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Abstract

Simulated Quantum Annealing (SQA) is a Markov Chain Monte-Carlo algorithm that sam-
ples the equilibrium thermal state of a Quantum Annealing (QA) Hamiltonian. In addition to
simulating quantum systems, SQA has also been proposed as another physics-inspired classical
algorithm for combinatorial optimization, alongside classical simulated annealing. However, in
many cases it remains an open challenge to determine the performance of both QA and SQA.

One piece of evidence for the strength of QA over classical simulated annealing comes from
an example by Farhi, Goldstone and Gutmann [14] . There a bit-symmetric cost function with
a thin, high energy barrier was designed to show an exponential seperation between classical
simulated annealing, for which thermal fluctuations take exponential time to climb the barrier,
and quantum annealing which passes through the barrier and reaches the global minimum in poly
time, arguably by taking advantage of quantum tunneling. In this work we apply a comparison
method to rigorously show that the Markov chain underlying SQA efficiently samples the target
distribution and finds the global minimum of this spike cost function in polynomial time.

Our work provides evidence for the growing consensus that SQA inherits at least some of
the advantages of tunneling in QA, and so QA is unlikely to achieve exponential speedups over
classical computing solely by the use of quantum tunneling. Since we analyze only a particular
model this evidence is not decisive. However, techniques applied here – including warm starts
from the adiabatic path and the use of the quantum ground state probability distribution to
understand the stationary distribution of SQA – may be valuable for future studies of the
performance of SQA on cost functions for which QA is efficient.

1 Introduction

Classical algorithms are often useful but not provably so, with justifications for their success
coming from a combination of empirical and heuristic evidence. For example, the simplex
algorithm for linear programming was successful for decades before being proven to run in
polynomial time, and for a long time was the most practical LP solver even while the ellipsoid
algorithm was the only provably poly-time solver. Another example is MCMC (Markov chain
Monte Carlo) which is used for applications in statistics, simulation, optimization and elsewhere,
but almost never in regimes that are covered by formal proofs of correctness.

With quantum algorithms, there has been necessarily a greater emphasis on provable cor-
rectness. The present state of quantum computing technology does not yet allow us to test
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large-scale quantum algorithms empirically, nor can we usually empirically determine whether
a proposed quantum algorithm outperforms all classical algorithms on worst-case inputs. Nev-
ertheless, heuristic quantum algorithms are likely to be important for practical problems, just
as they have been throughout the history of classical computing.

A particularly compelling heuristic proposal for optimization problems is quantum annealing
(QA), also known as quantum adiabatic optimization [20, 15]. (In this work we use the term
“quantum annealing” to mean adiabatic optimization in thermal equilibrium at a low but non-
zero temperature, though in some other contexts QA may be taken to include non-equilibrium
thermal effects.) The idea of QA is to interpolate between a static problem-independent Hamil-
tonian such as −

∑
i σ

i
x for which we can efficiently prepare the ground state, and a final

Hamiltonian whose ground state yields the desired answer. If we want to minimize a func-
tion f : {0, 1}n → R then we can take this final Hamiltonian to be proportional to diag(f). This
can be thought of as a quantum version of classical simulated annealing (SA) with the diagonal
terms playing the role of bias and the off-diagonal terms causing hopping. Like SA its perfor-
mance is hard to make provable general statements about, but it is a promising general-purpose
heuristic, and rigorous statements about its performance are known for many illustrative cases.

Intriguingly, QA has been shown to have an exponential asymptotic advantage over simu-
lated annealing for certain cost functions [14]. Two examples are given in [14]: one in which the
quantum algorithm could be said to be taking advantage of symmetry (“the bush of implica-
tions”), and another which models tunneling (“the spike”) that will be our primary focus here.
The cost function for the spike is,

f(z) =

{
|z| : |z| 6= n/4
|z|+ nα : |z| = n/4

, (1)

where |z| is the Hamming weight of the string z and α > 0 is a constant, indepdent of the
system size n. The global minimum of f is the string with |z| = 0, but the spike creates a local
minimum at |z| = n/4 + 1. It is straightforward to see why the spike presents a problem for
a simulated annealing algorithm which only proposes single bit-flip moves: SA begins at high
temperature and so the initial state is overwhelmingly likely to have Hamming weight near n/2,
and as the temperature of the system is lowered the random walk will move to strings of lower
Hamming weight until reaching the local minimum at n

4 + 1, at which point it can only step on

the spike with probability e−Ω(nα), so with high probability SA will not find the global minimum
in time less than eΩ(nα). In contrast, for α < 1/2 it can be shown that QA finds the global
minimum with high probability in time O(n) [25], showing that an exponential separation in
the perfomance of SA and QA is possible.

While the spike is clearly a toy problem and can be solved efficiently by classical algorithms
that exploit its structure, an important aspect of both QA and SA is that a single, general
implementation of these algorithms is meant to be useful for solving a large variety of different
problems without knowledge of their structure. Moreover, the spike arguably demonstrates
a general advantage of QA over SA in tunneling through thin, high barriers in the energy
landscape.

On the other hand, the standard formulation of QA uses a stoquastic Hamiltonian (i.e. a local
Hamiltonian with non-positive matrix elements in the computational basis), and computational
models based on ground states or thermal states of such systems are believed to be less powerful
than universal quantum computation. In addition to complexity theoretic evidence [7, 6], sug-
gestive evidence for this belief is also provided by the quantum-to-classical mapping of Suzuki
et al. [28, 27], which allows for equilibrium thermal states of a stoquastic Hamiltonian to be
sampled using classical Markov chain Monte Carlo methods. These algorithms are known as
Quantum Monte Carlo (QMC) methods, and despite the name, are algorithms for classical com-
puters. While QMC for stoquastic Hamiltonians is always a well-defined algorithm, few general
conditions are known to guarantee that it simulates their properties efficiently. A few cases
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where the simulation can be made provably efficient are adiabatic evolution with frustration-
free stoquastic Hamiltonians with a unique ground state [8] and ferromagnetic transverse Ising
models in a large range of temperatures [5], but when these results are interpreted in terms of
QA the corresponding cost functions do not exhibit prototypical features of hard optimization
problems.

