
HAL Id: hal-03982450
https://hal.science/hal-03982450

Submitted on 10 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Exact Weighted All-Pairs Shortest Paths in
Õ(n 5/4) Rounds

Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak

To cite this version:
Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak. Distributed Exact Weighted All-
Pairs Shortest Paths in Õ(n 5/4) Rounds. FOCS, Oct 2017, Berkeley, United States. �hal-03982450�

https://hal.science/hal-03982450
https://hal.archives-ouvertes.fr

Distributed Exact Weighted All-Pairs Shortest Paths in
Õ(n5/4) Rounds

Chien-Chung Huang1, Danupon Nanongkai2, and Thatchaphol Saranurak2

1CNRS, École Normale Supérieure, France
2KTH Royal Institute of Technology, Sweden

Abstract

We study computing all-pairs shortest paths (APSP) on distributed networks (the
CONGEST model). The goal is for every node in the (weighted) network to know the
distance from every other node using communication. The problem admits (1 + o(1))-
approximation Õ(n)-time algorithms [LP15, Nan14], which are matched with Ω̃(n)-time
lower bounds [Nan14, LPS13, FHW12]1. No ω(n) lower bound or o(m) upper bound
were known for exact computation.

In this paper, we present an Õ(n5/4)-time randomized (Las Vegas) algorithm for exact
weighted APSP; this provides the first improvement over the naive O(m)-time algorithm
when the network is not so sparse. Our result also holds for the case where edge weights
are asymmetric (a.k.a. the directed case where communication is bidirectional). Our
techniques also yield an Õ(n3/4k1/2 + n)-time algorithm for the k-source shortest paths
problem where we want every node to know distances from k sources; this improves
Elkin’s recent bound [Elk17b] when k = ω̃(n1/4).

We achieve the above results by developing distributed algorithms on top of the
classic scaling technique, which we believe is used for the first time for distributed shortest
paths computation. One new algorithm which might be of an independent interest is for
the reversed r-sink shortest paths problem, where we want every of r sinks to know its
distances from all other nodes, given that every node already knows its distance to every
sink. We show an Õ(n

√
r)-time algorithm for this problem. Another new algorithm is

called short range extension, where we show that in Õ(n
√
h) time the knowledge about

distances can be “extended” for additional h hops. For this, we use weight rounding to
introduce small additive errors which can be later fixed.

Remark: Independently from our result, Elkin recently observed in [Elk17b] that the
same techniques from an earlier version of the same paper (https://arxiv.org/abs/
1703.01939v1) led to an O(n5/3 log2/3 n)-time algorithm.

1Θ̃, Õ and Ω̃ hide polylogarithmic factors. Note that the lower bounds also hold even in the unweighted
case and in the weighted case with polynomial approximation ratios.

i

ar
X

iv
:1

70
8.

03
90

3v
2

 [
cs

.D
C

]
 6

 N
ov

 2
01

7

https://arxiv.org/abs/1703.01939v1
https://arxiv.org/abs/1703.01939v1

Contents
1 Introduction 1

1.1 Overview of Algorithms and Techniques. 3

2 Preliminaries 5
2.1 The Model . 5
2.2 Problems and Notations . 6
2.3 Basic Distributed Algorithms . 6
2.4 Sampling the Centers . 7

3 The Scaling Framework 7
3.1 Upper Bounding the Distances . 8

4 Main Algorithm 10
4.1 Short-Range Algorithm . 12
4.2 Short-Range-Extension Algorithm . 15
4.3 Reversed r-Sink Shortest Paths Algorithm . 17

5 k-Source Shortest Paths 20

6 Open Problems 22

7 Acknowledgement 22

References 22

ii

1 Introduction

Distributed Graph Algorithms. Among fundamental questions in distributed computing
is how fast a network can compute its own topological properties, such as minimum spanning
tree, shortest paths, minimum cut and maximum flow. This question has been extensively
studied in the so-called CONGEST model [Pel00] (e.g. [Elk17b, PRS17, HKN16, Nan14,
LPS13, DHK+12, Elk06, PR00, GKP98]). In this model (see Section 2 for details), a network
is modeled by a weighted n-node m-edge graph G. Each node represents a processor with
unique ID and infinite computational power that initially only knows its adjacent edges
and their weights. Nodes must communicate with each other in rounds to discover network
properties, where in each round each node can send a message of size O(logn) to each
neighbor. The time complexity is measured as the number of rounds needed to finish the
task. It is usually expressed in terms of n, m, and D, where D is the diameter of the network
when edge weights are omitted. Throughout we use Θ̃, Õ and Ω̃ to hide polylogarithmic
factors in n.

Note that the whole network can be aggregated to a single node in O(m) time. Thus any
graph problem can be trivially solved within O(m) time. A fundamental question is whether
this bound can be beaten, and if so, what is the best possible time complexity for solving a
particular graph problem. This question has been studied for several decades, marked by
a celebrated O(n logn)-time algorithm for the minimum spanning tree (MST) problem by
Gallager et al. [GHS83]. This result was gradually improved and settled with Θ̃(

√
n+D)

upper and lower bounds [PR00, GKP98, KP98, Awe87, CT85, Gaf85].2

Approximation vs. Exact Algorithms. Besides MST, almost no other problems were
known to admit an o(m)-time distributed algorithm when we require the solution to be exact.
More than a decade ago, a lot of attention has turned to distributed approximation, where
we allow algorithms to return approximate solutions (e.g. [Elk04]). This relaxation has led
to a rapid progress in recent years. For example, SSSP, minimum cut, and maximum flow
can be (1 + o(1))-approximated in Õ(

√
n+D) time [HKN16, BKK+16, Nan14, NS14, GK13,

GKK+15]3, and all-pairs shortest paths can be (1 + o(1))-approximated in Õ(n) time [LP15,
Nan14]; moreover, these bounds are essentially tight up to polylogarithmic factors [DHK+12,
Elk06, PR00, KKP13]. Given that approximating many graph properties are essentially
solved, it is natural to turn back to exact algorithms. A fundamental question is:

Are approximation distributed algorithms more powerful than the exact ones?

So far, we only have an answer to the MST problem: due to the lower bound of Das Sarma et al.
[DHK+12] (building on [Elk06, PR00, KKP13]), any poly(n)-approximation algorithm
requires Ω̃(

√
n+D) rounds; thus, approximation does not help. For most other problems,

however, answering the above question still seems to be beyond current techniques: On the
one hand, we are not aware of any lower bound technique that can distinguish distributed
(1 + o(1))-approximation from exact algorithms for the above problems. On the other hand,
for most of these problems we do not even know any non-trivial (e.g. o(m)-time) exact
algorithm. (One exception that we are aware of is SSSP where the classic Bellman-Ford

2See also [PRS17, Elk17a] for recent results.
3For the maximum flow algorithm, there is an extra no(1) term in the time complexity.

1

algorithm [Bel58, For56] takes O(n) time. This bound was recently (in STOC’17) improved
by Elkin [Elk17b].)

All-Pairs Shortest Paths (APSP). Motivated by the above question, in this paper we
attempt to reduce the gap between the upper and lower bounds for solving APSP exactly.
The goal of the APSP problem is for every node to know the distances from every other
node.4 Besides being a fundamental problem on its own, this problem is a key component
in, e.g., routing tables constructions [LPS13, LP15].

Nanongkai [Nan14] and Lenzen and Patt-Shamir [LPS13, LP15] presented (1 + o(1))-
approximation Õ(n)-time algorithms, as well as an Ω̃(n) lower bound which holds even when
D = O(1), when the network is unweighted, and against randomized algorithms.5 Very
recently, Censor-Hillel et al. [CKP17] improved the lower bound to Ω(n). The same lower
bound obviously holds for the exact case. Neither an ω(n) lower bound nor an o(m)-time
algorithm was known, except for some special cases; a notable one is the unweighted case
where there are O(n)-time algorithms [LP13, HW12, PRT12].

Results. Our main result is an Õ(n5/4)-time exact APSP algorithm. Our algorithm is
randomized Las Vegas: the output is always correct, and the time guarantee holds both in
expectation and with high probability6. This result provides the first improvement over the
naive O(m)-time algorithm when the network is not so sparse, and significantly reducing
the gap between upper and lower bounds.

Our algorithm also works with the same guarantees when edge weights are asymmetric,
a.k.a. the directed case. In this case, an edge between nodes u and v can be viewed as
two directed edges, one from u to v and another from v to u. These two edges might have
different weights, and the weight can be set to infinity. (Note, however, that the infinite
weight is not really necessary as it can be replaced by a large poly(n) weight.) We emphasize
that the underlying network is undirected so neither edge direction or weight affect the
communication. While the previous (1+o(1))-approximation Õ(n)-time algorithms for APSP
also work for this case [Nan14, LP15], in general it is less understood than the undirected
case. For example, while there are tight (1+o(1))-approximation Õ(

√
n+D)-time algorithms

for SSSP [HKN16, BKK+16] in the undirected case, the best known algorithms for the
directed case are the (1 + o(1))-approximation Õ(

√
nD + D)-time one [Nan14] and the

Õ(
√
nD1/4 +D)-time algorithm for the special case called single-source reachability [GU15].
Our techniques also yield an improved algorithm for the k-source shortest paths (k-SSP)

problem. In this problem, some nodes are marked as source nodes initially (each node
knows whether it is marked or not). The goal is for every node to know its distance from
every source node. We let k denote the number of source nodes. We show a randomized
Las-Vegas Õ(n3/4k1/2 + n)-time algorithm. (Observe that our APSP algorithm is simply a

4This problem is sometimes referred to as name-independent routing schemes. See, e.g. [LPS13, LP15] for
discussions and results on another variant called name-dependent routing schemes which is not considered in
this paper.

5In fact, the lower bound holds even for poly(n)-approximation algorithms when the network is weighted
and for (polylog(n))-approximation algorithms when the network is unweighted. The same lower bound also
holds even for the easier problem of approximating the network diameter [FHW12]. In particular, for the
weighted case, the lower bound holds even for poly(n)-approximation algorithms. For the unweighted case,
the lower bound holds even for (3/2− ε)-approximating the diameter, and even for sparse networks [ACK16].

