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Abstract

We prove that there exist bipartite Ramanujan graphs of every degree and every number
of vertices. The proof is based on analyzing the expected characteristic polynomial of a union
of random perfect matchings, and involves three ingredients: (1) a formula for the expected
characteristic polynomial of the sum of a regular graph with a random permutation of another
regular graph, (2) a proof that this expected polynomial is real rooted and that the family of
polynomials considered in this sum is an interlacing family, and (3) strong bounds on the roots
of the expected characteristic polynomial of a union of random perfect matchings, established
using the framework of finite free convolutions introduced recently in [MSS15a].
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1 Introduction

Ramanujan graphs are undirected regular graphs whose nontrivial adjacency matrix eigenvalues
are asymptotically as small as possible; in other words, they are the optimal spectral expander
graphs. In this paper, we prove the existence of bipartite Ramanujan graphs of every degree and
every size. We do this by showing that a random m−regular bipartite graph, obtained as a union
of m random perfect matchings across a bipartition of an even number of vertices, is Ramanujan
with nonzero probability. Specifically, we prove that the expected characteristic polynomial of such
a random graph has roots concentrated in the appropriate range, and use the method of interlacing
families introduced in [MSS15b] to deduce that there must be an actual graph whose eigenvalues
are no worse than the roots of this polynomial. Infinite families of bipartite Ramanujan graphs
were shown in that paper to exist for every degree m ≥ 3 , but it was not known whether they
exist for every number of vertices.

The main conceptual and technical contributions of this work and the companion paper [MSS15a]
are the following. First, we identify a new class of real-rooted expected characteristic polynomials
related to random graphs, and develop new tools for establishing their interlacing properties and
analyzing the locations of their roots. These methods are different from those used to study the
mixed characteristic polynomials of [MSS15c], and the bounds we obtain are strictly stronger than
those produced by the original “barrier method” argument introduced in [BSS12] (which is off
by a factor of two in this setting). Notably, the expected characteristic polynomials we consider
are computable in polynomial time, unlike most other known expected characteristic polynomials.
Second, in contrast to previous work, we derive the Ramanujan bound from completely generic
considerations involving random orthogonal matrices, in particular making no use of results from
algebraic graph theory or number theory.

1.1 Summary of Results

Recall that the adjacency matrix A of an m−regular graph on d vertices1 has largest eigenvalue
λ1(A) = m, and smallest eigenvalue λd(A) = −m when the graph is bipartite. Following Friedman
[Fri08], we will refer to these as the trivial eigenvalues of A, and we will call a graph Ramanujan if all
of its non-trivial eigenvalues have absolute value at most 2

√
m− 1. Such graphs are asymptotically

best possible in the sense that a theorem of Alon and Boppana [Nil91] tells us that for every ǫ > 0,
every infinite sequence of m−regular graphs must contain a graph with a non-trivial eigenvalue of
absolute value at least 2

√
m− 1− ǫ.

Our main theorem is that a union of m random perfect matchings across a bipartition of 2d
vertices is Ramanujan with nonzero probability.

Theorem 1.1. Let P1, . . . , Pm be independent uniformly random d×d permutation matrices, m ≥ 3.
Then, with nonzero probability the nontrivial eigenvalues of

A =

m
∑

i=1

[

0 Pi

P T
i 0

]

are all less than 2
√
m− 1 in absolute value.

1In order to be consistent with our companion paper [MSS15a], we will, unconventionally, use m to denote the
degree of a graph and d to denote its number of vertices.
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We also prove the following non-bipartite version of this theorem, regarding a union ofm random
perfect matchings on d vertices (not bipartite), with d even.

Theorem 1.2. Let P1, . . . , Pm be independent uniformly random d × d permutation matrices, d
even, m ≥ 3. Let M be the adjacency matrix of any fixed perfect matching on d vertices. Then
with nonzero probability:

λ2

(

m
∑

i=1

PiMP T
i

)

< 2
√
m− 1.

Since we only prove nonzero bounds on the probabilities, the nonbipartite theorem is a logical
consequence of the bipartite one. We describe it here because its proof is substantially easier and
contains most of the main ideas. Note that Theorem 1.2 does not produce Ramanujan graphs
because it does not guarantee any control of the least eigenvalue λd.

We remark that as they are unions of independent matchings, the graphs we produce may have
multiple edges between two vertices. Thus, they are strictly speaking multigraphs, and do not
subsume the previous results if one insists on simple graphs. However, it seems that it should be
more difficult to construct Ramanujan graphs with multiedges than without. Like [MSS15b], this
paper establishes existence but does not give a polynomial time construction of Ramanujan graphs.

1.2 Related Work

Infinite families of Ramanujan graphs were first shown to exist for m = p + 1, p a prime, in the
seminal work of Margulis and Lubotzky-Phillips-Sarnak [Mar88, LPS88]. The graphs they produce
are Cayley graphs and can be constructed very efficiently, and their analysis relies on deep results
from number theory, which is responsible for the “Ramanujan” nomenclature. Friedman [Fri08]
showed that a random m−regular graph is almost Ramanujan: specifically, that a union of m
perfect matchings has non-trivial eigenvalues bounded by 2

√
m− 1 + ǫ with high probability, for

every ǫ > 0. More recently, in [MSS15b], we proved the existence of infinite families of m−regular
bipartite Ramanujan graphs for every m ≥ 3 by proving (part of) a conjecture of Bilu and Linial
[BL06] regarding the existence of good 2−lifts of regular graphs. Prior to the present paper, it
was unknown if there exist Ramanujan graphs of every number of vertices. We refer the reader to
[HLW06] and [MSS15b] for a more detailed discussion of Ramanujan graphs and 2−lifts.

1.3 Outline of the Paper

The proofs of both of our theorems follow the same strategy and consist of three steps. In each
step we present the simpler non-bipartite case first, and then indicate the modifications required
for the bipartite case.

First, we show that the expected characteristic polynomials of the random graphs we are inter-
ested in are real rooted and come from interlacing families (reviewed in Section 2.1), which reduces
our existence theorems to analyzing the roots of these polynomials. This is achieved in Section 3
by decomposing the random permutations used to generate these expected polynomials into swaps
acting on two vertices at a time, and showing that such swaps correspond to linear transforma-
tions which preserve real-rootedness properties of certain multivariate polynomials. Theorem 3.3
implies that if A and B are symmetric matrices, then the expected characteristic polynomial of
A + PBP T is real rooted for a random permutation matrix P . We remark that this argument is
completely elementary and self-contained, and unlike [MSS15b, MSS15c] does not appeal to any
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results from the theory of real stable or hyperbolic polynomials. In the process, we introduce a
class of “determinant-like” polynomials which may be of independent interest.

