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Abstract

We show that the number of incidences between m distinct points and n distinct lines in
R*is O (2CVl°gm(m2/5n4/5 +m) +m' 22 A 4 m?2/3nt /3513 1 n), for a suitable absolute

constant ¢, provided that no 2-plane contains more than s input lines, and no hyperplane or
quadric contains more than ¢ lines. The bound holds without the factor 2¢V°8 when m < n%/7
or m > n®/3. Except for the factor 2¢VI°8™ the bound is tight in the worst case.

Keywords. Combinatorial geometry, incidences, the polynomial method, algebraic geometry, ruled
surfaces.

1 Introduction

Let P be a set of m distinct points in R* and let L be a set of n distinct lines in R, Let I(P, L)
denote the number of incidences between the points of P and the lines of L; that is, the number of
pairs (p,¢) withp € P, ¢ € L, and p € ¢. If all the points of P and all the lines of L lie in a common
plane, then the classical Szemerédi-Trotter theorem [42] yields the worst-case tight bound

I(P, L) :O(m2/3n2/3—|—m+n). (1)

This bound clearly also holds in R* (or in any other dimension), by projecting the given lines and
points onto some generic plane. Moreover, the bound will continue to be worst-case tight by placing
all the points and lines in a common plane, in a configuration that yields the planar lower bound.

In the recent groundbreaking paper of Guth and Katz [15], an improved bound has been derived
for I(P, L), for a set P of m points and a set L of n lines in R3, provided that not too many lines
of L lie in a common plane El Specifically, they showed:

Theorem 1.1 (Guth and Katz [15]). Let P be a set of m distinct points and L a set of n distinct
lines in R3, and let s < n be a parameter, such that no plane contains more than s lines of L. Then

I(P,L)=0 <m1/2n3/4 +m?Bp B 4o 4 n) . (2)
This bound is tight in the worst case.

In this paper, we establish the following analogous and sharper result in four dimensions.

The additional requirement in [15], that no regulus contains too many lines, is not needed for the incidence bound
given below.
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Theorem 1.2. Let P be a set of m distinct points and L a set of n distinct lines in R, and let
q,s < n be parameters, such that (i) each hyperplane or quadric contains at most q lines of L, and
(ii) each 2-flat contains at most s lines of L. Then

I(P,L) < gcvIogm <m2/5n4/5 + m) LA <m1/2n1/2q1/4 1+ m2/3pl/3g1/3 4 n) 7 (3)

where A and ¢ are suitable absolute constants. When m < n87 or m > n®/3, we get the sharper

bound
I(P,L)< A <m2/5n4/5 +m +m! 22 A BB n) . (4)

In general, except for the factor 2°VI8™  the bound is tight in the worst case, for any values of
m,n, and for corresponding suitable ranges of q and s.

The proof of Theorem will be by induction on m. To facilitate the inductive process, we
extend the theorem as follows. We say that a hyperplane or a quadric H in R* is ¢-restricted
for a set of lines L and for an integer parameter g, if there exists a polynomial gz of degree at
most O(,/q), such that each of the lines of L that is contained in H, except for at most ¢ lines,
is contained in some irreducible component of H N Z(gx) that is ruled by lines and is not a 2-flat
(see below for details). In other words, a g-restricted hyperplane or quadric contains in principle
at most ¢ lines of L, but it can also contain an unspecified number of additional lines, all fully
contained in ruled (non-planar) components of the zero set of some polynomial of degree O(,/q).
We then have the following more general result.

Theorem 1.3. Let P be a set of m distinct points and L a set of n distinct lines in R*, and let
q and s < n be parameters, such that (i’) each hyperplane or quadric is g-restricted, and (ii) each
2-flat contains at most s lines of L. Then,

I(P, L) < 2¢Vlogm <m2/5n4/5 i m) 1A <m1/2n1/2q1/4 Lom2/3p1/3g1/3 4 n) : (5)
6/7

where the parameters A and c are as in Theorem [1.2. As in the preceding theorem, when m <n
orm > n®3, we get the sharper bound

I(PL)< A <m2/5n4/5 +m +mb 22t m?Bpl/3sl/8 n) . (6)
Moreover, except for the factor 2°VI%8™ the bound is tight in the worst case, as above.

The requirement that a hyperplane or quadric H be g¢-restricted extends (i.e., is a weaker
condition than) the simpler requirement that H contains at most ¢ lines of L. Hence, Theorem
is an immediate corollary of Theorem [I.3]

A few remarks are in order.

(a) Only the range \/n < m < n? is of interest; outside this range, regardless of the dimension
of the ambient space, we have the well known and trivial upper bound I(P,L) = O(m + n), an
immediate consequence of ().

(b) The term m!/?n1/2¢g'/* comes from the bound of Guth and Katz [I5] in three dimensions (as
in Theorem [[T]), and is unavoidable, as it can be attained if we densely “pack” points and lines
into hyperplanes, in patterns that realize the bound in three dimensions within each hyperplane;
see Section M for details.

(c) Likewise, the term m?/3n!/3s/3 comes from the planar Szemerédi-Trotter bound (IJ), and is
too unavoidable, as it can be attained if we densely pack points and lines into 2-planes, in patterns
that realize the bound in (I); again, see Section [l



(d) Ignoring these terms, and the term n, which is included only to cater for the case m < y/n, the
two terms m?°n*/®> and m “compete” for dominance; the former dominates when m = O(n*/3)
and the latter when m = Q(n*3). Thus the bound in () is qualitatively different within these two
ranges.

(e) The threshold m = n*/3 also arises in the related problem of joints (points incident to at least
four lines not in a common hyperplane) in a set of n lines in 4-space; see [23| 29], and a remark
below.

By a standard argument, the theorem implies the following corollary.

Corollary 1.4. Let L be a set of n lines in R*, satisfying the assumptions (i’) and (i) in Theorem
[Z.3, for given parameters q and s. Then, for any k = Q(2°VI8™) | the number m>p, of points incident
to at least k lines of L satisfies

2%0\/@714/3 nq1/2 ns n
mzk:

BE T BTk

Remarks. (i) It is instructive to compare Corollary [[.4] with the analysis of joints in a set L of n
lines. In R?, a joint of L is a point incident to at least d lines of L, not all in a common hyperplane.
As shown in [23, 29], the maximum number of joints of such a set is O(n%(¢=1)) and this bound
is worst-case tight. In four dimensions, this bound is O(n4/ 3), which corresponds to the numerator
of the first term of the bound in Corollary [T.41

(ii) The other terms cater to configurations involving co-hyperplanar or coplanar lines. For example,
when ¢ = n, the second term is O(n3/2/k?), in accordance with the bound obtained in Guth and
Katz [15] in three dimensions, and when s = n, the third and fourth terms comprise (an equivalent
formulation of ) the bound () of Szemerédi and Trotter [42] for the planar case.

(ili) A major interesting and challenging problem is to extend the bound of Corollary [[.4] for any
value of k. In particular, is it true that the number of intersection points of the lines (this is the

case k =2) is O (2%cV lognpd/3 4 ng'/? + ns)? We conjecture that this is indeed the case.

(iv) Another challenging problem is to improve our bound, so as to get rid of, or at least reduce
the factor 2¢v1os™ ~ Ag stated in the theorems, this can be achieved when m < n%7 or m > nd/3.

Additional remarks and open issues are given in the concluding Section [l

Background. Incidence problems have been a major topic in combinatorial and computational
geometry for the past thirty years, starting with the Szemerédi-Trotter bound [42] back in 1983.
Several techniques, interesting in their own right, have been developed, or adapted, for the analysis
of incidences, including the crossing-lemma technique of Székely [41], and the use of cuttings as
a divide-and-conquer mechanism (e.g., see [3]). Connections with range searching and related
problems in computational geometry have also been noted, and studies of the Kakeya problem
(see, e.g., [43]) indicate the connection between this problem and incidence problems. See Pach
and Sharir [27] for a comprehensive (albeit a bit outdated) survey of the topic.

The landscape of incidence geometry has dramatically changed in the past seven years, due
to the infusion, in two groundbreaking papers by Guth and Katz [14, [15] (the first of which was
inspired by a similar result of Dvir [6] for finite fields), of new tools and techniques drawn from
algebraic geometry. Although their two direct goals have been to obtain a tight upper bound on
the number of joints in a set of lines in three dimensions [14], and an almost tight lower bound for
the classical distinct distances problem of Erdés [15], the new tools have quickly been recognized



as useful for incidence bounds of various sorts. See [10] 2], 22| [35] [40, (47| [48] for a sample of recent
works on incidence problems that use the new algebraic machinery.

The simplest instances of incidence problems involve points and lines. Szemerédi and Trotter
completely solved this special case in the plane [42]. Guth and Katz’s second paper [15] provides a
worst-case tight bound in three dimensions, under the assumption that no plane contains too many
lines; see Theorem[I.Il Under this assumption, the bound in three dimensions is significantly smaller
than the planar bound (unless one of m, n is significantly smaller than the other), and the intuition
is that this phenomenon should also show up as we move to higher dimensions. Unfortunately, the
analysis becomes more involved in higher dimensions, and requires the development or adaptation
of progressively more complex tools from algebraic geometry. Most of these tools still appear to be
unavailable, and their absence leads either to interesting (new) open problems in the area, or to
the need to adapt existing machinery to fit into the new context.

The present paper is a first step in this direction, which considers the four-dimensional case. It
does indeed derive a sharper, nearly optimal bound, assuming that the configuration of points and
lines is “truly four-dimensional”, in the precise sense spelled out in Theorems and [[.3]

We also note that studying incidence problems in four (or higher) dimensions has already taken
place in several contemporary works, such as in Solymosi and Tao [40], Zahl [48], and Basu and
Sombra [I] (and in work in progress by Solymosi and de Zeeuw). These works, though, consider
incidences with higher-dimensional varieties, and the study of incidences involving lines, presented
in this paper, is new. (There are several ongoing studies, including a companion work joint with
Sheffer, that aim to derive weaker but more general bounds involving incidences between points and
curves in higher dimensions.) For very recent related studies, see Dvir and Gopi [7] and Hablicsek
and Scherr [16].

Our study of point-line incidences in four dimensions has lead us to adapt more advanced tools
in algebraic geometry, such as tools involving surfaces that are ruled by lines or by flats, including
Severi’s 1901 work [34], as well as the more recent works of Landsberg [19, 25] on osculating lines
and flats to algebraic surfaces in higher dimensions.

In a preliminary version of this study [36], we have obtained a weaker and more constrained
bound. A discussion of the significant differences between this preliminary work and the present
one is given in the overview of the proof, which comes next.

Overview of the proof. B The analysis follows the general approach of Guth and Katz [15],
albeit with many significant adaptations and modifications. We use induction on m = |P|, but we
begin the description by ignoring this aspect (for a while). We apply the polynomial partitioning
technique of Guth and Katz [15], with some polynomial f € R[z,y, z, w] of suitable degree D, and
obtain a partition of R* into O(D?) cells, each containing at most O(m/D*) points of P.

In our first phase, we use
D =0(m?*% /'), for m = O(n*/?), and D =0(n/m'?), form=Q0*?. (7)

There are three types of incidences that may arise: an incidence between a point in some cell of
the partition and a line crossing that cell, an incidence between a point on the zero set Z(f) of
f and a line not fully contained in Z(f), and an incidence between a point on Z(f) and a line
fully contained in Z(f). The above choices of D make it a fairly easy task to bound the number
of incidences of the first two types, and the hard part is to estimate the number of incidences of

2 In this overview we assume some familiarity of the reader with the new “polynomial method” of Guth and Katz,
and with subsequent applications thereof. Otherwise, the overview can be skipped on first reading.



the third kind, as we have no control on the number of points and lines contained in Z(f)—in the
worst case all the points and lines could be of this kind.

At the “other end of the spectrum,” choosing D to be a constant (as done in our preliminary
aforementioned study of this problem [36] and in other recent studies of related problems [13]35]40])
simplifies considerably the handling of incidences on Z(f), but then the analysis of incidences within
the cells of the partition becomes more involved, as the sizes of the subproblems within each cell
are too large. In the works just cited (as well as in this paper), this is handled via induction, but
the price of a naive inductive approach is three-fold: First, the bound becomes weaker, involving
additional factors of the form O(m?), for any ¢ > 0 (with a constant of proportionality that depends
on €). Second, the requirement that no hyperplane or quadric contains more than ¢ lines of L has to
be replaced by the much more restrictive requirement, that no variety of degree at most ¢. contains
more than ¢ input lines, where c¢. is a (fairly large) constant that depends on ¢ (and becomes
larger as € gets smaller). Finally, the sharp “lower-dimensional” terms, such as m/2n/2g1/4 and
m?2/3n1/3s1/3 in our case (recall that both are worst-case tight), do not pass through the induction
successfully, so they have to be replaced by weaker terms; see the preliminary version [36] for
such weaker terms, and [35] for a similar phenomenon in a different incidence problem in three
dimensions.

We note that a recent study by Guth [I3] reexamines the point-line incidence problem in R?
and presents an alternative and simpler analysis (than the original one in [15]), in which he uses
a constant-degree partitioning polynomial, and manages to handle successfully the relevant lower-
dimensional term m?2/3n1/3s/3 through the induction, but the analysis still incurs the extra m®
factors in the bound, and needs the restrictive assumption that no algebraic surface of some large
constant maximum degree ¢, contains too many lines. In a companion paper [37], we provide yet
another simpler derivation (which is somewhat sharper than Guth’s) of such an incidence bound
in three dimensions.

Our approach is to use two different choices of the degree of the partitioning polynomial. We
first choose the large value of D specified above, and show that the bound in the right-hand side of
([B) accounts for the incidences within the partition cells, for the incidences between points on Z( f)
and lines not fully contained in Z(f), and for most of the cases involving incidences between points
and lines on the zero set Z(f). We are then left with “problematic” subsets of points and lines
on Z(f), which are difficult to analyze when the degree is large. (Informally, this happens when
the lines lie in certain ruled two-dimensional subvarieties of Z(f).) To handle them, we retain only
these subsets, discard the partitioning, and start afresh with a new partitioning polynomial of a
much smaller, albeit still non-constant degree. As the degree is now too small, we need induction
to bound the number of incidences within the partition cells. A major feature that makes the
induction work well is that the first partitioning step ensures that the surviving set of lines that
is passed to the induction is such that each hyperplane or quadric is now O(D?)-restricted, with
respect to the set of surviving lines, and each 2-flat contains at most O(D) lines of that set (where
D is the large degree used in the first partitioning step). As a consequence, the induction works
better, and “retains” the lower-dimensional terms m1/2n1/2¢'/4 and m?/3nt/351/3. (In fact, it does
not touch them at all, because ¢ and s are not passed to the induction step.) We still pay a small
price for this approach, involving the extra factor oevIogm i the “leading terms” m2/>n%> + m
(but not in the “lower-dimensional” terms). When m is “not too close to” n*/3, as specified in the
theorems, induction, and the use of a second partitioning polynomial, are not needed, and a direct
analysis yields the sharper bound in (@), without this extra factor.

The idea of using a “small” degree for the partitioning polynomial is not new, and has been
applied also in [35] 48]. However, the induction process in [35] results in weaker lower-dimensional
terms, which we avoid here with the use of two different partitionings. We note that we have recently
applied this approach in the aforementioned study of point-line incidences in three dimensions [37],



with a simpler analysis (than that in [I3] [15]) and an improved bound (than the one in [13]).

The main (and hard) part of the analysis is still in handling incidences within Z(f) in the first
partitioning step, where the degree of f is large. (Similar issues arise in the second step too, but
the bounds there are generally sharper than those obtained in the first step, simply because the
degree is smaller.) This is done as follows. We first ignore the singular points on Z(f). They will
be handled separately, as points lying on the zero sets of polynomials of smaller degree (namely,
partial derivatives of f). We also assume that f is irreducible, by considering each irreducible
factor of the original f separately (see Section [3] for details). This step results in a partition of the
points of P and the lines of L among several varieties, each defined by an irreducible factor of f or
of some derivative of f, so that it suffices to bound the number of incidences between points and
lines assigned to the same variety. The number of “cross-variety” incidences is shown to be only
O(nD), a bound that we are “happy” to pay.

We next define (a four-dimensional variant of) the flecnode polynomial g := FL;lc of f (see
Salmon [32] for the more classical three-dimensional variant, which is used in Guth and Katz [14],
15]), which vanishes at those points p € Z(f) that are incident to a line that osculates to Z(f) (i.e.,
agrees with Z(f) near p) up to order four (and in particular to lines that are fully contained in
Z(f)); see below for precise definitions. We show that g = FL;% is a polynomial of degree O(D). If
g=0on Z(f) then Z(f) is ruled by lines i (as follows from Landsberg’s work [25], which provides
a generalization of the classical Cayley—Salmon theorem [15, [32]). We handle this case by first
reducing it to the case where Z(f) is “infinitely ruled” by lines, meaning that most of its points are
incident to infinitely many lines that are contained in Z(f) (otherwise, we can show, using Bézout’s
theorem, that most points are incident to at most 6 lines, for a total of O(m) incidences), and then
by using the aforementioned result of Severi [34] from 1901, which shows that in this case Z(f) is
ruled by 2-flats (each point on Z(f) is incident to a 2-flat that is fully contained in Z(f)), unless
Z(f) is a hyperplane or a quadric. This allows us to reduce the problem to several planar incidence
problems, which are reasonably easier to handle.

The other case is where the common zero set Z(f,g) of f and g is two-dimensional. In this
case, we decompose Z( f, g) into its irreducible components, and show that the number of incidences
between points of P and lines fully contained in irreducible components that are not 2-flats is

min {O(mD? + nD), O(m +nD")}. (8)

Both terms are too large for the standard “large” values of D, but they are non-trivial to establish,
and are useful tools for slightly improving the bound and simplifying the analysis considerably
when D is not too large—see below. The derivation of these bounds is based on a new study of
point-line incidences within ruled two-dimensional varieties in 3-space, provided in a companion
paper [38].

