
Fine-Grained Complexity of Analyzing Compressed Data:

Quantifying Improvements over Decompress-And-Solve

Amir Abboud∗ Arturs Backurs† Karl Bringmann‡ Marvin Künnemann§

March 5, 2018

Abstract

Can we analyze data without decompressing it? As our data keeps growing, understanding
the time complexity of problems on compressed inputs, rather than in convenient uncompressed
forms, becomes more and more relevant. Suppose we are given a compression of size n of data
that originally has size N , and we want to solve a problem with time complexity T (·). The näıve
strategy of “decompress-and-solve” gives time T (N), whereas “the gold standard” is time T (n):
to analyze the compression as efficiently as if the original data was small.

We restrict our attention to data in the form of a string (text, files, genomes, etc.) and
study the most ubiquitous tasks. While the challenge might seem to depend heavily on the
specific compression scheme, most methods of practical relevance (Lempel-Ziv-family, dictionary
methods, and others) can be unified under the elegant notion of Grammar-Compressions. A
vast literature, across many disciplines, established this as an influential notion for Algorithm
design.

We introduce a framework for proving (conditional) lower bounds in this field, allowing us
to assess whether decompress-and-solve can be improved, and by how much. Our main results
are:

• The O(nN
√

logN/n) bound for LCS and the O(min{N logN,nM}) bound for Pattern
Matching with Wildcards are optimal up to No(1) factors, under the Strong Exponential
Time Hypothesis. (Here, M denotes the uncompressed length of the compressed pattern.)

• Decompress-and-solve is essentially optimal for Context-Free Grammar Parsing and RNA
Folding, under the k-Clique conjecture.

• We give an algorithm showing that decompress-and-solve is not optimal for Disjointness.

∗IBM Almaden Research Center, abboud@cs.stanford.edu. Work done while at Stanford University.
†MIT, backurs@mit.edu
‡Max Planck Institute for Informatics, Saarland Informatics Campus, Germany, kbringma@mpi-inf.mpg.de
§Max Planck Institute for Informatics, Saarland Informatics Campus, Germany, marvin@mpi-inf.mpg.de

ar
X

iv
:1

80
3.

00
79

6v
1

 [
cs

.C
C

]
 2

 M
ar

 2
01

8

Contents

1 Introduction 1
1.1 Previous Work . 2
1.2 Our Work . 3
1.3 Technical Overview . 6

2 Preliminaries 8
2.1 Hardness Assumptions . 10

3 Tight Bounds Assuming SETH 11
3.1 DFA Acceptance . 12
3.2 Approximate Pattern Matching and Substring Hamming Distance 15
3.3 Longest Common Subsequence . 21

3.3.1 Alignment Gadget Framework . 22
3.3.2 General Lower Bound . 23
3.3.3 Extended Alignment Gadget for LCS . 27

4 Tight Bounds Assuming (Combinatorial) k-Clique 32
4.1 NFA Acceptance . 33
4.2 Context-Free Grammar Parsing . 37
4.3 RNA Folding . 42

5 Disjointness, Hamming Distance, and Subsequence 47
5.1 Algorithms . 48
5.2 Lower Bounds . 50

6 Conclusion 55

1 Introduction

Computer Science is often called the science of processing digital data. A central goal of theoretical
CS is to understand the time complexity of the tasks we want to perform on data. Data compression
has been one of the most important notions in CS and Information Theory for decades, and it is
increasingly relevant in our current age of “Big Data” where it is hard to think of reasons why not to
compress our data: smaller data can be stored more efficiently, transmitting it takes less resources
such as energy and bandwidth, and perhaps it can even be processed faster. Since nowadays and
for years to come nearly all of our data comes in compressed form, a central question becomes:

What is the time complexity of analyzing compressed data?

Say we have a piece of data of size N given in a compressed form of size n. For a problem with
time complexity T (·), the näıve strategy of “decompress and solve” takes Θ(T (N)) time, while the
“gold standard” is O(T (n)) time: we want to solve the problem on the compression as efficiently
as if the original data was small. To provide meaningful statements we need to decide on three
things: What type of data is it? What problem do we want to solve? Which compression scheme
is being used?

For the first two questions, the focus of this paper will be on the most basic setting. We consider
data that comes as strings, i.e. sequences of symbols such as text, computer code, genomes, and
so on. And we study natural and basic questions one could ask about strings such as Pattern
Matching, Language Membership, Longest Common Subsequence, Parsing, and Disjointness.

For the third question, we restrict our attention to lossless compression and, even then, there are
multiple natural settings that we do not find to be the most relevant. We could consider Kolmogorov
complexity, giving us the best possible compression of our data: assume that a string T is given by
a short bitstring K(T) which is a pair of Turing machine M and input x such that running M on
x outputs T , i.e. K(T) = 〈M,x〉 such that M(x) = T . The issue with Kolmogorov-compressions
is that none of our data comes in this form, for two good reasons: First, it is computationally
intractable to compute K(T) given T , not even approximately. And second, analyzing arbitrary
Turing machines without just running them is an infamously hopeless task. Thus, while studying
the time complexity of analyzing Kolmogorov-compressed strings is natural, it might not be the
most relevant for computer science applications. Another option is to consider the mathematically
simplest forms of compression such as Run-Length Encoding (RLE): we compress x consecutive
letters σ into σx, so the compression has the form 0x11x20x3 · · · 1x` , and we only need n = O(`·logN)
bits to describe the potentially exponentially longer string of length N . This compression is at the
other extreme of the spectrum: it is trivial to compute and easy to analyze, but it is far less
“compressing” than popular schemes like Lempel-Ziv-compressions.

Instead, we consider what has proven to be one of the most influential kinds of compression
for Algorithm design, namely Grammar-Compressions, a notion that has all the right properties.
First, it is mathematically elegant and quite fun to reason about for theoreticians (as evidenced
by the many pages of our paper). Second, it is equivalent [64] up to low order terms (moderate
constants and log factors) to popular schemes like the Lempel-Ziv-family (LZ77, LZ78, LZW, etc.)
[48, 81, 75], Byte-Pair Encoding [68], dictionary methods, and others [57, 50]. These compressions
are used in ubiquitous applications such as the built-in Unix utility compress, zip, GIF, PNG,
and even in PDF. Third, it is generic and likely to capture compression schemes that will be
engineered in the future (after all, there is a whole industry on the topic and the quest might never

1

be over). Fourth, we can compute the optimal such compression (up to log factors) in linear time
[64, 23, 44]. And last but not least, ingenious algorithmic techniques have shown that it is possible
to computationally analyze grammar-compressed data, beating the “decompress and solve” bound
for many important problems.