When QMC is applied to QA Hamiltonians the result is an algorithm called simulated
quantum annealing (SQA). Although there are examples for which standard versions of SQA take
exponentially longer than the quantum evolution being simulated [16], a the general challenge
from SQA to QA remains: for any purported speedup of QA we should see whether it can also be
achieved by SQA. Moreover, since SQA is a Markov chain based algorithm on a domain that can
be interpreted as a classical spin system, and since SQA is designed to sample from the output
of a quantum optimization procedure, SQA can be considered as yet-another physics-inspired
classical optimization method in its own right, which can naturally be compared to SA.

The main result of this paper is that the standard version of SQA, which uses only single bit
flip local moves and does not use any structure of the problem, finds the minimum of the cost
function (1) in polynomial-time when 0 < α < 1/2. Thus SQA obtains an exponential speedup
over SA for this particular problem. This result suggests that the benefit of adiabatic evolution
in tunneling through barriers should not be thought of as an exclusively quantum advantage,
since it can also be achieved by a general-purpose classical optimization algorithm.

Previous Work

There have been many past studies comparing the performance of SA and SQA using numer-
ics [23, 1, 17] and more recently using analytical methods of physics such as the instanton
approximation to tunneling [18]. Studies comparing QA to SQA have also begun to emerge
since [2] found the success probabilities of SQA are highly correlated with the results of QA
performed on D-Wave quantum hardware with hundreds of qubits, while the distribution of
success probabilities for SA on the same set of instances bears little resemblance to that of QA
and SQA. More recently, the performance of QA, SQA, and SA was empirically compared on
an ensemble of spin glass instances with were designed to have tall, thin barriers [12], as a step
towards understanding the kinds of instances for which QA has an advantage over SA. In that
work QA and SQA were found to have roughly the same scaling with system size for that par-
ticular ensemble of instances, though it was also pointed out that the large constant overhead in
SQA made it less competitive in the sense of wall-clock times using modern classical hardware.

Without access to quantum hardware, comparison of SQA and QA is either limited to small
system sizes where QA Hamiltonians can be exactly diagonalized (≈ 30 qubits), or to models for
which analytical solutions of the quantum system are known (such as the spike problem we study
here, which has been the subject of recent analytic work [21, 4], and for which the performance
of SQA has previously been studied numerically [10, 3], with findings that are consistent with
the results proven in the present work).

Proof Outline

Our proof of the efficient convergence of SQA on the spike problem involves bounding the
mixing time of the underlying Markov chain, and there is an interesting parallel between a
method which was used to lower bound the QA spectral gap when α < 1/2 [25]. There, a
lower bound on the quantum gap can be found using a variational method with a trial wave
function equal to the ground state of the system when no spike term is present (i.e. QA for
the spikeless Hamming weight cost function f̃(z) = |z|). Similarly, we compare the spectral
gap λ of the SQA Markov chain for the spike system with the spectral gap λ̃ of the spikeless
system (throughout the subsequent sections we use tildes to distinguish quantities belonging to
the spikeless system). Without a spike term, the quantum Hamiltonian H̃ is a tensor product
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operator with no interactions between the qubits. This trivial system translates in SQA to a
collection of Markov Chains with local moves and Metropolis transition probabilities acting on
n non-interacting 1D classical ferromagnetic Ising models in a uniform magnetic field (which
will become clear when the SQA Markov chain is described in detail in Section 2.2), and upper
bounding the mixing time for this system is relatively straightforward.

Let π and π̃ be the stationary distribution of the SQA Markov chain with and without the
spike. These stationary distributions are close in a sense, ‖π−π̃‖1 < poly(n−1), but on the other
hand there are exponentially many points x ∈ Ω for which the ratio π(x)/π̃(x) is exponentially
small. A review of existing comparison techniques in Section 3.1 concludes that none is quite
suited to the present problem; indeed the review [13] states that there have been “relatively few
successes in comparing chains with very different stationary distributions”. To overcome this we
introduce a novel comparison method which involves partitioning the state space into “good”
and “bad” sets of vertices, Ω = ΩG ∪ΩB . In Section 3.2 we begin with a set of canonical paths
yielding a bound ρ̃ on the congestion of the easy-to-analyze chain, and show that the paths
which lie entirely within ΩG can be used to construct an upper bound on the congestion ρ of
the difficult-to-analyze chain, albeit within the set ΩG of measure less than 1. This “most-paths
comparison” method may be of independent interest, and so the exposition in Section 3.2 is
given without dependence on the specific details of SQA.

The bound on the congestion derived in this way applies to the Markov chain P on the
subset ΩG, but since P is not restricted to ΩG we are subsequently left with a sub-stochastic
“leaky” random walk on the set ΩG, with a quasi-stationary distribution equal to π within this
subset. The adiabatic path is used to provide a “warm start” within ΩG, and the mixing time
to the quasi-stationary distribution is shown to be much faster than the time scale at which the
walk leaves ΩG, which is the basis for the statement that the convergence of SQA is efficient.

Finally, after the development of the preceding mixing machinery the remaining task is
to bound the size of π(ΩB). The SQA state space can be interpreted as a path (worldline)
representation of the original quantum system, and the bad states which constitute ΩB will
be those for which the paths spend too much “time” on the location of the spike (i.e. strings
with Hamming weight n/4). States that spend too much time on the spike are those for which
π(x)/π̃(x) is exponentially small, and naturally those are the ones we will need to exclude.
In Section 4 we show that the mean spike time is proportional to the square of the ground
state amplitude on the spike, while the m-th moment of the spike time distribution can also
be bounded using the properties of the corresponding quantum system. Finally, we use the
derived upper bound on the m-th moment of the spike time distribution to upper bound the
probability of large deviations from the mean spike time, which yields an upper bound on π(ΩB)
that suffices to complete the proof.

2 Background

2.1 Quantum annealing

Quantum annealing associates a cost function f : {0, 1}n → R with a Hamiltonian that is
diagonal in the computational basis,

Hf =
∑

z∈{0,1}n
f(z)|z〉〈z| , (2)

so that the ground state of Hf is a computational basis state corresponding to the bit string
that minimizes f . To prepare the ground state of Hf the system is initialized in the ground
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state of a uniform transverse field, which can be easily prepared,

H0 = −
n∑
i=1

σxi , |ψinit〉 =
1√
2n

∑
z∈{0,1}

|z〉, (3)

and then linearly interpolates between H0 and Hf ,

H := H(s) = (1− s)H0 + sHf , (4)

where the adiabatic parameter s sweeps through the interval 0 ≤ s ≤ 1. The total run time
T of the algorithm depends on how quickly the adiabatic parameter is adjusted, which defines
a time-dependent Hamiltonian H(t) := H(s = t/T ). At zero temperature the system evolves
according to the Schrodinger equation, i∂t|ψ(t)〉 = H(t)ψ(t), and the adiabatic theorem ensures
that the state ψ(T ) at the end of the evolution has a high overlap with the ground state of Hf

as long as T ≥ poly(∆−1), where ∆ = minsE1(s)−E0(s) is the minimum gap between the two
lowest eigenvalues of H(s) during the evolution.

