N

N

Distributed Exact Weighted All-Pairs Shortest Paths in
O(n 5/4) Rounds
Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak

» To cite this version:

Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak. Distributed Exact Weighted All-
Pairs Shortest Paths in O(n 5/4) Rounds. FOCS, Oct 2017, Berkeley, United States. hal-03982450

HAL Id: hal-03982450
https://hal.science/hal-03982450
Submitted on 10 Feb 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03982450
https://hal.archives-ouvertes.fr

arXiv:1708.03903v2 [cs.DC] 6 Nov 2017

Distributed Exact Weighted All-Pairs Shortest Paths in
O(n”*) Rounds

Chien-Chung Huang', Danupon Nanongkai?, and Thatchaphol Saranurak?

ICNRS, Ecole Normale Supérieure, France
2KTH Royal Institute of Technology, Sweden

Abstract

We study computing all-pairs shortest paths (APSP) on distributed networks (the
CONGEST model). The goal is for every node in the (weighted) network to know the
distance from every other node using communication. The problem admits (1 + o(1))-
approximation O(n)-time algorithms [[.P15, Nan14], which are matched with Q(n)-time
lower bounds [Nanl4, LPS13, FHW12]'. No w(n) lower bound or o(m) upper bound
were known for exact computation.

In this paper, we present an O(n®/*)-time randomized (Las Vegas) algorithm for exact
weighted APSP; this provides the first improvement over the naive O(m)-time algorithm
when the network is not so sparse. Our result also holds for the case where edge weights
are asymmetric (a.k.a. the directed case where communication is bidirectional). Our
techniques also yield an O(n3/ 411/2 4 n)-time algorithm for the k-source shortest paths
problem where we want every node to know distances from k sources; this improves
Elkin’s recent bound [Elk17b] when &k = @(n'/4).

We achieve the above results by developing distributed algorithms on top of the
classic scaling technique, which we believe is used for the first time for distributed shortest
paths computation. One new algorithm which might be of an independent interest is for
the reversed r-sink shortest paths problem, where we want every of r sinks to know its
distances from all other nodes, given that every node already knows its distance to every
sink. We show an O(n+/7)-time algorithm for this problem. Another new algorithm is
called short range extension, where we show that in 0(n\/ﬁ) time the knowledge about
distances can be “extended” for additional h hops. For this, we use weight rounding to
introduce small additive errors which can be later fixed.

Remark: Independently from our result, Elkin recently observed in [Elk17b] that the
same techniques from an earlier version of the same paper (https://arxiv.org/abs/
1703.01939v1) led to an O(n®/3log?® n)-time algorithm.

18, O and £ hide polylogarithmic factors. Note that the lower bounds also hold even in the unweighted
case and in the weighted case with polynomial approximation ratios.

https://arxiv.org/abs/1703.01939v1
https://arxiv.org/abs/1703.01939v1

Contents

1 Introduction

1.1 Overview of Algorithms and Techniques

2 Preliminaries

2.1 The Model e
2.2 Problems and Notations o
2.3 Basic Distributed Algorithms o0
2.4 Sampling the Centers e

3 The Scaling Framework

3.1 Upper Bounding the Distances

4 Main Algorithm

4.1 Short-Range Algorithm oL

4.2 Short-Range-Extension Algorithm

4.3 Reversed r-Sink Shortest Paths Algorithm

5 k-Source Shortest Paths
6 Open Problems
7 Acknowledgement

References

ii

10
12
15
17
20
22
22

22

1 Introduction

Distributed Graph Algorithms. Among fundamental questions in distributed computing
is how fast a network can compute its own topological properties, such as minimum spanning
tree, shortest paths, minimum cut and maximum flow. This question has been extensively
studied in the so-called CONGEST model [Pel00] (e.g. [Elk17b, PRS17, HKN16, Nanl4,
LPS13, DHK 12, EIk06, PR00, GKP98]). In this model (see Section 2 for details), a network
is modeled by a weighted n-node m-edge graph G. Each node represents a processor with
unique ID and infinite computational power that initially only knows its adjacent edges
and their weights. Nodes must communicate with each other in rounds to discover network
properties, where in each round each node can send a message of size O(logn) to each
neighbor. The time complexity is measured as the number of rounds needed to finish the
task. It is usually expressed in terms of n, m, and D, where D is the diameter of the network
when edge weights are omitted. Throughout we use ©, O and § to hide polylogarithmic
factors in n.

Note that the whole network can be aggregated to a single node in O(m) time. Thus any
graph problem can be trivially solved within O(m) time. A fundamental question is whether
this bound can be beaten, and if so, what is the best possible time complexity for solving a
particular graph problem. This question has been studied for several decades, marked by
a celebrated O(nlogn)-time algorithm for the minimum spanning tree (MST) problem by
Gallager et al. [GIIS83]. This result was gradually improved and settled with ©(y/n + D)
upper and lower bounds [PR00, GKP98, KP98, Awe87, CT85, Gaf85].2

Approximation vs. Exact Algorithms. Besides MST, almost no other problems were
known to admit an o(m)-time distributed algorithm when we require the solution to be ezact.
More than a decade ago, a lot of attention has turned to distributed approximation, where
we allow algorithms to return approximate solutions (e.g. [Elk04]). This relaxation has led
to a rapid progress in recent years. For example, SSSP, minimum cut, and maximum flow
can be (14 o(1))-approximated in O(y/n + D) time [HKN16, BKK*16, Nan14, NS14, GIK13,
GKKT15]%, and all-pairs shortest paths can be (1 + o(1))-approximated in O(n) time [LP15,
Nanl4]; moreover, these bounds are essentially tight up to polylogarithmic factors [DHK ™12,
Elk06, PR00, KKP13]. Given that approximating many graph properties are essentially
solved, it is natural to turn back to exact algorithms. A fundamental question is:

Are approximation distributed algorithms more powerful than the exact ones?

So far, we only have an answer to the MST problem: due to the lower bound of Das Sarma et al.
[DHK*12] (building on [Elk06, PR00, KKP13]), any poly(n)-approximation algorithm
requires Q(\/ﬁ + D) rounds; thus, approximation does not help. For most other problems,
however, answering the above question still seems to be beyond current techniques: On the
one hand, we are not aware of any lower bound technique that can distinguish distributed
(14 o(1))-approximation from exact algorithms for the above problems. On the other hand,
for most of these problems we do not even know any non-trivial (e.g. o(m)-time) exact

algorithm. (One exception that we are aware of is SSSP where the classic Bellman-Ford

2See also [PRS17, Elk17a) for recent results.
3For the maximum flow algorithm, there is an extra n°® term in the time complexity.

algorithm [Bel58, For56] takes O(n) time. This bound was recently (in STOC’17) improved
by Elkin [Elk17b].)

All-Pairs Shortest Paths (APSP). Motivated by the above question, in this paper we
attempt to reduce the gap between the upper and lower bounds for solving APSP exactly.
The goal of the APSP problem is for every node to know the distances from every other
node.* Besides being a fundamental problem on its own, this problem is a key component
in, e.g., routing tables constructions [LLPS13, LP15].

Nanongkai [Nanl4] and Lenzen and Patt-Shamir [LPS13, LP15] presented (1 + o(1))-
approximation O(n)-time algorithms, as well as an Q(n) lower bound which holds even when
D = O(1), when the network is unweighted, and against randomized algorithms.> Very
recently, Censor-Hillel et al. [CKP17] improved the lower bound to £2(n). The same lower
bound obviously holds for the exact case. Neither an w(n) lower bound nor an o(m)-time
algorithm was known, except for some special cases; a notable one is the unweighted case
where there are O(n)-time algorithms [LLP13, HW12, PRT12].

Results. Our main result is an O(n°/*)-time exact APSP algorithm. Our algorithm is
randomized Las Vegas: the output is always correct, and the time guarantee holds both in
expectation and with high probability®. This result provides the first improvement over the
naive O(m)-time algorithm when the network is not so sparse, and significantly reducing
the gap between upper and lower bounds.

Our algorithm also works with the same guarantees when edge weights are asymmetric,
a.k.a. the directed case. In this case, an edge between nodes u and v can be viewed as
two directed edges, one from u to v and another from v to u. These two edges might have
different weights, and the weight can be set to infinity. (Note, however, that the infinite
weight is not really necessary as it can be replaced by a large poly(n) weight.) We emphasize
that the underlying network is undirected so neither edge direction or weight affect the
communication. While the previous (14 o(1))-approximation O(n)-time algorithms for APSP
also work for this case [Nanl4, LP15], in general it is less understood than the undirected
case. For example, while there are tight (1+o0(1))-approximation O(y/n+ D)-time algorithms
for SSSP [HKN16, BKK*16] in the undirected case, the best known algorithms for the
directed case are the (1 4 o(1))-approximation O(v/nD + D)-time one [Nanl4] and the
O(v/nDY* + D)-time algorithm for the special case called single-source reachability [GU15)].

Our techniques also yield an improved algorithm for the k-source shortest paths (k-SSP)
problem. In this problem, some nodes are marked as source nodes initially (each node
knows whether it is marked or not). The goal is for every node to know its distance from
every source node. We let k£ denote the number of source nodes. We show a randomized
Las-Vegas O(n®/*k'/? + n)-time algorithm. (Observe that our APSP algorithm is simply a

4This problem is sometimes referred to as name-independent routing schemes. See, e.g. [LPS13, LP15] for
discussions and results on another variant called name-dependent routing schemes which is not considered in
this paper.