A grammar compression of a string X is simply a context-free grammar, whose language is
exactly {X}, that is, the only string the grammar can produce is X. For the purposes of this
paper, it is enough to focus on a restricted form of grammars, known as Straight Line Programs
(SLP). An SLP is defined over some alphabet Σ, say {0, 1}, and it is a set of replacement rules
(or productions) of a very simple form: a rule is either a symbol in Σ or it is the concatenation
of two previous rules (under some fixed ordering of the rules). The last replacement rule is the
sequence defined by the SLP. For example, we can compress the sequence 01011 with the rules
S1 → 0; S2 → 1; S3 → S1 S2; S4 → S3 S3; S5 → S4 S2 and S5 corresponds to the sequence
01011. For some strings this can give an exponential compression. A more formal definition and a
figure are given in Section 2.

To learn more about the remarkable success of grammar-compressions, we refer the reader to
the surveys [77, 47, 34, 67, 36, 63, 65, 53, 66]. As a side remark, one of the exciting developments
in this context was the surprising observation that a “compress and solve” strategy could actually
lead to theoretically new algorithms for some problems, e.g. [60, 45].

Thus, we focus on what we find the most important interpretation of the central question above:

What is the time complexity of basic problems on grammar-compressed strings?

1.1 Previous Work

As a motivating example, consider the Longest Common Subsequence (LCS) problem. Given two
uncompressed strings of length N we can find the length of the longest common (not necessarily con-
tiguous) subsequence in O(N2) time using dynamic programming, and there are almost-matching
N2−o(1) conditional lower bounds [2, 17, 3]. Throughout the paper we mostly ignore log factors,
and so we think of LCS as a problem with Θ̃(N2) time complexity (on uncompressed data). Now,
assume our sequences are given in compressed form of size n. A natural setting to keep in mind is
where n ≈ N1/2. How much time do we need to solve LCS on these compressed strings? The näıve
upper bound gives O(N2) and the gold standard is O(n2) ≈ O(N), so which is it?

Besides being a very basic question, LCS and the closely related Edit Distance are a popular
theoretical modeling of sequence alignment problems that are of great importance in Bioinformat-
ics1. Thus, this is a relatively faithful modeling of the question whether “compress-and-solve” can
speed up genome analysis tasks, a question which has received extensive attention throughout the
years [39, 57, 50, 38, 36].

A long line of work [18, 54, 7, 8, 27, 69, 70, 40] has shown that we can do much better than
O(N2). The current best algorithm has the curious runtime O(nN

√
logN/n) [35] which is tan-

talizingly close to a conjectured bound of O(nN) from the seminal paper of Lifshits [49]. In our
candidate setting of n ≈ N1/2, this is Õ(N1.5). This is major speedup over the Ω(N2) decompress-
and-solve bound, but is still far away from the gold standard of O(n2) which in this case would
be O(N). Can we do better? For example, an O(n2 ·N0.1) bound could lead to major real-world
improvements.

1The heuristic algorithm BLAST for a generalized version of the problem has received sixty-thousand citations.

2

While there is a huge literature on the topic, both from the Algorithms community and from
applied areas, in addition to the potential for real-world impact, studying these questions has not
become a mainstream topic in the top algorithms conferences. In one of the only STOC/FOCS
papers on the topic, Charikar et al. [23] write “In short, the smallest grammar problem has been
considered by many authors in many disciplines for many reasons over a span of decades. Given
this level of interest, it is remarkable that the problem has not attracted greater attention in the
general algorithms community.”

We believe that one key reason for this is the lack of a relevant complexity theory and tools
for proving lower bounds, leaving a confusing state of the art in which it is hard to distinguish
algorithms providing fundamental new insights from ad hoc solutions. Most importantly, previous
work has not given us the tools to know, when we encounter a data analysis problem in the real-
world, what kind of upper bound we should expect. Instead, researchers have been proving P
vs. NP-hard results, classifying problems into ones solvable in poly(n, logN) time and ones that
probably require time NΩ(1). In fact, even LCS is NP-hard [49]. This means that even if we have
a compression of very small size n = O(logN) then we cannot solve LCS in poly(n) time, unless
P = NP. Dozens of such negative results have been proven (see [53]), and it has long been clear
that almost any task of interest is “NP-hard”, including the basic poly(N) time solvable problems
we discuss in this paper. However, this is hardly relevant to the questions we ask in this paper since
it does not address the possibility of highly desirable bounds such as n2 · N0.1. What we would
really like to know is whether the bound should be poly(n) · N ε, or poly(n) · N , or even higher:
could it be that decompress-and-solve is impossible to beat for some problems?

1.2 Our Work

In this work, we introduce a framework for showing lower bounds on the time complexity of problems
on grammar-compressed strings. Our lower bounds are based on popular conjectures from Hardness
in P and Fine-Grained Complexity. This is perhaps surprising since the problems we consider are
technically NP-hard. Our new complexity theoretic study of this field leads to three exciting
developments: First, we resolve the exact time complexity up to No(1) factors of some of the most
classical problems such as LCS on compressed data. Second, we discover problems that cannot be
solved faster than the decompress-and-solve bound by any N ε factor. Third, we fail at proving
tight lower bounds for some classical problems, which hints to us that known algorithms might be
suboptimal. Indeed, in this paper we also find new algorithms for fundamental problems. We hope
that our work will inspire increased interest in this important topic.

Longest Common Subsequence Our first result is a resolution of the time complexity of LCS
on compressed data, up to No(1) factors, under the Strong Exponential Time Hypothesis2 (SETH).
We complement the O(nN

√
logN/n) upper bound of Gawrychowski [35] with an (nN)1−o(1) lower

bound. Thus, in the natural setting n ≈ N1/2 from above, we should indeed be content with the
Õ(N1.5) upper bound since we will not be able to get much closer to the gold standard, unless
SETH fails. Assuming SETH, our result confirms the conjecture of Lifshits, up to No(1) factors.
See Theorem 3.12 in Section 3.3 for the formal statement.

One way to view this result is as an Instance Optimality result for LCS. The exact complexity

2SETH is the pessimistic version of P 6= NP, stating that we cannot solve k-SAT in O((2 − ε)n) time, for some
ε > 0 independent of and for all constant k [42, 19].