More realistically the annealing will be performed at a finite inverse temperature β, which
is taken to be sufficiently large so that the system will remain close to the ground state. The
equilibrium thermal state of the system evolves with the adiabatic parameter,

σ =
e−βH(s)

Z
, Z = tr e−βH(s). (5)

Of course, thermal equilibrium is an idealization that is never achieved by real physical systems,
however, the formulation (5) is frequently considered and it is convenient for our purposes
since the simulated quantum annealing algorithm described in the next section will produce
samples from the distribution Π(z) = 〈z|σ|z〉. The minimum gap ∆ of the Hamiltonian (4)
with the cost function (1) is constant when 0 ≤ α < 1/2 [25], and together with facts about
the density of states we will show that taking β = nε for a constant ε > 0 suffices to make
‖ ρ(s)− |ψ0(s)〉〈ψ0(s)| ‖1 < 1/poly(n), and so this low-temperature thermal equilibrium version
of QA efficiently produces a final state which can be sampled to obtain the minimum of f .

2.2 Simulated quantum annealing

Hamiltonians such as (4) which have all non-negative matrix elements in the computational
basis are sometimes called “stoquastic”, a term which combines “quantum” with “stochastic”
(in the sense of stochastic matrices). In principle such Hamiltonians are amenable to a variety
of classical Markov chain based simulation algorithms, which are collectively known as quantum
Monte Carlo (QMC) methods. Any QMC method applied to the QA Hamiltonian (4) can
be considered to define a version of SQA. Here we considered QMC based on the path-integral
representation of the thermal state (5), which is arguably the most commonly considered version
of SQA.

The starting point of the method is to express the quantum partition function as a path
integral over trajectories (finite sequences) of basis states. Since the Hamiltonian is stoquastic
in the computational basis, these trajectories will have the form (x1, ..., xL), where xi ∈ {0, 1}n,

Z = tr e−βH = tr

L∏
i=1

e−
βH
L =

∑
x1,...,xL

L∏
i=1

〈xi|e−
βH
L |xi+1〉, (6)

where xL+1 := x1 and L is to be chosen in the next step. The individual bit strings xi in
(x1, ..., xL) are sometimes called“time slices.” When β‖H‖/L is sufficiently small the Suzuki-
Trotter approximation provides a way to split up the non-commuting terms in e−βH/L while
only incurring a small error in the partition function. Define A = −βsHf and B = −β(1−s)H0,
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so that the partition function is Z = tr eA+B . Define the Suzuki-Trotter approximation to the
partition function,

Z = tr
[
e
A
L e

B
L

]L
. (7)

According to Lemma 3 and the surrounding discussion of [5], taking L = Θ
(
(β||H||)−3/2δ−1

)
,

with δ = 1/n, suffices to achieve

(1− δ)Z ≤ Z ≤ Z(1 + δ).

We will subsequently ignore the factor δ because it does not affect the convergence time of SQA,
and creates only a negligible error in the distribution which SQA will sample from for the spike
cost function (1). Expanding (7) as was done for (6),

Z =
∑

x1,...,xL

L∏
i=1

〈xi|e
A
L e

B
L |xi+1〉 (8)

=
∑

x1,...,xL

e−
βs
L

∑L
i=1 f(xi)

L∏
k=1

〈xk|e
B
L |xk+1〉 (9)

=
∑

x1,...,xL

e−
βs
L

∑L
i=1 f(xi)

n∏
j=1

L∏
k=1

〈xj,k|eωσ
x
j |xj,k+1〉, (10)

where ω = β(1 − s)/L. Using the identity exp (ωσx) = cosh(ω)I + sinh(ω)σx, the individual
factors of the product in (10) become

〈xj,k|eωσ
x
j |xj,k+1〉 = cosh(ω)

[
1xj,k=xj,k+1

+ tanh(ω)1xj,k 6=xj,k+1

]
, (11)

and after suppressing the uninteresting multiplicative factor of cosh(ω)nL, the partition function
is expressed as

Z =
∑

x1,...,xL

e−
βs
L

∑L
i=1 f(xi)

n∏
j=1

L∏
k=1

[
1xj,k=xj,k+1

+ tanh(ω)1xj,k 6=xj,k+1

]
, (12)

and so Z can be viewed as the normalizing constant of a probability distribution,

π(x1, ..., xL) =
1

Z
e−

βs
L

∑L
i=1 f(xi)

n,L∏
j,k=1

[
1xj,k=xj,k+1

+ tanh (ω) 1xj,k 6=xj,k+1

]
(13)

=
1

Z
e−

βs
L

∑L
i=1 f(xi)

n∏
j=1

φ(x̄j) (14)

where x̄j = [xj,1, ..., xj,L] is called “the worldline of the j-th qubit”, and φ(x̄j) = tanh(ω)|{k:xj,k 6=xj,k+1}|

counts the number of consecutive bits which disagree in that worldline.
Performing a similar calculation for Π(x) = 〈x|σ|x〉 (where σ = e−βH/Z) one finds it can be

expressed as the marginal of π on the first time slice,

Π(x) =
∑

x2,...,xL

π(x, x2, ..., xL) (15)

From this point SQA proceeds by discretizing the adiabatic path and using the Markov chain
Monte Carlo method to sample from π at various values of the adiabatic parameter s1, ..., smax.
The state space of this discrete-time Markov chain is Ω = {0, 1}n×L, and the Markov chain
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consist of local moves with Metropolis transition probabilities. If x, x′ ∈ Ω differ by a single bit,
the transition probability from x to x′ is

P (x, x′) =
1

nL
min

{
1,
π(x′)

π(x)

}
, , (16)

and otherwise the transition probability is zero. We interpret this as randomly choosing one
of the nL bits to consider flipping. We then flip the bit with probability min(1, π′(x)/π(x)).
Note that π is supported on all of Ω when s < 1, while at s = 1 the state space becomes
disconnected under the local move transitions described above. This limitation is not important
for our application, however, since sampling from Π when smax = 1− 1

n suffices to find the true
minimum of f . (In practical applications it is important to avoid this “critical (polynomial)
slowing down” using non-local Markov Chain moves to equilibrate the system when s ≈ 1.)