®In fact, the lower bound holds even for poly(n)-approximation algorithms when the network is weighted
and for (polylog(n))-approximation algorithms when the network is unweighted. The same lower bound also
holds even for the easier problem of approximating the network diameter [FHW12]. In particular, for the
weighted case, the lower bound holds even for poly(n)-approximation algorithms. For the unweighted case,
the lower bound holds even for (3/2 — €)-approximating the diameter, and even for sparse networks [ACK16].

SWe say that an event holds with high probability (w.h.p.) if it holds with probability at least 1 — 1/n°,
where c is an arbitrarily large constant.

special case when k = n.) Prior to our work, approximation algorithms and the unweighted
case were often considered for this problem (e.g. [EN16, HW12, KKM*12, Elk05]). The
only non-trivial exact algorithm known earlier was the algorithm of Elkin [Elk17b]. The
performance of such algorithm compared to ours is as follows. (We ignore the polylogarithmic
terms below for simplicity. For a more precise time guarantee, see [Elk17b].)

1. When D = O(k+y/n) and k = O(y/n), Elkin’s algorithm takes O(n®/®k%/3) time. In this
case our algorithm is faster when k = @(n'/4).

2. When k = Q(y/n), Elkin’s algorithm takes O(n?/3k) time. In this case our algorithm
is faster when k = @(n'/3).

To conclude, our k-SSP algorithm is faster whenever k = @(n'/4).

Remarks.

1. The time guarantees of our algorithms depend on the number of bits needed to represent
edge weights. This is typically polylog(n) since edge weights are usually assumed to be
positive integers bounded from above by poly(n); see Section 2.1. This is the main drawback
of the scaling technique that our algorithm heavily relies on (see below). The guarantees of
other distributed algorithms we discussed, including Elkin’s algorithm [Elk17b], do not have
this dependency.

2. Throughout the paper we only show that the output is correct with high probability, but
in O(n) time we can check the correctness as follows. First, every node lets its neighbors
know about its distances from other nodes (this takes O(n) time). Then, every node checks
if it can improve its distance from any node using the distance knowledge from neighbors.
If the answer is “no” for every node, then the computed distance is correct. If some node
answers “yes”, it can broadcast its answer to all other nodes in O(n) time.

3. Independently from our result, Elkin recently observed in [Elk17b] that the same techniques
from an earlier version of the same paper (https://arxiv.org/abs/1703.01939v1) led to
an O(n5/ 3 10g2/ 3 n)-time algorithm for APSP on undirected networks. Also very recently,
Censor-Hillel et al. [CKP17] showed that the standard Alice-Bob framework is incapable of
providing a super-linear lower bound for exact weighted APSP, and raised the complexity of
APSP as “an intriguing open question”. They also showed an (n?) lower bound for exactly
solving some NP-hard problems, such as minimum vertex cover, maximum independent
set and graph coloring. This implies a huge separation between approximation and exact
algorithms, since some of these problems can be solved approximately in O(polylog(n)) time.

1.1 Overview of Algorithms and Techniques.

Our algorithms are built on the scaling technique. This is a classic technique heavily studied
in the sequential setting (e.g. [Gol95, GT89, Gah85]). As far as we know this is the first
time it is used for shortest paths computation in the distributed setting. This technique
(see Section 3 for details) allows us to assume that the distance between any two nodes is
O(n) (i.e., the so-called weighted diameteris O(n)). The main challenge here is that edge
weight can be zero (but cannot be negative); without the zero weight, there are already
many O(n)-time exact algorithms available (e.g. [LP13, Nanl4]). Our algorithms consist of
two main subroutines developed for this case, which might be of independent interest. We
discuss these subroutines below. To avoid the discussion being too complicated, readers may

https://arxiv.org/abs/1703.01939v1

assume throughout the discussion that the input network has symmetric edge weight. Note
however that in reality we have to deal with the asymmetric weights even if the original
weight is symmetric. Additionally, we assume for simplicity that every pair of nodes has a
unique shortest path.

1. Short-range extension. The first subroutine is called short-range-extension. For simplicity,
let us first consider a special case called short-range problem. In this problem we are given a
parameter h. The goal is for every node v to know the distance from every node u such that
the shortest uv-path has at most h edges. Previously, this task can be achieved in O(nh)
time by running the Bellman-Ford algorithm for i rounds from every node. By exploiting
special properties obtained from the scaling technique, we develop an O(n\/ﬁ)—time algorithm
for this problem. The main idea is as follows. First we increase the zero weight to a small
positive weight A = 1/v/h. By a breadth-first-search (BFS) algorithm, we can solve APSP in
the new network (with positive weights) in O(n/A) time. This solution gives an upper bound
to the APSP problem on the original network (with zero weights). Since we are interested in
only shortest paths with at most h edges, it can be argued that the upper bound obtained
has an additive error of hA; i.e. it is only hA higher than the actual distance. We fix this
additive error by running the Bellman-Ford algorithm for hA rounds from every node.
The short-range algorithm above can be generalized to the following short-range-extension
problem. We are given an integer h, and initially some nodes in the network already know
distances to some other nodes. For any nodes u and v, let (u = xg,x1,22,...,2 = v) be
the shortest uv-path. We say that (u,v) is h-nearly realized if at least one node among
Ty Th—1,- - - T—p kKnows its distance from u. (Note that the fact that (u,v) is h-nearly
realized does not necessarily imply that (v, u) is also h-nearly realized.) At the end of our
algorithm we want to make node v know the distance from wu, for every nodes u and v
such that (u,v) is h-nearly realized initially. Observe that the short-range problem is the
special case where initially node u knows distances from no other nodes. By modifying the
short-range algorithm, we can show that this problem can be solved in O(n\/ﬁ) time as well.

2. Reversed r-sink shortest paths. The second subroutine is called reversed r-sink shortest
paths. Initially, we assume that every node v knows the distance from v to r sink nodes.
The goal is for every sink to know its distance from every node. A naive solution is for
every node v to broadcast to the whole network the distance from v to every sink. This
takes O(nr) time since there are O(nr) distance information to broadcast. In this paper, we
develop an O(n+/r)-time algorithm for this task.

The main idea is for every node v to route the distance from v to every sink ¢ through
the shortest vt-path. If there is a node x that is contained in more than n./r shortest paths
(thus there will be too much information going through z), we will call = a bottleneck node.
We can bound the number of bottleneck nodes to O(y/r) by a standard argument — we
charge each bottleneck node to ny/r distinct shortest paths among nr of them. Now, for
every shortest vt-path that does not contain a bottleneck node, we route the distance from
node v and sink ¢ as originally planned. This takes O(ny/r) time since there is O(n+/7)
bits of information going through each node. For shortest vt-paths that contain bottleneck
nodes, we do the following. For every bottleneck node ¢, we make every node know their
distances from and to ¢ by running the Bellman-Ford algorithm starting at ¢. Then every
node broadcasts to the whole network its distance to and from every bottleneck node. Since
there are /7 bottleneck nodes, this takes O(n+/r) time in total. It is not hard to show that

every sink ¢t knows the distance from every node v after this step.

Putting things together. Finally, we sketch how all tools are put together. First we run the
short-range algorithm with parameter h = /n. Then we sample O(y/n) nodes uniformly
at random called centers so that every h-hop path contains a center with high probability.
FEach center ¢ broadcasts to the whole network its distances to some centers that it learns
from the short-range algorithms. At this point, every node knows its distance to every
center. We invoke the reversed r-sink shortest paths algorithm with centers as sink nodes
(so r = O(y/n)), so that every center knows its distance from every node. At this point,
it is not hard to prove that every pair of nodes is h-nearly realized. So, we finish by
invoking the short-range-extension algorithm with parameter h = y/n. The total time is
O(ny/r +nvh) = O(n®/*4).

To extend the above idea to the k-source shortest paths problem, we need slight modifi-
cations here and there; in particular, (i) we modify the short-range extension and reversed
r-sink shortest paths algorithms to deal with k source nodes, and (ii) we treat the sampled
centers as source nodes since we need to know the distances from and to them.

2 Preliminaries

2.1 The Model

In a nutshell, we consider the standard CONGEST model, except that instead of an
undirected graph the underlying graph is modeled by a bidirected graph, i.e. a directed graph
in which the reverse of every edge is also an edge. This is because we have to deal with
asymmetric edge weight (even when the initial network has symmetric weights). Additionally,
for simplicity we assume that nodes IDs are in the range of {0,1,...,n—1}. (This assumption
can be achieved in O(n) time.)

More precisely, we model a network by a bidirected unweighted n-node m-edge graph G,
where nodes model the processors and edges model the bounded-bandwidth links between
the processors. Let V(G) and E(G) denote the set of nodes and (directed) edges of G,
respectively. The processors (henceforth, nodes) are assumed to have unique IDs in the
range of {0,1,...,n—1} and infinite computational power. (Note again that typically nodes’
IDs are assumed to be in the range of {1,...,poly(n)}. But in O(n) time the range can be
reduced to {0,1,...,n — 1}.) Each node has limited topological knowledge; in particular,
it only knows the IDs of its neighbors and knows no other topological information (e.g.,
whether its neighbors are linked by an edge or not). Nodes may also accept some additional
inputs as specified by the problem at hand.

For the case of graph problems, the additional input is edge weights. Let w : E(G) —
{1,2,...,poly(n)} be the edge weight assignment.” We refer to network G with weight
assignment w as the weighted network, denoted by G(w). The weight w(u,v) of each edge
(u,v) is known only to u and v. As commonly done in the literature, we will assume that
the maximum weight is poly(n); so, each edge weight can be sent through an edge (link)
in one round. We refer to the weight function as symmetric, or sometimes undirected, if
for every (directed) edge (u,v), w(u,v) = w(v,u). Otherwise, it is called asymmetric, or

"Note that it might be natural to include co as a possible edge weight. But this is not necessary since it
can be replaced by a large weight of value poly(n).

sometimes directed. We note again that the symmetric case is the typical case considered in
the literature, but we have to deal with the asymmetric case in our algorithm.