3

of LCS on two strings is precisely proportional to the product of the decompressed size N and the
instance-inherent measure n of how compressible they are.

RNA Folding and CFG Parsing Next, we turn our attention to two other fundamental prob-
lems: Context-Free Grammar Recognition (aka Parsing) and RNA Folding. Parsing is the core
computer science problem in which we want to decide whether a given string (e.g. computer code)
can be derived from a given grammar (e.g. the grammar of a programming language). Having the
ability to efficiently parse a compressed file is certainly desirable. In RNA Folding we are given a
string over some alphabet (e.g. {A,C,G, T}) with a fixed pairing between its symbols (e.g. A− T
match and C − G match), and the goal is to compute the maximum number of non-crossing arcs
between matching letters that one can draw above the string (which corresponds to the minimum
energy folding in two dimensions). RNA Folding is one of the most central problems in bioinfor-
matics, and as we have discussed above, the ability to analyze compressed data is important in this
field. How fast can we solve these problems?

Given an uncompressed string of size N , classical dynamic programming algorithms, such as
the CYK parser [25, 80, 46], solve RNA Folding in O(N3) time and Parsing in O(N3 ·g) time if the
grammar has size g. Wikipedia lists twenty-four parsing algorithms designed throughout the years,
all of which take cubic time in the worst case. A theoretical breakthrough of Leslie Valiant [72] in
1975 showed that there are truly sub-cubic O(gNω) parsing algorithms, where ω < 2.38 is the fast
matrix multiplication (FMM) exponent. However, Valiant’s algorithm has not been used in practice
due the inefficiency of FMM algorithms, and obtaining a combinatorial3 sub-cubic time algorithm
would be of major interest. Alas, it was recently proved [1] that any improvement over these bounds
implies breakthrough k-Clique algorithms: either finding such a combinatorial subcubic algorithm
or getting any O(Nω−ε) time algorithm, for any ε > 0, would refute the k-Clique Conjecture4. The
situation for RNA is even more interesting since Valiant’s sub-cubic algorithm does not generalize
to this case. Under the k-Clique conjecture, the same lower bounds still apply [1, 22], implying that
any improvement will have to use FMM. Indeed, an O(N2.82) algorithm using FMM was recently
achieved [15].

Cubic time is a real bottleneck when analyzing large genomic data. One would hope that if
we are able to compress the data down to size n we could solve problems like RNA Folding and
Parsing in time that is much faster than the N3 lower bounds (to simplify the discussion we focus on
combinatorial algorithms), such as n3 ·No(1) or at least n1.5N1.5, in certain analogy the LCS case.
No such algorithms were found to date, and we provide an explanation: Decompress-and-solve
cannot be beaten for Parsing and (essentially) for RNA Folding, under the k-Clique Conjecture.
For both problems we prove a conditional lower bound of Nω−o(1) for any kind of algorithm, and
N3−o(1) for combinatorial algorithms, even restricted to n = O(N ε) for any ε > 0. See Theorem 4.4
in Section 4.2 for CFG Parsing and Theorem 4.10 in Section 4.3 for RNA Folding.

Approximate Pattern Matching We continue our quest for quantifying the possible improve-
ments over decompress-and-solve for basic problems. Consider the following compressed versions

3For the purposes of this paper, “combinatorial” should be interpreted as any practically efficient algorithm that
does not suffer from the issues of FMM such as large constants and inefficient memory usage.

4Given a graph on n nodes, the k-Clique conjecture [1] is in fact two independent conjectures: The first one states
that we cannot solve k-clique in O(n(1−ε)·ωk/3), for any ε > 0. The second one states that we cannot solve k-Clique
combinatorially in O(n(1−ε)k) time, for any ε > 0.

4

of important primitives in text analysis known as Approximate Pattern Matching problems. In all
these problems we assume that we are given a compressed text T of size n (and decompressed size
N), and a compressed pattern P of size m (and decompressed size M), both over some constant
size alphabet.

• Pattern Matching with Wildcards: In this problem, the strings contain wildcard symbols
that can be replaced by any letter, and our goal is to decide if P appears in T .

• Substring Hamming Distance: Compute the smallest Hamming distance of any substring
of T to P .

And a problem that generalizes both is:

• Generalized Pattern Matching: Given some cost function on pairs of alphabet symbols,
find the length-M substring T ′ of T minimizing the total cost of all pairs (T ′[i], P [i]).

The above problems have been extensively studied both in the uncompressed (see [24]) and in
the compressed [49, 13, 32] settings. All three problems can be solved in time O(min{N logN,nM})
(see Section 3.2). Note that this bound beats the decompress-and-solve bound when the pattern
is small, but can we avoid decompressing the pattern? We show a completely tight SETH-based
lower bound of min{N,nM}1−o(1) for all three problems, even for constant size alphabets and in all
settings where the parameters are polynomially related. See Theorems 3.9 and 3.10 in Section 3.2.

Language Membership Consider the compressed version of the most basic language member-
ship problems. Assume we are given a compressed string T (again, from size N to n).

• DFA Acceptance: Given T and a DFA F with q states, decide whether F accepts T .

• NFA Acceptance: Given T and a NFA F with q states, decide whether F accepts T .

Classic algorithms solve the DFA Acceptance problem in time O(min{nq,N + q}) [61, 41],
and we prove a matching SETH-based lower bound of min{nq,N + q}1−o(1). See Theorem 3.2 in
Section 3.1.

For the NFA problem, the classic algorithms give O(min{nqω, Nq2}) [55, 61, 41]. For combina-
torial algorithms, we prove a matching lower bound of min{nq3, Nq2}1−o(1), under the (combina-
torial) k-Clique conjecture. See Theorem 4.2 in Section 4.1. Our lower bounds hold for constant
size alphabets, and in all settings of n,N, q, even restricted to instances with N = Θ(nαN) and
q = Θ(nαq) for any αN > 1 and αq > 0.

Disjointness, Hamming Distance, and Subsequence Could it be that for other, even more
basic problems the decompress-and-solve bound cannot be beaten? One candidate might be Dis-
jointness, the canonical hard problem in Communication Complexity.

• Disjointness: Given two equal-length bit-strings, is there a coordinate in which both are 1?

The following two natural problems are at least as hard as Disjointness (see Section 5).

• Hamming Distance: Compute the Hamming Distance of two strings.

• Subsequence: Decide if a pattern of length M is a subsequence of a text of length N .

