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Abstract

We study the hard-core (gas) model defined on independent sets of an input graph where
the independent sets are weighted by a parameter (aka fugacity) λ > 0. For constant ∆,
previous work of Weitz (2006) established an FPTAS for the partition function for graphs of
maximum degree ∆ when λ < λc(∆). The threshold λc(∆) is the critical point for the statistical
physics phase transition for uniqueness/non-uniqueness on the infinite ∆-regular trees. Sly
(2010) showed that there is no FPRAS, unless NP=RP, when λ > λc(∆). The running time of
Weitz’s algorithm is exponential in log∆. Here we present an FPRAS for the partition function
whose running time is O∗(n2). We analyze the simple single-site Markov chain known as the
Glauber dynamics for sampling from the associated Gibbs distribution. We prove there exists a
constant ∆0 such that for all graphs with maximum degree ∆ ≥ ∆0 and girth ≥ 7 (i.e., no cycles
of length ≤ 6), the mixing time of the Glauber dynamics is O(n log n) when λ < λc(∆). Our
work complements that of Weitz which applies for small constant ∆ whereas our work applies
for all ∆ at least a sufficiently large constant ∆0 (this includes ∆ depending on n = |V |).

Our proof utilizes loopy BP (belief propagation) which is a widely-used algorithm for infer-
ence in graphical models. A novel aspect of our work is using the principal eigenvector for the
BP operator to design a distance function which contracts in expectation for pairs of states that
behave like the BP fixed point. We also prove that the Glauber dynamics behaves locally like
loopy BP. As a byproduct we obtain that the Glauber dynamics converges, after a short burn-in
period, close to the BP fixed point, and this implies that the fixed point of loopy BP is a close
approximation to the Gibbs distribution. Using these connections we establish that loopy BP
quickly converges to the Gibbs distribution when the girth ≥ 6 and λ < λc(∆).
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1 Introduction

Background

The hard-core gas model is a natural combinatorial problem that has played an important role in the
design of new approximate counting algorithms and for understanding computational connections
to statistical physics phase transitions. For a graph G = (V,E) and a fugacity λ > 0, the hard-core
model is defined on the set Ω of independent sets of G where σ ∈ Ω has weight w(σ) = λ|σ|. The
equilibrium state of the system is described by the Gibbs distribution µ in which an independent
set σ has probability µ(σ) = w(σ)/Z. The partition function Z =

∑
σ∈Ω w(σ).

We study the closely related problems of efficiently approximating the partition function and
approximate sampling from the Gibbs distribution. These problems are important for Bayesian
inference in graphical models where the Gibbs distribution corresponds to the posterior or likelihood
distributions. Common approaches used in practice are Markov Chain Monte Carlo (MCMC)
algorithms and message passing algorithms, such as loopy BP (belief propagation), and one of the
aims of this paper is to prove fast convergence of these algorithms.

Exact computation of the partition function is #P-complete [37], even for restricted input
classes [9], hence the focus is on designing an efficient approximation scheme, either a deterministic
FPTAS or randomized FPRAS. The existence of an FPRAS for the partition function is polynomial-
time inter-reducible to approximate sampling from the Gibbs distribution.

A beautiful connection has been established: there is a computational phase transition on graphs
of maximum degree ∆ that coincides with the statistical physics phase transition on ∆-regular
trees. The critical point for both of these phase transitions is λc(∆) := (∆ − 1)∆−1/(∆ − 2)∆. In
statistical physics, λc(∆) is the critical point for the uniqueness/non-uniqueness phase transition
on the infinite ∆-regular tree T∆ [17] (roughly speaking, this is the phase transition for the decay
versus persistence of the influence of the leaves on the root). For some basic intuition about the
value of this critical point, note its asymptotics λc(∆) ∼ e/(∆−2) and the following basic property:
λc(∆) > 1 for ∆ ≤ 5 and λc(∆) < 1 for ∆ ≥ 6.

Weitz [41] showed, for all constant ∆, an FPTAS for the partition function for all graphs of
maximum degree ∆ when λ < λc(∆). To properly contrast the performance of our algorithm
with Weitz’s algorithm let us state his result more precisely: for all δ > 0, there exists constant
C = C(δ), for all ∆, all G = (V,E) with maximum degree ∆, all λ < (1 − δ)λc(∆), all ε > 0,
there is a deterministic algorithm to approximate Z within a factor (1 ± ε) with running time
O
(
(n/ε)C log∆

)
. An important limitation of Weitz’s result is the exponential dependence on log∆

in the running time. Hence it is polynomial-time only for constant ∆, and even in this case the
running time is unsatisfying.

On the other side, Sly [33] (extended in [6, 7, 34, 8]) has established that, unless NP = RP ,
for all ∆ ≥ 3, there exists γ > 0, for all λ > λc(∆), there is no polynomial-time algorithm for
triangle-free ∆-regular graphs to approximate the partition function within a factor 2γn.

Weitz’s algorithm was extremely influential: many works have built upon his algorithmic ap-
proach to establish efficient algorithms for a variety of problems (e.g., [28, 31, 18, 19, 32, 38, 20,
30, 21]). One of its key conceptual contributions was showing how decay of correlations properties
on a ∆-regular tree are connected to the existence of an efficient algorithm for graphs of maximum
degree ∆. We believe our paper enhances this insight by connecting these same decay of corre-
lations properties on a ∆-regular tree to the analysis of widely-used Markov Chain Monte Carlo
(MCMC) and message passing algorithms. To date such relations have only been established for
special families of graphs, e.g. amenable graphs or trees for MCMC and graphs of very large girth
for BP e.t.c.
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Main Results

As mentioned briefly earlier on, there are two widely-used approaches for the associated approximate
counting/sampling problems, namely MCMC and message passing approaches. A popular MCMC
algorithm is the simple single-site update Markov chain known as the Glauber dynamics. The
Glauber dynamics is a Markov chain (Xt) on Ω whose transitions Xt → Xt+1 are defined by the
following process:

1. Choose v uniformly at random from V .

2. If N(v) ∩Xt = ∅ then let

Xt+1 =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ)

3. If N(v) ∩Xt 6= ∅ then let Xt+1 = Xt.

The mixing time Tmix is the number of steps to guarantee that the chain is within a specified
(total) variation distance of the stationary distribution. In other words, for ε > 0,

Tmix(ε) = min{t : for all X0, dTV(Xt, µ) ≤ ε},

where dTV() is the variation distance. We use Tmix = Tmix(1/4) to refer to the mixing time for
ε = 1/4.

It is natural to conjecture that the Glauber dynamics has mixing time O(n log n) for all λ <
λc(∆). However the previously best known results for MCMC algorithms are far from reaching the
critical point. It was known that the mixing time of the Glauber dynamics (and other simple, local
Markov chains) is O(n log n) when λ < 2/(∆−2) for any graph with maximum degree ∆ [5, 22, 39].
In addition, [13] analyzed ∆-regular graphs with ∆ = Ω(log n) and presented a polynomial-time
simulated annealing algorithm when λ < λc(∆).

Here we prove O(n log n) mixing time up to the critical point when the maximum degree is at
least a sufficiently large constant ∆0, and there are no cycles of length ≤ 6 (i.e., girth ≥ 7).

Theorem 1. For all δ > 0, there exists ∆0 = ∆0(δ) and C = C(δ), for all graphs G = (V,E) of
maximum degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1 − δ)λc(∆), all ε > 0, the mixing time of the
Glauber dynamics satisfies:

Tmix(ε) ≤ Cn log(n/ε).

Note that ∆ and λ can be a function of n = |V |. The above sampling result yields (via [35, 15])
an FPRAS for estimating the partition function Z with running time O∗(n2) where O∗() hides
multiplicative log n factors. The algorithm of Weitz [41] is polynomial-time for small constant ∆,
in contrast our algorithm is polynomial-time for all ∆ > ∆0 for a sufficiently large constant ∆0.

A family of graphs of particular interest are random ∆-regular graphs and random ∆-regular
bipartite graphs. These graphs do not satisfy the girth requirements of Theorem 1 but they have
few short cycles. Hence, as one would expect the above result extends to these graphs.

Theorem 2. For all δ > 0, there exists ∆0 = ∆0(δ) and C = C(δ), for all ∆ ≥ ∆0, all λ <
(1 − δ)λc(∆), all ε > 0, with probability 1 − o(1) over the choice of an n-vertex graph G chosen
uniformly at random from the set of all ∆-regular (bipartite) graphs, the mixing time of the Glauber
dynamics on G satisfies:

Tmix(ε) ≤ Cn log(n/ε).
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Theorem 2 complements the work in [25] which shows torpid mixing for the Glauber dynamics on
random ∆-regular bipartite graphs when λ > λc(∆).

The other widely used approach is BP (belief propagation) based algorithms. BP, introduced
by Pearl [27], is a simple recursive scheme designed on trees to correctly compute the marginal
distribution for each vertex to be occupied/unoccupied. In particular, consider a rooted tree T =
(V,E) where for v ∈ V its parent is denoted as p(v) and its children are N(v). Let

q(v) = Prµ [v is occupied | p(v) is unoccupied]

denote the probability in the Gibbs distribution that v is occupied conditional on its parent p(v)
being unoccupied. It is convenient to work with ratios of the marginals, and hence let Rv→p(v) =
q(v)/(1 − q(v)) denote the ratio of the occupied to unoccupied marginal probabilities. Because T
is a tree then it is not difficult to show that this ratio satisfies the following recurrence:

Rv→p(v) = λ
∏

w∈N(v)\{p(v)}

1

1 +Rw→v
.

This recurrence explains the terminology of BP that Rw→v is a “message” from w to its parent v.
Given the messages to v from all of its children then v can send its message to its parent. Finally
the root r (with a parent p always fixed to be unoccupied and thus removed) can compute the
marginal probability that it is occupied by: q(r) = Rr→p/(1 +Rr→p).

The above formulation defines (the sum-product version of) BP which is a simple, natural
algorithm which works efficiently and correctly for trees. For general graphs loopy BP implements
the above approach, even though there are now cycles and so the algorithm no longer is guaranteed
to work correctly. For a graph G = (V,E), for v ∈ V let N(v) denote the set of all neighbors of v.
For each p ∈ N(v) and time t ≥ 0 we define a message

Rtv→p = λ
∏

w∈N(v)\{p}

1

1 +Rt−1
w→v

.

The corresponding estimate of the marginal can be computed from the messages by:

qt(v, p) =
Rtv→p

1 +Rtv→p
. (1)

Loopy BP is a popular algorithm for estimating marginal probabilities in general graphical
models (e.g., see [26]), but there are few results on when loopy BP converges to the Gibbs distri-
bution (e.g., Weiss [40] analyzed graphs with one cycle, and [36, 14, 16] presented various sufficient
conditions, see also [2, 29] for analysis of BP variants). We have an approach for analyzing loopy
BP and in this project we will prove that loopy BP works well in a broad range of parameters. Its
behavior relates to phase transitions in the underlying model, we detail our approach and expected
results after formally presenting phase transitions.

We prove that, on any graph with girth ≥ 6 and maximum degree ∆ ≥ ∆0 where ∆0 is a
sufficiently large constant, loopy BP quickly converges to the (marginals of) Gibbs distribution µ.
More precisely, O(1) iterations of loopy BP suffices, note each iteration of BP takes O(n+m) time
where n = |V | and m = |E|.

Theorem 3. For all δ, ε > 0, there exists ∆0 = ∆0(δ, ε) and C = C(δ, ε), for all graphs G = (V,E)
of maximum degree ∆ ≥ ∆0 and girth ≥ 6, all λ < (1 − δ)λc(∆), the following holds: for t ≥ C,
for all v ∈ V , p ∈ N(v), ∣∣∣∣ qt(v, p)

µ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ ≤ ε
3



where µ(·) is the Gibbs distribution.

Contributions

Our main conceptual contribution is formally connecting the behavior of BP and the Glauber
dynamics. We will analyze the Glauber dynamics using path coupling [1]. In path coupling we
need to analyze a pair of neighboring configurations, in our setting this is a pair of independent
sets Xt, Yt which differ at exactly one vertex v. The key is to construct a one-step coupling
(Xt, Yt)→ (Xt+1, Yt+1) and a distance function Φ : Ω×Ω → R≥0 which “contracts” meaning that
the following path coupling condition holds for some γ > 0:

E [Φ(Xt+1, Yt+1) | Xt, Yt] ≤ (1− γ)Φ(Xt, Yt).

We use a simple maximal one-step coupling and the path coupling condition simplifies to:

(1− γ)Φ(Xt, Yt) ≥
∑

z∈N(v)

λ

1 + λ
1 {z is unblocked in Xt}Φ(z),

where unblocked means that N(z)∩Xt = ∅, i.e., all neighbors of z are unoccupied, and we have as-
sumed there are no triangles so as to ignore the possibility that Xt and Yt differ on the neighborhood
of z.

The distance function Φ must satisfy a few basic conditions such as being a path metric, and if
X 6= Y then Φ(X,Y ) ≥ 1 (so that by Markov’s inequality Pr [Xt 6= Yt] ≤ E [Φ(Xt, Yt)]). A standard
choice for the distance function is the Hamming distance. In our setting the Hamming distance
does not suffice and our primary challenge is determining a suitable distance function.

We cannot construct a suitable distance function which satisfies the path coupling condition
for arbitrary neighboring pairs Xt, Yt. But, a key insight is that we can show the existence of a
suitable Φ when the local neighborhood of the disagreement v behaves like the BP fixpoint. Our
construction of this Φ is quite intriguing.

In our proofs it is useful to consider the (unrooted) BP recurrences corresponding to the prob-
ability that a vertex is unblocked. This corresponds to the following function F : [0, 1]V → [0, 1]V

which is defined as follows, for any ω ∈ [0, 1]V and z ∈ V :

F (ω)(z) =
∏

y∈N(z)

1

1 + λω(y)
. (2)

Also, for some integer i ≥ 0, let F i(ω) : [0, 1]V → [0, 1]V be the i-iterate of F . This recurrence is
closely related to the standard BP operator R() and hence under the hypotheses of our main results,
we have that F () has a unique fixed point ω∗, and for any ω, all z ∈ V , limi→∞ F

i(z) = ω∗(z).
To construct the distance function Φ we start with the Jacobian of this BP operator F (). By

a suitable matrix diagonalization we obtain the path coupling condition. Since F () converges to
a fixed point, and, in fact, it contracts at every level with respect to an appropriately defined
potential function, we then know that the Jacobian of the BP operator F () evaluated at its fixed
point ω∗ has spectral radius < 1 and hence the same holds for the path coupling condition for pairs
of states that are BP fixed points. This yields that:

Φ(v) >
∑

z∈N(v)

λω∗(z)

1 + λω∗(z)
Φ(z).
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However for the path coupling condition we need to bound this contraction and we need further
properties of the distance function Φ, hence we need to explicitly derive a Φ. There are previous
works [11, 12] which utilize the spectral radius of the adjacency matrix of the input graph G to
design a suitable distance function for path coupling. In contrast, we use insights from the analysis
of the BP operator to derive a suitable distance function. We believe this is a richer connection
that can potentially lead to stronger results since it directly relates to convergence properties on
the tree. Our approach has the potential to apply for a more general class of spin systems, we
comment on this in more detail in the conclusions.

The above argument only implies that we have contraction in the path coupling condition for
pairs of configurations which are BP fixed points. A priori we don’t even know if the BP fixed
points on the tree correspond to the Gibbs distribution on the input graph. We prove that the
Glauber dynamics (approximately) satisfies a recurrence that is close to the BP recurrence; this
builds upon ideas of Hayes [10] for colorings. This argument requires that there are no cycles of
length ≤ 6 for the Glauber dynamics (and no cycles of length ≤ 5 for the direct analysis of the
Gibbs distribution). Some local sparsity condition is necessary since if there are many short cycles
then the Gibbs distribution no longer behaves similarly to a tree and hence loopy BP may be a
poor estimator.

As a consequence of the above relation between BP and the Glauber dynamics, we establish
that from an arbitrary initial configuration X0, after a short burn-in period of T = O(n log∆) steps
of the Glauber dynamics the configuration XT is a close approximation to the BP fixed point. In
particular, for any vertex v, the number of unblocked neighbors of v in XT is ≈

∑
z∈N(v) ω

∗(z)
with high probability. As is standard for concentration results, our proof of this result necessitates
that ∆ is at least a sufficiently large constant. Finally we adapt ideas of [4] to utilize these burn-in
properties and establish rapid mixing of the Glauber dynamics.

Outline of Paper

In the following section we state results about the convergence of the BP recurrences. We then
present in Section 3 our theorem showing the existence of a suitable distance function for path
coupling for pairs of states at the BP fixed point. Section 4 sketches the proofs for our local
uniformity results that after a burn-in period the Glauber dynamics behaves locally similarly to
the BP recurrences. Finally, in Section 5 we outline the proof of Theorem 1 of rapid mixing for
the Glauber dynamics. The extension to random regular (bipartite) graphs as stated in Theorem
2 is proven in Section F of the appendix. Theorem 3 about the efficiency of loopy BP is proven in
Section B of the appendix, the key technical results in the proof are sketched in Section 4. The full
proofs of our results are quite lengthy and so we defer many to an appendix.

2 BP Convergence

Here we state several useful results about the convergence of BP to a unique fixed point, and
stepwise contraction of BP to the fixed point. The lemmas presented in this section are proved in
Section A of the appendix.

Our first lemma (which is proved using ideas from [28, 19, 31]) says that the recurrence for F ()
defined in (2) has a unique fixed point.

Lemma 4. For all δ > 0, there exists ∆0 = ∆0(δ), for all G = (V,E) of maximum degree ∆ ≥ ∆0,
all λ < (1− δ)λc(∆), the function F has a unique fixed point ω∗.

5



A critical result for our approach is that the recurrences F () have stepwise contraction to the
fixed point ω∗. To obtain contraction we use the following potential function Ψ . Let the function
Ψ : [0, 1]→ R≥0 be as follows,

Ψ(x) = (
√
λ)−1arcsinh

(√
λ · x

)
. (3)

Our main motivation for introducing Ψ is as a normalizing potential function that we use to
define the following distance metric, D, on functions ω ∈ [0, 1]V :

D(ω1, ω2) = max
z∈V
|Ψ(ω1(z))− Ψ(ω2(z))| .

We will also need a variant, Dv,R, of this metric whose value only depends on the restriction of the
function to a ball of radius ` around vertex v. For any v ∈ V , integer ` ≥ 0, let B(v, `) be the set
of vertices within distance ≤ ` of v. Moreover, for functions ω1, ω2 ∈ [0, 1]V , we define:

Dv,`(ω1, ω2) = max
z∈B(v,`)

|Ψ(ω1(z))− Ψ(ω2(z))| . (4)

We can now state the following convergence result for the recurrences, which establishes stepwise
contraction.