At each value of the adiabatic parameter, the run-time of SQA is determined by the mixing
time of the Markov chain described above. This quantity can be defined in terms of the total
variation distance from π to the distribution P tx obtained by running the chain for t steps starting
from x,

dx(t) = max
A⊆Ω
|P tx(A)− π(A)| = 1

2

∑
x′∈Ω

|P tx(x′)− π(x′)|, (17)

with the mixing time τ(ε) being the worst-case time needed to be within variation distance ε of
the stationary distribution,

τ(ε) = max
x∈Ω

min
t
{t : dx(t′) ≤ ε ∀t ≥ t′}. (18)

A standard way to bound the mixing time is to relate it to the spectral gap λ of the transition
matrix P [22],

τ(ε) ≤ λ−1 log

(
1

επmin

)
. (19)

These bounds are worst-case in the sense that they handle any starting vertex x ∈ Ω. In the
next section of our paper, we will develop slightly different methods to deal with the fact that
our Markov chain may not mix efficiently from some starting vertices.

3 Incomplete sets of canonical paths

In this section we discuss how to show rapid mixing even in the presence of a small number
of bad vertices. While we will freely make assumptions specific to our particular problem we
will introduce some techniques that apply more generally to the analysis of Markov chains, and
may be of use elsewhere. The notion of “good” and “bad” sets in Markov chains has been used
before [19, 9], but always (to our knowledge) in a setting where a separate argument shows the
bad set can always be quickly escaped. By contrast we model the bad set quite pessimistically
and can assume that the walker gets absorbed (or equivalently, trapped for an exponential
amount of time) upon hitting a bad vertex. Despite this we will show that the overall algorithm
works with high probability.

3.1 Review of Markov chain comparison methods

This subsection reviews some standard facts from section 13.5 of the book by Levin, Peres and
Wilmer [22]. Let P, P̃ be reversible Markov chains (i.e. the transition probability from x → y
is P (x, y)) with stationary distributions π, π̃. Define Q(x, y) = π(x)P (x, y) and likewise for Q̃.
Define the inner product 〈f, g〉π :=

∑
x π(x)f(x)g(x) and the Dirichlet form

E(f, g) = 〈Ef, g〉π = 〈(I − P )f, g〉π. (20)
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Lemma 13.11 of [22] states that

E(f) := E(f, f) =
1

2

∑
x,y∈Ω

[f(x)− f(y)]2Q(x, y). (21)

This can be used to define the gap (cf. Remark 13.13 of [22])

λ = min
f∈RΩ

f⊥π1,‖f‖2=1

E(f) = min
f∈RΩ

Varπ(f)6=0

E(f)

Varπ(f)
. (22)

To estimate the gap we will use various comparison methods. Given x, y ∈ Ω let Pxy be the
set of simple paths from x to y, and suppose that νxy is a measure over this set. Then we can
define a congestion ratio:

ρ := max
e∈E

ρ(e) (23)

ρ(e) :=
1

Q(e)

∑
x,y∈Ω

Q̃(x, y)
∑

Γ:e∈Γ∈Pxy

νxy(Γ)|Γ| (24)

This last sum ranges over all paths ΓinPxy that contain the edge e and thus is a measure of the
total load on edge e. Then Corollary 13.26 of [22] states that

λ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
ρλ. (25)

If νxy has all its weight on a single flow γxy then we can slightly simplify (24) to

ρ(e) =
1

Q(e)

∑
x,y∈Ω
e∈γxy

Q̃(x, y)|γxy|. (26)

Another variant is when we compare a chain Q̃ with the complete graph for which the x → y
transition probability is simply π̃(y). The paths used for this purpose are labelled {γ̃xy}. The
corresponding congestion is

ρ̃(e) :=
1

Q̃(e)

∑
x,y∈Ω
e∈γ̃xy

π̃(x)π̃(y)|γ̃xy|. (27)

Since the complete graph has gap 1 and the same stationary distribution, we have

λ̃ ≥ 1

ρ̃
. (28)

3.2 Most-paths comparison

In what follows we should think of P̃ as an easy-to-analyze random walk (later we will take it to
be n copies of Metropolis dynamics with local moves for a 1D Ising model of length L = nO(1))
and P to be a walk such that | ln(P (x, y)/P̃ (x, y))| ≤ O(nα/L) but with π̃ potentially far from
π. Specifically we will assume that

e−n
α

≤ π(x)

π̃(x)
≤ a = O(1), (29)

(think of these bounds as generally achieved) and that ‖π̃ − π‖1 ≤ O(nα/L). While this may
seem close, note that the size of the perturbation is large relative to the spectral gap (O(1/nL))
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so that conventional stability theorems do not apply [26]. The fact that π(x)/π̃(x) can be
exponentially small also rules out direct application of (25).

We make one further assumption on the relation between π and π̃; namely that the ratio
between them is usually not too small. Specifically let Ωθ ⊂ Ω be the set of points x for which
π̃(x)/π(x) > θ for some θ > 1 that we will choose later. Then we will assume that π̃(Ωθ) is
small. (By definition π(Ωθ) < θ−1π̃(Ωθ) as well.)

Suppose further that P̃ has a set of paths {γ̃xy} for which the congestion (defined in (27)) is
ρ̃. These paths may lead to far larger congestion for P if they involve routing flow over edges e
where Q(e)� Q̃(e). However, our first claim is that most of these paths should avoid the bad
set Ωθ. First observe that for any e the definition of ρ̃ implies that∑

x,y:γxy3e
π̃(x)π̃(y) ≤ ρ̃Q̃(e). (30)

Define Eθ to be the set of edges incident upon Ωθ. Reversibility implies that

1

2
π̃(Ωθ) ≤ Q̃(Eθ) ≤ π̃(Ωθ). (31)

(The inequalities are because an edge may be counted once or twice depending on whether both
end points are in Ωθ.) Additionally for e = (v, w) 6∈ Eθ we have

Q̃(e) = π̃(v)P̃ (v, w) ≤ θ−1π(v)P̃ (v, w) ≤ 2θ−1π(v)P (v, w) =
2

θ
Q(e), (32)

where we have used 2 as an overestimate for en
α/L.