5

Note that all these problems can be solved trivially in O(N) time if our strings are uncompressed.
Could it be that we cannot solve them without decompressing our data? We are not aware of any
known algorithms solving any of these problems in O(N1−ε) time, for any ε > 0, even when our
strings are compressed into size n = O(Nα) for some small constant α > 0. The only exceptions are
the known Õ(M) time algorithms [28, 20, 69, 79, 71, 12] for the Subsequence problem, which beat
the decompress-and-solve bound when the pattern is significantly smaller than the text. However,
in the case M = Θ(N) no improvements seem to be known.

In Section 5 we present our attempts at proving a matching lower bound. We prove the fol-
lowing: N1−o(1) for Subsequence in the setting N = Θ(M) = Θ(n2) = Θ(m2) and |Σ| = O(N ε)
(Theorem 5.9). N1/4−o(1) for Disjointness (and thus also for the other two problems) in the set-
ting N = M and n,m = O(N ε) for any ε > 0, and constant alphabet size, assuming the k-SUM
conjecture (Theorem 5.10). Similarly: N1/3−o(1) for Disjointness under Strong k-SUM conjecture
(Theorem 5.11).

Motivated by our inability to prove tight lower bounds for these basic problems, despite seem-
ingly having the right framework, we have turned our attention to upper bounds. In Section 5
we obtain the first improvement over the decompress-and-solve bound for Disjointness, Hamming
Distance, and Subsequence. In particular, we obtain the first improvement over the decompress-
and-solve bound for Disjointness, Hamming Distance, and Subsequence. Our algorithms solve all
these problems in O(n1.410 ·N0.593) time. As a side result, we also design a very simple algorithm for
the Subsequence problem with O((n|Σ| + M) logN) runtime (Theorem 5.4), which is comparable
to the known but more involved algorithms [12].

One of the biggest benefits of having complexity theoretic results is that algorithm designers
know what to focus on. We believe that these upper bounds can be improved further and suggest
it as an interesting open question: What is the time complexity of computing Disjointness on two
grammar-compressed strings?

1.3 Technical Overview

From a technical perspective, our paper is most related to the conditional lower bounds for sequence
similarity measures on strings and curves that have been shown in recent years, specifically, the
SETH-based lower bounds for edit distance [10], longest common subsequence [2, 17], Fréchet
distance [14], and others [4, 11, 16, 62].

These results all proceed as follows. Let φ be a given k-SAT instance on ñ variables and clauses
C1, . . . , Cm̃. We can assume that m̃ = O(ñ) by the Sparsification Lemma [43]. Split the ñ variables
into two halves X1 and X2 of size ñ/2. Enumerate all assignments α1, . . . , α2ñ/2 of the variables
in X1. For any assignment αi and any clause C`, denote by sat(αi, C`) whether αi satisfies C`, i.e.,
whether some variable in X1 appears in C` (negated or unnegated) and is set by αi so that C` is
satisfied. Similarly, consider the assignments β1, . . . , β2ñ/2 of X2. By construction, we can solve the
k-SAT instance φ by testing whether there are αi, βj such that sat(αi, C`) ∨ sat(βj , C`) holds for
all ` ∈ [m̃]. Making use of this fact, all previous conditional lower bounds for sequence similarity
measures essentially construct the following natural sequence:

W = sat(α1, C1) . . . sat(α1, Cm̃) . . . sat(α2ñ/2 , C1) . . . sat(α2ñ/2 , Cm̃)

= ©
i∈[2ñ/2]

©
`∈[m̃]

sat(αi, C`).

6

One typical variation of this string is to replace the bits {0, 1}, indicating whether sat(αi, C`) holds,
by two short strings {B(0), B(1)}. Other typical variations are to add appropriate padding strings
around the substrings©`∈[m̃] sat(αi, C`) or around the whole sequence W . These paddings typically
only depend on ñ and m̃. Constructing a second sequence W ′ with αi replaced by βi, one can then
try to emulate the search for the half-assignments αi, βj by a similarity measure on W,W ′. All
previous reductions follow this recipe, and thus construct a sequence like W .

Is W compressible? For our purposes we need to construct compressible strings. Considering
the entropy, the string W is very well compressible, since it only depends on the Õ(ñ) input bits of
the sparse k-SAT instance φ. This entropy Õ(ñ) is extremely small compared to the length O(ñ2ñ/2)
of W . However, considering grammar-compression, the sequence W is a bad representation, since
W is not generated by any SLP of size o(2ñ/2/ñ) in general! To see this, first observe that all
substrings ©`∈[m̃] sat(αi, C`) of W can potentially be different, meaning that W can have 2ñ/2

different substrings of length m̃. This happens e.g. if for each variable xi ∈ X there is a clause
Ci consisting only of xi (which makes the k-SAT instance trivial, but shows that W may have
many different substrings in general). Second, observe that for any SLP T consisting of n non-
terminals S1 . . . Sn and for any length L ≥ 1 the generated string eval(T) has at most n ·L different
substrings of length L. Indeed, a rule Si → S`Sr can only create a new substring, that is not
already contained in eval(S`) or eval(Sr), if this substring overlaps the boundary between eval(S`)
and eval(Sr) in eval(Si). Hence, the rule Si → S`Sr can contribute at most L new substrings of
length L, amounting to at most nL different substrings overall. Combining these two facts, with
L = m̃ = O(ñ), we see that W in general has no SLP of size o(2ñ/2/ñ).

Hence, the standard approach to conditional lower bounds for sequence similarity measures fails
in the compressed setting, and it might seem like (SETH-based) conditional lower bounds are not
applicable here.

A compressible sequence T On the contrary, we show that by simply inverting the ordering
we obtain a very well compressible string:

T = sat(α1, C1) . . . sat(α2ñ/2 , C1) . . . sat(α1, Cm̃) . . . sat(α2ñ/2 , Cm̃)

= ©
`∈[m̃]

©
i∈[2ñ/2]

sat(αi, C`).

The difference betweenW and T might seem negligible, but it greatly changes the game of emulating
k-SAT by a sequence similarity measure: In W we are looking for a local structure (a small
substring) that “fits together” with a local structure in a different string W ′. In T we have to
ensure the choice of a consistent offset ∆ ∈ [n] and “read” the symbols T [∆], T [∆+2ñ/2], . . . , T [∆+
(m̃− 1)2ñ/2], which seems much more complicated.

