. With that in mind, we will assume
that

• there is a probability spaceΩ, whose states can be described bym bits;
• a graphG satisfying (Dep) for eventsE1, . . . , En is explicitly provided;
• x1, . . . , xn ∈ (0, 1) satisfying the (GLL) conditions are provided, and

∑n
i=1

xi

1−xi
is at most poly(n);

• there is a subroutine that provides an independent random stateω ∼ µ in poly(m) time;
• for eachi ∈ [n], there is a subroutine which determines for any givenω ∈ Ω whetherω ∈ Ei, in

poly(m) time.
As far as we know, no prior work refutes the possibility that there is an algorithmic form of the LLL, with
running time poly(m,n), in this general scenario.

Our results imply that resampling oracles doexist in this general scenario, so it is only the question of
whether these resampling oracles areefficientthat prevents Theorem 1.2 from providing an efficient algo-
rithm. Nevertheless, we show that there is an instance of theLLL that satisfies the reasonable assumptions
stated above, but for which finding a state in

⋂

iEi requires solving a problem that is computationally
hard (under standard computational complexity assumptions). As a consequence, we conclude that the re-
sampling oracles cannot always be implemented efficiently,even under the reasonable assumptions of this
general scenario.

We remark that NP-completeness is not the right notion of hardness here [32]. Problems in NP involve
deciding whether a solution exists, whereas the LLLguarantees that a solution exists, and the goal is to
explicitly find a solution. Our result is instead based on hardness of thediscrete logarithmproblem, a
standard belief in computational complexity theory. In thefollowing, GF(pn) for a primep and integern
denotes a finite field of orderpn, andGF∗(pn) its multiplicative group of nonzero elements.

Theorem 2.6. There are instances of eventsE1, . . . , En on a probability spaceΩ = {0, 1}n under the
uniform probability measure, such that

• the eventsEi are mutually independent;
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• for eachi ∈ [n], the conditionω ∈ Ei can be checked in poly(n) time for givenω ∈ Ω;
• the(GLL) conditions are satisfied withxi = 1/2 for eachi ∈ [n];

but finding a state in
⋂n

i=1 Ei is as hard as solving the discrete logarithm problem inGF∗(2n).

Remark.Superficially, this result seems to contradict the fact thatthe LLL can be made algorithmic in the
variable model [30], where events are defined on underlying independent random variables. The key point
is that the variable model also relies on a particular type ofdependency graph (defined by shared variables)
which might be more conservative than the true dependenciesbetween the events. Theorem 2.6 shows that,
even if the probability space consists of independent{0, 1} random variables, the LLL cannot in general be
made algorithmic if the true dependencies are considered.

Proof. Consider an instance of the discrete logarithm problem in the multiplicative groupGF∗(2n). The
input is a generatorg of GF∗(2n) and an elementh ∈ GF∗(2n). The goal is to find an integer1 ≤ k ≤ 2n−1
such thatgk = h. We define an instance ofn events onΩ = {0, 1}n as follows.

We identifyΩ = {0, 1}n with [2n] as well asGF(2n) in a natural way. We definef : [2n] → GF(2n)
by f(0) = 0 andf(x) = gx for x 6= 0, where the exponentiation is performed inGF(2n). For eachi ∈ [n],
we define an eventEi that occurs forω ∈ {0, 1}n iff (f(ω))i = 1 − hi. This is a condition that can be
checked in time poly(n), by computingf(ω) = gω where we interpretω as

∑n−1
i=0 ωi2

i and computegω by
taking squares iteratively.

Observe that forω distributed uniformly inΩ = {0, 1}n, f(ω) is again distributed uniformly inΩ,
sincef is a bijection (0 is mapped to0, andf(ω) for ω 6= 0 generates each element of the multiplicative
groupGF∗(2n) exactly once). Therefore, the probability ofEi is 1/2, for eachi ∈ [n]. Further, the events
E1, . . . , En are mutually independent, since for anyJ ⊆ [n],

⋂

j∈J Ej∩
⋂

j′ /∈J Ej′ occurs ifff(ω) = h⊕1J ,
which happens with probability1/2n. Here1J ∈ {0, 1}n is the indicator vector for the setJ , and⊕ denotes
addition inGF(2n) (i.e., component-wise xor in{0, 1}n). Hence the dependency graph is empty, and the
LLL with parametersxi = 1/2 trivially implies that there exists a stateω avoiding all the events. In this
instance, we know explicitly that the state avoiding all theevents isf−1(h). Therefore, if we had an efficient
algorithm to find this point for any givenh ∈ GF∗(2n), we would also have an efficient algorithm for the
discrete logarithm problem inGF(2n).

3 Implementation of resampling in specific settings

In this section, we present efficient implementations of resampling oracles in four application settings: inde-
pendent random variables (which was the setting of [30]), random permutations (handled by [21]), perfect
matchings in complete graphs (some of whose applications are made algorithmic by [2]), and spanning trees
in complete graphs (which is a new scenario that we can handle). To be more precise, resampling oracles
also depend on the types of events and dependencies that we want to handle.2 In the setting of independent
random variables, we can handle arbitrary events with dependencies defined by overlapping relevant vari-
ables, just like [30]. In the setting of permutations, we handle the appearance of patterns in permutations as
in [21]. In the settings of matchings and spanning trees, we consider the “canonical events” defined by [26],
characterized by the appearance of a certain subset of edges. We also show in Section 3.5 how resampling
oracles for a certain probability space can be extended in a natural way to products of such probability spaces
(for example, how to go from resampling oracles for one random permutation to a collection of independent
random permutations). These settings cover all the applications of the lopsided LLL that we are aware of.

2In Section 2.2 we give an example of events on independent random variables for which resampling oracles exist but cannotbe
made efficient.
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3.1 The variable model

This is the most common setting, considered originally by Moser and Tardos [30]. Here,Ω has a product
structure corresponding to independent random variables{ Xa : a ∈ U }. The probability measureµ here
is a product measure. Each bad eventEi depends on a particular subset of variablesAi, and two events are
independent iffAi ∩Aj = ∅.

Here our algorithmic assumptions correspond exactly to theMoser-Tardos framework [30]. Sampling
from µ means generating a fresh set of random variables independently. The resampling oracleri takes a
stateω and replaces the random variables{ Xa : a ∈ Ai } by fresh random samples. It is easy to see that the
assumptions are satisfied: in particular, a random state sampled fromµ conditioned onEi has all variables
outside ofAi independently random. Hence, resampling the variables ofAi produces the distributionµ.
Clearly, resampling{ Xa : a ∈ Ai } does not affect any events whose variables do not intersectAi.

We note that this resampling oracle is also consistent with the notion of lopsidependency on product
spaces considered by [30]: They call two eventsEi, Ej lopsidependent, ifAi ∩ Aj 6= ∅ and it is possible
to causeEj to occur by resamplingAi in a state whereEi holds butEj does not (the definition in [30] is
worded differently but equivalent to this). This is exactlythe condition that we require our resampling oracle
to satisfy.

3.2 Permutations

The probability spaceΩ here is the space of all permutationsπ on a set[n], with a uniform measureµ.
The bad events are assumed to be “simple” in the following sense: Each bad eventEi is defined by a
“pattern”P (Ei) = {(x1, y1), . . . , (xt(i), yt(i))}. The eventEi occurs ifπ(xj) = yj for each1 ≤ j ≤ t(i).
Let vbl(Ei) = { x : ∃y, (x, y) ∈ P (Ei) } denote the variables ofπ relevant to eventEj . Let us define a
relationi ∼ i′ to hold iff there are pairs(x, y) ∈ P (Ei), (x

′, y′) ∈ P (Ei′) such thatx = x′ or y = y′; i.e.,
the two events entail the same value in either the range or domain. This relation defines a lopsidependency
graph. It is known that the lopsided LLL holds in this setting.

Algorithm 3 Resampling oracle for permutations
1: Function ri(π):
2: X := vbl(Ei), i.e., the variables inπ affecting eventEi;
3: Fix an arbitrary orderX = (x1, x2, . . . , xt);
4: for i = t down to1 do
5: Swapπ(xi) with π(z) for z uniformly random among[n] \ {x1, . . . , xi−1};
6: end for
7: return π;

Harris and Srinivasan [21] showed how, under the LLL criteria, a permutation avoiding all bad events can
be found algorithmically. We implement the resampling oracle based on their algorithm (see Algorithm 3).
To prove the correctness of this resampling oracle within our framework, we need the following lemma.

Lemma 3.1. Suppose that a permutationπ has some arbitrary fixed assignment on the variables inX,
π|X = φ, and it is uniformly random among all permutations satisfying π|X = φ. Then the output of
Shuffle(π,X) is a uniformly random permutation.

The procedure is known as the Fisher-Yates shuffle for generating uniformly random permutations (and
was used in [21] as well). In contrast to the full shuffle, we assume that some part of the permutation has
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been shuffled already:X is the remaining portion that still remains to be shuffled, and conditioned on its
assignment the rest is uniformly random. This would be exactly the distribution achieved after performing
the Fisher-Yates shuffle on the complement ofX. Our procedure performs the rest of the Fisher-Yates
shuffle, which produces a uniformly random permutation. Forcompleteness we give a self-contained proof.

Proof. Let X = {x1, . . . , xt}. By induction, after performing the swap forxi, the permutation is uniform
among all permutations with a fixed assignment of{x1, . . . , xi−1} (consistent withφ). This holds because,
before the swap, the permutation was by induction uniform conditioned on the assignment of{x1, . . . , xi}
being consistent withφ, and we choose a uniformly random swap forxi among the available choices. This
makes every permutation consistent withφ on{x1, . . . , xi−1} equally likely after this swap.

This verifies the first condition for our resampling oracle. The second condition is that resampling of
occurring eventsdoes not affect non-neighbor events. This is true because ofthe following lemma.

Lemma 3.2. The resampling oracleri(π) applied to a permutation satisfyingEi does not cause any new
event outside ofΓ+(I) to occur.

Proof. SupposeEj changed its status during a call tori(π). This means that something changed among its
relevant variablesvbl(Ej). This could happen in two ways:

(1) either a variablez ∈ vbl(Ej) was swapped becausez ∈ X = vbl(Ei); then clearlyj ∈ Γ+(i).
(2) or, a variable invbl(Ej), although outside ofX, received a new value by a swap with some variable

in X = vbl(Ei). Note that in the Shuffle procedure, every time a variablez outside ofX changes its value,
it is by a swap with a fresh variable ofX, i.e. one that had not been processed before. Therefore, thevalue
thatz receives is one that previously causedEi to occur. If it causesEj to occur, it means thatEi andEj

share a value in the range space and we havej ∈ Γ+(i) as well.

3.3 Perfect matchings

Here, the probability spaceΩ is the set of all perfect matchings inK2n, with the uniform measure. This
is a setting considered by [2] and it is also related to the setting of permutations. (Permutations on[n]
can be viewed as perfect matchings inKn,n.) A state here is a perfect matching inK2n, which we denote
by M ∈ Ω. We consider bad events of the following form:EA for a set of edgesA occurs ifA ⊆ M .
Obviously,Prµ[EA] > 0 only if A is a (partial) matching. Let us defineA ∼ B iff A∪B is nota matching.
It was proved in [26] that this defines a lopsidependency graph.

Our goal is to implement a resampling oracle in this setting.We describe such an operation in Algo-
rithm 4.

Lemma 3.3. LetA be a matching inK2n and letM be distributed uniformly among perfect matchings in
K2n such thatA ⊆ M . Then after calling the resampling oracle,rA(M) is a uniformly random perfect
matching.

Proof. We prove by induction that at any point,M ′ is a uniformly random perfect matching conditioned on
containingA′. This is satisfied at the beginning:M ′ = M,A′ = A andM is uniformly random conditioned
onA ⊆ M .

Assume this is true at some point, we pick(u, v) ∈ A′ arbitrarily and(x, y) ∈ M ′ \ A′ uniformly at
random. Denote the vertices covered byM ′\A′ byV (M ′\A′). Observe that for a uniformly random perfect
matching onV (M ′ \A′) ∪ {u, v}, the edge(u, v) should appear with probability1/(2|M ′ \A′|+ 1) since
u has2|M ′ \A′|+ 1 choices to be matched with andv is 1 of them. Consequently, we keep the edge(u, v)
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Algorithm 4 Resampling oracle for perfect matchings
1: Function rA(M):
2: Check thatA ⊆ M , otherwisereturn M .
3: A′ := A;
4: M ′ := M ;
5: while A′ 6= ∅ do
6: Pick (u, v) ∈ A′ arbitrarily;
7: Pick (x, y) ∈ M ′ \ A′ uniformly at random, with(x, y) randomly ordered;
8: With probability1− 1

2|M ′\A′|+1 ,

9: Add (u, y), (v, x) toM ′ and remove(u, v), (x, y) from M ′;
10: Remove(u, v) from A′;
11: end while
12: return M ′.

with probability1/(2|M ′ \ A′|+ 1) and conditioned on thisM ′ \ A′ is uniformly random by the inductive
hypothesis. Conditioned on(u, v) not being part of the matching, we re-match(u, v) with another random
edge(x, y) ∈ M ′ \ A′ where(x, y) is randomly ordered. In this case,u andv get matched to a uniformly
random pair of verticesx, y ∈ V (M ′ \ A′), as they should be. The rest of the matchingM ′ \ A′ \ {(x, y)}
is uniformly random onV (M ′ \ A′ \ {x, y}) by the inductive hypothesis.