Lemma 5. For all δ > 0, there exists ∆0 = ∆0(δ), for all G = (V,E) of maximum degree ∆ ≥ ∆0,
all λ < (1− δ)λc(∆), for any ω ∈ [0, 1]V , v ∈ V and ` ≥ 1, we have:

Dv,`−1(F (ω), ω∗) ≤ (1− δ/6)Dv,`(ω, ω
∗).

where ω∗ is the fixed point of F .

3 Path Coupling Distance Function

We now prove that there exists a suitable distance function Φ for which the path coupling condition
holds for configurations that correspond to the fixed points of F ().

Theorem 6. For all δ > 0, there exists ∆0 = ∆0(δ), for all G = (V,E) of maximum degree
∆ ≥ ∆0, all λ < (1− δ)λc(∆), there exists Φ : V → R≥0 such that for every v ∈ V ,

1 ≤ Φ(v) ≤ 12, (5)

and

(1− δ/6)Φ(v) ≥
∑

u∈N(v)

λω∗(u)

1 + λω∗(u)
Φ(u), (6)

where ω∗ is the fixed point of F defined in (2).

Proof. We will prove here that the convergence of BP provides the existence of the suitable distance
function Φ satisfying (6). We defer the technical proof of (5) to Section A of the appendix.

The Jacobian J of the BP operator F is given by

J(v, u) =

∣∣∣∣∂F (ω)(v)

∂ω(u)

∣∣∣∣ =

{
λF (ω)(v)
1+λω(u) if u ∈ Nv

0 otherwise

6



Let J∗ = J |ω=ω∗ denote the Jacobian at the fixed point ω = ω∗. Let D be the diagonal matrix

with D(v, v) = ω∗(v) and let Ĵ = D−1J∗D.
The path coupling condition (6) is in fact

ĴΦ ≤ (1− δ/6)Φ.

The fact that ω∗ is a Jacobian attractive fixpoint implies the existence of a nonnegative Φ with ĴΦ <
Φ. Thus, the theorem would follow immediately if the spectral radius of Ĵ is ρ(Ĵ) ≤ 1 − δ/6 and
Ĵ has a principal eigenvector with each entry from the bounded range [1, 12]. However, explicitly
calculating this principal eigenvector can be challenging on general graphs.

The convergence with respect to the potential function Ψ guides us to an explicit construction
of Φ such that ĴΦ < Φ. Indeed, denoted by Ψ ′(x) = 1

2
√
x(1+λx)

the derivative of the potential

function Ψ , it will follow from the proof of Lemma 5 that:∑
u∈N(v)

J∗(v, u)
Ψ ′(ω∗(v))

Ψ ′(ω∗(u))
≤ 1− δ/6,

that is, the attraction of the fixed point ω∗ with respect to the potential function Ψ .

Then by choosing Φ(v) = 1
2ω∗(v)Ψ ′(ω∗(v)) =

√
1+λω∗(v)
ω∗(v) , it gives a distance function Φ satisfying

the path coupling condition (6). The verification of (5) is in Section A of the appendix.

4 Local Uniformity for the Glauber Dynamics

We will prove that the Glauber dynamics, after a sufficient burn-in, behaves with high probability
locally similarly to the BP fixed points. In this section we will formally state some of these “local
uniformity” results and sketch the main ideas in their proof. The proofs are quite technical and
deferred to Section D of the appendix.

For an independent set σ, for v ∈ V , and p ∈ N(v) let

Uv,p(σ) = 1 {σ ∩ (N(v) \ {p}) = ∅} (7)

be the indicator of whether the children of v leave v unblocked.
We now state our main local uniformity results. We first establish that the Gibbs distribution

behaves as in the BP fixpoint, when the girth ≥ 6. We will prove that for any vertex v, the number
of unblocked neighbors of v is ≈

∑
z∈N(v) ω

∗(z) with high probability. Hence, for v ∈ V let

SX(v) =
∑

z∈N(v)

Uz,v(X),

denote the number of unblocked neighbors of v in configuration X.

Theorem 7. For all δ, ε > 0, there exists ∆0 = ∆0(δ, ε) and C = C(δ, ε), for all graphs G = (V,E)
of maximum degree ∆ ≥ ∆0 and girth ≥ 6, all λ < (1− δ)λc(∆), for all v ∈ V , it holds that:

PrX∼µ

∣∣∣∣∣∣SX(v)−
∑

z∈N(v)

ω∗(z)

∣∣∣∣∣∣ ≤ ε∆
 ≥ 1− exp (−∆/C) ,

where ω∗ is the fixpoint from Lemma 4.
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Theorem 7 will be the key ingredient in the proof of Theorem 3 (to be precise, the upcoming
Lemma 9 is the key element in the proofs of Theorems 3 and 7).

For our rapid mixing result (Theorem 2) we need an analogous local uniformity result for the
Glauber dynamics. This will require the slightly higher girth requirement ≥ 7 since the grandchil-
dren of a vertex v no longer have a certain conditionally independence and we need the additional
girth requirement to derive an approximate version of the conditional independence (this is dis-
cussed in more detail in Section C.3 of the appendix).

The path coupling proof weights the vertices according to Φ. Hence, in place of S we need the
following weighted version W. For v ∈ V and Φ : V → R≥0 as defined in Theorem 6 let

Wσ(v) =
∑

z∈N(v)

Uz,v(σ)Φ(z). (8)

We then prove that the Glauber dynamics, after sufficient burn-in, also behaves as in the BP
fixpoint with a slightly higher girth requirement ≥ 7. (For path coupling we only need an upper
bound on the number of unblocked neighbors, hence we state and prove this simpler form.)

Theorem 8. For all δ, ε > 0, let ∆0 = ∆0(δ, ε), C = C(δ, ε), for all graphs G = (V,E) of maximum
degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1 − δ)λc(∆), let (Xt) be the Glauber dynamics on the
hard-core model. For all v ∈ V , it holds that

Pr

(∀t ∈ I) WXt(v) <
∑

z∈N(v)

ω∗(z)Φ(z) + ε∆

 ≥ 1− exp (−∆/C) , (9)

where the time interval I = [Cn log∆,n exp (∆/C)].

4.1 Proof sketch for local uniformity results

Here we sketch the simpler proof of Theorem 7 of the local uniformity results for the Gibbs dis-
tribution. This will illustrate the main conceptual ideas in the proof for the Gibbs distribution,
and we will indicate the extra challenge for the analysis of the Glauber dynamics in the proof of
Theorem 8. The full proofs for Theorems 7 and 8 are in Section D of the appendix.

Consider a graph G = (V,E). For a vertex v and an independent set σ, consider the following
quantity:

R(σ, v) =
∏

z∈N(v)

(
1− λ

1 + λ
Uz,v(σ)

)
, (10)

where Uz.v(σ) is defined in (7) (it is the indicator that the children of z leave it unblocked). The
important aspect of this quantity R is the following qualitative interpretation. Let X be distributed
as in the Gibbs measure w.r.t. G. For triangle-free G, we have

R(σ, v) = PrX∼µ [v is unblocked in X | X(v) = unoccupied, X(S2(v)) = σ(S2(v))],

where S2(z) are those vertices distance 2 from z and by “z /∈ σ” we mean that z is not occupied.
Moreover, conditional on the configuration at z and S2(z) the neighbors of z are independent in
the Gibbs distribution and hence:

R(σ, v) =
∏

z∈N(v)

PrX∼µ [X(z) = unoccupied | X(v) = unoccupied, X(S2(v)) = σ(S2(v))]. (11)
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We will argue that R() is an approximate version of F () defined in (2). In the special case where
the underlying graph is a tree we can extend (11) to the following recursive equations:

R(σ, v) =
∏

z∈N(v)

(
1− λ

1 + λ
R(σ, z)

)
+O(1/∆). (12)

The configuration σ specifies the initial conditions for the equations.
Of course nothing prevents us from applying (12) on the graph G. This corresponds to the

loopy BP equation. Now, (12) does not necessarily compute the probability for v to be unblocked,
as we argued for (10). However, we show the following interesting result regarding the quantity
SX(v), for every v ∈ V . With probability ≥ 1− exp (−Ω(∆)), it holds that∣∣∣∣∣∣SX(v)−

∑
z∈N(v)

R(X, z)

∣∣∣∣∣∣ ≤ ε∆. (13)

That is, we can approximate SX(v) by using quantities that arise from the loopy BP equations.
Still, getting a handle on R(X, z) in (13) is a non-trivial task. To this end, we show that X ∼ µ
satisfies (12) in the following approximate sense:

Lemma 9. For all γ, δ > 0, there exists ∆0, C > 0, for all graphs G = (V,E) of maximum degree
∆ ≥ ∆0 and girth ≥ 6 all λ < (1− δ)λc(∆) for all v ∈ V the following is true:

Let X be distributed as in µ. Then with probability ≥ 1− exp (−∆/C) it holds that∣∣∣∣∣∣R(X, v)−
∏

z∈N(v)

(
1− λ

1 + λ
R(X, z)

)∣∣∣∣∣∣ < γ. (14)

We will argue (via (14)) that R() is an approximate version of F () and then we can apply
Lemma 5 to deduce convergence (close) to the fixpoint ω∗. Consequently, we will prove that for
every v ∈ V , with probability at least 1− exp (−Ω(∆)), it holds that

|R(X, v)− ω∗(v)| ≤ ε. (15)

(See Lemma 16 in Section B.2 of the appendix for a formal statement.) Combining (15) and (13)
will finish the proof of Theorem 7. For the detailed proof of Theorem 7 see Section D.1 on the
appendix.

4.2 Approximate recurrence - Proof of Lemma 9

Here we prove Lemma 9 which shows that R satisfies an approximate recurrence similarly to loopy
BP, this is the main result in the proof of Theorem 7. Before beginning the proof we illustrate the
necessity of the girth assumption.

Recall that for triangle-free graphs we have conditional independence in (11) for the neighbors of
vertex z. In (13) we need to consider

∑
z∈N(v) R(X, z). To get independence on the grandchildren

of v we need to condition on S3(v), this will require girth ≥ 6, see (16) below.

Proof of Lemma 9. Consider X distributed as in µ. Given some vertex v ∈ V , let F be the σ-
algebra generated by the configuration of v and the vertices at distance ≥ 3 from v.

Note that λc(∆) ∼ e/∆. So, for λ < λc(∆) and ∆ > ∆0 we have λ = O(1/∆).
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Note that SX(v) is a function of the configuration at S2(v). Conditional on F , for any z, z′ ∈
N(v) the configurations at N(z)\{v} and N(z′)\{v} are independent with each other. That is,
conditional on F , the quantity SX(v) is a sum of |N(v)| many independent random variables in
{0, 1}. Then, applying Azuma’s inequality (the Lipschitz constant is 1) we get that

Pr [|E [SX(v) | F ]− SX(v)| ≤ β∆] ≥ 1− 2 exp
(
−β2∆/2

)
, (16)

for any β > 0.

For x ∈ R≥0, let f(x) = exp
(
− λ

1+λx
)

. Since λ ≤ e/∆ for ∆ ≥ ∆0, then for |γ| ≤ (3e)−1 it holds

that f(x+ γ∆) ≤ 10γ. Using these observations and (16) we get the following: for 0 < β < (3e)−1

it holds that

Pr [|f(SX(v))− f(E [SX(v) | F ])| ≤ 10β] ≥ 1− 2 exp
(
−β2∆/2

)
. (17)

Recalling the definition of R(X, v), we have that

R(X, v) =
∏

z∈N(v)

(
1− λ

1 + λ
Uz,v(X)

)

= exp

− λ

1 + λ

∑
z∈N(v)

Uz,v(X) +O (1/∆)


= f(SX(v)) (1 +O (1/∆)) = f(SX(v)) +O (1/∆) , (18)

where the second equality we use the fact that λ = O(1/∆) and that for |x| < 1 we have 1 + x =
exp(x+O(x2)); the last equality follows by noting that f(SX(v)) ≤ 1.

We are now going to show that for every z ∈ N(v) it holds that

|E [Uz,v(X) | F ]−R(X, z)| ≤ 2λ. (19)

Before showing that (19) is indeed correct, let us show how we use it to get the lemma.
We have that

f(E [SX(v) | F ])

= exp

− λ

1 + λ

∑
z∈N(v)

E [Uz,v(Xt) | F ]

 [from linearity of expectation]

= exp

− λ

1 + λ

∑
z∈N(v)

R(X, z)

+O(1/∆) [from (19) and λ = O(1/∆)] (20)

The lemma follows by plugging (20) and (18) into (17) and taking sufficiently large ∆.
It remains to show (19). We first get an appropriate upper bound for E [Uz,v(X) | F ]:

E [Uz,v(X) | F ] = E [Uz,v(X) | F , z occupied] ·Pr [z occupied|F ]

+E [Uz,v(X) | F , z unoccupied] ·Pr [z unoccupied|F ]

≤ Pr [z occupied|F ] + E [Uz,v(X) | F , z unoccupied] [since Uz,w(X) ≤ 1]

≤ λ+ E [Uz,v(X) | F , z unoccupied] [since Pr [z occupied|F ] ≤ λ]

= λ+
∏

u∈N(z)\{v}

(
1− λ

1 + λ
Uu,z(X)

)
(21)

≤ 2λ+
∏

u∈N(z)

(
1− λ

1 + λ
Uu,z(X)

)
= 2λ+ R(X, z), (22)
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where (21) uses the fact that given F the values of Uu,z(X), for u ∈ N(z)\{v} are fully determined.
Similarly, we get the lower bound:

E [Uz,v(X) | F ] = E [Uz,v(X) | F , z occupied] ·Pr [z occupied|F ]

+E [Uz,v(X) | F , z unoccupied] ·Pr [z unoccupied|F ]

≥ (1− 2λ)E [Uz,v(X) | F , z unoccupied]

≥ (1− 2λ)
∏

u∈N(z)\{w}

(
1− λ

1 + λ
Uu,z(X)

)

≥ (1− 2λ)
∏

u∈N(z)

(
1− λ

1 + λ
Uu,z(X)

)
= (1− 2λ)R(X, z)

≥ R(X, z)− 2λ, (23)

where in the last inequality we use the fact that R(X, z) ≤ 1.
From (22) and (23) we have proven (19), which completes the proof of the lemma.

5 Sketch of Rapid Mixing Proof

Theorem 8 tells us that after a burn-in period the Glauber dynamics locally behaves like the BP
fixpoints ω∗ with high probability (whp). (In this discussion, we use the term whp to refer to
events that occur with probability ≥ 1 − exp(−Ω(∆). ) Meanwhile Theorem 6 says that there is
an appropriate distance function Φ for which path coupling has contraction for pairs of states that
behave as in ω∗. The snag in simply combining this pair of results and deducing rapid mixing is
that when ∆ is constant then there is still a constant fraction of the graph that does not behave
like ω∗, and our disagreements in our coupling proof may be biased towards this set. We follow the
approach in [4] to overcome this obstacle and complete the proof of Theorem 1. We give a brief
sketch of the approach, the details are contained in Section E of the appendix.

The burn-in period for Theorem 8 to apply is O(n log∆) steps from the worst-case initial
configuration X0. In fact, for a “typical” initial configuration only O(n) steps are required as we
only need to update ≥ 1− ε fraction of the neighbors of every vertex in the local neighborhood of
the specified vertex v. The “bad” initial configurations are ones where almost all of the neighbors of
v (or many of its grandchildren) are occupied. We call such configurations “heavy” (see Section C.2
of the appendix for details). We first prove that after O(n log∆) steps a chain is not-heavy in the
local neighborhood of v, and this property persists whp (see Lemma 22). Then, only O(n) steps
are required for the burn-in period (see Theorem 27 in Section D of the appendix).

Our argument has two stages. We start with a pair of chains X0, Y0 that differ at a single
vertex v. In the first stage we burn-in for Tb = O(n log∆) steps. After this burn-in period,
whp every vertex in the local neighborhood of v is not-heavy, the number of disagreements is
≤ poly(∆), and the disagreements are all in the local neighborhood of v (see Lemma 31, parts 2
and 4, in Section E of the appendix).

In the second stage we have sets of epochs of length T = O(n) steps. For the pair of chains
XTb , YTb we apply path coupling again. Now we consider a pair of chains that differ at one vertex
z which is not heavy. We look again at the local neighborhood of z (in this case, that means all
vertices within distance ≤

√
∆ of z). After T steps, whp every vertex in the local neighborhood

has the local uniformity properties and the disagreements are contained in this local neighborhood.
Then we have contraction in the path coupling condition (by applying Theorem 6), and hence after

11



O(n) further steps the expected Hamming distance is small (see Lemma 32). Combining a sequence
of these O(n) length epochs we get that the original pair has is likely to have coupled and we can
deduce rapid mixing.

6 Conclusions

The work of Weitz [41] was a notable accomplishment in the field of approximate counting/sampling.
However a limitation of his approach is that the running time depends exponentially on log∆. It
is widely believed that the Glauber dynamics has mixing time O(n log n) for all G of maximum
degree ∆ when λ < λc(∆). However, until now there was little theoretical work to support this
conjecture. We give the first such results which analyze the widely used algorithmic approaches of
MCMC and loopy BP.

One appealing feature of our work is that it directly ties together with Weitz’s approach: Weitz
uses decay of correlations on trees to truncate his self-avoiding walk tree, whereas we use decay of
correlations to deduce a contracting metric for the path coupling analysis, at least when the chains
are at the BP fixed point. We believe this technique of utilizing the principal eigenvector for the
BP operator for the path coupling metric will apply to a general class of spin systems, such as
2-spin antiferromagnetic spin systems (Weitz’s algorithm was extended to this class [19]).

We hope that in the future more refined analysis of the local uniformity properties will lead to
relaxed girth assumptions. However dealing with very short cycles, such as triangles, will require a
new approach since loopy BP no longer seems to be a good estimator of the Gibbs distribution for
certain examples.
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A BP convergence: Missing proofs in Sections 2 and 3

In this section we prove Lemma 4 about the convergence of recurrence F defined in (2) to a unique
fixed point ω∗, Lemma 5 about the contraction of the error at every step with respect to a potential
function, and Theorem 6 about the existence of a suitable distance function Φ for path coupling.

The next theorem unifies these key results regarding the convergence of F defined in (2).

Theorem 10. For all δ > 0, there exists ∆0 = ∆0(δ), for all G = (V,E) of maximum degree
∆ ≥ ∆0, all λ < (1− δ)λc(∆), the following hold:

1. For any x1, x2 ∈ [(1 + λ)−∆, 1],

1

3
|x1 − x2| ≤ |Ψ(x1)− Ψ(x2)| ≤ 3|x1 − x2|. (24)

2. (Lemma 4) The function F defined in (2) has a unique fixed point ω∗. Moreover, for any
initial value ω0 ∈ [0, 1]V , denoting by ωi = F i(ω) the vector after the i-th iterate of F , it
holds that

‖ωi − ω∗‖∞ ≤ 3(1− δ/6)i.

3. (Lemma 5) for any ω ∈ [0, 1]V , v ∈ V and R ≥ 1, we have:

Dv,R−1(F (ω), ω∗) ≤ (1− δ/6)Dv,R(ω, ω∗),

where Dv,R is as defined in (4).