6We say that an event holds with high probability (w.h.p.) if it holds with probability at least 1− 1/nc,
where c is an arbitrarily large constant.

2

special case when k = n.) Prior to our work, approximation algorithms and the unweighted
case were often considered for this problem (e.g. [EN16, HW12, KKM+12, Elk05]). The
only non-trivial exact algorithm known earlier was the algorithm of Elkin [Elk17b]. The
performance of such algorithm compared to ours is as follows. (We ignore the polylogarithmic
terms below for simplicity. For a more precise time guarantee, see [Elk17b].)

1. When D = O(k
√
n) and k = O(

√
n), Elkin’s algorithm takes Õ(n5/6k2/3) time. In this

case our algorithm is faster when k = ω̃(n1/4).
2. When k = Ω(

√
n), Elkin’s algorithm takes Õ(n2/3k) time. In this case our algorithm

is faster when k = ω̃(n1/3).

To conclude, our k-SSP algorithm is faster whenever k = ω̃(n1/4).

Remarks.
1. The time guarantees of our algorithms depend on the number of bits needed to represent
edge weights. This is typically polylog(n) since edge weights are usually assumed to be
positive integers bounded from above by poly(n); see Section 2.1. This is the main drawback
of the scaling technique that our algorithm heavily relies on (see below). The guarantees of
other distributed algorithms we discussed, including Elkin’s algorithm [Elk17b], do not have
this dependency.
2. Throughout the paper we only show that the output is correct with high probability, but
in O(n) time we can check the correctness as follows. First, every node lets its neighbors
know about its distances from other nodes (this takes O(n) time). Then, every node checks
if it can improve its distance from any node using the distance knowledge from neighbors.
If the answer is “no” for every node, then the computed distance is correct. If some node
answers “yes”, it can broadcast its answer to all other nodes in O(n) time.
3. Independently from our result, Elkin recently observed in [Elk17b] that the same techniques
from an earlier version of the same paper (https://arxiv.org/abs/1703.01939v1) led to
an O(n5/3 log2/3 n)-time algorithm for APSP on undirected networks. Also very recently,
Censor-Hillel et al. [CKP17] showed that the standard Alice-Bob framework is incapable of
providing a super-linear lower bound for exact weighted APSP, and raised the complexity of
APSP as “an intriguing open question”. They also showed an Ω̃(n2) lower bound for exactly
solving some NP-hard problems, such as minimum vertex cover, maximum independent
set and graph coloring. This implies a huge separation between approximation and exact
algorithms, since some of these problems can be solved approximately in O(polylog(n)) time.

1.1 Overview of Algorithms and Techniques.

Our algorithms are built on the scaling technique. This is a classic technique heavily studied
in the sequential setting (e.g. [Gol95, GT89, Gab85]). As far as we know this is the first
time it is used for shortest paths computation in the distributed setting. This technique
(see Section 3 for details) allows us to assume that the distance between any two nodes is
O(n) (i.e., the so-called weighted diameter is O(n)). The main challenge here is that edge
weight can be zero (but cannot be negative); without the zero weight, there are already
many Õ(n)-time exact algorithms available (e.g. [LP13, Nan14]). Our algorithms consist of
two main subroutines developed for this case, which might be of independent interest. We
discuss these subroutines below. To avoid the discussion being too complicated, readers may

3

https://arxiv.org/abs/1703.01939v1

assume throughout the discussion that the input network has symmetric edge weight. Note
however that in reality we have to deal with the asymmetric weights even if the original
weight is symmetric. Additionally, we assume for simplicity that every pair of nodes has a
unique shortest path.

1. Short-range extension. The first subroutine is called short-range-extension. For simplicity,
let us first consider a special case called short-range problem. In this problem we are given a
parameter h. The goal is for every node v to know the distance from every node u such that
the shortest uv-path has at most h edges. Previously, this task can be achieved in Õ(nh)
time by running the Bellman-Ford algorithm for h rounds from every node. By exploiting
special properties obtained from the scaling technique, we develop an Õ(n

√
h)-time algorithm

for this problem. The main idea is as follows. First we increase the zero weight to a small
positive weight ∆ = 1/

√
h. By a breadth-first-search (BFS) algorithm, we can solve APSP in

the new network (with positive weights) in Õ(n/∆) time. This solution gives an upper bound
to the APSP problem on the original network (with zero weights). Since we are interested in
only shortest paths with at most h edges, it can be argued that the upper bound obtained
has an additive error of h∆; i.e. it is only h∆ higher than the actual distance. We fix this
additive error by running the Bellman-Ford algorithm for h∆ rounds from every node.

The short-range algorithm above can be generalized to the following short-range-extension
problem. We are given an integer h, and initially some nodes in the network already know
distances to some other nodes. For any nodes u and v, let (u = x0, x1, x2, . . . , xk = v) be
the shortest uv-path. We say that (u, v) is h-nearly realized if at least one node among
xk, xk−1, . . . , xk−h knows its distance from u. (Note that the fact that (u, v) is h-nearly
realized does not necessarily imply that (v, u) is also h-nearly realized.) At the end of our
algorithm we want to make node v know the distance from u, for every nodes u and v
such that (u, v) is h-nearly realized initially. Observe that the short-range problem is the
special case where initially node u knows distances from no other nodes. By modifying the
short-range algorithm, we can show that this problem can be solved in Õ(n

√
h) time as well.

2. Reversed r-sink shortest paths. The second subroutine is called reversed r-sink shortest
paths. Initially, we assume that every node v knows the distance from v to r sink nodes.
The goal is for every sink to know its distance from every node. A naive solution is for
every node v to broadcast to the whole network the distance from v to every sink. This
takes O(nr) time since there are O(nr) distance information to broadcast. In this paper, we
develop an Õ(n

√
r)-time algorithm for this task.

The main idea is for every node v to route the distance from v to every sink t through
the shortest vt-path. If there is a node x that is contained in more than n

√
r shortest paths

(thus there will be too much information going through x), we will call x a bottleneck node.
We can bound the number of bottleneck nodes to O(

√
r) by a standard argument – we

charge each bottleneck node to n
√
r distinct shortest paths among nr of them. Now, for

every shortest vt-path that does not contain a bottleneck node, we route the distance from
node v and sink t as originally planned. This takes Õ(n

√
r) time since there is Õ(n

√
r)

bits of information going through each node. For shortest vt-paths that contain bottleneck
nodes, we do the following. For every bottleneck node c, we make every node know their
distances from and to c by running the Bellman-Ford algorithm starting at c. Then every
node broadcasts to the whole network its distance to and from every bottleneck node. Since
there are

√
r bottleneck nodes, this takes O(n

√
r) time in total. It is not hard to show that

4

every sink t knows the distance from every node v after this step.

Putting things together. Finally, we sketch how all tools are put together. First we run the
short-range algorithm with parameter h =

√
n. Then we sample Õ(

√
n) nodes uniformly

at random called centers so that every h-hop path contains a center with high probability.
Each center c broadcasts to the whole network its distances to some centers that it learns
from the short-range algorithms. At this point, every node knows its distance to every
center. We invoke the reversed r-sink shortest paths algorithm with centers as sink nodes
(so r = Õ(

√
n)), so that every center knows its distance from every node. At this point,

it is not hard to prove that every pair of nodes is h-nearly realized. So, we finish by
invoking the short-range-extension algorithm with parameter h =

√
n. The total time is

Õ(n
√
r + n

√
h) = Õ(n5/4).

To extend the above idea to the k-source shortest paths problem, we need slight modifi-
cations here and there; in particular, (i) we modify the short-range extension and reversed
r-sink shortest paths algorithms to deal with k source nodes, and (ii) we treat the sampled
centers as source nodes since we need to know the distances from and to them.

2 Preliminaries

2.1 The Model

In a nutshell, we consider the standard CONGEST model, except that instead of an
undirected graph the underlying graph is modeled by a bidirected graph, i.e. a directed graph
in which the reverse of every edge is also an edge. This is because we have to deal with
asymmetric edge weight (even when the initial network has symmetric weights). Additionally,
for simplicity we assume that nodes IDs are in the range of {0, 1, . . . , n−1}. (This assumption
can be achieved in O(n) time.)

More precisely, we model a network by a bidirected unweighted n-node m-edge graph G,
where nodes model the processors and edges model the bounded-bandwidth links between
the processors. Let V (G) and E(G) denote the set of nodes and (directed) edges of G,
respectively. The processors (henceforth, nodes) are assumed to have unique IDs in the
range of {0, 1, . . . , n− 1} and infinite computational power. (Note again that typically nodes’
IDs are assumed to be in the range of {1, . . . ,poly(n)}. But in O(n) time the range can be
reduced to {0, 1, . . . , n− 1}.) Each node has limited topological knowledge; in particular,
it only knows the IDs of its neighbors and knows no other topological information (e.g.,
whether its neighbors are linked by an edge or not). Nodes may also accept some additional
inputs as specified by the problem at hand.

For the case of graph problems, the additional input is edge weights. Let w : E(G)→
{1, 2, . . . ,poly(n)} be the edge weight assignment.7 We refer to network G with weight
assignment w as the weighted network, denoted by G(w). The weight w(u, v) of each edge
(u, v) is known only to u and v. As commonly done in the literature, we will assume that
the maximum weight is poly(n); so, each edge weight can be sent through an edge (link)
in one round. We refer to the weight function as symmetric, or sometimes undirected, if
for every (directed) edge (u, v), w(u, v) = w(v, u). Otherwise, it is called asymmetric, or

7Note that it might be natural to include ∞ as a possible edge weight. But this is not necessary since it
can be replaced by a large weight of value poly(n).

5

sometimes directed. We note again that the symmetric case is the typical case considered in
the literature, but we have to deal with the asymmetric case in our algorithm.

We measure the performance of algorithms by its running time, defined as the worst-case
number of rounds of distributed communication. At the beginning of each round, all nodes
wake up simultaneously. Each node u then sends an arbitrary message of O(logn) bits
through each edge (u, v), and the message will arrive at node v at the end of the round. We
assume that nodes always know the number of the current round. In this paper, the running
time is analyzed in terms of the number of nodes (n). Since n can be computed in O(D)
time, where D is the diameter of G, we will assume that every node knows n.