The irreducible components that are 2-flats are harder to handle, because their number can be
O(D?) (as follows from the generalized version of Bézout’s theorem [12]), a number that turns out
to be too large for the purpose of our incidence bound, when a naive analysis (with a large value
of D) is used, so some care is needed in this case. The difficult step in this part is when there
are many points, each contained in at least three (and in general many) 2-flats fully contained in
Z(f,9) (and thus in Z(f)). Non-singular points of this kind are called linearly flat points of Z(f),
naturally generalizing Guth and Katz’s notion of linearly flat points in R? [I5] (see also Kaplan et
al. [10]). Linearly flat points are also flat points, i.e., points where the second fundamental form of
Z(f) vanishes (e.g., see Pressley [28]). Flatness of a point p can be expressed, again by a suitable
generalization to four dimensions of the techniques in [10, [15], by the vanishing of nine polynomials,

3That is, every point p € Z(f) is incident to a line that is fully contained in Z(f); see Salmon [8] 15} 20, 32| [38]
for definitions.



each of degree < 3D — 4, at p, which are constructed from f and from its first and second-order
derivatives. The problem can then be reduced to the case where all the points and lines are flat (a
line is flat, when not all of its points are singular points of Z(f), and all of its non-singular points
are flat). With a careful (and somewhat intricate) probing into the geometric properties of flat
lines, we can bound the number of incidences with flat lines by reducing the problem into several
incidence problems in three dimensions (specifically, within hyperplanes tangent to Z(f) at the flat
points), and then using an extension of Guth and Katz’s bound (2)) for each of these problems,
where, in this application, we exploit the fact that each hyperplane contains at most ¢ lines, to
obtain a better, ¢g-dependent bound.

However, as noted, the terms O(m.D?) (when n%7 < m < n*3) and O(nD*) (when n*/3 < m <
n5/3) are too large (for the choices of our “large” values of D in (7). We retain and also use them in
the second partitioning step, when the degree of the partitioning polynomial is smaller, but finesse
them, for the large D, by showing that, after pruning away points and lines whose incidences can
be estimated directly (within the bound (@), not using the weaker bounds of (8)), we are left with
subsets for which every hyperplane or quadric is O(D?)-restricted, and each 2-flat contains at most
O(D) lines. However, when m < n%7 or m > n®3, the terms O(mD?), O(nD*) are not too large,
and there is no need for this part of the analysis, and a direct application of the bounds in (8]
yields the sharper bound in (6l and simplifies the proof considerably.

For the remaining range of m and n, we go on to our second partitioning step. We discard f and
start afresh with a new partitioning polynomial h of degree F <« D. As already noted, bounding
incidences within the partition cells becomes non-trivial, and we use induction, exploiting the fact
that now the parameters ¢ and s are replaced by O(D?) and O(D), respectively. On the flip side
of the coin, bounding incidences within Z(h) is now simpler, because F is smaller, and we can
use the bounds in [®) (i.e., O(mE? +nE) or O(m + nE?*)) to establish the bound in (&) for the
“problematic” incidences.

The reason for using the weaker requirement that each hyperplane and quadric be g-restricted,
instead of just requiring that no hyperplane or quadric contain more than ¢ lines of L, is that we do
not know how to bound the overall number of lines in a hyperplane or quadric H by O(D?), because
of the potential existence of ruled components of Z(f,g) within H, which can accommodate any
number of lines. A major difference between this case and the analysis of ruled components in
Guth and Katz’s study [I5] is that here the overall degree of Z(f,g) is O(D?), as opposed to the
degree of Z(f) being only D in [I5]. This precludes the application of the techniques of Guth and
Katz to our scenario—they would lead to bounds that are too large.

We also note that our analysis of incidences within Z( f) is actually carried out (in the projective
4-space) over the complex field, which makes it simpler, and facilitates the application of numerous
tools from algebraic geometry that are developed in this setting. The passage from the complex
projective setup back to the real affine one is straightforward—the former is a generalization of
the latter. The real affine setup is needed only for the construction of a polynomial partitioning,
which is meaningless over C. Once we are within the variety Z(f), we can switch to the complex
projective setup, and reap the benefits noted above.

Note that, in spite of these improvements, Theorem [[.3] still has the peculiar feature, which is
not needed in Guth and Katz [I5] (for the incidence bound of Theorem [[1]), that also requires that
every quadric be g-restricted (or, in the simpler version in Theorem [[.2], contains at most ¢ lines of
L). [0 In a recent work in progress, Solomon and Zhang [39] show that this requirement cannot be
dropped, by providing a construction of a quadric that contains many points and lines, where the

4This is not quite the case: Guth and Katz also require that no regulus contains more than s (actually, 1/n) lines,
but this is made to bound the number of points incident to just two lines, and is not needed for the incidence bound
in Theorem [[.1]



number of incidences between them is significantly larger than the bound in (B (where ¢ now only
bounds the number of lines in a hyperplane).

2 Algebraic Preliminaries

In this section we collect and adapt a large part of the machinery from algebraic geometry that we
need for our analysis. Some supplementary machinery is developed within the analysis iself.

In what follows, to facilitate the application of standard techniques in algebraic geometry, it
will be more convenient to work over the complex field C, and in complex projective spaces. We
do so even though Theorem [[.3] is stated (and will be proved) only for the real affine case. The
passage between the two scenarios, in the proof of the theorem, will be straightforward, as discussed
in the preceding overview. Concretely, the realness of the underlying field is needed only for the
partitioning step itself, which has no (simple) parallel over C. However, after reducing the problem
to points and lines contained in Z(f), it is more convenient to carry out the analysis over C, to
allow us to apply the algebraic machinery that we are going to present next.

2.1 Lines on varieties

We begin with several basic notions and results in differential and algebraic geometry that we will
need (see, e.g., Ivey and Landsberg [19], and Landsberg [25] for more details). For a vector space
V (over R or C), let PV denote its projectivization. That is, PV = V \ {0}/ ~, where v ~ w iff
w = aw for some non-zero constant a.

An algebraic variety is the common zero set of a finite collection of polynomials. We call it
affine, if it is defined in the affine space, or projective, if it is defined in the projective space, in
terms of homogeneous polynomials. For an (affine) algebraic variety X, and a point p € X, let T, X
denote the (affine) tangent space of X at the point p. A point p is non-singular if dim 7, X = dim X
(see Hartshorne [I8, Definition 1.5 and Theorem I1.5.1]). For a point p € X, let ¥, denote the set
of the complex lines passing through p and contained in X, and let =, denote the union of these
lines (here X is implicit in these notations). For p fixed, the lines in ¥, can be represented by their
directions, as points in P7,X. In Hartshorne [I8, Ex.1.2.10], £, is also called the (affine) cone over
¥,. Clearly, =, C T, X.

Consider the special case where X is a hypersurface in C*, i.e., X = Z(f), for a non-linear
polynomial f € C[z,y, z,w], which we assume to be irreducible, where

Z(f)={peC*| f(p) =0}

is the zero set of Z(f). A line ¢, = {p+ tv | t € C} passing through p in direction v is said to
osculate to Z(f) to order k at p, if the Taylor expansion of f around p in direction v vanishes to
order k, i.e., if f(p) =0,

Vof(p)=0,  Vif(p)=0, ..., Vif(p)=0, (9)

where V, f (which for uniformity we also denote as V. f), V2f,..., Vﬁ f are, respectively, the first,
second, and higher order derivatives of f, up to order k, in direction v (where v is regarded as a
vector in projective 3-space, and the derivatives are interpreted in a scale-invariant manner—we
only care whether they vanish or not). That is, V,f = Vf-v, V2f = vTva, where H is the
Hessian matriz of f, and V! f is similarly defined, for i > 2, albeit with more complicated explicit
expressions. For simplicity of notation, put F;(p;v) := V! f(p), for i > 1.



In fact, one can extend the definition of osculation of lines to arbitrary varieties in any dimension
(see, e.g., Ivey and Landsberg [19]). For a variety X, a point p € X, and an integer k > 1, let
EI; C PT, X denote the variety of the lines that pass through p and osculate to X to order k at p; as
before, we represent the lines in ZI;, for p fixed, by their directions, as points in the corresponding
projective space. For each k£ € N, there is a natural inclusion X, C E’;. In analogy with the
previous notation, we denote by E’; the union of the lines that pass through p with directions in
SF. We let F(X) denote the variety of lines (fully) contained in X; this is known as the Fano
variety of X, and it is a subvariety of the (2d — 2)-dimensional Grassmannian manifold of lines in
P4(C); see Harris [I7, Lecture 6, page 63] for details, and [I7, Example 6.19] for an illustration, and
for a proof that this is indeed a variety. We will sometimes denote F'(X) also as ¥ (or (X)), to
conform with the notation involving osculating lines. We also let 3* denote the variety of the lines
osculating to order k£ at some point of X, and can be thought of as the union of the E’; over p € X.
When representing lines in ¥ or ¥ we can no longer use the local representation by directions,
and instead represent them, in the customary manner, as points within the Grassmanian manifold.
Here too ¥¥ can be shown to be a variety (within the Grassmannian manifold) and F(X) C X¥ for
each k. We also have, for any p € Z, ¥, C F(X) and E’; C %k,

Genericity. We recall that a property is said to hold generically (or generally) for polynomials
fi,--., fn, of some prescribed degrees, if there are nonzero polynomials gy, ..., gr in the coefficients
of the f;’s, such that the property holds for all fi,..., f, for which none of the polynomials g; is
zero (see, e.g., Cox et al. [B Definition 3.6]). In this case we say that the collection fi,..., f, is
general or generic, with respect to the property in question, namely, with respect to the vanishing
of the polynomials g1, ..., gr that define that property.

2.2 Generalized Bézout’s theorem

An affine (resp. projective) variety X C C? (resp. X C P?(C)) is called irreducible if, whenever
V is written in the form V = V3 U Vs, where V4 and V3 are affine (resp., projective) varieties, then
either Vi =V or Vo =V.

Theorem 2.1 (Cox et al. [4, Theorem 4.6.2, Theorem 8.3.6]). Let V' be an affine (resp., projective)
variety. Then V can be written as a finite union

V=ViU- UV,

where V; is an irreducible affine (resp., projective) variety, fori=1,...,m.

If one also requires that V; ¢ V; for i # j, then this decomposition is unique, up to a permutation
(see, e.g., [4, Theorem 4.6.4, Theorem 8.3.6]), and is called the minimal decomposition of V into
irreducible components.

We next state a generalized version of Bézout’s theorem, as given in Fulton [12]. It will be a
major technical tool in our analysis.

Theorem 2.2 (Fulton [12, Proposition 2.3)). Let Vi, ..., Vs be subvarieties of P?, and let Z,,. .., Z,
be the irreducible components of (\;_, Vi. Then

> deg(Zi) < [ des(V)).
i=1 Jj=1

A simple application of Theorem yields the following useful result.



Lemma 2.3. A curve C C P* of degree D can contain at most D lines.

Proof. Let t denote the number of these lines, and let Cy C C denote their union. Intersect Cy
with a generic hyperplane H. By Theorem 2.2] the number of intersection points satisfies

t < deg(Cp) -deg(H) < deg(C)-1=D,
as asserted. O

This immediately yields the following result, derived in Guth and Katz [14] (see also [10]) in a
somewhat different manner.

Corollary 2.4. Let f and g be two trivariate polynomials without a common factor. Then Z(f,g) :=
Z(f)N Z(g) contains at most deg(f) - deg(g) lines.

Proof. This follows since Z(f,g) is a curve of degree at most deg(f) - deg(g). O

2.3 Generically finite morphisms and the Theorem of the Fibers

The following results can be found, e.g., in Harris [I7, Chapter 11].

For a map 7 : X — Y of projective varieties, and for y € Y, the variety m~!(y) is called the
fiber of w over y.

The following result is a slight paraphrasing of Harris [I7, Proposition 7.16] and also appear in
Sharir and Solomon [38, Theorem 7]

Theorem 2.5 (Harris [I7, Proposition 7.16]). Let f : X — Y be the map induced by the standard
projection map 7 : P* — P" (which retains r of the coordinates and discards the rest), where r < d,
X c P and Y C P" are projective varieties, X is irreducible, and Y is the image of X. Then the
general ﬁbeﬁ of the map f is finite if and only if dim(X) = dim(Y"). In this case, the number of
points in a general fiber of f is constant.

An important technical tool for our analysis is the following so-called Theorem of the Fibers.

Theorem 2.6 (Harris [I7, Corollary 11.13]). Let X be a projective variety and 7 : X — P? be
a polynomial map (i.e., the coordinate functions xoom,...,xq0 ™ are homogeneous polynomials);
let Y = n(X) denote its image. For any p € Y, let \(p) = dim(7~1(p)). Then X(p) is an upper
semi-continuous function of p in the Zariski topologﬁ on Y, that is, for any m, the locus of points
p € Y such that A(p) > m is closed in Y. Moreover, if Xog C X is any irreducible component,
Yo = w(Xo) its image, and Ao the minimum value of A(p) on Yy, then

dim(X()) = dim(Y()) + )\0.

2.4 Flecnode polynomials and ruled surfaces in four dimensions

Ruled surfaces in three dimensions. We first review several basic properties of ruled two-
dimensional surfaces in R? or in C3. Most of these results are considered folklore in the literature,

>The meaning of this statement is that the assertion holds for the fiber at any point outside some lower-dimensional
exceptional subvariety.

6 The Zariski closure of a set Y is the intersection of all varieties X that contain Y. Y is Zariski closed if it is
equal to its closure (and is therefore a variety), and is Zariski open if its complement is Zariski closed. See [I§] for
further details.
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although we have been unable to find concrete rigorous proofs (in the “modern” jargon of algebraic
geometry). For the sake of completeness we provide such proofs in a companion paper [38].

For a modern approach to ruled surfaces, there are many references; see, e.g., Hartshorne [I8§],
Section V.2], or Beauville |2 Chapter III]. We say that a real (resp., complex) surface X is ruled
by real (resp., complex) lines if every point p € X in a Zariski-open dense set is incident to a real
(resp., complex) line that is fully contained in X; see, e.g., [32] or [§] for further details on ruled
surfaces. This definition is slightly weaker than the classical definition, where it is required that
every point of X be incident to a line contained in X (e.g., as in [32]). It has been used in recent
works, see, e.g., [15, 20]. Similarly to the proof of Lemma 3.4 in Guth and Katz [I5], a limiting
argument implies that the two definitions are equivalent. We spell out the details in Lemma [A]]
in the appendix (see also Sharir and Solomon [38 Lemma 11]).

We note that some care has to be exercised when dealing with ruled surfaces, because ruled-
ness may depend on the underlying field. Specifically, it is possible for a surface defined by real
polynomials to be ruled by complex lines, but not by real lines. For example, the sphere defined
by 2% +y? 4+ 22 — 1 = 0, regarded as a real variety, is certainly not ruled by lines, but as a complex
variety it is ruled by (complex) lines. (Indeed, each point (x¢, 3o, 2z9) on the sphere is incident to the
(complex) line (xg + at,yo + Bt, zo +t), for t € C, where o2 + 32 ++2 = 0 and axo + Byo + 720 = 0,
which is fully contained in the sphere.)

In three dimensions, a two-dimensional irreducible ruled surface can be either singly ruled, or
doubly ruled (notions that are elaborated below), or a plane. As the following lemma shows, the
only doubly ruled surfaces are reguli, where a regulus is the union of all lines that meet three
pairwise skew lines. There are only two kinds of reguli, both of which are quadrics—hyperbolic
paraboloids and hyperboloids of one sheet; see, e.g., Fuchs and Tabachnikov [11] for more details.

The following (folklore) lemma provides a (somewhat stronger than usual) characterization of
doubly ruled surfaces; see [38] for a proof.

Lemma 2.7. Let V be an irreducible ruled surface in R3 or in C3 which is not a plane, and let
C C V be an algebraic curve, such that every non-singular point p € V' \ C is incident to exactly two
lines that are fully contained in V. Then V is a regulus.

When V is an irreducible ruled surface which is neither a plane nor a regulus, it must be
singly ruled, in the precise sense spelled out in the following theorem (see also [15]); again, see [38,
Theorem 10] for a proof.

Theorem 2.8. (a) Let V be an irreducible ruled two-dimensional surface of degree D > 1 in R3
(or in C3), which is not a requlus. Then, except for at most two exceptional lines, the lines that are
fully contained in V are parametrized by an irreducible algebraic curve ¥ in the Plicker space P°,
and thus yield a 1-parameter family of generator lines £(t), for t € g, that depend continuously on
the real or complex parameter t. Moreover, if t; # to, and €(t1) # £(t2), then there exist sufficiently
small and disjoint neighborhoods Ay of t1 and Ay of ta, such that all the lines £(t), fort € A1 UAs,
are distinct.

(b) There exists a one-dimensional curve C C V, such that any point p in V \ C is incident to
exactly one generator line of V.

Following this theorem, we refer to irreducible ruled surfaces that are neither planes nor reguli
as singly ruled. A line ¢, fully contained in an irreducible singly ruled surface V', such that every
point of £ is incident to another line fully contained in V, is called an exceptional line of V' (these
are the lines mentioned in Theorem 2.8(a)). If there exists a point py € V, which is incident to
infinitely many lines fully contained in V', then py is called an exceptional point of V. By Guth
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and Katz [15], V can contain at most one exceptional point py (in which case V' is a cone with py
as its apex), and (as also asserted in the theorem) at most two exceptional lines.