T is compressible to an SLP T of size O(ñ2), which is much smaller than the Ω(2ñ/2/ñ) bound
for W . Indeed, consider a substring ©i∈[2ñ/2] sat(αi, C`). We may assume that no variable appears
more than once in C`. Consider the following SLP rules, for 1 ≤ i ≤ ñ/2,

A0 → 1,

Ai → Ai−1Ai−1,

S0 → 0,

Si →


Si−1Ai−1 if xi appears in C`

Ai−1Si−1 if ¬xi appears in C`

Si−1Si−1 otherwise

7

We clearly have eval(Ai) = 12i . Moreover, if ¬xi appears in C`, then for xi = 0, no matter what
we choose for x1, . . . , xi−1, we have sat(αj , C`) = 1, and thus we may write Ai−1. For xi = 1 we
note that the value sat(αj , C`) only depends on the remaining variables x1, . . . , xi−1, and thus we
may write Si−1. Along these lines, one can check that eval(Sñ/2) = ©i∈[2ñ/2] sat(αi, C`). Creating
such an SLP for each ` ∈ [m̃] and constructing their concatenation, we obtain an SLP of size
O(m̃ñ) = O(ñ2) generating T .

Example Lower Bound: Pattern Matching with Wildcards In the remainder of this sec-
tion, we present an easy example for a conditional lower bound on compressed strings, namely for
the problem Pattern Matching with Wildcards. Here we consider an alphabet Σ and we say that
symbols σ, σ′ ∈ Σ ∪ {∗} match if σ = ∗ or σ′ = ∗ or σ = σ′. We say that two equal-length strings
X,Y (over alphabet Σ∪{∗}) match if X[i] and Y [i] match for all i. Given a text T of length N and
a pattern P of length M ≤ N , the task is to decide whether P matches some length-M substring
of T .

Let φ be a k-SAT instance as above, but this time let α1, . . . , α2ñ be all the assignments of the
ñ variables in φ. We define the text T and pattern P by

T = ©
`∈[m̃]

©
i∈[2ñ]

sat(αi, C`) P = 1(∗2ñ−11)m̃−1.

Note that P matches some substring of T if and only if there is an offset ∆ ∈ [2ñ] such that
T [∆] = T [∆ + 2ñ] = . . . = T [∆ + (m̃ − 1)2ñ] = 1, which happens if and only if α∆ is a satisfying
assignment of φ. Hence, we constructed an equivalent instance of Pattern Matching with Wildcards.

Analogously to above, one can show that T is generated by an SLP T of size n = O(ñ2) that
can be computed in time O(ñ2). Similarly, it is easy to see that P is generated by an SLP P of size
O(ñ) that can be computed in time O(ñ). Hence, the reduction runs in time O(ñ2). We stress that
we define strings T, P of exponential length in ñ, but in the reduction we never explicitly write down
any such string, but we simply construct compressed representations. Since the resulting strings
have length O(2ññ), any O(N1−ε) time algorithm for Pattern Matching with Wildcards would
imply an algorithm for k-SAT in time O(2(1−ε)ñpoly(ñ)), contradicting the Strong Exponential
Time Hypothesis (SETH). Note that this conditional lower bound of N1−o(1) holds even for strings
compressible to size polylog(N).

In Section 3.2 we analyze Pattern Matching with Wildcards in more detail and show that the
optimal running time, conditional on SETH, is min{N,nM}1±o(1), and this holds for all settings of
the text length N , the compressed text size n, the pattern length M , and the compressed pattern
size m.

In Pattern Matching with Wildcards, we got a consistent choice of an offset ∆ for free. It is
much more complicated to achieve this for other problems such as Longest Common Subsequence,
CFG Parsing, or RNA Folding. This overview summarized the main technical contributions of this
paper, but left out many problem-specific tricks that can be found in the subsequent proofs, and
that we think will find more applications for analyzing problems on compressed strings.

2 Preliminaries

Here we give general preliminaries on strings, straight-line programs, and hardness assumptions.
Problem definitions and additional problem specific preliminaries will be given in the corresponding

8

S1 → 0
S2 → 1
S3 → S1 S2

S4 → S3 S2

S5 → S3 S1

S6 → S5 S4

(a)

S6

S5

S3

S1

0

S2

1

S1

0

S4

S3

S1

0

S2

1

S2

1

(b)

0

1

S1

S2

S3

S4

S5

S6

(c)

Figure 1: (a) An SLP generating the sequence 010011. (b) The corresponding parse tree. (c) The
acyclic graph corresponding to the SLP.

sections. For a positive integer n we let [n] = {1, . . . , n}, while for a proposition A we let [A] be 1
if A is true and 0 otherwise.

Strings Let Σ be a finite alphabet. In most parts of this paper we assume that |Σ| = O(1), but
in exceptional cases we allow the alphabet to grow with the input size. For a string T over alphabet
Σ, we write |T | for its length, T [i] for its i-th symbol, and T [i..j] for the substring from position
i to position j. For two strings T, T ′ we write T ◦T ′, or simply T T ′, for their concatenation. For
k ≥ 1 we let T k :=©k

i=1 T .

Straight-Line Programs (SLPs) An SLP T is a set of non-terminals S1, . . . , Sn, each equipped
with a rule of the form (1) Si → σ for some σ ∈ Σ or (2) Si → S`(i), Sr(i) with `(i), r(i) < i.
The string T generated by SLP T is recursively defined as follows. For a rule Si → σ we let
eval(Si) := σ, and for a rule Si → S`(i), Sr(i) we let eval(Si) := eval(S`(i)) ◦ eval(Sr(i)). Then
T = eval(T) := eval(Sn) is the string generated by SLP T . Note that an SLP is a context-free
grammar describing a unique string; so T is a grammar-compressed representation of T . We call
|T | = n the size of T . See Figure 1 for the depiction of an SLP; in particular note the difference
between the directed acyclic graph that is the compressed representation T and the parse tree that
we obtain by decompressing T to a tree whose leaves spell the decompressed text T .

For an SLP T with non-terminals S1, . . . , Sn, we recursively define the depth depth(Si) as
follows. For a rule Si → σ we set depth(Si) := 0. For a rule Si → S`(i), Sr(i) we set depth(Si) =
max{depth(S`(i)),depth(Sr(i))} + 1. The depth of T is defined as depth(Sn). The SLP T is
called an AVL-grammar [64] if it is balanced: for any rule Si → S`(i), Sr(i) in the SLP we have
|depth(S`(i))−depth(Sr(i))| ≤ 1. This implies that the depth of T is O(logN), where N = |eval(T)|.