Therefore, after each stepM ′\A′ is uniformly random conditioned on containingA′. At the end,A′ = ∅
andM ′ is uniformly random.

Lemma 3.4. The resampling oraclerA(M) applied to a perfect matching satisfying eventEA does not
cause any new eventEB such thatB /∈ Γ+(A).

Proof. Observe that all the new edges that the resampling oracle adds toM are incident to some vertex
matched byA. So if an eventEB was not satisfied before the operation and it is satisfied afterwards, it must
be the case thatB contains some edge not present inA but sharing a vertex withA. Hence,A ∪B is not a
matching andA ∼ B.

3.4 Spanning trees

Here, the probability spaceΩ is the set of all spanning trees inKn. Let us consider eventsEA for a set of
edgesA, whereEA occurs forT ∈ Ω iff A ⊆ T . DefineA ∼ B for distinctA,B unlessA andB are
vertex-disjoint. Lu et al. [26, Lemma 7] show that this in fact defines adependencygraph for spanning trees.
It is worth emphasizing that in this scenario the (Dep) condition holds (the more general condition (Lop) is
not needed), but the scenario does not fall within the scope of the Moser-Tardos variable model. It does fall
within the scope of our framework, but one must design a non-trivial resampling oracle.

To implement a resampling oracle in this setting, we will useas a subroutine an algorithm to generate
a uniformly random spanning tree in a given graphG. This can be done efficiently by several methods, for
example by a random walk [10].

Lemma 3.5. If A is a fixed forest andT is a uniformly random spanning tree inKn conditioned onA ⊆ T ,
thenrA(T ) produces a uniformly random spanning tree inKn.
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Algorithm 5 Resampling oracle for spanning trees
1: Function rA(T ):
2: Check thatA ⊆ T , otherwisefail .
3: LetW = V (A), the vertices covered byA.
4: Let T1 =

(

V \W
2

)

∩ T , the edges ofT disjoint fromW .

5: LetF1 =
(V \W

2

)

\ T , the edges disjoint fromW not present inT .
6: LetG2 = (Kn \ F1)/T1 be a multigraph obtained by deletingF1 and contractingT1.
7: Generate a uniformly random spanning treeT2 in G2.
8: return T1 ∪ T2.

Proof. First, observe that sinceT2 is a spanning tree ofG2 = (Kn \ F1)/T1, it is also a spanning tree of
Kn/T1 whereT1 is a forest, and thereforeT1 ∪ T2 is a spanning tree ofKn. We need to prove that it is a
uniformly random spanning tree.

First, we appeal to a known result [26, Lemma 6] stating that given a forestF in Kn with components
of sizes (number of vertices)f1, f2, . . . , fm, the number of spanning trees containingF is exactly

nn−2
m
∏

i=1

fi
nfi−1

. (3)

Equivalently (sincenn−2 is the total number of spanning trees), for a uniformly random spanning treeT ,
Pr[F ⊆ T ] =

∏m
i=1 fi/n

fi−1. This has the surprising consequence that for vertex-disjoint forestsF1, F2,
we havePr[F1 ∪ F2 ⊆ T ] = Pr[F1 ⊆ T ] · Pr[F2 ⊆ T ], i.e., the containment ofF1 andF2 are independent
events. (In a general graph, the appearances of different edges in a random spanning tree are negatively
correlated, but here we are in a complete graph.)

Let W = V (A) and letB be any forest onV \ W , i.e., vertex-disjoint fromA. By the above, the
appearance ofB in a uniformly random spanning tree is independent of the appearance ofA. Hence, if
T is uniformly random, we havePr[B ⊆ T | A ⊆ T ] = Pr[B ⊆ T ]. This implies that the distribution
of T ∩

(

V \W
2

)

is exactly the same for a uniformly random spanning treeT as it is for one conditioned on

A ⊆ T (formally, by applying the inclusion-exclusion formula).Therefore, the forestT1 = T ∩
(

V \W
2

)

is
distributed as it should be in a random spanning tree restricted toV \W .

The final step is that we extendT1 to a spanning treeT1 ∪ T2, whereT2 is a uniform spanning tree in
G2 = (Kn \ F1)/T1. Note thatG2 is a multigraph, i.e., it is important that we preserve the multiplicity of
edges after contraction. The spanning treesT2 in G2 = (Kn \ F1)/T1 are in a one-to-one correspondence
with spanning trees inKn conditioned onT ∩

(V \W
2

)

= T1. This is because each such treeT2 extendsT1 to

a different spanning tree ofKn, and each spanning tree whereT ∩
(

V \W
2

)

= T1 can be obtained in this way.

Therefore, for a fixedT1, T1 ∪ T2 is a uniformly random spanning tree conditioned onT ∩
(V \W

2

)

= T1.
Finally, since the distribution ofT1 is equal to that of a uniformly random spanning tree restricted toV \W ,
T1 ∪ T2 is a uniformly random spanning tree.

Lemma 3.6. The resampling oraclerA(T ) applied to a spanning tree satisfyingEA does not cause any new
eventEB such thatB /∈ Γ+(A).

Proof. Note that the only edges that we modify are those incident toW = V (A). Therefore, any new
eventEB that the operation ofrA could cause must be such thatB contains an edge incident toW and not
contained inA. Such an edge shares exactly one vertex with some edge inA and henceB ∼ A.
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3.5 Composition of resampling oracles for product spaces

Suppose we have a product probability spaceΩ = Ω1×Ω2×. . .×ΩN , where on eachΩi we have resampling
oraclesrij for eventsEij , j ∈ Ei, with respect to a graphGi. Our goal is to show that there is a natural way
to combine these resampling oracles in order to handle events onΩ that are obtained by taking intersections
of the eventsEij. The following theorem formalizes this notion.

Theorem 3.7. LetΩ1, . . . ,ΩN be probability spaces, where for eachΩi we have resampling oraclesrij for
eventsEij , j ∈ Ei with respect to a graphGi. LetΩ = Ω1 × Ω2 × . . .ΩN be a product space with the
respective product probability measure. For any setJ of pairs (i, j), j ∈ Ei where eachi ∈ [N ] appears
at most once, define an eventEJ onΩ to occur in a stateω = (ω1, . . . , ωN ) iff Eij occurs inωi for each
(i, j) ∈ J . Define a graphG on these events byJ ∼ J ′ iff there exist pairs(i, j) ∈ J, (i, j′) ∈ J ′ such that
j ∼ j′ in Gi. Then there exist resampling oraclesrJ for the eventsEJ with respect toG, which are obtained
by calling in succession each of the oraclesrij for (i, j) ∈ J .

Proof. For notational simplicity, let us assume that on eachΩi we have a trivial eventEi0 = Ωi and the
respective resampling oracleri0 is the identity onΩi. Then we can assume that each collection of eventsJ
is in the formJ = {(1, j1), (2, j2), . . . , (N, jN )}, where we setjℓ = 0 for components where there is no
event to resample. We define

rJ(ω1, . . . , ωN ) = (r1j1(ω1), r2j2(ω2), . . . , rNjN (ωN )).

We claim that these are resampling oracles with respect toG as defined in the theorem.
Let us denote byµi the probability distribution onΩi and byµ the product distribution onΩ. For

the first condition, suppose thatω ∼ µ|EJ
. By the product structure ofΩ, this is the same as having

ω = (ω1, . . . , ωN ) where the components are independent andωℓ ∼ µℓ|Eℓjℓ
for each(ℓ, jℓ) ∈ J , and

ωℓ ∼ µℓ for components such thatjℓ = 0. By the properties of the resampling oraclesrℓjℓ, we have
rℓjℓ(ωℓ) ∼ µℓ. Since the resampling oracles are applied with independentrandomness for each component,
we have

rJ(ω) = (r1j1(ω1), r2j2(ω2), . . . , rNjN (ωN )) ∼ µ1 × µ2 × . . .× µN = µ.

For the second condition, note that ifω /∈ EJ ′ and rJ(ω) ∈ EJ ′ , it must be the case that there is
(ℓ, jℓ) ∈ J and(ℓ, j′ℓ) ∈ J ′ such thatωℓ /∈ Eℓj′

ℓ
andrℓjℓ(ω) ∈ Eℓj′

ℓ
. However, this is possible only ifjℓ ∼ j′ℓ

in the graphGℓ. By the definition ofG, this means thatJ ∼ J ′ as well.

As a result, we can extend our resampling oracles to spaces likeN -tuples of independent random per-
mutations, independent random spanning trees, etc. Such extensions are used in our applications.

4 Applications

Let us present a few applications of our framework. Our application to rainbow spanning trees is new, even
in the existential sense. Our applications to Latin transversals and rainbow matchings are also new to the
best of our knowledge, although they could also have been obtained using the framework of [21] and [2].

4.1 Rainbow spanning trees

Given an edge-coloring ofKn, a spanning tree is called rainbow if each of its edges has a distinct color. The
existence of a single rainbow spanning tree is completely resolved by the matroid intersection theorem: It
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can be decided efficiently whether a rainbow spanning tree exists for a given edge coloring, and it can be
found efficiently if it exists. However, the existence of multiple edge-disjoint rainbow spanning trees is more
challenging. An attractive conjecture of Brualdi and Hollingsworth [11] states that ifn is even andKn is
properly edge-colored byn− 1 colors, then the edges can be decomposed inton/2 rainbow spanning trees,
each tree using each color exactly once. Until recently, it was only known that every such edge-coloring
contains2 edge-disjoint rainbow spanning trees [5]. In a recent development, it was proved that if every
color is used at mostn/2 times (which is true for any proper coloring) then there exist Ω(n/ log n) edge-
disjoint rainbow spanning trees [12]. In fact this result seems to be algorithmically efficient, although this
was not claimed by the authors. We prove that using our framework, we can findΩ(n) rainbow spanning
trees under a slight strengthening of the coloring assumption.

Theorem 4.1. Given an edge-coloring ofKn such that each color appears on at most1
32 (

7
8 )

7n edges, at
least 1

32 (
7
8)

7n edge-disjoint rainbow spanning trees exist and can be foundin O(n4) resampling oracle calls
with high probability.

This result relies on Theorem 1.3, our algorithmic version of the LLL under the cluster expansion cri-
terion. To obtain the result with high probability, we appeal to a more refined bound that we state in Theo-
rem 5.44. We note that if there is constant multiplicative slack in the assumption on color appearances, the
number of resamplings improves toO(n2), using the result in Theorem 5.44 with constantǫ slack.

To prove the existential statement, we simply sample1
32 (

7
8 )

7n independently random spanning trees and
hope that they will be (a) pairwise edge-disjoint, and (b) rainbow. This unlikely proposition happens to be
true with positive probability, thanks to the LLL and the independence properties of random spanning trees
that we mentioned in Section 3.4. Given this setup, our framework implies that we can also find the rainbow
trees efficiently.

Proof. We apply our algorithm in the setting oft independent and uniformly random spanning treesT1, . . . , Tt ⊂
Kn, with the following two types of bad events:

• Ei
ef : For eachi ∈ [t] and two edgese 6= f in Kn of the same color,Ei

ef occurs if{e, f} ⊂ Ti;

• Eij
e : For eachi 6= j ∈ [t] and an edgee in Kn, Eij

e occurs ife ∈ Ti ∩ Tj.

Clearly, if no bad event occurs then thet trees are rainbow and pairwise edge-disjoint.
By (3) the probability of a bad event of the first type isPr[Ei

ef ] = 3/n2 if |e ∪ f | = 3 andPr[Ei
ef ] =

4/n2 if |e ∪ f | = 4. The probability of a bad event of the second type isPr[Eij
e ] = (2/n)2 = 4/n2, since

each of the two trees containse independently with probability2/n. Hence, the probability of each bad
event is upper-bounded byp = 4/n2.

In Section 3.4 we constructed a resampling oraclerA for a single spanning tree. By Theorem 3.7,
this resampling oracle extends in a natural way to the setting of t independent random spanning trees. In
particular, for an eventEi

ef , we definerief as an application of the resampling oracler{e,f} to the treeTi. For

an eventEij
e , we definerije as an application of the resampling oracler{e} independently to the treesTi and

Tj . It is easy to check using Theorem 3.7 that for independent uniformly random spanning trees conditioned
on either type of event, the respective resampling oracle generates independent uniformly random spanning
trees.

Let us define the following dependency graph; we are somewhatconservative for the sake of simplicity.
The graph contains the following kinds of edges:

• Ei
ef ∼ Ei

e′f ′ whenevere ∪ f intersectse′ ∪ f ′;
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• Ei
ef , E

j
ef ∼ Eij

e′ whenevere′ intersectse ∪ f ;

• Eij
e ∼ Eij′

e′ , E
i′j
e′ whenevere′ intersectse.