Next, in Section 4 we derive a closed-form formula for the expected characteristic polynomial of
a sum of randomly permuted regular graphs. We begin by proving that the expected characteristic
polynomials over random permutations can be replaced by expected characteristic polynomials
over random orthogonormal matrices. This may be seen as a quadrature or derandomization
statement, which says that these characteristic polynomials are not able to distinguish between the
set of permutation matrices and the set of orthogonal matrices; essentially this happens because
determinants are multilinear, which causes certain restrictions of them to have very low degree
Fourier coefficients. This component of the proof may also be of independent interest.

Finally, we appeal to machinery developed in our companion paper [MSS15a], which studies the
structure of expected characteristic polynomials over random orthogonal matrices. In particular,
such polynomials may be expressed crisply in terms of a simple (and explicitly computable) con-
volution operation on characteristic polynomials, which we call the finite free additive convolution.
In this framework, the characteristic polynomial of a union of m random matchings is simply the
m−wise convolution of the characteristic polynomial of a single matching. By applying strong
bounds on the roots of these convolutions derived in [MSS15a], we obtain the desired Ramanujan
bound of 2

√
m− 1. The requisite material regarding free convolutions is introduced in Sections 2.2

and 2.3.
These three ingredients are combined in Section 5 to complete the proofs of Theorems 1.1 and

1.2.

2 Preliminaries

2.1 Interlacing Families

We recall the following theorem from [MSS15c], stated here in the slightly different language of
product distributions.

Theorem 2.1 (Interlacing Families). Suppose {fω(x)}ω∈{0,1}m is a family of real-rooted polynomials
of the same degree n with positive leading coefficient, such that

Eµ(x) := Eω∼µfω(x)

is real-rooted for every product distribution µ = µ1 ⊗ . . . ⊗ µm on Ω = {0, 1}m. Then for every
k = 1, . . . , n and every such µ, there is some ω0 ∈ Ω such that

λk(fω0
) ≤ λk(Eµ),

where λk denotes the kth largest root of a real-rooted polynomial.

For real rooted polynomials f and g, we write g −→ f if the roots of f and g interlace and the
largest root of f is at least as big as the largest root of g. We will use the following elementary
facts about interlacing and real-rootedness, which may be found in [Fis08].

Lemma 2.2. If g has degree one less than f and both are real-rooted, then

1. g −→ f if and only if f + αg is real-rooted for all α ∈ R
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2. g −→ f implies that f −→ f − g.

If f1 and f2 are monic and real-rooted of the same degree, then they have a common interlacing
if and only if f1 + αf2 is real-rooted for all α ≥ 0.

2.2 Finite Free Convolutions of Polynomials

To analyze the expected characteristic polynomials of the random graphs we consider, we will
need the notion of a finite free convolution of two polynomials, developed in our companion paper
[MSS15a]. We denote the characteristic polynomial of a matrix by:

χx (A) := det(xI −A).

Definition 2.3 (Symmetric Additive Convolution). Let p(x) = χx (A) and q(x) = χx (B) be two
real-rooted polynomials, for some symmetric d × d matrices A and B. The symmetric additive
convolution of p and q is defined as:

p(x) +d q(x) = E
Q
χx

(

A+QBQT
)

,

where the expectation is taken over random orthogonal matrices Q sampled according to the Haar
measure on O(d), the group of d-dimensional orthonormal matrices.

Note that this is a well-defined operation on polynomials because the distribution of the eigen-
values of A+QBQT depends only on the eigenvalues of A and the eigenvalues of B, which are the
roots of p and q.

Definition 2.4 (Asymmetric Additive Convolution). Let p(x) = χx

(

AAT
)

and q(x) = χx

(

BBT
)

be two real-rooted polynomials with nonnegative roots, for some arbitrary (not necessarily sym-
metric) d× d matrices A and B. The asymmetric additive convolution of p and q is defined as

p(x) ++d q(x) = E
Q,R

χx

(

(A+QBRT )(A+QBRT )T
)

,

where Q and R are independent random orthogonal matrices sampled uniformly from O(d).

When dealing with a possibly asymmetric d × d matrix M , we will frequently consider the
dilation

[

0 M
MT 0

]

,

which is by construction a symmetric 2d × 2d matrix. We will refer to a matrix of this type as
a bipartite matrix. It is easy to see that its eigenvalues are symmetric about 0 and are equal
to ±λ1(MMT )1/2, . . . ,±λd(MMT )1/2, i.e., in absolute value to the singular values of M . This
correspondence also gives the useful identity

Sχx

(

MMT
)

= χx

([

0 M
MT 0

])

, (1)

where the operator S is defined by
(Sp)(x) := p(x2).
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With this notation in hand, we can alternately express the asymmetric additive convolution as

S(p(x) ++d q(x)) = E
Q,R

χx

(

[

0 A
AT 0

]

+

[

Q 0
0 R

] [

0 B
BT 0

] [

Q 0
0 R

]T
)

. (2)

Explicit, polynomial time computable formulas for the additive convolutions in terms of the
coefficients of p and q may be found in Theorems 1.1 and 1.3 of [MSS15a]. For this work, we only
require the following important consequences of these formulas, also established in [MSS15a]. We
will occasionally drop the subscripts in +d and ++d when it is clear from the context.

Lemma 2.5 (Properties of + and ++). 1. If p(x) and q(x) are real-rooted then p(x) +d q(x) is
also real-rooted.

2. If p(x) and q(x) are real-rooted with all roots nonnegative, then p(x) ++d q(x) is also real-
rooted with all roots nonnegative.

3. The operations +d and ++d are bilinear (in the coefficients of the polynomials on which they
operate) and associative.

Proof. (1) and (2) are Theorems 1.2 and 1.4 of [MSS15a], and bilinearity follows immediately from
Theorems 1.1 and 1.3 of [MSS15a]. To see associativity, let p(x) = χx (A) , q(x) = χx (B) and
r(x) = χx (C), and observe that

(p(x) + q(x)) + r(x) =

(

E
Q
E
R
χx

(

QAQT +RBRT
)

)

+ χx (C)

= E
Q
E
R

(

χx

(

QAQ+RBRT
)

+ χx (C)
)

by bilinearity

= E
Q
E
R
E
W

χx

(

QAQ+RBRT +WCW T
)

,

for random orthogonal matrices Q,R,W . The same argument shows that this is also equal to
p(x) + (q(x) + r(x)).

An analogous argument using the formula (2) shows that ++ is also associative.