Theorem 2.1 ([64]). Given a text T of length N by an SLP T of size n, in O(n logN) time we
can construct an AVL-grammar T ′ for T with size O(n logN) and depth O(logN).

Observation 2.2. For any string T and k ≥ 1, there is an SLP of size O(|T |+ log k) generating
the string T k.

9

In all problems considered in this paper, the input contains a text T given by a grammar-
compressed representation T , such that T = eval(T). We always denote by N = |T | the length
of the text and by n = |T | the size of its representation. Sometimes we are additionally given
a pattern P by a grammar-compressed representation P, and we denote the pattern length by
M = |P | and its representation size by m = |P|.

2.1 Hardness Assumptions

SETH and OV The Strong Exponential Time Hypothesis (SETH) was introduced by Impagli-
azzo, Paturi, and Zane [43] and asserts that the central NP-hard satisfiability problem has no
algorithms that are much faster than exhaustive search.

Conjecture 2.3 (SETH). There is no ε > 0 such that for all k ≥ 3, k-SAT on n variables can be
solved in time O(2(1−ε)n).

Effectively all known SETH-based lower bounds for polynomial-time problems use reductions
via the Orthogonal Vectors problem (OV): Given sets A, B ⊆ {0, 1}d of size |A| = A, |B| = B,
determine whether there exist vectors a ∈ A, b ∈ B with

∑d
i=1 a[i] · b[i] = 0. Simple algorithms

solve OV in time O(2d(A + B)) and O(dAB). For A = B and d = c(A) logA the fastest known
algorithm runs in time A2−1/O(log c(A)) [5], which is only slightly subquadratic for d� logA. This
has led to the following conjecture, which follows from SETH [76].

Conjecture 2.4 (OV). For any ε > 0 and β > 0, on instances with B = Θ(Aβ) OV has no
O(A1+β−εpoly(d)) time algorithm.

It is known that if this conjecture holds for some β > 0 then it holds for all β > 0, see e.g. [17].
More generally, for k ≥ 2 we say that a tuple (a1, . . . , ak) with ai ∈ {0, 1}d is orthogonal if for

all ` ∈ [d] there exists an i ∈ [k] such that ai[`] = 0. In the k-OV problem we are given a set
A ⊆ {0, 1}d of size A and want to determine whether there is an orthogonal tuple (a1, . . . , ak) with
ai ∈ A. The fastest known algorithm for k-OV is to run an easy reduction to OV and then solve
OV. The following conjecture follows from SETH.

Conjecture 2.5 (k-OV). For any ε > 0 and k ≥ 2, k-OV is not in time O(Ak−εpoly(d)).

k-Clique The fundamental k-Clique problem asks whether a given (undirected, unweighted)
graph G = (V,E) contains k nodes that are pairwise adjacent. k-Clique is among the most well-
studied problems in theoretical computer science, and it is the canonical intractable (W[1]-complete)
problem in parameterized complexity. With slight abuse of notation, we will denote the number
of vertices and edges of G by V and E, respectively. The naive algorithm for k-Clique takes time
O(V k). If k is divisible by 3, the fastest known algorithm runs in time O(V ωk/3), where ω < 2.373
is the exponent of matrix multiplication [58]. See [31] for the case that k is not divisible by 3. To
improve this bound is a longstanding open problem [78, 56]. Since fast matrix multiplication is
considered impractical, researchers also studied combinatorial algorithms, that avoid fast matrix
multiplication5. The fastest combinatorial algorithm runs in time O(V k/ logk V) [73]. The following
conjectures assert that these bounds are close to optimal, and have been used e.g. in [1, 16].

5Combinatorial algorithms are a notion without agreed upon definition; finding a formal definition is considered
an open problem.

10

Conjecture 2.6 (k-Clique). For any ε > 0 and k ≥ 3, k-Clique has no O(V (1−ε)ωk/3) algorithm.

Conjecture 2.7 (Combinatorial k-Clique). For any ε > 0 and k ≥ 3, k-Clique has no combinato-
rial O(V (1−ε)k) algorithm.

k-SUM In the k-SUM problem, we are given integers R, t ≥ 0 and a set Z ⊆ {0, 1, . . . , R} of
|Z| = r integers, and the task is to decide whether there are k (not necessarily distinct) integers
z1, . . . , zk ∈ Z that sum to t, i.e., z1 + . . . + zk = t. This problem has well-known algorithms in
time O(rdk/2e) and O(r+R logR), and it is conjectured that no much faster algorithms exist. The
following conjectures, which generalize the more popular 3-SUM conjecture [33, 59] and Strong
3-SUM conjecture [6], remain believable despite recent algorithmic progress [9, 21, 37, 74].

Conjecture 2.8 (k-SUM). For any k ≥ 3 and R = rk, the k-SUM problem is not in time
O(rdk/2e−ε) for any ε > 0.

Conjecture 2.9 (Strong k-SUM). For any k ≥ 3 and R = rdk/2e, the k-SUM problem is not in
time O(rdk/2e−ε) for any ε > 0.

3 Tight Bounds Assuming SETH

In this section we prove matching conditional lower bounds based on the Strong Exponential Time
Hypothesis (SETH, see Conjecture 2.3) for the following problems:

• DFA Acceptance, i.e., deciding whether a given deterministic finite automaton accepts a given
string,

• Substring Hamming Distance, i.e., determining the minimum Hamming distance that can be
achieved by aligning a given pattern sequence with a substring of a given text sequence,

• Pattern Matching with Wildcards, i.e., deciding whether the given pattern sequence (contain-
ing wildcards that match any symbol) matches a substring of the given text,

• Longest Common Subsequence, i.e., computing the length of the longest common subsequence
of two given strings.

See the respective subsections for precise problem definitions. In all our proofs, instead of using
SETH directly, we use the more convenient OV conjecture (Conjecture 2.4) or k-OV conjecture
(Conjecture 2.5), which are implied by SETH.

For DFA Acceptance, the compression used in our reduction from the given OV instance is
extremely simple, in that we only rely on the fact that any repetition T ` can be generated by an
SLP of size O(|T |+ log `) (Observation 2.2).