We claim that the resampling oracle for any bad event can cause new bad events only in its neighborhood.
This follows from the fact that the resampling oracle affectonly the trees relevant to the event (in the
superscript), and the only edges modified are those incidentto those relevant to the event (in the subscript).

Let us now verify the cluster expansion criterion, introduced as (CLL) in Section 1.4, so that we may
apply Theorem 5.44. Let us assume that each color appears on at mostq edges, and we generatet random
spanning trees. We claim that the neighborhood of each bad event can be partitioned into4 cliques of size
(n− 1)(t− 1) and4 cliques of size(n− 1)(q − 1).

First, let us consider an event of typeEi
ef . The neighborhood ofEi

ef consists of: (1) eventsEi
e′f ′ where

e′ or f ′ shares a vertex withe ∪ f ; these events form4 cliques, one for each vertex ofe ∪ f , and the size of
each clique is at most(n−1)(q−1), since the number of incident edges to a vertex isn−1, and the number
of other edges of the same color is at mostq− 1. (2) eventsEij

e′ wheree′ intersectse∪ f ; these events form
4 cliques, one for each vertex ofe ∪ f , and each clique has size at most(n− 1)(t− 1), since its events can
be identified with the(n− 1) edges incident to a fixed vertex and the remainingt− 1 trees.

Second, let us consider an event of typeEij
e . The neighborhood ofEij

e consists of: (1) eventsEi
e′f ′ and

Ej
e′f ′ wheree intersectse′ ∪ f ′; these events form4 cliques, one for each vertex ofe and eitheri or j in

the superscript, and the size of each clique is at most(n − 1)(q − 1) by an argument as above. (2) events
Ei′j

e′ , E
ij′

e′ wheree′ intersectse; these events form4 cliques, one for each vertex ofe and eitheri′j or ij′ in
the superscript. The size of each clique is at most(n− 1)(t− 1), since the events can be identified with the
(n− 1) edges incident to a vertex and the remainingt− 1 trees.

Considering the symmetry of the dependency graph, we set thevariables for all events equal toyief =

yije = y. The cluster expansion criteria will be satisfied if we set the parameters so that

p ≤
y

(1 + (n− 1)(t − 1)y)4(1 + (n− 1)(q − 1)y)4
≤

y
∑

I⊆Γ+(E),I∈Ind y
I
,

whereE denotes eitherEi
ef orEij

e . The second inequality holds due to the structure of the neighborhood of
each event that we described above. We sety = βp = 4β/n2 and assumet ≤ γn, q ≤ γn. The reader can
verify that with the settingsβ = (87)

8 andγ = 1
32 (

7
8)

7, we get β
(1+4γβ)8

= 1. Therefore,

p ≤
βp

(1 + 4γβ)8
≤

y

(1 + (n− 1)(t− 1)y)4(1 + (n− 1)(q − 1)y)4

which verifies the assumption of Theorem 5.44. Theorem 5.44 implies that MaximalSetResample terminates
afterO((

∑

yief +
∑

yije )2) resampling oracle calls with high probability. The total number of events here
is O(tqn2) = O(n4) and for each event the respective variable isy = O(1/n2). Therefore, the expected
number of resampling oracle calls isO(n4).

4.2 Rainbow matchings

Given an edge-coloring ofK2n, a perfect matching is called rainbow if each of its edges hasa distinct color.
This can be viewed as a non-bipartite version of the problem of Latin transversals. It is known that given any
proper(2n − 1)-edge-coloring ofK2n (where each color forms a perfect matching), there exists a rainbow
perfect matching [38]. However, finding rainbow matchings algorithmically is more difficult. Achlioptas
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and Iliopoulos [2] showed how to find a rainbow matching inK2n efficiently when each color appears on at
mostγn edges,γ < 1

2e ≃ 0.184. Our result is that we can do this forγ = 27
128 ≃ 0.211. The improvement

comes from the application of the “cluster expansion” form of the local lemma, which is still efficient in our
framework. (We note that an updated version of the Achlioptas-Iliopoulos framework [3] also contains this
result.)

Theorem 4.2. Given an edge-coloring ofK2n where each color appears on at most27
128n edges, a rainbow

perfect matching exists and can be found inO(n2) resampling oracle calls with high probability.

In fact, we can find many disjoint rainbow matchings — up to a linear number, if we replace27128 above
by a smaller constant.

Theorem 4.3. Given an edge-coloring ofK2n where each color appears on at most77

88
n edges, at least7

7

88
n

edge-disjoint rainbow perfect matchings exist and can be found inO(n4) resampling oracle calls whp.

We postpone the proof to Section 4.3, since it follows from our result for Latin transversals.

Proof of Theorem 4.2.We apply our algorithm in the setting of uniformly random perfect matchingsM ⊂
K2n, with the following bad events (identical to the setup in [2]): For every pair of edgese, f of the same
color, Eef occurs if{e, f} ⊂ M . If no bad eventEef occurs thenM is a rainbow matching. We also
define the following dependency graph:Eef ∼ Ee′f ′ unlesse, f, e′, f ′ are four disjoint edges. Note that
this is more conservative than the dependency graph we considered in Section 3.3, where two events are
only connected if they do not form a matching together. The more conservative definition will simplify our
analysis. In any case, our resampling oracle is consistent with this lopsidependency graph in the sense that
resamplingEef can only cause new eventsEe′f ′ such thatEef ∼ Ee′f ′ . We show that this setup satisfies
the criteria of the cluster expansion lemma.

Let q = 27
128n, p = 1

(2n−1)(2n−3) andy = (43 )
4p. Consider the neighborhood of a bad eventΓ(Eef ). It

contains all eventsEe′f ′ such that there is some intersection among the edgese, f, e′, f ′. Such events can
be partitioned into4 cliques: for each vertexv ∈ e ∪ f , let Qv denote all the eventsEe′f ′ such thatv ∈ e′

andf ′ has the same color ase′. The number of edgese′ incident tov is 2n − 1, and for each of them, the
number of other edges of the same color is by assumption at most q− 1. Therefore, the size ofQv is at most
(q − 1)(2n − 1).

In the following, we use the short-hand notationyI =
∏

i∈I yi. Consider the assumptions of the cluster
expansion lemma: for each eventEef , we should have

Pr[Eef ] ≤
yef

∑

I⊆Γ+(Eef ),I∈Ind
yI

.

We havePr[Eef ] = p = 1
(2n−1)(2n−3) . By symmetry, we set all the variablesyef to the same value,

yef = y = (43 )
4p. Note that an independent subset ofΓ+(Eef ) can contain at most 1 event from each clique

Qv. (The eventEef itself is also contained in these cliques.) Therefore,
∑

I⊆Γ+(Eef ),I∈Ind

yI ≤
∏

v∈e∪f

(1 +
∑

Ee′f ′∈Qv

ye′f ′) ≤ (1 + (q − 1)(2n − 1)y)4 .

The reader can verify that
∑

I⊆Γ+(Eef ),I∈Ind
yI ≤ (1+(q−1)(2n−1)y)4 ≤ (1+ 27

64n
2(43 )

4/(2n)2)4 = (43)
4.

Therefore,
y

∑

I⊆Γ+(Eef ),I∈Ind
yI

≥ p
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which is the assumption of Theorem 5.44. By Theorem 5.44, MaximalSetResample with the resampling
oracle for matchings and the dependency graph defined above will find a rainbow perfect matching in time
O(
∑

Eef
yef
∑

Eef
log(1 + yef)) = O((

∑

Eef
yef )

2) with high probability. The number of bad eventsEef

isO(n3), because each color class hasO(n) edges so the number of edge pairs of equal color isO(n3). We
haveyef = O(1/n2), and hence the total number of resamplings isO(n2) with high probability.

4.3 Latin transversals

A Latin transversal in ann× n matrixA is a permutationπ ∈ Sn such that the entriesAi,π(i) (“colors”) are
distinct for i = 1, 2, . . . , n. In other words, it is a set of distinct entries, exactly one in each row and one in
each column. It is easy to see that this is equivalent to a bipartite version of the rainbow matching problem:
Aij is the color of the edge(i, j) and we are looking for a perfect bipartite matching where no color appears
twice. It is a classical application of the Lovász Local Lemma that if no color appears more than14en times
in A then there exists a Latin transversal [16]. An improvement of this result is that if no color appears
more than 27

256n times inA then a Latin transversal exists [8]; this paper introduced the “cluster expansion”

strengthening of the local lemma. (Note that27
256 = 33

44
.) These results were made algorithmically efficient

by the work of Harris and Srinivasan [21].
Beyond finding one Latin transversal, one can ask whether there exist multiple disjoint Latin transver-

sals. A remarkable existential result was proved by Alon, Spencer and Tetali [7]: Ifn = 2k and each color
appears inA at mostǫn times (ǫ = 10−1010 in their proof), thenA can be partitioned inton disjoint Latin
transversals. Here, we show how to find a linear number of Latin transversals algorithmically.

Theorem 4.4. For anyn×n matrixA where each color appears at most77

88n times, there exist at least7
7

88n
disjoint Latin transversals, and they can be found inO(n4) resampling oracle calls w.h.p.

We note that again, if there is constant multiplicative slack in the assumption on color appearances,
the number of resamplings improves toO(n2). This also implies Theorem 4.3 as a special case: For an
edge-coloring ofK2n where no color appears more than7

7

88
n times, let us label the vertices arbitrarily

(u1, . . . , un, v1, . . . , vn) construct a matrixA whereAij is the color of the edge(ui, vj). If no color appears
more than77

88
n times, by Theorem 4.4 we can find7

7

88
n Latin transversals; these correspond to rainbow

matchings inK2n.
Our approach to proving Theorem 4.4 is similar to the proof ofTheorem 4.1: sample7

7

88
n indepen-

dently random permutations and hope that they will be (a) disjoint, and (b) Latin. For reasons similar to
Theorem 4.1, the local lemma works out and our framework makes this algorithmic.

Proof. Let t = 77

88n and letπ1, . . . , πt be independently random permutations on[n]. We consider the
following two types of bad events:

• Ei
ef : For eachi ∈ [t] ande = (u, v), f = (x, y) ∈ [n]× [n] such thatu 6= v, x 6= y,Auv = Axy, the

eventEi
ef occurs ifπi(u) = v andπi(x) = y;

• Eij
e : For eachi 6= j ∈ [t] ande = (u, v) ∈ [n]× [n], the eventEij

e occurs ifπi(u) = πj(u) = v.

Clearly, if none of these events occurs then the permutationsπ1, . . . , πt correspond to pairwise disjoint Latin
transversals. The probability of a bad event of the first typeis Pr[Ei

ef ] =
1

n(n−1) and the probability for the

second type isPr[Eij
e ] = 1

n2 . Thus the probability of each bad event is at mostp = 1
n(n−1) .
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It will be convenient to think of the pairse = (x, y) ∈ [n] × [n] as edges in a bipartite complete
graph. As we proved in Section 3.2, the resampling oracle forpermutations is consistent with the following
lopsidependency graph graph.

• Ei
ef ∼ Ei

e′f ′ whenever there is some intersection between the edgese, f ande′, f ′;

• Ei
ef , E

j
ef ∼ Eij

e′ whenever there is some intersection betweene′ ande, f ;

• Eij
e ∼ Eij′

e′ , E
i′j
e′ whenevere′ intersectse.

By Lemma 3.2, the resampling oracle for a given event never causes a new event except in its neighborhood.
Let us now verify the cluster expansion criteria. The counting here is quite similar to the proof of

Theorem 4.1, so we skim over some details. The neighborhood of each eventEi
ef consist of8 cliques: 4

cliques of events of typeEi
e′f ′ and4 cliques of events of typeEij

e , corresponding in each case to the 4
vertices ofe ∪ f . In the first case, each clique has at mostn(q − 1) events, determined by selecting an
incident edge and another edge of the same color. In the second case, each clique has at mostn(t − 1)
events, determined by selecting an incident edge and another permutation.

The neighborhood of each eventEij
e also consists of8 cliques: 4 cliques of eventsEi

e′f ′ or Ej
e′f ′ ,

corresponding to the choice of eitheri or j in the superscript, and one of the two vertices ofe. The size of
each clique is at mostn(q−1), determined by choosing an incident edge and another edge ofthe same color.
Then, we have4 cliques of eventsEij′

e′ or Ei′j
e′ , determined by switching eitheri′ or j′ in the superscript,

and choosing one of the vertices ofe. The size of each clique is at mostn(t − 1), determined by choosing
an incident edge and a new permutation in the superscript.

As a consequence, the cluster expansion criterion here is almost exactly the same as in the case of
Theorem 4.1:

p ≤
y

(1 + n(t− 1)y)4(1 + n(q − 1)y)4
.

We havep = 1
n(n−1) here and we sety = βp. For t, q ≤ γn, it’s enough to satisfy β

(1+βγ)8
≥ 1, which

is achieved byβ = (87 )
8 andγ = 77

88
. Therefore, Theorem 5.44 implies that MaximalSetResamplewill

terminate withinO((
∑

yief +
∑

yije )2) = O(n4) resampling oracle calls with high probability.