2.2 Problems and Notations

For every nodes s and t in a weighted network G(w), let distw(s, t) be the distance from s to t
in G(w). Note that if w is asymmetric then it might be the case that distw(s, t) 6= distw(t, s).
Let P ∗w(s, t) be the shortest path from s to t in G(w); if there are more than one such path,
we let P ∗w(s, t) be the one with the least number of edges (if there are still more than one,
break tie arbitrarily). We refer to P ∗w(s, t) as the shortest st-path.

The goal of the all-pairs shortest paths (APSP) problem is for every node t to know
distw(s, t) for every node s. In the case of k-source shortest paths (k-SSP) problem, there
is a set S of k source nodes (every node knows whether it is in S or not). The goal is for
every node t to know distw(s, t) for every source s ∈ S. When k = 1, the problem is called
single-source shortest paths (SSSP).

We say that an event holds with high probability (w.h.p.) if it holds with probability at
least 1− 1/nc, where c is an arbitrarily large constant.

2.3 Basic Distributed Algorithms

The Bellman-Ford Algorithm. We note the following algorithm for SSSP on network
G(w), known as Bellman-Ford [Bel58, For56]. Let s be the source node. For any node t, let
dtw(s, t) denote the knowledge of t about distw(s, t). Initially, dtw(s, t) =∞ for every node t,
except that dsw(s, s) = 0. The algorithm proceeds as follows.

(i) In round 0, every node t sends dtw(s, t) to all its neighbors.
(ii) When a node t receives the message about dxw(s, x) from its neighbors x, it uses the

new information to decrease the value of dtw(s, t).
(iii) If dtw(s, t) decreases, then node t sends the new value of dtw(s, t) to all its neighbors.
(iv) Repeat (ii) and (iii) for n rounds.

Clearly, the above algorithm takes O(n) rounds. Moreover, it can be proved that when
the algorithm terminates dtw(s, t) = distw(s, t); i.e. t knows distw(s, t).

Scheduling of Distributed Algorithms. Consider k distributed algorithmsA1, A2 . . . , Ak.
Let dilation be such that each algorithm Ai finishes in dilation rounds if it runs individually.
Let congestion be such that there are at most congestion messages, each of size O(logn), sent
through each edge (counted over all rounds), when we run all algorithms together. We note
the following result of Ghaffari [Gha15]:

6

Theorem 2.1 ([Gha15]). There is a distributed algorithm that can execute A1, A2 . . . , Ak
altogether in O(dilation + congestion · logn) time.

Broadcasting. We need to follow fact following from basic upcasting and downcasting
techniques [Pel00]. (The statement is from [LP13].)

Lemma 2.2. Suppose each v ∈ V holds kv ≥ 0 messages of O(logn) bits each, for a total of
K =

∑
v∈V kv messages. Then all nodes in the network can receive these K messages within

O(K +D) rounds.

2.4 Sampling the Centers

In the beginning of each iteration, a special node (with ID 0) chooses a subset of centers
uniformly random and broadcasts this information (their IDs) to all other nodes. Here we
use a lemma of Ullman and Yannakakis [UY91, Lemma 2.2].

Lemma 2.3 ([UY91]). If we choose z distinct nodes uniformly at random from an n-node
graph, then the probability that a given (acyclic) path has a sequence of more than (cn logn)/z
nodes, none of which is distinguished, is, for sufficiently large n, bounded above by 2−αc for
some positive α.

The special node chooses
√
n polylog(n) centers at random and broadcasts this informa-

tion (the broadcasting can be done in O(
√
n polylog(n) + D) = O(n) rounds). Then the

following lemma is a direct consequence of the previous one.

Lemma 2.4. Let w be any non-negative weight function. For any nodes s and t, let P ∗w(s, t)
be the shortest st-path in G(w) as defined in Section 2.2. Then, with high probability, every
P ∗w(s, t) can be decomposed into a set of subpaths P0 = (s = u0, . . . , u1), P1 = (u1, . . . , u2),
. . ., Pk−1 = (uk−1, . . . , uk = t), where

• the ui are centers for 1 ≤ i ≤ k − 1.
• each subpath has at most

√
n− 1 edges.

3 The Scaling Framework
Let w̄ denote the given (possibly asymmetric) weight function of the input graph G. We
want every node t to know the distances from other nodes s to itself with respect to w̄. We
emphasize that every edge (u, v) is directed, i.e., (u, v) is an ordered pair. We need the
following definitions:

Definition 3.1. Let β be the integer such that 2β−1 ≤ max(u,v)∈E(G) w̄(u, v) < 2β. For any
0 ≤ i ≤ β and edge (u, v), let wi(u, v) =

⌊
w̄(u, v)/2β−i

⌋
. That is, wi(u, v) is the number

represented by the first i most significant bits of w̄(u, v) (when we treat the β-th bit as the
most significant one). Let bi(u, v) ∈ {0, 1} be the i-th bit in the binary representation of
w̄(u, v), i.e., w̄(u, v) =

∑β−1
i=0 bi(u, v)2i.

Note that β = O(logn) because the weights of edges in G are polynomial. For any edge
(u, v), w0(u, v) = 0, wβ(u, v) = w̄(u, v), and wi+1(u, v) = 2wi(u, v) + bβ−i(u, v) for 0 < i < β.
For each i, we can treat wi and bi as a weight function.

7

Definition 3.2. For any (asymmetric) weight function ŵ, we denote by duŵ(s, t) the knowl-
edge of the node u about distŵ(s, t), i.e., the distance from s to t with respective the weight
ŵ.

The algorithm will runs in β iterations. At the i-th iteration, we assume that for every
node t knows the distances from all other nodes s to itself with respect to the weight wi−1,
i.e. dtwi−1(s, t) = distwi−1(s, t) for all s and t. The goal is to use this information to so that
at the end of the iteration the knowledge of the distances with respect to wi, i.e. we have
dtwi

(s, t) = distwi(s, t) for all s and t. Note that the assumption about the knowledge holds
in the very beginning when i = 1, because dtw0(s, t) = distw0(s, t) = 0 for all s and t by
Definition 3.1.

For convenience, throughout the paper, we fix the iteration i. We denote the weight
functions w := wi, w′ := wi+1 and b := bβ−i. That is, we have w′(u, v) = 2w(u, v) + b(u, v)
for every edge (u, v). In the beginning, we have dtw(s, t) = distw(s, t) and we want to have
dtw′(s, t) = distw′(s, t) at the end.

3.1 Upper Bounding the Distances

As distw′(s, t) can be a large polynomial for some s, t, we can avoid this by working with a
set of reduced weights rs defined as follows.

Definition 3.3. For any node s and edge e = (u, v), let

rs(u, v) = 2distw(s, u) + w′(u, v)− 2distw(s, v). (1)

We note that rw is an asymmetric weight function even if w and w′ are symmetric. The
next lemma states some useful properties of rs:

Lemma 3.4. Let rs be defined as in Definition 3.3. Then the following holds.

(i) For any edge e = (u, v), rs(u, v) ≥ 0.

(ii) For any nodes s and t, distrs(s, t) ≤ n− 1.

(iii) For any nodes s and t, distw′(s, t) = 2distw(s, t) + distrs(s, t). In fact, any path is a
shortest st-path in G(w′) if and only if it is a shortest st-path in G(rs).

Proof. For (i), observe that rs(u, v) = 2distw(s, u) + w′(u, v)− 2distw(s, v) ≥ 2distw(s, u) +
2w(u, v)− 2distw(s, v) ≥ 0, where the last inequality follows from the triangle inequality.

For (ii), first notice that

rs(P) = w′(P)− 2distw(s, t), for any st-path P . (2)

The above inequality follows easily from definition. Let P = (s = v0, v1, . . . , t = vk), for

8

some k ≤ n− 1. Then,

rs(P) =
k−1∑
j=0

rs(vj , vj+1)

=
k−1∑
j=0

2distw(s, vj) + w′(vj , vj+1)− 2distw(s, vj+1)

= (
k−1∑
j=0

w′(vj , vj+1))− 2distw(s, vk)

= w′(P)− 2distw(s, t) .

Now assume that P is a shortest st-path in G(w). Then

distrs(s, t) ≤ rs(P) ≤ w′(P)− 2distw(s, t)

= (
k−1∑
j=0

2w(vj , vj+1) + b(vj , vj+1))− 2distw(s, t)

= (
k−1∑
j=0

b(vj , vj+1)) + 2w(P)− 2distw(s, t)

=
k−1∑
j=0

b(vj , vj+1) ≤ n− 1.

Here the second inequality follows from (2), the fifth equality from the assumption that
P is a shortest path in G(w) and the last inequality from the fact that k ≤ n − 1 and
b(vj , vj+1) ∈ {0, 1}. This proves (ii).

Finally for (iii), let P = (s = v0, v1, . . . , t = vk) be a shortest st-path in G(w′). Then

distrs(s, t) ≤ rs(P) = w′(P)− 2distw(s, t) = distw′(s, t)− 2distw(s, t),

where the last equality holds as P is a shortest st-path in G(w′). On the other hand, let
P ′ = (s = v0, v1, . . . , t = vk′) be a shortest path in G(rs). Then

distw′(s, t) ≤ w′(P ′) = rs(P ′) + 2distw(s, t) = distrs(s, t) + 2distw(s, t),

where the last equality holds because P ′ is a shortest path in G(rs). The above two
inequalities establish the first part of (iii), while the second part follows from the first
part.

Lemma 3.4(ii) implies that shortest path tree with a source s, based on rs, has depth at
most n. However, we cannot construct such a tree using the standard BFS starting from s
in just O(n) rounds, the difficulty being that it can happen that rs(u, v) = 0 for some edge
(u, v). We also note that Lemma 3.4(ii) does not imply that every edge in the shortest paths
has 0/1-weight.