We measure the performance of algorithms by its running time, defined as the worst-case
number of rounds of distributed communication. At the beginning of each round, all nodes
wake up simultaneously. Each node u then sends an arbitrary message of O(logn) bits
through each edge (u,v), and the message will arrive at node v at the end of the round. We
assume that nodes always know the number of the current round. In this paper, the running
time is analyzed in terms of the number of nodes (n). Since n can be computed in O(D)
time, where D is the diameter of G, we will assume that every node knows n.

2.2 Problems and Notations

For every nodes s and ¢ in a weighted network G(w), let dist, (s, t) be the distance from s to ¢
in G(w). Note that if w is asymmetric then it might be the case that disty,(s,t) # disty(t, s).
Let Pj(s,t) be the shortest path from s to ¢ in G(w); if there are more than one such path,
we let P (s,t) be the one with the least number of edges (if there are still more than one,
break tie arbitrarily). We refer to P (s,t) as the shortest st-path.

The goal of the all-pairs shortest paths (APSP) problem is for every node ¢ to know
disty (s, t) for every node s. In the case of k-source shortest paths (k-SSP) problem, there
is a set S of k source nodes (every node knows whether it is in S or not). The goal is for
every node t to know dist,(s,t) for every source s € S. When k = 1, the problem is called
single-source shortest paths (SSSP).

We say that an event holds with high probability (w.h.p.) if it holds with probability at
least 1 — 1/n¢ where c is an arbitrarily large constant.

2.3 Basic Distributed Algorithms

The Bellman-Ford Algorithm. We note the following algorithm for SSSP on network
G(w), known as Bellman-Ford [Bel58, For56]. Let s be the source node. For any node ¢, let
d!,(s,t) denote the knowledge of ¢ about dist,(s,?). Initially, d’,(s,t) = oo for every node t,
except that d; (s,s) = 0. The algorithm proceeds as follows.

(i) In round 0, every node t sends d’,(s,t) to all its neighbors.
(ii) When a node t receives the message about d} (s, x) from its neighbors x, it uses the
new information to decrease the value of d’,(s,t).
(iii) If d¢,(s,t) decreases, then node ¢ sends the new value of d’,(s,t) to all its neighbors.
(iv) Repeat (ii) and (iii) for n rounds.

Clearly, the above algorithm takes O(n) rounds. Moreover, it can be proved that when
the algorithm terminates d!,(s,t) = disty(s,t); i.e. t knows dist,(s,).

Scheduling of Distributed Algorithms. Consider k distributed algorithms A1, Ao ..., Ag.
Let dilation be such that each algorithm A; finishes in dilation rounds if it runs individually.
Let congestion be such that there are at most congestion messages, each of size O(logn), sent
through each edge (counted over all rounds), when we run all algorithms together. We note
the following result of Ghaffari [Ghal5]:

Theorem 2.1 ([Ghalb]). There is a distributed algorithm that can execute Ay, As ..., A
altogether in O(dilation 4+ congestion - logn) time.

Broadcasting. We need to follow fact following from basic upcasting and downcasting
techniques [Pel00]. (The statement is from [LLP13].)

Lemma 2.2. Suppose each v € V' holds k, > 0 messages of O(logn) bits each, for a total of

K =3 cv kv messages. Then all nodes in the network can receive these K messages within
O(K + D) rounds.

2.4 Sampling the Centers

In the beginning of each iteration, a special node (with ID 0) chooses a subset of centers
uniformly random and broadcasts this information (their IDs) to all other nodes. Here we
use a lemma of Ullman and Yannakakis [UY91, Lemma 2.2].

Lemma 2.3 ([UY91)). If we choose z distinct nodes uniformly at random from an n-node
graph, then the probability that a given (acyclic) path has a sequence of more than (cnlogn)/z
nodes, none of which is distinguished, is, for sufficiently large n, bounded above by 2~ for
some positive Q.

The special node chooses y/n polylog(n) centers at random and broadcasts this informa-
tion (the broadcasting can be done in O(y/npolylog(n) + D) = O(n) rounds). Then the
following lemma is a direct consequence of the previous one.

Lemma 2.4. Let w be any non-negative weight function. For any nodes s and t, let P}(s,t)
be the shortest st-path in G(w) as defined in Section 2.2. Then, with high probability, every
P} (s,t) can be decomposed into a set of subpaths Py = (s = ug,...,u1), Pr = (u1,...,u2),
cooy Pr1 = (Ug—1,...,ur =t), where

e the u; are centers for 1 <i<k—1.
e cach subpath has at most \/n — 1 edges.

3 The Scaling Framework

Let w denote the given (possibly asymmetric) weight function of the input graph G. We
want every node t to know the distances from other nodes s to itself with respect to w. We
emphasize that every edge (u,v) is directed, i.e., (u,v) is an ordered pair. We need the
following definitions:

Definition 3.1. Let 3 be the integer such that 2°0~1 < max (y,)eg(q) WU, v) < 28 For any
0 <i<p and edge (u,v), let wi(u,v) = {J)(u, v)/2ﬂ_iJ. That is, w;(u,v) is the number
represented by the first i most significant bits of w(u,v) (when we treat the B-th bit as the

most significant one). Let bi(u,v) € {0,1} be the i-th bit in the binary representation of
w(u,v), i.e., w(u,v) = Zf;ol b (u, v)2°.

Note that § = O(logn) because the weights of edges in G are polynomial. For any edge
(u,v), wo(u,v) =0, wg(u,v) = w(u,v), and wiy1(u,v) = 2w;(u,v) + bg_;(u,v) for 0 < i < .
For each 7, we can treat w; and b; as a weight function.

Definition 3.2. For any (asymmetric) weight function W, we denote by d(s,t) the knowl-
edge of the node u about disty(s,t), i.e., the distance from s to t with respective the weight
w.

The algorithm will runs in § iterations. At the i-th iteration, we assume that for every
node t knows the distances from all other nodes s to itself with respect to the weight w;_1,
ie. dl, (s t) =disty, ,(s,t) for all s and t. The goal is to use this information to so that
at the end of the iteration the knowledge of the distances with respect to w;, i.e. we have
dl,.(s,t) = disty, (s, t) for all s and ¢. Note that the assumption about the knowledge holds
in the very beginning when i = 1, because df, (s,t) = disty,(s,t) = 0 for all s and ¢ by
Definition 3.1.

For convenience, throughout the paper, we fix the iteration i. We denote the weight
functions w := w;, w' := wiy1 and b := bg_;. That is, we have w'(u,v) = 2w(u,v) + b(u,v)
for every edge (u,v). In the beginning, we have d!,(s,t) = dist,(s,t) and we want to have
dl, (s, t) = dist,(s,) at the end.

3.1 Upper Bounding the Distances

As distyy(s,t) can be a large polynomial for some s, ¢, we can avoid this by working with a
set of reduced weights rs defined as follows.

Definition 3.3. For any node s and edge e = (u,v), let
rs(u, v) = 2disty (s, u) + w'(u, v) — 2dist,, (s, v). (1)
We note that r,, is an asymmetric weight function even if w and w’ are symmetric. The
next lemma states some useful properties of ry:
Lemma 3.4. Let r; be defined as in Definition 3.3. Then the following holds.
(i) For any edge e = (u,v), rs(u,v) > 0.
(i) For any nodes s and t, dist, (s,t) <n — 1.

(iii) For any nodes s and t, dist,,(s,t) = 2disty(s,t) + dist, (s,t). In fact, any path is a
shortest st-path in G(w') if and only if it is a shortest st-path in G(rs).

Proof. For (i), observe that rg(u,v) = 2disty(s,u) + w'(u,v) — 2disty, (s, v) > 2dist,, (s, u) +
2w(u,v) — 2disty,(s,v) > 0, where the last inequality follows from the triangle inequality.
For (ii), first notice that

rs(P) = w'(P) — 2disty(s,), for any st-path P. (2)

The above inequality follows easily from definition. Let P = (s = vg,v1,...,t = v), for

some k <n — 1. Then,

k
rs(P) =) rs(vj,vj41)

|
,_. o —

Z 2disty, (s, v;) + w'(vj,vj41) — 2disty (s, vj+1)

Z (vj,vj41)) — 2disty, (s, vg)
w'(P) — 2disty, (s,).

Now assume that P is a shortest st-path in G(w). Then

dist,, (s,t) < 75(P) < w'(P) — 2disty (s, t)
k—1
= (Z 2w(vj, Uj+1) + b(’Uj, Uj+1)) - 2di$tw(8, t)
§=0
k—1
= Z b(vj,vj41)) + 2w(P) — 2disty, (s, 1)
§=0
k—1
= Z b(vj7vj+1) <n-—1
§=0

Here the second inequality follows from (2), the fifth equality from the assumption that
P is a shortest path in G(w) and the last inequality from the fact that £ < n — 1 and
b(vj,vj+1) € {0,1}. This proves (ii).

Finally for (iii), let P = (s = vg, v1,...,t = vi) be a shortest st-path in G(w’). Then

dist, (s,t) < 75(P) = w'(P) — 2disty (s, t) = dist,(s,t) — 2disty(s, 1),

where the last equality holds as P is a shortest st-path in G(w’). On the other hand, let
P’ = (s =wp,v1,...,t = v) be a shortest path in G(rs). Then

dist,(s,t) < w'(P') = rg(P') + 2disty (s, t) = dist, (s, t) + 2disty (s, 1),

where the last equality holds because P’ is a shortest path in G(rs). The above two
inequalities establish the first part of (iii), while the second part follows from the first
part. [

Lemma 3.4(ii) implies that shortest path tree with a source s, based on 4, has depth at
most n. However, we cannot construct such a tree using the standard BFS starting from s
in just O(n) rounds, the difficulty being that it can happen that r4(u,v) = 0 for some edge
(u,v). We also note that Lemma 3.4(ii) does not imply that every edge in the shortest paths
has 0/1-weight.