4. (Theorem 6) There exist Φ : V → R≥0 such that for every v ∈ V , 1 ≤ Φ(v) ≤ 12, and

(1− δ/6)Φ(v) ≥
∑

u∈N(v)

λω∗(u)

1 + λω∗(u)
Φ(u).

In part 4 the astute reader may notice that we are considering BP without a parent, and hence
each vertex depends on ∆ neighbors. Consequently parts of our analysis will consider the tree with
branching factor ∆. This is not essential in our proof, but it allows us to consider slightly simpler
recurrences. In our setting we have ∆ sufficiently large and since λc(∆) = O(1/∆) and hence this
simplification has no effect on the final result that we prove.

We first analyze the uniqueness regime described in the above Theorem 10.
Let fλ,d(x) = (1 + λx)−d be the symmetric version of the BP recurrence (2). Let x̂ = x̂(λ, d)

be the unique fixed point of fλ,d(x), satisfying x̂(λ, d) = (1 + λx̂(λ, d))−d. We define

α(λ, d) =

√
d · λx̂(λ, d)

1 + λx̂(λ, d)
. (25)

Proposition 11. For all δ > 0, there exists ∆0 = ∆0(δ), for all ∆ ≥ ∆0, all λ < (1 − δ)λc(∆)

where λc(∆) = (∆−1)∆−1

(∆−2)∆
, it holds that α(λ,∆) ≤ 1− δ/6.

Proof. Let x0 = 1−δ/3
λ(∆−1+δ/3) . It is easy to verify that√

∆ · λx0

1 + λx0
≤ 1− δ/6.
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Note that the function
√

∆λx
1+λx is increasing in x. Since f(x) is increasing in λ, it is easy to verify

that x̂(λ, d) is increasing in λ. We then show that for all ∆ ≥ ∆0, it holds that x̂(λ0, ∆) ≤ x0

where λ0 = (1− δ)λc(∆) = (1−δ)(∆−1)∆−1

(∆−2)∆
, which will prove our proposition.

Since fλ0,∆(x) is decreasing in x and fλ0,∆(x̂(λ0, ∆)) = x̂(λ0, ∆), it is sufficient to show that

fλ0,∆(x0) = (1 + λ0x0)−∆ ≤ x0.

Note that it holds that

fλ0,∆(x0)

x0
=

λ0(∆− 1 + δ/3)

(1− δ/3)(1 + 1−δ/3
(∆−1+δ/3))∆

=
1− δ

1− δ/3
· (∆− 1)∆(∆− 1 + δ/3)∆

(∆− 2)∆∆∆
· ∆− 1 + δ/3

∆− 1
.

Therefore, there is a suitable ∆0 = O(1
δ ) such that for all ∆ ≥ ∆0,

fλ0,∆(x0)

x0
≤ 1− δ

1− δ/3

(
1 +O

( η
∆

))
eδ/2.99 < 1,

which proves the proposition.

Recall recurrence F as defined in (2). The following proposition was proved implicitly in [19].

Proposition 12 ([19]). Let G = (V,E) be a graph with maximum degree at most ∆. Assume that
α(λ,∆) ≤ 1. For any ω ∈ [0, 1]V , and v ∈ V ,√

λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ α(λ,∆),

where α(λ,∆) is defined in (25).

Proof. Let ω̄ ∈ [0, 1] be that satisfies 1 + λω̄ =
(∏

u∈N(v)(1 + λω(u))
) 1
|N(v)|

. Denote that ν̄ =

ln(1 + λω̄) and ν(u) = ln(1 + λω(u)). It then holds that ν̄ = 1
|N(v)|

∑
u∈N(v) ν(u). Due to the

concavity of
√

eν−1
eν in ν, by Jensen’s inequality:

1

|N(v)|
∑

u∈N(v)

√
λω(u)

1 + λω(u)
=

1

|N(v)|
∑

u∈N(v)

√
eν(u) − 1

eν(u)
≤
√

eν̄ − 1

eν̄
=

√
λω̄

1 + λω̄
.

Therefore, √
λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤

√
λdf(ω̄)

1 + λf(ω̄)
· λdω̄

1 + λω̄
,

where d = |N(v)| is the degree of vertex v in G and f(ω̄) = (1 + λω̄)−d is the symmetric version of
the recursion (2).

Define αλ,d(x) =
√

λdf(x)
1+λf(x) ·

λdx
1+λx where as before f(x) = (1 + λx)−d. The above convexity

argument shows that√
λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ αλ,d(x), for some x ∈ [0, 1]. (26)
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Fixed any λ and d, the critical point of αλ,d(x) is achieved at the unique positive x(λ, d)
satisfying

λdx(λ, d) = 1 + λf(x(λ, d)). (27)

It is also easy to verify by checking the derivative
dαλ,d(x)

dx that the maximum of αλ,d(x) is achieved
at this critical point x(λ, d).

Recall that x̂(λ, d) is the fixed point satisfying x̂(λ, d) = f(x̂(λ, d)) = (1 + λx̂(λ, d))−d, and

α(λ, d) =
√

λdx̂(λ,d)
1+λx̂(λ,d) . Under the assumption that α(λ, d) ≤ 1, we must have x̂(λ, d) ≤ x(λ, d).

If otherwise x̂(λ, d) > x(λ, d), then we would have λdx̂(λ, d) > λdx(λ, d) = 1 + λf(x(λ, d)) >

1 + λf(x̂(λ, d)) = 1 + λx̂(λ, d), contradicting that λdx̂(λ,d)
1+λx̂(λ,d) = α(λ, d)2 ≤ 1. Therefore, for any

x ∈ [0, 1], it holds that

αλ,d(x) ≤ α(d, x(λ, d))

=

√
λdf(x(λ, d))

1 + λf(x(λ, d))
· λdx(λ, d)

1 + λx(λ, d)

=

√
λdf(x(λ, d))

1 + λx(λ, d)
(due to (27))

≤

√
λdf(x̂(λ, d))

1 + λx̂(λ, d)
(x̂(λ, d) ≤ x(λ, d))

=

√
λdx̂(λ, d)

1 + λx̂(λ, d)

= α(λ, d).

Finally, it is easy to observe that α(λ, d) is increasing in d since α(λ, d) is increasing in x̂(λ, d) and
x̂(λ, d) is increasing in d. Therefore, α(λ, d) ≤ α(λ,∆) because d = |N(v)| ≤ ∆. Combined this
with (26), the proposition is proved.

We are now ready to prove Theorem 10

Proof of Theorem 10. By Proposition 11, for the regime of λ described in the theorem, it holds
that α(λ,∆) < 1− δ/6 where ∆ is the maximum degree of the graph G = (V,E).

Recall that in Section 2, we introduce the following potential function:

Ψ(x) = (
√
λ)−1arcsinh

(√
λ · x

)
.

We then show that for any ω1, ω2 ∈ [0, 1]V , and v ∈ V ,

|Ψ(ω1(v))− Ψ(ω2(v))| ≤ 1, (28)

and

|Ψ(F (ω1)(v))− Ψ(F (ω2)(v))| ≤ (1− δ/6) max
u∈N(v)

|Ψ(ω1(v))− Ψ(ω2(v))|. (29)

We first prove (28). It is easy to see that Ψ(x) is monotonically increasing for x ∈ [0, 1], thus
|Ψ(ω1(v)) − Ψ(ω2(v))| ≤ Ψ(1) − Ψ(0) = arcsinh(

√
λ)/
√
λ. Observe that arcsinh(x) ≤ x for any

x ≥ 0 and hence arcsinh(
√
λ)/
√
λ ≤ 1. This proves (28).
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We then prove (29). Note that the derivative of the potential function Ψ is Ψ ′(x) = dΨ(x)
dx =

1

2
√
x(1+λx)

. Due to the mean value theorem, there exists an ω̃ ∈ [0, 1]N(v) such that

|Ψ(F (ω1)(v))− Ψ(F (ω2)(v))| =
∑

u∈N(v)

∣∣∣∣∂F (ω)(v)

∂ω(u)

∣∣∣∣
ω=ω̃

Ψ ′(F (ω̃)(v))

Ψ ′(ω̃(u))

∣∣∣∣ |Ψ(ω1(u))− Ψ(ω2(u))|

=

√
λF (ω̃)(v)

1 + λF (ω̃)(v)

∑
u∈N(v)

√
λω̃(u)

1 + λω̃(u)
|Ψ(ω1(u))− Ψ(ω2(u))|

≤

√ λF (ω̃)(v)

1 + λF (ω̃)(v)

∑
u∈N(v)

√
λω̃(u)

1 + λω̃(u)

 · max
u∈N(v)

|Ψ(ω1(u))− Ψ(ω2(u))|.

Then (29) is implied by Proposition 11 and Proposition 12.
Next, we prove the statements in the theorem.

1. (Proof of Equation (24)) By the mean value theorem, for any x1, x2 ∈ [(1 + λ)−∆, 1], there
exists a mean value ξ ∈ [(1 + λ)−∆, 1] such that

|Ψ(x1)− Ψ(x2)| = Ψ ′(ξ)|x1 − x2| =
1

2
√
ξ(1 + λξ)

|x1 − x2|.

For all sufficiently large ∆, it holds that (1 + λ)−∆ > 1/36 and λ < λc(∆) ≤ 0.25, thus
ξ ∈ [1/36, 1]. Therefore, 1

2
√
ξ(1+λξ)

≥ 1
2
√

1+λ
> 1

3 and 1

2
√
ξ(1+λξ)

< 1
2
√
ξ
< 3.

2. (Proof of Lemma 4) Consider the dynamical system defined by ω(i) = F (ω(i−1)) with arbitrary

two initial values ω
(0)
1 , ω

(0)
2 ∈ [0, 1]V . The derivative of the potential function satisfies that

Ψ ′(x) ≥ 1
2
√

1+λ
for any x ∈ [0, 1]. Due to the mean value theorem, for any v ∈ V , there exists

a mean value ξ ∈ [0, 1] such that∣∣∣ω(i)
1 (v)− ω(i)

2 (v)
∣∣∣ =

1

Ψ ′(ξ)

∣∣∣Ψ (ω(i)
1 (v)

)
− Ψ

(
ω

(i)
2 (v)

)∣∣∣ ≤ 2
√

1 + λ
∣∣∣Ψ (ω(i)

1 (v)
)
− Ψ

(
ω

(i)
2 (v)

)∣∣∣ .
Combined with (28) and (29), we have∥∥∥ω(i)

1 − ω
(i)
2

∥∥∥
∞
≤ 2
√

1 + λ
∥∥∥Ψ (ω(i)

1

)
− Ψ

(
ω

(i)
2

)∥∥∥
∞

≤ 2(1− δ/6)i
√

1 + λmax
z∈V

∣∣∣Ψ (ω(0)
1 (z)

)
− Ψ

(
ω

(0)
2 (z)

)∣∣∣
≤ 2(1− δ/6)i

√
1 + λ,

which is at most 3(1− δ/6)i for λ < λc(∆) for all sufficiently large ∆.

Therefore,
∥∥∥ω(i)

1 − ω
(i)
2

∥∥∥
∞
→ 0 as i → ∞ for arbitrary initial values ω

(0)
1 , ω

(0)
2 ∈ [0, 1]V . This

shows that the F defined in (2) has a unique fixed point ω∗.
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3. (Proof of Lemma 5) According to the definition of Dv,R in (4),

Dv,R−1(F (ω), ω∗) = max
u∈B(v,R−1)

|Ψ(F (ω)(u))− Ψ(ω∗(u))|

= max
u∈B(v,R−1)

|Ψ(F (ω)(u))− Ψ(F (ω∗)(u))| (ω∗ is fixed point)

≤ max
u∈B(v,R−1)

(1− δ/6) max
z∈N(u)

|Ψ(ω(z))− Ψ(ω∗(z))| (due to (29))

= (1− δ/6) max
u∈B(v,R)

|Ψ(ω(u))− Ψ(ω∗(u))|

= (1− δ/6) ·Dv,R(ω, ω∗).

4. (Proof of Theorem 6) Due to Propositions 11 and 12, for any ω ∈ [0, 1]V , and v ∈ V ,√
λF (ω)(v)

1 + λF (ω)(v)

∑
u∈N(v)

√
λω(u)

1 + λω(u)
≤ 1− δ/6.

In particular, this inequality holds for the fixed point ω∗ where F (ω∗)(v) = ω∗(v). Therefore,√
λω∗(v)

1 + λω∗(v)

∑
u∈N(v)

√
λω∗(u)

1 + λω∗(u)
≤ 1− δ/6.

We construct Φ : V → R≥0 as Φ(v) =
√

1+λω∗(v)
ω∗(v) for every v ∈ V . Then

∑
u∈N(v)

λω∗(u)

1 + λω∗(u)
Φ(u) ≤ (1− δ/6)Φ(v).

We now show that 1 ≤ Φ(v) ≤ 12. Since ω∗ ∈ [0, 1]V , we have Φ(v) =
√

1+λω∗(v)
ω∗(v) ≥

1. Meanwhile, it holds that ω∗(v) =
∏
u∈Nv

1
1+λω∗(u) ≥ (1 + λ)−∆. By our assumption,

λ ≤ (1 − δ)λc(∆) ≤ 4
∆−2 for all ∆ ≥ 3. Therefore, ω∗(v) ≥ (1 + 4

∆−2)−∆ ≥ 5−3 and

Φ(v) =
√

1+λω∗(v)
ω∗(v) ≤

√
53 + 4 ≤ 12.

We consider a recurrence which corresponds to the rooted belief propagation. For an undirected
graphG = (V,E), let Ē be the set of all orientations of edges in E. The functionH : [0, 1]Ē → [0, 1]Ē

is defined as follows: For any ω ∈ [0, 1]Ē and (v, p) ∈ Ē,

H(ω)(v, p) =
∏

u∈N(v)\{p}

1

1 + λω(u, v)
(30)

With the approach used in the proof of Theorem 10, analyzing the convergence of H is the same
as analyzing F on a graph G with maximum degree ∆− 1. Recall that α(λ,∆) is increasing in ∆.
The same proof as of Theorem 10 gives us the following corollary.

Corollary 13. For G = (V,E) and λ assumed by Theorem 10, the function H defined in (30) has
a unique fixed point ω∗. Moreover, for any initial value ω0 ∈ [0, 1]Ē, denoting by ωi = F i(ω) the
vector after the i-th iterate of F , it holds that

‖ωi − ω∗‖∞ ≤ 3(1− δ/6)i.
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B Loopy BP: Proof of Theorem 3

Consider the version of Loopy BP defined with the following sequence of messages: For all t ≥ 1,
for v ∈ V :

R̃tv = λ
∏

w∈N(v)

1

1 + R̃t−1
w

. (31)

The system of equations specified by (31) is equivalent to the one in (2) in the following sense:
Given any set of initial messages (R̃0

v)v∈V ∈ R≥0, it holds that R̃tv = λF t(ω̄)(v), for appropriate ω̄
which depends on the initial messages, i.e. (R̃0

v)v∈V . F t is the t-th iteration of the function F .
Of interest is in the quantity qt(v), v ∈ V , defined as follows:

q̃t(v) =
R̃tv

1 + R̃tv
.

From Lemma 4, there exists q̃∗ ∈ [0, 1]V such that q̃t converges to q̃∗ as t → ∞, in the sense that
q̃t/q̃∗ → 1. It is elementary to show that the following holds for any t > 0, any p ∈ V and v ∈ N(p):

qt(v, p)

µ(v is occupied | p is unoccupied)
=
qt(v, p)

q∗(v, p)

q∗(v, p)

q̃∗(v)
· q̃∗(v)

µ(v is occupied)
· µ(v is occupied)

µ(v is occupied | p is unoccupied)
.

The theorem follows by showing that each of the four ratios on the r.h.s. are sufficiently close to
1. For the first two ratios we use Theorem 14, and for the third one we use the Lemma 15.

Theorem 14. For all δ, ε > 0, there exists ∆0 = ∆0(δ, ε) and C = C(δ, ε), such that for all
∆ ≥ ∆0, all λ < (1 − δ)λc(∆), all graphs G of maximum degree ∆ and girth ≥ 6, all ε > 0 the
following holds:

There exists q∗ ∈ [0, 1]E such that for t ≥ C, for all p ∈ V , v ∈ N(p) we have that∣∣∣∣ qt(v, p)q∗(v, p)
− 1

∣∣∣∣ ≤ ε and

∣∣∣∣q∗(v, p)q̃∗(v)
− 1

∣∣∣∣ ≤ ε, (32)

where qt(v, p) is defined in (1).

The proof of Theorem 14 appears in Section B.1.

Lemma 15. For all δ, ε > 0, there exists ∆0 = ∆0(δ, ε) and C = C(δ, ε), such that for all ∆ ≥ ∆0,
all λ < (1 − δ)λc(∆), all graphs G of maximum degree ∆ and girth ≥ 6, the following holds: Let
µ(·) be the Gibbs distribution, for all v ∈ V we have∣∣∣∣ q̃∗(v)

µ(v is occupied)
− 1

∣∣∣∣ ≤ ε.
The proof of Lemma 15 appears in Section B.2.

The theorem follows by showing that∣∣∣∣ µ(v is occupied)

µ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ ≤ 10/∆.

From Bayes’ rule we get that µ(v is occupied | p is unoccupied) = µ(v is occupied)
µ(p is unoccupied) . Using this

observation we get that∣∣∣∣ µ(v is occupied)

µ(v is occupied | p is unoccupied)
− 1

∣∣∣∣ = |µ(p is unoccupied)− 1| ≤ 10/∆.

In the last inequality we use the fact that 0 ≤ µ(p is occupied) ≤ λ.
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B.1 Proof of Theorem 14

Proof. Note that by denoting ωt(v, p) =
Rtp→v
λ , we have

ωt+1(v, p) = H(ωt)(v, p),

where H is as defined in (30). Then the convergence of qt(v, p) =
Rtp→v

1+Rtp→v
to a unique fixed point

q∗ follows from Corollary 13. More precisely, there is ∆0 = ∆0(δ) and C = C(ε0, δ) such that for
all ∆ > ∆0 all λ < (1− δ)λc(T∆) and all t > C,∣∣ωt(v, p)− ω∗(v, p)∣∣ ≤ ε0,
Note that for all t > 1, we have ωt(v, p), ω∗(v, p) ∈ [(1 + λ)−∆, 1] where (1 + λ)−∆ > 1/36 for
λ < λc(T∆) for all sufficiently large ∆. Then∣∣∣∣ qt(v, p)q∗(v, p)

− 1

∣∣∣∣ =

∣∣∣∣ωt(v, p)ω∗(v, p)
· 1 + ω∗(v, p)

1 + ωt(v, p)
− 1

∣∣∣∣ =
|ωt(v, p)− ω∗(v, p)|
ω∗(v, p)(1 + ωt(v, p))

≤ 36ε0.