A consequence of the above lemma is that for m matrices A1, . . . , Am, identities such as

E
Q1,...,Qm

χx

(

m
∑

i=1

QiAiQ
T
i

)

= χx (A1) + χx (A2) + . . . + χx (Am) (3)

make sense.

2.3 Cauchy Transforms

The device that we use to analyze the roots of finite free convolutions of polynomials is the Cauchy
Transform. This is the same (up to normalization) as the Stieltjes Transform and the “Barrier
Function” of [BSS12, MSS15b, MSS15c].
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Definition 2.6 (Cauchy Transform). The Cauchy Transform of a polynomial p(x) with roots
λ1, . . . , λd is defined to be the function

Gp (x) =
1

d

d
∑

i=1

1

x− λi
=

1

d

p′(x)

p(x)
.

We define the inverse Cauchy Transform of p to be

Kp (w) = max {x : Gp (x) = w} .

Note that the Cauchy transform has poles at the roots of p, and when all the roots λi of p are
real, Gp (x) is monotone decreasing for x greater than the largest root. Thus, Kp (w) is the unique
value of x that is larger than all the λi for which Gp (x) = w. In particular, it is an upper bound
on the largest root of p, and approaches the largest root as w → ∞.

Our bounds on the expected characteristic polynomials of random graphs are a consequence of
the following two theorems, which are proved in [MSS15a].

Theorem 2.7 (Theorem 1.7 of [MSS15a]). For real-rooted degree d polynomials p and q and w > 0,

Kp+dq (w) ≤ Kp (w) +Kq (w)− 1/w.

The above theorem is a strengthening of the univariate barrier function argument for character-
istic polynomials introduced in [BSS12]. This may be seen by taking q(x) = χx (B) = xd−1(x− d),
which corresponds to a rank one matrix B = vvT with trace equal to d. It is easy to check that in
this case p(x) + q(x) = p(x)− p′(x).

We remark that Theorem 2.7 is inspired by an equality regarding inverse Cauchy transforms of
limiting spectral distributions of certain random matrix models arising in Free Probability theory;
we refer the interested reader to [MSS15a] for a more detailed discussion. To analyze the case of
bipartite random graphs, we will need the corresponding inequality for the asymmetric convolution.

Theorem 2.8 (Theorem 1.8 of [MSS15a]). For degree d polynomials p and q having only nonneg-
ative real roots,

KS(p++dq) (w) ≤ KSp (w) +KSq (w)− 1/w.

3 Interlacing for Permutations

In this section, we show that the expected characteristic polynomials obtained by averaging over
certain random permutation matrices form interlacing families. The class of random permutations
which have this property are those that are products of independent random swaps, which we now
formally define.

Definition 3.1 (Random Swap). A random swap is a matrix-valued random variable which is
equal to a transposition of two (fixed) indices s, t with probability α and equal to the identity with
probability (1− α), for some α ∈ [0, 1].

Definition 3.2 (Realizability by Swaps). A matrix-valued random variable P supported on permu-
tation matrices is realizable by swaps if there are random swaps S1, . . . , SN such that the distribution
of P is the same as the distribution of the product SNSN−1 . . . S2S1.

7



For example, we show in Lemma 3.5 below that a uniformly random permutation matrix is
realizable by swaps.

The main result of this section is that expected characteristic polynomials over products of
random swaps are always real-rooted. These polynomials play a role analogous to that of mixed
characteristic polynomials in [MSS15b, MSS15c].

Theorem 3.3. Let A1, . . . , Am be symmetric d× d matrices and let {Sij}i≤m,j≤N be independent
(not necessarily identical) random swaps. Then the expected characteristic polynomial

E det



tI −
m
∑

i=1





1
∏

j=N

Sij



Ai





N
∏

j=1

ST
ij







 (4)

is real-rooted.

An immediate consequence of Theorems 3.3 and 2.1, applied to the family of polynomials
indexed by all possible values of the swaps Sij , is the following existence result.

Theorem 3.4 (Interlacing Families for Permutations). Suppose A1, . . . , Am are symmetric d × d
matrices, and P1, . . . , Pm are independent random permutations realizable by swaps. Then, for
every k ≤ d:

λk

(

m
∑

i=1

PiAiP
T
i

)

≤ λk

(

Eχx

(

m
∑

i=1

PiAiP
T
i

))

,

with nonzero probability.

Theorem 3.4 is useful because the uniform distribution on permutations and its bipartite version,
which we use to generate our random graphs, are realizable by swaps.

Lemma 3.5. Let P and S be uniformly random d × d permutation matrices. Both P and P ⊕ S

are realizable by swaps, where P ⊕ S =

(

P 0
0 S

)

is the direct sum of P and S.

Proof. We will establish the claim for P first. We proceed inductively. Let M2 be a random swap
which swaps e1 and e2 with probability 1/2, and for k > 2 let

Mk = Mk−1S1kMk−1,

where S1k swaps e1 and ek with probability 1/k.
Let v = (1, 2, 3, . . . , d)T . By induction, assume that the first k − 1 coordinates of Mk−1v are

in uniformly random order; in particular, that (Mk−1v)(1) is a random element of {1, . . . , k − 1}.
This means that:

• With probability 1/k: (Mk−1S1kMk−1v)(k) = k and the remaining indices contain a random
permutation of {1, . . . , k − 1}.

• With probability 1−1/k: (Mk−1S1kMk−1v)(k) is a uniformly random element j ∈ {1, . . . , k−
1} and the remaining indices contain a random permutation of {1, . . . , k} \ {j}.

Thus, Mk is uniformly random on {1, . . . , k}, and by induction Md = P .
For P ⊕ S, we use the above argument to realize P ⊕ I and I ⊕ S separately and then multiply

them.
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The rest of this section is devoted to proving Theorem 3.3. This is achieved by showing that
the polynomials in (4) are univariate restrictions of certain nice multivariate polynomials. The
relevant notion is the following.

Definition 3.6 (Determinant-like Polynomials). A homogeneous polynomial P (X1, . . . ,Xm) of
degree d in the entries of m symmetric d × d matrices X1, . . . ,Xm is called determinant-like if it
has the following two properties.

Hyperbolicity. The univariate restrictions

q(t) = P (tI −A1, . . . , tI −Am)

are real-rooted for all symmetric A1, . . . , Am.

This condition is known as hyperbolicity of the polynomial P (X1, . . . ,Xm) with respect to
the point (I, I, . . . , I). We do not discuss the notion of hyperbolicity further, since the self-
contained definition above suffices for this paper. We point the interested reader to [Pem12]
for a detailed discussion of the theory.