4 Main Algorithm

In this section, we show the main algorithm described in Algorithm 1 which is the algorithm
for one iteration in the scaling framework from Section 3. The setting is that there are
three weight functions w, w’ and b such that, for every edge (u,v) of the input graph G,
b(u,v) € {0,1} and

w'(u,v) = 2w(u,v) + b(u,v). (3)

In the beginning, we have d!,(s,t) = dist,(s,t) and we want that every node t knows
dist, (s, t) for every node s, i.e., d’,(s,t) = dist,/(s,t) at the end of the algorithm.

For every pair of nodes s and t, recall that P, (s,t) is the shortest st-path in G(w'); if
there are more than one shortest st-paths in G(w’), pick the one with the least number of
edges (if there are still more than one, break tie arbitrarily). Let C be the set of centers
decided in Step 1 of Algorithm 1. Next, we define an important definition for our algorithm.
Let P (s,t)|C denote the subpath of P (s,t) from the last center in C' N P to t. If there is
no center in P, let P, (s,t)|C = P, (s,t). Let |P},(s,t)| be the number of edges in P}, (s,1);
similarly, | P}, (s,t)|C| is the number of edges in P, (s,t)|C.

Recall that by Lemma 3.4(iii), dist,(s,t) differs from dist,,(s,t) by 2dist,(s,t), which
is known to t. So if every node t knows that the distances w.r.t. rs from each node s, i.e.,
d._(s,t) = dist,, (s, t), then each node ¢ can deduce the the distances w.r.t. to w’ as well, i.e.,
dl (s, t) = disty (s,) for all s.

We first explain the high-level ideas behind our algorithm. In Algorithm 1, Step 1 is for
sampling the centers. Step 2 is needed for the execution of Steps 3 and 6. Note that the
implementation details of Steps 3, 5 and 6 will be elaborated in the subsequent sections.

Correctness: Let h = \/n. For any nodes s and ¢, we will argue that, after executing Steps
3 to 6, every node t knows the distance w.r.t. w’ from s to ¢, i.e., d’,(s,t) = dist,(s,t). Let
cs be the first node in the path P}, (s,t)|C, i.e. P}/ (cs,t) = Py/(s,t)|C. From the definition,
if there is no centers in P, (s,t) then ¢ = s and otherwise ¢, is the last center appeared in
the path P}, (s,t) from s to t.

We claim that after Step 5, the node ¢, will know the distance w.r.t. w’ from s to cs,
ie., d;5(s,cs) = disty (s, cs). If ¢y = s, this is trivial. Suppose ¢, # s. Consider the shortest
path P¥ (s,cs) from s to ¢;. By Lemma 2.4, we can partition P}, (s,c,) into subpaths,
say Pp = (ug := s,...,u1), P = (u1,...,u2), ..., Px—1 = (ug—_1,...,up := ¢s) so that
each subpath P; has at most h — 1 edges for 0 < j < k — 1, and the u;’s are centers
for 1 < j <k —1. As subpath P; has at most h — 1 edges, the short-range algorithm
guarantees in Lemma 4.5 that u; knows d. (uj, uj+1) = distys (uj,ujs1) for 0 < j < k—1
after Step 3 in Algorithm 1. In Step 4, d.) (u;,uj41), for 1 < j <k — 1, will broadcast and
be known to s. Therefore, after Step 4, the node s would be able to calculate dist, (s, cs)
and so d. (s, cs) = dist,y (s, ¢s). Then, by the guarantee from Lemma 4.12 of the reversed
r-sink shortest paths algorithm in Step 5, the knowledge is “exchanged” and so c¢s; knows
dist, (s, cs), i.e. di5 (s, cs) = distyy (s, cs).

By Lemma 2.4, we also have that P}, (cs,t) = P;,(s,t)|C has at most h — 1 edges. As
d;/(s,cs) = dist,(s,cs), by the guarantee of the short-range-extension algorithm by
Lemma 4.8, we have after Step 6 the node ¢ knows the distance dist, (s, t), i.e. dfu,(s, t) =
dist,(s,t) and we are done.

10

Algorithm 1: Main APSP Algorithm (for one iteration in the scaling framework)

Input: A graph G and the weight functions w, w’, and b satisfying Equation (3).
Every node t knows dist,(s,t) for every node s, i.e., d.,(s,t) = disty(s,t). Let
h=+/n.

Output: Every node ¢ knows dist, (s, t) for every node s, i.e. d',(s,t) = dist, (s, 1).

1 Node 0 randomly samples y/npolylog(n) centers (collectively denoted as C') and

broadcast their IDs to all other nodes. // This steps takes O(n) rounds.

2 Node t sends dist,, (s, t), for all nodes s, to its neighbors x in G. The neighbor x
internally uses this knowledge to compute r4(x,t), for all nodes s, as defined in
Definition 3.3. // This steps takes O(n) rounds.

Apply the short-range algorithm (in Section 4.1) so that every node s knows
ds,(s,t) > disty(s,t) for all nodes t, and if | P}, (s, t)| < h, d;,/(s,t) = disty (s, t).
// This step takes O(n'?®) rounds.

All centers ¢ € C broadcast their knowledge of d¢, (¢, '), for all centers ¢’ € C, to all
other nodes in the network. Every node s internally uses this knowledge to
calculate d, (s, c) = disty(s,c) for all centers ¢ € C. // This step takes O(n)
rounds

Apply the reversed r-sink shortest paths algorithm (in Section 4.3) with nodes in
C as sinks so that every center ¢ € C knows dS,(s,c) = dist, (s, c) for all nodes s.
// This step takes O(n'?) rounds.

Apply the short-range-extension algorithm (in Section 4.2) so that every node ¢
knows d!,(s,t) > dist,(s,) for all nodes s, and if |P*,(s,t)|C| < h,
diu/(s,t) = dist,(s,t). // This step takes O(n'?%) rounds.

w

'

[}

(=]

11

Running Time: There are O(|C|) messages to be broadcasted in Step 1, and O(|C?)
messages in Step 4. By Lemma 2.2, this takes O(|C|? + D) = O(n) in total. Step 2 easily
takes O(n) rounds (by Theorem 2.1 we have congestion = n and dilation = 1). In the
following three subsections, we will show that Steps 3, 5 and 6 take O(n1'25) rounds each.
In particular, Lemmas 4.5 and 4.8 state that the short-range algorithm in Step 3 and the
short-range-extension algorithm in Step 6 both take O(nv/h). Lemma 4.12 states that the
reversed r-sink shortest paths algorithm in Step 5 takes O(n+/|C[). In total, the running

time in each iteration is O(n'2%) rounds.

Theorem 4.1. At the end of Algorithm 1, with high probability, for every node t, dt(s,t) =
dist,(s,t) for all nodes s. Furthermore, the algorithm takes O(n'?®) rounds.

4.1 Short-Range Algorithm

In this section we show how to implement Step 3 of Algorithm 1 so that every node s knows
ds,(s,t) > distyy(s,t) for all nodes t, and if | P}, (s, t)| < h, d;,/(s,t) = disty (s, t).

The main algorithm in this section is precisely described in Algorithm 2. However, it
yields a slightly different output: after finishing, every node ¢t knows df (s, t) > dist,y (s, t) for
all nodes s, and if |PZ,(s,t)| < h, d!,(s,t) = dist,/(s,t). As they are completely symmetric,
we can use Algorithm 2 as an algorithm for Step 3 of Algorithm 1 just by switching the
direction of every edge in the graph. The reason for presenting Algorithm 2 that does not
give exactly what we want for Step 3 of Algorithm 1 is that, later in Section 4.2, we will
extend Algorithm 2 and obtain the short-range-extension algorithm. This formulation of
Algorithm 2 simplifies the modification a lot. From now on, we will call Algorithm 2 the
short-range algorithm as well.

Recall that we mentioned earlier that some edges (u,v) may have r4(u,v) = 0 and this
poses difficulty. Our main idea is to deal with a strictly positive weight function 77, defined
as rs rounded up to the next multiple of A = /1/h. More precisely,

Definition 4.2. Let A = \/1/h. For every node s and every edge (u,v), let

o () = A if rs(u,v) =0, and
o Afrg(u,v)/A] otherwise.

Running Time: In Algorithm 2, Steps 1, 2 and 5 takes no time. For a single source s,
the BFS in Step 3 has dilation = O((n + hA)/A) = O(n/A + h) rounds. As in BFS each
node sends messages only once and we run the BFS in parallel from all nodes s, we have
congestion = O(n). By Theorem 2.1, we have that Step 3 takes O(dilation + congestion) =
O(n/A +h+n) = O(n/A). Step 4 is essentially the Bellman-Ford algorithm except the
following modifications:

1. we start with d. (s,t) = |d’, (s,t)] instead of d.. (s,t) = oo, and
2. anode t sends its updated value of dj, (s,) only when dj. (s, t) > dj, (s,t) —hA (instead
of sending it every time d’._(s,t) is decreased); see Step 4.(iii).

We run the modified Bellman-Ford algorithm for every node s in parallel. This algorithm
for a single source node s has dilation = O(h) and congestion = O(hA) = O(v/h) since every
node sends a message to its neighbors at most O(hA) times (due to the second modification).