The flecnode polynomial in four dimensions. Let f € C[z,y, z, w] be a polynomial of degree
D > 4. A flecnode of f is a point p € Z(f) for which there exists a line that passes through p and
osculates to Z(f) to order four at p. Therefore, if the direction of the line is v = (vg, vy, v2, v3),
then it osculates to Z(f) to order four at p if f(p) =0 and

Fi(p;v) =0, fori=1,2,34. (10)

The four-dimensional flecnode polynomial of f, denoted FL;%, is the polynomial obtained by
eliminating v from the four equations in the system (I0). (See Salmon [32], and the relevant ap-
plications thereof in [I0] [15], for details concerning flecnode polynomials in three dimensions; see
also Ivey and Landsberg [19] for a more modern generalization of this concept.) Note that these
four polynomials are homogeneous in v (of respective degrees 1, 2, 3, and 4). We thus have a
system of four equations in eight variables, which is homogeneous in the four variables vg, v, v2, vs3.
Eliminating those variables results in a single polynomial equation in p = (z,y, z,w). Using stan-
dard techniques, as in Cox et al. [5], the resulting polynomial FL‘} is the multipolynomial resultant
Resy(Fy, Fy, F3, Fy) of Fy, Fy, F3, Fy, regarding these as polynomials in v (where the coefficients are
polynomials in p). By definition, FL;lc vanishes at all the flecnodes of f. The following results are
immediate consequences of the theory of multipolynomial resultants, presented in Cox et al. [5].

Lemma 2.9. Given a polynomial f € Clx,y, z, w| of degree D > 4, its flecnode polynomial FL‘} has
degree O(D).

Proof. The polynomial F;, for i = 1,...,4, is a homogeneous polynomial in v of degree d; = i over
Clz,y, z,w]. By [5, Theorem 4.9], putting d := (Z?‘Zl d,-) — 3 =7, the multipolynomial resultant
FL;lc = Resy(Fy, Fy, F3, Fy) is equal to g—z, where D3 is a polynomial of degree (d?,:s) = (130) =120
in the coefficients of the polynomials F;, and Dj is a polynomial of degree dideds + didads +
dydsdy + dodsdy = 6+ 8+ 12424 = 50 in these coefficients (see Cox et al. [5, Chapter 3.4, exercises

1,3,6,12,19]). Since each coefficient of any of the polynomials F; is of degree at most D — 1, we
deduce that FL;lc is of degree at most O(D). O

Lemma 2.10. Given a polynomial f € Clx,y,z,w] of degree D > 4, every line that is fully
contained in Z(f) is also fully contained in Z (FL;%).

Proof. Every point on any such line is a flecnode of f, so FL;% vanishes identically on the line. O

Ruled Surfaces in four dimensions. Flecnode polynomials are a major tool for characterizing
ruled surfaces. This is manifested in the following theorem of Landsberg [25], which is a crucial tool
for our analysis. It is established in [25] as a considerably more general result, but we formulate
here a special instance that suffices for our needs.

Theorem 2.11 (Landsberg [25]). Let f € Clz,y,z,w]| be a polynomial of degree D > 4. Then
Z(f) is ruled by (complex) lines if and only if Z(f) C Z(FL;%).

We note that Theorem 2.1T] extends the classical Cayley—Salmon theorem in three dimensions
(see Salmon [32]). A quick review of this result is given below. We also note that we will use a
refined version of this theorem, also due to Landsberg, given as Theorem B.8 in Section Bl

When f is of degree < 3, we have the following simpler situation.
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Lemma 2.12. For every polynomial f € Clx,y,z,w]| of degree < 3, Z(f) is ruled by (possibly
complex) lines.

Proof. Let v = (vg,v1,v2,v3) € C* be a direction. First notice that for a point p € C*, the
line through p in direction v is contained in Z(f) if and only if the first three equations in (I0])
are satisfied, because all the other terms in the Taylor expansion of f(p + tv) always vanish for a
polynomial f of degree < 3. This is a system of three homogeneous polynomials in vg, v1, v2, v3, of
degrees 1,2, 3, respectively. By Bézout’s theorem, as stated in Theorem below, the number of
solutions (complex projective, counted with multiplicities) of this system is either six or infinite, so
there is at least one (possibly complex) line that passes through p and is contained in Z(f). O

Back to three dimensions. In three dimensions the analysis is somewhat simpler, and goes
back to the 19th century, in Salmon’s work [32] ond others. The flecnode polynomial FL; of f,
defined in an analogous manner, is of degree 11deg(f) — 24 [32]. Theorem 2.11]is replaced by the
Cayley—Salmon theorem [32], with the analogous assertion that Z(f) is ruled by lines if and only
if Z(f) € Z(FLg). A simple proof of the Cayley—Salmon theorem can be found in Terry Tao’s
blog [44].

We will be using the following result, established by Guth and Katz [14]; see also [10].

Proposition 2.13. Let f be a trivariate irreducible polynomial of degree D. If Z(f) fully contains
more than 11D? — 24D lines then Z(f) is ruled by (possibly complex) lines.

Proof. Apply Corollary 2Z4to FL; and f, to conclude that FL; and f must have a common factor.
Since f is irreducible, this factor must be f itself, and then the Cayley—Salmon theorem implies
that Z(f) is ruled. O

2.5 Flat points and the second fundamental form

We continue with the four-dimensional setup. Extending the notation in Guth and Katz [14] (see
also [10], and also Pressley [28] and Ivey and Landsberg [19] for more basic references), we call a
non-singular point p of Z(f) linearly flat, if it is incident to at least three distinct 2-flats that are
fully contained in Z(f) (and thus also in the tangent hyperplane T,,Z(f)). (The original definition,
in [I0, [I5], for the three-dimensional case, is that a non-singular point p € Z(f) is linearly flat
if it is incident to three distinct lines that are fully contained in Z(f)) The condition for a point
p to be linearly flat can be worked out as follows, suitably extending the technique used in three
dimensions in [10} 14]. Although this extension is fairly routine, we are not aware of any previous
concrete reference, so we spell out the details for the sake of completeness.

Let p be a non-singular point of Z(f), and let f () denote the second-order Taylor expansion of
f at p. That is, we have, for any direction vector v and t € C,

fOp+tv) =tVfp) v+ 3t Hy(p)v. (11)

If p is linearly flat, there exist three 2-flats 71, mg, 73, contained in the tangent hyperplane T,Z(f),
such that v H f(p)v =0, for all v € w1, m, w3 (clearly, the first term V f(p) - v also vanishes for any
such v). Using a suitable coordinate frame within 7,Z(f), we can regard vI Hy(p)v as a quadratic
trivariate homogeneous polynomial.

Since vT Hy(p)v vanishes on three 2-flats inside T,Z(f), a (generic) line ¢, fully contained in
T,Z(f) and not passing through p, intersects these 2-flats at three distinct points, at which oI'H FU
vanishes. Since this is a quadratic polynomial, it must vanish identically on ¢. Thus, v H fv is zero
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for all vectors v € T,Z(f), and thus f (2) vanishes identically on T,Z(f). In this case, we say that
p is a flat point of Z(f). Therefore, every linearly flat point of Z(f) is also a flat point of Z(f)
(albeit not necessarily vice versa. EI) The same definition applies in three dimensions too.

We next express the set of linearly flat points of Z(f) as the zero set of a certain collection
of polynomials. To do so, we define three canonical 2-flats, on which we test the vanishing of the
quadratic form v H #v. (The preceding analysis shows that, for a linearly flat point, it does not
matter which triple of 2-flats is used for testing the linear flatness, as long as they are distinct.)
These will be the 2-flats

my = TpZ(f) N {z =2y}, 7w =TpZ(f) N {y=yp}, and 7, =T Z(f) N {z = 2} (12)

These are indeed distinct 2-flats, unless T, Z(f) is orthogonal to the z-, y-, or z-axis. Denote by
Z(f)axis the subset of non-singular points p € Z(f), for which T,,Z(f) is orthogonal to one of these
axes, and assume in what follows that p € Z(f) \ Z(f)azis- We can ignore points in Z(f)azis by
assuming that the coordinate frame of the ambient space is generic, to ensure that none of our
(finitely many) input points has a tangent hyperplane that is orthogonal to any of the axes.

Lemma 2.14. Let p be a non-singular point of Z(f)\ Z(f)axis- Then p is a flat point of Z(f) if
and only if p is a flat point of each of the varieties Z(f|1z—z,})s Z(fliy=y,}), Z (fl{z=2,})-

Proof. Note that the three varieties in the lemma are two-dimensional varieties within the corre-
sponding three-dimensional cross-sections x = x,,, ¥ = yp, and z = z,, of 4-space.

If p is a flat point of Z(f) \ Z(f)awis, then the second-order Taylor expansion f(?) vanishes
identically on T),Z(f). By the assumption on p, we have

T;DZ(f|{x:mp}) = T;DZ(f) N {:E = xp}a
Ty 2(l(yeny) = Ty Z(F) N {y = gy}, and
TPZ(f‘{zzzp}) = TPZ(f) N {Z = Zp}7

and these are three distinct 2-flats. Therefore, f ]gﬁ):mp} vanishes identically on TpZ(f|z=z,})
implying that p is a flat point of Z(f|;,—.,}); similarly p is a flat point of Z(f[{,—,,1) and of
Z(flfz=z,}). For the other direction, notice that if p satisfies the assumptions in the lemma, and
is a flat point of each of Z(f[1,—s,}1)s Z(fliy=y,1): and Z(fl(.—,}), then f® vanishes on three
distinct 2-flats contained in 7),Z(f) (namely, the intersection of T,Z(f) with {z = z,}, {y = yp}
and {z = 2,}), which are distinct since p & Z(f)azis. Since f) is quadratic, the argument given
above implies that it is identically 0 on T, Z(f). O

Recall from Elekes et al. [I0] that p is flat for f|r,—, } if and only if Hjl- = 0 (fl{z=z,})
vanishes at p, for j = 1,2,3, where II;(h) = (Vh x ;)T H,(Vh X ¢;), and where ey, €2, e3 denote
the unit vectors in the respective y-, z-, and w-directions, and the symbol x stands for the vector
product in {z = x,}, regarded as a copy of C3. In fact, when xp is also considered as a variable
(call it x then), we get that, as in the three-dimensional case, each of Hjl-, for j = 1,2,3, is a
polynomial in z,y, z,w of (total) degree 3D — 4. Similarly, the analogously defined polynomials
H? = Hj(f\{y:yp}),ﬂi? = ILi(fl{z=z,)), for j = 1,2,3, vanish at p if and only if p is a flat point of
fliy=y, and flr.—.,1. By Lemma 214, we conclude that a non-singular point p € Z(f)\ Z(f)axis
is flat if and only if Hé-(p) =0, for1<4¢,j<3.

"For example, for the surface in R*® defined by the zero set of f = 2 4y 4+ z + 2®, the point 0 = (0,0,0) € Z(f) is
flat (because the second order Taylor expansion of f near 0 is the plane x + y + z = 0), but is not linearly flat, since
there is no line incident to 0 and contained in Z(f).
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We say that a line £ C Z(f) is a singular line of Z(f), if all of its points are singular. We say
that a line £ C Z(f) is a flat line of Z(f) if it is not a singular line of Z(f), and all of its non-singular
points are flat. An easy observation is that a flat line can contain at most D — 1 singular points of
Z(f) (these are the points on ¢ where all four first-order partial derivatives of f vanish). Similarly,
a non-singular line is flat if (and only if) it is incident to at least 3D — 3 flat points.

The second fundamental form. We use the following notations and results from differential
geometry; see Pressley [28] and Ivey and Landsberg [19] for details. For a variety X, the differential
dry of the Gauss mapping v that maps each point p € X to its tangent space T),X, is called the
second fundamental form of X. In four dimensions, for X = Z(f), and for any non-singular point
p € Z(f), the second fundamental form, locally near p, can be written as (see [19])

Z aijduiduj,

1<i,5<3

where z = x(u1,ug,u3) is a parametrization of Z(f), locally near p, and a;; = Zy,u, - n, where
n =n(p) = Vf(p)/||Vf(p)| is the unit normal to Z(f) at p. Since the second fundamental form
is the differential of the Gauss mapping, it does not depend on the specific local parametrization
of f near p. An important property of the second fundamental form is that it vanishes at every
non-singular flat point p € Z(f) (see, e.g., Pressley [28] and Ivey and Landsberg [19]).

Lemma 2.15. If a line ¢ C Z(f) is flat, then the tangent space T,Z(f) is fized for all the non-
singular points p € £.

Proof. The proof applies a fairly standard argument in differential geometry (see, e.g., Pressley
[28]); see also a proof of a similar claim for the three-dimensional case in [10, Appendix]. Fix a
non-singular point p € ¢, and assume that * = x(u;,u2,u3) is a parametrization of Z(f), locally
near p. We assume, as we may, that the relevant neighborhood N, of p consists only of non-
singular points. For any point (a,b,c) in the corresponding parameter domain, z,,, Ty,, Ty, Span
the tangent space to Z(f) at x(a,b,c). Indeed, since x(ui,uz2,us) is a local parametrization, its
differential (dz)(4,p,c) : T(a7b7c)(C3 — Ty(ap,e)Z(f) is an isomorphism. Hence, the image of this latter
map is spanned by xy,, Tu,, Tus at z(a,b, c). In particular, we have

Ty, -n=0, =123,
over N,. We now differentiate these equations with respect to u;, for j = 1,2, 3, and obtain
Tyuy "M+ Ty - Ny, =0 on £ NNy, for 1 <4,5 <3.

The first term vanishes because £ is flat, so, as noted above, the second fundamental form vanishes
at each non-singular point of £. We therefore have

Ty, "Ny, =0 on LN Ny, fore,j=1,2,3.

Since Ty, Tuy, Tug span the tangent space T;Z(f), for each ¢ € N, it follows that n,;(q) is or-
thogonal to T,Z(f) for each ¢ € £ N N,, and thus must be parallel to n(g) in this neighborhood.
However, since n is of unit length, we have n - n = 1, and differentiating this equation yields

n, n=0 on/lNN,, forj=1,23.

Since n,;(q) is both parallel and orthogonal to n(g), it must be identically zero on £ N N,, for
j=1,2,3.
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Write ¢ = p + tv, t € C, and define h(t) := n(p + tv), for ¢ € C. Then, in a suitable tensor
notation,
h,(t) = (nul (p + tv)7 Ny, (p + tv)’ Ty (p + tv)) v =0,

locally near ¢t = 0. Thus, n(p + tv) is constant locally near ¢ = 0, implying that n is constant along
£, locally near p.

It still remains to show that n is constant on the set of all the non-singular points of Z(f)
contained in £. Set

Zs(0) :={t € C| p+ tv is a singular point of Z(f)}.

As ( is not singular, |Zs(¢)| < D — 1 (as already observed). The map ¢ — n(p + tv) is constant in
a neighborhood of every point t of Z,5(¢) :== C\ Zs(¢). Since Z,5(¢) is a connected setf n has a
fixed value at all the non-singular points on ¢, as asserted. Since the tangent hyperplanes 7,,Z( f)
along ¢ all contain the line / itself, and all have the same normal, we deduce that T),Z(f) is fixed
for all non-singular points p € £. O

2.6 Finitely and infinitely ruled surfaces in four dimensions, and u-resultants

Recall again the definition of =, for a polynomial f € Clx,y, z,w] and a point p € Z(f), which is
the union of all (complex) lines passing through p and fully contained in Z(f), and that of X, as
the set of directions (considered as points in PT,Z(f)) of these lines.

Fix a line ¢ € E,, and let v = (v, v1,v2,v3) € P? represent its direction. Since £ C Z(f), the
four terms Fj(p;v) = Vi f(p), for i = 1,2,3,4, must vanish at p. These terms, which we denote
shortly as F;(v) at the fixed p, are homogeneous polynomials of respective degrees 1,2, 3, and 4 in
v = (vg, v1,v2,v3). (Note that when D < 3, some of these polynomials are identically zero.)

In this subsection we provide a (partial) algebraic characterization of points p € Z(f) for which
|X,]| is infinite; that is, points that are incident to infinitely many lines that are fully contained in
Z(f). We refer to this situation by saying that Z(f) is infinitely ruled at p. To be precise, here we
only characterize points that are incident to infinitely many lines that osculate to Z(f) to order
three. The passage from this to the full characterization will be done during the analysis in the
next section.

u-resultants. The algebraic tool that we use for this purpose are u-resultants. Specifically, follow-
ing and specializing Cox et al. [5, Chapter 3.5, page 116], define, for a vector u = (ug, ui, ug, us) €
P3,

U(p; uo, u1,ug, u3) = Resy (Fl (p;v), Fa(p;v), F3(p; v), uovo + u1v1 + ugvg + ’u3’03),

where Resy(-) denotes, as earlier, the multipolynomial resultant of the four respective (homoge-
neous) polynomials, with respect to the variables vg,v1,v2,v3. For fixed p, this is the so-called
u-resultant of Fy(v), Fa(v), F3(v).

Theorem 2.16. The function U(p;ug,ui,us,us) is a homogeneous polynomial of degree siz in
the variables ug, u1,us,us, and is a polynomial of degree O(D) in p = (x,y,z,w). For fized p €
Z(f), U(p;ug,ui,uz,us) is identically zero as a polynomial in ug,ui,usz,us, if and only if there are
infinitely many (complex) directions v = (vg,v1,ve,v3), such that the corresponding lines {p + tv |
t € C} osculate to Z(f) to order three at p.

8 This property holds for C but not for R.
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Proof. By definition, the osculation property in the theorem, for given p and v, is equivalent to
Fi(p;v) = Fy(p;v) = F3(p;v) = 0. Regarding Fy, F», F3 as homogeneous polynomials in v, the
degree of U in ug, uy, ug, us is deg(F1) deg(Fs) deg(F3) = 3! = 6 (see Cox et al. [5, Exercise 3.4.6.b]).
Put d = deg(F1) + deg(F2) + deg(F3) + 1 = 7. Then the total degree of U in the coefficients of Fj,
each being a polynomial in p of degree at most D, is at most (g) = (;) = 35 (see also the proof of
Lemma and Cox et al. [0, Exercises 3.4.6.c, 3.4.19]), and thus the degree of U as a polynomial
in pis O(D).