Rank-1 Linearity. For every vector v, index i ≤ m, and real number s, we have

P (X1,X2, . . . ,Xi + svvT , . . . ,Xm) = P (X1, . . . ,Xm) + sDi,vvT P (X1, . . . ,Xm)

where

Di,vvT P (X1, . . . ,Xm) =

(

∂

∂s
P (X1, . . . ,Xi + svvT , . . . ,Xm)

)

∣

∣

s=0

is the directional derivative of P in direction (0, . . . , vvT , . . . , 0), where vvT appears in the
ith position. Note that Di,vvT P (X1, . . . ,Xm) is homogeneous of degree d− 1.

An important example of a determinant-like polynomial is the determinant of a sum of matrices:

P (X1, . . . ,Xm) = det(X1 + . . .+Xm).

Hyperbolicity follows from the fact that

P (tI −A1, . . . , tI −Am) = det(mtI −A1 − . . .−Am)

is the characteristic polynomial of a symmetric matrix. Rank-1 linearity can be seen to follow from
the invariance of the determinant under change of basis and its linearity with respect to matrix
entries. Alternatively, one can prove it by using the matrix determinant lemma, which tells us

det(X1 + svvT + . . .+Xm) = det(X1 + . . .+Xm) + s〈vvT ,det(X1 + . . .+Xm)(X1 + . . .+Xm)−1〉.

The crux of the proof of Theorem 3.3 lies in the fact that random swaps define linear operators
which preserve the property of being determinant-like.

Lemma 3.7 (Random swaps preserve determinant-likeness). If P (X1, . . . ,Xm) is determinant-like,
then for any i ≤ m and random swap S, the polynomial

ESP (X1, . . . , SXiS
T , . . . ,Xm)

is determinant-like.
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Before proving this lemma, we record some preliminary facts about determinant-like polynomi-
als.

Lemma 3.8 (Rank-1 updates interlace). Suppose P (X1, . . . ,Xm) is determinant-like. Then for
every vector v and symmetric matrices A1, . . . , Am we have

P (tI −A1, . . . , tI −Am) −→ P (tI −A1, . . . , tI −Ai − vvT , . . . tI −Am),

where −→ denotes interlacing, pointing to the polynomial with the largest root.

Proof. Assume without loss of generality that i = 1. By rank-1 linearity,

P (tI −A1 − svvT , . . . , tI −Am) = P (tI −A1, . . . , tI −Am)− sDvvT P (tI −A1, . . . , tI −Am).

By the hyperbolicity of P , we know that this is real rooted when viewed as a univariate polynomial
in t. Since D1,vvT P is of degree one less than P , the first part of Lemma 2.2 implies that

D1,vvT P (tI −A1, . . . , tI −Am) −→ P (tI −A1, . . . , tI −Am),

which in turn by the second part of Lemma 2.2 gives

P (tI −A1, . . . , tI −Am) −→ P (tI −A1, . . . , tI −Am)−D1,vvT P (A1 − tI, . . . , Am − tI)

= P (tI −A1 − vvT , . . . , tI −Am),

as desired.

Lemma 3.9 (Permutations preserve rank-1 linearity). (1) If Π is a permutation matrix and
P (X1, . . . ,Xm) is rank-1 linear then P (ΠX1Π

T ,X2, . . . ,Xm) is also rank-1 linear. (2) If P and Q
are rank-1 linear then so is P +Q.

Proof. (1) is true because the set of rank one matrices is invariant under conjugation by permuta-
tions. (2) holds because Di,vvT is a linear operator.

We will also need the following elementary observation, which says that random swaps corre-
spond to trace zero rank two updates. This is the structural property which causes interlacing to
occur.

Lemma 3.10. If σ is a transposition and A is symmetric then A− σAσT has rank 2 and trace 0.

Proof. Assume without loss of generality that σ swaps the first two coordinates. Then by symmetry
the difference A− σAσT has entries













a11 − a22 a12 − a21 a13 − a23 a14 − a24 . . .
a21 − a12 a22 − a11 a23 − a13 a24 − a14 . . .
a31 − a32 a32 − a31 0 . . .
a41 − a42 a42 − a41 0 . . .

. . .













=





α β vT

β −α −vT

v −v 0





for some numbers α, β and some column vector v of length d − 2. If α 6= β then the sum of the
first two rows is equal to (c,−c, 0, . . . , 0) for some c 6= 0, and every other row is a scalar multiple
of this. On the other hand, if α = β then the first two rows are linearly dependent, and all of the
other rows are multiples of (1,−1, 0, . . . , 0).
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We can now complete the proof of Lemma 3.7

Proof of Lemma 3.7. Assume P is determinant-like, and let S be a random swap, equal to some
transposition σ with probability α and the identity with probability (1− α). We will show that

Q(X1, . . . ,Xm) = (1− α)P (X1, . . . ,Xm) + αP (X1, . . . , σXiσ
T , . . . ,Xm),

is hyperbolic and rank-1 linear. It is clear that Q(X1, . . . ,Xm) is homogeneous since swaps and con-
vex combinations preserve homogeneity. Lemma 3.9 implies that rank-1 linearity is also preserved,
so all that remains is hyperbolicity. Assume without loss of generality that i = 1 and consider any
univariate restriction along (I, I, . . . , I):

Q(tI −A1, . . . , tI −Am) = (1− α)P (tI −A1, . . . , tI −Am) + αP (tI − σA1σ
T , . . . , tI −Am). (5)

We need to show that this has all real roots. Observe that the second polynomial may be written
as

P (tI −A1 − aaT + bbT , . . . , tI −Am),

for some vectors a and b , since σA1σ
T − A1 is rank two and trace zero by Lemma 3.10. Since P

is determinant-like, Lemma 3.8 tells us that

P (tI −A1 + bbT , . . . , tI −Am) −→ P (tI −A1 − aaT + bbT , . . . , tI −Am)

and
P (tI −A1 + bbT , . . . , tI −Am) −→ P (tI −A1, . . . , tI −Am),

whence the two polynomials on the right hand side of (5) have a common interlacing. Lemma 2.2
then implies that their convex combination must be real-rooted, and the claim is proved.

Applying Lemma 3.7 inductively yields Theorem 3.3.

Proof of Theorem 3.3. Applying Lemma 3.7 nN times (once for every swap Sij) starting with
P (X1, . . . ,Xm) = det(

∑

iXi) tells us that

ES1N
. . .ES11

ES2N
. . .ESn1

det





n
∑

i=1





1
∏

j=N

Sij



Xi





N
∏

j=1

ST
ij









is determinant-like. Considering the restriction Xi = (t/m)I −Ai finishes the proof.