12

Algorithm 2: Short-Range Algorithm

Input: Every node ¢ knows dist,(s,t) and rs(¢, z) for all nodes s and all ¢’s neighbors
z in G.
Output: For every pair of nodes s and ¢, node ¢ knows d! (s, t) > dist,s(s,t) and if
|P2/(s,t)| < h, dE,(s,t) = disty (s, t).

1 For every edge (u,v) and all nodes s, both u and v internally compute 7 (u,v)
according to Definition 4.2.

2 For every node t, initially set dfné(s, t) = oo for all nodes s # t and dfné (t,t) = 0.

3 For every node s, compute SSSP tree from s up to depth n + hA in terms of 7} by
implementing the following BFS: each node t(# s) updates dﬁg(s, t) according to
the message dfg(s, x) it receives from its neighbor z. If dig(s, t) < n+ hA, then in
round dl, (s,t)/A, the node ¢ sends df, (s,t) to all its neighbors in G, if ¢ did not
send anysmessage in this step yet. // éNote that we count the number of rounds
from O.

4 Every node ¢ sets d’._(s,t) = Ldtr,g(s,t)j for all nodes s. (Note that df. (t,¢) = 0.) Run
the following algorithm (which is a modification of the Bellman-Ford algorithm) for
every node s, in parallel:

(i) In round 0, every node ¢ sends df._(s,t) to all its neighbors.

(ii) When a node t receives the message about dy (s,) from its neighbors z, it uses the
new information to decrease the value of d’._(s,t) (as an upper estimate of dist, (s, t)).
Note that df. (s,t) is always an integer.

(iii) If d%_(s,t) decreases and d._(s,t) > d’,ig (s,t) — hA, then the node t sends the new
value of d!._(s,t) to all its neighbors.

(iv) Repeat (ii) and (iii) for A rounds.

5 Every node t calculates df, (s, t) = 2disty,(s,t) + d._(s,t) for all nodes s.

13

By Theorem 2.1, parallelizing n such algorithms takes O(h +n - hA) = O(nhA) rounds.
Now it can be concluded that Algorithm 2 takes O(n/A + nhA) = O(nvh) rounds.

Correctness: Next, we show the correctness of Algorithm 2 using the following lemmas.

Lemma 4.3. After Step 3 of Algorithm 2, every node t knows dig(s,t) > dist,r (s,t) for all
nodes s and in particular df,g(s,t) = dist,/ (s,t) if dist, (s,t) < n+ hA.

Proof. The first part follows from the property of the BFS. For the second part, first notice

that A divides dist,/ (s,t) for all nodes s and t. By a straightforward induction, it can be

dist /s (s,
shown that by round St’z(t), dl, (s,t) = disty (s,t), if 0 < dist,/ (s,t) < n+ hA. O

Lemma 4.4. After Step 4 of Algorithm 2, every node t knows d._(s,t) > dist,,(s,t) for all
nodes s, furthermore, if |P%,(s,t)| < h, then d.._(s,t) = dist,, (s, t); in particular, d.._(s,t) is
decreased to dist,,(s,t) in round |P},(s,t)| or before.

Observe that the correctness of output of the algorithm follows from this lemma, since
in Step 5, every note ¢ can correctly compute d’,(s,t) = dist, (s,) if |P¥ (s,¢)] < h and
otherwise df,(s,t) > disty (s, t).

The intuition behind the proof is to show that dist, (s, t) (stored as d-, (s, t)) computed
in Step 3 is not very far from dist,,(s,t); i.e dist, (s,t) — dist; (s,t) < hA! Intuitively, this
is because |P},(s,t)| < h, and for each edge (u,v), 0 < 7, (u,v) — r5(u,v) < A. This allows
us to modify the Bellman-Ford algorithm in Step 4 to allow a node to speak only when
df,é(s) —d! (s,t) < hA.

Proof of Lemma 4.4. The fact that after Step 4, d-._(s,t) > dist,,(s,t) follows easily from
induction on the number of rounds. We prove the rest by induction on |P},(s,t)|. For the
base case where | P, (s, t)| =0, i.e. s =t, the claim trivially holds as we set d’., (¢,t) = 0 in
the beginning of Step 4. Now consider any pair of s and ¢, and assume that the lemma holds
for any ¢’ such that | P}, (s,t")| < |Pk (s,t)| < h. Let = be the neighbor of ¢ in P}, (s,t), i.e.
distyr(s,t) = disty (s, z) + w'(z,t). Note that

dist, (s, t) = dist, (s, x) + rs(x,t)
=d, (s,x) +rs(z,t), (4)

where the first equality holds because Py, (s,t) = P} (s,t) is a shortest path in G(rs) by
Lemma 3.4(iii). The second inequality then holds by the induction hypothesis. We will be
done if the following claim holds.

Claim: z sends the message “dy (s,z) = dist, (s,2)” to ¢ in round |P},(s,z)| + 1 or
before that (equivalently, di (s, x) is decreased to dist,, (s, z) by round |P},(s,z)| < h —1 or
before that).

To see why we will be done, observe that the claim implies that ¢ can update dis(s, t)
to dist,, (s,t) using Equation (4) in round |P},(s,t)| or before that. Note that ¢t knows
rs(xz,t) from the initial knowledge. To prove the claim, we just need to show that df,s (s,x) —

14

dist, (s,z) < (h — 1)A. We have

dist, (s, z) < dist; (s, x) + | P, (s, 2)|A by the definition of 7/,
< dist,, (s,x) + | P (s, z)|A by Lemma 3.4(iii)
< dist,,(s,2) + (h — 1)A
<n+(h-1)A by Lemma 3.4(ii)

By Lemma 4.3, we have d7, (s,x) = dist,/ (s, z). By the second last inequality, we conclude
that df, (s,z) —dist, (s,z) < (h — 1)A. This proves the claim and the entire lemma. [

By flipping the direction of edges in the graph, we can conclude the result that is used in
the main algorithm:

Lemma 4.5. After running Algorithm 2 on a graph where the direction of each edge is flipped,
every node s knows d;_(s,t) > dist,,(s,t) for all nodes t, furthermore, if |Py,(s,t)| < h, then
ds (s, t) = dist, (s,t). Moreover the algorithm takes O(nv/'h) rounds.

4.2 Short-Range-Extension Algorithm

In this section we show how to implement Step 6 of Algorithm 1 with the algorithm called
short-range-extension algorithm. We are in the setting such that in the beginning, every
center ¢ already knows df, (s, c) = dist,(s,c) for all nodes s. By Lemma 2.4, this implies
with high probability that for every pair s and t, (s,t) is h-nearly realized. Indeed, let
P¥ (s,t) = (s = xo,21,%2,...,2, = t) be the shortest path from s to ¢t with respect to
w’. We have that there is a center ¢s € {xg, xk_1,...,2r_p} who knows its distance from
s to itself with high probability by Lemma 2.4. The goal is that, at the end, every node
t knows the distance dist,,(s,t) for all nodes s. Moreover, it suffices to show that, at the
end, every node t knows d,(s,t) > dist,s(s,t) for all nodes s, and if |PZ (s,t)|C| < h,
dl (s, t) = disty (s, t).

The short-range-extension algorithm is a minor modification of the short-range algorithm
in Algorithm 2, with the same running time and almost identical implementation. But, in
this setting, the centers have additional initial knowledge: every center ¢ already knows
dist,(s,t) and hence dist,,(s,t) for all nodes s, i.e., d._(s,t) = dist, (s,t). The following
changes exploit this knowledge:

e For any node s, let G5 be the graph obtained from G by adding imaginary edges into
G: for every center ¢, there is an additional edge (s,t) with weight dist,_(s,t). We call
G the s-augmented graph. We define the weight function r” for G in the same way
as how we define the weight function 7/ for G. That is, for each original edge (u,v) in
Gs, we set 1! (u,v) = . (u,v), and, for each imaginary edge (s,t) where ¢ is a center,
we set

(s 1) {A if dist,, (s,t) = 0, and

° Aldist,,(s,t)/A] otherwise.

Let dist,»(u,v) denote the distance from u to v with respect to Y in the s-augmented
graph G.

15

e In Step 2, every pair of nodes s and ¢, initially set d’,(s,t) = oo and d',(t,t) = 0,
unless t itself is a center. In this case, let

A if dist,,(s,t) = 0, and

db,(s,t) =
TS(S) {A[distrs(s,t)/A} otherwise.

This is possible because each center ¢ already knows dist,,(s,t) for all nodes s.

e In Step 3, for every node s, we compute the same SSSP tree w.r.t. r. instead of 77.
Observe that, for every node s, running the BFS with respect to r” is the same as
simulating Step 3 of the original short-range algorithm in the s-augmented graph Gs.

e In the beginning of Step 4, every node t sets |d. (s,t) = dL,(s,t)] for all nodes s,
unless t itself is a center. In this case, d’._(s,t) = dist,,(s,t). Moreover, we run this
step for h + 1 rounds instead of h rounds.

The running time clearly does not asymptotically change, and so this algorithm takes ON(n\/E)
rounds. The next two lemmas establish the correctness of the algorithm and they are close
parallels of Lemmas 4.3 and 4.4.

Lemma 4.6. After Step 3 of the modified Algorithm 2, every mode t knows dﬁ;,(s,t) >
dist,(s,t) for all nodes s, and in particular, dfng,(s,t) = dist,(s,t) if dist,r(s,t) < n+ hA.

Proof. The proof is identical to Lemma 4.3 except that 1’5 is replaced by r7. O

Lemma 4.7. After Step 4 of the modified Algorithm 2, every node t knows df,s(s,t) >
dist,, (s, t) for all nodes s, furthermore, if |P%,(s,t)|C| < h, then d._(s,t) = dist,,(s,t); in
particular d. (s,t) decreases to dist,, (s,t) in round |Pj,(s,t)|C|+ 1.

