
Linear Hashing is Awesome

Mathias Bæk Tejs Knudsen∗

University of Copenhagen,
mathias@tejs.dk

Abstract

We consider the hash function hpxq “ ppax` bq mod pq mod n where a, b are chosen uniformly at
random from t0, 1, . . . , p´ 1u. We prove that when we use hpxq in hashing with chaining to insert n
elements into a table of size n the expected length of the longest chain is Õ

`

n1{3
˘

. The proof also
generalises to give the same bound when we use the multiply-shift hash function by Dietzfelbinger
et al. [Journal of Algorithms 1997].
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1 Introduction

In this paper we study the hash function h : rps Ñ rms (where rms “ t0, 1, . . . ,m´ 1u) defined by
hpxq “ ppax` bq mod pq mod m, where a, b P rps are chosen uniformly at random from rps. Here, p is a
prime and p ě m. We assume that we have a set X Ď rps of n keys with n ď m and use h to assign a
hash value hpxq to each key x P X. We are interested in the frequency of the most popular hash value,
i.e. we study the random variable Mph,Xq defined by

Mph,Xq “ max
yPrms

|tx P X | hpxq “ yu| . (1)

In Theorem 1 we prove that ErMph,Xqs “ O
`

3
?
n log n

˘

. We also consider the hash function h̄ : rqs Ñ

rms defined by h̄pxq “
Y

paxq mod q
q{m

]

, where q,m are powers of 2, q ě m ě n and a is chosen uniformly at
random among the odd numbers from rqs. The function h̄pxq was first introduced by Dietzfelbinger et
al. [3]. In Theorem 2 we prove that it also holds that E

“

Mph̄, Xq
‰

“ O
`

3
?
n log n

˘

.
We note that when we use hpxq “ ppax` bq mod pq mod m in hashing with chaining, M is the size

of the largest chain. When scanning the hash table for an element the expected time used is Op1q and
the worst case time is at most OpMph,Xqq.

1.1 Related work

It is folklore that the size of the largest chain is Op
?
nq and this bounds hold for any 2-independent hash

function.
Alon et al. [1] considers the linear hash function hm,k : Fm Ñ Fk, where F is a finite field and

n “ |F |k. The function is defined by hm,kpx1, . . . , xmq “
ř

i xiai, where ai P Fk is chosen uniformly at
random. For m “ 2, k “ 1 the hash function is h2,1px, yq “ ax` by where a, b P F are chosen uniformly
at random. It is shown in [1] that there exists a set X Ď F2 such that ErMph2,1, Xqs ą

?
n if n is a

square and ErMph2,1, Xqs “ Ωp 3
?
nq if n is a prime power that is not a square. In [1] it is also shown

that when F is the field of two elements the expected length of the longest chain is Oplog n log lognq
improving the results in [4, 5].

Broder et al. [2] considered hpxq “ pax` bq mod p in the context of min-wise hashing.

2 Preliminaries

Z denotes the integers, and Zn “ Z{nZ denotes the integers mod n. Z˚n is the set of elements of Zn
having a multiplicative inverse. rns is the set of integers from 0 to n´1, that is rns “ t0, 1, 2, . . . , n´ 1u.
For a pair of integers n,m P Z such that pn,mq ‰ p0, 0q we let gcdpn,mq denote the greatest common
divisor of n and m. If gcdpn,mq “ 1 then n and m are said to be coprime.

For integers x, r P Z we let rxsr P Zr denote the residue class of x mod r. We let ιr : Zr Ñ rrs be the
unique mapping that satisfies rιrpxqsr “ x. For x P Zr we let ||x||r “ min tιrpxq , ιrp´xqu.

For a set S and an element x the sets S ` x and xS are defined as ts` x | s P Su and txs | s P Su,
respectively.

For integers r, s,m, let Impr, sq Ď Zm denote the set

Impr, sq “ trrsm , rr ` 1sm , . . . , rr ` s´ 1smu .

The set Impr, sq is called an interval. A non-empty set X Ď Zm is an interval if there exists r, s such
that X “ Impr, sq.
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3 Main Result

In this section we prove the main results of this paper, namely Theorem 1 and Theorem 2. The proofs
of the two theorems are very similar and both rely on Lemma 1 below.

Lemma 1. Let n,M, r be integers satisfying 4M ď n ď r and let A Ď Zr be a set of size n. Let B Ď Z˚p
be a set of size ďM satisfying the following conditions:

1 ιpbq P pM, 2Mq for all b P B.