9

4 Main Algorithm
In this section, we show the main algorithm described in Algorithm 1 which is the algorithm
for one iteration in the scaling framework from Section 3. The setting is that there are
three weight functions w, w′ and b such that, for every edge (u, v) of the input graph G,
b(u, v) ∈ {0, 1} and

w′(u, v) = 2w(u, v) + b(u, v). (3)

In the beginning, we have dtw(s, t) = distw(s, t) and we want that every node t knows
distw′(s, t) for every node s, i.e., dtw′(s, t) = distw′(s, t) at the end of the algorithm.

For every pair of nodes s and t, recall that P ∗w′(s, t) is the shortest st-path in G(w′); if
there are more than one shortest st-paths in G(w′), pick the one with the least number of
edges (if there are still more than one, break tie arbitrarily). Let C be the set of centers
decided in Step 1 of Algorithm 1. Next, we define an important definition for our algorithm.
Let P ∗w′(s, t)|C denote the subpath of P ∗w′(s, t) from the last center in C ∩ P to t. If there is
no center in P , let P ∗w′(s, t)|C = P ∗w′(s, t). Let |P ∗w′(s, t)| be the number of edges in P ∗w′(s, t);
similarly, |P ∗w′(s, t)|C| is the number of edges in P ∗w′(s, t)|C.

Recall that by Lemma 3.4(iii), distw′(s, t) differs from distrs(s, t) by 2distw(s, t), which
is known to t. So if every node t knows that the distances w.r.t. rs from each node s, i.e.,
dtrs

(s, t) = distrs(s, t), then each node t can deduce the the distances w.r.t. to w′ as well, i.e.,
dtw′(s, t) = distw′(s, t) for all s.

We first explain the high-level ideas behind our algorithm. In Algorithm 1, Step 1 is for
sampling the centers. Step 2 is needed for the execution of Steps 3 and 6. Note that the
implementation details of Steps 3, 5 and 6 will be elaborated in the subsequent sections.

Correctness: Let h =
√
n. For any nodes s and t, we will argue that, after executing Steps

3 to 6, every node t knows the distance w.r.t. w′ from s to t, i.e., dtw′(s, t) = distw′(s, t). Let
cs be the first node in the path P ∗w′(s, t)|C, i.e. P ∗w′(cs, t) = P ∗w′(s, t)|C. From the definition,
if there is no centers in P ∗w′(s, t) then cs = s and otherwise cs is the last center appeared in
the path P ∗w′(s, t) from s to t.

We claim that after Step 5, the node cs will know the distance w.r.t. w′ from s to cs,
i.e., dcs

w′(s, cs) = distw′(s, cs). If cs = s, this is trivial. Suppose cs 6= s. Consider the shortest
path P ∗w′(s, cs) from s to cs. By Lemma 2.4, we can partition P ∗w′(s, cs) into subpaths,
say P0 = (u0 := s, . . . , u1), P1 = (u1, . . . , u2), . . ., Pk−1 = (uk−1, . . . , uk := cs) so that
each subpath Pj has at most h − 1 edges for 0 ≤ j ≤ k − 1, and the uj ’s are centers
for 1 ≤ j ≤ k − 1. As subpath Pj has at most h − 1 edges, the short-range algorithm
guarantees in Lemma 4.5 that uj knows d

uj

w′(uj , uj+1) = distw′(uj , uj+1) for 0 ≤ j ≤ k − 1
after Step 3 in Algorithm 1. In Step 4, duj

w′(uj , uj+1), for 1 ≤ j ≤ k − 1, will broadcast and
be known to s. Therefore, after Step 4, the node s would be able to calculate distw′(s, cs)
and so dsw′(s, cs) = distw′(s, cs). Then, by the guarantee from Lemma 4.12 of the reversed
r-sink shortest paths algorithm in Step 5, the knowledge is “exchanged” and so cs knows
distw′(s, cs), i.e. dcs

w′(s, cs) = distw′(s, cs).
By Lemma 2.4, we also have that P ∗w′(cs, t) = P ∗w′(s, t)|C has at most h− 1 edges. As

dcs
w′(s, cs) = distw′(s, cs), by the guarantee of the short-range-extension algorithm by

Lemma 4.8, we have after Step 6 the node t knows the distance distw′(s, t), i.e. dtw′(s, t) =
distw′(s, t) and we are done.

10

Algorithm 1: Main APSP Algorithm (for one iteration in the scaling framework)
Input: A graph G and the weight functions w, w′, and b satisfying Equation (3).

Every node t knows distw(s, t) for every node s, i.e., dtw(s, t) = distw(s, t). Let
h =
√
n.

Output: Every node t knows distw′(s, t) for every node s, i.e. dtw′(s, t) = distw′(s, t).
1 Node 0 randomly samples

√
npolylog(n) centers (collectively denoted as C) and

broadcast their IDs to all other nodes. // This steps takes O(n) rounds.
2 Node t sends distw(s, t), for all nodes s, to its neighbors x in G. The neighbor x

internally uses this knowledge to compute rs(x, t), for all nodes s, as defined in
Definition 3.3. // This steps takes O(n) rounds.

3 Apply the short-range algorithm (in Section 4.1) so that every node s knows
dsw′(s, t) ≥ distw′(s, t) for all nodes t, and if |P ∗w′(s, t)| ≤ h, dsw′(s, t) = distw′(s, t).
// This step takes Õ(n1.25) rounds.

4 All centers c ∈ C broadcast their knowledge of dcw′(c, c′), for all centers c′ ∈ C, to all
other nodes in the network. Every node s internally uses this knowledge to
calculate dsw′(s, c) = distw′(s, c) for all centers c ∈ C. // This step takes Õ(n)
rounds

5 Apply the reversed r-sink shortest paths algorithm (in Section 4.3) with nodes in
C as sinks so that every center c ∈ C knows dcw′(s, c) = distw′(s, c) for all nodes s.
// This step takes Õ(n1.25) rounds.

6 Apply the short-range-extension algorithm (in Section 4.2) so that every node t
knows dtw′(s, t) ≥ distw′(s, t) for all nodes s, and if |P ∗w′(s, t)|C| ≤ h,
dtw′(s, t) = distw′(s, t). // This step takes Õ(n1.25) rounds.

11

Running Time: There are O(|C|) messages to be broadcasted in Step 1, and O(|C|2)
messages in Step 4. By Lemma 2.2, this takes O(|C|2 +D) = Õ(n) in total. Step 2 easily
takes O(n) rounds (by Theorem 2.1 we have congestion = n and dilation = 1). In the
following three subsections, we will show that Steps 3, 5 and 6 take Õ(n1.25) rounds each.
In particular, Lemmas 4.5 and 4.8 state that the short-range algorithm in Step 3 and the
short-range-extension algorithm in Step 6 both take Õ(n

√
h). Lemma 4.12 states that the

reversed r-sink shortest paths algorithm in Step 5 takes Õ(n
√
|C|). In total, the running

time in each iteration is Õ(n1.25) rounds.

Theorem 4.1. At the end of Algorithm 1, with high probability, for every node t, dtw′(s, t) =
distw′(s, t) for all nodes s. Furthermore, the algorithm takes Õ(n1.25) rounds.

4.1 Short-Range Algorithm

In this section we show how to implement Step 3 of Algorithm 1 so that every node s knows
dsw′(s, t) ≥ distw′(s, t) for all nodes t, and if |P ∗w′(s, t)| ≤ h, dsw′(s, t) = distw′(s, t).

The main algorithm in this section is precisely described in Algorithm 2. However, it
yields a slightly different output: after finishing, every node t knows dtw′(s, t) ≥ distw′(s, t) for
all nodes s, and if |P ∗w′(s, t)| ≤ h, dtw′(s, t) = distw′(s, t). As they are completely symmetric,
we can use Algorithm 2 as an algorithm for Step 3 of Algorithm 1 just by switching the
direction of every edge in the graph. The reason for presenting Algorithm 2 that does not
give exactly what we want for Step 3 of Algorithm 1 is that, later in Section 4.2, we will
extend Algorithm 2 and obtain the short-range-extension algorithm. This formulation of
Algorithm 2 simplifies the modification a lot. From now on, we will call Algorithm 2 the
short-range algorithm as well.

Recall that we mentioned earlier that some edges (u, v) may have rs(u, v) = 0 and this
poses difficulty. Our main idea is to deal with a strictly positive weight function r′s, defined
as rs rounded up to the next multiple of ∆ =

√
1/h. More precisely,

Definition 4.2. Let ∆ =
√

1/h. For every node s and every edge (u, v), let

r′s(u, v) =
{

∆ if rs(u, v) = 0, and
∆drs(u, v)/∆e otherwise.

Running Time: In Algorithm 2, Steps 1, 2 and 5 takes no time. For a single source s,
the BFS in Step 3 has dilation = O((n+ h∆)/∆) = O(n/∆ + h) rounds. As in BFS each
node sends messages only once and we run the BFS in parallel from all nodes s, we have
congestion = O(n). By Theorem 2.1, we have that Step 3 takes Õ(dilation + congestion) =
Õ(n/∆ + h + n) = Õ(n/∆). Step 4 is essentially the Bellman-Ford algorithm except the
following modifications:

1. we start with dtrs
(s, t) = bdtr′s(s, t)c instead of dtrs

(s, t) =∞, and
2. a node t sends its updated value of dtrs

(s, t) only when dtrs
(s, t) ≥ dtr′s(s, t)−h∆ (instead

of sending it every time dtrs
(s, t) is decreased); see Step 4.(iii).

We run the modified Bellman-Ford algorithm for every node s in parallel. This algorithm
for a single source node s has dilation = O(h) and congestion = O(h∆) = O(

√
h) since every

node sends a message to its neighbors at most O(h∆) times (due to the second modification).