4 Quadrature

In this section, we show that the expected characteristic polynomials we are interested in are free
convolutions of the characteristic polynomials of perfect matchings, after the trivial eigenvalues
corresponding to the all ones vector are removed. This gives us explicit formulas for these polyno-
mials, and more importantly (since we understand the behavior of roots under free convolutions)
a way of bounding their roots. We begin by showing how to do this for the symmetric case, which
is more transparent and contains all the main ideas. In Section 4.2 we derive the result for the
bipartite case as a corollary of the result for the symmetric case.
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4.1 Quadrature for Symmetric Matrices

The following theorem gives an explicit formula for the expected characteristic polynomial of the
sum of two symmetric matrices with constant row sums when the rows and columns of one of
the matrices is randomly permuted. This can be used to compute the expected characteristic
polynomial of the Laplacian matrix of the sum of two graphs when one is randomly permuted. In
this paper, we use the result to compute the expected characteristic polynomial of the adjacency
matrix when both graphs are regular.

Theorem 4.1. Suppose A and B are symmetric d × d matrices with A1 = a1 and 1 = b1. Let
χx (A) = (x− a)p(x) and χx (B) = (x− b)q(x). Then,

EPχx

(

A+ PBP T
)

= (x− (a+ b))p(x) +d−1 q(x), (6)

where P is a uniformly random permutation.

We begin by writing (6) in a more concrete form. Observe that all of the matrices A,B,P have
1 as a left and right eigenvector, which means that there is an orthogonal change of basis V (for
concreteness, mapping 1 to the standard basis vector en) that simultaneously block diagonalizes
all of them:

V AV T = Â⊕ a, V BV T = B̂ ⊕ b, V PV T = P̂ ⊕ 1, (7)

where Â⊕ a denotes the direct sum
[

Â 0
0 a

]

.

Since the determinant is invariant under change of basis, we may write

EP det(xI −A− PBP T ) = EP det(xI − V AV T − (V PV T )(V BV T )(V P TV T ))

= EP̂ det(xI − (Â⊕ a)− (P̂ ⊕ 1)(B̂ ⊕ b)(P̂ T ⊕ 1))

= (x− a− b)EP̂ det(xI − Â− P̂ B̂P̂ T ). (8)

Notice also that p(x) = χx

(

Â
)

and q(x) = χx

(

B̂
)

, so

p(x) + q(x) = EQ det(xI − Â−QB̂QT ),

where Q is a (Haar) random (d−1)× (d−1) orthogonal matrix. Thus, (6) is equivalent to showing
that

EP̂ det(xI − Â− P̂ B̂P̂ T ) = EQ det(xI − Â−QB̂QT ), (9)

for all (d− 1)× (d− 1) symmetric matrices Â, B̂. Note that for any permutation P , the orthogonal
transformation P̂ correspondingly permutes ê1, . . . , ên, the projections orthogonal to 1 of the stan-
dard basis vectors e1, . . . , ed, embedded in R

d−1. Since these are the vertices of a regular simplex
with d vertices in R

d−1 centered at the origin, we interpret the P̂ as elements of the symmetry
group of this simplex. We denote this subgroup of O(d− 1) by Ad−1.

Since there is no longer any assumption on Â, B̂ other than symmetry, we may absorb the xI
term into Â in (9), and we see that it is sufficient to establish the following.
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Theorem 4.2 (Quadrature Theorem). For symmetric d× d matrices A and B,

E
P∈Ad

det(A+ PBP T ) = E
Q∈O(d)

det(A+QBQT ). (10)

It is easy to see that the theorem will follow if we can show that the left hand side of (10) is
invariant under right multiplication of P by orthogonal matrices.

Lemma 4.3 (Invariance Implies Quadrature). Let f be a function from O(d) to R and let H be a
finite subgroup of O(d). If

E
P∈H

f(P ) = E
P∈H

f(PQ0). (11)

for all Q0 ∈ O(d), then
E

P∈H
f(P ) = E

Q∈O(d)
f(Q), (12)

where Q is chosen according to Haar measure and P is uniform on H.

Proof.

E
Q∈O(d)

f(Q) = E
Q∈O(d)

E
P∈H

f(PQ) = E
P∈H

E
Q∈O(d)

f(PQ)

= E
P∈H

E
Q∈O(d)

f(P ) = E
P∈H

f(P ),

as desired.

We will prove Theorem 4.2 by showing that f(P ) = det(A + PBP T ) satisfies (11). We will
achieve this by demonstrating that f is invariant under certain elementary orthogonal transforma-
tions acting on 3-faces of the regular simplex, which generate all orthogonal transformations. Let
us fix some notation to precisely describe these elementary transformations.

Given three vertices êi, êj , êk of the regular simplex, let Ai,j,k denote the subgroup of Ad con-
sisting of permutations of êi, êj , êk which leave all of the other vertices fixed. Let Oi,j,k denote
the subgroup of O(d) acting on the two dimensional linear subspace parallel to the affine subspace
through the three vertices, and leaving the orthogonal subspace fixed. Note that Ai,j,k is a subgroup
of Oi,j,k, and that these groups are isomorphic to A2 and O(2), respectively.

The heart of the proof lies in the following lemma, which implies by Lemma 4.3 that the
polynomials we are interested in are not able to distinguish between the uniform distributions on
A2 and O(2). The reason for this is that these polynomials have very low degree (at most two)
in the entries of any orthogonal matrix Q acting on a two-dimensional subspace, a fact which is
essentially a consequence of the multilinearity of the determinant. The argument below is similar
to the proof of Lemma 2.7 in [MSS15a].

Lemma 4.4 (Invariance for A2). If A and B are symmetric d × d matrices, then for every Q0 ∈
O(2),

E
P∈A2

det(A+ (P ⊕ Id−2)B(P ⊕ Id−2)
T ) = E

P∈A2

det(A+ (PQ0 ⊕ Id−2)B(PQ0 ⊕ Id−2)
T ). (13)
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Proof. Let SO(2) be the subgroup of O(2) consisting of rotation matrices

Rθ =

[

cos θ sin θ
− sin θ cos θ

]

,

and let Z3 be the subgroup of A2 consisting of the three rotations Rτ , τ ∈ T := {0, 2π/3, 4π/3}.
We begin by showing that

E
P∈Z3

det(A+ (P ⊕ I)B(P ⊕ I)T ) = E
P∈Z3

det(A+ (PRθ ⊕ I)B(PRθ ⊕ I)T ), (14)

for every θ, where I is the (d − 2)-dimensional identity. Since the elements of Z3 are themselves
rotations, we can rewrite thrice the right hand side of (14) as

∑

τ∈T

det(A+ (RτRθ ⊕ I)B(RτRθ ⊕ I)T )

=
∑

τ∈T

det(A+ (Rτ+θ ⊕ I)B(Rτ+θ ⊕ I)T )

=
∑

τ∈T

2
∑

k=−2

cke
ik(τ+θ) for some coefficients ck, by Lemma 4.5

=
2
∑

k=−2

cke
ikθ
(

eik0 + eik2π/3 + eik4π/3
)

= 3c0 since the terms with |k| = 1, 2 vanish.