Let C := Ω2, CB := {(x, y) ∈ C : γxy ∩ Eθ 6= ∅} and CG := C − CB . Now we sum (30) over
all e ∈ Eθ to obtain ∑

(x,y)∈CB

π̃(x)π̃(y)|γ̃xy| ≤ ρ̃Q̃(Eθ) = ρ̃π̃(Ωθ). (33)

We conclude that not many of the γ̃xy go through any edges in Eθ.
Now we define a second partition of Ω into good and bad vertices. Let CB(x) := {y : (x, y) ∈

CB} and define CG(x) similarly. Then define

ΩB := {x : π̃(CB(x)) ≥ 1/3a}, (34)

and ΩG = Ω− ΩB . From (33) we have π̃(ΩB) ≤ 3aρ̃π̃(Ωθ).
Using first (29) and the assumption that π(Ωθ) is sufficiently small we have

π(ΩG) = 1− π(ΩB) ≥ 1− 3a2ρ̃π̃(Ωθ) ≥
11

12
. (35)

Thus ΩG is a large-measure set that is mostly well connected. Indeed ∀x ∈ ΩG, π(CG(x)) ≥ 2/3.
We can now define canonical flows between all pairs x, y ∈ ΩG. Observe that

π(CG(x) ∩ CG(y) ∩ ΩG) ≥ 1/4. (36)

This means that even if x, y are not directly connected to each other by a path that avoids Eθ,
they are still indirectly connected via pairs of paths that route through a large-measure (≥ 1/4)
set. We will see that this allows us to construct canonical flows that are not too much worse
than our original canonical paths.

Observe next that the conditional distribution πxy := π|CG(x)∩CG(y)∩ΩG satisfies πxy ≤ 4π.
We will construct our flow νxy by choosing a random r ∼ πxy and concatenating the paths γ̃xr
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and γ̃ry. The load on edge e from these flows is 0 if e 6∈ Eθ, or if e ∈ Eθ can be bounded as∑
x,y∈ΩG

π(x)π(y)
∑
r

πxy(r)(1e∈γ̃xr + 1e∈γ̃ry )(|γ̃xr|+ |γ̃ry|) (37)

≤ 4
∑

x,y∈ΩG

π(x)π(y)
∑
r

πxy(r)1e∈γ̃xr |γ̃xr| by symmetry (38)

≤ 16
∑

x,y∈ΩG

π(x)π(y)
∑

r∈CG(x)∩ΩG

π(r)1e∈γ̃xr |γ̃xr| since πxy ≤ 4π (39)

= 16
∑
x∈ΩG

π(x)
∑

r∈CG(x)∩ΩG

π(r)1e∈γ̃xr |γ̃xr| since π is normalized (40)

≤ 16
∑

(x,r)∈CG

π(x)π(r)1e∈γ̃xr |γ̃xr| passing to a superset (41)

≤ 16a2
∑

(x,r)∈CG

π̃(x)π̃(r)1e∈γ̃xr |γ̃xr| from (29) (42)

≤ 16a2ρ̃Q̃(e) from (30) (43)

≤ 32θ−1a2ρ̃Q(e) from (32) (44)

We conclude that our set of canonical flows achieves congestion

ρ ≤ 32θ−1a2ρ̃, (45)

albeit on a set of measure less than one, namely ΩG. In the next section we will discuss the
implications of this for mixing.

3.3 Leaky random walks

For this section we will not need all of the assumptions used in the previous section. Assume
merely that Ω is partitioned into good and bad sets ΩG,ΩB and define the “good-only” walk
PG to be

PG(x, y) = P (x, y)1x∈ΩG1y∈ΩG .

Since PG is substochastic (nonnegative entries and rows sum to ≤ 1) we can think of it as
corresponding to a random process in which a walker at x moves to y with probability PG(x, y)
and is deleted with probability 1−

∑
y∈Ω PG(x, y) =

∑
y∈ΩB

P (x, y). If we define ΠG to be the

projector onto RΩG then we can also define PG as

PG = ΠGPΠG. (46)

Assuming that P is ergodic, limt→∞ P tG(x, ·) = 0 for any starting point x ∈ Ω. However
there may be an intermediate range of times, tmix ≤ t ≤ tfail, for which ‖P tG(x, ·)− π‖1 < δ for
some desired δ, if the initial point x ∈ ΩG is a warm start taken from x ∼ µ with ‖π − µ‖1
sufficiently small. Formalizing the preceding statement will be the goal of this section.

A standard fact about Markov chain mixing (Thm 12.3 of [22]) is that for all x ∈ Ω,

‖P t(x, ·)− π‖1 ≤ π−1
mine

−λt. (47)

To bound the gap of PG observe that Thm 13.23 of [22] can be applied even to substochastic
matrices. Here it implies that

ΠGEΠG �π ρ−1ΠG. (48)

with ρ from (45), and with �π denoting the semidefinite ordering with respect to the 〈, 〉π inner
product (i.e. A �π 0 means 〈f,Af〉π ≥ 0). Eq. (48) does not directly give bounds on the gap
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of P . Indeed we could in principle have P (x, x) = 1 for all x ∈ ΩB in which case P would have
many eigenvalues equal to 1. Thus without additional information we cannot say anything more
about P .

Instead we will analyze a slightly different Markov chain. We will define a “filled-in” chain
PF by adding nonnegative numbers to the entries of PG in such a way that PF is stochastic and
has π as a stationary distribution. This does not uniquely specify PF and indeed P also satisfies
these conditions. We will instead choose PF in a way that guarantees fast mixing. Specifically
with probability 1−

∑
y∈Ω PG(x, y) we will forget our current location x and jump according to

some “fill-in” measure ϕ. For this to result in π being the stationary distribution we must have
ϕ = π(I − PG). Defining the column vector 1 = (1, 1, ..., 1)T , we have

PF = PG + 1ϕ (49)

πPF = π(PG + 1ϕ) = π(PG + 1π(I − PG)) = π. (50)

Now that PF is a proper Markov chain we will bound its Dirichlet form. Recall that in (22)
we can assume that f ⊥π 1 meaning that

∑
x π(x)f(x) = 0. Note as well that

EF = I − PF = I − PG − 1π(I − PG) = (I − 1π)(I − PG). (51)