5 Analysis of the algorithm

Here we provide the analysis of our algorithm and the proofs of our main theorems. In Section 5.1, we
begin with the basic notions necessary for our analysis and acoupling argument which forms the basis of all
our algorithmic results. In Section 5.2, we prove a weaker form of Theorem 1.2 under the assumption that
the (GLL) criterion holds with some slack. In Section 5.3, weintroduce the independence polynomial of a
graph and summarize its fundamental properties that are important for our analysis. In Section 5.4, we prove
that our algorithm is efficient if Shearer’s criterion is satisfied with anǫ slack. In Section 5.5, we show that
in some sense this assumption is not necessary, because every point satisfying Shearer’s criterion has some
slack available, and we quantify how large this slack is. Finally, we return to the weaker (but more practical)
variants of the local lemma: the (GLL) and (CLL) criteria. Wepresent new combinatorial connections
between these criteria and Shearer’s criterion, which in turn imply our main results on the efficiency of our
algorithm under the (GLL) and (CLL) criteria (in Sections 5.6 and 5.7, respectively).
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5.1 Stable set sequences and the coupling argument

An important notion in our analysis is that ofstable set sequences. We note that this concept originated in
the work of Kolipaka and Szegedy [24] which builds on Shearer’s work [36]. There are some similarities
but also differences in how this concept is applied here: most notably, our stable set sequences grow forward
in time, while the stable set sequences in [24] grow backwardin time (which is similar to the Moser-Tardos
analysis [30]).

Definition 5.1. One execution of the outer repeat loop in MaximalSetResample is called aniteration. For a
sequence of non-empty setsI = (I1, . . . , It), we say that the algorithmfollows I if Is is the set resampled
in iteration s for 1 ≤ s < t, andIt is a set of the firstm events resampled in iterationt for somem ≥ 1 (a
prefix of the maximal independent set constructed in iteration t).

Recall thatInd = Ind(G) denotes the independent sets (including the empty set) in the graph under
consideration.

Definition 5.2. I = (I1, I2, . . . , It) is called astable set sequenceif I1, . . . , It ∈ Ind(G) andIs+1 ⊆ Γ+(Is)
for each1 ≤ s < t. We call the sequenceI properif each independent setIs is nonempty.

Note that ifIs = ∅ for somes, thenIt = ∅ for all t > s. Therefore, the nonempty sets always form a
prefix of the stable set sequence. Formally, we consider an empty sequence also a stable set sequence, of
length0.

Lemma 5.3. If MaximalSetResample follows a sequenceJ = (J1, . . . , Jt), thenJ is a stable set sequence.

Proof. By construction, the setJs chosen in each iteration is independent inG. For eachi ∈ Js, we execute
the resampling oracleri. Recall thatri executed on a satisfied eventEi can only cause new events in the
neighborhoodΓ+(i) (and this neighborhood is not explored again until the following iteration). SinceJs is
a maximal independent set of satisfied events, all the eventssatisfied in the following iteration are neighbors
of some event inJs, i.e.,Js+1 ⊆ Γ+(Js). In the last iteration, this also holds for a subset of the resampled
events.

We use the following notation: Fori ∈ [n], pi = Prµ[Ei]. ForS ⊆ [n], pS =
∏

i∈S pi. For a stable set
sequenceI = (I1, . . . , It), pI =

∏t
s=1 p

Is . We relate stable set sequences to executions of the algorithm by
the following coupling argument. Although the use of stableset sequences is inspired by [24], their coupling
argument is different due to its backward-looking nature (similar to [30]), and their restriction to the variable
model.

Lemma 5.4. For any proper stable set sequenceI = (I1, I2, . . . , It), the probability that the MaximalSet-
Resample algorithm followsI is at mostpI .

Proof. Given I = (I1, I2, . . . , It), let us consider the following “I-checking” random process. We start
with a random stateω ∼ µ. In iterations, we process the events ofIs in the ascending order of their indices.
For eachi ∈ Is, we check whetherω satisfiesEi; if not, we terminate. Otherwise, we apply the resampling
oracleri and replaceω by ri(ω). We continue fors = 1, 2, . . . , t. We say that theI-checking process
succeeds if every event is satisfied when checked and the process runs until the end.

By induction, the stateω after each resampling oracle call is distributed accordingto µ: Assuming this
was true in the previous step and conditioned onEi satisfied, we haveω ∼ µ|Ei

. By assumption, the re-
sampling oracleri removes this conditioning and produces again a random stateri(ω) ∼ µ. Therefore,
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whenever we check eventEi, it is satisfied with probabilityPrµ[Ei] (conditioned on the past). By a tele-
scoping product of conditional probabilities, the probability that theI-checking process succeeds is exactly
∏t

s=1

∏

i∈Is
Prµ[Ei] =

∏t
s=1 p

Is = pI .
To conclude, we argue that the probability that MaximalSetResample follows the sequenceI is at most

the probability that theI-checking process succeeds. To see this, suppose that we couple MaximalSet-
Resample and theI-checking process, so they use the same source of randomness. In each iteration, if
MaximalSetResample includesi in Jt, it means thatEi is satisfied. Both procedures apply the resampling
oraclerI(ω) and by coupling the distribution in the next iteration is thesame. Therefore, the event that
MaximalSetResample follows the sequenceI is contained in the event that theI-checking process succeeds,
which happens with probabilitypI .

We emphasize that we donot claim that the distribution of the current stateω ∈ Ω isµ after each resam-
pling oracle call performed by the MaximalSetResample algorithm. This would mean that the algorithm is
not making any progress in its search for a state avoiding allevents. It is only theI-checking process that
has this property.

Definition 5.5. Let Stab denote the set of all stable set sequences andProp the set of proper stable set
sequences. Let us denote byStabℓ the set of stable set sequences(I1, . . . , Iℓ) of lengthℓ, and byStabℓ(J)
the subset ofStabℓ such that the first set in the sequence isJ . Similarly, denote byPropℓ the set of proper
stable set sequences of lengthℓ, and byProp(J) the subset ofProp such that the first set in the sequence is
J . For I = (I1, . . . , It) ∈ Prop, let us callσ(I) =

∑t
s=1 |Is| the total size of the sequence.

Lemma 5.6. The probability that MaximalSetResample runs for at leastℓ iterations is at most
∑

I∈Propℓ
pI .

The probability that MaximalSetResample resamples at least s events is at most
∑

I∈Prop:σ(I)=s pI .

Proof. If the algorithm runs for at leastℓ iterations, it means that it follows some proper sequenceI =
(I1, I2, . . . , Iℓ). By Lemma 5.4, the probability that the algorithm follows a particular stable set sequenceI
is at mostpI . By the union bound, the probability that the algorithm runsfor at leastℓ iterations is at most
∑

I=(I1,...,Iℓ)∈Prop
pI .

Similarly, if the algorithm resamples at leasts events, it means that it follows some proper sequenceI
of total sizeσ(I) = s. By the union bound, the probability of resampling at leasts events is upper-bounded
by
∑

I∈Prop:σ(I)=s pI .

We note that these bounds could be larger than1 and thus vacuous. The events that “the algorithm
follows I = (I1, . . . , Iℓ)” are disjoint for different sequences of fixed total sizeσ(I), while they could
overlap for a fixed lengthℓ (because we can takeIℓ to be different prefixes of the sequence of events
resampled in iterationt). In any case, the upper bound ofpI on each of the events could be quite loose.

5.2 A simple analysis: the General Lov́asz Lemma criterion, with slack

In this section we will analyze the algorithm under the assumption that the (GLL) criterion holds with some
“slack”. This idea of exploiting slack has appeared in previous work, e.g., [30, 13, 20, 24]. This analysis
proves only a weaker form of Theorem 1.2. The full proof, which removes the assumption of slack, appears
in Section 5.6.

To begin, let us prove the following (crude) bound on the expected number of iterations. We note that
this bound is typically exponentially large.
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Lemma 5.7. Provided that thepi satisfy the(GLL) criterion, pi ≤ xi
∏

j∈Γ(i)(1 − xj), we have

∑

I∈Prop

pI ≤
n
∏

i=1

1

1− xi
.

Proof. It will be convenient to work with sequences of fixed length, where we pad by empty sets if necessary.
Note that by definition this does not change the value ofpI : e.g., p(I1,I2) = p(I1,I2,∅,...,∅). Recall that
Stabℓ(J) denotes the set of all stable set sequences of lengthℓ where the first set isJ . We show the
following statement by induction onℓ: For anyJ ∈ Ind and anyℓ ≥ 1,

∑

I∈Stabℓ(J)

pI ≤
∏

j∈J

xj
1− xj

. (4)

This is true forℓ = 1, sincep(J) = pJ ≤
∏

j∈J xj by the LLL assumption. Let us consider the
expression forℓ+ 1. We have

∑

I′∈Stabℓ+1(J)

pI′ = pJ
∑

J ′⊆Γ+(J)

∑

I∈Stabℓ(J ′)

pI ≤ pJ
∑

J ′⊆Γ+(J)

∏

i∈J ′

xi
1− xi

by the inductive hypothesis. This can be simplified using thefollowing identity:
∏

i∈Γ+(J)

(1 + αi) =
∑

I1⊆Γ+(J)

∏

i∈I1

αi. (5)

We use this withαi =
xi

1−xi
. Therefore,

∑

I′∈Stabℓ+1(J)

pI′ ≤ pJ
∏

i∈Γ+(J)

(

1 +
xi

1− xi

)

= pJ
∏

i∈Γ+(J)

1

1− xi
.

Now we use the LLL assumption:

pJ =
∏

i∈J

pi ≤
∏

i∈J



xi
∏

j∈Γ(i)

(1− xj)



 ≤
∏

i∈J

xi
∏

j∈Γ+(J)\J

(1− xj)

because each element ofΓ+(J) \ J appears inΓ(i) for at least onei ∈ J . We conclude that
∑

I′∈Stabℓ(J)

pI′ ≤
∏

i∈J

xi
∏

j∈Γ+(J)\J

(1− xj) ·
∏

i′∈Γ+(J)

1

1− xi′
=
∏

i∈J

xj
1− xj

.

This proves (4).
Adding up over all setsJ ⊆ [n], we again use (5) to obtain

∑

I∈Stabℓ

pI ≤
∑

J⊆[n]

∏

j∈J

xj
1− xj

=

n
∏

i=1

(

1 +
xi

1− xi

)

=

n
∏

i=1

1

1− xi
.

As we argued above, this can be written equivalently as

ℓ
∑

k=1

∑

I∈Prop

pI ≤
n
∏

i=1

1

1− xi
.

Since this is true for everyℓ, and the left-hand-side is non-increasing inℓ, the sequence asℓ → ∞ has a
limit and the bound still holds in the limit.
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The following is our first concrete result: our algorithm is efficient if (GLL) is satisfied with a slack.

Theorem 5.8. If (GLL) is satisfied with a slack ofǫ, i.e.

Pr
µ
[Ei] ≤ (1− ǫ)xi

∏

j∈Γ(i)

(1− xj)

then with probability1− e−t MaximalSetResample resamples at most1
ǫ (t+

∑n
i=1 ln

1
1−xi

) events.

Proof. By Lemma 5.6, the probability that MaximalSetResample resamples more thans events is at most
∑

I∈Prop:σ(I)=⌈s⌉ pI wherepI is the product ofpi = Prµ[Ei] over all events in the sequenceI. By the

slack assumption, we havepi ≤ (1 − ǫ)p′i andpI ≤ (1− ǫ)σ(I)p′I , wherep′i = xi
∏

j∈Γ(i)(1− xj). Using
Lemma 5.7, we obtain

∑

I∈Prop
σ(I)=⌈s⌉

pI ≤ (1− ǫ)s
∑

I∈Prop

p′I ≤ e−ǫs
n
∏

i=1

1

1− xi
.

Fors = 1
ǫ (t+

∑n
i=1 ln

1
1−xi

), we obtain

∑

I∈Prop
σ(I)=⌈s⌉

pI ≤ e−ǫs
n
∏

i=1

1

1− xi
≤ e−t.

Therefore, the probability of resampling more thans events is at moste−t.

5.3 Preliminaries on Shearer’s criterion

In this section we discuss a strong version of the local lemmadue to Shearer [36]. Shearer’s lemma is based
on certain forms of the multivariate independence polynomial. We recall thatpI denotes

∏

i∈I pi.

Definition 5.9. Given a graphG and valuesp1, . . . , pn, define for eachS ⊆ [n]

qS = qS(p) =
∑

I∈Ind
S⊆I

(−1)|I\S|pI . (6)

Note thatqS = 0 for S /∈ Ind. An alternative form of these polynomials that is also useful is obtained
by summing over subsets ofS.

Definition 5.10. Given a graphG and valuesp1, . . . , pn, define

q̆S = q̆S(p) =
∑

I∈Ind
I⊆S

(−1)|I|pI .

The following set plays a fundamental role.