Put H(u,v) = ugug + u1v1 + ugvg + ugvs, and, for any v € C*, denote by H, the hyperplane
H(u,v) = 0. Fix p € Z(f), and regard Fi, Fy, F3, H(u,-) as polynomials in v. If the osculation
property holds at p (for infinitely many lines) then Z(Fy, F, F3) is infinite, so it is at least 1-
dimensional. Thus, for any u = (ug,u,us,u3) € C* the variety Z(Fy, Fs, F3, H(u,v)) is non-
empty, so the multipolynomial resultant of these four polynomials (in v) vanishes at u. Since this
holds for all v € C*, It follows from Cox et al. [5, Proposition 1.1.5] that U = 0.

Suppose then that the osculation property does not hold (for infinitely many lines) at p, so
Z(Fy, Fy, F3) is finite. Pick any ug ¢ UveZ(Fl,Fg,Fg) H,. Then, for every v € Z(Fy, F», F3), we have
H(ug,v) # 0, implying that

Z(Fl,FQ,Fg,H(UQ, )) = {?} S Z(Fl,FQ,Fg) ’ H(UO,U) = O} = 0.

Therefore, by the properties of multipolynomial resultants, U(ug) # 0, and U is not identically
Z€ro. O

Remark. Theorem 2.T6shows that the subset of Z(f) consisting of the points incident to infinitely
many lines that osculate to Z(f) to order three is contained in a subvariety of Z(f), which is the
intersection of Z(f) with the common zero set of the coefficients of U (considered as polynomials
inx,y,z,w).

Corollary 2.17. Fix p € Z(f). The polynomial U(p;ug,u1,u2,u3) is identically zero, as a poly-
nomial in ug, u1, ug, us, if and only if there are more than siz (complex) lines osculating to Z(f) to
order 3 at p.

Proof. The polynomial F; is either 0 or of degree i (in v, for a fixed value of p), for i = 1,2,3. By
Theorem 2.2 the number of their common zeros v = (vg, v1,v2,v3) is either six (counting complex
projective solutions with multiplicity; see also the proof of Theorem [Z10) or infinite. The result
then follows from Theorem O

3 Proof of Theorem [1.3

Let P,L,m,n,q, and s be as in the theorem.

The proof proceeds by induction on m, where the base cases of the induction are the ranges m <
v/n and m < My, for a sufficiently large constant M. In both cases we have I(P,L) < A(m + n),
for a suitable choice of A. [1 Assume then that the bound holds for all m’ < m, and consider an
instance involving sets P, L, with |P| = m > /[L| = /n, and m > Mj.

As already discussed, the bound in (5] is qualitatively different in the two ranges m = O(n*/3)
and m = Q(n4/ 3), and the analysis will occasionally have to bifurcate accordingly. Nevertheless,
the bifurcation is mainly in the choice of various parameters, and in manipulating them. Most of

YWhen m < /n (or when n < y/m), an immediate application of the Szemerédi—Trotter theorem yields the linear
bound O(m + n).
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the technical details that deal with the algebraic structure of the problem are identical. We will
therefore present the analysis jointly for both cases, and bifurcate only locally, when the induction
itself, or tools that prepare for the induction, get into action, and require different treatments in
the two cases.

As promised in the overview, we will use two different partitioning schemes, one with a polyno-
mial of “large” degree, and one with a polynomial of “small” degree. We start naturally with the
first scheme.

An important issue to bear in mind is that, unlike most of the material in the preceding section,
where the underlying field was C, the analysis in this section is over the reals. Nevertheless, this
is essentially needed only for constructing a polynomial partitioning, which is meaningless over
C. Once this is done, the analysis of incidences between points and lines on the zero set of the
partitioning polynomial can be carried out over the complex field just as well as over R, and then
the machinery reviewed and developed in the previous section can be brought to bear.

First partitioning scheme. Fix a parameter r, given by

em®/5 /5 if m < an*/?
r =
en? /m? if m > an®/3,

where a and ¢ are suitable constants. Note that, in both cases, 1 < r < m, for a suitable choice of
the constants of proportionality, unless either m = Q(n?) or n = Q(m?), extreme cases that have
already been handled. We refer to the cases nt? < m < an*3 and an/? < m < n? as the cases of
small m and of large m, respectively.

We now apply the polynomial partitioning theorem of Guth and Katz (see [15] and [22] Theorem
2.6]), to obtain an r-partitioning 4-variate (real) polynomial f of degree

com2/5/n1/5 if m < an?/3

13
con/m1/2 if m > an?/3, (13)

D =0(@r*) < {
for another suitable constant cg. That is, every connected component of R*\ Z(f) contains at most

m/r points of P, where, as above, Z(f) denotes the zero set of f. By Warren’s theorem [46] (see
also [22]), the number of components of R*\ Z(f) is O(D*) = O(r).

Set Py := PNZ(f)and P’ := P\ Py. We recall that, although the points of P’ are more or less
evenly partitioned among the cells of the partition, no nontrivial bound can be provided for the
size of Py; in the worst case, all the points of P could lie in Z(f). Each line ¢ € L is either fully
contained in Z(f) or intersects it in at most D points (since the restriction of f to ¢ is a univariate

polynomial of degree at most D). Let Ly denote the subset of lines of L that are fully contained in
Z(f) and put L' = L\ L.
We have
I(P,L) = I(Py, Lo) + (P, L") + I(P', L"). (14)

As can be expected (and noted earlier), the harder part of the analysis is the estimation of I(Py, Lo).
Indeed, it might happen that Z(f) is a hyperplane, and then the best (and worst-case tight) bound
we can offer is the bound specified by Theorem [[LTl It might also happen that Z(f) contains some
2-flat, in which case we are back in the planar scenario, for which the best (and worst-case tight)
bound we can offer is the Szemerédi-Trotter bound (Il). Of course, the assumptions of the theorem
come to the rescue, and we will see below how exactly they are used.

We first bound the second and third terms of (I4). We have
I(Py, L") <|L'|-D <nD, (15)
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because, as just noted, a line not fully contained in Z(f) can intersect this set in at most D points.
To estimate I(P’, L), we put, for each cell T of the partition, P, = P N7, and let L, denote the
set of the lines of L’ that cross 7; put m, = |P;| < m/r, and n, = |L;|. Since every line ¢ € L’
crosses at most 1 + D components of R\ Z(f) (because it has to pass through Z(f) in between
cells), we have

> nr <|L|(1+ D) <n(1+ D). (16)

Clearly, we have
I(P', L)) =) I(Pr, Ly).

We now bifurcate depending on the value of m.

Estimating I(P’,L'): The case of small m. Here we use the easy upper bound (which holds
for any pair of sets Py, L;)

I(Pr, Ly) = O(|P;* + |L|) = O((m/r)? + nr).
Summing these bounds over the cells, using (I6), and recalling the value of r (and of D), we get

I(P'\ L)) =Y I(Pr,L;) = O(m?/r + nr'/*) = O(m*°n?/5).

Estimating I(P’,L’): The case of large m. Here we use the dual (generally applicable) upper
bound I(Py, L;) = O(|L.|> + |P;|), which, by splitting L, into subsets of size at most |Py|"/?,
becomes

I(Pr,L;) = O(|P:|"?|Ls| + | Pr]) = O((m/r) 0y + m.).

Summing these bounds over the cells, using (I6]), and recalling the value of r, we get

I(P', L) =) I(Pr, Ly) = O((m/r)"Pnr'/* + m) = O(m'*n/D +m) = O(m).

Combining both bounds, we have:
(P, L)+ I(P,L')=0 <m2/5n4/5 + m> . (17)

Note that in this part of the analysis we do not need the assumptions involving ¢ and s — the large
degree trivializes the analysis within the cells of the partition.

Estimating I (P, Lp). We next bound the number of incidences between points and lines that are
contained in Z(f). To simplify the notation, write P for Py and L for L, and denote their respective
cardinalities as m and n. (The reader should keep this convention in mind, as we will “undo” it
towards the end of the analysis.) To be precise, we will not be able to account explicitly for all
types of these incidences (for the present choices of D). Our strategy is to obtain an explicit bound
for a subset of the incidences, which is subsumed by the bound in (Bl), and then prune away those
lines and points that participate in these incidences. We will be left with “problematic” subsets
of points and lines, and we will then handle them in a second, new, induction-based partitioning
step. A major goal for the first stage is to show that, for the set of surviving lines, the parameters
q and s can be replaced by the respective parameters O(D?) and O(D) that “pass well” through
the induction; see below for details@

19 Note that in general the bounds O(D?) and O(D) are not necessarily smaller than their respective original
counterparts ¢ and s. Nevertheless, they uniformly depend on m and n in a way that makes them fit the induction
process, whereas the parameters ¢ and s, over which we have no control, do not.
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By the nature of its construction, f is in general reducible (see [I5]). However, to apply
successfully certain steps of the forthcoming analysis, we will need to assume that f is irreducible,
so we will apply the analysis separately to each irreducible factor of f, and then sum up the resulting
bounds. (The actual problem decomposition is subtler — see below.)

Write the irreducible factors of f, in an arbitrary order, as fi,..., fi, for some & < D. The
points of P are partitioned among the zero sets of these factors, by assigning each point p € P
to the first factor in this order whose zero set contains p. A line ¢ € L is similarly assigned to
the first factor whose zero set fully contains ¢ (there always exists such a factor). Then I(P, L) is
the sum, over ¢ = 1,...,k, of the number of incidences between the points and the lines that are
assigned to the (same) ith factor, plus the number of incidences between points and lines assigned
to different factors. The latter kind of incidences is easier to handle. Indeed, if (p,¢) is an incident
pair in P x L, so that p is assigned to f; and £ is assigned to f;, for i # j (necessarily ¢ < j), then
the incidence occurs at an intersection of ¢ with Z(f;). By construction, ¢ is not fully contained in
Z(fi), so it intersects it in at most deg(f;) points, so the overall number of incidences on £ of this
kind is at most Z#j deg f; < D, and the overall number of such incidences is therefore at most
nD.

For the former kind of incidences, we assume in what follows that we have a single irreducible
polynomial f, and denote by P and m, for short, the set of points assigned to f and its cardinality,
and by L and n the set of lines assigned to f (and thus fully contained in Z(f)) and its cardinality.
We continue to denote the degree of f as D. (Again, we will undo these conventions towards the
end of the analysis.)

This is not yet the end of the reduction, because, in most of the analysis about to unfold, we need
to assume that the points of P are non-singular points of Z(f). To reduce the setup to this situation
we proceed as follows. We construct a sequence of partial derivatives of f that are not identically
zero on Z(f). For this we assume, as we may, that f, and each of its derivatives, are square-free;
whenever this fail, we replace the corresponding derivative by its square-free counterpart before
continuing to differentiate. Without loss of generality, assume that this sequence is f, f;, fzz, and
so on. Denote the j-th element in this sequence as f;, for j =0,1,... (so fo = f, fi = fz, and so
on). Assign each point p € P to the first polynomial f; in the sequence for which p is non-singular;
more precisely, we assign p to the first f; for which f;(p) = 0 but f;11(p) # 0 (recall that fo(p) is
always 0 by assumption. Similarly, assign each line £ to the first polynomial f; in the sequence for
which £ is fully contained in Z(f;) but not fully contained in Z(f;41) (again, by assumption, there
always exists such a;). If £ is assigned to f; then it can only contain points p that were assigned to
some fj with k£ > j. Indeed, if ¢ contained a point p assigned to f with k& < j then fry1(p) # 0 but
¢ is fully contained in Z(fxy1), since k + 1 < j; this is a contradiction that establishes the claim.

Fix a line ¢ € L, which is assigned to some f;. An incidence between ¢ and a point p € P,
assigned to some fy, for k& > j, can be charged to the intersection of ¢ with Z(f;;+1) at p (by
construction, p belongs to Z(fj+1)). The number of such intersections is at most D — j — 1, so
the overall number of incidences of this sort, over all lines ¢ € L, is O(nD). It therefore suffices to
consider only incidences between points and lines that are assigned to the same zero set Z(f;).

The reductions so far have produced a finite collection of up to O(D) polynomials, each of degree
at most D, so that the points of P are partitioned among the polynomials and so are the lines of L,
and we only need to bound the number of incidences between points and lines assigned to the same
polynomial. This is not the end yet, because the various partial derivatives might be reducible,
which we want to avoid. Thus, in a final decomposition step, we split each derivative polynomial
f;j into its irreducible factors, and reassign the points and lines that were assigned to Z(f;) to
the various factors, by the same “first come first served” rule used above. The overall number of
incidences that are lost in this process is again O(nD). The overall number of polynomials is O(D?),

20



as can easily be checked. Note also that the last decomposition step preserves non-singularity of
the points in the special sense defined above; that is, as is easily verified, a point p € Z(f;) with
fi+1(p) # 0, continues to be a non-singular point of the irreducible component it is reassigned to.

We now fix one such final polynomial, still call it f, denote its degree by D (which is upper
bounded by the original degree D), and denote by P and L the subsets of the original sets of
points and lines that are assigned to f, and by m and n their respective cardinalities. (Again, this
simplifying convention will be undone towards the end of the analysis.) We now may assume that
P consists exclusively of non-singular points of the irreducible variety Z(f).

If D < 3, then, by Lemma 212 Z(f) is ruled by lines. Hypersurfaces ruled by lines will be
handled in the later part of the analysis. (Note that the cases D = 1 or D = 2 can be controlled by
assumption (i’) of the theorem (see below), whereas the case D = 3 requires a different treatment.)
Suppose then that D > 4. The flecnode polynomial FL;lc of f (see Section 2.4]) vanishes identically
on every line of L (and thus also on P, assuming that each point of P is incident to at least one
line of L). If FL;lc does not vanish identically on Z(f), then Z(f, FL;%) =Z(f)N Z(FL;%) is a two-
dimensional variety (see, e.g., Hartshorne [I8, Exercise 1.1.8]). It contains P and all the lines of
L (by Lemma R.10), and is of degree O(D?) (by Theorem 2.2). The other possibility is that FL;%
vanishes identically on Z(f), and then Theorem 2.ITlimplies that Z(f) is ruled by lines. This latter
case, which requires several more refined tools from algebraic geometry, will be analyzed later.

First case: Z(f, FL;%) is two-dimensional

Put g = FL;%. In the analysis below, we only use the facts that deg(g) = O(D), and that Z(f,g) is
two-dimensional, so the analysis applies for any such g; this comment will be useful in later steps of
the analysis. Recall that in this part of the analysis f is assumed to be an irreducible polynomial
of degree > 4.

We have a set P of m points and a set L of n lines in C*, so that P is contained in the
two-dimensional algebraic variety Z(f,g) C C*. By pruning away all the lines containing at most
max(D,deg(g)) points of P, we lose O(nD) incidences, and all the surviving lines are contained
in Z(f,g), as is easily checked. For simplicity of notation, we continue to denote by L the set of
surviving lines.

Let Z(f,9) = U;_,; Vi be the decomposition of Z(f,g) into its irreducible components, as
described in Section By Theorem 2.2, we have >_;_, deg(V;) < deg(f)deg(g) = O(D?).

Incidences within non-planar components of Z(f,g). Our next step is to analyze the number
of incidences between points and lines within the components of Z(f, g) that are not 2-flats. For
this we first need the following bound on point-line incidences within a two-dimensional surface in
three dimensions. This part of the analysis is taken from our companion paper [38]. We also refer
to Section 4] for properties of ruled surfaces.

For a point p on an irreducible singly ruled surface V', which is not the exceptional point of
V, we let Ay (p) denote the number of generator lines passing through p and fully contained in
V' (so if p is incident to an exceptional line, we do not count that line in Ay (p)). We also put
A% (p) := max{0, Ay (p) — 1}. Finally, if V' is a cone and py is its exceptional point (that is, apex),
we put Ay (py) = Aj(pv) := 0. We also consider a variant of this notation, where we are also
given a finite set L of lines (where not all lines of L are necessarily contained in V'), which does
not contain any of the (at most two) exceptional lines of V. For a point p € V', we let A\y(p; L)
denote the number of lines in L that pass through p and are fully contained in V', with the same
provisions as above, namely that we do not count incidences with exceptional lines, nor do we
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cound incidences with an exceptional point, and put Aj;(p; L) := max{0,\y(p; L) —1}. If Vis a
cone with apex py, we put Ay (py;L) = Aj,(pv; L) = 0. We clearly have Ay (p; L) < Ay (p) and
Ay (p; L) < Ay (p), for each point p.

Lemma 3.1. Let V be an irreducible singly ruled two-dimensional surface of degree D > 1 in R3
or in C3. Then, for any line £, except for the (at most) two exceptional lines of V, we have

Z Av(p) <D if £ is not fully contained in V,
pelNV

Z Ay (p) <D if £ is fully contained in V.
pelNV

The following lemma provides the needed infrastructure for our analysis, and is taken from
Sharir and Solomon [38, Theorem 15].

Lemma 3.2. Let V be a possibly reducible two-dimensional algebraic surface of degree D > 1 in
R3 or in C3, with no linear components. Let P be a set of m distinct points on V and let L be a
set of n distinct lines fully contained in V. Then there erists a subset Ly C L of at most O(D?)
lines, such that the number of incidences between P and L\ Ly satisfies

I(P,L\ Ly) = O <m1/2n1/2D1/2 Fm+ n> . (18)

Sketch of Proof. We provide the following sketch of the proof; the full details are given in the
companion paper [38]. Consider the irreducible components W1, ..., W, of V. We first argue that
the number of lines that are either contained in the union of the non-ruled components, or those
contained in more than one ruled component of V is O(D?), and we place all these lines, as well
as the exceptional lines of any singly ruled component, in the exceptional set Ly. We may thus
assume that each surviving line in L; := L\ L is contained in a unique ruled component of V,
and is a generator of that component.