Define Dπ to have π along the diagonal and zeros elsewhere. Then

〈EF f, f〉 = 〈(I − 1π)(I − PG)f, f〉 (52a)

= fT (I − PTG )(I − πT1T )Dπf (52b)

= fT (I − PTG )Dπf since f ⊥π 1 (52c)

= fT (I −Π)Dπf + fT (Π− PTG )Dπf (52d)

≥ fT (I −Π)Dπf + ρ−1fTΠDπf using (48) (52e)

≥ ρ−1fTDπf since ρ ≥ 1 (52f)

= ρ−1 Varπ[f ] since f ⊥π 1 (52g)

We conclude that PF mixes rapidly, while differing from PG only in the events where leakage
occurs. More precisely we can define a coupling between two processes: the first a walk evolving
according to PF and the second a walk in which x moves to y with probability PG(x, y) and
to a special state * with probability 1 −

∑
y PG(x, y). The state * is absorbing, meaning that

when the second walker is at state * it stays there. Conditioned on the second walker not being
in state * the two walkers will be at the same location. Additionally the probability of the
second walker ending in * equals the probability that the first walker ever passed through ΩB .
If we start with a probability distribution µ and take t steps then the probability of ending in
* is µ(P tF − P tG)1. This quantity also equals the variational distance between the two walkers’
probability distributions.

Suppose that we start with an M -warm distribution µ, by which we mean that µ(x) ≤Mπ(x)
for all x. Note that this property is strictly preserved by PF and PG since

µP tG ≤ µP tF ≤MπP tF = Mπ. (53)

In this case the probability that a path x1, . . . , xt (with x1 ∼ µ and xi ∼ PF (xi−1) for i > 1)
passes through ΩB is

≤
t∑
i=1

Pr[xi ∈ ΩB ] ≤Mtπ(ΩB), (54)

where we have used first the union bound and then (53). By the above arguments we have

‖µ(P tF − P tG)‖1 ≤Mtπ(ΩB). (55)
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Using the spectral gap of PF (from (52)) and the mixing bound in (47) we conclude that

‖π − µP tG‖1 ≤Mtπ(ΩB) + π−1
mine

−t/ρ (56)

We see that the leakage probability increases linearly with t while the usual distance to
stationarity decreases exponentially with t. In many cases this leaves a wide range of t in which
the RHS of (56) can be small.

4 Efficient convergence of SQA for the spike cost function

In this section we apply the method from Section 3.2 with the easy-to-analyze chain (π̃, P̃ ) taken
to be the SQA Markov chain for the system without the spike, and (π, P ) equal to the chain
with the spike. The subset ΩB will be shown to satisfy π̃(ΩB) ≤ O(n−c) for a constant c that
we will choose so that we can prove a walker beginning in ΩG is likely to mix before it hits a
point in ΩB .

Congestion of the spikeless chain. Recall that ΩB is defined in terms of a set of canon-
ical paths {γ} on Ω with congestion ρ̃ for the spikeless chain, together with a subset Ωθ of points
which are excluded from paths in {γ} to obtain a new set of paths with congestion ρ ≤ O(θ−1ρ̃)
for the chain with the spike, within the subset ΩG. The chain for the spikeless distribution π̃
corresponds to a discrete-time Glauber dynamics on a collection of n non-interacting 1D fer-
romagnetic Ising models with (with 1-local fields), each of length L, with a spin-spin coupling
such that each broken bond in x lowers π̃(x) by a factor of Θ(tanh(ω)).

For the canonical paths {γ} we apply the standard hypercube bit-fixing paths to each of
the worldlines, one at a time: to go from x = (x1, ..., xL) to y = (y1, ..., yL), we first change
the bit x1,j to y1,j for consecutive j = 1, ..., L, and then repeat these steps to turn each xi into
yi. Evaluating the congestion for these paths in the usual way with an encoding function yields
ρ̃ ≤ O(coth(ω)nL), which is maximized when ω = ωmin,

ρ̃ ≤ O(coth(ωmin)nL) ≤ O(ω−1
minnL) ≤ O(β−1nL2) (57)

Ωθ and the spike time distribution. The states in Ωθ which will be excluded from the
set of paths {γ} are those which have |xi| = n/4 for too many i. Define 1S : {0, 1}n → {0, 1} to
be the indicator function for the spike i.e. 1S(z) = 1 if |z| = n/4, and 1S(z) is zero otherwise.
The spike time for x ∈ Ω is defined to be

ST(x) =

L∑
i=1

1S(xi). (58)

Let ε = 1
2 − α, and define

Ωθ =

{
x ∈ Ω : ST(x) ≥ L

n
1
2 (1−ε)

}
. (59)

Set β = nε/2 so that every x ∈ Ωθ satisfies

π̃(x)

π(x)
≥
(
Z

Z̃

)
exp

[
−βn

α

L
·
(

min
x∈Ωθ

ST(x)

)]
= O(1), (60)

which shows θ = O(1) in the congestion bound (45). The remainder of the section will be
devoted to computing the m-th moment of the random variable ST ∼ π̃, with m = c/ε, in order
to show,

Pr

[
ST ≥ L

n
1
2 (1−ε)

]
π̃

≤ O(n−c), (61)

12



which is equivalent to the statement π̃(Ωθ) ≤ O(n−c).
To calculate the moments 〈STm〉π̃ we will relate them to expectation values of the spikeless

quantum system, and use the fact that the latter is exactly solvable because the qubits are
non-interacting. Recall that the quantum expectation value of an operator A can be expressed
as a derivative of the partition function,

〈A〉 =
1

Z
tr
[
Ae−βH

]
=

1

Z
∂

∂λ
tr
[
e−βH+λA

]
|λ=0 =

1

Z(0)

∂Z(λ)

∂λ
|λ=0. (62)

Passing from Z(λ) to the corresponding Suzuki-Trotter approximation Z(λ) in the above ex-
pression changes the value by at most a multiplicative factor of (1±O(L−1) (a proof of this fact
will appear in a future work [11]). Let {|k〉 : k = 0, ..., n} be a basis of states for the symmetric
subspace which are labeled by Hamming weight, and let S = |n/4〉〈n/4|. Since the observable
S is diagonal in the computational basis we can include the term λS into the diagonal part of
the Hamiltonian for the quantum-to-classical mapping and compute,