2 ιpbq, ιpb1q, and r are pairwise coprime for every b, b1 P B with b ‰ b1.

Assume that for every b P B there exists an interval Ib of size
P

r
n

T

such that Ib X bA contains at least
4M elements. Then there exists at least M |B| ordered pairs of different elements a, a1 P A such that
|a´ a1| ă r

nM .

Proof. We note that for every b the set b´1Ib is the union of ιpbq disjoint intervals of size ď
Q

r
nιpbq

U

, and

we write it as such a union b´1Ib “
Ťιpbq´1
j“0 Ib,j . For any b, b1 P B, b ‰ b1 the set b´1Ib X b1

´1Ib1 is either
empty or an interval. So for each b, b1 P B, b ‰ b1 there is at most one index j P rιpbqs such that the
intersection Ib,j X b1´1Ib1 is non-empty. For every b P B and j P rιpbqs, let δpb, jq denote the number of
elements b1 P B such that Ib,j X b1´1Ib1 is non-empty. Note that δpb, jq ě 1 since b P B. Furthermore
řιpbq´1
j“0 δpb, jq ă |B| ` ιpbq ď 3M since each b1´1Ib1 has a non-empty intersection with at most one of

the sets Ib,j , j P rιpbqs.
The number of ordered pairs of different elements pa, a1q P A X Ib,j such that |a´ a1| ă r

nM is

exactly |AX Ib,j | ¨ p|AX Ib,j | ´ 1q since Ib,j is an interval of size ď
Q

r
nιpbq

U

and ιpbq ą M . Let τpb, jq “
max t0, |AX Ib,j | ´ 1u, then the number of pairs is at least pτpb, jqq2. We can lower bound the number
of such pairs in A by considering the pairs in A X Ib,j for each b P B and j P rιpbqs and note that each
pair we count is counted at most δpb, jq times. This gives that the number of ordered pairs pa, a1q P A
such that |a´ a1| ă r

nM is at least:

ÿ

bPB

ÿ

jPrιpbqs

pτpb, jqq2

δpb, jq
(2)

For any b P B, by the Cauchy-Schwartz inequality we have that:
¨

˝

ÿ

jPrιpbqs

δpb, jq

˛

‚

¨

˝

ÿ

jPrιpbqs

pτpb, jqq2

δpb, jq

˛

‚ě

¨

˝

ÿ

jPrιpbqs

τpb, jq

˛

‚

2

(3)

We clearly have that
ř

jPrιpbqs τpb, jq ě 4M ´ ιpbq ě 2M . Also recall, that we have that
ř

jPrιpbqs δpb, jq ď

3M . Combining this with (2) and (3) gives that A contains at least 4M |B|
3 ě M |B| of the desired

pairs.

Below is a proof of Theorem 1.

Theorem 1. Let n,m, p be integers with p a prime and p ě m ě n. Let X Ď Zp be a set of n elements.
Let h : Zp Ñ Zm be defined by hpxq “ rιppax` bqsm where a, b P Zp are chosen uniformly at random.
Let M “ MpXq be the random variable counting the number of elements x P X that hash to the most
popular hash value, that is

M “MpXq “ max
yPZm

|tx P X | hpxq “ yu| .

Then

ErM s “ O
´

3
a

n log n
¯

. (4)
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Proof. We note that ErM | a “ 0s “ n since h is constant when a “ 0. Therefore:

ErM s “
p´ 1

p
ErM | a ‰ 0s `

1

p
ErM | a “ 0s ă ErM | a ‰ 0s ` 1 .

Therefore it suffices to bound the expected value of M when a is chosen uniformly at random from
Zpz t0u “ Z˚p and not from Zp. So from now on, assume that a is chosen uniformly at random from Z˚p .

The random variables a and a´1b are independent. Note, that hpxq can be rewritten as hpxq “
“

ιp
`

apx` a´1bq
˘‰

m
. It clearly suffices to bound the expected value of M conditioned on all possible

values a´1b. For any fixed value of a´1b “ c, the expected value of M conditioned on a´1b “ c is the
same as the expected value of MpX ` cq conditioned on b “ 0. Therefore it suffices to give the proof
under the assumption that b “ 0. So we assume that b “ 0.