The strategy of the proof is to consider each line £ of Lq, and to estimate the number of its
incidences with the points of P in an indirect manner, via Lemma 3.1}, applied to ¢ and to each of
the ruled components W; of V.

Specifically, we fix some threshold parameter &, and dispose of points that are incident to at
most £ lines of Ly, losing at most mé& incidences. Let P, denote the set of surviving points.

Now if a line £ € Ly is incident to a point p € P;, it meets at least £ other lines of Ly at p. It
follows from Lemma [B.J] that the overall number of such lines, over all points in P; N ¢, is roughly
D, so the number of such points on ¢ is at most roughly D /&, for a total of nD /¢ incidences of this
kind. Choosing & = (nD/m)"/? yields the bound O(m'/?n'/2D/?), and the lemma follows. O

We can now proceed, by deriving two upper bounds for certain types of incidences between P
and L. The first bound is relevant for the range m = O(n*?), and the second bound is relevant
for the range m = Q(n4/ 3). Nevertheless, both bounds apply to the entire range of m and n.

Proposition 3.3. The number of incidences involving non-singular points of Z(f) that are con-
tained in components of Z(f,g) that are not 2-flats is

min {O(mD? + nD), O(m +nD*)} . (19)

Proof. We first establish the bound O(mD? + nD). Let p € Z(f) be a non-singular point. The
irreducible decomposition of S, := Z(f,g) N T,Z(f) is the union of one- and two-dimensional
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components. Clearly, S, contains all the lines that are incident to p and are fully contained in
Z(f,g); it is a variety, embedded in 3-space (namely, in T,Z(f)), of degree O(D?). The union of
the one-dimensional components is a curve of degree O(D?), so, by Lemma 23] it can contain at
most O(D?) lines; when summing over all p € P, the total number of incidences with those lines is
O(mD?).

It remains to bound incidences involving the two-dimensional components of S, that are not
2-flats. By Sharir and Solomon [37, Lemma 5], the number of lines incident to p inside these two-
dimensional components of S, is at most O(D?), except possibly for lines that lie in a component
that is a cone and has p as its apex. Summing over all p € P, we get a total of O(mD?) incidences
for this case too, ignoring lines that lie only in conic (or flat) components.

Note that each two-dimensional component of S, is necessarily also a two-dimensional irre-
ducible component of Z(f,g). Hence the analysis performed so far takes care of all incidences
except for those that occur on conic two-dimensional components of Z(f,g) (and on 2-flats, which
we totally ignore in this proposition). Let V' be a conic component of Z(f,g) with apex py, which
is not a 2-flat. We note that V' cannot fully contain a line that is not incident to py. Indeed,
suppose to the contrary that V' contained such a line £. Since V is a cone with apex py, for each
point a € ¢, the line connecting a to py is fully contained in V', and therefore the 2-flat containing
py and /£ is fully contained in V. As V is irreducible and is not a 2-flat, we obtain a contradiction,
showing that no such line exists. We conclude that any point on V, except for py, is incident
to at most one line that is fully contained in V' (a “generator” through py ), for a total of O(m)
incidences. Since Z(f,g) is of degree O(D?), the number of conic components of Z(f, g) is O(D?),
so, summing this bound over all components V, we get again the bound O(mD?) on the number
of relevant “non-apex” incidences.

Therefore, it remains to bound the number of incidences between the points of
P.:={py | pv is an apex of an irreducible conic component V of Z(f,g)}

and the lines of L. Since there are at most O(D?) irreducible components of Z(f,g), we have
|P.| < e¢D?, for some suitable constant c. We next let L. denote the set of lines in L containing
fewer than c¢D points of P., and claim that any point p € P. is incident to fewer than D lines of
L\ L.. Indeed, otherwise, we would get at least D lines incident to p, each containing at least
c¢D 41 points of P, i.e., at least cD points other than p. As these points are all distinct, we would
get that |P.| > 1+ D -¢cD > cD?, a contradiction. On the other hand, by definition of L., we have

I(P.,L.) = O(nD).
We have thus shown that the number of incidences involving points of P, is
I(P.,L)=1I(P.,L.)+ I(P.,L\ L.) = O(nD)+ O(mD) = O(nD + mD),

well within the bound that we seek to establish.

The second bound. We next establish the second bound O(m + nD*). Let V be an irreducible
two-dimensional component of Z(f,g). If V is not ruled, then by Proposition 2.I3] it contains
at most 11deg(V)? — 24deg(V) < 11deg(V)? lines. Summing over all irreducible components of
Z(f,g) that are not ruled, we get at most 113, deg(V)? = O(D*) lines. Let ¢ be one of those
lines, and let p € £ N P. For any other line A € L that passes through p, we charge its incidence
with p to its intersection with ¢. This yields a total of O(nD*) incidences, to which we add O(m)
for incidences with those points that lie on only one line of L, for a total of O(m +nD?*) incidences.

We next analyze the irreducible components of Z(f, g) that are ruled but are not 2-flats. Let
Vi, ..., Vi denote these components, for some k = O(D?). Project all these components onto some
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generic hyperplane, and regard them as a single (reducible) ruled surface in 3-space, whose degree
is S°F | deg(V;) = O(D?). Lemma B2 then yields a subset Lo of L of size O(D*), and shows that

I(P,L\ Lo) ZO(ml/2nl/2D+m+n).

The lines of Lg are simply added to the set of O(D*) lines not belonging to ruled components. This
does not affect the asymptotic bound O(nD?) derived above. In total we get

O <m1/2n1/2D +m+ nD4)

incidences. Since 1
mi/2nl2p < 3 (m + nD2) ,

we obtain the second bound asserted in the proposition. O

Remark. The term O(nD?*) appears to be too weak, and can probably be improved, using ideas
similar to those in the proof of Lemma Since such an improvement does not have a significant
effect on our analysis, we leave it as an interesting problem for further research.

Restrictedness of hyperplanes and quadrics, and lines on 2-flats. The bounds in Propo-
sition 3.3 might be too large, for the current choices of D, because of the respective terms O(m.D?)
and O(nD%). (Technically, the m and n in the definition of D are not necessarily the same as the m
and n that denote the size of the current subsets of the original P and L, but let us assume that they
are the same for the present discussion.) For example, when m = O(n*/3) and D = ©(m?/5/n'/?)
(recall that this is the “large” value of D for this range), we have mD? = ©(m?/°/n?/?), and this
is > m?5n*5 when m > n%7. Similarly, when m = Q(n*3) and D = ©(n/m'/?) (which is the
value chosen for this range), we have n.D* = ©(n°/m?), and this is > m when m < n°/3. These
bounds will be used in the second partitioning step, where we use a smaller-degree partitioning
polynomial, and for m outside the problematic ranges, i.e., for m < n%7 or m > n®?3; see below
for details. Otherwise, for the current D, these bounds need to be finessed and replaced by the
following alternative analysis

In the first step of this analysis, we estimate the number of lines contained in a hyperplane or
a quadric (when Z(f,g) is two-dimensional), and establish the following properties.

Lemma 3.4. Each hyperplane or quadric H is O(D?)-restricted for the lines of L that are contained
in non-planar components of Z(f,g).

Proof. Fix a hyperplane or quadric H. Recall that all the lines in the current set L are contained
in Z(f,g). Let V be an irreducible component of Z(f,g), which is not a 2-flat. If VN H is a
curve, then (recalling Theorem [2.2]) its degree is at most deg(V) (when H is a hyperplane) or
2deg(V) (when H is a quadric), and can therefore contain at most 2deg(V') lines, by Lemma 2.3
Therefore, the union of all the irreducible components V' of Z(f, g) which intersect H in a curve,
contains at most 23, deg(V) = O(D?) lines. Assume then that V N H is two-dimensional. Since
V is irreducible, we must have V N H = V, so V is fully contained in H. Moreover, V is an
irreducible two-dimensional surface contained in Z(f) N H, and therefore must be an irreducible
component of Z(f) N H, which is a two-dimensional surface of degree < D. By Theorem 2.2]
Y verdeg(V) <deg(Z(f) N H) < deg(f) < D. If V is not ruled by lines (and, by assumption, is

' As the calculations worked out above indicate, the bounds in Proposition B3] will be within the bound (&)
when m is sufficiently small (below n4/3) or sufficiently large (above n5/3). For such values of m we can bypass the
induction process, and obtain the desired bounds directly, in a single step. See a more detailed description towards
the end of this section.
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not a 2-flat), then by Proposition 2.I3] it contains at most 11 deg(V)? lines, and summing over all
such components V within H, we get a total of at most Y., 11deg(V)? = O(D?) lines.

The remaining irreducible (two-dimensional) components V' of Z(f,g) that meet H (if such
components exist) are fully contained in H, and are ruled by lines. As already observed, these
components are also irreducible components of Z(f)N H, and so, with the exception of O(D?) lines
(those contained in the components already analyzed), all the lines of L that lie in H are contained
in components of Z(f) N H that are ruled by lines. Since f restricted to H is a polynomial of
degree < D, and since we are interested in lines of L that are not contained in planar components
of Z(f)N H we conclude that H is O(D?)-restricted, with respect to the subset of L mentioned in
the lemma. O

We next analyze the number of lines contained in a 2-flat.

Lemma 3.5. Let w be a 2-flat that is not fully contained in Z(f,g). Then the number of lines fully
contained in Z(f)Nm is O(D).

Proof. The intersection Z(f) N is either 7 itself, or a curve of degree < D. The latter case
implies (using Lemma 223]) that 7 contains at most D lines that are fully contained in Z(f). In the
former case m C Z(f). By assumption, 7 is not contained in Z(f, g), implying that g intersects =
in a curve of degree O(D) (since 7N Z(f,g) = 7N Z(g)), and can therefore contain at most O(D)
lines that are fully contained in Z(f). O

Recap. Summing up what has been done so far, we can classify the incidences in I(P, L) into the
following types. Recall that the analysis is confined to a single irreducible factor f of the original
polynomial or of some partial derivative of such a factor.

(a) We treat the cases where f is linear or quadratic separately, using a variant of Theorem [LT]
which takes into account the restrictedness of hyperplanes and quadrics; see Proposition below.

(b) We treat the case where Z(f) is ruled by lines separately (this is the second case in the analysis,
when Z(f, FL;4)) is three-dimensional).

If f is not ruled by lines and is of degree > 4 (recall that each surface of degree at most 3 is
ruled by lines—see Lemma[2.12]), then there are two kinds of incidences that need to be considered.

(c) Incidences between points and lines that are contained in irreducible components of Z(f, FL§£4))
(or, more generally, of Z(f,g), for other suitable polynomials g) that are not 2-flats. We have
bounded the number of these incidences in Proposition in two different ways, but we also
ignored these incidences, passing them to the induction in the second partitioning step, to be
presented later, where we now know that each hyperplane and quadric is O(D?)-restricted, and
each 2-flat contains at most O(D) lines of L. For both properties to hold, we first have to get rid
of all the lines of L that are contained in 2-flats within Z(f, g), and we will perform this pruning
after bounding the number of incidences involving lines that are contained in such 2-flats. This will
make the O(D?)-restrictedness in Lemma [3.4] hold with respect to the entire (pruned) set L, and
will make Lemma hold for each 2-flat.

(d) Incidences between points and lines that are contained in some irreducible component of Z(f, g)
that is a 2-flat. These incidences will be analyzed explicitly below, using the properties of flat points
and lines, as presented in Section

This classification of incidences, especially those of types (c¢) and (d), holds in general, for any
polynomial g satisfying the properties assumed in this treatment (that it has degree O(D) and that
Z(f,g) is two-dimensional), and their treatment also applies to these more general scenarios.
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Incidences within hyperplanes and quadrics. We next derive a bound that we will use
several times later on, in cases where we can partition P and L (or, more precisely, subsets thereof)
among some finite collection of hyperplanes and quadrics, so that all the relevant incidences occur
between points and lines that are assigned to the same surface. Recall that we have already applied
a similar partitioning among the factors of f and of its derivatives. The prime application of this
bound will be to incidences of type (a) above, but it will also be used in the analysis of type (d)

incidences, and in the analysis of the second case (b), where Z(f, FLE})) is three-dimensional, i.e.,
when Z(f, FL;4)) = Z(f). In particular, we emphasize that the following proposition does not
require that Z(f, FL}4)) be two-dimensional.

Proposition 3.6. Let Hy,..., H; be a finite collection of hyperplanes and quadrics. Assume that
the points of P and the lines of L are partitioned among Hy,...,Hy, so that each point p € P
(resp., each line ¢ € L) is assigned to a unique hyperplane or quadric that contains p (resp., fully
contains £), and assume further that each H; is q-restricted and that each 2-flat contains at most s
lines of L. Then the overall number of incidences between points and lines that are assigned to the
same surface is

0 <m1/2n1/2q1/4 + 2B B3 Lo+ n) ) (20)

Proof. For i =1,...,t, let L; (resp., P;) denote the set of lines of L (resp., points of P), that are
assigned to H;, and put n; := |L;|, m; := |P;|. We have ), m; = m and ), n; = n. For each i, since
H; is g-restricted, there exists a polynomial g; = gg,, of degree O(,/q), such that all the lines of L;,
with the exception of at most ¢ of them, are fully contained in ruled components of H; N Z(g;) that
are not 2-flats. Write L; = L}" UL}, where L} is the subset of those lines that are fully contained in
ruled components of H; N Z(g;) that are not 2-flats, and L} is the complementary subset, of size at
most q. The lines in L] are contained in the union W7 of the ruled components of H; N Z(g;) that
are not 2-flats. We also remove from L[ the subset L}, of O(q) lines, as provided by Lemma
(including all the lines that are fully contained in more than one component W;), and put them in
L}"; we continue to use the same notations for these modified sets. To apply Lemma to the
case where H; is a quadric, we first project the configuration onto some generic 3-space, and note
that by Sharir and Solomon [36, Lemma 2.1], the projection of W" does not contain any 2-flat.
Since the size of L} is still O(q), we have, by Theorem [L.],

I(PzaLZLT) -0 <m3/2|L?r|3/4 +m?/3|L?T|1/331/3 +my + |LZL7‘|)
=0 (mg/zngﬂql/ﬁ‘ + 771?/3712-1/331/3 +m; + nz) .

(Note that Theorem [[T] is directly applicable when H; is a hyperplane, and that it can also be
applied when H; is a quadric, by projecting the configuration onto some generic hyperplane, similar
to what we have just noted for the application of Lemma [3.2])

We next bound I(P;, L), using Lemma (when H; is a quadric, we apply it to the generic
projection of W to three dimensions, as above). Since deg(g;) = O(,/q), W" is of degree O(,/q),
and thus also its projection to three dimensions (see, e.g., [I7]), in case H; is a quadric. We have
already removed from L] the subset L}, provided by the lemma, and so the lemma yields the bound

I(P,L})=0 (mj/zn;/qu/‘l +m; + nz) .
That is, we have:
I(P,L;) =0 (mgﬂngﬂql/ﬁ‘ + m?/gng/gsl/g +m; + nz) .

Summing these bounds for ¢ = 1,...,¢, and using Hélder’s inequality (twice), we get the bound
asserted in (20). O
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The case where f is linear or quadratic. (These are the cases D = 1,2.) Let us apply
Proposition right away to bound the number of incidences when our (irreducible) f is linear
or quadratic, that is, when Z(f) is a hyperplane or a quadric. Proposition (together with
assumption (i) of the theorem) then implies the following bound.

I(P,L)=0 <m1/2n1/2q1/4 L m2Bpl/3L3 o n) , (21)

which is subsumed by the main bound (&).

Incidences within 2-flats fully contained in Z(f,g). Assuming generic directions of the
coordinate axes, we may assume that, for every non-singular point p € P, T,,Z( f) is not orthogonal
to any of the axes. This allows us to use the flatness criterion developed in Section to each
point of P.

As in previous steps of the analysis, we simplify the notation by denoting the subsets of the
points and lines that lie in the 2-flat components of Z(f,g) as P and L, and their respective sizes
as m and n. Each point p € P (resp., each line ¢ € L) under consideration is contained (resp., fully
contained) in at least one of the 2-flats 7y, ..., m; that are fully contained in Z(f,g) (these are the
linear irreducible components of Z(f,g), and we have k = O(D?)). Let P (resp., P®)) denote
the set of points p € P that lie in at most two (resp., at least three) of these 2-flats. Assign each
point p € P® to the (at most) two 2-flats containing it. Note that if p € P®@ then every line ¢
that is incident to p can be contained in at most two of the 2-flats m;, and we assign ¢ to those
2-flats. Let L(® denote the set of lines £ € L such that ¢ is incident to at least one point in P
(and is thus contained in at most two 2-flats 7;), and put LB =[ \ L@, Fori=1,...,k, let LZ(-2)
(resp., Pi@)) denote the set of lines of L) (resp., points of P(?)), that are contained in 7;, and put
n; := ]LZ@)], m; = ]PZ-(2)\. (Note that we ignore here lines that are not fully contained in one of
these 2-flats; these lines are fully contained in other components of Z(f,g) and their contribution
to the incidence count has already been taken care of.) By construction,

k k
Zmi <2m, and an < 2n.
i=1 =1

Moreover, a point p € P®) can be incident only to lines of L that are contained in one of the (at
most) two 2-flats that contain p, so we have I(P®) L®?) < Zle I(PZ-@),LZ@)). The Szemerédi-
Trotter bound () yields

1(P?, 1% =0 <m?/3n?/3 +my —I—ni) S i=1,... .k (22)

(2 (2 3

By assumption (ii) of the theorem, n; < s for each i = 1,...,k, so, summing over ¢ = 1,...,k and
using Holder’s inequality, we obtain

k
](P(2)’L(2)) < Z I(Pi(2)7 Lz('2)) =0 <Z <m?/3n?/3 +m; + nz>>

1=1

Z m?/?)n;/gsl/g) +m+ n) (23)

(
~o((Som) () )

i=1 i=1
=0 <m2/3n1/381/3 +m + n) .
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Consider next the points of P®), each contained in at least three 2-flats that are fully contained

in Z(f). All the points of P®) are linearly flat (see Section ZHl for details), and are therefore flat.
Notice that each such point can be incident to lines of L) and to lines of L(3). We prune away
each line ¢ € L that contains fewer than 3D points of P®), losing at most 3nD incidences in the
process.