Definition 5.11. Given a graphG, the Shearer region is the semialgebraic set

S = { p ∈ (0, 1)n : ∀I ∈ Ind, qI(p) > 0 } (7a)

= { p ∈ (0, 1)n : ∀S ⊆ [n], q̆S(p) > 0 } (7b)
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The equivalence between (7a) and (7b) is proven below in Claim 5.19.
Shearer’s Lemma can be stated as follows.

Lemma 5.12 (Shearer [36]). Let G be a lopsidependency graph for the eventsE1, . . . , En. Let pi =
Prµ[Ei] ∈ (0, 1). If p ∈ S thenPrµ[

⋂n
i=1Ei] ≥ q∅.

It is known that Shearer’s Lemma implies Theorem 1.1, as we will see in Section 5.6, and in fact gives
the tight criterion under which all events can be avoided fora given dependency graphG. The polynomials
qS(p) andq̆S(p) have a natural interpretation in the Shearer region: There is a “tight instance” whereqS(p)
is the probability that the set of occurring events is exactly S, andq̆S(p) is the probability that none of the
events inS occur. In particular,q∅(p) = q̆[n](p) is exactly the probability that no event occurs. (See [36] for
more details.)

5.3.1 Properties of independence polynomials

In this section we summarize some of the important properties of these polynomials, most of which may be
found in earlier work. Since some of the proofs are not easy torecover due to different notation and/or their
analytic nature (in case of [35]), we provide short combinatorial proofs for completeness.

Claim 5.13(The “fundamental identity”. Shearer [36], Scott-Sokal [35, Eq. (3.5)]). For anya ∈ S, we have

q̆S = q̆S\{a} − pa · q̆S\Γ+(a).

Proof. Every independent setI ⊆ S either containsa or does not. In addition, ifa ∈ I thenI is independent
iff I \ {a} is an independent subset ofS \ Γ+(a).

Claim 5.14 (Shearer [36], Scott-Sokal [35, Eq. (2.52)]). For everyS ⊆ [n],

q̆S =
∑

Y⊆[n]\S

qY .

Proof. By definition ofqY ,

∑

Y⊆[n]\S

qY =
∑

Y⊆[n]\S

∑

I∈Ind
Y⊆I

(−1)|I\Y |pI =
∑

I∈Ind

pI
∑

Y⊆I\S

(−1)|I\Y |.

If I\S 6= ∅ then the last alternating sum is zero. Therefore, the sum simplifies to
∑

I∈Ind:I⊆S(−1)|I|pI = q̆S
as required.

Claim 5.15 (Shearer [36]).
∑

J∈Ind

qJ =
∑

S⊆[n]

qS = 1.

Proof. SetS = ∅ in Claim 5.14 and use the fact thatq̆∅ = 1.

Claim 5.16 (Scott-Sokal [35, Eq. (2.48)]). For I ∈ Ind,

qI = pI · q̆[n]\Γ+(I).
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Proof. Given I ∈ Ind, each independent setJ ⊇ I can be written uniquely asJ = I ∪ K whereK is
independent andK ∩ Γ+(I) = ∅. So,

qI =
∑

J∈Ind:I⊆J

(−1)|J\I|pJ = pI
∑

K∈Ind
K⊆[n]\Γ+(I)

(−1)|K|pK = pI · q̆[n]\Γ+(I).

Lemma 5.17(Kolipaka-Szegedy [24, Lemma 15]). For anyI ∈ Ind

qI = pI ·
∑

S⊆Γ+(I)

qS.

Proof. By Claim 5.16 and Claim 5.14, we haveqI = pI · q̆[n]\Γ+(I) = pI
∑

S⊆Γ+(I) qS, as required.

Claim 5.18 (Simultaneous positivity ofqS andq̆S). Assume thatp ∈ [0, 1]n. Then

qI ≥ 0 ∀I ∈ Ind =⇒ q̆S ≥ q∅ ∀S ⊆ [n] (8)

q̆S ≥ 0 ∀S ⊆ [n] =⇒ qI ≥ p[n] · q̆[n] ∀I ∈ Ind. (9)

Proof. (8) follows from Claim 5.14 (sinceqY = 0 for Y /∈ Ind). To see (9), first note thatqI ≥ 0 for all
I ∈ Ind, by Claim 5.16. Consequently, by Claim 5.14,q̆[n] = minS q̆S . Clearly,p[n] = minI pI . It follows
from Claim 5.16 again thatqI = pI · q̆[n]\Γ+(I) ≥ p[n] · q̆[n].

Claim 5.19. The two characterizations of the Shearer region,(7a)and (7b), are equivalent.

Proof. By Claim 5.18, ifq∅ > 0 andqS ≥ 0 ∀S ⊆ [n], thenq̆S > 0 for all S ⊆ [n]. Conversely, if̆qS > 0
for all S ⊆ [n], thenqI ≥ p[n]q̆[n] > 0 for all I ∈ Ind.

Claim 5.20 (Monotonicity of q̆, Scott-Sokal [35, Theorem 2.10]). Letp ∈ [0, 1]n.

q̆S(p) ≥ 0 ∀S ⊆ [n] =⇒ q̆S(p
′) ≥ q̆S(p) ∀0 ≤ p′ ≤ p, ∀S ⊆ [n].

Proof. First consider the case thatp andp′ differ only in coordinatei. For anyS ⊆ [n], Claim 5.13 implies
that ∂

∂pi
q̆S(p) = −q̆S\Γ+(i)(p) and ∂2

∂p2i
q̆S = 0. Thus,

q̆S(p
′) = q̆S(p) + (pi − p′i) · q̆S\Γ+(i)(p) ≥ q̆S(p).

The case thatp′ andp differ in multiple coordinates is handled by induction.

Claim 5.21 (Log-submodularity of̆qS, Scott-Sokal [35, Corollary 2.27]). For anyp ∈ S andA,B ⊆ [n],
we havĕqA · q̆B ≥ q̆A∪B · q̆A∩B.

Proof. We claim that for anya ∈ S ⊆ T , we have

q̆S
q̆S\{a}

≥
q̆T

q̆T\{a}
. (10)

By induction, this implies that for anyR ⊆ S, q̆S
q̆S\R

≥ q̆T
q̆T\R

. We obtain the claim above by settingS = A,

T = A ∪B, andR = A \B.
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We prove (10) again by induction, on|T |. For |T | = 1, the statement is trivial. Let|T | > 1. By
Claim 5.13, we have

q̆S = q̆S\{a} − paq̆S\Γ+(a)

and
q̆T = q̆T\{a} − paq̆T\Γ+(a).

Let us denoteS ∩ Γ+(a) = {a, s1, . . . , sk}. We apply (10) to strict subsets ofS andT , to obtain

q̆S\Γ+(a)

q̆S\{a}
=

k
∏

i=1

q̆S\{a,s1,...,si−1,si}

q̆S\{a,s1,...,si−1}
≤

k
∏

i=1

q̆T\{a,s1,...,si−1,si}

q̆T\{a,s1,...,si−1}
=

q̆T\(S∩Γ+(a))

q̆T\{a}
≤

q̆T\Γ+(a)

q̆T\{a}

where in the last step we used the monotonicity ofq̆T in T (again from Claim 5.13). This implies (10):

q̆S
q̆S\{a}

= 1− pa
q̆S\Γ+(a)

q̆S\{a}
≥ 1− pa

q̆T\Γ+(a)

q̆T\{a}
=

q̆T
q̆T\{a}

.

Claim 5.22 (Log-submodularity ofqS). For anyp ∈ S andA,B ⊆ [n], we haveqA · qB ≥ qA∪B · qA∩B.

Proof. We can assumeA ∪B ∈ Ind; otherwise the right-hand side is zero. By Claim 5.16, we have

qA · qB = pAq̆[n]\Γ+(A) · p
B q̆[n]\Γ+(B).

By Claim 5.21,
q̆[n]\Γ+(A) · q̆[n]\Γ+(B) ≥ q̆[n]\(Γ+(A)∪Γ+(B)) · q̆[n]\(Γ+(A)∩Γ+(B)).

Here we use the fact thatΓ+(A) ∪ Γ+(B) = Γ+(A ∪B), andΓ+(A) ∩ Γ+(B) ⊇ Γ+(A ∩ B). Therefore,
by the monotonicity of̆qS,

q̆[n]\Γ+(A) · q̆[n]\Γ+(B) ≥ q̆[n]\Γ+(A∪B) · q̆[n]\Γ+(A∩B).

Also, pApB = pA∪BpA∩B. Using Claim 5.16 one more time, we obtain

qA · qB ≥ pA∪B q̆[n]\Γ+(A∪B) · p
A∩B q̆[n]\Γ+(A∩B) = qA∪B · qA∩B .

Claim 5.23. Suppose thatp ∈ S. For any setS ⊆ [n],
∑

J⊆S

qJ
q∅

≤
∏

j∈S

(

1 +
q{j}

q∅

)

.

Proof. The proof is by induction onS, the case|S| ≤ 1 being trivial. Fix anys ∈ S. Claim 5.22 implies
thatqJ+s · q∅ ≤ q{s} · qJ for anyJ ⊆ S \ {s}. Summing overJ yields

∑

J⊆S\{s}

qJ+s

q∅
≤

q{s}

q∅

∑

J⊆S\{s}

qJ
q∅

.

Adding
∑

J⊆S\{s}
qJ
q∅

to both sides yields

∑

J⊆S

qJ
q∅

≤
(

1 +
q{s}

q∅

)

∑

J⊆S\{s}

qJ
q∅

.

The claim follows by induction.
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Claim 5.24. If q∅ > 0 then
q{i}
q∅

=
q̆[n]\{i}

q̆[n]
− 1.

Proof. By Claim 5.14,

1 +
q{i}

q∅
=

q∅ + q{i}

q∅
=

q̆[n]\{i}

q̆[n]
.

Claim 5.25 (Kolipaka-Szegedy [24, Theorem 5]). If (1 + ǫ)p ∈ S then
q{i}
q∅

≤ 1
ǫ for eachi ∈ [n].

Proof. Note thatq̆[n]\{i}(p) does not depend onpi, while q̆[n](p) is linear inpi. Also, both quantities are
equal atpi = 0: we haveq̆[n](p1, . . . , 0 · pi, . . . , pn) = q̆[n]\{i}(p). Since(1 + ǫ)p ∈ S, we know that
q̆[n](p1, . . . , (1 + ǫ)pi, . . . , pn) ≥ 0. By linearity, q̆[n](p) ≥ ǫ

1+ǫ q̆[n]\{i}(p). Claim 5.24 then implies that
q{i}
q∅

≤ 1
ǫ .

5.3.2 Connection to stable set sequences

Kolipaka and Szegedy showed that stable set sequences relate to the independence polynomialsqS. The
following is the crucial upper-bound for stable set sequences when Shearer’s criterion holds. In fact, this
result is subsumed by Lemma 5.27 but we present the upper bound first, with a shorter proof.

Lemma 5.26(Kolipaka-Szegedy [24]). If qS ≥ 0 for all S ⊆ [n] andq∅ > 0, then

∑

I∈Stabℓ(J)

pI ≤
qJ
q∅

∀J ∈ Ind,∀ℓ ≥ 1.

Proof. We proceed by induction: forℓ = 1, there is only one such stable set sequenceI = (J). By
Lemma 5.17, we haveqJ = pJ

∑

S⊆Γ+(J) qS ≥ pJq∅. (Recall thatqS ≥ 0 for all S ⊆ [n].) Hence,

p(J) = pJ ≤ qJ/q∅.
The inductive step: every stable set sequence starting withJ has the formI = (J, J ′, . . .) where

J ′ ⊆ Γ+(J). Therefore,
∑

I∈Stabℓ(J)

pI = pJ
∑

J ′∈Ind
J ′⊆Γ+(J)

∑

I∈Stabℓ−1(J ′)

pI . (11)

By the inductive hypothesis,
∑

I∈Stabℓ−1(J ′) pI ≤ qJ ′/q∅. Also, recall thatqJ ′ = 0 if J ′ /∈ Ind. Therefore,

∑

I∈Stabℓ(J)

pI ≤ pJ
∑

J ′⊆Γ+(J)

qJ ′

q∅
=

qJ
q∅

using Lemma 5.17 to obtain the last equality.

The inequality in Lemma 5.26 actually becomes an equality asℓ → ∞, as shown in Lemma 5.27. This
stronger result is used only tangentially in Section 5.7.2,but we provide a detailed proof in order to clarify
the arguments of Kolipaka and Szegedy [24].

Lemma 5.27(Kolipaka-Szegedy [24, Theorem 14]). For a dependency graphG andp1, . . . , pn ∈ (0, 1),
the following statements are equivalent:

1. q∅ > 0 andqS ≥ 0 for all S ⊆ [n].
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2. for all J ∈ Ind, qJ > 0 and
∑

I∈Prop(J) pI = qJ/q∅.

3.
∑

I∈Prop(J) pI is finite for eachJ ∈ Ind.