12

Algorithm 2: Short-Range Algorithm
Input: Every node t knows distw(s, t) and rs(t, x) for all nodes s and all t’s neighbors

x in G.
Output: For every pair of nodes s and t, node t knows dtw′(s, t) ≥ distw′(s, t) and if

|P ∗w′(s, t)| ≤ h, dtw′(s, t) = distw′(s, t).
1 For every edge (u, v) and all nodes s, both u and v internally compute r′s(u, v)

according to Definition 4.2.
2 For every node t, initially set dtr′s(s, t) =∞ for all nodes s 6= t and dtr′t(t, t) = 0.
3 For every node s, compute SSSP tree from s up to depth n+ h∆ in terms of r′s by

implementing the following BFS: each node t(6= s) updates dtr′s(s, t) according to
the message dxr′s(s, x) it receives from its neighbor x. If dtr′s(s, t) ≤ n+ h∆, then in
round dtr′s(s, t)/∆, the node t sends dtr′s(s, t) to all its neighbors in G, if t did not
send any message in this step yet. // Note that we count the number of rounds
from 0.

4 Every node t sets dtrs
(s, t) = bdtr′s(s, t)c for all nodes s. (Note that dtrt

(t, t) = 0.) Run
the following algorithm (which is a modification of the Bellman-Ford algorithm) for
every node s, in parallel:
(i) In round 0, every node t sends dtrs

(s, t) to all its neighbors.
(ii) When a node t receives the message about dxrs

(s, x) from its neighbors x, it uses the
new information to decrease the value of dtrs

(s, t) (as an upper estimate of distrs(s, t)).
Note that dtrs

(s, t) is always an integer.
(iii) If dtrs

(s, t) decreases and dtrs
(s, t) ≥ dtr′s(s, t)− h∆, then the node t sends the new

value of dtrs
(s, t) to all its neighbors.

(iv) Repeat (ii) and (iii) for h rounds.

5 Every node t calculates dtw′(s, t) = 2distw(s, t) + dtrs
(s, t) for all nodes s.

13

By Theorem 2.1, parallelizing n such algorithms takes Õ(h + n · h∆) = Õ(nh∆) rounds.
Now it can be concluded that Algorithm 2 takes Õ(n/∆ + nh∆) = Õ(n

√
h) rounds.

Correctness: Next, we show the correctness of Algorithm 2 using the following lemmas.

Lemma 4.3. After Step 3 of Algorithm 2, every node t knows dtr′s(s, t) ≥ distr′s(s, t) for all
nodes s and in particular dtr′s(s, t) = distr′s(s, t) if distr′s(s, t) ≤ n+ h∆.

Proof. The first part follows from the property of the BFS. For the second part, first notice
that ∆ divides distr′s(s, t) for all nodes s and t. By a straightforward induction, it can be

shown that by round
distr′s

(s,t)
∆ , dtr′s(s, t) = distr′s(s, t), if 0 ≤ distr′s(s, t) ≤ n+ h∆.

Lemma 4.4. After Step 4 of Algorithm 2, every node t knows dtrs
(s, t) ≥ distrs(s, t) for all

nodes s, furthermore, if |P ∗w′(s, t)| ≤ h, then dtrs
(s, t) = distrs(s, t); in particular, dtrs

(s, t) is
decreased to distrs(s, t) in round |P ∗w′(s, t)| or before.

Observe that the correctness of output of the algorithm follows from this lemma, since
in Step 5, every note t can correctly compute dtw′(s, t) = distw′(s, t) if |P ∗w′(s, t)| ≤ h and
otherwise dtw′(s, t) ≥ distw′(s, t).

The intuition behind the proof is to show that distr′s(s, t) (stored as dtr′s(s, t)) computed
in Step 3 is not very far from distrs(s, t); i.e distr′s(s, t)− distrs(s, t) ≤ h∆. Intuitively, this
is because |P ∗w′(s, t)| ≤ h, and for each edge (u, v), 0 ≤ r′s(u, v)− rs(u, v) ≤ ∆. This allows
us to modify the Bellman-Ford algorithm in Step 4 to allow a node to speak only when
dtr′s(s)− dtrs

(s, t) ≤ h∆.

Proof of Lemma 4.4. The fact that after Step 4, dtrs
(s, t) ≥ distrs(s, t) follows easily from

induction on the number of rounds. We prove the rest by induction on |P ∗w′(s, t)|. For the
base case where |P ∗w′(s, t)| = 0, i.e. s = t, the claim trivially holds as we set dtrt

(t, t) = 0 in
the beginning of Step 4. Now consider any pair of s and t, and assume that the lemma holds
for any t′ such that |P ∗w′(s, t′)| < |P ∗w′(s, t)| ≤ h. Let x be the neighbor of t in P ∗w′(s, t), i.e.
distw′(s, t) = distw′(s, x) + w′(x, t). Note that

distrs(s, t) = distrs(s, x) + rs(x, t)
= dxrs

(s, x) + rs(x, t), (4)

where the first equality holds because P ∗w′(s, t) = P ∗rs
(s, t) is a shortest path in G(rs) by

Lemma 3.4(iii). The second inequality then holds by the induction hypothesis. We will be
done if the following claim holds.

Claim: x sends the message “dxrs
(s, x) = distrs(s, x)” to t in round |P ∗w′(s, x)| + 1 or

before that (equivalently, dxrs
(s, x) is decreased to distrs(s, x) by round |P ∗w′(s, x)| ≤ h− 1 or

before that).
To see why we will be done, observe that the claim implies that t can update dtrs

(s, t)
to distrs(s, t) using Equation (4) in round |P ∗w′(s, t)| or before that. Note that t knows
rs(x, t) from the initial knowledge. To prove the claim, we just need to show that dxr′s(s, x)−

14

distrs(s, x) ≤ (h− 1)∆. We have

distr′s(s, x) ≤ distrs(s, x) + |P ∗rs
(s, x)|∆ by the definition of r′s

≤ distrs(s, x) + |P ∗w′(s, x)|∆ by Lemma 3.4(iii)
≤ distrs(s, x) + (h− 1)∆
≤ n+ (h− 1)∆ by Lemma 3.4(ii)

By Lemma 4.3, we have dxr′s(s, x) = distr′s(s, x). By the second last inequality, we conclude
that dxr′s(s, x)− distrs(s, x) ≤ (h− 1)∆. This proves the claim and the entire lemma.

By flipping the direction of edges in the graph, we can conclude the result that is used in
the main algorithm:

Lemma 4.5. After running Algorithm 2 on a graph where the direction of each edge is flipped,
every node s knows dsrs

(s, t) ≥ distrs(s, t) for all nodes t, furthermore, if |P ∗w′(s, t)| ≤ h, then
dsrs

(s, t) = distrs(s, t). Moreover the algorithm takes Õ(n
√
h) rounds.

4.2 Short-Range-Extension Algorithm

In this section we show how to implement Step 6 of Algorithm 1 with the algorithm called
short-range-extension algorithm. We are in the setting such that in the beginning, every
center c already knows dcw′(s, c) = distw′(s, c) for all nodes s. By Lemma 2.4, this implies
with high probability that for every pair s and t, (s, t) is h-nearly realized. Indeed, let
P ∗w′(s, t) = (s = x0, x1, x2, . . . , xk = t) be the shortest path from s to t with respect to
w′. We have that there is a center cs ∈ {xk, xk−1, . . . , xk−h} who knows its distance from
s to itself with high probability by Lemma 2.4. The goal is that, at the end, every node
t knows the distance distw′(s, t) for all nodes s. Moreover, it suffices to show that, at the
end, every node t knows dtw′(s, t) ≥ distw′(s, t) for all nodes s, and if |P ∗w′(s, t)|C| ≤ h,
dtw′(s, t) = distw′(s, t).

The short-range-extension algorithm is a minor modification of the short-range algorithm
in Algorithm 2, with the same running time and almost identical implementation. But, in
this setting, the centers have additional initial knowledge: every center t already knows
distw′(s, t) and hence distrs(s, t) for all nodes s, i.e., dtrs

(s, t) = distrs(s, t). The following
changes exploit this knowledge:

• For any node s, let Gs be the graph obtained from G by adding imaginary edges into
G: for every center t, there is an additional edge (s, t) with weight distrs(s, t). We call
Gs the s-augmented graph. We define the weight function r′′s for Gs in the same way
as how we define the weight function r′s for G. That is, for each original edge (u, v) in
Gs, we set r′′s (u, v) = r′s(u, v), and, for each imaginary edge (s, t) where t is a center,
we set

r′′s (s, t) =
{

∆ if distrs(s, t) = 0, and
∆ddistrs(s, t)/∆e otherwise.

Let distr′′s (u, v) denote the distance from u to v with respect to r′′s in the s-augmented
graph Gs.

15

• In Step 2, every pair of nodes s and t, initially set dtr′′s (s, t) = ∞ and dtr′′s (t, t) = 0,
unless t itself is a center. In this case, let

dtr′′s (s, t) =
{

∆ if distrs(s, t) = 0, and
∆ddistrs(s, t)/∆e otherwise.

This is possible because each center t already knows distrs(s, t) for all nodes s.

• In Step 3, for every node s, we compute the same SSSP tree w.r.t. r′′s instead of r′s.
Observe that, for every node s, running the BFS with respect to r′′s is the same as
simulating Step 3 of the original short-range algorithm in the s-augmented graph Gs.

• In the beginning of Step 4, every node t sets bdtrs
(s, t) = dtr′′s (s, t)c for all nodes s,

unless t itself is a center. In this case, dtrs
(s, t) = distrs(s, t). Moreover, we run this

step for h+ 1 rounds instead of h rounds.
The running time clearly does not asymptotically change, and so this algorithm takes Õ(n

√
h)

rounds. The next two lemmas establish the correctness of the algorithm and they are close
parallels of Lemmas 4.3 and 4.4.
Lemma 4.6. After Step 3 of the modified Algorithm 2, every node t knows dtr′′s (s, t) ≥
distr′′s (s, t) for all nodes s, and in particular, dtr′′s (s, t) = distr′′s (s, t) if distr′′s (s, t) ≤ n+ h∆.

Proof. The proof is identical to Lemma 4.3 except that r′s is replaced by r′′s .

Lemma 4.7. After Step 4 of the modified Algorithm 2, every node t knows dtrs
(s, t) ≥

distrs(s, t) for all nodes s, furthermore, if |P ∗w′(s, t)|C| ≤ h, then dtrs
(s, t) = distrs(s, t); in

particular dtrs
(s, t) decreases to distrs(s, t) in round |P ∗w′(s, t)|C|+ 1.