By choosing ε0 = ε
36 , we have

∣∣∣ qt(v,p)q∗(v,p) − 1
∣∣∣ ≤ ε.

We then show that there is a ∆0 = O( 1
δε) such that for all ∆ > ∆0 and all λ < (1− δ)λc(T∆),

the fixed points of the two BPs have
∣∣∣ q∗(v,p)q̃∗(v) − 1

∣∣∣ ≤ ε
Let ωt(v, p) = qt(v,p)

λ(1−qt(v,p)) and ω̃t(v) = q̃t(v)
λ(1−q̃t(v)) . It follows that

ωt+1(v, p) =
∏

u∈N(v)\{p}

1

1 + λωt(u, v)
= (1 + λωt(p, v))

∏
u∈N(v)

1

1 + λωt(u, v)
,

ω̃t+1(v) =
∏

u∈N(v)

1

1 + λω̃t(u)
.

We also define

ωt+1(v) =
∏

u∈N(v)

1

1 + λωt(u, v)
,

therefore ωt+1(v, p) = (1+λωt(p, v))ωt+1(v). Note that ωt(p, v) ∈ (0, 1], thus |ωt+1(v, p)−ωt+1(v)| ≤
λ. Also recall that λ < λc(T∆) ≤ 3/(∆− 2) for all sufficiently large ∆, therefore

|ωt+1(v, p)− ωt+1(v)| ≤ 3/(∆− 2).

Let Ψ(·) be as defined in (3). Note for t > 1 both ωt+1(v, p) and ωt+1(v) are from the range
[(1 + λ)−∆, 1]. By (24), for λ < λc(T∆) for all sufficiently large ∆, we have

|Ψ(ωt+1(v, p))− Ψ(ωt+1(v))| ≤ 9/(∆− 2). (33)

We assume that |Ψ(ωt(v, p))− Ψ(ω̃t(v))| ≤ ε0 for all (v, p) ∈ E. Then due to (29),

|Ψ(ωt+1(v))− Ψ(ω̃t+1(v))| ≤ (1− δ/6) · max
u∈N(v)

|Ψ(ωt(u, v))− Ψ(ω̃t(u))| ≤ (1− δ/6)ε0.

Combined with (33), by triangle inequality, we have

|Ψ(ωt+1(v, p))− Ψ(ω̃t+1(v))| ≤ (1− δ/6)ε0 + 9/(∆− 2),
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which is at most ε0 as long as ∆ ≥ ∆0 ≥ 54
δε0

+ 2. It means that if |Ψ(ωt(v)) − Ψ(ωt(v, p))| ≤
ε0 ≤ 54

δ(∆0−2) , then |Ψ(ωt+1(v, p))−Ψ(ω̃t+1(v))| ≤ 54
δ(∆0−2) . Knowing the convergences of ωt(v, p) to

ω∗(v, p) and ω̃t(v) to ω∗(v) as t→∞, this gives us that

|Ψ(ω∗(v, p))− Ψ(ω̃∗(v))| ≤ 54

δ(∆0 − 2)
.

By (24), it implies |ω∗(v, p) − ω̃∗(v)| ≤ 162
δ(∆0−2) . Again since ω∗(v, p), ω̃∗(v) ∈ [1/36, 1] when

λ < λc(T∆) for sufficiently large ∆. It holds that∣∣∣∣q∗(v, p)q̃∗(v)
− 1

∣∣∣∣ =

∣∣∣∣ω∗(v, p)ω̃∗(v)
· 1 + λω̃∗(v)

1 + λω∗(v, p)
− 1

∣∣∣∣ ≤ 6000

δ(∆0 − 2)
.

By choosing a suitable ∆0 = O( 1
δε), we can make this error bounded by ε.

B.2 Proof of Lemma 15

Proof. It holds that∣∣∣∣ q̃∗(v)

µ(v occupied)
− 1

∣∣∣∣ =

∣∣∣∣∣ q∗(v)
λ

1+λE [R(X, v)]

λ
1+λE [R(X, v)]

µ(v occupied)
− 1

∣∣∣∣∣ , (34)

where the expectation in the nominator is w.r.t. the random variable X which is distributed as in
µ. For showing the lemma we need to bound appropriately the two ratios on the r.h.s. of (34). For
this we use the following two results. The first one is that∣∣∣∣∣ λ

1+λE [R(X, v)]

µ(v is occupied)
− 1

∣∣∣∣∣ ≤ 200eeλ. (35)

The second result is Lemma 16.

Lemma 16. For every δ, θ > 0, there exists ∆0 = ∆0(δ, θ) and C > 0 all λ < (1− δ)λc(∆), and G
of maximum degree ∆ and girth ≥ 6, the following is true:

Let X be distributed as the Gibbs distribution. For any z ∈ V , it holds that

Pr [|R(X, z)− ω∗(z)| ≤ θ] ≥ 1− exp(−∆/C),

where ω∗ is defined in Lemma 4.

The proof of Lemma 16 appears in Section B.3.
Before proving (35), let us show how it implies the lemma, together with Lemma 16. For any

independent set σ and any v, it holds that e−e ≤ ω∗(v),R(σ, v) ≤ 1. Then, Lemma 16 implies that∣∣∣∣ ω∗(v)

E [R(X, v)]
− 1

∣∣∣∣ ≤ ε/20. (36)

Noting that by definition it holds that q̃∗(v) = λω∗

1+λω∗ , we have that∣∣∣∣∣ q̃∗(v)
λ

1+λE [R(X, v)]
− 1

∣∣∣∣∣ =

∣∣∣∣ 1 + λ

1 + λω∗(v)

ω∗(v)

E [R(X, v)]
− 1

∣∣∣∣
≤ 10λ

(1 + λω∗(v))

ω∗(v)

E [R(X, v)]
+

∣∣∣∣ ω∗(v)

E [R(X, v)]
− 1

∣∣∣∣ ≤ ε/15. (37)
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In the last inequality we use (36), the fact that λ < 2e/∆ and ∆ is sufficiently large. The lemma
follows by plugging (35) and (37) into (34). We proceed by showing (35). It holds that

µ(v is occupied) =
λ

1 + λ
µ(v is unblocked) (38)

We are going to express µ(v is unblocked) it terms of the quantity R(·, ·). For X distributed as in
µ it is elementary to verify that

E [R(X, v) | v is unoccupied] = µ(v is unblocked|v is unoccupied) (39)

Furthermore, it holds that

E [R(X, v)] = µ(v occupied) · E [R(X, v) | v occupied] + µ(v unoccupied) · E [R(X, v) | w unoccupied]

≤ µ(v occupied) + E [R(X, v) | v unoccupied] [since 0 < R(X, v) ≤ 1]

≤ 2λ+ E [R(X, v) | v unoccupied] [since µ(v occupied) ≤ 2λ]

Since e−e ≤ R(X, v) ≤ 1, the inequality above yields

E [R(X, v) | v unoccupied] ≥ (1− 2eeλ)E [R(X, v)].

Also, using the fact that R(X, v) > 0, we get

E [R(X, v) | v unoccupied] ≤ E [R(X, v)]

µ(v is unoccupied)
≤ (1 + 5λ)E [R(X, v)].

In the last inequality we use the fact that µ(w is occupied) ≤ 2λ. From the above two inequalities
we get that

|E [R(X,w) | w unoccupied]− E [R(X,w)]| ≤ 10eeλ. (40)

In a very similar manner as above, we also get that

|µ(v is unblocked|v is unoccupied)− µ(v is unblocked)| ≤ 10eeλ (41)

Combining (39), (40), (41) , (38) and using the fact that e−e ≤ µ(v is unblocked),E [R(X,w)] we
get the following

µ(v is occupied) =
λ

1 + λ
E [R(X,w)] (1 + 50eeλ) . (42)

Then (35) follows from (42).

B.3 Proof of Lemma 16

The proof of the lemma is similar to the proof of Lemma 28.
Let some fixed integer R > 0 whose value is going to be specified later. R is independent of ∆,

the maximum degree of G. For every integer i ≤ R, we define

βi := max |Ψ(R(X,x))− Ψ(ω∗(x))| ,

where Ψ is defined in (3). The maximum is taken over all vertices x ∈ Bi(w).
An elementary observation is that βi ≤ C0 = 3 for every i ≤ R. To see why this holds, note

that for any z ∈ V and any independent sets σ, it holds that e−e ≤ R(σ, z), ω∗(z) ≤ 1. Then we
get βi ≤ 3 from (24).
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We start by using the fact that βR ≤ C0. Then we show that with sufficiently large probability,
if βi+1 ≥ θ/5, then βi ≤ (1− γ)βi+1 where 0 < γ < 1. Then the lemma follows by taking large R.

For any i ≤ R, there exists Cd > 0 such that with probability at least 1 − exp (−∆/Cd) the
following is true: For every vertex x ∈ Bi(w) it holds that∣∣∣∣∣∣R(X,x)− exp

− λ

1 + λ

∑
z∈N(x)

R(X, z)

∣∣∣∣∣∣ < θδ

40
(43)

Note that (43) (that follows from Lemma 9) implies the following.
Fix some i ≤ R, z ∈ Bi(w). From the definition of the quantity βi+1 we get the following: For

any x ∈ Bi+1(w) consider the quantity ω̃(x) = R(X,x). We have that

Dv,i+1(ω̃s, ω
∗) ≤ βi+1. (44)

We will show that if (43) holds for R(X, z), where z ∈ Bi(w), and βi+1 ≥ θ/5, then we have that

|Ψ (R(X, z))− Ψ (ω∗(z))| ≤ (1− δ/24)βi+1.

For proving the above inequality, first note that if R(X, z) satisfies (43), then (24) implies that

∣∣∣∣∣∣Ψ (R(X, z))− Ψ

exp

− λ

1 + λ

∑
r∈N(z)

R(X, r)

∣∣∣∣∣∣ ≤ δθ

12
. (45)

Furthermore, we have that

|Ψ (R(X, z))− Ψ (ω∗(z))|

≤ δθ

12
+

∣∣∣∣∣Ψ
(

exp

(
− λ

1 + λ

∑
r∈Nz

R(X, r)

))
− Ψ (ω∗(z))

∣∣∣∣∣ [from (45)]

≤ δθ

12
+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)− Ψ (ω∗(z))

∣∣∣∣∣∣+

+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)− Ψ
exp

− λ

1 + λ

∑
r∈N(z)

R(X, r)

∣∣∣∣∣∣ , (46)

where the last derivation follows from the triangle inequality.
From our assumption about λ and the fact that R(X, r) ∈ [e−e, 1], for r ∈ N(z), we have that∣∣∣∣∣∣

∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)
− exp

−λ ∑
r∈N(z)

R(X, r)

1 + λ

∣∣∣∣∣∣ ≤ 10

∆
.

The above inequality and (24) imply that∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)− Ψ
exp

− λ

1 + λ

∑
r∈N(z)

R(X, r)

∣∣∣∣∣∣ ≤ 30

∆
.
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Plugging the inequality above into (46) we get that

|Ψ (R(X, z))− Ψ (ω∗(z))| ≤ δθ

12
+

30

∆
+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λR(X, r)

1 + λ

)− Ψ (ω∗(z))

∣∣∣∣∣∣
≤ δθ/12 + 60/∆+Dv,i(F (ω̃), ω∗), (47)

where ω̃ ∈ [0, 1]V is such that ω̃(z) = R(X, z) for z ∈ V . The function F is defined in (2). Since ω̃
satisfies (44), Lemma 5 implies that

Dv,i(F (ω̃), ω∗) ≤ (1− δ/6)βi+1. (48)

Plugging (48) into (47) we get that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δθ/12 + 60/∆+ (1− δ/6)βi+1 ≤ (1− δ/24)βi+1, (49)

where the last inequality holds if we have βi+1 ≥ θ/5. Note that (49) holds provided that R(X, z)
satisfies (43). The lemma follows by taking sufficiently large R = R(θ).

C Basic Properties of Glauber dynamics

C.1 Continuous versus discrete time chains

For many of our results we have a simpler proof when instead of a discrete time Markov chain we
consider a continuous time version of the chain. That is, consider the Glauber dynamics where the
spin of each vertex is updated according to an independent Poisson clock with rate 1/n.

We use the following observation, Corollary 5.9 in [23], as a generic tool to argue that typical
properties of continuous time chains are typical properties of the discrete time chains too.

Observation 17. Let (Xt) by any discrete time Markov chain on state space Ω, and let (Yt) be
the corresponding continuous-time chain. Then for any property P ⊂ Ω and positive integer t, we
have that

Pr [Xt /∈ P ] ≤ e
√
tPr [Yt /∈ P ].

Observation 17 would suffice for our purposes when ∆ = Ω(log n), but not for Glauber dynamics
on graphs of e.g. constant degree. For the latter case, instead of focusing on specific times t in
discrete time, our goal will be to show how events which are rare at a single instant in continuous
time must also be rare over a time interval of length O(n) in discrete time, without taking a union
bound over all the times in the time interval.

Let the set Ω contain all the independent sets of G. We say that a function f : Ω → R has
“total influence” J , if for every independent set X ∈ Ω we have

E
[∣∣f(X ′)− f(X)

∣∣] ≤ J/n,
where X ′ is the result of one Glauber dynamics update, starting from X.

The next result, Lemma 13 in [10], shows that, for functions f which have Lipschitz constant
O(1/∆) and total influence J = O(1), in order to prove high-probability bounds for the discrete-
time chain that apply for all times in an interval of length O(n), it suffices to be able to prove a
similar bound at a single instant in continuous time.
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Lemma 18 (Hayes [10]). Suppose f : Ω → R is a function of independent sets of G and f has
Lipschitz constant α < O(1/∆) and total influence J = O(1). Let X0 = Y0 be given and let (Xt)t≥0

be continuous-time single site dynamics on the hard-core model of G and let (Yi)i=0,1,2... be the
corresponding discrete-time dynamics.

Suppose that t0 is a positive integer and S is a measurable set of real numbers, such that for all
t ≥ t0, Pr [f(Xt) ∈ S] ≥ 1 − exp(−Ω(∆)). Then, for all ε ∈ Ω(1) and all integers t1 ≥ t0, there
t1 − t0 = O(n) we have that

Pr [(∀i ∈ {t0, t0 + 1, . . . , t1}) f(Yi) ∈ S ± ε] ≥ 1− exp (−Ω(∆)) ,

where the hidden constant in Ω notation depends only on the hidden constant in the assumption.

C.2 Basic burn-in properties

Consider a graph G = (V,E). Given some integer r ≥ 0 and v ∈ V , let Br(v) be the the ball of
radius r, centered at v. Also, let Sr(v) be the sphere of radius r, centered at v. Finally, let N(v)
denote the set of vertices which are adjacent to v.

Definition 19. Let G = (V,E) be a graph of maximum degree ∆ and let σ be an independent
set of G. For some ρ > 0, we say that σ is ρ-heavy for the vertex v ∈ V if |B2(v) ∩ σ| ≥ ρ∆ or
|B1(v) ∩ σ| ≥ ρ∆/ log∆.

Definition 20. Let G = (V,E) be a graph of maximum degree ∆. Let σ, τ be independent sets of
G. Consider integer r > 0 and v ∈ V . If there is a vertex w ∈ Br(v) such w is ρ-heavy, then σ is
called ρ-suspect for radius r at v. Otherwise, we say that σ is ρ-above suspicion for radius r at v.

Similarly, for σ, τ such that σ(v) 6= τ(v), we say that v is a ρ-suspect disagreement for radius r
if there exists a vertex w ∈ Br(v) such that either σ or τ is ρ-heavy at w. Otherwise, we say that
v is a ρ-above suspicion disagreement for radius r.

For the purposes of path coupling for every pair of independent sets X,Y we consider shortest paths
between X and Y along neighboring independent sets. That is, X = Z0 ∼ Z1 ∼ · · · ∼ Z` = Y .
This sequence Z1, . . . , Z` we call interpolated independent sets for X and Y . A key aspect of the
above definitions is that the “niceness” is inherited by interpolated independent sets.

Observation 21. If X,Y are independent sets, neither of which is ρ-heavy at vertex v, then no
interpolated independent set is 2ρ-heavy at v. Likewise, if v is ρ-above suspicion disagreement for
radius r, then in every interpolated independent sets v is 2ρ-above suspicion for radius r.

The following lemma states that (Xt) requires O(n log∆) to burn-in, regardless of X0.

Lemma 22. For δ > 0 let ∆ ≥ ∆0(δ) and Cb = Cb(δ). Consider a graph G = (V,E) of maximum
degree ∆. Also, let λ ≤ (1− δ)λc(∆).

Let (Xt) be the continuous (or discrete) time Glauber dynamics on the hard-core model with
fugacity λ and underlying graph G. Consider v ∈ V and let Ct be the event that Xt, is 50-above
suspicion for radius r = ∆9/10 for v at time t. Then, for I = [10n log∆,n exp(∆/Cb)] it holds that

Pr [∩t∈ICt] ≥ 1− exp (−∆/Cb) .

Proof. For now, consider the continuous time version of (Xt). Recall that for Xt, the vertex u is
not ρ-heavy if both of the following conditions hold

1. |Xt ∩B2(u)| ≤ ρ∆
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2. |Xt ∩N(u)| ≤ ρ∆/ log∆.

First we consider a fixed time t ∈ I. Let c = t/n. Note that c = c(∆) ≥ 10 log∆. We are going to
show that there exists C ′ > 0 such that

Pr [Ct] ≥ 1− exp
(
−∆/C ′

)
. (50)

Fix some vertex u ∈ Br(v). Let N0 be the set of vertices in B2(u) ∩ X0 which are not updated
during the time period (0, t]. That is, for z ∈ N0 it holds that X0(z) = Xt(z). Each vertex
z ∈ B2(u) ∩ X0 belongs to N0 with probability exp (−t/n) = e−c, independently of the other
vertices. Since |B2(u) ∩ X0| ≤ ∆2, it is elementary that the distribution of |N0| is dominated by
B(∆2, e−c), i.e. the binomial with parameters ∆2 and e−c.

Using Chernoff’s bounds we get the following: for c > 10 log∆ it holds that

Pr [N0 > ∆/10] ≤ exp (−∆/10) . (51)

Additionally, let N1 ⊆ B2(u) contain every vertex u which is updated at least once during the
period (0, t]. Each vertex z ∈ N1, which is last updated prior to t at time s ≤ t, becomes occupied
during the update at time s with probability at most λ

1+λ , regardless of Xs(N(z)). Then, it is

direct that |Xt ∩N1| is dominated by B(N1,
λ

1+λ).

Noting that |N1| ≤ |B2(u)| ≤ ∆2 and λ
1+λ < 2e/∆, for ∆ > ∆0 Chernoff’s bound imply that

Pr [|N1 ∩Xt| ≥ 15e∆] ≤ exp (−15e∆) . (52)

From (51), (52) and a simple union bound, we get that

Pr [|Xt ∩B2(u)| > 42∆] ≤ exp (−∆/20) . (53)

Using exactly the same arguments, we also get that

Pr [|Xt ∩N(u)| > 42∆/ log∆] ≤ exp (−∆/20) . (54)

Note that X0 could be such that N(u)∩X0 = α∆, for some fixed α > 0. So as to get |Xt∩N(u)| ≤
42∆/ log∆ with large probability, we have to ensure that with large probability all the vertices in
N(v) are updated at least once. For this reason the burn-in requires at least 10n log∆ steps.