Proof. First, note thatProp(J) =
⋃∞

t=1 Propt(J), and
⋃ℓ

t=1 Propt(J) can be identified withStabℓ(J),
since each proper sequenceI of length at mostℓ can be padded with empty sets to obtain a sequence
in Stabℓ(J) (andpI does not change). Therefore,

∑

I∈Prop(J) pI = limℓ→∞
∑

I∈Stabℓ(J)
pI . This is a

non-decreasing sequence; the limit exists but could be infinite. Let us denotew(ℓ)
J =

∑

I∈Stabℓ(J)
pI and

w∗
J = limℓ→∞w

(ℓ)
J =

∑

I∈Prop(J) pI . Let us defineM to be the following linear operator onRInd:

(Mx)I = pI
∑

J∈Ind
J⊆Γ+(I)

xJ .

Using this notation, the identity (11) can written compactly asw(ℓ) = Mw(ℓ−1). Inductively, w(ℓ) =
M ℓ−1w(1), andw∗ = limℓ→∞M ℓw(1).

1 ⇒ 2: Assume now thatqS ≥ 0 for all S ⊆ [n] andq∅ > 0. Lemma 5.26 proves that this implies
w∗
J =

∑

I∈Prop(J) pI = limℓ→∞
∑

I∈Stabℓ(J)
pI ≤ qJ/q∅. Clearly

∑

I∈Prop(J) pI > 0, so this also implies
thatqJ > 0 for all J ∈ Ind.

Note thatw(1) is the column ofM corresponding toJ = ∅: MI,∅ = pI for eachI ∈ Ind. Therefore, we
can writew(1) = Mw(0), wherew(0) = e∅ is the canonical basis vector inRInd corresponding to∅. We have
w∗ = limℓ→∞M ℓw(1) = limℓ→∞M ℓw(0). We may subtract these two limits since we have shown that
everyw∗

J is finite, obtaininglimℓ→∞M ℓ(w(1) − w(0)) = 0. We note thatw(1) − w(0) has strictly positive
coordinates forI 6= ∅, and0 for I = ∅.

By Lemma 5.17, we haveMq = q for the vectorq ∈ R
Ind with coordinatesqI . Consider 1q∅ q − w(0), a

nonnegative vector with0 in the coordinate corresponding to∅. We can chooseβ > 0 large enough so that
coordinate-wise,0 ≤ 1

q∅
q − w(0) ≤ β(w(1) − w(0)). From this we derive that

0 ≤
1

q∅
q − w∗ = lim

ℓ→∞
M ℓ

(

1

q∅
q − w(0)

)

≤ β lim
ℓ→∞

M ℓ(w(1) − w(0)) = 0,

so equality holds throughout. Recalling the definition ofw∗
J , we conclude that

∑

I∈Prop(J) pI = w∗
J = 1

q∅
qJ .

2 ⇒ 3: Trivial.
3 ⇒ 1: Let p ∈ (0, 1)n be the vector(p1, . . . , pn). We can assume thatminS q̆S(p) ≤ 0, otherwise

we are done by Claim 5.18. Let us consider the values ofq̆S on the line{ λp : λ ∈ [0, 1] }. Defineλ∗ =
inf{λ ∈ (0, 1] : minS q̆S(λp) ≤ 0}. We observe thatminS q̆S(λp) > 0 for 0 < λ < 1/n, which can
be verified directly by considering the alternating sum defining q̆S. (Intuitively, Shearer’s Lemma holds
in this region just by the union bound.) Therefore, we haveλ∗ > 0. Furthermore continuity also implies
minS q̆S(λ

∗p) = 0, so Claim 5.18 yieldsq∅(λ
∗p) = q̆[n](λ

∗p) = 0. Forλ ∈ [0, λ∗) we haveminS q̆S(λp) >
0, so by Claim 5.18 we also haveminI∈Ind qI(λp) > 0. This shows that the condition1 holds at the pointλp,
for λ ∈ [0, λ∗), so we may use the implication1 ⇒ 2:

∑

I∈Prop(J)(λp)I = qJ(λp)/q∅(λp). Let J ∈ Ind

be such thatqJ(λ∗p) > 0; such aJ must exist by Claim 5.15. By the monotonicity ofpI =
∏

I∈I p
I in the

variablesp1, . . . , pn, we have

∑

I∈Prop(J)

pI ≥
∑

I∈Prop(J)

(λ∗p)I ≥ lim inf
λ→λ∗−

∑

I∈Prop(J)

(λp)I = lim inf
λ→λ∗−

qJ(λp)

q∅(λp)
= ∞,

asqJ(λ∗p) > 0 but q∅(λ
∗p) = 0. This contradicts the assumption3 that

∑

I∈Prop(J) pI is finite.
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From Claim 5.15, we obtain immediately the following.

Corollary 5.28. If qS ≥ 0 for all S ⊆ [n] andq∅ > 0,
∑

I∈Prop

pI =
1

q∅
.

Remark. An equivalent statement using the language of “traces” appears in the recent manuscript of Knuth
[23, Page 86, Theorem F], together with a short proof using generating functions. Furthermore, using
Claim 5.14, we may derive

∑

J⊆A

∑

I∈Prop(J)

pI =
∑

J⊆A

qJ
q∅

=
q̆[n]\A

q̆[n]
,

for anyA ⊆ [n]. This statement, in the language of traces, also appears in Knuth’s draft [23, Page 87,
Equation (144)].

Summary at this point. By Lemma 5.6 and Corollary 5.28, MaximalSetResample produces a state in
⋂n

i=1Ei after at most1/q∅ iterations in expectation. However, this should not be viewed as a statement of
efficiency. Shearer’s Lemma proves thatPrµ[

⋂n
i=1 Ei] ≥ q∅ so, in expectation,1/q∅ independent samples

from µ would also suffice to find a state in
⋂n

i=1 Ei.
Section 5.4 improves this analysis by assuming that Shearer’s criterion holds with some slack, analogous

to the result in Section 5.2. Section 5.5 then removes the need for that assumption — it argues that Shearer’s
criterion always holds with some slack, and provides quantitative bounds on that slack.

5.4 Shearer’s criterion with slack

In this section we consider scenarios in which Shearer’s criterion holds with a certain amount of slack. To
make this formal, we will consider another vectorp′ of probabilities withp ≤ p′ ∈ S. For notational
convenience, we will letq′S denote the valueqS(p′) and letqS denoteqS(p) as before. Let us assume that
Shearer’s criterion holds with some slack in the following natural sense.

Definition 5.29. We say thatp ∈ (0, 1)n satisfies Shearer’s criterion with coefficientsq′S at a slack ofǫ, if
p′ = (1 + ǫ)p is still in the Shearer regionS andq′S = qS(p

′).

Theorem 5.30. Recall thatpi = Prµ[Ei]. If thepi satisfy Shearer’s criterion with coefficientq′∅ at a slack
of ǫ ∈ (0, 1), then the probability that MaximalSetResample resamples more than2

ǫ

(

ln 1
q′
∅
+ t
)

events is at

moste−t.

Proof. By Lemma 5.6, the probability that MaximalSetResample resamples more thans events is at most
∑

I∈Prop:σ(I)=⌈s⌉ pI . By the slack assumption, we have

Pr[resample more thans events] ≤
∑

I∈Prop
σ(I)=⌈s⌉

pI ≤ (1 + ǫ)−s
∑

I∈Prop
σ(I)=⌈s⌉

p′I

since we havep′i = (1 + ǫ)pi for each event appearing in a sequenceI. The hypothesis is that the
probabilitiesp′i satisfy Shearer’s criterion with a bound ofq′∅. Consequently, Corollary 5.28 implies that
∑

I∈Prop:σ(I)=⌈s⌉ p
′
I ≤

∑

I∈Prop p
′
I ≤ 1/q′∅. Thus, fors = 2

ǫ

(

ln 1
q′
∅
+ t
)

we obtain

Pr[resample more thans events] ≤ (1 + ǫ)−s 1

q′∅
≤ e−sǫ/2 1

q′∅
≤ e−(ln(1/q′

∅
)+t) 1

q′∅
= e−t.
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In other words, the probability that MaximalSetResample requires more than2ǫ ln(1/q
′
∅) resamplings

decays exponentially fast; in particular the expected number of resampled events isO
(

1
ǫ ln(1/q

′
∅)
)

. This
appears significantly better than the trivial bound of1/q∅; still, it is not clear whether this bound can be
considered “polynomial”. In the following, we show that this leads in fact to efficient bounds, comparable
to the best known bounds in the variable model.

Corollary 5.31. If the pi satisfy Shearer’s criterion with coefficientsq′S at a slack ofǫ ∈ (0, 1), then the
probability that MaximalSetResample resamples more than

2

ǫ

(

n
∑

j=1

ln
(

1 +
q′{j}

q′∅

)

+ t

)

events is at moste−t.

Proof. By Claim 5.15 and Claim 5.23, we have

ln
1

q′∅
= ln

∑

J⊆[n]

q′J
q′∅

≤
n
∑

j=1

ln
(

1 +
q′{j}

q′∅

)

.

The result follows from Theorem 5.30.

Next, we provide a simplified bound that depends only on the amount of slack and the number of events.
This is analogous to a bound ofO(n/ǫ) given by Kolipaka-Szegedy [24] in the variable model.

Theorem 5.32. If p1, . . . , pn satisfy Shearer’s criterion at a slack ofǫ ∈ (0, 1), then the expected number of
events resampled by MaximalSetResample isO(nǫ log

1
ǫ ).

Proof. Let p′ = (1 + ǫ/2)p. By assumption,(1 + ǫ/3)p′ ≤ (1 + ǫ)p ∈ S. Therefore,p′ still hasǫ/3 slack

so by Claim 5.25, the coefficientsq′S = qS(p
′) satisfy

q′{i}
q′
∅

≤ 3
ǫ . The pointp satisfies Shearer’s criterion

with coefficientsq′S at a slack ofǫ/2, so by Corollary 5.31, the probability that we resample morethan
4
ǫ (n ln(1 + 3

ǫ ) + t) events is at moste−t. In expectation, we resampleO(nǫ log
1
ǫ ) events as claimed.

5.5 Quantification of slack in Shearer’s criterion

In the previous section, we proved a bound on the number of resamplings in the MaximalSetResample
algorithm, provided that Shearer’s criterion is satisfied with a certain slack. In fact, from Definition 5.11
one can observe that the Shearer region is anopen setand therefore there is always a certain amount of
slack. However, how large a slack we can assume is not a prioriclear. In particular, one can compare with
Kolipaka-Szegedy [24] where a bound is proved on the expected number of events one has to resample
in the variable model: If Shearer’s criterion is satisfied with coefficientsqS , then the expected number of
resamplings is at most

∑n
i=1 q{i}/q∅ [24]. In this section, we prove that anywhere in the Shearer region,

there is an amount of slackinversely proportional to this quantity, which leads to a bound similar to that of
Kolipaka and Szegedy [24].

Lemma 5.33. Let (p1, . . . , pn) ∈ (0, 1)n be a point in the Shearer region. Letǫ = q∅/(2
∑n

i=1 q{i}) and
p′i = (1 + ǫ)pi. Then(p′1, . . . , p

′
n) is also in the Shearer region, andq∅(p

′) ≥ 1
2q∅(p).
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Before proving the lemma, let us consider the partial derivatives of theq̆S polynomials.

Claim 5.34. For anyi ∈ S,
∂q̆S
∂pi

= − q̆S\Γ+(i)

and for anyj ∈ S \ Γ+(i),
∂2q̆S
∂pi∂pj

= q̆S\Γ+(i)\Γ+(j).

For other choices ofi, j, the partial derivatives are0. In particular, for any point in the Shearer region,
∂q̆S
∂pi

≤ 0 and ∂2q̆S
∂pi∂pj

≥ 0.

Due to Claim 5.34, we may say thatq̆S(p1, . . . , pn) is “continuous supermodular” in the Shearer region.

Proof. For anyi ∈ S, we haveq̆S = q̆S\{i} − piq̆S\Γ+(i) by Claim 5.13. The polynomials̆qS\{i} and

q̆S\Γ+(i) do not depend onpi and hence∂q̆S∂pi
is equal to−q̆S\Γ+(i). Repeating this argument one more time

for j ∈ S \ Γ+(i), we get∂q̆S∂pi
= −q̆S\Γ+(i) = −q̆S\Γ+(i)\{j} + pj q̆S\Γ+(i)\Γ+(j). Again, q̆S\Γ+(i)\{j} and

q̆S\Γ+(i)\Γ+(j) do not depend onpj and hence∂2q̆S
∂pi∂pj

= q̆S\Γ+(i)\Γ+(j).

Clearly, we have∂q̆S∂pi
= 0 unlessi ∈ S, and ∂2q̆S

∂pi∂pj
= 0 unlessi ∈ S andj ∈ S \ Γ+(i). Since all the

coefficientsq̆S are positive in the Shearer region, we have∂q̆S
∂pi

≤ 0 and ∂2q̆S
∂pi∂pj

≥ 0 for all i, j.

Now we can prove Lemma 5.33.