Proof. The proof is almost identical to the proof of Lemma 4.4, with the difference that
we consider the case that |P ∗w′(s, t)|C| ≤ h and not |P ∗w′(s, t)| ≤ h. Similarly, we prove
by induction on the length of |P ∗w′(s, t)|C|. For the base case where |P ∗w′(s, t)|C| = 0, we
have that t itself is a center. Hence, the node t already knows the distance distrs(s, t),
i.e., dtrs

(s, t) = distrs(s, t). For the inductive step, we only need to show that x, who is
the previous node of t in P ∗w′(s, t)|C, has decreased dxrs

(s, x) down to distrs(s, x) in round
|P ∗w′(s, x)|C|+ 1 ≤ h or before that. This follows if we can show dxr′′s (s, x)− distrs(s, x) ≤ h∆.
Suppose that cs is the first node in P ∗w′(s, t)|C which is the first node in P ∗w′(s, x)|C as well.
We have that

distr′′s (s, x) ≤ distr′′s (s, cs) + distr′′s (cs, x)
≤ (distrs(s, cs) + ∆) + (distrs(cs, x) + |P ∗rs

(cs, x)|∆) by the definition of r′′s
= distrs(s, x) + (|P ∗rs

(cs, x)|+ 1)∆
= distrs(s, x) + (|P ∗w′(cs, x)|+ 1)∆ by Lemma 3.4(iii)
= distrs(s, x) + (|P ∗w′(s, x)|C|+ 1)∆
≤ distrs(s, x) + h∆
≤ n+ h∆ by Lemma 3.4(ii)

By Lemma 4.6, we have dxr′′s (s, x) = distr′′s (s, x). By the second last inequality, we conclude
that dxr′′s (s, x) − distrs(s, x) ≤ h∆. And this completes the induction step and the entire
proof.

16

Note that the knowledge about distrs(s, t) implies the knowledge about distw′(s, t). So
now we can conclude the lemma that is used in the main algorithm:

Lemma 4.8. Suppose that every center c already knows dcw′(s, c) = distw′(s, c) for all nodes
s. After running the modified Algorithm 2, every node t knows dtw′(s, t) ≥ distw′(s, t) for
all nodes s, furthermore, if |P ∗w′(s, t)| ≤ h or |P ∗w′(s, t)|C| ≤ h, then dtw′(s, t) = distw′(s, t).
Furthermore, the algorithm runs in Õ(n

√
h) rounds.

4.3 Reversed r-Sink Shortest Paths Algorithm

In this section, we assume that r special sink nodes v1, . . . ,vr are given and every node
s knows dtw′(s,vi) = distw′(s,vi) for all sink nodes vi. (Note that these r special sinks
correspond to the centers C in Algorithm 1.) We present an Õ(n

√
r)-time algorithm so that

each sink vi, 1 ≤ i ≤ r, acquires the knowledge dvi
w′(s,vi) = distw′(s,vi) for all nodes s in

the end. The algorithm is described in Algorithm 3. Here, we write the t-sink shortest path
tree to mean the shortest path tree (w.r.t. w′) that has t as the sink.

Now, we explain the idea of Algorithm 3. By Steps 1 and 2, for every sink vi, each
node s can decide which neighbor x∗ is its parent in the vi-sink shortest path tree: if
dist′w(s,vi) = w′(s, x∗) + dist′w(x∗,vi), then x∗ is the parent of s. Also, every node s knows
which neighbors are its children because the children informed s in Step 2.

The basic idea is to propagate distw′(vi, t) for all node t upwards to vi in the vi-sink
shortest path tree (as done in Step 5) until vi receives all the informations. However, a
brute-force implementation of this idea leads to O(nr) time complexity, since some nodes
may need to send out O(nr) messages.

We overcome this issue by creating a set B of bottleneck nodes (or just bottlenecks for
short), which is empty initially. Intuitively, these nodes are the bottlenecks of the above
propagation process. We will let them become a sort of “ad-hoc” sinks, namely, if b ∈ B,
we will let all nodes s know dsw′(s, b) = distw′(s, b). Furthermore, for all 1 ≤ i ≤ r, the
vi-shortest path trees will be “pruned” from these bottlenecks downwards in the following
sense. In Step 4, a node s, if not a bottleneck in B, aggregates the number of its descendants
(including s itself) in the vi-sink shortest path tree, for each 1 ≤ i ≤ r, and then informs
its parent in the same tree. On the other hand, if t is a bottleneck, it informs its parent in
the vi-sink shortest path trees, for all 1 ≤ i ≤ r, that it has no descendants, i.e., it is a leaf.
(this can be regarded as our pruning the vi-sink shortest path trees from the bottlenecks
downwards).

In Step 5, if some nodes t, which are neither bottlenecks nor the original sinks, have
more than n

√
r descendants, it declares itself as a potential candidate to become a new

bottleneck. The special node with ID 0 will then decide on a unique node b to be the new
bottleneck (so B = B ∪ {b}) and broadcasts this decision. Then we build the b-sink shortest
path tree and b-source shortest path tree using the Bellman-Ford algorithm so that all
nodes s knows dsw′(s, b) = distw′(s, b) and dsw′(b, s) = distw′(b, s). Then, all nodes s forward
dsw′(s, b) to the sinks (by broadcasting to the whole network) so that every sink vi knows
dvi
w′(s, b) = distw′(s, b). This will be useful information for sinks. The same process (Steps 4

and 5) continues until no more bottleneck is created.

Lemma 4.9. The number of bottlenecks is |B| = O(
√
r) and so Steps 4 and 5 repeat O(

√
r)

times.

17

Algorithm 3: Reversed r-Sink Shortest Paths Algorithm
Input: r sink nodes v1, · · · ,vr. Every node s knows distw′(s,vi) for all 1 ≤ i ≤ r, i.e.,

dsw′(s,vi) = distw′(s,vi)
Output: Each sink node vi knows distw′(s,vi) for all nodes s, i.e.,

dvi
w′(s,vi) = distw′(s,vi)

1 Every node s sends distw′(s,vi), for each 1 ≤ i ≤ r, to all its neighbors.
2 For each 1 ≤ i ≤ r and every node s, s uses the information distw′(x,vi) from all its

neighbors x to decide which neighbor x∗ is its parent in the vi-sink shortest path tree.
The node s then informs x∗ that it is a child of x∗ in the vi-sink shortest path tree.

3 Set B = ∅. // B is the set of bottleneck nodes.
4 For each 1 ≤ i ≤ r and every node s, s waits until it receives the message #(i, xj)

from all its children xj in the vi-sink shortest path tree. If the node s 6∈ B, let
#(i, s) = 1 +

∑
j #(i, xj); otherwise #(i, s) = 0. The node s sends #(i, s) to its

parent in the vi-sink shortest path tree.
5 If any node s 6∈ B ∪ {vi}ri=1 has

∑r
i=1 #(i, s) >

√
kn:

(i) s broadcasts its intent of becoming a new bottleneck.
(ii) Node 0 chooses one of the candidates (say the one with the smallest ID) as the new

bottleneck b and broadcasts its ID to all nodes. Set B = B ∪ {b}.
(iii) Apply the Bellman-Ford algorithm to build the b-sink shortest path tree and the

b-source shortest path tree, so that every node s knows dsw′(s, b) = distw′(s, b) and
dsw′(b, s) = distw′(b, s).

(iv) Every node s broadcasts distw′(s, b) to all nodes (in particular, to all sinks), so that
every sink vi knows dvi

w′(s, b) = distw′(s, b) for all nodes s.
(v) Go back to Step 4.

6 For each 1 ≤ i ≤ r and each node s, distw′(s,vi) is relayed to sink vi through the path
P ∗w′(s,vi) in the vi-sink shortest path tree if P ∗w′(s,vi) ∩B = ∅. That is, every node
x ∈ V \B sends distw′(x,vi) to its parent in the vi-sink shortest path tree. When a
node v ∈ V \B receives a message distw′(x,vi), it sends such message to its parent in
the vi-sink shortest path tree.

7 Each sink vi, for 1 ≤ i ≤ r, computes distw′(s,vi) for all nodes s.

18

Proof. Observe that originally the total number of nodes in all vi-sink shortest path trees,
for 1 ≤ i ≤ r, is nr. Each time a new node becomes a bottleneck, all its descendants (at
least Ω(n

√
r) of them) are pruned from these trees. Thus, we can create up to at most

O(nr
n
√
r
) = O(

√
r) bottlenecks and accordingly Steps 4 and 5 repeat the same number of

times.

When there is no more bottleneck to be created, Step 6 simply relays the information
distw′(s,vi) to sink vi through the vi-sink shortest path tree, for each 1 ≤ i ≤ r, as long
as 1) s ∈ B is a bottleneck, or 2) s is not a bottleneck and the path from s to vi in the
vi-sink shortest path tree does not contain a bottleneck, i.e. P ∗w′(s,vi) ∩ B = ∅. The last
step finishes the algorithm.

Lemma 4.10. In Step 7, each sink vi, for 1 ≤ i ≤ r, correctly computes distw′(s, vi) for all
nodes s, i.e., dvi

w′(s, vi) = distw′(s, vi).

Proof. Consider the path P ∗w′(s,vi) from s to vi in the vi-sink shortest path tree. There are
two cases. First, if s ∈ B or P ∗w′(s,vi) ∩B = ∅, then, by Step 6, distw′(s,vi) is relayed to vi
and we are done. Second, if s is not a bottleneck and there is a bottleneck b in P ∗w′(s,vi),
then, by Step 5(iv), distw′(s, b) is known to vi; i.e. dvi

w′(s, b) = distw′(s, b). Also, by Step 5(iii),
dvi
w′(b,vi) = distw′(b,vi) is known to vi. Therefore, vi can use these pieces of information to

correctly compute distw′(s,vi) = dvi
w′(s, b) + dvi

w′(b,vi).

The lemma above concludes the correctness of Algorithm 3. Now we analyze the running
time.