From (53) and (54) we get the following: For any ρ > 50 it holds that

Pr [Xt(u) is not ρ-heavy] ≤ exp (−∆/25) . (55)

Then (50) follows by taking a union bound over all the, at most ∆r vertices in Br(v). In particular,
for r = ∆9/10 and sufficiently large ∆, there exists C > 0 such that

Pr [Ct] ≤ ∆r exp (−∆/25) ≤ exp (−∆/30) .

The above implies that (50) is indeed true but only for a specific time step t ∈ I. Now we use a
covering argument to deduce the above for the whole interval I.

For sufficiently small γ > 0, independent of ∆, consider a partition of the time interval I into

subintervals each of length γ2

∆ n, (where the last part can be shorter). We let T (j) be the j-th part
in the partition.

Each z ∈ B2(w) is updated at least once during the time period T (j) with probability less than

2γ
2

∆ , independently of the other vertices. Note that |B2(w)| ≤ ∆2. Clearly, the number of vertices
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in B2(v) which are updated during T (j) is dominated by B(∆2, 2γ2/∆). Chernoff bounds imply
that with probability at least 1−exp

(
−20∆γ2

)
, the number of vertices in B2(w) which are updated

during the interval T (j) is at most 20γ2∆. Furthermore, changing any 20∆γ2 variables in B2(w)
can only make the independent set heavier by at most 20∆γ2.

Similarly, we get that with probability at least 1− exp (−γ∆), the number of vertices in N(v)
which are updated during the interval T (j) is at most γ∆/ log∆. The change of at most γ∆/ log∆
neighbors of v does not change the weight of its neighborhood by more than γ∆/ log∆.

From the above arguments we get that the following: We can choose sufficiently large Cb > 0
such that for j ∈ {1, 2, . . . , d∆/(γ2) exp (∆/Cb)e} it holds that

Pr
[
∩t∈T (j)Ct

]
≥ 1− exp (−100∆/Cb) .

The result for continuous time follows by taking a union bound over all the
⌈
∆/(γ2) exp (∆/Cb)

⌉
many subintervals of I.

For the discrete time case the arguments are very similar. The only extra ingredient we need is
that, now, the updates of the vertices are negatively dependent and use [3]. The lemma follows.

The following lemma states that if (Xt) start from a not so heavy state it only requires O(n)
steps to burn in.

Lemma 23. For δ > 0, let ∆ ≥ ∆0(δ) and Cb = Cb(δ). Consider a graph G = (V,E) of maximum
degree ∆. Also, let λ ≤ (1− δ)λc(∆).

Let (Xt) be the continuous (or discrete) time Glauber dynamics on the hard-core model with
fugacity λ and underlying graph G. Also, let Ct be the event that Xt is, are 50-above suspicion for
radius R ≤ ∆9/10 for v at time t. Assume that X0 is 400-above suspicion for radius R for v. Then,
for I = [Cbn, n exp(∆/Cb)] we have that

Pr [∩t∈ICt] ≥ 1− exp [−∆/Cb] .

The proof of Lemma 23 is almost identical to the proof of Lemma 22, for this reason we omit it.

C.3 G versus G∗ and comparison

Consider G with girth 7. For such graph and some vertex w in G, the radius 3 ball around w is a
tree. We let G∗w be graph that is derived from G by orienting towards w every edge that is within
distance 2 from w 1. For a vertex x ∈ G∗w, we let N∗(x) ⊆ N(x) contain every z in the neighborhood
of x such that either the edge between x, z is unoriented, or the orientation is towards x.

We let the Glauber dynamics (X∗t ) on the hard-core model with underlying graph G∗w and
fugacity λ, be a Markov chain whose transition Xt → Xt+1 is defined by the following:

1. Choose u uniformly at random from V .

2. If N∗(u) ∩X∗t = ∅, then let

X∗t+1 =

{
X∗t ∪ {u} with probability λ/(1 + λ)

X∗t \ {u} with probability 1/(1 + λ)

3. If N∗(w) ∩Xt 6= ∅, then let X∗t+1 = X∗t .

1 An edge {w1, w2} ∈ E is at distance ` from w if the minimum distance between w and any of w1, w2 is `.
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The state space of (X∗t ) that is implied by the above is a superset of the independent sets of G,
since there are pairs of vertices which are adjacent in G while they can both be occupied in X∗t .

The motivation for using G∗w and (X∗t ) is better illustrated by considering Lemma 9. In Lemma
9 we establish a recursive relation for R() for G of girth ≥ 6, in the setting of the Gibbs distribution.
An important ingredient in the proof there is that for every vertex x conditioned on the configuration
at x and the vertices at distance ≥ 3 from x, the children of x are mutually independent of each
other under the Gibbs distribution.

For establishing the uniformity property for Glauber dynamics we need to establish a similar
“conditional independence” relation but in the dynamic setting of Markov chains. To obtain this, we
will need that G has girth at least 7. Clearly, the conditional independence of Gibbs distribution no
longer holds for the Glauber dynamics. To this end we employ the following: Instead of considering
G and the standard Glauber dynamics (Xt), we consider G∗w and the corresponding dynamics (X∗t ).

Using G∗w and (X∗t ) we get (in the dynamics setting) an effect which is similar to the conditional
independence. During the evolution of (X∗t ) the neighbors of w can only exchange information
through paths of G∗w which travel outside the ball of radius 3 around w, i.e. B3(w). This holds due
to the girth assumption for G∗w and the definition of (X∗t ). In turn this implies that conditional on
the configuration of X∗t outside B3(w), the (grand)children of w are mutually independent.

The above trick allows to get a recursive relation for R(X∗t , w) similar to that for the Gibbs
distribution. So as to argue that a somehow similar relation holds for the standard dynamics (Xt),
we use the following result which states that if (X∗t ) and (Xt) start from the same configuration,
then after O(n) the number of disagreements between the two chains is not too large.

Lemma 24. For γ > 0, C1 > 0, there exists ∆0, C2 > 0 such that the following is true: For
w ∈ V consider G∗w of maximum degree ∆ > ∆0 and girth at least 7. Also, let (Xt) and (X∗t )
be the continuous time Glauber dynamics on the hard-core model with fugacity λ < (1 − δ)λc(∆),
underlying graphs G and G∗u, respectively.

Assume that (X∗t ) and (Xt) are maximally coupled. Then, if X0 = X∗0 for X0 which is 400-above
suspicion for radius R ≤ ∆9/10, we have that

Pr[∀s ≤ C1n, ∀u ∈ V |(Xs ⊕X∗s ) ∩B2(u)| ≤ γ∆] ≥ 1− exp (−∆/C2) .

Before proving Lemma 24 we need to introduce certain notions.
Let us call Z a “generalized Poisson random variable with jumps α and instantaneous rate r(t)”

if Z is the result of a continuous-time adapted process, which begins at 0 and in each subsequent
infinitesimal time interval, samples an increment ∂Z from some distribution over [0, α], having
mean ≤ r(t)dt. Z, the sum of the increments over all times 0 < t < 1, is a random variable, as is
the maximum observed rate, r∗ = maxt∈[0,1] r(t).

Remark 25. In the special case where α ≥ 1 and the distribution is supported in {0, 1} with
constant rate µ · dt, Z is a Poisson random variable with mean µ.

We are going to use the following result, Lemma 12 in [10].

Lemma 26 (Hayes). Suppose Z is a generalized Poisson random variable with maximum jumps α
and maximum observed rate r∗. Then, for every µ > 0, C > 1 it holds that

Pr [Z ≥ Cµ and r∗ ≤ µ] ≤ exp
[
−µ
α

(C ln(C)− C + 1)
]
<
( e
C

)µCα
.

Proof of Lemma 24. In this proof assume that γC1 is sufficiently small constant. Also, let D =
∪t≤C1n(Xt ⊕X∗t ), i.e. D denotes the set of all vertices which are disagreeing at least once during
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the time interval from 0 to C1n. Given some vertex u ∈ V let Au = ∪t≤C1nXt ∩ N(u) and
A∗u = ∩t≤C1nX

∗
t ∩ N(u). That is Au contains every z ∈ N(u) for which there exists at least one

s < C1n such that z is occupied in Xs. Similarly for A∗u. Finally, let the integer r =
⌊
γ5 ∆

log∆

⌋
.

Let A denote the event that ∃s ≤ C1n, ∃u ∈ V |(Xs ⊕ X∗s ) ∩ S2(u)| ≥ γ∆/2. Consider the
events B1,B2, B3, B4 and B5 be defined as follows: B1 denotes the event that D * Br(w). B2

denotes the event that |D| ≥ γ3∆2. B3 denotes the event that the total number of disagreements
that appear in N(u), for every u ∈ V , is at most γ3∆. Finally, B4 denotes the event that there
exists u ∈ B100(w) such that either |A(u)| ≥ γ3∆ or |A∗(u)| ≥ γ3∆.

Then, the lemma follows by noting the following:

Pr [∃s ≤ C1n, ∃u ∈ V |(Xs ⊕X∗s ) ∩B2(u)| ≥ γ∆] ≤ Pr [A] + Pr [B3]. (56)

The lemma follows by bounding appropriately the probability terms on the r.h.s. of (56).
First consider Pr [A]. Let B = B1 ∪ B2 ∪ B3 ∪ B4. We bound Pr [A] by using B as follows:

Pr [A] = Pr [B,A] + Pr
[
B̄,A

]
≤ Pr [B] + Pr

[
B̄,A

]
≤

4∑
i=1

Pr [Bi] + Pr
[
B̄,A

]
, (57)

where the last inequality follows by applying a simple union bound.
Consider some vertex u ∈ V and let Z be the total number of disagreements that ever occur

in S2(u) up ot the first time that either B occurs or up to time C1n, whichever happens first. If
u /∈ Br(w), then Z is always zero since we stop the clock when D * Br−1(w). So our focus is
on the case where u ∈ Br−1(w). For such u the random variable Z follows a generalized Poisson
distribution, with jumps of size 1 and maximum observed rate at most 30γ3∆dt/n, over at most
C1n time units. To see this consider the following.

Given that B does not occur, disagreements in S2(u) may be caused due to the following
categories of disagreeing edges. Each disagreement in N(u) has at most ∆ − 1 disagreeing edges
in S2(u). Since the number of disagreements that appear in N(u) during the time period up to
C1n is at most γ3∆, there are at most γ3∆2 disagreeing edges incident to S2(u). On the whole
there are at most γ3∆2 disagreements from vertices different than those in N(u). Each one of them
has at most one neighbor in S2(u), since the girth is at least 7. That is there are additional γ3∆2

many disagreeing edges. Finally, disagreements on S2(u) may be caused by edges which belong to
G⊕G∗w. There are at most ∆3 many such edges. Each one of these edges generates disagreements
only on the vertex on its tail. Since the out-degree in G∗w is at most 1, there are ∆2 disagreeing
edges from G⊕G∗w which are incident to S2(v). Additionally, each one of these edges should point
to an occupied vertex so as to be disagreeing. Since B4 does not occur, there at most 2γ3∆2 edges
in G⊕G∗w which point to an occupied vertex and have the tail in S2.

From the above observations, we have that there are at most 10γ3∆2 disagreeing edges incident
to S2. For the new disagreement to occur in S2 due to a given such edge, a specific vertex must
chosen and should become occupied, which occurs with rate at most e · dt/(n∆).

Using Lemma 26, applied with µ = 30C1γ
3∆, α = 1 and C = γ∆/µ, we have that

Pr [Z ≥ γ∆] ≤
(
30eγ2C1

)γ∆
.

Taking a union bound over the, at most, ∆r vertices in Br(v), we get that

Pr
[
B̄,A

]
≤ ∆r

(
30eγ2C1

)γ∆
= exp (−∆/C3) , (58)
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where C3 = C3(γ) > 0 is a sufficiently large number. In the last derivation we used the fact that

r ≤ γ5∆
log∆ .

We proceed by bounding the probability of the events B1, B2, B3 and B4. The approach is very
similar to the proof of Theorem 27 in [10]. We repeat it for the sake of completeness.

Recall that B1 denotes the event that D * Br(w). The bound for Pr [B1] uses standard
arguments of disagreement percolation. First we observe that every disagreement outside Br(w)
must arise via some path of disagreement which starts within B2(w). That is we need at least one
path of disagreement of length r − 4. We fix a particular path of length r − 4 with Br(w). Let us
call it P. We are going to bound the probability that disagreements percolate along P within C1n
time units. Let us call this probability ρ.

The number of steps along this path that a disagreement actually percolates is a generalized
Poisson random variable with jumps 1 and maximum overall rate at most C1e/∆. This follows
by noting that the maximum instantaneous rate is at most e · dt/(n∆) integrated over C1n time
units. We use Lemma 26, to bound the probability for the disagreement to percolate along P, i.e.
ρ. Setting µ = eC1/∆, α = 1 and C = (r − 4)/µ in Lemma 26 yields the following bound for ρ

ρ ≤
(

e2C1

∆(r − 4)

)r−4

.

The above bound holds for any path of length r − 4 in Br(w). Taking a union bound over the at
most ∆3 starting point in B2(w) and the at most ∆r−4 paths of length r− 4 from a given starting
point we get that

Pr [B1] ≤ ∆3

(
e2C1

r − 4

)r−4

≤ exp (−∆/C4) , (59)

where C4 = C4(γ) > 0 is a sufficiently large number.
Recall that B2 denotes the event that |D| ≥ γ3∆2. For Pr[B2] we consider the waiting time τi

for the i’th disagreement, counting from when the (i− 1)’st disagreement is formed. The event B2

is equivalent to
∑(γ3∆2)

i=1 τi ≤ C1n.
Each new disagreement can be attributed to either an edge joining it to an existing disagreement,

or to one of the edges in G⊕G∗w. It follows easily that the total number of such edges is at most
|G⊕G∗w|+ |(i− 1)∆| = ∆3 + (i− 1)∆. Furthermore, for the new disagreement to occur due to a
given such edge, a specific vertex must chosen, which occurs with rate at most e · dt/(n∆).

The above observations suggest that the waiting time τi is stochastically dominated by an
exponential distribution with mean n/[e(∆2 + i − 1)], even conditioning on an arbitrary previous
histry τ1, τ2, . . . , τi−1. Therefore,

∑
i τi is stochastically dominated by the sum of independent

exponential distributions with mean n/[e(∆2 + i− 1)].
Applying Corollary 26, from [10] to τ1 + · · ·+ τ(γ3∆2), with

µ =

(γ3∆2)∑
i=1

n

e(∆2 + i− 1)
≥
∫ (γ3∆2)

0

n

e(∆2 + x)
dx =

n

e
log(1 + γ3)

and

V =

(γ3∆2)∑
i=1

n2

e2(∆2 + i− 1)2
≤
∫ ∞

0

n2

e2(∆2 + x− 1)2
dx =

n2

e2(∆2 − 1)
.

All the above yield

Pr[B2] ≤ exp
(
−(µ− C1n)2/(2V )

)
≤ exp

(
−∆2/C5

)
, (60)
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where C5 = C5(γ) > 0 is sufficiently large number.
Let Y be the total number of disagreements that ever occur in N(u) up to the first time that

either D * Br−1(w) or |D| > γ3∆2 occur or time C1n whichever happens first. The variable
Y follows a generalized Poisson distribution with jumps of size 1. It is direct to check that the
maximum observed rate is at most (γ3∆2 + 2∆)e · dt/(∆n) ≤ 10γ3∆dt/n, integrated over at most
C1n time units. This is because the clock stops when |D| ≥ γ3∆2 and since G has girth at least
7 it is only vertex u that is adjacent to more than one element of N(u). Hence there are at most
γ3∆2 +∆−1 edges joining joining a disagreement with some vertex in N(u) before the clock stops.
Furthermore, disagreements on N(u) may also be caused by incident edges which belong to G⊕G∗w.
Each vertex in v ∈ N(u) is incident to at most one edge which belongs to G⊕G∗w and could cause
disagreement in v. That is, N(u) has at most at most ∆ such edges.

Applying Lemma 26, once more, for Y with µ = 10C1γ
3∆, α = 1 and C = γ3/2∆/µ we get that

Pr
[
Y ≥ γ2∆

]
≤
(

10eC1γ
3∆

γ3/2∆

)γ3/2∆
≤
(

10eC1γ
3/2
)γ3/2∆

.

Taking a union bound over the at most∆r vertices in Br(w) gives an upper bound for the probability
the event B3 happens and at the same time neither B1 nor B2 occur. That is

Pr
[
B̄1 and B̄2 and B3

]
≤ ∆r

(
10eC1γ

3/2
)γ3/2∆

(61)

Letting C = B1 ∪ B2, we have that

Pr [B3] = Pr [C,B3] + Pr
[
C̄,B3

]
≤ Pr [C] + Pr

[
C̄,B3

]
≤ Pr [B1] + Pr [B2] + Pr

[
B̄1 and B̄2 and B3

]
[union bound for Pr [C] ]

≤ exp (−∆/C6) , (62)

where C6 = C6(γ) > 0. In the last inequality we used (61), (60) and (59).
As far as Pr [B4] is regarded, first recall that B4 denotes the event that there exists z ∈ B100(w)

such that either |A(u)| ≥ γ3∆ or |A∗(u)| ≥ γ3∆. Fix some vertex z ∈ B100(w). W.l.o.g. we
consider the chain Xt. There are two cases for z. The first one is that z is occupied in X0. The
second one is z is not occupied in X0. Then probability that the vertex z is updated becomes
occupied at least once up to time C1n is at most 2C1e/∆, regardless of the rest of the vertices.

Fix some vertex u ∈ B100(w). Let Ju be the number of vertices z ∈ N(u) which are unoccupied
in X0 but they get into Au. Ju is dominated by the binomial distribution with parameters ∆ and
2C1e/∆, i.e. B(∆, 2C1e/∆). Using Chernoff’s bounds we get that

Pr
[
Ju ≥ γ3∆/10

]
≤ exp

(
−γ3∆/10

)
.

Let Lu be the number of vertices in z ∈ N(u) which are occupied in X0. Since we have that X0 is
400-above suspicious for radius R� 100 around w and u ∈ B100(w), it holds that Lu ≤ 400∆/ log∆.
Since |Au| = Ju + Lu we get that Pr

[
|Au| ≥ γ3∆

]
≤ exp

(
−γ3∆/10

)
. Taking a union bound over

the at most ∆100 vertices in B100(w) we get that

Pr
[
∃u ∈ B100(w) s.t. |Au| ≥ γ3∆

]
≤ ∆100 exp

(
−γ3∆/10

)
≤ exp

(
−γ3∆/20

)
,

where the last inequality holds for sufficiently large ∆. Working in the same way we get that

Pr
[
∃u ∈ B100(w) s.t. |A∗u| ≥ γ3∆

]
≤ exp

(
−γ3∆/20

)
,
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Combining the two inequalities above, there exists C7 = C7(γ) > 0 such that

Pr [B4] ≤ exp (−∆/C7) . (63)

Plugging (63), (62), (60), (59) and (58) into (57), we get that

Pr [A] ≤ exp (−∆/C8) , (64)

for appropriate C8 > 0. The lemma follows by plugging (64) and (62) into (56).