〈S〉σ̃ =
1

Z

∂

∂λ

 ∑
x1,...,xL

exp

(
L∑
i=1

−βf̃(xi)

L
+
λ〈xi|S|xi〉

L

)
n∏
j=1

φ(x̄j)

 |λ=0 (63)

=
1

Z

∑
x1,...,xL

[
1

L

L∑
i=1

1S(xi)

]
e−

β
L

∑L
i=1 f̃(xi)

n∏
j=1

φ(x̄j) (64)

=
∑
x∈Ω

L−1ST(x)π̃(x) = L−1〈ST〉π̃ (65)

Since the low-temperature thermal state and the ground state have a large overlap, the ex-
pectation value (65) can be computed within the ground state. To compute the error caused
by this replacement we will examine the density of states of the spikeless system. First add a
constant shift to the Hamiltonian so that H̃|ψ̃0〉 = 0. Next, let |ψ̃1〉, . . . , |ψ̃n〉 denote the excited
eigenstates of H̃. Define ∆ := 2

√
(1− s)2 + s2 and observe that |ψ̃k〉 is an eigenstate of H̃ with

eigenvalue k∆, and that the degeneracy of the k-th energy level is
(
n
k

)
.

‖σ̃ − |ψ̃0〉〈ψ̃0|‖1 ≤
n∑
k=1

e−β∆k

(
n

k

)
= O(ne−n

ε

) (66)

and since ε > 0 is a constant this error will be subleading.
Since the spikeless system is non-interacting the ground state can be written explicitly, and

the ground state probability distribution on the Hamming weights is a binomial distribution [25].
It follows that 〈S〉σ̃ is less than the central binomial coefficient,

〈ST〉π̃ < L

(
1√
n

+O(n−1)

)
. (67)

To obtain (61) we will use the moment inequality,

Pr [ST ≥ b]π̃ ≤
〈STm〉π̃
bm

, (68)
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with b = Ln−
1
2 (1−ε). By definition we have,

〈STm〉π̃ =
∑

z1,...,zL

π̃(z1, ..., zL)

(
L∑
t=1

1S(zt)

)m
(69)

=
∑

z1,...,zL

π̃(z1, ..., zL)

L∑
t1,...,tm

1S(zt1)...1S(ztm) (70)

=

L∑
t1,...,tm

〈1S(zt1)...1S(ztm)〉π̃. (71)

To compute these m-point correlation functions we return to the quantum description (this
generates a multiplicative error of size 1 ±O(L−1), which will make a subleading contribution
to the m-th moment and thus will be ignored),

〈1S(zt1)...1S(ztm)〉π̃ = 〈e−τ1HSe−(τ2−τ1)HS . . . e−(τm−τm−1)HSe−(β−τm)H〉σ̃ (72)

where τi = βti/L and S = |n/4〉〈n/4|. Once again we replace the low-temperature thermal
state with the ground state and incur a subleading error as in (66). Therefore,

〈STm〉π̃ =

L∑
t1,...,tm

〈ψ̃0|e−τ1HSe−(τ2−τ1)HS . . . e−(τm−τm−1)HSe−(β−τm)H |ψ̃0〉 (73)

Since the ground state, the Hamiltonian, and the operator S are all bit-symmetric, the expec-
tation can be evaluated in the symmetric subspace. Expanding each of the terms in (73) in the
basis of symmetric energy eigenstates {|ψ̃k〉},

〈STm〉π̃ =
∑

k1,...,km
t1,...,tm

e−(τ2−τ1)∆k1 · · · e−(τm−τm−1)∆k1〈ψ̃0|S|ψ̃k1
〉〈ψ̃k2

|S|ψ̃k3
〉 · · · 〈ψ̃km |S|ψ̃0〉 (74)

States with higher energy will contribute less to the sum over all times t1, ..., tm in (73), because
the exponentials in (74) decay more quickly. For ki > 0, the sum over ti can be truncated
whenever τi − τi−1 � 1/ki∆.

Since the ground state wave function is a binomial distribution the mean spike time will
only be large when the peak of the distribution is near the spike, which only happens when the
adiabatic parameter s is in the interval s∗−O(n−1/2) < s < s∗+O(n1/2) with s∗ = (

√
3−1)/2. In

this interval the spikeless eigenstates satisfy 〈ψ̃i|n/4〉 ≤ |〈ψ̃0|n/4〉| ≤ O(n−1/2) for all i, because
the ground state wave function is centered on the spike and the excited state wave functions
have a greater spread, which can be seen from the explicit form of the spikeless eigenfunctions
given in [21]. We can define gi = ti − ti−1 and relabel the sum of t1, . . . , tm = 0, ..., L by a sum
over the gi. For the purpose of obtaining an upper bound on the m-th moment we relax the
constraint

∑
i gi = L, and instead sum over the full range gi = 1, ..., L for each i. Using these

facts we can upper bound (74) by

〈STm〉π̃ ≤ n−m/2
∑

k1,...,km
g1,...,gm

e−g1∆k1 · · · e−gm∆km (75)

We will now organize the terms of (75) according to the number ` of excited energies Ẽki > 0
they contain. There are

(
m
`

)
terms of (75) that contain ` eigenstates above the ground state,

and for each ` we must sum over the ga1 , . . . , ga` for which the corresponding ka1 , . . . , ka` are
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non-zero. Now (75) becomes

〈STm〉π̃ ≤ n−m/2
m∑
`=1

(
m

`

)
Lm−`

(m− `)!
∑

ga1
,...ga`

ka1
...ka`

∏̀
i=1

e−gai∆kai (76)

where the factor of Lm−`/(m − `)! results from performing the sum over the m − ` of the gi
which have ki = 0. Now we sum over ga1

, . . . , ga` using the fact that
∑L
g=1 e

−gk ≤ k−1,

〈STm〉π̃ ≤ Lmn−m/2
m∑
`=0

(
m

`

)
(β∆)−`

n∑
ka1

...ka`

∏̀
i=1

1

ki
. (77)

Using
(
m
`

)
≤ m` and

∑n
k=1 ≤ log(n) + 1, at last this becomes

〈STm〉π̃ ≤ Lmn−m/2
m∑
`=0

(
log(n) + 1

mβ∆

)`
(78)

Since m and ∆ are constant and β = nε/2 with fixed ε > 0 the terms with inverse powers of β
are subleading and so 〈STm〉π̃ ≤ O(Lmn−m/2). Finally, applying (68) with m = c/ε yields the
desired result (61).