Proof. Consider the line segment fromp = (p1, . . . , pn) to p′ = (p′1, . . . , p
′
n) wherep′i = (1 + ǫ)pi,

ǫ = q∅
2
∑n

i=1 q{i}
. Note thatp′i ≤ (1 + q∅

q{i}
)pi =

q{i}+q∅
q{i}

pi =
q̆[n]\{i}

piq̆[n]\Γ+(i)
pi ≤ 1 by Claim 5.14, Claim 5.16

and Claim 5.20. Let us define

Q∅(λ) = q∅((1 + λ)p1, . . . , (1 + λ)pn).

By the chain rule and Claim 5.34, we have

dQ∅

dλ

∣

∣

∣

λ=0
=

n
∑

i=1

pi
∂q∅
∂pi

= −
n
∑

i=1

piq̆[n]\Γ+(i) = −
n
∑

i=1

q{i}

where we used Claim 5.16 in the last equality. Assuming that(1 + λ)p = ((1 + λ)p1, . . . , (1 + λ)pn) is in
the Shearer region, we also have by Claim 5.34

d2Q∅

dλ2
=

n
∑

i,j=1

∂2q∅
∂pi∂pj

pipj ≥ 0.

That is,Q∅(λ) is a convex function forλ ≥ 0 as long as(1 + λ)p is in the Shearer region. Our goal is to
prove that this indeed happens forλ ∈ [0, ǫ].

Assume for the sake of contradiction that(1 + λ)p is not in the Shearer region for someλ ∈ [0, ǫ],
and letλ∗ be the minimum such value (which exists since the complementof the Shearer region is closed).
By Claim 5.18, anywhere in the Shearer region,q∅ = q̆[n] is the minimum of thĕqS coefficients; hence by
continuity it must be the case thatq̆[n]((1 + λ∗)p) is the minimum coefficient amonğqS((1 + λ∗)p) for all
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S ⊆ [n], andQ∅(λ
∗) = q̆[n]((1 + λ∗)p) ≤ 0. On the other hand, by the minimality ofλ∗, Q∅(λ) is positive

and convex on[0, λ∗) and therefore

Q∅(λ
∗) ≥ Q∅(0) + λ∗ dQ∅

dλ

∣

∣

∣

λ=0
= q∅ − λ∗

n
∑

i=1

q{i} ≥ q∅ − ǫ

n
∑

i=1

q{i} =
1

2
q∅ > 0,

which is a contradiction. Therefore,Q∅(λ) is positive and convex for allλ ∈ [0, ǫ]. By the same computation
as above,Q∅(ǫ) ≥

1
2q∅.

This implies our main algorithmic result under Shearer’s criterion.

Theorem 5.35. Let E1, . . . , En be events and letpi = Prµ[Ei]. Suppose that the three subroutines de-
scribed in Section 1.1.1 exist. Ifp ∈ S then the probability that MaximalSetResample resamples more than
4
∑n

i=1
q{i}
q∅

(
∑n

j=1 ln(1 +
q{j}
q∅

) + 1 + t
)

events is at moste−t.

We note that the corresponding result in the variable model [24] was that the expected number of resam-
plings is at most

∑n
i=1

q{i}
q∅

. Here, we obtain a bound which is at most quadratic in this quantity.

Proof. Directly from Theorem 5.30 and Lemma 5.33: Givenp in the Shearer region, Lemma 5.33 implies
that p in fact satisfies Shearer’s criterion with a bound ofq′∅ ≥ q∅

2 at a slack ofǫ =
q∅
2 /
∑n

i=1 q{i}. By
Theorem 5.30, the probability that MaximalSetResample resamples more thans events is at moste−t,
where

s =
2

ǫ

(

ln
1

q′∅
+ t

)

≤
4

q∅

n
∑

i=1

q{i}

(

ln
1

q∅
+ 1 + t

)

.

Using Claim 5.23, we can replaceln 1
q∅

by
∑n

j=1 ln(1 +
q{j}
q∅

).

5.6 The General LLL criterion, without slack

Shearer’s Lemma (Lemma 5.12) is a strengthening of the original Lovász Local Lemma (Theorem 1.1): if
p1, . . . , pn satisfy (GLL) then they must also satisfy Shearer’s criterion p ∈ S. Nevertheless, there does not
seem to be a direct proof of this fact in the literature. Shearer [36] indirectly proves this fact by showing
that, whenp 6∈ S it is possible thatPr[

⋂n
i=1 Ei] = 0, so the contrapositive of Theorem 1.1 implies that

(GLL) cannot hold. Scott and Sokal prove this fact using analytic properties of the partition function [35,
Corollary 5.3]. In this section we establish this fact by an elementary, self-contained proof.

We then establish Theorem 1.2, our algorithmic form of Theorem 1.1 in the general framework of
resampling oracles. Unlike the simpler analysis of Section5.2, the analysis of this section does not assume
any slack in the (GLL) criterion.

Lemma 5.36. Suppose thatp satisfies(GLL). Then, for everyS ⊆ [n] anda ∈ S, we have

q̆S
q̆S\{a}

≥ 1− xa.

Corollary 5.37 ((GLL) implies Shearer). If p satisfies(GLL) thenp ∈ S.

Proof. For anyS ⊆ [n], write it asS = {s1, . . . , sk}. Induction yields

q̆S
q̆∅

=
k
∏

i=1

q̆{s1,...,si}

q̆{s1,...,si−1}
≥
∏

a∈S

(1− xa) > 0.

The claim follows sincĕq∅ = 1.
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Corollary 5.38. If p satisfies(GLL) then
q{a}
q∅

≤ xa

1−xa
.

Proof. Lemma 5.36 yields
q̆[n]−a

q̆[n]
≤ 1

1−xa
, so the result follows from Claim 5.25.

Proof (of Lemma 5.36). We proceed by induction on|S|. The base case,S = ∅, is trivial: there is noa ∈ S
to choose. ConsiderS 6= ∅ and an elementa ∈ S. By Claim 5.13, we havĕqS = q̆S\{a} − paq̆S\Γ+(a). By
the inductive hypothesis applied iteratively to the elements of (S \ {a}) \ (S \Γ+(a)) = Γ(a)∩S, we have

q̆S\{a} ≥ q̆S\Γ+(a)

∏

i∈Γ(a)∩S

(1− xi).

Therefore, we can write

q̆S = q̆S\{a} − paq̆S\Γ+(a) ≥ q̆S\{a}

(

1−
pa

∏

i∈Γ(a)∩S(1− xi)

)

.

By the claim’s hypothesis,pa ≤ xa
∏

i∈Γ(a)(1 − xi) ≤ xa
∏

i∈Γ(a)∩S(1 − xi), so we conclude that̆qS ≥
(1− xa)q̆S\{a}. �

These results, together with our analysis of Shearer’s criterion with slack (Corollary 5.31), immediately
provide an analysis under the assumption that (GLL) holds with slack, similar to Theorem 5.8. However,
this connection to Shearer’s criterion allows us to prove more.

We show that our algorithm is in fact efficient even when the (GLL) criterion is tight. This might
be surprising in light of Corollary 5.28, which does not use any slack and gives an exponential bound of
1
q∅

= 1
q̆[n]

≤
∏n

i=1
1

1−xi
. The reason why we can prove a stronger bound is that Shearer’s criterion isnever

tight: as we argued already, it defines an open set, and Section 5.5 derives a quantitative bound on the slack
that is always available under Shearer’s criterion.

Theorem 5.39.LetE1, . . . , En be events and letpi = Prµ[Ei]. Suppose that the three subroutines described
in Section 1.1.1 exist. Ifp satisfies(GLL) then the probability that MaximalSetResample resamples more
than4

∑n
i=1

xi

1−xi
(
∑n

j=1 ln
1

1−xj
+ 1 + t) events is at moste−t.

If (GLL) is satisfied with a slack ofǫ ∈ (0, 1), i.e.,(1+ ǫ)pi ≤ xi
∏

j∈Γ(i)(1−xj), then with probability

at least1− e−t, MaximalSetResample resamples no more than2
ǫ (
∑n

j=1 ln
1

1−xj
+ t) events.

Proof. The first part follows directly from Theorem 5.35, since Corollary 5.37 shows thatp ∈ S and
Corollary 5.38 shows that

q{i}
q∅

≤ xi

1−xi
. The second part follows from Corollary 5.31, using again that

q{i}
q∅

≤ xi

1−xi
.

Theorem 1.2 follows immediately from Theorem 5.39.

5.7 The cluster expansion criterion

Recall that Section 1.4 introduced the cluster expansion criterion, which often gives improved quantitative
bounds compared to the General LLL (such as the applicationsdiscussed in Section 4). For convenience, let
us restate the cluster expansion criterion here. Given parametersy1, . . . , yn, define the notation

YS =
∑

I⊆S
I∈Ind

yI ∀S ⊆ [n].
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The cluster expansion criterion for a vectorp ∈ [0, 1]n, with respect to a graphG, is

∃y1, . . . , yn > 0 such that pi ≤ yi/YΓ+(i). (CLL)

This criterion was introduced in the following non-constructive form of the LLL.

Theorem 5.40(Bissacot et al. [8]). LetE1, . . . , En be events with a (lopsi-)dependency graphG, and let
pi = Prµ[Ei]. If p andG satisfy(CLL) thenPrµ[

⋂n
i=1 Ei] > 0.

To see that this strengthens the original LLL (Theorem 1.1),one may verify that (GLL) implies (CLL):
if pi ≤ xi

∏

j∈Γ(i)(1− xj), we can takeyi =
xi

1−xi
(so1− xi =

1
1+yi

) and then use the simple bound

∑

I⊆Γ+(i)
I∈Ind

yI ≤
∑

I⊆Γ+(i)

yI =
∏

j∈Γ+(i)

(1 + yj).

On the other hand, Shearer’s Lemma (Lemma 5.12) strengthensTheorem 5.40, in the sense that (CLL)
implies p ∈ S. This fact was established by Bissacot et al. [8] by analyticmethods that relied on earlier
results [17]. In this section we establish this fact by a new proof that is elementary and self-contained.

An algorithmic form of Theorem 5.40 in the variable model wasproven by Pegden [33]. In fact, that
result is subsumed by the algorithm of Kolipaka and Szegedy in Shearer’s setting, since (CLL) implies
p ∈ S. In this section, we prove a new algorithmic form of Theorem 5.40 in the general framework of
resampling oracles.

To begin, we establish the following connection between theyi parameters and thĕqS polynomials. For
convenience, let us introduce the notationSc = [n] \ S, S + a = S ∪ {a} andS − a = S \ {a}.

Lemma 5.41. Suppose thatp satisfies(CLL). Then, for everyS ⊆ [n] anda ∈ S, we have

q̆S
q̆S−a

≥
YSc

Y(S−a)c
.

The proof is in Section 5.7.1 below.

Corollary 5.42 ((CLL) implies Shearer). If p satisfies(CLL) thenp ∈ S.

Proof. For anyS ⊆ [n], write it asS = {s1, . . . , sk}. Applying Lemma 5.41 repeatedly, we obtain

q̆S
q̆∅

=

k
∏

i=1

q̆{s1,...,si}

q̆{s1,...,si−1}
≥

k
∏

i=1

Y{s1,...,si}
c

Y{s1,...,si−1}
c

=
YSc

Y[n]
> 0

sinceYT > 0 for all T ⊆ [n] under the (CLL) criterion. Recall that̆q∅ = 1. Henceq̆S > 0 for all S ⊆ [n],
which means thatp is in the Shearer region.

Corollary 5.43. If p satisfies(CLL) then
q{a}
q∅

≤ ya.

Proof. Lemma 5.41 yields
q̆[n]−a

q̆[n]
≤

Y([n]−a)c

Y[n]c
= 1 + ya, so the result follows from Claim 5.25.

These corollaries lead to our algorithmic result under the cluster expansion criterion. The following
theorem subsumes Theorem 1.3 and adds a statement under the assumption of slack.
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Theorem 5.44.LetE1, . . . , En be events and letpi = Prµ[Ei]. Suppose that the three subroutines described
in Section 1.1.1 exist. Ifp satisfies(CLL) then, with probability at least1 − e−t, MaximalSetResample
resamples no more than4(

∑n
i=1 yi)(

∑n
j=1 ln(1 + yj) + 1 + t) events.

If (CLL) is satisfied with a slack ofǫ ∈ (0, 1), i.e.,(1 + ǫ)pi ≤ yi/YΓ+(i), then with probability at least
1− e−t, MaximalSetResample resamples no more than2

ǫ (
∑n

j=1 ln(1 + yj) + t) events.

Proof. The first statement follows directly from Theorem 5.35, since Corollary 5.42 shows thatp ∈ S
and Corollary 5.43 shows that

q{i}
q∅

≤ yi. Next assume that (CLL) is satisfied withǫ slack. We apply
Corollary 5.42 and Corollary 5.43 to the pointp′ = (1+ ǫ)p, obtaining thatp′ ∈ S andq′{j}/q

′
∅ ≤ yj , where

q′S denotesqS(p′). The second statement then follows directly from Corollary5.31.

5.7.1 Proof of Lemma 5.41

Claim 5.45 (The “fundamental identity” forY ). YA = YA−a + yaYA\Γ+(a) for all a ∈ A.