D Proof of Local Uniformity - Proof of Theorems 7, 8

In this section we prove the uniformity results (Theorems 7 and 8) that are presented in Section 4.

D.1 Proof of Theorem 8

In light of Lemma 22, Theorem 8 follows as a corollary from the following result which considers
initial state for (Xt) which is not heavy around v.

Theorem 27. For all δ, ε > 0, let ∆0 = ∆0(δ, ε), C = C(δ, ε). For graph G = (V,E) of maximum
degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1 − δ)λc(∆), let (Xt) be the continuous (or discrete) time
Glauber dynamics on the hard-core model. If X0 is 400-above suspicion for radius R = R(δ, ε) > 1
for v ∈ V , it holds that

Pr

(∀t ∈ I) WXt(v) <
∑

z∈N(v)

ω∗(z)Φ(z) + ε∆

 ≥ 1− exp (−∆/C) , (65)

where the time interval I = [Cn, n exp (∆/C)].

We will use Lemmas 22, 23 and 24 to complete the proof of Theorem 27. For an indepen-

dent set σ of G and w ∈ V , recall that R(σ,w) =
∏
z∈N(w)

(
1− λ

1+λUz,v(σ)
)
, where Uz,w(σ) =

1 {σ ∩ (N(z) \ {w}) = ∅}.
The following result which is the Glauber dynamics’ version of (15), in Section 4.1.

Lemma 28. Let ε > 0, R, C and λ be as in Theorem 27. Let (Xt) be the continuous time Glauber
dynamics on the hard-core model with fugacity λ and underlying graphs G. If X0 is 400-above
suspicion for radius R for w ∈ V , then we have that

Pr [(∀t ∈ I) |R(Xt, w)− ω∗(w)| ≤ ε/10] ≥ 1− exp (−20∆/C) , (66)

where I = [Cn, n exp (∆/C)]

The proof of Lemma 28 makes use of the following result, which is the Glauber dynamics’ version
of Lemma 9, in Section 4.1.

Lemma 29. For δ, γ > 0, let ∆0 = ∆0(δ, γ), C = C(δ, γ), Ĉ = Ĉ(δ, γ). For all graphs G = (V,E)
of maximum degree ∆ ≥ ∆0 and girth ≥ 7, all λ < (1 − δ)λc(∆), let (Xt) be the continuous time
Glauber dynamics on the hard-core model.
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Let X0 be 400-above suspicion for radius R ≤ ∆9/10 for w ∈ V . Then, for x ∈ BR/2(w) and
I = [t0, t1], where t0 = Cn, it holds that

Pr

(∀t ∈ I)

∣∣∣∣∣∣R(Xt, x)− exp

− λ

1 + λ

∑
z∈N(x)

Etz [R(Xtz , z)]

∣∣∣∣∣∣ ≤ γ


≥ 1−
(

1 +
t1 − t0
n

)
exp

(
−∆/Ĉ

)
,

where Etz [R(Xtz , z)] is the expectation w.r.t. random time tz, the last time that vertex z is updated
prior to time t.

Note that Etz [R(Xtz , z)] = exp(−t/n) R(X0, z) +
∫ t

0 R(Xs, z)n exp ((s− t)/n) ds. The proof of
Lemma 29 appears in Section D.3.

Proof of Lemma 28. Recall that I = [Cn, n exp(∆/C]. Let R =
⌊
30δ−1 log(6ε−1)

⌋
Assume that C

is sufficiently large such that C = (R+ 1)C1, where C1 is specified later. Let T0 = (R+ 1)C1n and
T1 = exp(∆/C). Finally, for i ≤ R let Ii := [T0 − iC1n, T1].

Consider the continuous time Glauber dynamics (Xt). Also, consider times t ≥ T0 − RC1n .
For each such time t and positive integer i ≤ R, we define

αi := max |Ψ(R(Xt, x))− Ψ(ω∗(x))| ,

where Ψ is defined in (3). The maximum is taken over all t ∈ Ii and over all vertices x ∈ Bi(w).
An elementary observation about αi is that αi ≤ 3 for every i ≤ R. To see why this holds, note

the following: For any z ∈ V and any independent sets σ, it holds that

R(σ, z) =
∏

r∈N(z)

(
1− λ ·Ur,z(σ)

1 + λ

)
≥ (1 + λ)−∆ ≥ e−λ∆ ≥ e−e,

where in the last inequality we use the fact that ∆ is sufficiently large, i.e. ∆ > ∆0(ε, δ) and
λ < e/∆. Furthermore, using the same arguments as above we get that ω∗(z) ≥ e−e, as well.
Since for any x ∈ V and any independent sets σ, we have R(σ, x), ω∗(x) ∈ [e−e, 1], (24) implies
αi ≤ C0 = 3, for every i ≤ R.

We prove our result by showing that typically α0 is very small. Then, the lemma follows by
using standard arguments. We use an inductive argument to show that α0 very small. We start by
using the fact that αR ≤ C0. Then we show that with sufficiently large probability, if αi+1 ≥ ε/20,
then αi ≤ (1− γ)αi+1 where 0 < γ < 1.

For any i ≤ R, we use the fact that there exists Ĉ > 0 such that with probability at least

1− exp
(
−∆/Ĉ

)
the following is true: For every vertex z ∈ Bi(w) it holds that

(∀t ∈ Ii)

∣∣∣∣∣∣R(Xt, z)− exp

− λ

1 + λ

∑
r∈N(z)

ω̃(r)

∣∣∣∣∣∣ < εδ

40
(67)

where

ω̃t(r) = exp(−C1) ·R(Xt−C1n, r) +

∫ t

t−C1n
R(Xs, r)n exp [(s− C1n)/n] ds. (68)

Eq. (67) is implied by Lemmas 23, 29.
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Fix some i ≤ R, z ∈ Bi(w) and time s ∈ Ii. We consider Xs by conditioning on Xs−C1n. From
the definition of the quantity αi+1 we get the following: For any x ∈ Bi+1(w) consider the quantity
ω̃s(x). We have that

Dv,i+1(ω̃s, ω
∗) ≤ αi+1. (69)

We will show that if (67) holds for R(Xs, z), where z ∈ Bi(w), and αi+1 ≥ ε/20, then we have that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ (1− δ/24)αi+1,

For proving the above inequality, first note that if R(Xs, z) satisfies (67), then (24) implies that

∣∣∣∣∣∣Ψ (R(Xs, z))− Ψ

exp

− λ

1 + λ

∑
r∈N(z)

ω̃s(r)

∣∣∣∣∣∣ ≤ δε

12
. (70)

Furthermore, we have that

|Ψ (R(Xs, z))− Ψ (ω∗(z))|

≤ δε

12
+

∣∣∣∣∣Ψ
(

exp

(
− λ

1 + λ

∑
r∈Nz

ω̃s(r)

))
− Ψ (ω∗(z))

∣∣∣∣∣ [from (70)]

≤ δε

12
+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)− Ψ (ω∗(z))

∣∣∣∣∣∣
+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)− Ψ
exp

− λ

1 + λ

∑
r∈N(z)

ω̃(r)

∣∣∣∣∣∣ , (71)

where the last derivation follows from the triangle inequality.
From our assumptions about λ,∆ and the fact that ω̃s(r) ∈ [e−e, 1], for r ∈ N(z), we have that∣∣∣∣∣∣

∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)
− exp

−λ ∑
r∈N(z)

ω̃s(r)

1 + λ

∣∣∣∣∣∣ ≤ 10

∆
.

The above inequality and (24) imply that∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)− Ψ
exp

− λ

1 + λ

∑
r∈N(z)

ω̃s(r)

∣∣∣∣∣∣ ≤ 30

∆
.

Plugging the inequality above into (71) we get that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δε

12
+

30

∆
+

∣∣∣∣∣∣Ψ
 ∏
r∈N(z)

(
1− λω̃s(r)

1 + λ

)− Ψ (ω∗(z))

∣∣∣∣∣∣
≤ δε

12
+

60

∆
+Dv,i(F (ω̃), ω∗), (72)

where the function F is defined in (2). Since ω̃s satisfies (69), Lemma 5 implies that

Dv,i(F (ω̃), ω∗) ≤ (1− δ/6)αi+1. (73)
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Plugging (73) into (72) we get that

|Ψ (R(Xs, z))− Ψ (ω∗(z))| ≤ δε

12
+

60

∆
+ (1− δ/6)αi+1 ≤ (1− δ/24)αi+1, (74)

where the last inequality follows if we have αi+1 ≥ ε/20. Note that (74) holds provided that
R(Xs, z) satisfies (67).

So as to bound αi we have to take the maximum over all times t ∈ Ii and vertices z ∈ Bi(w).
So far, i.e. in (74), we only considered a fixed time s ∈ Ii and a fixed vertex z.

Consider, now, a partition of Ii into subintervals each of length ε4η
200∆n, where the last part can

be of smaller length. Let T (j) be the j-th part, for j ∈ {1, . . . , d200C1∆/(ε
4η)e}. For some some

vertex x ∈ V , each r ∈ N(x) is updated during the time period T (j) with probability less than
ε4η

100∆ , independently of the other vertices.
Chernoff’s bounds imply that with probability at least 1−exp

(
−∆ε3/3

)
, the number of vertices

in S2(x) which are updated during the interval T (j) is at most ∆ε3/3. Furthermore, changing any
∆ε2/3 variables in S2(x) can only change R(Xs, x) by at most ε2/3. Consequently, Ψ(R(Xs, x))
can change by only ε2 within T (j). From a union bound over all subintervals T (j) and all vertices
x ∈ Bi(w), there exists sufficiently large C > 0 such that:

Pr
[
αi = max{3ε2 + (1− δ/24)αi+1, ε/20}

]
≥ 1− exp (−52∆/C) .

The fact that αR ≤ C0 and R =
⌊
20δ−1 log(6ε−1)

⌋
, implies the following: With probability at least

1− exp (−50∆/C) for every t ∈ I it holds that α0 ≤ ε/30. In turn, (24) implies that

|R(Xt, v)− ω∗(v)| ≤ ε/11. (75)

The lemma follows.

We conclude the technical results for Theorem 27 by proving the following lemma.

Lemma 30. Let ε > 0, R, I and λ be as in Theorem 27. Let (Xt) be the continuous time Glauber
dynamics on the hard-core model with fugacity λ and underlying graphs G. Assume that X0 is 400
above suspicion for v. Then, for any t ∈ I, any γ > 0, there is Ĉ = Ĉ(γ) > 0 such that

Pr

∣∣∣∣∣∣W(Xt, v)−
∑

z∈N(v)

Φ(z) · Etz [R(Xtz , z)]

∣∣∣∣∣∣ > γ∆

 < exp
(
−∆/Ĉ

)
.

Recall that Etz [R(Xtz , z)] is the expectation w.r.t. tz the time when z was last updated prior to
time t, i.e. Etr [R(Xtz , z)] = exp(−t/n)R(X0, z) +

∫ t
0 R(Xs, z)n exp [(s− t)/n] ds.

Proof. Consider, first, the graph G∗v and the dynamics (X∗t ) such that X∗0 = X0. Condition on X∗0
and on X∗t restricted to V \B2(x) for all t ∈ I. Denote this conditional information by F .

First we are going to show that E [W(X∗t , v) | F ] and
∑

z∈N(v) Φ(z) · E [R(X∗t , z) | F ] are very
close. From the definition of W(X∗t , v) we have that

E [W (X∗t , v) | F ] =
∑

z∈N(v)

Φ(z) · E [Uz,v(X
∗
t ) | F ].

Let c > 0 be such that t/n = c. For ζ > 0 whose value is going to be specified later, let H(v) ⊆ N(v)
be such that z ∈ H(v) is |N(z)∩X∗0 | ≥ ζ−1. In (99) and (100) we have shown that for z /∈ H(v) it
holds that ∣∣E [Uz,v(X

∗
t ) | F ]− Etz

[
R(X∗tz , z) | F

]∣∣ ≤ θ, (76)
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where 0 < θ = θ(c, ζ) < 20(ζec)−1 while (as in we previously defined)

Etz
[
R(X∗tz , z) | F

]
= exp(−t/n)R(X∗0 , z) +

∫ t

0
R(X∗s , z)n exp [(s− t)/n] ds.

Since X∗0 is 400-above suspicion for radius R around v, it holds that |H(v)| ≤ 400ζ∆. We have
that,

∣∣∣∣∣∣E [W(X∗t , v) | F ]−
∑

z∈N(v)

Φ(z) · Etz
[
R(X∗tz , z) | F

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣E [W(X∗t , v) | F ]−
∑

z /∈H(v)

Φ(z) · Etz
[
R(X∗tz , z) | F

]∣∣∣∣∣∣+
∑

z∈H(v)

Φ(z) · Etz
[
R(X∗tz , z) | F

]

≤

∣∣∣∣∣∣E [W(X∗t , v) | F ]−
∑

z /∈H(v)

Φ(z) · Etz
[
R(X∗tz , z) | F

]∣∣∣∣∣∣+ 5000ζ∆ [since maxz Φ(z) ≤ 12]

≤ (12θ + 5000ζ)∆. [from (76)] (77)

The fact that maxz Φ(z) ≤ 12 is from Theorem 6.
We proceed by showing that W (X∗t , v) is sufficiently well concentrated about its expectation.

Conditioning on F the random variables Uz,v(X
∗
t ), for z ∈ N(v), are fully independent. From

Chernoff’s bounds, there exists appropriate C1 > 0 such that

Pr [|W(X∗t , v)− E [W(X∗t , v) | F ]| > γ∆/100] ≤ exp (−∆/C1) . (78)

From (78) and (77) there exists C2 > 0 such that that

Pr

∣∣∣∣∣∣W (X∗t , v)−
∑

z∈N(v)

Φ(z) · Etz
[
R(X∗tz , z) | F

]∣∣∣∣∣∣ ≥ γ∆/50

 ≤ exp (−∆/C2) . (79)

Furthermore, using Lemma 24 with error parameter γ2, i.e. |(X∗t ⊕Xt)∩B2(v)| ≤ γ2∆, we get the
following: There exists appropriate C3 = C3(γ) > 0 such that

Pr [|W(X∗t , v)−W(Xt, v)| ≤ γ∆/40] ≥ 1− exp (−∆/C3) . (80)

Also, (from Lemma 24 again) with probability at least 1− exp (−∆/C3) it holds that∣∣∣∣∫ t

0
R(Xs, z)n exp [(s− t)/n] ds−

∫ t

0
R(X∗s , z)n exp [(s− t)/n] ds

∣∣∣∣ ≤ γ/600, (81)

for every z ∈ N(v). The above follows by using the fact that changing the spin of any γ2∆ vertices
in X∗t (B2(z)) changes R(X∗t , z) by at most γ/1000.

Noting that Φ(z) ≤ 12, for any z, the lemma follows by combining (81), (80) and (79).

D.2 Local Uniformity for the Glauber Dynamics: Proof of Theorem 27

Using Lemmas 28 and 30, in this section we prove Theorem 27. Recall that Theorem 8 follows as
a corollary of Theorem 27 and Lemma 22.
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Proof of Theorem 27. For a vertex u ∈ N(v) consider G∗u. Consider also the continuous time
dynamics (X∗t ) such that X∗0 = X0.

We condition on the restriction of (X∗t ) to V \ B2(u), for every t ∈ I. We denote this by F .
Fix some t ∈ I. Since u ∈ BR(v) and X0 is 400-above suspicion for radius R around v we get that

Es [R(X∗s , u) | F ]

= exp(−t/n)R(X∗0 , u) +

∫ t

0
R(X∗t , u)n exp ((s− t)/n)

= Es

exp

− λ

1 + λ

∑
z∈N(u)

Uz,u(X∗s ) +O (1/∆)

 | F


= exp

− λ

1 + λ

∑
z∈N(u)

Es [Uz,u(X∗s ) | F ] +O (1/∆)

 [due to conditioning on F ]

≤ exp

− λ

1 + λ

∑
z∈N(u)

Es [R(X∗s , z) | F ] + θλ∆+O (1/∆)

 , (82)

where in the last inequality we use (76). Note that so as apply (76) X∗0 (u) should be sufficiently
“light”. This is guaranteed from our assumption that u ∈ BR(v) and X0 is 400-above suspicious
for radius R from v.

Furthermore, (67) and Lemma 24 imply the following: There exists C1 > 0 such that with
probability at least 1− exp (−∆/C1), we have that

(∀t ∈ I)

∣∣∣∣∣∣R(X∗t , u)− exp

− λ

1 + λ

∑
r∈N∗(u)

ω̂(r)

∣∣∣∣∣∣ < γ, (83)

where

ω̂(r) = exp(−t/n)R(X∗0 , r) +

∫ t

0
R(X∗s , r)n exp [(s− t)/n] ds.

Note that for every r ∈ N∗(u) we have ω̂(r) = Etr
[
R(X∗tr , r) | F

]
. Using this observation, we plug

(82) into (83) and get

Pr [|R(X∗t , u)− ω̂(u)| ≥ 10eθ + γ] ≤ exp (−∆/C1) . (84)

In the above inequality we used the fact that λ∆ < 2e.
Consider the continuous time Glauber dynamics (Xt). From Lemma 24 and (84) there exists

C3 > 0 such that for Xt the following holds

Pr [|R(Xt, u)− ω̃(u)| ≥ 20eθ + 2γ] ≤ exp (−∆/C3) , (85)

where

ω̃(z) = exp(−t/n)R(X0, z) +

∫ t

0
R(Xs, z)n exp [(s− t)/n] ds.

Furthermore a simple union bound over u ∈ N(v) and (85) gives that

Pr [∀u ∈ N(v) |R(Xt, u)− ω̃(u)| ≥ 20eθ + 2γ] ≤ ∆ exp (−∆/C3) . (86)
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Taking sufficiently small θ, γ in (86) and using Lemma 30 we get that

Pr

∣∣∣∣∣∣W(Xt, v)−
∑

w∈N(v)

Φ(z) ·R(Xt, w)

∣∣∣∣∣∣ > ε∆/15

 ≤ exp (−∆/C4) , (87)

for appropriate C4 > 0. Furthermore, applying Lemma 28, for each w ∈ N(v) and using (87) yields

Pr

∣∣∣∣∣∣W(Xt, v)−
∑

w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > ε∆/2

 ≤ exp (−∆/C5) , (88)

for appropriate C5 > 0. The above inequality establishes the desired result for a fixed t ∈ I.
Now we will prove that (88) holds for all t ∈ I. Consider a partition of the time interval I into

subintervals each of length ψ2

∆ n, where the last part can be of smaller length. The quantity ψ > 0
is going to be specified later. Also, let T (j) be the j-th part.