Each of the surviving lines contains at least 3D — 3 flat points, and is therefore flat, because
the degrees of the nine polynomials whose vanishing at p captures the flatness of p, are all at most
3D — 4. In other words, we are left with the task of bounding the number of incidences between
flat points and flat lines. To simplify this part of the presentation, we again rename the sets of
these points and lines as P and L, and denote their sizes by m and n, respectively.

Incidences between flat points and lines. By Lemma 215 all the (non-singular) points of a
flat line have the same tangent hyperplane. We assign each flat point p € P (resp., flat line ¢ € L)
to T,Z(f) (resp., to T,Z(f) for some (any) non-singular point p € P N ¢; again we only consider
lines incident to at least one such point). We have therefore partitioned P and L among distinct
hyperplanes Hi, ..., H;, and we only need to count incidences between points and lines assigned to
the same hyperplane. By assumptions (i) and (ii) of the theorem, the conditions of Proposition
hold, implying that the number of these incidences is

0 <m1/2n1/2q1/4 I TE NS VE YR V5 Bpeg n) ' (24)

As promised, after having bounded the number of incidences within the 2-flats that are fully
contained in Z(f,g), we remove from L the lines that are contained in such 2-flats, and continue
the analysis with the remaining subset.

In summary, combining the bounds in (23]) and (24]), Proposition B.3] and Lemmas [3.4] and B.5],
the overall outcome of the analysis for the first case is summarized in the following proposition.
(In the proposition, f is one of the irreducible factors of the original polynomial or of one of its
derivatives, and P and L refer to the subsets assigned to that factor.)

Proposition 3.7. Let g be any polynomial of degree O(D) such that Z(f,g) is two-dimensional,
let P be a set of m points contained in Z(f,q), and let L be a set of n lines contained in Z(f,g).
Then

I(P,L)=I(P*,L*)+ O <m1/2n1/2q1/4 +m?Bp 313 fom 4 nD) , (25)

where P* and L* are subsets of P and L, respectively, so that each hyperplane or quadric is O(D?)-
restricted with respect to L*, and each 2-flat contains at most O(D) lines of L*. We also have the
explicit estimate

I(P*,L*) = min{O (mD? + nD), O (m+nD*)}. (26)

Remarks. (1) As already noted, lines that are contained in 2-flats that are fully contained in Z(f, g)
have already been taken care of, and thus do not belong to L*, so the application of Lemma
shows that every 2-flat contains only O(D) lines of L*, and the application of Lemma [B.4] shows
that every hyperplane or quadric is O(D?)-restricted.

(2) When m and n are such that the bound on I(P*, L*) in (28] is dominated by O(m?/°n*/® +m),
we use these bounds explicitly, and get the induction-free refined bound in (6l). This remark will
be expanded and highlighted later, as we spell out the details of the induction process.
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Second case: Z(f) is ruled by lines

We next consider the case where the four-dimensional flecnode polynomial FL‘} vanishes identically
on Z(f). By Theorem 2.I1] this implies that Z(f) is ruled by (possibly complex) lines.

In what follows we assume that D > 3 (the cases D = 1,2 have already been treated earlier,
using Proposition B:). We prune away points p € P, with |X,| < 6 (the number of incidences
involving these points is at most 6m = O(m)). For simplicity of notation, we still denote the set of
surviving points by P. Thus we now have |X,| > 6, for every p € P.

Recalling the properties of the u-resultant of f (that is, the u-resultant associated with Fi(p;v),
Fs(p;v), F5(p;v)), as reviewed in Section [2.6, we have, by Corollary 217 that U(p; ug, u1, ug, us) =
0 (as a polynomial in wy,...,us) for every p € P.

We will use the following theorem of Landsberg, which generalizes Theorem 2.TTl It is stated
here in a specialized and slightly revised form, but still for an arbitrary hypersurface in any di-
mension, and for any choice of the parameter k. Recall that ¥* is the union of E'; over all p € X,
namely, it is the set of all lines that osculate to Z(f) to order three at some point on Z(f).

The actual application of the theorem will be for X = Z(f) (and d = 4,k = 3). We refer the
reader to Section 2] for notations and further details.

Theorem 3.8 (Landsberg [19, Theorem 3.8.7)). Let X C P4(C) be a hypersurface, and let k > 2
be an integer, such that there is an irreducible component Elg C XF satisfying, for every point p in
a Zariski open set O C Z(f), dim E'in >d—k—1, where E'in is the set of lines in 2§ incident to
p. Then, for each point p € O, all lines in E’&p are contained in X.

To appreciate the theorem, we note that, informally, lines through a fixed point p have d — 1
degrees of freedom, and the constraint that such a line osculates to X to order k£ removes k degrees
of freedom, leaving d — k — 1 degrees. The theorem asserts that if the dimension of this set of lines
is larger, for most points on X, then these lines are fully contained in X. Note also that this is a
“local-to-global” theorem—the large dimensionality condition has to hold at every point of some
Zariski open subset of Z(f), for the conclusion to hold.

If U(p; ug, uy, ug, uz) does not vanish identically (as a polynomial in g, u1, ug, ug) at every point
p € Z(f), then at least one of its coefficients, call it ¢;7, does not vanish identically on Z(f). In this
case, as U vanishes identically at every point of P (as a polynomial in ug, u1, ug,us), it follows that
P is contained in the two-dimensional variety Z(f,cy). Since ¢y has degree O(D) in x,y, z,w (by
Theorem [2ZT6]), we can proceed exactly as we did in the case where Z(f, FL;%) was 2-dimensional.
That is, we obtain the bound (25]) in Proposition B.7, namely,

I(P,L)=I(P*,L*) + O (ml/in/ 21+ m? 3B o+ nD) , (27)

where P* and L* are subsets of P and L, respectively, so that each hyperplane or quadric is O(D?)-
restricted with respect to L*, and each 2-flat contains at most O(D) lines of L*. We also have the
explicit estimate

I(P*,L*) = min{O (mD? + nD), O (m+nD")}.

Therefore, since this case does not require the following analysis, it suffices to consider the
complementary situation, where we assume that U(p;ug,u1,us,us3) = 0 at every point p € Z(f)
(as a polynomial in ug, u,ug, us). By Theorem [Z.16] Z;’, is infinite, so its dimension is positive, for
each such p.

Informally, the analysis proceeds as follows. Since Eg is (at least) one-dimensional for every
point p € Z(f), the set 33, which is the union of Z;’,, over all p € Z(f), has (at least) three degrees of
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freedom—three for specifying p, at least one for specifying the line in Z;’,, and one removed because
the same line may arise at each of its points (if it is fully contained in Z(f)). In what follows we
show that we can find a single irreducible component Y3 of 3, which is three-dimensional, and
such that for any point p € Z(f), the variety Z%m is at least one-dimensional. This will facilitate
the application of Theorem [3.8in our context.

Theorem 3.9. There exists an irreducible component Eg of ¥3 of dimension at least three, such
that for each non-singular p € Z(f), the variety Z%m is at least one-dimensional.

Proof. The proof makes use of the Theorem of the Fibers and related results, as reviewed in
Section 2.3l Put
W= {(p,0) [pettes)} CZ(f)x %"

Note that W is naturally embedded in P3 x P°, where the second component contains the Pliicker
hypersurface of lines in 3-space. W can formally be defined as the zero set of homogeneous polyno-
mials; one polynomial defines the Pliicker quadric, other polynomials express the condition p € /£,
and other polynomials are those defining the projective variety Zg, whose elements are now repre-
sented by their Pliicker coordinates in the appropriate projective space (see Section 2.1 for details).
Therefore, W is a projective variety.

Let
Uy W = Z(f), Ty: W =53

be the (restrictions to W of the) projections to the first and second factors of the product. For an
irreducible component Eg of ¥23 (which is also a projective variety), put

Wo =03 (S3) = {(p.0) e W | L€ 53},

Since W and %} are projective varieties, so is Wp. (Indeed, if W = Z({fi(p,£)}), and X3 =
Z({g;(€)}), for suitable sets of homogeneous polynomials { f;},{g;}, then Wy = Z({fi(p,¢),9;(£)}).)

Let Wy denote some irreducible component of Wy, and put Y := W;(Wy) C Z(f). By the
projective extension theorem (see, e.g., Cox et al. [4, Theorem 8.6]), Y is also a projective variety.

For a point p € Y, the fiber of the map \I’1|WO : Wy — Y over p is contained in {p} x Eg,p =
{(p,?0) | £ € Eg,p} (this is the fiber of W1[w, over p, which clearly contains the fiber of W1y over
p, as Wy C Wo).

We will show that there exists some component Z%, and some irreducible component W of
Wo = U, 1(2}), such that (i) Y = W;(Wp) is equal to Z(f), and (ii) for every point p € Z(f),
the fiber of \I/1]WO : Wy — Y over pis (at least) one-dimensional; in this case we say that 3
and Wy form a one-dimensional line cover of Z (f). Suppose that we have found such a pair
3, Wy. As noted above, the fiber of \Ill\WO over p is contained in (or equal to) {p} X ng, and
dim({p} x Eg,p) = dim(Eap). Therefore, since Y = Z(f), this would imply that, for every p € Z(f),

we have dim(Eg’p) > 1, which is what we want to prove.

We pick some component 28, and some irreducible component Wy of Wy = vy 1(28), and
analyze when do 3 and W form a one-dimensional line cover of Z(f). Put, as above, Y = ¥y (Wj).
For a point p € Y, put A(p) = dim(@ﬂ%({p})), and let A = minyey A(p). As noted above,

Alp) < dim(S3 ).

By the Theorem of the Fibers (Theorem [2.6]), applied to the map \I’1|WO Wy =Y C Z(f), we
have .
dim(Wp) = dim(Y) + . (28)
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Observe that A < 1. Indeed, if A = 2, then there exists some non-singular point p € Y, such
that Z%m is (at least) two-dimensional, implying that Z(f) is a three-dimensional cone; since p is
non-singular, Z(f) is thus a hyperplane, contrary to our assumptions.

Assume first that Y = W;(W) is equal to Z(f) (this is part (i) of the definition of a one-
dimensional line cover). If A = 1, part (ii) of this property also holds, and we are done. Assume
then that A = 0. By the first part of the Theorem of the Fibers (Theorem [2.6]), the subset
Yi={peY | Ap) > 1} is Zariski closed in Y, so it is a subvariety of Z(f), of dimension at most
2. Hence, for each p in the Zariski open complement Y \ Y7, the fiber \P1|I}%({p}) is finite.

The remaining case is when Y = W1 (W) is properly contained in Z(f). Since Z(f) is irreducible,
Y is of dimension at most two.

To recap, we have proved that for each component Eg of ¥3, and each component Wy of Wy,
if the associated Y is properly contained in Z(f), then the image of Wy under ¥, (that is, V) is
at most two-dimensional; we refer to this situation as being of the first kind. If Y = Z(f) but
A = 0 (these are refered to as situations of the second kind), then, except for a two-dimensional
subvariety Y7 of Z(f), the fibers of the map \I'1|WO are finite.

However, in the case under consideration, we have argued that, for any non-singular point
p € Z(f), the fiber U7 (p) = {p} x %2 is (at least) one-dimensional.

We apply this analysis to all the irreducible components 28 of ¥3, and to all the irreducible
components of the corresponding Wy = ¥, 1(28). Let Y* denote the union of all the images Y of
the first kind, and of all the excluded subvarieties Y7 of the second kind. Being a finite union of
two-dimensional varieties, Y* is two-dimensional.

The union, over the irreducible components Eg of 323, of all the corresponding components W,
covers W, and therefore, for any non-singular point p € Z(f), the union over all the components
Wy of the fibers of \If1|V~V0 over p is equal to the fiber of ¥; over p, which is one-dimensional (and
thus infinite).

We claim that there must exist some irreducible component 28 of ¥3, and a corresponding
irreducible component Wy of Wy, such that Y = ¥ (W) is equal to Z(f), and the corresponding
A is equal to 1. Indeed, if this were not the case, take any non-singular point p in Z(f) \ Y*.
Since p is not in the image ¥, (W), for any Wy of the first kind, the fiber of U1y, at p is empty.
Similarly, since p is not in the excluded set Y; for any Wy of the second kind, the fiber of \I»'l]WO
at p is finite. But then the fiber of ¥; at p, being a finite union of (empty or) finite sets, must be
finite, a contradiction that establishes the claim.

Since for every p € Y = Z(f), X < A(p) < dim(%§ ), it follows that all the fibers 33, are (at
least) one-dimensional, completing the proof. O

Remark. One interesting corollary of the Theorem of the Fibers is that if we know that for any
point p in a Zariski open subset @ of Z(f), the fiber of ¥y over p (which is equal to {p} x Ef’,)
is one-dimensional, then this is true for the entire Z(f). Indeed, by the Theorem of the Fibers
(Theorem B3), the set {p € Z(f) | dim(¥7'({p})) > 1} is Zariski closed, and, since it contains the
Zariski open set ), it must be equal to Z(f).

By the preceding remark, Theorem B.8] (with d = 4,k = 3, @ = Z(f), and 3 as specified by
Theorem [3.9) then implies that Z(f) is infinitely ruled by lines, in the sense defined in Section 2.6}
that is, each point p € Z(f) is incident to infinitely many lines that are fully contained in Z(f),
and, moreover, Z%m = X, (which is the set of lines in ¥y incident to p). That is, we have shown
that X3 = ¥o. In other words, for each p € Z(f), Yo,p is of dimension at least 1, or, equivalently,
the cone Zp, (which is the union of the lines in ¥ ,) is at least two-dimensional. If, for some
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non-singular p € Z(f), the cone Zy, were three-dimensional, then, as already noted, Z(f) would
be a hyperplane, contrary to assumption. Thus, for each non-singular point p € Z(f), the cone
Zo,p is two-dimensional, and Y, is one-dimensional. We also have dim(2) = dim(X3) > 3. We
thus have

Corollary 3.10. The union of lines in X3 = X is equal to Z(f), and dim(Xo) = dim(%3) > 3.

Severi’s theorem. The following theorem is a major ingredient in the present part of our anal-
ysis. It has been obtained by Severi [34] in 1901, and a variant of it is also attributed to Segre [33];
it is mentioned in a recent work of Rogora [31], in another work of Mezzetti and Portelli [26], and
also appears in the unpublished thesis of Richelson [30]. Severi’s paper is not easily accessible (and
is written in Italian). As a small service to the community, we sketch in Appendix A a proof of
this theorem (or rather of a special case of the theorem that arises in our context), suggested to us
by A.J.de Jong.

Theorem 3.11 (Severi’s Theorem [34]). Let X C P%(C) be a k-dimensional irreducible variety,
and let Xy be an irreducible component of mazimal dimension of F(X), such that the lines of ¥
cover X. Then the following holds.

1. If dim(%g) = 2k — 2, then X is a copy of P¥(C) (that is, a complex projective k-flat).

2. If dim(%g) = 2k — 3, then either X is a quadric, or X is ruled by copies of P*~1(C), i.e.,
every poz’nt p € X is incident to a copy of P*~1(C) that is fully contained in X.

As is easily checked, the maximum dimension of ¥j is 2k — 2. Note also that the cases where
dim ¥y < 2k — 3 are not treated by the theorem (although they might occur); see Rogora [31] for
a (partial) treatment of these cases.

We apply Severi’s theorem to Z(f) and to the component ¥y obtained in Theorem [B.9] and
Corollary B0, with £ = 3 and with dim(Xg) = 3 = 2k — 3. We thus conclude that either Z(f) is
a quadric, a case ruled out in the present part of the analysis (which assumed that deg(f) > 3), or
it is ruled by 2-flats.

The case where Z(f) is ruled by 2-flats. In the remaining case, every point p € Z(f) (see
the footnote in Theorem B.IT]) is incident to at least one 2-flat 7, C Z(f). Let D, denote the set of
2-flats that pass through p and are contained in Z(f).

For a non-singular point p € Z(f), if |D,| > 2, then p is a (linearly flat and thus) flat point of
Z(f). Recall that we have bounded the number of incidences involving flat points (and lines) by
partitioning them among a finite number of hyperplanes, and by bounding the incidences within
each hyperplane. (Recall that lines incident to fewer than 3D — 3 points of P have been pruned
away, losing only O(nD) incidences, and that the remaining lines are all flat.) Repeating this
argument here, we obtain the bound

@) <m1/2n1/2q1/4 +m2Bpl B3 Lo 4 n) )

In what follows we therefore assume that all points of P are non-singular and non-flat (call these
points ordinary for short), and therefore |D,| = 1 or 2, for each such p. Put Hi(p) (resp.,
Hi(p), Ha(p)) for the 2-flat (resp., two 2-flats) in D,,, when |D,| =1 (resp., |D,| = 2).

12 Similar to the definition in Section [Z4] for the case of lines, it suffices to require this property for every point in
some Zariski-open subset of X. Here too one can show that the two definitions are equivalent. See also the companion
paper [38, Lemma 11].
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Clearly, each line in L, containing at least one ordinary point p € Z(f), is fully contained in at
most two 2-flats fully contained in Z(f) (namely, the 2-flats of D,).