Proof. Every summandyJ on the left-hand side either appears inYA−a if a 6∈ J , or can be written asya ·yB

whereB = J \ Γ+(a), in which case it appears as a summand inyaYA\Γ+(a).

Claim 5.46 (Log-subadditivity ofY ). YA∪B ≤ YA · YB for anyA,B ⊆ [n].

Proof. It suffices to consider the case thatA andB are disjoint, as replacingB with B \ A decreases the
right-hand side and leaves the left-hand side unchanged. Every summandyJ on the left-hand side can be
written asyJ

′
· yJ

′′
with J ′ = J ∩A andJ ′′ = J ∩B. The productyJ

′
· yJ

′′
appears as a summand on the

right-hand side, and all other summands are non-negative.

Proof (of Lemma 5.41). We proceed by induction on|S|. The base case isS = {a}. In that case we have
q̆{a}
q̆∅

= q̆{a} = 1− pa. On the other hand, by the two claims above and (CLL), we have

Y[n] = Y[n]−a + yaY[n]\Γ+(a) ≥ Y[n]−a + paYΓ+(a)Y[n]\Γ+(a) ≥ Y[n]−a + paY[n].

Therefore,
Y[n]−a

Y[n]
≤ 1− pa which proves the base case.

We prove the inductive step by similar manipulations. By Claim 5.13, we have

q̆S
q̆S−a

= 1− pa
q̆S\Γ+(a)

q̆S−a
.

The inductive hypothesis applied repeatedly to the elements ofS ∩ Γ(a) yields

1− pa
q̆S\Γ+(a)

q̆S−a
≥ 1− pa

Y(S\Γ+(a))c

Y(S−a)c
= 1− pa

YSc∪Γ+(a)

YSc+a
.

By the two claims above and (CLL), we have

YSc+a = YSc + yaYSc\Γ+(a) ≥ YSc + paYΓ+(a)YSc\Γ+(a) ≥ YSc + paYSc∪Γ+(a).

We conclude that
q̆S

q̆S−a
≥ 1− pa

YSc∪Γ+(a)

YSc+a
≥ 1−

YSc+a − YSc

YSc+a
=

YSc

Y(S−a)c
.

�
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5.7.2 Relationship between cluster expansion and stable set sequences

We remark that the following more general bound holds: For everyJ ∈ Ind,

∑

I∈Prop(J)

pI =
qJ
q∅

≤ yJ . (12)

The equality holds by Lemma 5.27 and the inequality can be derived from Lemma 5.41 as follows:

qJ
q∅

=
pJ q̆(Γ+(J))c

q̆(∅)c
≤ pJ

YΓ+(J)

Y∅
= pJYΓ+(J) ≤

∏

j∈J

(pjYΓ+(j)) ≤ yJ

using Claim 5.16 for the first equality, and Claim 5.46 and (CLL) in the last two inequalities.
A direct proof that

∑

I∈Prop(J) pI ≤ yJ can be obtained by an inductive argument similar to the proof
of (4) in Section 5.2. An application of Lemma 5.27 then establishes (12). Earlier versions of this paper
used this approach to relate the cluster expansion criterion and Shearer’s lemma. Our new approach in
Corollary 5.42 has the advantage that it does not require thelimiting arguments used in Lemma 5.27.

6 Conclusions

We have shown that the Lovász Local Lemma can be made algorithmic in the abstract framework of re-
sampling oracles. This framework captures the General LLL as well as Shearer’s Lemma in the existential
sense, and leads to efficient algorithms for the primary examples of probability spaces and events satisfying
lopsidependency that have been considered in the literature (as surveyed in [26]).

Our algorithmic form of the General LLL (Theorem 1.2) usesO
(
∑n

i=1
xi

1−xi

∑n
j=1 log

1
1−xj

)

resam-

pling operations, which is roughly quadratically worse than the
∑n

i=1
xi

1−xi
bound of Moser-Tardos [30].

Similarly, our algorithmic result under Shearer’s condition (Theorem 5.35) usesO
(
∑n

i=1
q{i}
q∅

∑n
j=1 ln(1+

q{j}
q∅

)
)

resampling operations, which is roughly quadratically worse than the
∑n

i=1
q{i}
q∅

bound of Kolipaka-
Szegedy [24]. Can this quadratic loss be eliminated?

One way to prove that result would be to prove an analog of the witness tree lemma, which is a cen-
terpiece of the Moser-Tardos analysis [30]. The witness tree lemma has other advantages, for example in
deriving parallel and deterministic algorithms. Unfortunately, the witness tree lemma is not true in the gen-
eral setting of resampling oracles (see Appendix A). It is, however, true in the variable model [30] as well
as in the setting of random permutations [21]. Is there a variant of our framework in which the witness tree
lemma is true, and which continues to capture the LLL in full generality?
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A A counterexample to the witness tree lemma

A cornerstone of the analysis of Moser and Tardos [30] is thewitness tree lemma. It states (roughly) that
for any tree of events growingbackwards in timefrom a certain root eventEi, with the children of each
nodeEi′ being neighboring events resampled beforeEi′ , the probability that this tree is consistent with the
execution of the algorithm is at most the product of the probabilities of all events in the tree. (We give a more
precise statement below.) Extensions of this lemma have been crucial in the work of Kolipaka-Szegedy on
algorithmic forms of Shearer’s Lemma [24] and work of Harris-Srinivasan on the algorithmic local lemma
for permutations [21]. The witness tree lemma leads to somewhat stronger quantitative bounds than the
ones we obtain, and it has been also useful for other purposes: derandomization of LLL algorithms [30, 13],
parallel algorithms [30, 14], and handling exponentially many events [20]. Therefore, it would be desirable
to prove the witness tree lemma in our general framework of resampling oracles.

Unfortunately, this turns out to be impossible. The main purpose of this section is to show that the
witness tree lemma is false in the framework of resampling oracles in a strong sense. Whereas in typical
scenarios the Moser-Tardos algorithm only requires witness trees of depthO(log n) with high probability,
in the resampling oracle framework the stable set sequences(and an analogous notion of witness trees) can
have nearly-linear length with constant probability.

Before we proceed, we define a few notions necessary for the formulation of the witness tree lemma.
Our definitions here are natural extensions of the notions from [30] to the setting of resampling oracles.

Definition A.1. Given a lopsided association graphG on vertex set[n], a witness tree is a finite rooted tree
T , with each vertexv in T given a labelEv ∈ [n], such that the children of a vertexv receive labels from
Γ+(Ev).

Definition A.2. We say that a witness treeT with root r appears in the log of the algorithm, if eventEr is
resampled at some point and the tree is produced by the following procedure: process the resampled events
from that point backwards, and for each resampled eventj such thatj ∈ Γ+(Ev) for somev in the tree, pick
such a vertexv of maximum depth in the tree and create a new childw of v with labelEw = j.

The witness tree lemma, in various incarnations, states that the probability of a witness treeT appearing
in the log of an LLL algorithm is at most

∏

v∈T Pr[EEv ]. We show here that this can be grossly violated in
the setting of resampling oracles. Our example actually uses the independent variable setting but resampling
oracles different from the natural ones considered by Moserand Tardos.

Example. Consider independent Bernoulli variablesXi, Y
j
i , Zi andW where1 ≤ i ≤ k and1 ≤ j ≤ ℓ.

The probability distributionµ is uniform on the product space of these random variables. Consider the
following events:

• Ei = {Xi = 0}

• Ej
i =

{

Y j
i = 0

}

• E′ = {W = 1}
These events are mutually independent. However, let us consider a dependency graphG whereEi ∼ Ej

i for
each1 ≤ i ≤ k, 1 ≤ j ≤ ℓ; this is a conservative choice but nevertheless a valid one for our events. (One
could also tweak the probability space slightly so that neighboring events are actually dependent.) In any
case,E′ is an isolated vertex in the graph.

We define resampling oracles as follows. In the following,Q describes a fresh new sample of a Bernoulli
variable. Only the variables relevant to the respective oracle are listed as arguments.
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• ri(Xi) = Q
• rji (Xi, Y

j
i , Zi) = (Zi, Q,Xi)

• r′(W,Z1, . . . , Zk) = (Z1, . . . , Zk, Q).

Claim A.3. ri, r
j
i , r

′ are valid resampling oracles for the eventsEi, E
j
i , E

′ and the dependency graphG.

Proof. ri resamples only the variableXi relevant to eventEi and hence cannot cause any other event to
occur. Conditioned onEi = {Xi = 0}, it clearly produces the uniform distribution.

rji switches the variablesXi andZi and thus can causeEi to occur (which is consistent with the depen-

dency graphG). Conditioned onEj
i =

{

Y j
i = 0

}

, it makesY j
i uniformly random and preserves a uniform

distribution on(Xi, Zi).
r′ affects the values ofW,Z1, . . . , Zk but no event depends onZ1, . . . , Zk, so r′ cannot cause any

event exceptE′ to occur. Conditioned onE′ = {W = 1}, since(Z1, . . . , Zk) are distributed uniformly, it
produces again the uniform distribution.

The Moser-Tardos algorithm. First, let us consider the Moser-Tardos algorithm: In the most general
form, it resamples in each step an arbitrary occurring event. For concreteness, let’s say that the algorithm
always resamples the occurring event of minimum index (in some fixed ordering).

Claim A.4. If the Moser-Tardos algorithm considers events in the order(Ei, E
j
i , E

′), then at the time it gets
to resampleE′, the variablesZ1, . . . , Zk are independent are equal to1 with probability1− 1/2ℓ+1 each.

Proof. Let us fix i. Whenever some variableY j
i is initially equal to0, we have to resampleEj

i at some
point. However, we only resampleEj

i if Ei does not occur, which means thatXi must be1 at that time. So
the resampling oracleEj

i forcesZi to be equal to1. The only wayZi could remain equal to0 is that it is
initially equal to0 and none of the eventsEj

i need to be resampled, which happens with probability1/2ℓ.
Therefore, when we’re done withEi andEj

i for 1 ≤ j ≤ ℓ, Zi is equal to0 with probability1/2ℓ+1. This
happens independently for eachi.

Lemma A.5. The probability that the Moser-Tardos algorithm resamplesE′ at leastk times in a row is at
least 12 (1−

1
2ℓ+1 )

k−1.

Proof. By the ordering of events,E′ is resampled only when all other events have been fixed. Also,re-
samplingE′ cannot cause any other event, so the algorithm will terminate afterwards. However, as we
argued above, when we get to resamplingE′, each variableZi is equal to1 independently with probability
1 − 1/2ℓ+1. Considering the resampling oracler′(W,Z1, . . . , Zk) = (Z1, . . . , Zk, Q), if W as well as all
the variablesZi are equal to1, it will take at leastk resamplings to clear the queue and get a chance to avoid
eventE′. This happens with probability12(1−

1
2ℓ+1 )

k−1.

LetT consist of a path ofk vertices labeledE′. Fork = 2ℓ, we conclude that the witness treeT appears
with constant probability in the log of the Moser-Tardos algorithm, as opposed to1/2k which would follow
from the witness tree lemma.

The MaximalSetResample algorithm. A slightly more involved analysis is necessary in the case of
MaximalSetResample. By nature of this algorithm, we would resampleE′ “in parallel” with the other
events and so the variables evolve somewhat differently.
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Claim A.6. For eachi independently, after 2 iterations of the MaximalSetResample algorithm,Zi = 1 with
probability1−1/2ℓ+1. Any further updates ofZi other than those caused by resamplingE′ can only change
the variable from0 to 1.

Proof. The claim is that unlessZi = 0 andY 1
i = . . . ,= Y ℓ

i = 1 initially, in the first two iterations we
will possibly resampleEi and then one of the eventsEj

i , which makesZi equal to1. Any further update to
Zi occurs only whenE′ is resampled (which shifts the sequence(Z1, . . . , Zk)) or whenEj

i is resampled,
which makesZi equal to1.

Lemma A.7. The probability that MaximalSetResample resamplesE′ at leastk times in a row is at least
1
4(1−

1
2ℓ+1 )

k−2.

Proof. In the first two iterations, the probability thatE′ is resampled twice is at least1/4 (the values ofW
andZ1 are initially uniform, and ifZ1 is updated, it can only increase the probability that we resampleE′).
Independently, the probability thatZ2 = . . . = Zk−1 = 1 after the first two iterations is(1−1/2ℓ+1)k−2, by
the preceding claim. (We are not usingZ1 which is possibly correlated with the probability of resampling
E′ in the second iteration, andZk which would be refreshed by this resampling in the second iteration.) If
this happens, we will continue to resampleE′ at leastk − 2 additional times, because it will takek − 2
executions ofr′ before a zero can reach the variableW .

Again, consider settingk = 2ℓ. The total number of events isn = O(kℓ), so ℓ = Θ(log n) and
k = Θ(n/ log n). With constant probability, the witness treeT consisting of a path ofk vertices labeled
E′ will appear in the log of MaximalSetResample algorithm. Thus, with constant probability, the algorithm
will require a stable set sequence of length at leastk.
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