Proof. The proof is almost identical to the proof of Lemma 4.4, with the difference that
we consider the case that |PF,(s,t)|C| < h and not |P},(s,t)| < h. Similarly, we prove
by induction on the length of |P,(s,t)|C|. For the base case where |P},(s,t)|C| = 0, we
have that t itself is a center. Hence, the node ¢ already knows the distance dist,_(s,1),
ie., d. (s,t) = dist, (s,t). For the inductive step, we only need to show that x, who is
the previous node of ¢ in P}, (s,t)|C, has decreased dj (s,x) down to dist,, (s,) in round
|P*/(s,z)|C|+1 < hor before that. This follows if we can show d, (s, z) —dist,, (s, z) < hA.
Suppose that ¢, is the first node in P, (s,)|C which is the first node in P, (s,x)|C as well.
We have that

dist, (s, z) < dist, (s, cs) + dist» (cs,)
< (disty, (s, ¢s) + A) 4 (dist,, (cs, 2) + | P (s, ©)|A) by the definition of 7
= dist,, (s,) + (|P} (cs,)| + 1)A

=dist,_(s,z) + (| Py/(cs,)] + 1)A by Lemma 3.4(iii)
=dist,, (s, z) + (| Py (s, 2)|C| + 1)A

< dist,, (s, z) + hA

<n-+hA by Lemma 3.4(ii)

By Lemma 4.6, we have d7, (s (s,2) = dist,(s,z). By the second last inequality, we conclude
that d7,(s,x) — dist, (s, a:) < hA. And this completes the induction step and the entire
proof. O

16

Note that the knowledge about dist,,(s,?) implies the knowledge about dist,(s,t). So
now we can conclude the lemma that is used in the main algorithm:

Lemma 4.8. Suppose that every center ¢ already knows di, (s, c) = disty (s, c) for all nodes
s. After running the modified Algorithm 2, every node t knows d',(s,t) > dist,s(s,t) for
all nodes s, furthermore, if |Pt (s, t)| < h or |P% (s, t)|C| < h, then d,(s,t) = disty(s,t).
Furthermore, the algorithm runs in O(nv/h) rounds.

4.3 Reversed r-Sink Shortest Paths Algorithm

In this section, we assume that r special sink nodes vi,...,v, are given and every node
s knows d!,(s,v;) = distys(s,v;) for all sink nodes v;. (Note that these r special sinks
correspond to the centers C' in Algorithm 1.) We present an O(n+/r)-time algorithm so that
each sink v;, 1 < i < r, acquires the knowledge d) (s, v;) = dist,y (s, v;) for all nodes s in
the end. The algorithm is described in Algorithm 3. Here, we write the t-sink shortest path
tree to mean the shortest path tree (w.r.t. w’) that has t as the sink.

Now, we explain the idea of Algorithm 3. By Steps 1 and 2, for every sink v;, each
node s can decide which neighbor x* is its parent in the v;-sink shortest path tree: if
dist) (s, v;) = w'(s,*) + dist,, (z*,v;), then x* is the parent of s. Also, every node s knows
which neighbors are its children because the children informed s in Step 2.

The basic idea is to propagate dist,(v;,t) for all node ¢ upwards to v; in the v;-sink
shortest path tree (as done in Step 5) until v; receives all the informations. However, a
brute-force implementation of this idea leads to O(nr) time complexity, since some nodes
may need to send out O(nr) messages.

We overcome this issue by creating a set B of bottleneck nodes (or just bottlenecks for
short), which is empty initially. Intuitively, these nodes are the bottlenecks of the above
propagation process. We will let them become a sort of “ad-hoc” sinks, namely, if b € B,
we will let all nodes s know d:,(s,b) = dist,s(s,b). Furthermore, for all 1 < i < r, the
v;-shortest path trees will be “pruned” from these bottlenecks downwards in the following
sense. In Step 4, a node s, if not a bottleneck in B, aggregates the number of its descendants
(including s itself) in the v;-sink shortest path tree, for each 1 < i < r, and then informs
its parent in the same tree. On the other hand, if ¢ is a bottleneck, it informs its parent in
the v;-sink shortest path trees, for all 1 < i < r, that it has no descendants, i.e., it is a leaf.
(this can be regarded as our pruning the v;-sink shortest path trees from the bottlenecks
downwards).

In Step 5, if some nodes t, which are neither bottlenecks nor the original sinks, have
more than n./r descendants, it declares itself as a potential candidate to become a new
bottleneck. The special node with ID 0 will then decide on a unique node b to be the new
bottleneck (so B = B U {b}) and broadcasts this decision. Then we build the b-sink shortest
path tree and b-source shortest path tree using the Bellman-Ford algorithm so that all
nodes s knows d:,(s,b) = dist,(s,b) and d, (b, s) = dist, (b, s). Then, all nodes s forward
d?,(s,b) to the sinks (by broadcasting to the whole network) so that every sink v; knows
di(s,b) = distys(s,b). This will be useful information for sinks. The same process (Steps 4
and 5) continues until no more bottleneck is created.

Lemma 4.9. The number of bottlenecks is |B| = O(y/r) and so Steps 4 and 5 repeat O(\/1)
times.

17

Algorithm 3: Reversed r-Sink Shortest Paths Algorithm

Input: r sink nodes vy, ---,v,. Every node s knows dist,(s,v;) for all 1 <i <r, ie.,
ds (s, v;) = distyy (s, v;)
Output: Each sink node v; knows dist, (s, v;) for all nodes s, i.e.,
dvi(s,vi) = disty (s, v;)

1 Every node s sends disty/(s,v;), for each 1 <1 <r, to all its neighbors.

2 For each 1 <i < r and every node s, s uses the information dist,,(z,v;) from all its
neighbors x to decide which neighbor z* is its parent in the v;-sink shortest path tree.
The node s then informs z* that it is a child of x* in the v;-sink shortest path tree.

3 Set B=10. // B is the set of bottleneck nodes.

4 For each 1 <14 <r and every node s, s waits until it receives the message #(i, x;)
from all its children z; in the v;-sink shortest path tree. If the node s ¢ B, let
#(i,5) = 1+ 32, #(i, z;); otherwise #(i, s) = 0. The node s sends #(, s) to its
parent in the v;-sink shortest path tree.

5 If any node s ¢ BU {v;}/_, has 30| #(i, s) > Vkn:

(i) s broadcasts its intent of becoming a new bottleneck.

(ii) Node 0 chooses one of the candidates (say the one with the smallest ID) as the new
bottleneck b and broadcasts its ID to all nodes. Set B = B U {b}.

(iii) Apply the Bellman-Ford algorithm to build the b-sink shortest path tree and the
b-source shortest path tree, so that every node s knows d;,(s,b) = dist,(s,b) and
ds (b, s) = disty, (b, s).

(iv) Every node s broadcasts dist,,(s,b) to all nodes (in particular, to all sinks), so that
every sink v; knows d; (s, b) = dist,y (s, b) for all nodes s.

(v) Go back to Step 4.

6 For each 1 < ¢ < r and each node s, dist,/(s, v;) is relayed to sink v; through the path
P*,(s,v;) in the v;-sink shortest path tree if P}, (s,v;) N B = (). That is, every node
x € V'\ B sends dist,,(x, v;) to its parent in the v;-sink shortest path tree. When a
node v € V' \ B receives a message dist,(z, v;), it sends such message to its parent in
the v;-sink shortest path tree.

7 Each sink v;, for 1 < i < r, computes dist, (s, v;) for all nodes s.

18

Proof. Observe that originally the total number of nodes in all v;-sink shortest path trees,
for 1 <1 <, is nr. Each time a new node becomes a bottleneck, all its descendants (at
least Q2(n+/r) of them) are pruned from these trees. Thus, we can create up to at most
O(=) = O(/r) bottlenecks and accordingly Steps 4 and 5 repeat the same number of

nyr
times. O

When there is no more bottleneck to be created, Step 6 simply relays the information
dist,(s,v;) to sink v; through the v;-sink shortest path tree, for each 1 < i < r, as long
as 1) s € B is a bottleneck, or 2) s is not a bottleneck and the path from s to v; in the
v;-sink shortest path tree does not contain a bottleneck, i.e. P (s,v;) N B = (). The last
step finishes the algorithm.

Lemma 4.10. In Step 7, each sink v;, for 1 < i <r, correctly computes dist, (s, v;) for all
nodes s, i.e., dy,(s,v;) = disty (s, v;).

Proof. Consider the path P, (s, v;) from s to v; in the v;-sink shortest path tree. There are
two cases. First, if s € B or P!, (s,v;) N B =), then, by Step 6, dist,(s, v;) is relayed to v;
and we are done. Second, if s is not a bottleneck and there is a bottleneck b in P, (s, v;),
then, by Step 5(iv), dist,(s,b) is known to v;; i.e. d)(s,b) = dist,(s,b). Also, by Step 5(iii),
dvi (b, v;) = distyy (b, v;) is known to v;. Therefore, v; can use these pieces of information to
correctly compute distyy (s, v;) = d;(s,b) + d (b, v;). O]

The lemma above concludes the correctness of Algorithm 3. Now we analyze the running
time.

Lemma 4.11. Algorithm 3 takes O(n\/r) rounds.

Proof. We will use extensively Theorem 2.1 by analyzing dilation and congestion in each
step. In Steps 1 and 2, each node only sends r messages to its neighbors. So dilation =1
and congestion = r, and so this takes O(r) rounds. In Step 4, for every sink v;, every node s
sends a message once along the v;-sink shortest path tree. As there can be a path of n hops
in the tree, dilation = n. Parallelizing the processes for all sinks v; yields congestion = r. So
this step takes O(n +r) = O(n).