Lemma 4.11. Algorithm 3 takes Õ(n
√
r) rounds.

Proof. We will use extensively Theorem 2.1 by analyzing dilation and congestion in each
step. In Steps 1 and 2, each node only sends r messages to its neighbors. So dilation = 1
and congestion = r, and so this takes Õ(r) rounds. In Step 4, for every sink vi, every node s
sends a message once along the vi-sink shortest path tree. As there can be a path of n hops
in the tree, dilation = n. Parallelizing the processes for all sinks vi yields congestion = r. So
this step takes Õ(n+ r) = Õ(n).

Now, we analyze Step 5. In Step 5(i), at most n nodes need to broadcast one message.
By Lemma 2.2, this takes O(n+D) = O(n) rounds. In Step 5(ii), only one node broadcast
a message and this takes O(D) rounds. In Step 5(iii), running Bellman-Ford algorithm for
finding the b-sink shortest path tree, for one node b, takes O(n). In Step 5(iv), every node
broadcasts one messages and this takes O(n+D) = O(n) rounds by Lemma 2.2.

By Lemma 4.9, Steps 4 and 5 repeat O(
√
r) times. In total, this takes Õ(n

√
r) rounds.

Next, in Step 6, the messages are relayed in the shortest path trees, and so dilation = n.
Moreover, congestion = O(n

√
r) because all the nodes s which are descendants of bottlenecks

in any tree do not send messages. So this step also takes O(n
√
r) rounds. Therefore, the

total number of rounds of the algorithm is O(n
√
r).

Finally, we conclude with the lemma that is used in the main algorithms:

Lemma 4.12. Every node s knows distw′(s, vi) for all sinks vi where 1 ≤ i ≤ r, i.e.,
dsw′(s, vi) = distw′(s, vi). Then, running Algorithm 3, each sink node vi knows distw′(s, vi)
for all nodes s, i.e., dvi

w′(s, vi) = distw′(s, vi). Furthermore, Algorithm 3 takes Õ(n
√
r)

rounds.

19

5 k-Source Shortest Paths
In this section, we show how to extend the algorithms presented in Section 4 to solve the
k-source shortest paths (k-SSP) problem. Recall that in this problem we want every node v
to know its distance from every of k sources. We let S be the set of sources. Initially, every
node knows whether it is a source or not.

We modify the APSP algorithm as follows. First, we pick β sets of random centers8,
where each set has size

ζ = min(k,
√
n) polylog(n).

Denoted these sets by C1, C2, . . . , Cβ. (Observe that this step can be done in Õ(
√
n+D)

time since there are only Õ(
√
n) centers in total.) Now we run each iteration of the scaling

framework as in Section 4, except that in each iteration we only compute shortest paths
from only some sources (instead of all nodes). In particular, the set of sources at iteration i
is Si = Ci+1 ∪ Ci+2 ∪ ... ∪ Cβ ∪ S. Thus, we can assume that every node knows its distance
from all nodes in Si−1 = Ci ∪Ci+1 ∪ . . . ∪Cβ ∪ S. We will use Ci as a set of random centers
in iteration i, in the same way we use C in Algorithm 1. Algorithm 4 describes the new
algorithm in details. In this algorithm, we also need to modify the short-range, reversed
r-sink shortest paths, and short-range-extension so that they can run faster when there are
only q sources, where q = |Si|. This is done as in Algorithm 4.
q-Source Short-Range(-Extension) Algorithms. We round up edge weights to multi-
ples of ∆ as done previously. However, we only run the BFS algorithm from q sources (the
depth is still n+ h∆). We also run the modification of the Bellman-Ford algorithm with
q-sources. By the same analysis as in Sections 4.1 and 4.2, the running time of the q-source
short-range and short-range-extension algorithms becomes Õ(n/∆ + h+ qh∆) which is

Õ(
√
nqh)

when we set ∆ =
√
n/qh.

Reversed q-Source r-Sink Shortest Paths. The algorithm proceeds as in Section 4.3
except that:

• Bottleneck nodes are defined to be those that have g = √nqr messages sent through
them.

• In Step 6 the messages are relayed in the shortest path trees only from each source
node (and not each node).

Since there are qr source-sink pairs, there are |B| ≤ dqr/ge = O(1 +
√
qr/n) bottleneck

nodes. By following the proof of Lemma 4.11, the running time of this algorithm becomes

Õ(r + |B|n+√nqr) = Õ(n+√nqr).

Total Time of Algorithm 4. The q-source short-range and short-range-extension algo-
rithms take Õ(

√
nqh) = Õ(n ·

√
(k + ζ)/ζ) = Õ(n+n3/4k1/2) rounds. The reversed q-source

r-sink shortest paths algorithm takes Õ(n+√nqr) = Õ(n+
√
n(k + ζ)ζ) = Õ(n+ n3/4k1/2)

rounds. Other steps can be easily seen to take Õ(n) rounds. Thus, Algorithm 4 takes
Õ(n+ n3/4k1/2) rounds in total.

8Recall the β is the number of bits needed to represent edge weight (see Section 3).

20

Algorithm 4: k-SSP Algorithm (for iteration i in the scaling framework)
Input: A graph G, weight functions w, w′, and b, and set of k sources S. Every node

knows whether it is a source or not. Every node t knows distw(s, t), i.e.
dtw(s, t) = distw(s, t), for every node s ∈ Si−1 = Ci ∪ . . . ∪ Cβ ∪ S. Let
h = n/ζ = max(n/k,

√
n).

Output: Every node t knows distw′(s, t) for every node s ∈ Si = Ci+1 ∪ . . . ∪ Cβ ∪ S,
i.e. dtw′(s, t) = distw′(s, t).

1 Let C = Ci.
2 Node t sends distw(s, t), for all nodes s ∈ Si−1, to its neighbors x in G. The neighbor

x internally uses this knowledge to compute rs(x, t), for all nodes s ∈ Si−1, as
defined in Definition 3.3. // This steps takes O(q) rounds.

3 Apply the q-source short-range algorithm with nodes in Si as sources and h as
above so that every node s ∈ Si knows dsw′(s, t) ≥ distw′(s, t) for all nodes t, and if
|P ∗w′(s, t)| ≤ h, dsw′(s, t) = distw′(s, t). // This step takes Õ(

√
nqh)

= Õ(n ·
√

(k + ζ)/ζ) = Õ(n+ n3/4k1/2) rounds.
4 All centers c ∈ C broadcast their knowledge of dcw′(c, c′), for all centers c′ ∈ C, to all

other nodes in the network. Every node s ∈ Si internally uses this knowledge to
calculate dsw′(s, c) = distw′(s, c) for all centers c ∈ C. // This step takes
Õ(ζ2) = Õ(n) rounds

5 Apply the reversed q-source r-sink shortest paths algorithm with nodes in Si as
sources and nodes in C as sinks, so that every center c ∈ C knows
dcw′(s, c) = distw′(s, c) for all nodes s ∈ Si. // This step takes Õ(n+√nqr)
= Õ(n+

√
n(k + ζ)ζ) = Õ(n+ n3/4k1/2) rounds.

6 Apply the q-source short-range-extension algorithm so that every node t knows
dtw′(s, t) ≥ distw′(s, t) for all nodes s ∈ Si, and if |P ∗w′(s, t)|C| ≤ h,
dtw′(s, t) = distw′(s, t). // This step takes Õ(

√
nqh) = Õ(n+ n3/4k1/2) rounds.

21

6 Open Problems
The main question is whether distributed APSP can be solved in Õ(n) time. Both super-
linear lower bound or near-linear upper bound will be a major result. Another related
problem is SSSP, where there is still a gap between the lower bound of [DHK+12] and upper
bound of [Elk17b]. In general, it is very interesting to close the gap between approximation
and exact distributed algorithms. We found this question particular interesting for exact
maximum matching and minimum cut; these problem admit an Ω̃(

√
n) lower bound while

no non-trivial upper bound is known (even an O(n) one). Note that the existing Ω̃(
√
n)

lower bound for minimum cut does not hold for a natural special case of checking whether
the network has small, e.g. O(1), edge connectivity. Given that small edge connectivity may
indicate the network’s likeliness to fail, it is interesting to determine their time complexity
exactly. Currently there is a big jump from O(D) time for checking edge connectivity of at
most two [Thu97, PT11] to Õ(

√
n) for higher values [NS14].

7 Acknowledgement
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 715672. Nanongkai and Saranurak were also partially supported by the Swedish Research
Council (Reg. No. 2015-04659.) Nanongkai and Saranurak would like to thank Rotem
Oshman for comments on the preliminary version of the result.

References
[ACK16] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. “Near-Linear Lower

Bounds for Distributed Distance Computations, Even in Sparse Networks”.
In: Distributed Computing - 30th International Symposium, DISC 2016, Paris,
France, September 27-29, 2016. Proceedings. 2016, pp. 29–42 (cit. on p. 2).

[Awe87] Baruch Awerbuch. “Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election and Related Problems (Detailed
Summary)”. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA. 1987, pp. 230–240 (cit. on p. 1).

[BKK+16] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph
Lenzen. “Approximate Undirected Transshipment and Shortest Paths via Gra-
dient Descent”. In: CoRR abs/1607.05127 (2016) (cit. on pp. 1, 2).

[Bel58] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathe-
matics 16.1 (1958), pp. 87–90 (cit. on pp. 2, 6).

[CKP17] Keren Censor-Hillel, Seri Khoury, and Ami Paz. “Quadratic and Near-Quadratic
Lower Bounds for the CONGEST Model”. In: DISC. 2017 (cit. on pp. 2, 3).

[CT85] Francis Y. L. Chin and H. F. Ting. “An Almost Linear Time and O(n log n
+ e) Messages Distributed Algorithm for Minimum-Weight Spanning Trees”.
In: 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985. 1985, pp. 257–266 (cit. on p. 1).