As this quantity is independent of θ, we can assume θ = 0, which gives the left hand side of (14).
To finish the proof, we observe that

E
P∈A2

det(A+ (P ⊕ Id−2)B(P ⊕ Id−2)
T ) = E

D∈F
E

P∈Z3

det(A+ (PD ⊕ I)B(PD ⊕ I)T )

= E
D∈F

E
P∈Z3

det(A+ (P ⊕ I)(D ⊕ I)B(D ⊕ I)T (P ⊕ I)T ),

where F consists of the identity and the reflection across the horizontal axis:

F :=

{[

1 0
0 1

]

,

[

1 0
0 −1

]}

,

and D is chosen uniformly from F .
Thus, the left hand side of (13) is invariant under conjugation of B with the matrices D⊕I,D ∈

F . Since every Q0 ∈ O(2) can be written a RθD for some D ∈ F , and we have already established
invariance under Rθ ⊕ I in (14), the lemma is proved.

Lemma 4.5 (Determinants are Low Degree in Rank 2 Rotations). Let A,B be d× d matrices and
let

det
(

A+ (Rθ ⊕ Id−2)B(Rθ ⊕ Id−2)
T
)

=
∑

k

cke
ikθ.

Then ck = 0 for |k| ≥ 3.
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Proof. Recall that all 2× 2 rotations may be diagonalized as

Rθ =

[

cos θ sin θ
− sin θ cos θ

]

= U

[

eiθ 0
0 e−iθ

]

U †,

where

U =
1√
2

[

1 1
i −i

]

is independent of θ. This implies that (Rθ ⊕ Id−2) = V DV † for diagonal D containing eiθ and e−iθ

in the upper right 2× 2 block and ones elsewhere, with V independent of θ. Thus, we see that

det
(

A+ (Rθ ⊕ Id−2)B(Rθ ⊕ Id−2)
T
)

= det (A(Rθ ⊕ Id−2) + (Rθ ⊕ Id−2)B)

= det
(

AV DV † + V DV †B
)

= det
(

V †AVD +DV †BV
)

Notice that the matrix M = V †AV D + DV †BV depends linearly on eiθ, e−iθ, and that the eiθ

(resp. e−iθ) terms appear only in the first (resp. second) row and column of M , respectively. Since
each monomial in the expansion of the determinant contains at most one entry from each row and
each column and eiθ · e−iθ = 1, this implies that no terms of degree higher than two in eiθ or e−iθ

appear.

Corollary 4.6 (Invariance for Ai,j,k). For every i, j and k,

E
P∈Ai,j,k

det(A+ PBP T ) = E
Q∈Oi,j,k

det(A+QBQT ).

Proof. Let V be the orthogonal transformation that maps the affine subspace spanned by the
vertices êi, êj , êk to the first two coordinates of R2, with any one vertex mapped to a multiple of e1.
Conjugation by V maps Ai,j,k to A2 ⊕ Id−2 and Oi,j,k to O(2) ⊕ Id−2, abusing notation slightly in
the natural way. Since the determinant is invariant under change of basis, Lemma 4.4 tells us that

E
P∈Ai,j,k

det(A+ PBP T ) = E
P2∈A2

det(V AV T + (P2 ⊕ I)V BV T (P2 ⊕ I)T )

= E
Q2∈O(2)

det(V AV T + (Q2 ⊕ I)V BV T (Q2 ⊕ I)T )

= E
Q∈Oi,j,k

det(A+QBQT ),

as desired.

Lemma 4.7 (Oi,j,k generate O(d)). Given a regular simplex in R
d, the union over i, j, and k of

Oi,j,k generates O(d). In particular, every matrix in O(d) may be written as a product of a finite
number of these matrices.

Proof. Let Γh be the subgroup of O(d) generated by
⋃

i,j,k Oi,j,k≤h. Let ê0, . . . , êd be the vertices
of the regular simplex. For 1 ≤ h ≤ d, let Eh be the linear subspace parallel to the affine subspace
through ê0, . . . , êh. We will prove by induction on h that Γh contains the action of the orthogonal
group on Eh. The base case is h = 2, for which O0,1,2 is precisely the action of the orthogonal
group on E2.
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Assuming that we have proved this result for h − 1, we now prove it for h. To this end, let
uh = êh, and let u1, . . . , uh−1 be arbitrary orthonormal vectors in Eh that are orthogonal to uh. We
will prove that for every orthonormal basis w1, . . . , wh of Eh, there is a Q ∈ Γh such that Qwi = ui
for 1 ≤ i ≤ h.

We first consider the case in which wT
h êh ≥ 0. Let Fh denote the 2-dimensional affine subspace

spanned by {êh, êh−1, êh−2}, and observe that there must be a unit vector p ∈ Eh∩Fh with pT êh =
wT
h êh. This follows because the intersection of Fh with the unit sphere in Eh is a circle containing

{êh, êh−1, êh−2}, p 7→ pT êh is a continuous function, and we have êTh êh = 1 and êTh−1êh = êTh−2êh < 0.
As êh is orthogonal to Eh−1 and êh is invariant under Γh−1, the induction hypothesis implies that
there must be a T ∈ Γh−1 so that Twh = p. Moreover, there is an element T2 of Oh−2,h−1,h that
maps p to êh. So, their composition W = T2T sends wh to êh. Since W is orthogonal, it must
send w1, . . . , wh−1 to Eh−1, and so by induction may be composed with a map in Γh−1 that sends
Ww1, . . . ,Wwh−1 to u1, . . . , uh−1 without moving êh. The resulting map is the desired Q.

In the case that wT
h êh < 0, we begin by applying a map in Γh that sends wh to a vector that is

orthogonal to êh so that we can then apply the previous argument. For example, we can do this
by defining p to be one of the two unit vectors in Fh with pT êh = −wT

h êh. We then apply a map
in Γh−1 that sends wh to −p, and then a map in Oh−2,h−1,h that maps p, and thus also −p, to a
vector orthogonal to êh.

Theorem 4.8 (Invariance for Ad). Let A and B be d× d matrices, and let

fA,B(Q) = det
(

A+QBQT
)

.