Adiabatic schedule. Here we show that a discretization of the adiabatic with an inverse
polynomial step size is sufficient to fulfill the statement we need for the warm starts in Section 3.3.
We will take the largest value of the adiabatic parameter to be smax = 1−n−1 so that ||ψ0(1)〉−
|ψ0(smax)〉|1 ≤ poly(n−1), and the global minimum of the cost function can be obained by
sampling from Π at s = smax with essentially the same probability at it would be obtained by
sampling from the ground state probability distribution.

We will sample from π at several values of the adiabatic parameter s1, ..., smax. Define
si = s0 − i∆s, ωi = β(1 − si)/L, ∆ω = β∆s/L, and let πi be the stationary distribution
(14) when the adiabatic parameter is si. At each stage we simulate the Markov chain (16)
for sufficiently many steps to achieve a variational distance to the stationary distribution of
exp(−nΩ(1)). These errors then add up to a negligible amount.

To choose a step size ∆s satisfying the warm start condition πi+1 ≤ 2πi the following
calculation makes use of the form (14) of the stationary distribution as well as the form (5) of
the partition function,

πi+1(x)

πi(x)
=

(
Zi

Zi+1

)
e−

β∆s
L

∑L
i=1 f(xi)

n,L∏
j,k=1

[
1xj,k=xj,k+1

+ tanh(ωi −∆ω))1xj,k 6=xj,k+1

][
1xj,k=xj,k+1

+ tanh(ωi)1xj,k 6=xj,k+1

] (79)

≥ e−2β∆s(||H0||+||Hf ||)
[

tanh(ωi −∆ω)

tanh(ωi)

]nL
(80)

≥ (1− 2β∆s(||H0||+ ||Hf ||))
[
1 + ∆ω max

w∈(ωi+1,ωi−1)
(coth(w)− tanh(w))

]nL
(81)

≥ (1− 2β∆s(||H0||+ ||Hf ||)) [1 + coth(ωi+1) ·∆ω]
nL
, (82)

and so taking ∆s = [coth(ωmin)(nL)2]−1 = Θ(L3n2[β(1−smax)]−1) will satisfy πi(x) ≤ 2πi+1(x),

and since smax = 1− n−1 and β = nε/2 this becomes ∆s = Θ
(
n−( 19

2 −
13ε
4 )
)

.

An alternative approach to lower bounding the necessary step size ∆s would be to replace
the thermal state with the ground state and apply Lemma 5.1 from [8], which would yield
∆s = 1/poly(n) since the spectral gap of the spike Hamiltonian is constant for α < 1/2.
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Quasi-stationary mixing. In this section we will bound the overall run time of SQA
applied to the spike cost function. First we need to show that taking c in (61) to be a sufficiently
large constant will allow the leaky walk for the spike system sample from ΩG according to the
quasi-stationary distribution π for an expected time of nq, for any desired constant q, before it
is eventually likely to escape into ΩB .

Inserting (57) and (60) into (45) yields the bound ρ ≤ O(β−1nL2) = O(n6+ε). Since

log π−1
min ≤ O(βn+nL log(1− 1

n )) this implies a mixing time of tmix ≤ O(n
17
2 + 7

4 ε) within ΩG for
the SQA spike chain at each value si of the adiabatic path.

Meanwhile, from (35) together with (61) we have π(ΩB) ≤ Θ(ρ̃π̃(Ωθ)) = Θ(n6+ε−c). At
each step si of the adiabatic path, after time t ≥ tmix the leaky random walk mixes to within a
distance O(tπ(ΩB)) so by (56) it suffices to take c = 6 + ε+ q + log(1/δ) in order for the leaky
walk to be with distance δ to the stationary distribution π for times tmix ≤ t ≤ Θ(nq).

For an explicit upper bound on the run time of the entire SQA process, we make take q = 1
since only one sample needs to be drawn at each si for a warm start, and the total run time is
O(tmix∆s−1) = O(n18−6ε).

5 Discussion

Our proof does not bound the convergence time for SQA α > 1/2, although QA does work
here (with a runtime nO(α)) [21]. We conjecture that SQA will be efficient for α > 1/2 as
well, though this will require extensions of the present techniques. The approach used in this
work is also suggestive of a more general connection between the quantum spectral gap of
Hamming symmetric barrier problems (including barriers of various shapes and widths) and the
corresponding performance of SQA, which we sketch here.

Assume we are near the critical value s∗ of the adiabatic parameter at which the system
tunnels through the barrier i.e. for s < s∗ the ground state probability mass is concentrated on
one side of the barrier, while for s > s∗ the opposite occurs, and for s = s∗ the probability mass
on both sides of the barrier is O(1)). While a general understanding of what barriers admit
such a tunneling description has not yet been found, there are many examples for which this is
known to occur[14, 21, 24]. Assume that the QA spectral gap at s∗ is ∆ = 1/ poly(n), so that
QA will be able to pass through the barrier efficiently.

We expect the first excited state to have a node at some location |k〉 inside the barrier region,
and some properties of the ground state wave function near |k〉 can be inferred from the spectral
gap. Since the spectral gap is at least 1/poly(n), we know that the ground state wave function
cannot be too small inside of the barrier, or else there would be a balanced-weight cut in the
ground state that could be used to construct an orthogonal state with low energy. This benefits
the comparison approach because the ground state amplitudes inside the barrier need to be at
least 1/poly(n) in order for a 1/ poly(n) fraction of the canonical paths to transfer from the
spikeless system to the system with a barrier.

On the other hand, the amplitudes inside the barrier cannot become too large because the
barrier is a classically forbidden region, and because an upper bound on ∆ will also upper
bound the amplitudes near |k〉 (by the same argument using a balanced-weight cut together
with the assumption that the first excited state has a node at |k〉). The fact that the total
probability mass inside the barrier is not too large could be useful for deriving the necessary
upper bounds on π(Ωθ) that are used in the comparison approach. The primary ingredient that
would be needed to make this sketch rigorous is a better understanding of the wave functions
and spectral gap of the quantum system with a barrier, and depending on the outcome of this
understanding the comparison approach for analyzing SQA may require modifications as well.

While relatively few rigorous facts are known about the performance of SQA, it remains
in practice a successful and widely used algorithm. This strikes us as an area where theorists
should work to catch up with current practice.
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