Let A “ m´1aX, then there exists an interval Ia of size at most
P

p
m

T

that contains M elements of
A for the following reason: Let f : Zp Ñ Zm be defined by x Ñ rιppxqsm. By definition, there exists a
random variable y P Zp such that

ˇ

ˇf´1pyq X aX
ˇ

ˇ ěM . And there exists a i P rms such that

f´1pyq “

"

ri` kmsp | k P Z, 0 ď k ă
p´ i

m

*

,

and hence Ia “ m´1f´1pyq is an interval of size ď
P

p
m

T

that contains M elements of A.
Let α P

“

1, n4
‰

. We are now going to bound the probability that M ě 4α. Let δ “ PrrM ě 4αs and
let A be the set of all elements a0 P Z˚p such that M ě 4α if a “ a0.

Let S Ď Z˚p be the set of all elements s P Z˚p that satisfies that ιppsq is a prime in the interval pα, 2αq.
Let B Ď S be the set of all elements s P S such that as P A. Note, that B is a random variable. By
linearity of expectation, we have that Er|B|s “ |S| δ. Recall, that A “ m´1aX. For any b P B we have
that ab P A and therefore there exists an interval of size

P

r
n

T

that contains at least 4α elements of bA.
By Lemma 1, this implies that there are α |B| ordered pairs of different elements x, x1 P X such that
||ax´ ax1||p ă

p
mα . So the expected number of elements x, x1 P X such that ||apx´ x1q||p ă

p
mα is at

least αEr|B|s “ αδ |S|. On the other hand, for each ordered pair of different elements x, x1 P X the
probability that ||apx´ x1q||p ă

p
mα is at most 2p

mαpp´1q , and by linearity of expectation the expected
number of such ordered pairs is at most

npn´ 1q ¨
2p

mαpp´ 1q
ď

2n

α
.

We conclude that αδ |S| ď 2n
α . By the prime number theorem, |S| “ Θ

´

α
logα

¯

“ Ω
´

α
logn

¯

. Reordering
gives us that:

PrrM ě 4αs “ δ “ O

ˆ

n log n

α3

˙

.

The expected value of M can now be bounded in the following manner:

ErM s “
8
ÿ

k“1

PrrM ě ks

“

t 3
?
n lognu
ÿ

k“1

PrrM ě ks `
n
ÿ

k“t 3
?
n lognu`1

PrrM ě ks

ď

Y

3
a

n log n
]

`

n
ÿ

k“t 3
?
n lognu`1

O

ˆ

n log n

k3

˙

“ O
´

3
a

n log n
¯

which was what we wanted.
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The proof of Theorem 2 is very similar to the proof of Theorem 1 but we include it for completeness.

Theorem 2. Let n, `, r, q,m be integers with q “ 2r,m “ 2` and q ě m ě n. Let X Ď Zq be a set of n
elements. Let h : Zq Ñ rms be defined by hpxq “

X

ιqpaxq ¨ 2
`´r

\

where a P Z˚q are chosen uniformly at
random. Let M “MpXq “ maxyPrms |tx P X | hpxq “ yu|. Then

ErM s “ O
´

3
a

n log n
¯

. (5)

Proof. Let y be a random variable such that
ˇ

ˇh´1pyq XX
ˇ

ˇ “ M , and let A “ aX. The set ah´1pyq is
an interval of size q

m that contains exactly M elements of A.
Let α P

“

1, n4
‰

. We are now going to bound the probability that M ě 4α. Let δ “ PrrM ě 4αs, and
let A be the set of all elements a0 P Z˚p such that M ě 4α if a “ a0.

Let S Ď Z˚q be the set of all elements s P Z˚q that satisfies that ιqpsq is a prime in the interval pα, 2αq.
Let B Ď S be the set of all elements s P S such that as P A. Note, that B is a random variable. By
linearity of expectation, we have that Er|B|s “ |S| δ. Recall, that A “ m´1aX. For any b P B we have
that ab P A and therefore there exists an interval of size q

m that contains at least 4α elements of bA.
By Lemma 1, this implies that there are α |B| ordered pairs of different elements x, x1 P X such that
||ax´ ax1||q ă

q
mα . So the expected number of elements x, x1 P X such that ||apx´ x1q||q ă

q
mα is at

least αEr|B|s “ αδ |S|. On the other hand, for each ordered pair of different elements x, x1 P X the
probability that ||apx´ x1q||q ă

q
mα is at most 4

mα , and by linearity of expectation the expected number
of such ordered pairs is at most

npn´ 1q ¨
4

mα
ď

4n

α
.

We conclude that αδ |S| ď 4n
α , and now we can bound the expected value exactly as in Theorem 1.
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