Then, for all Q0 ∈ O(d),
E

P∈Ad

fA,B(P ) = E
P∈Ad

fA,B(PQ0).

Proof. We will use the fact that

E
P∈An

fA,B(P ) = E
P∈Ad

E
P2∈Ai,j,k

fA,B(PP2) = E
P∈Ad

E
P2∈Ai,j,k

fPTAP,B(P2).

Applying Corollary 4.6 reveals that for every Q2 ∈ Oi,j,k,

E
P∈Ad

E
P2∈Ai,j,k

fPTAP,B(P2). = E
P∈Ad

E
P2∈Ai,j,k

fPTAP,B(P2Q2).

= E
P∈Ad

E
P2∈Ai,j,k

fA,B(PP2Q2).

= E
P∈Ad

fA,B(PQ2).

Thus, we conclude that
E

P∈Ad

fA,B(P ) = E
P∈Ad

fA,B(PQ2)

for every Q2 ∈ Oi,j,k, for every i, j, k.
Let Q0 ∈ O(d). By Lemma 4.7, there is a sequence of matrices Q1, . . . , Qm, each of which is in

Oi,j,k for some i, j and k, so that
Q0 = Q1Q2 · · ·Qm.

By applying the previous equality m times, we obtain

E
P∈Ad

f(PQ0) = E
P∈Ad

f(PQ1 · · ·Qm) = E
P∈Ad

f(P ).
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Proof of Theorem 4.2. Follows from Theorem 4.8 and Lemma 4.3.

Proof of Theorem 4.1. Follows from Theorem 4.2, (7), and (8).

We conclude the section by recording the obvious extension of Theorem 4.1 to sums of m
matrices.

Corollary 4.9. Let A1, . . . , Am be symmetric d × d matrices with Ai1 = ai1 and χx (Ai) = (x −
ai)pi(x). Then,

E
P1,...,Pm

χx

(

m
∑

i=1

PiAiP
T
i

)

=

(

x−
m
∑

i=1

ai

)

p1(x) + . . . + pm(x), (15)

where P1, . . . , Pm are independent uniformly random permutation matrices.

Proof. Apply a change of basis so that each Ai = Âi ⊕ ai, divide out the (x−∑m
i=1 ai) term as in

(8), and apply Theorem 4.2 inductively (m− 1) times, replacing each P̂i with a random orthogonal
Qi (this requires conditioning on the other P̂j and Qj , but by independence the distribution of each
P̂i is still uniform on Ad). Finally, appeal to the identity (3) to write this as an m−wise additive
convolution.

4.2 Quadrature for Bipartite Matrices

Theorem 4.10. Suppose A and B are (not necessarily symmetric) d× d matrices such that A1 =
AT1 = a1 and B1 = BT1 = b1. Let χx

(

AAT
)

= (x − a2)p(x) and χx

(

BBT
)

= (x − b2)q(x).
Then,

E
P,S

χx

([

0 A
AT 0

]

+ (P ⊕ S)

[

0 B
BT 0

]

(P ⊕ S)T
)

= S
(

(x− (a+ b)2)p(x) ++ q(x)
)

(16)

= (x2 − (a+ b)2)S (p(x) ++ q(x)) , (17)

where P and S are independent uniform random permutation matrices.

As in the nonbipartite case, we begin by applying a change of basis V that isolates the common
all ones eigenvector and block diagonalizes our matrices as:

V AV T = Â⊕ a, V BV T = B̂ ⊕ b, V PV T = P̂ ⊕ 1, V SV T = Ŝ ⊕ 1. (18)

Conjugating the left hand side of (16) by (V ⊕ V ), we see that it is the same as

E
P,S

χx

([

0 (Â⊕ a)

(Â⊕ a)T 0

]

+ ((P̂ ⊕ 1)⊕ (Ŝ ⊕ 1))

[

0 (B̂ ⊕ b)

(B̂ ⊕ b)T 0

]

((P̂ ⊕ 1)⊕ (Ŝ ⊕ 1))T
)

= E
P,S

χx

([

0 (Â+ P̂ B̂ŜT ⊕ (a+ b))

(Â+ P̂ B̂ŜT ⊕ (a+ b))T 0

])

= E
P,S

Sχx

(

(Â+ P̂ B̂ŜT ⊕ (a+ b))(Â + P̂ B̂ŜT ⊕ (a+ b))T
)

= (x2 − (a+ b)2) E
P,S

Sχx

(

(Â+ P̂ B̂ŜT )(Â+ P̂ B̂ŜT )T
)

= (x2 − (a+ b)2) E
P,S

χx

([

0 Â

ÂT 0

]

+ (P̂ ⊕ Ŝ)

[

0 B̂

B̂T 0

]

(P̂ ⊕ Ŝ)T
)

. (19)
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As in the previous section, the matrices P̂ and Ŝ are random elements of the group Ad−1. Observe
that

p(x) = χx

(

ÂÂT
)

, and q(x) = χx

(

B̂B̂T
)

.

Recalling from (2) that

S (p(x) ++ q(x)) = EQ,R∈O(d−1)χx

([

0 A
AT 0

]

+ (Q⊕R)

[

0 B
BT 0

]

(Q⊕R)T
)

and removing all the ·̂s as before to ease notation, we see that the conclusion (16) of Theorem 4.10
is implied by the following more general quadrature statement.

Theorem 4.11. For all symmetric 2d× 2d matrices C and D:

E
P,S∈Ad

χx

(

C + (P ⊕ S)D(P ⊕ S)T
)

= E
Q,R∈O(d)

χx

(

C + (Q⊕R)D(Q⊕R)T
)

. (20)

This theorem is an immediate consequence of two applications of the following corollary of
Theorem 4.2 from the previous section.

Corollary 4.12. If C and D are symmetric 2d× 2d matrices,

E
P∈Ad

det(C + (P ⊕ I)D(P ⊕ I)T ) = E
Q∈O(d)

det(C + (Q⊕ I)D(Q⊕ I)T ).

Proof. The proof is identical to the proof of Theorem 4.2, except we replace P ∈ Ad with P ⊕ I
and Q ∈ O(d) with Q⊕ I at each step.

Specifically, let
fC,D(Q) := det(C + (Q⊕ I)D(Q⊕ I)T ).

Applying Corollary 4.6 as before reveals that for every i, j, k and every Q2 ∈ Oi,j,k,

E
P∈Ad

fC,D(P ) = E
P∈Ad

E
P2∈Ai,j,k

fC,D(PP2) = E
P∈Ad

E
P2∈Ai,j,k

fC,D(PP2Q2) = E
P∈Ad

fC,D(PQ2).