Each z ∈ B2(v) is updated at least once during the time period T (j) with probability less than

2ψ
2

∆ , independently of the other vertices. Note that |B2(v)| ≤ ∆2. Clearly, the number of vertices
in B2(v) which are updated during Ti(j) is dominated by B(∆2, 2ψ2/∆). Chernoff’s bounds imply
that with probability at least 1−exp

(
−20∆ψ2

)
, the number of vertices in B2(v) which are updated

during the interval T (j) is at most 20ψ2∆. Furthermore, changing any 2∆ψ2 variables in B2(v) can
only change the weighted sum of unblocked vertices in Nv by at most 20C0ψ

2∆. Taking sufficiently
small ψ > 0 we get the following:

Pr

∣∣∣∣∣∣W(Xt, v)−
∑

w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > ε∆

 ≤ exp (−2∆/Cb) . (89)

The above completes the proof of Theorem 27 for the case where (Xt) is the continuous time
process.

The discrete time result follows by working as follows: instead of W(Xt, v) we consider the

“normalized” variable Λ(Xt, v) = W(Xt,v)
∆ . Rephrasing (88) in terms of Λ(Xt, v) we have, for a

specific t ∈ I:

Pr

∣∣∣∣∣∣Λ(Xt, v)−∆−1
∑

w∈N(v)

Φ(w) · ω∗(w)

∣∣∣∣∣∣ > ε/2

 ≤ exp (−∆/C5) . (90)

Note that Λ(Xt, v) satisfies the Lipschitz and total influence conditions of Lemma 18. Hence by
Lemma 18 the result for the discrete time process holds.

D.3 Approximate recurrence for Glauber dynamics - Proof of Lemma 29

Consider G∗x and let (X∗t ) be the Glauber dynamics on G∗x with fugacity λ > 0 and let X∗0 = X0.
Also assume that (X∗t ) and (Xt) are maximally coupled.

Condition on X∗0 , let F be the σ-algebra generated by X∗t restricted to V \B2(x) for all t ∈ I.
Fix t ∈ I. Let c > 0 be such that t/n = c, i.e. c is a large constant. Recalling the definition of
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R(X∗t , x), we have that

R(X∗t , x) =
∏

z∈N(x)

(
1− λ

1 + λ
Uz,x(X∗t )

)

= exp

− λ

1 + λ

∑
z∈N(x)

Uz,x(X∗t ) +O (1/∆)

 . (91)

Let Q(X∗t ) =
∑

z∈N(x) Uz,x(X∗t ). Conditional on F , the quantity Q(X∗t ) is a sum of |N(x)| many

independent random variables in [0, 1]. Applying Azuma’s inequality, for 0 ≤ γ ≤ (3e)−1, we have

Pr [|E [Q(X∗t ) | F ]−Q(X∗t )| ≥ γ∆] ≤ 2 exp
(
−γ2∆/2

)
. (92)

Combining the fact that E [Q(X∗t ) | F ] =
∑

z∈N(x) E [Uz,x(X∗t ) | F ] with (92) and (91) we get that

Pr

∣∣∣∣∣∣R(X∗t , x)− exp

− λ

1 + λ

∑
z∈N(x)

E [Uz,x(X∗t ) | F ]

∣∣∣∣∣∣ ≥ 3γλ∆

 ≤ 2 exp
(
−γ2∆/2

)
. (93)

For every z ∈ N∗(x), it holds that

E [Uz,x(X∗t ) | F ]

=
∏

y∼N(z)\{x}

E [1{y /∈ X∗t } | F ]

=
∏

y∼N(z)\{x}

(Pr[ty = 0] · 1{y /∈ X∗0}+ E [1{y /∈ X∗t } · 1{ty > 0} | F ]) , (94)

where ty is the time that vertex y is last updated prior to time t and it is defined to be equal to
zero if y is not updated prior to t. Note, for any 0 ≤ s ≤ t, it holds that Pr[ty ≤ s] = e−(t−s)/n.
Also, we have that

E [1{y /∈ X∗t } · 1{ty > 0} | F ] = E [E [1{y /∈ X∗t } · 1{ty > 0} | F , ty] | F ]

=

∫ t

0

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
n exp [(s− t)/n] ds, (95)

where the last equality follows because we are using G∗x and (X∗t ). The use of G∗ and (X∗t ) ensures
that the configuration in V \B2(x) is never affected by that in B2(x). For this reason, if y is updated
at time s ∈ I, then the probability for it to be occupied, given F , is exactly λ

(1+λ)Uy,z(X
∗
s ). That is,

the configuration outside B2(x) does not provide any information for y but the value of Uy,z(X
∗
s ).

Plugging (95) into (94) we get that

E [Uz,x(X∗t ) | F ]

=
∏

y∼N(z)\{x}

[
exp (−t/n) 1{y /∈ X∗0} −

∫ t

0

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
n exp [(s− t)/n] ds

]

=
∏

y∼N(z)\{x}

[
1− exp (−t/n) 1{y ∈ X∗0} −

∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

]
. (96)

For appropriate ζ ∈ (0, 1), which we define later, let H(x) ⊆ N∗(x) be such that z ∈ H(x) if
|N∗(z) ∩X∗0 | ≥ 1/ζ.
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Noting that each integral in (96) is less than λ, for every z /∈ H(x), we get that

E [Uz,x(X∗t ) | F ] = (1 + δ)
∏

y∈N(z)\{x}

(
1−

∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

)
, (97)

where |δ| ≤ 4(ζec)−1.
Recall that for some vertex y in G∗x we let Ety [· | F ], denote the expectation w.r.t. ty, the

random time that y is updated prior to time t. It holds that

Ety [Uy,z(X
∗
ty)|F ] = exp(−t/n)Uy,z(X

∗
0 ) +

∫ t

0
Uy,z(X

∗
s )n exp [(s− t)/n] ds.

For every y ∈ N(z)\{x}, where z /∈ H(x) it holds that

Ety
[
Uy,z(X

∗
ty) | F

]
−
∫ t

0
Uy,z(X

∗
s )n exp [(s− t)/n] ds = exp (−t/n) Uy,z(X

∗
0 )

≤ exp (−t/n) ≤ exp(−c). (98)

Since λ < e/∆, (97) implies that there is a quantity θ, with 0 < θ ≤ 20(ζec)−1, such that

E [Uz,x(X∗t ) | F ] ≤
∏

y∈N(z)\{x}

(
1−

∫ t

0

λ

1 + λ
Uy,z(X

∗
s )n exp [(s− t)/n] ds

)
+ θ/2

≤
∏

y∈N(z)\{x}

(
1− Ety

[
λ

1 + λ
Uy,z(X

∗
ty) | F

])
+ θ [from (98)]

=
∏

y∈N(z)\{x}

(
1− Es

[
λ

1 + λ
Uy,z(X

∗
s ) | F

])
+ θ,

where in the last derivation, we substituted the variables ty, for y ∈ N(z)\{x}, with a new random
variable s which follows the same distribution as ty. Note that the variables ty are identically
distributed.

Given the σ-algebra F , the variables Uy,z(X
∗
s ), for y ∈ N(z) \ {x}, are independent with each

other, this yields

E [Uz,x(X∗t ) | F ] = Es

[∏
y

(
1− λ

1 + λ
Uy,z(X

∗
s )

)
| F

]
+ θ

= Es [R(X∗s , z) | F ] + θ, (99)

where the last derivation follows from the definition of R(X∗s , z). In the same manner, we get that

E [Uz,x(X∗t ) | F ] ≥ Es [R(X∗s , z) | F ]− θ, (100)

for every z /∈ H(x).
Since X∗0 is 400 above suspicion for radius R, around w and x ∈ BR(w), we have that |H(x)| ≤

400ζ∆. This observation and (99), (100) (93), yield that there exists C ′ > 0 such that

Pr

∣∣∣∣∣∣R(X∗t , x)− exp

− λ

1 + λ

∑
z∈N(x)

Es [R(X∗s , z) | F ]

∣∣∣∣∣∣ ≥ 7(θ + 400ζ + 3γ)

 ≤ exp
(
−C ′∆

)
,

(101)
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where we use the fact λ
1+λ∆ < e and θ, ζ, γ are sufficiently small.

So as to get from (X∗t ) to (Xt) we use Lemma 24, with parameter γ3. That is, we have that

Pr
[
∃s ∈ I |(Xs ⊕X∗s ) ∩ S2(x)| ≥ γ3∆

]
≤ exp

(
−∆/C ′′

)
,

for some sufficiently large constant C ′′ > 0. This implies that

Pr
[
∃t ∈ I |R(X∗t , x)−R(Xt, x)| ≥ γ2

]
≤ exp

(
−∆/C ′′

)
, (102)

since changing any ∆γ3 variables in S2(x) can only change R(X∗s , x) by at most γ2.
With the same observation we also get that with probability at least 1− exp (−∆/C ′′) it holds

that ∣∣∣∣∫ t

0
R(X∗s , x)n exp [(s− t)/n] ds−

∫ t

0
R(Xs, x)n exp [(s− t)/n] ds

∣∣∣∣ ≤ 2γ2. (103)

Plugging (102), (103) into (101) and taking appropriate γ, ζ the following is true: There exists
Ĉ > 0 such that

Pr

∣∣∣∣∣∣R(Xt, x)− exp

− λ

1 + λ

∑
r∈N(x)

E(r)

∣∣∣∣∣∣ ≥ ηε

20C0

 ≤ exp
[
−∆/Ĉ

]
,

where

E(r) = exp[−t/n] ·R(X0, r) +

∫ t

0
R(Xs, r)n exp [(s− t)/n] ds.

At this point, we remark that the above tail bound holds for a fixed t ∈ I. For our purpose, we
need a tail bound which holds for every t ∈ I.

Consider a partition of the time interval I into subintervals each of length ζ3

200∆n, where the
last part can be of smaller length. Let T (j) be the j-th part. Each z ∈ S2(x) is updated during

the time period T (j) with probability less than ζ3

100∆ , independently of the other vertices.
Note that |S2(x)| ≤ ∆2. Chernoff’s bounds imply that with probability at least 1−exp

(
−∆ζ3

)
,

the number of vertices in S2(x) which are updated more than once during the time interval T (j) is
at most ζ3∆. Also, changing any ∆ζ3 variables in S2(x) can only change R(Xs, x) by at most ζ2.

The lemma follows by taking a union bound over all T (j) for j ∈ {1, . . . , d200|I|∆/(ζ3)e} and
all vertices z ∈ Bi(x).

D.4 Local Uniformity for the Gibbs Distribution: Proof of Theorem 7

Proof of Theorem 7. Let F be the σ-algebra generated by the configuration of v and the vertices
at distance greater than 2 from x, i.e. V \ B2(v). Conditioning on F , Sv is a sum of |N(v)| many
0-1 independent random variables. From Azuma’s inequality, for any fixed γ > 0, we have that

Pr [|Sv − E [Sv | F ]| > γ∆] ≤ 2 exp
(
−γ2∆/2

)
. (104)

Working as in the proof of Theorem 3 (i.e. for (22), (23)) we get the following: For each z ∈ N(v)
it holds that

|E [Uz,v(X) | F ]−R(X, z)| ≤ 10eeλ.

Note that, given F the quantity R(X, z) is uniquely specified.
From the above we get that

E [Sv | F ] =
∑

z∈N(v)

E [Uz,v(X) | F ] =
∑

z∈N(v)

R(X, z) + ζ, (105)
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where |ζ| ≤ e5e. Furthermore, from Lemma 16 we have that for every w ∈ V and every θ > 0,
there exists C0 > 0 such that

Pr [|R(X,w)− ω∗(w)| ≤ θ] ≥ 1− exp (−∆/C0) . (106)

From (106), (105) and a simple union bound we get the following: for every γ′ > 0, the exists
Ca > 0 such that

Pr

∣∣∣∣∣∣E [Sv | F ]−
∑

z∈N(v)

ω∗(z)

∣∣∣∣∣∣ ≤ γ′∆
 ≥ 1− exp (−∆/Ca) . (107)

The theorem follows by combining (104) and (107).

E Rapid Mixing for Glauber dynamics: Proof of Theorem 1

The following lemma considers a worst case of neighboring independent sets. It states some upper
bounds on the Hamming distance after Cn and Cn log∆ steps in the coupling.

Lemma 31. For δ > 0, 0 < ε < 1 and C > 10 let ∆ ≥ ∆0. Consider a graph G = (V,E) of
maximum degree ∆ and let λ ≤ (1− δ)λc(∆). Let (Xt), (Yt) be the Glauber dynamics on the hard-
core model with fugacity λ and underlying graphs G. Assume that the two chains are maximally
coupled. Then, the following is true:

Assume X0, Y0 to be such that X0 ⊕ Y0 = {v} and T = Cn/ε. Then it holds that

1. E [|XT ⊕ YT |] ≤ exp (3C/ε)

2. E [|XT log∆ ⊕ YT log∆|] ≤ ∆3C/ε

3. Let ET be the event that at some time t ≤ T , |Xt ⊕ Yt| > ∆2/3. Then

E [|XT ⊕ YT | · 1{ET }] < exp
(
−
√
∆
)
.

4. Let ST log∆ denote the set of disagreements of (XT log∆, YT log∆), that are 200-suspect for

radius 2∆3/5. Then E [|ST log∆|] ≤ exp
(
−
√
∆
)

.

The proof of Lemma 31 appears in Section E.1.
The above lemma, i.e. Lemma 31.4, shows that from a worst case pair of neighboring indepen-

dent sets, after O(n log∆) steps, all the disagreements are likely to be “nice” in the sense of being
above suspicion. The heart of rapid mixing proof will be the following results, which shows that
for a pair of neighboring independent sets that are “nice” there is a coupling of O(n) steps of the
Glauber dynamics where the expected Hamming distance decreases. Also, at the end of this O(n)
step coupling, it is extremely unlikely that there are any disagreements that are not “nice”.

Lemma 32. Let C ′ > 10, ε > 0 and ∆0 = ∆0(ε). For any graph G = (V,E) on n vertices and
maximum degree ∆ > ∆0 and girth g ≥ 7 the following holds:

Suppose that X0, Y0 differ only at v, while v is 400-above suspicion for R, where ∆3/5 ≤ R ≤
2∆3/5. For Tm = C ′n/ε we have that

1. E [|XTm ⊕ YTm |] ≤ 1/3
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2. Let Z denote the event that there exists a 200-suspect disagreement for R′ = R − 2
√
∆ at

time Tm. Then it holds
Pr [Z] ≤ 2 exp(−2

√
∆).

The proof of Lemma 32 appears in Section E.2.

Proof of Theorem 1. The proof of the theorem is very similar to the proof of Theorem 1 in [4].
In particular, Lemma 31 is analogous to Lemma 10 in [4]. Similarly, Lemma 32 is analogous to
Theorem 11 in [4]. Furthermore, working as for Lemma 12 in [4] we get the following result, which
ties together Lemma 32 and Lemma 31. It shows that for a worst case initial pairs of independent
sets, after O(n log∆) steps, the expected Hamming distance is small.

Let C ′ > 10, ε > 0 and ∆0 = ∆0(ε). For any graph G = (V,E) on n vertices and maximum
degree ∆ > ∆0 and girth g ≥ 7 the following holds: Let X0, Y0 be independent sets which disagree
on a single vertex v that is 400-above suspicion for radius R = 2∆3/5. Let T = C′n log∆

ε . Then,

E [|XT ⊕ YT |] ≤ 1/
√
∆.

In light of the above result, Theorem 1 follows using the same arguments as those for the proof of
Theorem 1 in [4].

E.1 Proof of Lemma 31

Proof of Lemma 31.1 and 31.2. The treatment for both cases are very similar. Note that each
vertex can only become disagreeing at time step t, if it is updated at time t and it is next to a
vertex which is also disagreeing. Furthermore, for such vertex the probability to become disagreeing
is at most e/∆. Using the observations and noting that each disagreeing vertex has at most ∆ non-
disagreeing neighbors we get the following: The expected number of disagreements at each time
step increases by a factor which is at most (1 +∆ e

n∆) ≤ exp (3/n).
By using induction, it is straightforward that for any t ≥ 0 it holds

E [Xt ⊕ Yt] ≤ exp (3t/n) . (108)

Then, the statement 1, follows by plugging into (108) t = Cn/ε. The statement 2 follows by
plugging into (108) t = T log∆.

Proof of Lemma 31.3. Recall that for any Xt, Yt, we have that Dt = {w : Xt 6= Yt}, while let

D≤t =
⋃
t′≤tDt′ .

Also, let H≤t = |D≤t|. We prove that for any integer 1 ≤ ` ≤ n, for T = Cn/ε, it holds that

Pr [H≤T ≥ `] ≤ exp
(
−`e−6C/ε

)
. (109)

For 1 ≤ i ≤ `, let ti be the time at which the i’th disagreement is generated (possibly counting
the same vertex set multiple times). Denote t0 = 0. Let ηi := ti − ti−1 be the waiting time for
the formation of the i’th disagreement. Conditioned on the evolution at all times in [0, ti], the
distribution of ηi stochastically dominates a geometric distribution with success probability ρi and
range {1, 2, . . .}, where

ρi =
e ·min{i∆, n− i}

n∆
.
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This is because at all times prior to ti we have Ht ≤ i, while the sets H≤t increases with probability
at most ρi at each time step, regardless of the history. The quantity min{i∆, n−i} in the numerator
in the expression for ρi is an upper bound on the number of vertices that are non-disagreeing
neighbors of the disagreeing vertices. The quantity e/(n∆) is an upper bound for the probability
of a neighbor of a disagreement to be chosen and become a disagreement itself.

Hence, η1 + · · ·+ η` stochastically dominates the sum of independent geometrically distributed
random variables with success probability ρ1, . . . ρ`. For any real x ≥ 0 it holds that

Pr [ηi ≥ x] ≥ (1− ρi)dxe−1 ≥ exp

[
− ρi

1− ρi
x

]
≥ e2ρix.

In the above series of inequalities we used that 1− x > exp(− x
1−x) for 0 < x < 1 and ρi < 1/3.

The above inequality implies that η1 + · · · + η` dominates the sum of exponential random
variables with parameters 2ρ1, 2ρ2, . . . , 2ρ`. Since ρi ≤ iρ, where ρ = e

n , we have that η1 + · · ·+ η`
stochastically dominates the sum of exponential random variables ζ1, ζ2, . . . , ζ` with parameters
2ρ, 4ρ, . . . , 2`ρ, respectively.