Now, we analyze Step 5. In Step 5(i), at most n nodes need to broadcast one message.
By Lemma 2.2, this takes O(n + D) = O(n) rounds. In Step 5(ii), only one node broadcast
a message and this takes O(D) rounds. In Step 5(iii), running Bellman-Ford algorithm for
finding the b-sink shortest path tree, for one node b, takes O(n). In Step 5(iv), every node
broadcasts one messages and this takes O(n + D) = O(n) rounds by Lemma 2.2.

By Lemma 4.9, Steps 4 and 5 repeat O(y/r) times. In total, this takes O(n+/7) rounds.
Next, in Step 6, the messages are relayed in the shortest path trees, and so dilation = n.
Moreover, congestion = O(n+/r) because all the nodes s which are descendants of bottlenecks
in any tree do not send messages. So this step also takes O(n+/r) rounds. Therefore, the
total number of rounds of the algorithm is O(ny/r). O

Finally, we conclude with the lemma that is used in the main algorithms:

Lemma 4.12. Every node s knows disty (s, v;) for all sinks v; where 1 < i < r, i.e.,
ds,(s,v;) = distyy (s, v;). Then, running Algorithm 3, each sink node v; knows distlgl(s, v;)
for all nodes s, i.e., d.\(s,v;) = disty(s,v;). Furthermore, Algorithm 3 takes O(n\/r)
rounds.

19

5 k-Source Shortest Paths

In this section, we show how to extend the algorithms presented in Section 4 to solve the
k-source shortest paths (k-SSP) problem. Recall that in this problem we want every node v
to know its distance from every of k sources. We let .S be the set of sources. Initially, every
node knows whether it is a source or not.

We modify the APSP algorithm as follows. First, we pick 3 sets of random centers®,
where each set has size

¢ = min(k, v/n) polylog(n).

Denoted these sets by C1,Cs,...,Cjs. (Observe that this step can be done in O(y/n + D)
time since there are only O(y/n) centers in total.) Now we run each iteration of the scaling
framework as in Section 4, except that in each iteration we only compute shortest paths
from only some sources (instead of all nodes). In particular, the set of sources at iteration 4
is S; = Cix1UCi42U...UCgUS. Thus, we can assume that every node knows its distance
from all nodes in S;_1 = C; UC;j11U...UCUS. We will use C; as a set of random centers
in iteration 7, in the same way we use C in Algorithm 1. Algorithm 4 describes the new
algorithm in details. In this algorithm, we also need to modify the short-range, reversed
r-sink shortest paths, and short-range-extension so that they can run faster when there are
only ¢ sources, where ¢ = |S;|. This is done as in Algorithm 4.

g-Source Short-Range(-Extension) Algorithms. We round up edge weights to multi-
ples of A as done previously. However, we only run the BFS algorithm from ¢ sources (the
depth is still n + hA). We also run the modification of the Bellman-Ford algorithm with
g-sources. By the same analysis as in Sections 4.1 and 4.2, the running time of the g-source
short-range and short-range-extension algorithms becomes O(n/A + h + ghA) which is

O(v/nqh)
when we set A = /n/qh.

Reversed g-Source r-Sink Shortest Paths. The algorithm proceeds as in Section 4.3
except that:

e Bottleneck nodes are defined to be those that have g = ,/ngr messages sent through
them.

e In Step 6 the messages are relayed in the shortest path trees only from each source
node (and not each node).

Since there are gr source-sink pairs, there are |B| < [¢r/g] = O(1 4+ /qr/n) bottleneck
nodes. By following the proof of Lemma 4.11, the running time of this algorithm becomes

O(r + |Bln + /ngr) = O(n + /nqr).

Total Time of Algorithm 4. The g-source short-range and short-range-extension algo-
rithms take O(v/ngh) = O(n-/(k + €)/¢) = O(n +n**k/?) rounds. The reversed g-source

r-sink shortest paths algorithm takes O(n + /ngr) = O(n+/n(k+ O)¢) = O(n+n3/4k1/?)
rounds. Other steps can be easily seen to take O(n) rounds. Thus, Algorithm 4 takes

O(n + n/*kEY?) rounds in total.

8Recall the 3 is the number of bits needed to represent edge weight (see Section 3).

20

Algorithm 4: k-SSP Algorithm (for iteration 7 in the scaling framework)

Input: A graph G, weight functions w, w’, and b, and set of k sources S. Every node
knows whether it is a source or not. Every node t knows dist,(s,t), i.e.
dl,(s,t) = disty(s,t), for every node s € S;_1 = C;U...UC3US. Let
h=n/{ = max(n/k,/n).

Output: Every node t knows dist,,(s,t) for every node s € S; = C;j1 U...UCgUS,

ie. dl,(s,t) = disty (s, t).

Let C = C;.

2 Node t sends disty, (s, t), for all nodes s € S;_1, to its neighbors = in G. The neighbor
x internally uses this knowledge to compute rs(z,t), for all nodes s € S;_1, as
defined in Definition 3.3. // This steps takes O(g) rounds.

Apply the g-source short-range algorithm with nodes in S; as sources and h as
above so that every node s € S; knows d,(s,t) > dist,y(s,t) for all nodes ¢, and if
|PX (s,t)| < h, d5,(s,t) =disty (s, t). // This step takes O(y/ngh)
=O0(n-/(k+¢)/¢) = O(n+ n**k"?) rounds.

4 All centers ¢ € C broadcast their knowledge of d¢, (¢, '), for all centers ¢’ € C, to all
other nodes in the network. Every node s € S; internally uses this knowledge to
calculate d; (s, c) = dist, (s, ¢) for all centers ¢ € C. // This step takes
O(¢?) = O(n) rounds

Apply the reversed g-source r-sink shortest paths algorithm with nodes in S; as
sources and nodes in C' as sinks, so that every center ¢ € C' knows
dS,(s,c) = disty (s, c) for all nodes s € S;. // This step takes O(n + V/1qr)
= O(n+ /nlk+¢)¢) = O(n+n*>*k"?) rounds.

Apply the g-source short-range-extension algorithm so that every node ¢t knows
dt (s, t) > dist, (s, t) for all nodes s € S;, and if |P% (s, t)|C| < h,
dful(s,t) = disty/(s,t). // This step takes O(y/ngh) = O(n + n®/*k*/?) rounds.

=

w

S}

(=)

21

6 Open Problems

The main question is whether distributed APSP can be solved in O(n) time. Both super-
linear lower bound or near-linear upper bound will be a major result. Another related
problem is SSSP, where there is still a gap between the lower bound of [DHK™12] and upper
bound of [Elk17b]. In general, it is very interesting to close the gap between approximation
and exact distributed algorithms. We found this question particular interesting for exact
maximum matching and minimum cut; these problem admit an Q(y/n) lower bound while
no non-trivial upper bound is known (even an O(n) one). Note that the existing Q(y/n)
lower bound for minimum cut does not hold for a natural special case of checking whether
the network has small, e.g. O(1), edge connectivity. Given that small edge connectivity may
indicate the network’s likeliness to fail, it is interesting to determine their time complexity
exactly. Currently there is a big jump from O(D) time for checking edge connectivity of at
most two [Thu97, PT11] to O(y/n) for higher values [NS14].

7 Acknowledgement

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 715672. Nanongkai and Saranurak were also partially supported by the Swedish Research
Council (Reg. No. 2015-04659.) Nanongkai and Saranurak would like to thank Rotem
Oshman for comments on the preliminary version of the result.

References

[ACK16] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. “Near-Linear Lower
Bounds for Distributed Distance Computations, Even in Sparse Networks”.
In: Distributed Computing - 30th International Symposium, DISC 2016, Paris,
France, September 27-29, 2016. Proceedings. 2016, pp. 29-42 (cit. on p. 2).

[Awe87] Baruch Awerbuch. “Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Flection and Related Problems (Detailed
Summary)”. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA. 1987, pp. 230-240 (cit. on p. 1).

[BKK'16] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph
Lenzen. “Approximate Undirected Transshipment and Shortest Paths via Gra-
dient Descent”. In: CoRR abs/1607.05127 (2016) (cit. on pp. 1, 2).

[Bel58] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathe-
matics 16.1 (1958), pp. 87-90 (cit. on pp. 2, 6).

[CKP17] Keren Censor-Hillel, Seri Khoury, and Ami Paz. “Quadratic and Near-Quadratic
Lower Bounds for the CONGEST Model”. In: DISC. 2017 (cit. on pp. 2, 3).

[CT85] Francis Y. L. Chin and H. F. Ting. “An Almost Linear Time and O(n log n
+ €) Messages Distributed Algorithm for Minimum-Weight Spanning Trees”.
In: 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985. 1985, pp. 257-266 (cit. on p. 1).

22

http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1145/28395.28421
http://dx.doi.org/10.1145/28395.28421
http://dx.doi.org/10.1145/28395.28421
http://arxiv.org/abs/1607.05127
http://arxiv.org/abs/1607.05127
http://dx.doi.org/10.1109/SFCS.1985.7
http://dx.doi.org/10.1109/SFCS.1985.7

[DHK*12]

[EN16]

[E1k04]

[E1k05]

[EI1k06]

[Elk17a]

[Elk17b]

[FHW12]

[For56]

[GHSS3]

[GK13]

[GKK*15]

[GKP9S]

[GTS9)

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. “Distributed Veri-
fication and Hardness of Distributed Approximation”. In: SIAM Journal on
Computing 41.5 (2012). Announced at STOC’11, pp. 1235-1265 (cit. on pp. 1,
22).