Since an arbitrary Q0 ∈ O(d) is a finite product of such Q2 by Lemma 4.7, this means that

E
P∈Ad

fC,D(PQ0) = E
P∈Ad

fC,D(P )

for all Q0 ∈ O(d). Lemma 4.3 completes the proof.

Proof of Theorem 4.11. Since P and S are independent, we have

E
P,S∈Ad

χx

(

C + (P ⊕ S)D(P ⊕ S)T
)

= E
S∈Ad

E
P∈Ad

det(xI + C + (P ⊕ I)(I ⊕ S)D(I ⊕ S)T (P ⊕ I)T )

= E
S∈Ad

E
Q∈O(d)

det(xI + C + (Q⊕ I)(I ⊕ S)D(I ⊕ S)T (Q⊕ I)T ) by Corollary 4.12

= E
Q∈O(d)

E
S∈Ad

det(xI + (Q⊕ I)TC(Q⊕ I) + (I ⊕ S)D(I ⊕ S)T )

= E
Q∈O(d)

E
R∈O(d)

det(xI + (Q⊕ I)TC(Q⊕ I) + (I ⊕R)D(I ⊕R)T ) by Corollary 4.12

= E
Q,R∈O(d)

det(xI + C + (Q⊕R)D(Q⊕R)T ),

as desired.
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Proof of Theorem 4.10. Follows from Theorem 4.11, (18), and (19).

As before, Theorem 4.10 extends effortlessly to the case of many matrices.

Corollary 4.13. If A1, . . . , Am are matrices with Ai1 = AT
i 1 = ai and χx

(

AiA
T
i

)

= (x−a2i )pi(x),
then

E
P1,...,Pm,S1,...,Sm

χx

(

m
∑

i=1

(Pi ⊕ Si)

[

0 Ai

AT
i 0

]

(Pi ⊕ Si)
T

)

=



x2 −
(

∑

i

ai

)2


S [p1(x) ++ . . . ++ pm(x)] ,

where the Pi and Si are independent uniformly random permutations.

We omit the proof, which is identical to the proof of Corollary 4.9.

5 Ramanujan Graphs

In this section, we combine the Cauchy transform, interlacing, and quadrature results of the previous
sections to establish our main Theorems 1.1 and 1.2

Proof of Theorem 1.2. Let M be the adjacency matrix of a fixed perfect matching on d vertices,
with d even. Since the uniform distribution on permutations is realizable by swaps (Lemma 3.5),
Theorem 3.4 tells us that with nonzero probability:

λ2

(

d
∑

i=1

PiMP T
i

)

≤ λ2

(

Eχx

(

m
∑

i=1

PiMP T
i

))

.

Corollary 4.9 reveals that the polynomial in the right-hand expression may be written as an
m-wise symmetric additive convolution2

E(x) := E
P1,...,Pm

χx

(

m
∑

i=1

PiAiP
T
i

)

= (x−m)p(x) +d−1 . . . +d−1 p(x) (m times),

where

p(x) =
χM (x)

x− 1
= (x− 1)d/2−1(x+ 1)d/2,

is the characteristic polynomial of a single matching with the trivial root at 1 removed. Our goal
is therefore to bound the largest root of p(x) + . . .+ p(x), which is the second largest root of E(x).

We will do this using the inverse Cauchy transform described in Section 2.3. The Cauchy
transform of p(x) is given by

Gp (x) =
d/2 − 1

d− 1

1

x− 1
+

d/2

d− 1

1

x+ 1
.

2We remark that this formula works for arbitrary regular adjacency matrices Ai, as mentioned in the abstract.

19



Notice that for every x > 1, putting the trivial root at 1 back only increases the Cauchy transform:

Gp (x) <
d/2

d

1

x− 1
+

d/2

d

1

x+ 1
=

x

x2 − 1
= Gχ(M) (x) . (21)

Since both functions are decreasing for x > 1, this implies that the inverse Cauchy transform of p
is upper bounded by that of χ(M):

Kp (w) < Kχ(M) (w) ,

for every w > 0.
Applying the convolution inequality in Theorem 2.7 (m − 1) times yields the following upper

bound on the inverse Cauchy transform of the m−wise convolution of interest.

Kp+...+p (w) ≤ m · Kp (w)−
m− 1

w
< m · Kχ(M) (w)−

m− 1

w
. (22)

Recalling from (21) that

Kχ(M) (w) = x ⇐⇒ w =
x

x2 − 1
,

the right hand side of (22) may be written as

mx− m− 1

w
= mx− (m− 1)(x2 − 1)

x
=

x2 + (m− 1)

x
,

which is easily seen to be minimized at x =
√
m− 1 with value 2

√
m− 1. Thus, the second largest

root of E(x) is at most 2
√
m− 1.

Proof of Theorem 1.1. Let

M =

[

0 I
IT 0

]

be the adjacency matrix of a perfect matching on 2d vertices, across the natural bipartition. Then,
for independent uniformly random d× d permutation matrices P1, . . . , Pm, S1, . . . , Sm, the random
matrix

A =
m
∑

i=1

(Pi ⊕ Si)M(Pi ⊕ Si)
T =

m
∑

i=1

[

0 (PiS
T
i )

(PiS
T
i )

T 0

]

is the adjacency matrix of a union of m random matchings across the same bipartition. Since the
distribution of the (Pi ⊕ Si) is realizable by swaps (Lemma 3.5), Theorem 3.4 implies that

λ2(A) ≤ λ2

(

Eχx

(

m
∑

i=1

(Pi ⊕ Si)M(Pi ⊕ Si)

))

,

with nonzero probability. Since I1 = 1, Corollary 4.13 implies that the polynomial on the right
hand side is equal to

(x2 −m2)S[p(x) ++d−1 . . . ++d−1 p(x)] (m times),

where
p(x) = χx

(

Id−1I
T
d−1

)

= (x− 1)d−1.
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We upper bound the inverse Cauchy transform of this m−wise convolution using Theorem 2.8:

KS(p++...++p) (w) ≤ m · KSp (w)−
m− 1

w
= m · K(x2−1)d−1 (w) − m− 1

w
.

Since
G(x2−1)d−1 (w) =

x

x2 − 1
,

this is now identical to the calculation (22), so we obtain again the bound 2
√
m− 1. Thus, we

conclude that λ2(A) ≤ 2
√
m− 1 with nonzero probability. Since A is bipartite, its spectrum is

symmetric about zero, so we must also have λd−1(A) ≥ −2
√
m− 1, whence A is Ramanujan.
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