Assign each ordinary point p € P to each of the at most two 2-flats in D,,, and assign each line
¢ € L that is incident to at least one ordinary point to the at most two 2-flats that fully contain
¢ and are fully contained in Z(f) (it is possible that ¢ is not assigned to any 2-flat—see below).
Changing the notation, enumerate these 2-flats, over all ordinary points p € P, as Uy, ..., U, and,
for each ¢ = 1,...,k, let P; and L; denote the respective subsets of points and lines assigned to
U;, and let m; and n; denote their cardinalities. We then have ). m; < 2m and ), n; < 2n, and
the total number of incidences within the 2-flats U; (excluding lines not assigned to any 2-flat) is
at most Zle I(P;, L;). This incidence count can be obtained exactly as in the first case of the
analysis, using the bound in (23]). That is, we have

k
ZI(R,Li) =0 <m2/3n1/331/3 +m—|—n) .
i=1

As noted, this bound does not take into account incidences involving lines which are not contained
in any of the 2-flats U; (and are therefore not assigned to any such 2-flat). It suffices to consider
only lines of this sort that are non-singular and non-flat, since singular or flat lines are only incident
to singular or flat points, and we assumed above that all the points of P are ordinary points. If ¢

is a non-singular and non-flat line, and is not fully contained in any of the U;, we call it a piercing
line of Z(f).

Lemma 3.12. If ¢ is a piercing line of Z(f), then the union of lines fully contained in Z(f) and
intersecting { is equal to Z(f).

Proof. Let V denote this union. By a suitable extension to four dimensions of a similar result
of Sharir and Solomon [37, Lemma 5], V' is a variety in the complex projective setting, which we
assume throughout this part of the analysis. Clearly V' C Z(f). If V is strictly contained in Z(f),
then, since Z(f) is irreducible, V' must be a finite union of irreducible components Vi, ..., Vi, each
of dimension at most two. Let p € ¢ be an ordinary point of Z(f) (since ¢ is non-singular and
non-flat, such a point exists), and let Hi(p) be one of the at most two 2-flats in D,. Note that
Hi(p) is contained in V' (because it is a union of lines fully contained in Z(f) and intersecting ¢ at
p). We claim that there exists some Vj such that Hq(p) C Vj. Indeed, otherwise, the intersection
Hi(p) N'V; would be (at most) one-dimensional for each j = 1,...,k (a variety strictly contained
in a 2-flat is of dimension at most one), and therefore

k

k
VN H(p) = UVj N Hy(p) = U(VjﬂHl(p))
j=1 Jj=1

is a finite union of varieties of dimension at most one, contradicting the fact that H;(p) is contained
in V' (and is of dimension two). This contradiction establishes the claim. Since H;(p) and V; are
two-dimensional irreducible varieties and H;(p) C Vj, it follows that Hy(p) = Vj.

In other words, for each ordinary point p € ¢ there exists a 2-flat H;(p) € D, which is equal
to some component V;. Consider only the components V; that coincide with such a 2-flat. Since
there are only finitely many components V; of this kind, one of them, call it V},, has to intersect

¢ in infinitely many points, and therefore ¢ C Vj;. That is, £ is contained in the 2-flat V}, that is
fully contained in Z(f).

Now pick any ordinary point p € PN ¢. By definition, since p € Vj,, V}, must be one of the (at
most) two 2-flats in D,. But then ¢ is fully contained in that 2-flat, which is one of the U;’s, and
therefore ¢ is not a piercing line. This contradiction completes the proof. O
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Remark. The last step of the proof shows that if a non-singular and non-flat line £ contains a
point of P then it is piercing (if and) only if it is not contained in any 2-flat fully contained in Z(f).

Lemma 3.13. Letp € Z(f) be an ordinary point. Then p is incident to at most one piercing line.

Proof. Assume to the contrary that p is incident to two piercing lines f1,¢> € L. We claim that
the 2-flat w19 that is spanned by ¢; and ¢ is fully contained in Z(f) (and thus, by the preceding
remark, /1 and /5 are not piercing lines). Indeed, for any point ¢ € ¢;, Lemma implies that
there exists some line ¢, # ¢1, incident to ¢, that intersect ¢ and is fully contained in Z(f). When
q varies along the non-singular points of /1, we get an infinite collection of lines, fully contained
in both Z(f) and 79, i.e., in their intersection Z(f) N mo. If 719 is not contained in Z(f) then
Z(f) Nm2 # m2 is a degree-D plane curve, so by Lemma [2Z3] it contains at most D lines, and
therefore cannot contain the infinite union of lines (J,, £, O

Therefore, each ordinary point p € P is incident to at most one piercing line, and the total
contribution of incidences involving ordinary points and piercing lines is at most m.

In summary, combining the bounds that we have obtained for the various subcases of the second
case, we get the following proposition. As in the first case, here f refers to a single irreducible factor
(of the original polynomial or one of its derivatives), D to its degree, and P and L refer to the
subsets of the original respective sets of points and lines, that are assigned to f.

Proposition 3.14. Let P be a set of m points contained in Z(f), and let L be a set of n lines
contained in Z(f), and assume that Z(f) is ruled by lines and that f is of degree > 3. Then

I(P,L)=I(P*,L*)+ O <m1/2n1/2q1/4 +m?Bpt B33 fom 4 nD) , (29)

where P* and L* are subsets of P and L, respectively, so that each hyperplane or quadric is O(D?)-
restricted with respect to L*, and each 2-flat contains at most O(D) lines of L*. We also have the

explicit estimate
I(P*,L*) = min{O (mD? + nD), O (m+nD*)}. (30)

The induction

In summary, after having exhausted all possible cases, we are in the following situation; we finally
undo the shorthand notations that we have used, and re-express the various bounds in terms of the
original parameters.

The first partitioning step has resulted in a collection of irreducible polynomials, which we write
as f1,..., fr, with respective degrees Dy, ..., Dy, all upper bounded by the degree D chosen in (28])
for the original values of m and n. The points of P have been partitioned among the zero sets
Z(f1),---,Z(fx), into respective pairwise disjoint subsets Py, ..., Py, including a leftover subset P’
of points outside all the zero sets, and the lines of L have been partitioned among the zero sets,
into respective pairwise disjoint subsets Li,..., L, so that the zero set to which a line is assigned
fully contains it, and including a leftover subset L’ of lines not fully contained in any zero set. Put
mi = |Pi|, ny = |Li|, for i = 1,...,k, and m’ = |P'|, n’ = |L/|. Then m/ + ¥  'm; = m, and
n' 4+ ni=n.

Then I(P,L) is I(P', L") +Ef:1 I(P;, L;) plus the number of incidences between points assigned
to some Z(f;) and lines not fully contained in Z(f;). (Note that I(P\ P’, L") also counts incidences
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of this kind.) As we have argued, the total number of these additional incidences is O(nD). That
is, we have, for any choice of the degree D,

k
I(P,L) < I(P',L') + O(nD) + > _I(P;,L;). (31)

i=1

For each i, the preceding analysis culminates in the following bound.
I(P,L;)) =I(P",L})+ O (7713/2713/%]1/4 + 771?/37%.1/331/3 +m; + niD) , (32)

where, for each ¢, P* and L} are respective subsets of P; and L;, so that each hyperplane or quadric
is O(D?)-restricted with respect to L¥, and each 2-flat contains at most O(D) lines of L}. We also
have the explicit estimate

I(P,LY) = min{O (m;D* + n; D), O (m; +n;D*)}, for each i. (33)
In addition, for the large values of D in (I3]), we have

(P, L)) =0 <m2/5n4/5 + m> . (34)

Induction-free derivation of the bound. To proceed with the analysis, for general values of
m and n, we bound the various quantities I(P;", LY) using induction. However, as asserted in the
theorems, the cases where m < n%7 or m > n%? admit an induction-free argument that yields
the improved bound in (@), and we first dispose of these cases. (Recall that these are the original
values of m and n, the respective sizes of the entire input sets P and L.)

Assume first that m < n%7. We substitute B2), the first bounds in ([33), and (34) into
BI). Using the Cauchy-Schwarz and Holder’s inequalities, we have ), mZ1 / 2n}/ 2 < ml/2p1/2 and
> m?/?’n;/g < m?2/3p1/3. We also have >o,mi <mand > ;n; <n. In total we thus get

I(P,L)=0 <m2/5n4/5 o+ m2pt 2V 23133 L p? 4 nD)

—0 (m2/5n4/5 4 m 22V A 2313613 n> 7

where we have used the fact that mD? +nD = O(m?°n*/® 4 n) for the choice D = O(m?*/®/n!/%)
in (26). This establishes () for this case. The case m > n°/3 is handled in the same manner, using
the second bounds O(m; + n;D*) in ([B3)) instead, and the fact that the sum of these bounds is
O(m) when m > n5/3.

The induction via a new partitioning. We now proceed with the general case, where induction
is needed. To simplify the notation, we (again, but only temporarily) drop the indices, and consider
one of many (possibly a nonconstant number of ) subproblems, involving a set P (= P;) of m (< m;)
points and a set L (= L}) of n (< n;) lines, so that each hyperplane or quadric is O(D?)-restricted
for L, and each 2-flat contains at most O(D) lines of L; here D (= D;) is the degree of the
corresponding factor f (= f;), which is upper bounded by the value in (I3). In what follows we
will use this latter bound for (an upper bound on) the D;’s.

To make the induction work, we choose a degree E, typically much smaller than D (see below
for the actual value), and construct a new partitioning polynomial h of degree E for P. (Although
P C Z(f) and each line of L is fully contained in Z(f), we ignore here f completely, possibly losing
some structural properties of P and L, and consider only the partitioning induced by h.) With an
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appropriate value of »r = ©(E*), we obtain O(r) cells, each containing at most m/r points of P,
and each line of L either crosses at most E + 1 cells, or is fully contained in Z(h).

Set Py := PN Z(h) and P’ := P\ Py. Similarly, denote by Lo the set of lines of L that are
fully contained in Z(h), and put L' := L\ Lo. We repeat the whole analysis done so far, but with
h and its degree E instead of f and D, for the points of P and the lines of L. That is, we apply,
to our P and L, the bounds given in ([B1I), (32]), and (B3] (but not the one in (34])), with £ instead
of D. Moreover, in this application we exploit the property that each hyperplane or quadric is
O(D?)-restricted with respect to L, and each 2-flat contains at most O(D) lines of L. We thus get
the following recurrence (where the parameters k, P;, L;, etc., are new and depend on h, but we
recycle the notation in the interest of simplicity).

k
I(P,L) < I(P',L') + O(nE) + Y I(P;, L;)

=1
k k
=I(P',L')+O(mE) + > I(P;, L))+ > 0 (mg/zn}/QDW +m2PnlBDV3 4o, + nE) .
=1 =1

Concretely, P’ is the subset of the points of P contained in the cells of the h-partition, L’ is
the subset of lines of L not fully contained in Z(h), P; and L; are the subsets of the points and
lines assigned to the various irreducible factors h; of h and of its derivatives, and P, L} are the
excluded subsets, as provided in Propositions B.7 and B.141

Using the Cauchy-Schwarz and Holder’s inequalities in the second sum, we get, for a suitable
absolute constant a,

k
I(P,L) <I(P',L')+a <m1/2n1/2 DY2 4 2313 DV3 4y 4 nE) +) I(PFLY).
i=1

We have

k k
I L) <d <Z min{m; E* +n;E, m; + niE4}> < min{d'(mE? + nE), d'(m +nE*)},

i=1 i=1

for a suitable absolute constant a’. That is, slightly increasing the coefficient a, we have

I(P,L) < I(P',L') +a <m1/2n1/2D1/2 +m?3pl/BDY3 4 4 nE) + min{amE?, anE*}). (35)

We next turn to bound I(P’, L'). For each cell 7 of R*\ Z(h), put P, := P'N7, and let L, denote
the set of the lines of L that cross 7; put m, = |P-| < m/r (where r = O(E?)), and n, = |L.|.
Since every line ¢ € L’ crosses at most E + 1 components of R*\ Z(h), we have > _n, <n(1+ E).

To simplify the application of the induction hypothesis within the cells of the partition, we want
to make the subproblems be of uniform size, so that m, = m/E* and n, = n/E? for each 7 (the
latter quantity, up to some constant, is the average number of lines crossing a cell). This is easy to
enforce: To achieve m, = m/E*, we simply partition P, into [m,/(m/E*)] = O(1) subsets, each
consisting of at most m/E* points, and analyze each subset separately. Similarly, if 7 is crossed
by &n/E? lines, for £ > 1, we treat 7 as if it occurs [¢] times, where each incarnation involves all
the points of (each of the constantly many corresponding subsets of) P, and at most n/E? lines
of L,. As is easily verified, the number of subproblems remains O(E*), with a larger constant of
proportionality.
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We apply the induction hypothesis for each cell 7, to obtain
I(P;,L;) < gcviogms (mg/snf_/‘:’ + mT) + BA (mi/2ni/2Dl/2 + mi/gnyng/g + nT>

— 2eVIEED (g B2 () B -/ )
+BA ((m/E4)1/2(n/E3)1/2D1/2 I (m/E4)2/3(n/E3)1/3D1/3 I n/E3> 7

for a suitable absolute constant 8. Summing this bound over all cells 7, that is, multiplying it by
O(E*), we get, for a suitable absolute constant b,

S I(Pr, Ly) < b 20V REED (1205 4 ) (36)
’ +bhA <m1/2n1/2D1/2E1/2 + m2/3n1/3D1/3E1/3 + nE) )
We have
e/ oGO ET) _ gevisgm=iog B _ pevioem(1-1i2)
< govEm(1-REE) XV

- 92clog E/+/logm ’

We choose E to ensure that

e 2clog B log(2b
g2clog B/Vlogm - o or coe” log(2b), or log E > 0g2(c )\/log m.

That is, we choose

* l 2b
E>ocVieem g o= Og2(c ) <o/, (37)

where the last constraint can be enforced if ¢ is chosen sufficiently large. With this constraint on
the choice of E, (30) becomes

> I(Pr L) < %20\/@ <m2/5n4/5 + m) (38)
' L bA <m1/2n1/2D1/2E1/2 2Bl DYBEL3 | nE) ‘
Adding this bound to the one in (35]), we get
I(P,L) < %ZCM <m2/ Spdl5 4 m>
+ (bA +a) (ml/znl/le/zEl/2 +m?B3p3DVBEYS 4 nE) +am (39)
+ min{amE?, anE*}.

Returning to the original notations, we have just bounded I(P},L}), for any i = 1,...,k.
Concretely, we have shown that, for each 1,

1
(P} LY) < gzcwog—mi (mf/"’nj‘“ N m)
+(bd+a) (mgﬂ"z‘l/le/inm +m Pl DVBE? 4 mEz> + am; (40)

: 2 4
+ min{am; E;, an,E;},
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where E; is the degree of the new partitioning polynomial that is constructed for P* and L.

We now add up these bounds, using [31]), (82)), and (B4]), and replacing the E;’s by a common
upper bound E that we will choose shortly. We thus get the following bound, where now P and L
stand, respectively, for the original, entire input sets of points and lines.

I(P,L) <~ <m2/5n4/5 + m) +ynD

k
1 Cy/10g m;
+’yZ( VPniPq 4 f/3nj/3sl/3+mi+mD)+§Zz Vg (n?on 4 m, )
+7Z (mghn;/le/zEl/z+mf/3n}/3Dl/3El/3+niE+mi) (41)

k
+ Z min{am; E?, an;E*},
(42)

for a suitable absolute constant v. With several applications of the Cauchy-Schwarz and Hoélder’s
inequalities we get

I(P,L) < (’y + %wbgm) <m2/5n4/5 + m> (43)
+ v (ml/znl/qu/4 +m2Bpl B3 Lo 4 nD)

+ (7711/2711/2D1/2E1/2 +m?BpBDVBEYS 4 onE + m) + min{amE?, anE'}.

We now bifurcate depending on the relation between m and n, where now, as in the recurrence
just derived, m and n refer to the original values of these parameters.

The case m = O(n*/3). Recall that here we take D = O(m?/®/n'/5). Tt is easily checked that, for
this choice of D, each of the terms m/2n/2DV/2 m2/3p1/3 D13 m, and nD > n, is O(m2/5n4/5),
because n'/? < m = O(n*/?).

We choose 14 E = 2¢"VIo8 ™ This turns ([@3)) into the bound
I(P.L) < (’Y 1 %20\/m I Iu22¢*\/m> (m2/5n4/5 4 m) I (m1/2n1/2q1/4 4 m2/3n1/331/3> 7

for suitable absolute constants p and . The choice of ¢*, and the assumption that m > My and
that My is sufficiently large, ensure that

* 1
220 Viegm < _2cx/logm
Sy’ 5 )

and thus we get

I(P,L) < gev/log m <m2/5n4/5 n m) + <m1/2n1/2q1/4 n m2/3n1/381/3> ’

which is the bound asserted in (H).

3This rather minuscule value of E is only needed when m ~ n*3; for smaller values of m, much larger values of
E can be chosen.

38



The case m = Q(n*3). Here we take D = O(n/m!/?). Tt is easily checked that, for this choice
of D, each of the terms m'/2n'/2DY2 m2/3p1/3DY/3 m2/5p4/5 and nD > n, is O(m), because
m = Q(n/3).

We choose, as before, E = 2¢°VI98™ (or a larger value when applicable), and note that, for
m > My sufficiently large, the term nE? is also O(m). This turns (3) into the bound

I(P,L) < (’H‘ %2cm+u22c*m> <m2/5n4/5 +m) t 4y (m1/2n1/2q1/4+m2/3n1/331/3),

for suitable absolute constants p and 7. As above, the choice of ¢*, and the assumption that
m > My and that My is sufficiently large, ensure that

* 1
22c Viogm < _20\/10gm
Yt B )

and thus we get
I(P,L) < gcv/logm <m2/5n4/5 + m) . <m1/2n1/2q1/4 + m2/3n1/381/3> ’

again establishing the bound in ([Bl). Therefore, in both cases, we completed, at last, the induction
step and thus establishing the general upper bound (&) in the theorem. The improved bound in (@),
for m < nb7 or for m > n®/3, has already been established. With the lower bound construction,
given in the following section, the proof of the theorem is completed. O

4 The lower bound

In this section we present a construction that shows that the bound asserted in the theorem is
worst-case tight (except for the factor 20\/@)7 for each m and n, and for ¢ and s in suitable
corresponding ranges, made precise below. The construction is a generalization to four dimensions
of a construction due to Elekes; see [9]. (A three-dimensional generalization has been used in Guth
and Katz [15] for their lower bound construction.)