Consider the problem of collecting ` coupons, assuming that each coupon is generated by a
Poisson process with rate 2ρ. The time interval between collecting the i’th coupon and the i+ 1’st
coupon is exponentially distributed with rate 2(`− i)ρ. Hence the time to collect all ` coupons has
the same distribution as ζ1 + ζ2 + · · ·+ ζ`. But the event that the total delay is less than T nothing
but the intersection of the (independent) events that all coupons are generated in the time interval
[0, T ]. The probability of this event is

(1− exp−2Tρ)` < exp (−` exp (−2Ce/ε)) .

The above completes the proof of (109). Then we proceed as follows:

E [|XT ⊕ YT | · 1{ET }] ≤ E [H≤T1{ET }] ≤
n∑

`=∆2/3

` ·Pr [H≤T = `]

≤ ∆2/3 ·Pr
[
H≤T ≥ ∆2/3

]
+

n∑
`=∆2/3+1

Pr [H≤T ≥ `]

< ∆2/3
n∑

`=∆2/3

Pr [H≤T ≥ `]

< ∆2/3
n∑

`=∆2/3

exp (−` exp (−6C/ε)) [from (109)]

≤ 2∆2/3 exp(−∆2/3e−6C/ε) (110)

Note that the above quantity is at most exp
(
−
√
∆
)

, for large ∆. This completes the proof.

Proof of Lemma 31.4. For this proof we need to use Lemma 22. We consider the contribution to
the expectation E [|ST log∆|] from the vertices inside the ball BR(v) and the vertices outside the
ball, i.e. V \BR(v), where R =

√
∆.

First consider the vertices in BR(v). Lemma 22 implies that for some vertex w ∈ BR(v) at
time T ′ = T log∆ ≤ exp(∆/C) is 50-above suspicion for radius 2∆3/5 with probability at least
1− exp(−∆/C). This observation implies that

E [|ST log∆ ∩BR(v)|] ≤ exp(−∆/C)|BR(v)| ≤ exp
(
−4
√
∆
)
. (111)
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To bound the number of disagreements outside BR(v), we observe that each such disagreement
comes from a path of disagreements which starts from v. Such a path of disagreements is of length
at least R. This observation implies that E

[
|ST log∆ ∩ B̄R(v)|

]
is upper bounded by the expected

number of disagreements that start from v and have length at least R.
Note that there are at most ∆` many paths of disagreement of length ` that start from v.

Furthermore, so as a fixed path of length ` to become path of disagreement up to time T log∆,
there should be ` updates which turn its vertices into disagreeing. Each vertex is chosen to be
updated with probability 1/n, while it becomes disagreeing with probability at most e/∆.

All the above imply that

E
[
|ST log∆ ∩ B̄R(v)|

]
≤

∑
`≥R

∆`

(
T log∆

`

)( e

n∆

)`
≤

∑
`≥R

(
e2T log∆

`n

)`
[as
(
n
s

)
≤ (ne/s)s ]

≤
∑
`≥R

(
e2C log∆

`ε

)`
≤ (1/20)

√
∆ ≤ exp

(
−10
√
∆
)
. (112)

Summing the bound of E [|ST log∆ ∩BR(v)|] and E
[
|ST log∆ ∩ B̄R(v)|

]
from (111) and (112), re-

spectively gives the desired bound for E [|ST log∆|].

E.2 Proof of Lemma 32

Fix v and R as specified in the statement of the theorem. Recall, for Xt, Yt we let Dt = {w : Xt⊕Yt}
and denote H(Xt, Yt) = |Dt|. That is, H(Xt, Yt) is the Hamming distance between Xt, Yt. We let
the accumulative difference be

D≤t =
⋃
t′≤tDt.

Also, let H≤t = |D≤t|. We define the distance between the two chains Xt, Yt as follows

D(Xt, Yt) =
∑

v∈Xt⊕Yt

Φ(v),

where Φ : V → [1, 12] is defined in Theorem 6. The metric D(Xt, Yt) generalizes the Hamming
metric in the following sense: the disagreement in each vertex v instead of contributing one it
contributes Φ(v). Since Φ(v) ≥ 1, for every v ∈ V , for any two Xt, Yt we always have

D(Xt, Yt) ≥ H(Xt, Yt). (113)

For proving the lemma we use the following result.

Lemma 33. For δ > 0, let sufficiently small ε = ε(δ) and ∆ ≥ ∆0. Consider a graph G = (V,E)
of maximum degree ∆ and let λ ≤ (1 − δ)λc(∆). Also, let (Xt), (Yt) be the Glauber dynamics on
the hard-core model with fugacity λ and underlying graphs G.

For some time t, assume that Xt ⊕ Yt = {v}, for some v ∈ V such that

WXt(v) ≤
∑

z∈N(v)

ω∗(z) · Φ(z) + ε∆, (114)
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WXt(v) is defined in (8). Then, coupling the chains maximally we have that

E [D(Xt+1, Yt+1)−D(Xt, Yt)] < −c/n,

for appropriate c = c(ε, δ) > 0.

The proof of Lemma 33 appears in Section E.3.
We start by proving statement 1 of Lemma 32.

Proof of Lemma 32.1. Let
Tb = max{Cbn,Can},

where the quantities Cb, Ca are from Lemma 23 and Theorem 27, respectively.
Since Tm ≤ n exp (∆/(C log∆)), we can apply Theorem 27 to conclude that the desired local

uniformity properties holds with high probability for all t ∈ I := [Tb, Tm].
For t ≥ Tb we define the following bad events:

• E(t) denotes the event that at some time s < t, it holds Hs > ∆2/3

• B1(t) denotes the event that D≤t 6⊆ B√∆(v)

• B2(t) denotes the event that there exists a time Tb ≤ τ ≤ t, z ∈ B√∆(v) such that

WXt(z) > Θ(z, ε) =
∑

z∈N(v)

ω∗(z)Φ(z) + ε∆,

where ω∗ ∈ [0, 1]V is defined in Lemma 4 and Φ : V → [1, 12]. is defined in Theorem 6

Also, we let the event
B(t) = B1(t) ∪ B2(t),

while we let the “good” event
G(t) = Ē(t) ∩ B̄(t).

We follow the convention that we drop the time t, for all the above events when we are referring
to the event at time Tm.

We bound the Hamming distance by conditioning on the above event in the following manner,

E [HTm ] = E [HTm1{E}] + E
[
HTm1{Ē}1{B}

]
+ E

[
HTm1{Ē}1{B̄}

]
≤ E [HTm1{E}] +∆2/3Pr [B] + E [HTm1{G}]
≤ exp(−

√
∆) +∆2/3Pr [B] + E [HTm1{G}], (115)

where in the last inequality we used Lemma 31.3.
For the second term in the (115) we prove the following

Pr [B] ≤ exp
(
−
√
∆
)
. (116)

Finally, for the third term in the (115) we prove the following

E [HTm1{G}] ≤ 1/9. (117)

The part 1 of the theorem follows by plugging into (115), the bounds in (116) and (117).
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Proof of (116). We can bound the probability of the event B1 by a standard paths of disagreement
argument. We are looking at the probability of a path of disagreement of length ` =

√
∆, within

Tm = C ′n/ε steps, hence:

Pr [B1] ≤ ∆`

(
Tm
`

)( e

n∆

)`
≤

(
e2C ′/ε

)`
[as
(
N
i

)
≤ (Ne/i)i]

≤ exp
(
−2
√
∆
)
. (118)

We can bound the probability of the event B2 by working as follows: The assumption is that v is
400-above suspicion for radius R ≥ ∆3/5. Then, each vertex z ∈ B√∆(v) is 400-above suspicion for

the constant radius R′(γ, δ) required for the statement for the hypothesis of Theorem 27. Therefore,
in the interval I = [Tb, Tm] the uniformity condition for each vertex z fails with probability at most
exp(−∆/(C log∆)). More precisely, we have that

Pr [B2] ≤ exp(−∆/C)∆
√
∆+1 ≤ exp

(
−2
√
∆
)
. (119)

Using a simple union bound, we get that Pr [B] ≤ Pr [B1]+Pr [B2]. Then (116) follows by plugging
(118) and (119) into the union bound.

Proof of (117). Recall that for the two chains Xt, Yt we defined the following notion of distance

D(Xt, Yt) =
∑

v∈Xt⊕Yt

Φ(v).

Note that for every z ∈ V it holds that 1 ≤ Φ(z) ≤ 12. This implies that we always have that
D(Xt, Yt) ≥ H(Xt, Yt). For showing that (117) indeed holds, it suffices to show that

E [D(XTm , YTm)1{G}] ≤ 1/9. (120)

Let Q0 = Xt, Q1, Q2, . . . , Qh = Yt be a sequence of independent sets where h = |Xt ⊕ Yt| and
Qi+1 is obtained from Qi by changing the assignment of one vertex wi from Xt(wi) to Yt(wi). We
maximally couple Wi and Wi+1 in one step of the Glauber dynamics to obtain W ′i and W ′i+1. More
precisely, both chains update the spin of the same vertex and maximize the probability of choosing
the same new assignment for the chosen vertex.

Consider a pair Qi, Qi+1. Note that Qi, Qi+1 differ only on the assignment of wi. With prob-
ability 1/n both chains update the spin of vertex wi. Since all the neighbors of wi have the same
spin, with probability 1 we assign the same spin on wi in both chains. Such an update reduces the
distance of the two chains by Φ(wi).

Consider now the update of vertex w ∈ N(wi). Also, w.l.o.g. assume that Qi(wi) is oc-
cupied while Qi+1(wi) is unoccupied. It is direct that the worst case is when w is unblocked
in the chain Qi+1. Otherwise, i.e. if w is blocked then with probability 1 we have Qi+1(w) =
Qi(w) =“unoccupied”, since in Qi, we have wi blocked.

Assuming that wi blocked in the chain Qi and unblocked in the chain Qi+1, we get Q′i(w) 6=
Q′i+1(w) if the coupling chooses to set wi occupied in Q′i+1. Otherwise, we have Q′i(w) = Q′i+1(w).

Clearly, the disagreement happens with probability at most λ
1+λ < e/∆.

Therefore, given Qi, Qi+1, we have that

E
[
D(Q′i+1, Q

′
i)−D(Qi+1, Qi)

]
≤ −Φ(wi)

n
+

e

n∆

∑
z∈N(wi)

Φ(z). (121)
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Since we have that 1 ≤ Φ(z) ≤ 12, for any z ∈ V and |N(v)| ≤ ∆, we get the trivial bound that

E
[
D(Q′i+1, Q

′
i)−D(Qi+1, Qi)

]
≤ 35/n.

Therefore,
E [D(Xt+1, Yt+1)] ≤ (1 + 35/n)D(Xt, Yt). (122)

The above bound is going to be used only for the burn-in phase, i.e. the first Tb steps. We use a
significantly better bound for the remaining Tm − Tb steps.

Since the event G holds, for all 0 ≤ i ≤ h, z ∈ BR(v) and all t ∈ [Tb, Tm − 1], we have that

W (Qi, z) ≤ Θ(z, ε) +∆2/3 ≤ Θ(z, 2ε). (123)

The first inequality follows from our assumption that both event Ē and B̄2 occur. The second
follows from the definition of the quantity Θ.

Using Lemma 33 and get the following: For Qi, Qi+1 which satisfy (123) it holds that

E
[
D(Q′i+1, Q

′
i)
]
≤
(
1− C ′/n

)
D(Qi+1, Qi),

for appropriately chosen C ′. The above inequality implies the following: Given Xt, Yt and assuming
that G(t) holds, we get that

E [D(Xt+1, Yt+1)] ≤ (1− C/n)D(Xt, Yt). (124)

Let t ∈ [Tb, Tm − 1]. Then we have that

E [D(Xt+1, Yt+1)1{G(t)}] = E [E [D(Xt+1, Yt+1)1{G(t)} | X0, Y0, . . . , Xt, Yt]]

= E [E [D(Xt+1, Yt+1) | X0, Y0, . . . , Xt, Yt]1{G(t)}]
≤ (1− C/n)E [D(Xt, Yt)1{G(t)}]
≤ (1− C/n)E [D(Xt, Yt)1{G(t− 1)}].

The frist equality is Fubini’s Theorem, the second equality is due to the fact that X0, Y0, . . . Xt, Yt
determine uniquely G(t) The first inequality uses (124) while the second inequality uses the fact
that G(t) ⊂ G(t− 1). By induction, it follows that

E [D(XTm , YTm)1{G(Tm)}] ≤ (1− C/n)Tm−Tb E [D(XTb , YTb)1{G(Tb)}].

Using the same arguments and (122) for E [D(XTb , YTb)1{G(Tb)}] we get that

E [D(XTm , YTm)1{G(Tm)}] ≤ (1− C/n)Tm−Tb (1 + 35/n)Tb D(X0, Y0). (125)

The result follows from the choice of constants and noting that D(X0, Y0) < 12.

Proof of Lemma 32.2. Recall from the proof of Lemma 32.1 that B1 is the event thatD≤Tm 6⊆B
√
∆(v).

Also consider B′1 to be the event that DTm 6⊆ B√∆(v). Noting that B′1 ⊂ B1, we get that

Pr
[
B′1
]
≤ Pr [B1] ≤ exp

(
−
√
∆
)
,

where the last inequality follows from (118).
We can assume the disagreements are contained in B√∆(v). By the hypothesis of Lemma 32,

each vertex w ∈ B√∆(v) is 400-above suspicion for radius R −
√
∆ in both X0 and Y0. Therefore,

by Lemma 23, each vertex w ∈ B√∆(v) is 20-above suspicion for radius R −
√
∆ − 2 in XTm and

YTm with probability at least 1− exp(−∆/Cb). Therefore, all w ∈ B√∆(v) is 50-above suspicion for

radius R −
√
∆ − 2 in XTm and YTm with probability at least 1 − exp(−∆/Cb). That is, we have

proven that all disagreements between XTm and YTm are 50-above suspicion for radius R−
√
∆− 2

with probability at least 1− 2 exp(−∆/Cb). This proves Lemma 32.2.
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E.3 Proof of Lemma 33

Proof of Lemma 33. Let Φmax = maxz∈V Φ(z), where Φ : V (G) → R≥0, as in Theorem 6. Each
vertex v ∈ V is called a “low degree vertex” if deg(v) ≤ ∆̂ = ∆

e·Φmax
.

If v is a low degree vertex then the following holds

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v)

n
+

1

n

∑
z∈N(v)

λ

1 + λ
Φ(z).

We get the inequality above by working as follows: The distance between the two chains changes
when we updated either v or some vertex z ∈ N(v).

With probability 1/n the the update involves the vertex v. Since there is no disagreement at
the neighborhood of v we can couple Xt and Yt such that Xt+1(v) = Yt+1(v) with probability 1.
That is, the distance between the chain decreases by Φ(v).

We make the (worst case) assumption that all the vertices in N(v) are unblocked and unoccu-
pied. We have a new disagreement between the two chains, i.e. an increase in the distance, only
if some vertex z ∈ N(v) is chosen to be updated and one of the chains sets z occupied. Since
Xt(v) 6= Yt(v) one of the chains cannot set z occupied. Each z ∈ N(v) is chosen with probability
1/n and it is set occupied by one the two chains with probability λ

1+λ . Then, the distance between
the chains increases by Φ(z). Then we get the following

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v)

n
+

1

n

∑
z∈N(v)

λ

1 + λ
Φ(z)

≤ − 1

n

(
Φ(v)− Φmax · (1− δ)λc(∆) · ∆̂

)
≤ − 1

n
(Φ(v)− 1) ≤ −10/n, (126)

where the last inequality follows from the fact that 1 ≤ Φ(v) ≤ 12, for every v ∈ V , ∆̂ = ∆
e·Φmax

and λ ≤ e/∆. For the case where v is a high degree vertex we have the following

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v)

n
+

1

n

∑
z∈N(v)

λ

1 + λ
ω∗(z)Φ(z) +

1

n

λ

1 + λ
ε∆.

As before, the interesting cases are those where the update involves the vertex v or N(v). As we
argued above when the vertex v is updated the distance between the two chains decreases by Φ(v).

As far as the neighbors of v are regarded we observe the following: If some z ∈ N(v) is blocked,
then with probability 1 is set unoccupied in both chains. This means that Xt+1(z) = Zt+1(z),
i.e. the distance between the two chains remains unchanged. If the update involves an unblocked
vertex z ∈ N(v), then with probability λ

1+λ the vertex z becomes occupied at only one of the two
chains and the distance between the chains increases by Φ(z).

In the inequality above, we use also use the fact that (114) holds for the high degree vertex v.
Then we get that

E [D(Xt+1, Yt+1)−D(Xt, Yt)] ≤ −Φ(v)

n
+

1

n

λ

1 + λ
Wσ(v)

≤ −Φ(v)

n
+

1

n

∑
z∈N(v)

λ

1 + λ
ω∗(z, v)Φ(z) +

1

n

λ

1 + λ
ε∆.

≤ − 1

n

Φ(v)−
∑

z∈N(v)

λ

1 + λ
ω∗(z, v)Φ(z) + eε

 ≤ −c/n, (127)
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where the last inequality follows by taking sufficiently small ε > 0.
The lemma follows from (126) and (127).

F Random Regular (Bipartite) Graphs: Proof of Theorem 2

It turns out that the girth restriction of Theorem 1 can be relaxed a bit. The main technical reason
why we need girth at least 7 is for establishing what we call “local uniformity property”. Roughly
speaking, local uniformity amounts to showing that the number of unblocked neighbors of a vertex
v is concentrated about the quantity

∑
z∈N(v) ω

∗(z), where ω∗ ∈ [0, 1]V is the fixed points of a
BP-like system of equations. In particular, uniformity amounts to showing that the number of
unblocked neighbors of v is

∑
w∈N(v) ω

∗(w)± ε∆, with probability that tends to 1 as ∆ grows.
The analysis of local uniformity could be carried out for graph with short cycles, i.e. cycles of

length less than 7. The effect of the short cycles is an increase to the fluctuation of the number of
unblocked neighbors of a vertex. However, if the number of such cycles is small, i.e. constant, then
the increase in the fluctuation is negligible. That is, the proof of Theorem 1 carries out if, instead
of girth at least 7, we have smaller girth but only a constant number of cycles of length less than
7 around each vertex v. The above observation leads to the following corollary from Theorem 1.

For some integers `, g ≥ 0, let Gn(`, g) denote all the graphs on n vertices such that each vertex
belongs to at most ` cycles of length less than g.

Corollary 34. For all δ > 0, there exists ∆0 = ∆0(δ), ` = `(δ) and C = C(δ), for all ∆ ≥ ∆0, all
λ < (1− δ)λc(T∆), all graphs G ∈ G(`, 7) of maximum degree ∆, all ε > 0, the mixing time of the
Glauber dynamics satisfies:

Tmix(ε) ≤ Cn log(n/ε).

Using the above corollary we can show the following rapid mixing result for random regular (bi-
partite) graphs with sufficiently large degree ∆. The theorem follows by using e.g. the result from
[42]. Let G be chosen uniformly at random among all ∆ regular (bipartite) graphs with n. Then,
with probability that tends to 1 as n tends to infinity it holds that G ∈ G(1, 7). Then the theorem
follows from Corollary 34.
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