For Substring Hamming Distance, Pattern Matching with Wildcards and Longest Common
Subsequence, however, our construction are more subtle. We crucially use the following idea:
consider a k-OV instance A on A vectors in d dimensions. There is a length-O(dAk) text T
representing this instance so that (1) T is succinctly described by an SLP T of size O(dA) and
(2) testing whether the k-OV instance has a solution corresponds to determining whether there
is some i = 1, . . . , Ak such that all bits T [i], T [i + Ak], . . . , T [i + (d − 1)Ak] are equal to zero.
Intuitively, i ∈ {1, . . . , Ak} denotes the i-th k-tuple of vectors in Ak, and T [i] = 0 holds if and only

11

if the k vectors in the i-th k-tuple are orthogonal in the 1st coordinate. In general, for 1 ≤ ` ≤ d,
T [i+ (`− 1)Ak] = 0 holds if and only if the k vectors are orthogonal in the `-th coordinate. More
formally, we set T to be

T =
d
©
`=1

©
a1∈A(1)

. . . ©
ak∈A(k)

[
a1[`] = . . . = ak[`] = 1

]
,

where [.] is the Kronecker symbol, i.e., [true] = 1 and [false] = 0. For any `, the sequence
©a1∈A(1) . . .©ak∈A(k) [a1[`] = . . . = ak[`] = 1] is generated by an SLP of size O(dA): if a1[`] = 0,

then for all a2, . . . , ak, the vectors will be orthogonal in this coordinate and we can write 0A
k−1

,
which is well compressible by Observation 2.2. Otherwise, if a1[`] = 1, we recurse on a2, . . . , ak and
the following Ak−1 symbols do not depend on a1[`] anymore.

A modification of the above construction of T gives SETH hardness for Substring Hamming Dis-
tance and Pattern Matching with Wildcards. Showing hardness for Longest Common Subsequence
requires more ideas. In particular, to be able to show tight hardness we extend the framework
of [17].

We stress that if the sequence T would enumerate all k-tuples one after another (instead of
iterating over the coordinates in the outer loop over `), then it would not be compressible using
SLPs, see Section 1.3. This makes our reductions quite different from all previously known hardness
results where the sequences are concatenations of vector gadgets one after another.

Known Lower Bounds from Classic Complexity Theory We observe that the Substring
Hamming Distance problem is a generalization of the Hamming Distance problem which asks
to output the Hamming distance between a compressed text and a compressed pattern of equal
length. The latter problem is known to be #P-complete and thus the Substring Hamming Distance
problem is #P-hard (see the discussion at the beginning of Section 5.2). Similarly, Longest Common
Subsequence is a generalization of the problem of deciding whether a given pattern is a subsequence
of a given text. The latter problem is known to be PP-hard (see the aforementioned discussion)
and this yields PP-hardness for Longest Common Subsequence.

The DFA Acceptance problem can be solved in polynomial time (see Section 3.1) and no con-
ditional lower bounds were known for this problem. Finally, our reduction in Theorem 3.9 below
shows that Pattern Matching with Wildcards is NP-hard.

3.1 DFA Acceptance

Recall that a finite-state automaton F over an alphabet Σ consists of a set of states Z of size q,
a starting state z0 ∈ Z, a set of accepting states Z ′ ⊆ Z, and a set of transitions z

σ→ z′ with

z, z′ ∈ Z and σ ∈ Σ. We lift this notation to strings T = T [1..N] by writing z
T→ z′ whenever there

are states z1, . . . , z`−1 and transitions z
T [1]→ z1, z1

T [2]→ z2, . . . , z`−1
T [N]→ z′. Furthermore, for a set

S ⊆ Σ we write z
S→ z′ whenever z

σ→ z′ for all σ ∈ S. The automaton F is deterministic if for any
z ∈ Z and σ ∈ Σ there is at most one z′ ∈ Z with transition z

σ→ z′, and F is non-determinisitic

otherwise. The automaton F accepts a given string T if z0
T→ z′ holds for some accepting state z′.

Throughout this section, we assume the alphabet size to be constant. If F is a deterministic
finite-state automaton (DFA), we may assume without loss of generality that for every state z and

12

symbol σ ∈ Σ, there always exists a (uniquely defined) state z′ with z
σ→ z′.6 We fix the input

description of F to a list of transitions of F as well as a list of accepting states. Observe that any
DFA F on constant alphabet Σ has an input size of O(q).

Consider the compressed variant of the acceptance problem of DFAs.

Problem 3.1 (DFA Acceptance). Given a text T of length N by a grammar-compressed represen-
tation T of size n as well as a DFA F with q states, decide whether T is accepted by F .

The naive solution decompresses T to obtain T and runs the obvious acceptance algorithm for
DFAs, which takes time O(|T |+ q) = O(N + q). Exploiting the compressed setting, one can obtain
an O(nq)-time algorithm [61]: Recall that T is a set of rules of the form Si → S`(i)Sr(i) or Si → σi,
with `(i), r(i) < i and σi ∈ Σ, for 1 ≤ i ≤ n. We compute, for increasing i, the state transition

function fi : [q] → [q] (we denote states using integers 1, . . . , q) that satisfies z
eval(Si)→ fi(z). For

Si → S`(i)Sr(i) we can compute fi as fr(i) ◦ f`(i), where ◦ is function composition. For Si → σi we

simply have fi(z) = z′ for the unique transition z
σi→ z′. Hence, fi can be computed in time O(q)

for every i. The text T is then accepted by F if and only if fn(z0) is an accepting state, where z0

is the starting state of F . Hence, the best-known algorithm takes time O(min{nq,N + q}).
We prove that DFA Acceptance takes time min{nq,N+q}1−o(1) assuming SETH, thus providing

a conditional lower bound matching the known algorithmic results. It is straightforward to see that
any algorithm must read the complete input description of F to always correctly decide the problem,
yielding a lower bound of Ω(q). In the remainder, we provide the remaining conditional lower bound
of min{nq,N}1−o(1).

Theorem 3.2. Assuming the OV conjecture, for no ε > 0 there is an O(min{nq,N}1−ε)-time
algorithm for DFA Acceptance. This holds even restricted to instances with N = Θ(nαN) and
q = Θ(nαq) for any αN > 1 and αq > 0.

Proof. Let A = {a1, . . . , aA},B = {b1, . . . , bB} be a given OV instance in d dimensions. We
construct a string T of length N = O(dAB) with a representation T of size n = O(dA) and a
DFA F with q = O(dB). An O(min{nq,N}1−ε)-time algorithm for DFA Acceptance would then
imply an algorithm for OV in time O((d2AB)1−ε) = O((AB)1−εpoly(d)), contradicting the OV
conjecture. At the end of this proof we show that this also holds for all restrictions N = Θ(nαN)
and q = Θ(nαq) with αN > 1 and αq > 0.