Michael Elkin and Ofer Neiman. “Hopsets with Constant Hopbound, and
Applications to Approximate Shortest Paths”. In: FOCS (2016) (cit. on p. 3).

Michael Elkin. “Distributed approximation: a survey”. In: SIGACT News 35.4
(2004), pp. 40-57 (cit. on p. 1).

Michael Elkin. “Computing almost shortest paths”. In: ACM Transactions on
Algorithms 1.2 (2005). Announced at PODC’01, pp. 283-323 (cit. on p. 3).

Michael Elkin. “An Unconditional Lower Bound on the Time-Approximation
Trade-off for the Distributed Minimum Spanning Tree Problem”. In: STAM
Journal on Computing 36.2 (2006). Announced at STOC’04, pp. 433-456 (cit.
onp. 1).

Michael Elkin. “A Simple Deterministic Distributed MST Algorithm, with
Near-Optimal Time and Message Complexities”. In: CoRR abs/1703.02411
(2017) (cit. on p. 1).

Michael Elkin. “Distributed Exact Shortest Paths in Sublinear Time”. In:
Symposium on Theory of Computing, STOC. 2017 (cit. on pp. i, 1-3, 22).

Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. “Networks cannot
compute their diameter in sublinear time”. In: SODA. 2012, pp. 1150-1162
(cit. on pp. i, 2).

Lester R. Ford. Network Flow Theory. Tech. rep. P-923. The Rand Corporation,
1956 (cit. on pp. 2, 6).

Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. “A Distributed
Algorithm for Minimum-Weight Spanning Trees™. In: ACM Trans. Program.
Lang. Syst. 5.1 (1983), pp. 6677 (cit. on p. 1).

Mohsen Ghaffari and Fabian Kuhn. “Distributed Minimum Cut Approximation”.
In: Symposium on Distributed Computing (DISC). 2013, pp. 1-15 (cit. on p. 1).

Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. “Near-Optimal Distributed Maximum Flow: Extended Ab-
stract”. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastidn, Spain, July 21 - 23, 2015.
2015, pp. 81-90 (cit. on p. 1).

Juan A. Garay, Shay Kutten, and David Peleg. “A Sublinear Time Distributed
Algorithm for Minimum-Weight Spanning Trees”. In: STAM Journal on Com-
puting 27.1 (1998). Announced at FOCS’93, pp. 302-316 (cit. on p. 1).
Harold N. Gabow and Robert Endre Tarjan. “Faster Scaling Algorithms for
Network Problems”. In: SIAM J. Comput. 18.5 (1989), pp. 1013-1036 (cit. on
p. 3).

23

http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://arxiv.org/abs/1605.04538
http://arxiv.org/abs/1605.04538
http://dx.doi.org/10.1145/1054916.1054931
http://arxiv.org/abs/1703.02411
http://arxiv.org/abs/1703.02411
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1007/978-3-642-41527-2_1
http://dx.doi.org/10.1145/2767386.2767440
http://dx.doi.org/10.1145/2767386.2767440
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1137/0218069

[GU15]

[Gab85]

[Gaf85]

[Ghalb]

[Gol95]

[HKN16]

[HW12]

[KKM™*12]

[KKP13]

[KP9g]

[LP13]

[LP15]

Mohsen Ghaffari and Rajan Udwani. “Brief Announcement: Distributed Single-
Source Reachability”. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC 2015, Donostia-San Sebastidn, Spain, July
21 - 23, 2015. 2015, pp. 163-165 (cit. on p. 2).

Harold N. Gabow. “Scaling Algorithms for Network Problems”. In: J. Comput.
Syst. Sci. 31.2 (1985). Announced at FOCS’83, pp. 148-168 (cit. on p. 3).

Eli Gafni. “Improvements in the Time Complexity of Two Message-Optimal
Election Algorithms”. In: Proceedings of the Fourth Annual ACM Symposium
on Principles of Distributed Computing, Minaki, Ontario, Canada, August 5-7,
1985. 1985, pp. 175-185 (cit. on p. 1).

Mohsen Ghaffari. “Near-Optimal Scheduling of Distributed Algorithms”. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Com-
puting, PODC 2015, Donostia-San Sebastian, Spain, July 21 - 28, 2015. 2015,
pp. 3-12 (cit. on pp. 6, 7).

Andrew V. Goldberg. “Scaling Algorithms for the Shortest Paths Problem”. In:
SIAM J. Comput. 24.3 (1995). Announced at SODA’93, pp. 494-504 (cit. on
p. 3).

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A de-
terministic almost-tight distributed algorithm for approximating single-source
shortest paths”. In: Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016.
2016, pp. 489-498 (cit. on pp. 1, 2).

Stephan Holzer and Roger Wattenhofer. “Optimal Distributed All Pairs Shortest
Paths and Applications”. In: Symposium on Principles of Distributed Computing
(PODC). 2012, pp. 355-364 (cit. on pp. 2, 3).

Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal
Talwar. “Efficient distributed approximation algorithms via probabilistic tree
embeddings”. In: Distributed Computing 25.3 (2012). Announced at PODC
2008, pp. 189-205 (cit. on p. 3).

Liah Kor, Amos Korman, and David Peleg. “Tight Bounds for Distributed
Minimum-Weight Spanning Tree Verification”. In: Theory of Computing Systems
53.2 (2013). Announced at STACS’11, pp. 318-340 (cit. on p. 1).

Shay Kutten and David Peleg. “Fast Distributed Construction of Small k-

Dominating Sets and Applications”. In: Journal of Algorithms 28.1 (1998).
Announced at PODC’95, pp. 40-66 (cit. on p. 1).

Christoph Lenzen and David Peleg. “Efficient Distributed Source Detection with
Limited Bandwidth”. In: Symposium on Principles of Distributed Computing
(PODC). 2013, pp. 375-382 (cit. on pp. 2, 3, 7).

Christoph Lenzen and Boaz Patt-Shamir. “Fast Partial Distance Estimation and
Applications”. In: Symposium on Principles of Distributed Computing (PODC).
2015, pp. 153-162 (cit. on pp. i, 1, 2).

24

http://dx.doi.org/10.1145/2767386.2767444
http://dx.doi.org/10.1145/2767386.2767444
http://dx.doi.org/10.1016/0022-0000(85)90039-X
http://dx.doi.org/10.1145/323596.323612
http://dx.doi.org/10.1145/323596.323612
http://dx.doi.org/10.1145/2767386.2767417
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1145/2484239.2484262
http://dx.doi.org/10.1145/2484239.2484262
http://dx.doi.org/10.1145/2767386.2767398
http://dx.doi.org/10.1145/2767386.2767398

[LPS13]

INS14]

[Nan14]

[PROO]

[PRS17]

[PRT12]

[PT11]

[Pel00]

[Thu97]

[UY91]

Christoph Lenzen and Boaz Patt-Shamir. “Fast Routing Table Construction
Using Small Messages”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 381-390 (cit. on pp. i, 1, 2).

Danupon Nanongkai and Hsin-Hao Su. “Almost-Tight Distributed Minimum
Cut Algorithms”. In: International Symposium on Distributed Computing
(DISC). 2014, pp. 439453 (cit. on pp. 1, 22).

Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted
Shortest Paths”. In: Symposium on Theory of Computing (STOC). 2014, pp. 565-
573 (cit. on pp. i, 1-3).

David Peleg and Vitaly Rubinovich. “A Near-Tight Lower Bound on the Time
Complexity of Distributed Minimum-Weight Spanning Tree Construction”. In:
SIAM Journal on Computing 30.5 (2000). Announced at FOCS’99, pp. 1427—
1442 (cit. on p. 1).

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. “A Time- and
Message-Optimal Distributed Algorithm for Minimum Spanning Trees”. In:
Symposium on Theory of Computing, STOC. 2017 (cit. on p. 1).

David Peleg, Liam Roditty, and Elad Tal. “Distributed Algorithms for Network
Diameter and Girth”. In: ICALP (2). 2012, pp. 660-672 (cit. on p. 2).

David Pritchard and Ramakrishna Thurimella. “Fast Computation of Small
Cuts via Cycle Space Sampling”. In: ACM Transactions on Algorithms 7.4
(2011). Announced at ICALP’08, 46:1-46:30 (cit. on p. 22).

David Peleg. Distributed Computing: A Locality-sensitive Approach. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2000. 1SBN:
0-89871-464-8 (cit. on pp. 1, 7).

Ramakrishna Thurimella. “Sub-Linear Distributed Algorithms for Sparse Cer-
tificates and Biconnected Components”. In: Journal of Algorithms 23.1 (1997).
Announced at PODC’95, pp. 160-179 (cit. on p. 22).

Jeffrey D. Ullman and Mihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: STAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100-125 (cit. on p. 7).

25

http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1007/978-3-662-45174-8_30
http://dx.doi.org/10.1007/978-3-662-45174-8_30
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1145/2000807.2000814
http://dx.doi.org/10.1145/2000807.2000814
http://dx.doi.org/10.1006/jagm.1996.0832
http://dx.doi.org/10.1006/jagm.1996.0832
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006

	1 Introduction
	1.1 Overview of Algorithms and Techniques.

	2 Preliminaries
	2.1 The Model
	2.2 Problems and Notations
	2.3 Basic Distributed Algorithms
	2.4 Sampling the Centers

	3 The Scaling Framework
	3.1 Upper Bounding the Distances

	4 Main Algorithm
	4.1 Short-Range Algorithm
	4.2 Short-Range-Extension Algorithm
	4.3 Reversed r-Sink Shortest Paths Algorithm

	5 k-Source Shortest Paths
	6 Open Problems
	7 Acknowledgement
	References