22

http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1145/28395.28421
http://dx.doi.org/10.1145/28395.28421
http://dx.doi.org/10.1145/28395.28421
http://arxiv.org/abs/1607.05127
http://arxiv.org/abs/1607.05127
http://dx.doi.org/10.1109/SFCS.1985.7
http://dx.doi.org/10.1109/SFCS.1985.7

[DHK+12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. “Distributed Veri-
fication and Hardness of Distributed Approximation”. In: SIAM Journal on
Computing 41.5 (2012). Announced at STOC’11, pp. 1235–1265 (cit. on pp. 1,
22).

[EN16] Michael Elkin and Ofer Neiman. “Hopsets with Constant Hopbound, and
Applications to Approximate Shortest Paths”. In: FOCS (2016) (cit. on p. 3).

[Elk04] Michael Elkin. “Distributed approximation: a survey”. In: SIGACT News 35.4
(2004), pp. 40–57 (cit. on p. 1).

[Elk05] Michael Elkin. “Computing almost shortest paths”. In: ACM Transactions on
Algorithms 1.2 (2005). Announced at PODC’01, pp. 283–323 (cit. on p. 3).

[Elk06] Michael Elkin. “An Unconditional Lower Bound on the Time-Approximation
Trade-off for the Distributed Minimum Spanning Tree Problem”. In: SIAM
Journal on Computing 36.2 (2006). Announced at STOC’04, pp. 433–456 (cit.
on p. 1).

[Elk17a] Michael Elkin. “A Simple Deterministic Distributed MST Algorithm, with
Near-Optimal Time and Message Complexities”. In: CoRR abs/1703.02411
(2017) (cit. on p. 1).

[Elk17b] Michael Elkin. “Distributed Exact Shortest Paths in Sublinear Time”. In:
Symposium on Theory of Computing, STOC. 2017 (cit. on pp. i, 1–3, 22).

[FHW12] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. “Networks cannot
compute their diameter in sublinear time”. In: SODA. 2012, pp. 1150–1162
(cit. on pp. i, 2).

[For56] Lester R. Ford. Network Flow Theory. Tech. rep. P-923. The Rand Corporation,
1956 (cit. on pp. 2, 6).

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. “A Distributed
Algorithm for Minimum-Weight Spanning Trees”. In: ACM Trans. Program.
Lang. Syst. 5.1 (1983), pp. 66–77 (cit. on p. 1).

[GK13] Mohsen Ghaffari and Fabian Kuhn. “Distributed Minimum Cut Approximation”.
In: Symposium on Distributed Computing (DISC). 2013, pp. 1–15 (cit. on p. 1).

[GKK+15] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and
Boaz Patt-Shamir. “Near-Optimal Distributed Maximum Flow: Extended Ab-
stract”. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015.
2015, pp. 81–90 (cit. on p. 1).

[GKP98] Juan A. Garay, Shay Kutten, and David Peleg. “A Sublinear Time Distributed
Algorithm for Minimum-Weight Spanning Trees”. In: SIAM Journal on Com-
puting 27.1 (1998). Announced at FOCS’93, pp. 302–316 (cit. on p. 1).

[GT89] Harold N. Gabow and Robert Endre Tarjan. “Faster Scaling Algorithms for
Network Problems”. In: SIAM J. Comput. 18.5 (1989), pp. 1013–1036 (cit. on
p. 3).

23

http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://arxiv.org/abs/1605.04538
http://arxiv.org/abs/1605.04538
http://dx.doi.org/10.1145/1054916.1054931
http://arxiv.org/abs/1703.02411
http://arxiv.org/abs/1703.02411
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1145/357195.357200
http://dx.doi.org/10.1007/978-3-642-41527-2_1
http://dx.doi.org/10.1145/2767386.2767440
http://dx.doi.org/10.1145/2767386.2767440
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1137/0218069

[GU15] Mohsen Ghaffari and Rajan Udwani. “Brief Announcement: Distributed Single-
Source Reachability”. In: Proceedings of the 2015 ACM Symposium on Principles
of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July
21 - 23, 2015. 2015, pp. 163–165 (cit. on p. 2).

[Gab85] Harold N. Gabow. “Scaling Algorithms for Network Problems”. In: J. Comput.
Syst. Sci. 31.2 (1985). Announced at FOCS’83, pp. 148–168 (cit. on p. 3).

[Gaf85] Eli Gafni. “Improvements in the Time Complexity of Two Message-Optimal
Election Algorithms”. In: Proceedings of the Fourth Annual ACM Symposium
on Principles of Distributed Computing, Minaki, Ontario, Canada, August 5-7,
1985. 1985, pp. 175–185 (cit. on p. 1).

[Gha15] Mohsen Ghaffari. “Near-Optimal Scheduling of Distributed Algorithms”. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Com-
puting, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015. 2015,
pp. 3–12 (cit. on pp. 6, 7).

[Gol95] Andrew V. Goldberg. “Scaling Algorithms for the Shortest Paths Problem”. In:
SIAM J. Comput. 24.3 (1995). Announced at SODA’93, pp. 494–504 (cit. on
p. 3).

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A de-
terministic almost-tight distributed algorithm for approximating single-source
shortest paths”. In: Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016.
2016, pp. 489–498 (cit. on pp. 1, 2).

[HW12] Stephan Holzer and Roger Wattenhofer. “Optimal Distributed All Pairs Shortest
Paths and Applications”. In: Symposium on Principles of Distributed Computing
(PODC). 2012, pp. 355–364 (cit. on pp. 2, 3).

[KKM+12] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal
Talwar. “Efficient distributed approximation algorithms via probabilistic tree
embeddings”. In: Distributed Computing 25.3 (2012). Announced at PODC
2008, pp. 189–205 (cit. on p. 3).

[KKP13] Liah Kor, Amos Korman, and David Peleg. “Tight Bounds for Distributed
Minimum-Weight Spanning Tree Verification”. In: Theory of Computing Systems
53.2 (2013). Announced at STACS’11, pp. 318–340 (cit. on p. 1).

[KP98] Shay Kutten and David Peleg. “Fast Distributed Construction of Small k-
Dominating Sets and Applications”. In: Journal of Algorithms 28.1 (1998).
Announced at PODC’95, pp. 40–66 (cit. on p. 1).

[LP13] Christoph Lenzen and David Peleg. “Efficient Distributed Source Detection with
Limited Bandwidth”. In: Symposium on Principles of Distributed Computing
(PODC). 2013, pp. 375–382 (cit. on pp. 2, 3, 7).

[LP15] Christoph Lenzen and Boaz Patt-Shamir. “Fast Partial Distance Estimation and
Applications”. In: Symposium on Principles of Distributed Computing (PODC).
2015, pp. 153–162 (cit. on pp. i, 1, 2).

24

http://dx.doi.org/10.1145/2767386.2767444
http://dx.doi.org/10.1145/2767386.2767444
http://dx.doi.org/10.1016/0022-0000(85)90039-X
http://dx.doi.org/10.1145/323596.323612
http://dx.doi.org/10.1145/323596.323612
http://dx.doi.org/10.1145/2767386.2767417
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1007/s00224-013-9479-7
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1145/2484239.2484262
http://dx.doi.org/10.1145/2484239.2484262
http://dx.doi.org/10.1145/2767386.2767398
http://dx.doi.org/10.1145/2767386.2767398

[LPS13] Christoph Lenzen and Boaz Patt-Shamir. “Fast Routing Table Construction
Using Small Messages”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 381–390 (cit. on pp. i, 1, 2).

[NS14] Danupon Nanongkai and Hsin-Hao Su. “Almost-Tight Distributed Minimum
Cut Algorithms”. In: International Symposium on Distributed Computing
(DISC). 2014, pp. 439–453 (cit. on pp. 1, 22).

[Nan14] Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted
Shortest Paths”. In: Symposium on Theory of Computing (STOC). 2014, pp. 565–
573 (cit. on pp. i, 1–3).

[PR00] David Peleg and Vitaly Rubinovich. “A Near-Tight Lower Bound on the Time
Complexity of Distributed Minimum-Weight Spanning Tree Construction”. In:
SIAM Journal on Computing 30.5 (2000). Announced at FOCS’99, pp. 1427–
1442 (cit. on p. 1).

[PRS17] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. “A Time- and
Message-Optimal Distributed Algorithm for Minimum Spanning Trees”. In:
Symposium on Theory of Computing, STOC. 2017 (cit. on p. 1).

[PRT12] David Peleg, Liam Roditty, and Elad Tal. “Distributed Algorithms for Network
Diameter and Girth”. In: ICALP (2). 2012, pp. 660–672 (cit. on p. 2).

[PT11] David Pritchard and Ramakrishna Thurimella. “Fast Computation of Small
Cuts via Cycle Space Sampling”. In: ACM Transactions on Algorithms 7.4
(2011). Announced at ICALP’08, 46:1–46:30 (cit. on p. 22).

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2000. isbn:
0-89871-464-8 (cit. on pp. 1, 7).

[Thu97] Ramakrishna Thurimella. “Sub-Linear Distributed Algorithms for Sparse Cer-
tificates and Biconnected Components”. In: Journal of Algorithms 23.1 (1997).
Announced at PODC’95, pp. 160–179 (cit. on p. 22).

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: SIAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100–125 (cit. on p. 7).

25

http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1145/2488608.2488656
http://dx.doi.org/10.1007/978-3-662-45174-8_30
http://dx.doi.org/10.1007/978-3-662-45174-8_30
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1137/S0097539700369740
http://dx.doi.org/10.1145/2000807.2000814
http://dx.doi.org/10.1145/2000807.2000814
http://dx.doi.org/10.1006/jagm.1996.0832
http://dx.doi.org/10.1006/jagm.1996.0832
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006

	1 Introduction
	1.1 Overview of Algorithms and Techniques.

	2 Preliminaries
	2.1 The Model
	2.2 Problems and Notations
	2.3 Basic Distributed Algorithms
	2.4 Sampling the Centers

	3 The Scaling Framework
	3.1 Upper Bounding the Distances

	4 Main Algorithm
	4.1 Short-Range Algorithm
	4.2 Short-Range-Extension Algorithm
	4.3 Reversed r-Sink Shortest Paths Algorithm

	5 k-Source Shortest Paths
	6 Open Problems
	7 Acknowledgement
	References