We have already remarked that the “lower order” terms m'/2n!/2¢Y/4 and m?2/3n/3s1/3 are both
worst-case tight, as they can be attained by a suitable packing of points and lines into hyperplanes
(for the first term) or planes (for the second term). Specifically, assume that s > /g, and create
n/q parallel hyperplanes, and place on each of them ¢ lines and mg/n points in a configuration that
attains the three-dimensional lower bound as in Guth and Katz [15]. Note that in this construction
no plane contains more than ,/q < s lines, as desired. Overall, we get

(n/q) . @((mq/n)1/2q3/4) — @(m1/2n1/2q1/4)
incidences. A similar (and simpler) construction can be carried out for the second term m?/3n!/3s1/3,

We therefore focus on the term m?°n*/® (the remaining terms m and n are trivial to attain).

We fix two integer parameters k and ¢, with concrete values that will be set later, and take P
to be the set of vertices of the integer grid

{(z,y,z,w) |1 <z <k, 1<y, 2w 2k}
We have |P| = 8k*¢3.
We then take L to be the set of all lines of the form

y = ax + b, z=cx +d, w = ex + f, (44)
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where 1 < a,c,e < £ and 1 < b,d, f < kf. We have |L| = k3/5. Note that each line in L has k
incidences with the points of P, one for each x = 1,2,...,k, so

I(P,L) = k"% = ©(|P|*/°|L|"),

as is easily checked. Note that |L|'/? < |P| < 8|L|*/3, which is (asymptotically) the range of interest
for this bound to be significant: when |P| < |L|*/? we have the trivial bound I(P,L) = O(|L]),
and when |P| > |L|*3, the leading term in the bound changes qualitatively to O(m), which is
trivial for a lower bound. Moreover, for any pair of integers m, n, with nt/2 < m < 3, we can
find k and ¢ for which |P| = ©(m) and |L| = ©(n). Specifically, choose k = ©(m?/®/n'/5) and
¢ = ©(n*/® /m3/5); both are > 1 for the range of m and n under consideration.

To complete the construction, we show that no hyperplane or quadric can contain more than
g0 := O (|L|%/®/|P|?/%) = O(k*¢5) lines of L, and no plane can contain more than so := O (|L|7/® /| P|*/%) =
O(K19) lines of L. As an easy calculation shows, these threshold values of ¢ and s are such that,
for ¢ > qg or s > sg, the corresponding “lower-dimensional” term m2nl/2g /4 or m2/3p1/31/3
dominates the “leading” term m?/°n%/® (for the former domination to arise, we need to assume, as
above, that /g < s), making the above construction pointless (see below for more details). The
actual values of ¢ and s that we will now derive are actually much smaller.

To estimate our ¢ and s, let A be an arbitrary hyperplane. If A is orthogonal to the z-axis
then it does not contain any line of L, as is easily checked, so we may assume that h intersects any
hyperplane of the form = ¢ in a 2-plane m;. The intersection of P with x = ¢ is a 2kf x 2k¢ x 2k{
lattice, that we denote as @;. Every line A € L in h meets 7; at a single point (as noted, it cannot
be fully contained in 7;), which is necessarily a point in @; (every line of L contains a point of every
Q;). The size of m; N Q; is easily seen to be O((kf)?), and each point is incident to at most ¢? lines
that lie in h. To see this latter property, substitute the equations ([@4]) of a line of L into the linear
equation defining h, say Ar+ By+Cz+ Dw—1 = 0 (where B, C and D are not all 0). This yields a
linear equation in x, whose z-coefficient has to vanish. This in turn yields a linear equation in a, c,
and e, which can have at most £2 solutions over [1,...,#]? (it is easily checked that the z-coefficient
cannot be identically zero for all choices of a, ¢, €). The number of lines of point-line incidences of
P and L within A is thus O(¢€2(kf)?) = O(k%¢*). Since each line is incident to k points, necessarily
all lying in h, it follows that the number of lines of L in h is O(k*¢*/k) = O(k£*), which is always
smaller than qq.

This analysis easily extends to show that no quadric contains more than O(k¢*) lines of L; we
omit the routine details.

Finally, let m be a 2-plane, where again we may assume that 7 is not orthogonal to the z-axis.
Then 7 meets a hyperplane x = ¢ in a line yu, and p N Q; contains at most k¢ points. Every line
A in 7 meets p at one of these points and, arguing as above, each such point can be incident to
at most ¢ lines that lie in 7 (now instead of one linear equation in a, ¢, e, we get two). Hence, 7
contains at most k¢?/k = ¢? lines of L, which is always smaller than sq.

We have thus shown that the bound in Theorem [[3]is (almost) tight in the worst case. The
bound will be tight when |P| < |L|%7, which occurs when k < £3/2 as an easy calculation shows.

Remark. As the analysis shows, the various constructions impose certain constraints on the values
of ¢ and s, and are therefore not as general (in terms of these parameters) as one might hope. It
would be interesting to extend the constructions so that they apply to more general values of ¢ and
s.

40



5 Conclusion

The results of this paper (almost) settle the problem of point-line incidences in four dimensions,
but they raise several interesting and challenging open problems. Among them are:

(a) Get rid of the factor 2¢V1°8™ in the bound. We have achieved this improvement when m is
not too close to n*/3, so to speak, allowing us to use the weak but non-inductive bounds and
complete the analysis in one step. We believe that the ranges of m where this can be done can
be enlarged, e.g. by improving the weak bounds. A concrete step in this direction would be to
improve the term O(nD*) in the second bound in Proposition 3.3, which, as already remarked,
appears to be too weak. It would also be interesting to improve the bound using the strategy in
[35] [37], which generates a sequence of ranges of m, converging to m = @(n4/ 3), where in each
range the improved bound (@) holds, with a different constant of proportionality A. (For readers
familiar with the approaches in [35] [36], we note that the reason this technique does not appear
to apply here is the multitude of subproblems, each with its own m;, n;. The induction in [35] [36]
generates subproblems in which the relation between m and n falls into a range already handled.
Here though we do not know how to enforce this property, as we have little control over the values
of m,n in the resulting subproblems.

(b) Extend (and sharpen) the bound of Corollary [[4] for any value of k. In particular, is it true
that the number of intersection points of the lines (this is the case k = 2; the intersection points
are also known as 2-rich points) is O(n*3 4+ ng'/? + ns)? We conjecture that this is indeed the
case. (In this conjecture we assume that we have already managed to get rid of the factor 20\/m,
as in (a) above.) A deeper question, extending a similar open problem in three dimensions that
has been posed by Guth and others (see, e.g., Katz’s expository note [24]), is whether the above
conjectured bound can be improved when ¢ = o(n?/3) and s = o(n!/3), that is, when the second
and third terms in the conjectured bound become much smaller than the term n*3. We also note
that if we could establish such a bound for the number of k-rich points, for any constant k& (when
g and s are not too large), then the case of large m (that is, m = Q(n*?3)) would become vacuous,
as only O(n*3) points could be incident to more than k lines.

(c) Extend the study to five and higher dimensions. In a preliminary ongoing study, joint with
Adam Sheffer, we can do it using a constant-degree partitioning polynomial, with the disadvantages
discussed above (slightly weaker bounds, significantly more restrictive assumptions, and inferior
“lower-dimensional” terms). The leading terms in the resulting bounds, for points and curves in
RY, are O(m?/(d+1)+end/(d+1) L ypl+e) for any € > 0. See also Dvir and Gopi [7] and Hablicsek and
Scherr [16] for recent related studies.

Obtaining sharper results in such general settings, like the ones obtained in this paper, is quite
challenging algebraically, although some of the tools developed in this work seem promising for
higher dimensions too.

(d) If we are given in advance that the points and lines lie in some algebraic surface of a given
degree D > 2, can we improve the bound and/or simplify the analysis? In our companion work [3§]
we achieve these goals for the three-dimensional case, improving the bound of Guth and Katz [15]
in such special cases.

(e) Elaborating on item (a) above, we note that the “culprit” Proposition B.3] which produces
the weak bounds that force us to go into the induction, is only used in the case where Z(f,g)
is two-dimensional, and the difficulty there lies in bounding the number of incidences within a
two-dimensional ruled surface (be it either one irreducible ruled surface of large degree, or the
union of many irreducible ruled surfaces of small degree). The analysis of the three-dimensional
analogous situation (addressed in Guth and Katz [I5]), cannot be applied here, since the degree
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of the underlying surface in four dimensions is O(D?) instead of D in [15]. In a recent study of
Szermerédi-Trotter type theorems in three dimensions [20], Kolldr uses the arithmetic genus of
curves to prove effective bounds on the number of point-line incidences in three dimensions. In four
dimensions, the situation is more involved, but we hope that the arithmetic genus of the surface
Z(f,g) may yield effective bounds for the number of incidences within this surface.
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A Severi’s Theorem

In this appendix we sketch a proof of Severi’s theorem (Theorem B.IT).

First, recall from Section 2] that a real (resp., complex) surface X is ruled by real (resp.,
complez) lines if every point p € X in a Zariski open dense set is incident to a real (resp., complex)
line that is fully contained in X. This definition has been used in several recent works (see, e.g.,
[15]); this is a slightly weaker condition than the classical condition that requires that every point
of X be incident to a line contained in X. Nevertheless, as we show next, the two are equivalent.

Lemma A.1. Let f € Rlz,y, z|(resp., f € R[x,y, z,w]) be an irreducible polynomial such that there
exists a Zariski open dense set U C Z(f), so that each point in the set is incident to a line, fully
contained in Z(f). Then FLy (resp., FLj‘f) vanishes identically on Z(f), and Z(f) is ruled by lines.

Proof. By assumption and definition, FL¢ (resp., FL;lc) vanishes on U. If it vanishes on Z(f), The-
orem 2Tl implies that Z(f) is ruled. Otherwise, Z(f,FLy) (resp., Z(f, FL;%)) is properly contained
in Z(f) and contains U. Since Z(f) is irreducible, this latter variety must be of dimension at most
1 (resp., 2). On the other hand, Z(f,FLy) (resp., Z(f, FL;%)) is Zariski closed set (by definition of
the Zariski topology) and therefore contains its Zariski closure. As U is Zariski dense, its Zariski
closure is Z(f). O

Remark. In Sharir and Solomon [38], we have proved the same statement without using the
Flecnode polynomial.

This phenomenon generalizes to k-flats instead of lines (and the proof translates verbatim).

Lemma A.2. Let V be an irreducible variety for which there exists a Zariski open subset U C V
with the property that each point p € U is incident to a k-flat that is fully contained in V. Then
this property holds for every point of V.

We now proceed to sketch a proof of Severi’s theorem. For convenience, we repeat its statement.

Theorem 3.11 (Severi’s Theorem [34]). Let X C P4(C) be a k-dimensional irreducible variety,
and let Xg be a component of maximal dimension of F(X), such that the lines of ¥y cover X. Then
the following holds.

1. If dim(%g) = 2k — 2, then X is a copy of P¥(C) (that is, a complex projective k-flat).

2. If dim(Xg) = 2k — 3, then either X is a quadric, or X is ruled by copies of P*~1(C), i.e.,
every point p € X is incident to a copy of P*=1(C) that is fully contained in X.

We sketch a proof in the case k = 3, d = 4, under the simplifying assumption that for any non-
singular x € X, ¥, is infinite; this assumption holds in our application of the theorem (by the
informal dimensionality argument mentioned in the paper, it holds “on average” in general for these
parameters). Our proof is based on a sketch provided by A. J. de Jong, via private communication,
and we are very grateful for his assistance.

Sketch of Proof. For z € X, we recall that =, denotes the cone of lines (i.e., union of lines) of
Y0, The proof consists of the following steps.

(1) Assume first that dim(Xy) = 2k — 2 = 4. Then there exists some non-singular point zp € X
with dim (3¢ ,) = 2. Indeed, if, for all non-singular points z € X, dim(X¢ ) < 1, then dim(%y) < 4
(see the analysis in Theorem B.9] and the preceding analysis), contradicting the assumption in this
case. By an argument that has already been sketched earlier, this implies that dim(Zg,,) = 3,
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i.e., the cone of lines in X ;, through zg is three-dimensional, and therefore X = =g ;. As zg is
non-singular, it follows that X must be a hyperplane, as claimed.

(2) Consider next the case where dim(X) = 2k — 3 = 3, and for any non-singular point z € X,
Yo,z is 1-dimensional (as just argued, if X, is two-dimensional for some non-singular x € X, then
X is a hyperplane). In other words, Xy ., parameterized by the direction of its lines, is a curve in
PT, X = P?(C); put e, for its degree. If e, = 1, then =, contains a 2-flat.

We next define a “plane-flecnode polynomial system” associated with X, that expresses, for a
point x € X, the existence of a 2-flat H, such that H osculates to X to order 3 at x. Since X is
a hypersurface, we can write X = Z(f), for a suitable 4-variate polynomial f (see Section [2]), and
assume that f is irreducible (as X is irreducible).

We represent a 2-flat through the origin in C* (ignoring the lower-dimensional family of 2-flats
that cannot be represented in this manner) as

Hoyg01,09,03 1= {(z,y,2,w) | 2 = vox + v1y, w = vox + v3Y}, (45)

for vy, v1,v2,v3 € C. The 2-flat Hy, y, 05,05 1S said to osculate to X = Z(f) to order k at p, if the
Taylor expansion of f at p along H satisfies

Fp+ (z, 9,007 + v1y, vax + v3y)) = O(zF 1 4 yFF1). (46)

This translates into a system of homogeneous polynomial equations in vy, vy, v2, v3, involving the
partial derivatives of f up to order k. Specializing to the case k = 3, the plane-flecnode polynomial
system, PFLy, associated with f, is obtained by eliminating vo,v1,v2,v3 from these equations (for
osculation up to order 3). This is the multipolynomial resultant system of the polynomials defining
these equations up to order 3, with respect to vg, vy, v2,v3 (see Van der Waerden [45, Chapter XI]
for details).

Another theorem of Landsberg [25, Theorem 1] states that, if, for every g € PFL¢, g vanishes
identically on X, then X is ruled by 2-flats, which finishes the proof in this case.

Therefore, we may assume that XNZ(PFLy) is a Zariski closed proper subset of X. By definition
of PFLy, it follows that for every non-singular point x € X \ Z(PFLy) (namely, outside the Zariski
closed set Z(PFLy)), we have e, > 1. Indeed, if e, = 1, then, as observed above, there is a 2-flat
incident to x, and fully contained in X, implying that for every g € PFL, g(x) = 0, contradicting
the assumption that x € X \ Z(PFLy).

For a generic hyperplane H in P*(C), which is not contained in Z(PFLy), put Sy := X N H. As
observed above, X N Z(PFLy) is properly contained in X, which in turn implies that, for a generic
hyperplane H in P4(C), Sy is not fully contained in Z(PFL;). Indeed, let g be a polynomial in
PFL; that does not vanish identically on X. Then X N Z(g9) = Z(f,g) is strictly contained in
X = Z(f), and since Z(f) is irreducible, it follows that Z(f,g) is two-dimensional. Therefore, for
a generic hyperplane H, X N Z(PFLy) N H is contained in the one-dimensional variety Z(f,g) N H,
and thus cannot contain the two-dimensional variety Spr.

Let € X be a non-singular point, and let H be a hyperplane in P*(C), which is incident to X
and not contained in Z(PFLy). We claim that for a generic H, there are e, distinct lines that are
incident to x and fully contained in Sg. Indeed, the intersection of the hyperplane H with T,,X is a
2-flat in 7, X containing x. Taking its projectivization (where the point x is regarded as 0), namely,
PT, X = P2, the (generic) 2-flat 7, X N H becomes a (generic) line. The degree of ¥, C PT, X
is e,. Therefore, the intersection of ¥, with a line in P7, X = P2 consists of e, points, which are
distinct since the line is generic. Therefore, its intersection with ¢, consists of e, distinct points.
These e, distinct (projective) points represent e, distinct lines, incident to x and fully contained
in X N H = Sy, as claimed.

46



We say that a pair (z, H), where H is a hyperplane in P4(C) and x € Sy, is adequate if there are
e, distinct lines incident to x that are fully contained in Sg. Since a generic point x is non-singular,
the previous paragraph implies that a generic pair (z, H) is adequate. Therefore, by changing the
order of quantifiers, fixing a generic hyperplane H, a generic point x € Sg is such that the pair
(z, H) is adequate.

By Bertini’s Theorem (see, e.g., Harris [I7, Theorem 17.16]), the irreducibility of X implies
that for a generic hyperplane H, the surface Sy is an irreducible surface in H = P3(C). For a
generic point x € Sy, that is, outside an algebraic curve Cy in Sy, the pair (z, H) is adequate.
Therefore, there are e, distinct lines that are incident to x and fully contained in Sy, which, by
Lemma [AT], implies that Sy is a ruled surface. Moreover, for any x € Sy \ Z(PFLf), we have
ez > 1. As observed above, PFL; does not vanish identically on Sy, implying that Z(PFLy) N Sy
is a Zariski closed proper subset of Sy, i.e., an algebraic curve contained in Sy. Adding this curve
to Cp, it follows that outside this algebraic curve, each point of Sz is incident to at least two lines
fully contained in Spy. By Sharir and Solomon [38, Lemma 9], this implies that Sp is either a
2-flat or a regulus. If X is of degree greater than two, then, for a generic hyperplane H, Sy is a
(two-dimensional) surface of degree greater than two. Therefore, X must be of degree at most two,
namely, X is either a hyperplane or a quadric. If X is a hyperplane, then ¥y is four-dimensional,
contrary to the present assumption, so finally, we deduce that X is a quadric, and the proof is
complete. O
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