Constructing the Text T We cast any vector a ∈ {0, 1}d to a string T (a) := ©d
k=1 a[k] by

simply concatenating its coordinates. We define the text T over the alphabet Σ = {0, 1,#, !} as

T :=

(
! ◦

A
©
i=1

#T (ai)

)B
. (1)

Here, we think of ! and # as “new group” and “new vector within group” indicators, respectively.
Intuitively, the j-th repetition of T (ai) is supposed to lead to an accepting state of F if ai and bj
are an orthogonal pair.

6Note that we can always define an absorbing non-accepting state zfail with zfail Σ→ zfail and set, for any undefined
transition from z under σ, z

σ→ zfail, which increases the number of states only by one.

13

...

...

...

...
Figure 2: Illustration of the DFA F . Any transition not specified leads to a absorbing non-accepting
state zfail.

Constructing the DFA F For an illustration of the DFA construction see Figure 2. We start by
defining “vector gadgets”: For any vector bj ∈ B we construct a DFA Fj over alphabet {0, 1} with

states z
(0)
j , z

(1)
j , . . . , z

(d)
j and zfail

j . The initial state is z
(0)
j . For any k ∈ [d] we have the transitions

z
(k−1)
j

0→ z
(k)
j and

z
(k−1)
j

1→

{
z

(k)
j if bj [k] = 0,

zfail
j otherwise.

We let z
(d)
j be an accepting state with transition z

(d)
j

{0,1}→ z
(d)
j . Furthermore, we have zfail

j

{0,1}→ zfail
j .

It is easy to see that after reading a string a ∈ {0, 1}d, Fj is in either z
(d)
j or zfail

j , and it is in z
(d)
j

if and only if a and bj are orthogonal.
We combine these smaller DFAs to our final DFA F over the slightly larger alphabet Σ =

{0, 1,#, !} as follows. We define additional states g0, g1, . . . , gB and let g0 be the initial state of F .
We define the following additional transitions:

g0
!→ g1

gj
#→ z

(0)
j for 1 ≤ j ≤ B,

zfail
j−1

!→ gj for 1 < j ≤ B,

zfail
j

#→ z
(0)
j for 1 ≤ j ≤ B,

z
(d)
j

{#,!}→ z
(d)
j for 1 ≤ j ≤ B.

In this way, each z
(d)
j is an absorbing accepting state, and the symbols # and ! satisfy the

14

semantics of jumping to the next vector in A and B, respectively. This finishes the definition of
the reduction.

Correctness We claim that the constructed DFA F accepts T if and only if A,B contains an
orthogonal pair. By structure of F and T , as well as the properties argued for Fj , j ∈ [B], it is
straightforward to show that after reading any prefix T ′ of T ending on #, F is in the initial state
of Fj , where j is the number of !’s in T ′ – this holds until F has encountered an accepting state for
the first and final time. Thus, if T is accepted by F , then some prefix T ′ of T that ends on # ai for
some i ∈ [A] has led an accepting state of F . This can only happen if ai is orthogonal to bj , where
j is the number of !’s in T ′, i.e., A,B contain an orthogonal pair. Conversely, if A,B contains an
orthogonal pair, let ai, bj the smallest such pair in terms of the lexicographic order on (j, i). Then

the prefix T ′ that ends on #ai and contains j !’s leads to the accepting state z
(d)
j .

Size Bounds We count that |T | = B((d+ 1)A+ 1) = O(dAB). Since T consists of B repetitions
of a string of length (d+1)A+1, we can compute an SLP T of size |T | ≤ O(log(B)+dA) = O(dA)
by Observation 2.2. The number of states of F is O(dB). This satisfies the claimed size bounds.
Note that the reduction can be implemented in linear time in the output size.

Strengthening the Statement In the remainder, we verify that our construction proves the
desired lower bound even restricted to instances with N = Θ(nαN) and q = Θ(nαq) for any αN > 1
and αq > 0. Note that the number of states, the size of the SLP, and the text length can all three
be increased by easy padding. E.g., to increase the text length we introduce a garbage symbol “\”
that can be read at any state of the automaton, not changing the current state, and add a suitable
number of copies of “\” to the text.

We now set β := min{αq, αN − 1} and only consider OV instances with B = Θ(Aβ). Note
that the OV conjecture asserts a lower bound of A1+β−o(1) in this setting. Note that the above
construction yields n = O(dA) = O(dmax{1,1/β}A), and we can pad to equality. Moreover, we have
q = O(dB) = O(dmax{β,1}B) = O(dmax{β,1}Aβ) = O(nβ) = O(nαq), since β ≤ αq, and we can
pad to equality to obtain q = Θ(nαq). Similarly, we have N = O(dAB) = O(d1+max{β,1}A1+β) =
O(n1+β) = O(nαN), since β ≤ αN − 1, and we can pad to equality to obtain N = Θ(nαN).
Finally, an O(min{nq,N}1−ε)-time algorithm for DFA Acceptance restricted to N = Θ(nαN) and
q = Θ(nαq) would imply an algorithm for OV in time O(min{n1+αq , nαN }1−ε) = O(n(1+β)(1−ε)) =
O((dmax{1,1/β}A)(1+β)(1−ε)) = O(dmax{1+β,1+1/β}A(1+β)(1−ε)) = O(A1+β−εpoly(d)), contradicting
the OV conjecture. This finishes the proof.

3.2 Approximate Pattern Matching and Substring Hamming Distance

We study the following generalization of pattern matching.

Problem 3.3 (Generalized Pattern Matching). Given a text T of length N by an SLP T of size n,
a pattern P of length M by an SLP P of size m, both over some alphabet Σ, and given a cost
function cost : Σ×Σ→ N, compute min0≤i≤N−M

∑M
j=1 cost(P [j], T [i+ j]), i.e., the minimum total

cost of any alignment.

In other words, we want to compute the length-M substring T ′ of T minimizing the total cost
of aligned symbols in P and T ′. This problem has two important special cases: (1) We obtain

15

Substring Hamming Distance when cost(σ, σ′) = [σ 6= σ′] for any σ, σ′ ∈ Σ. (2) We obtain Pattern
Matching with Wildcards when T is over alphabet Σ and P is over alphabet Σ ∪ {∗}, we have
cost(∗, σ) = 0 for any σ ∈ Σ and cost(σ, σ′) = [σ 6= σ′] for any σ, σ′ ∈ Σ, and the task is to decide
whether the minimum total cost of any alignment is 0.

Problem 3.4 (Substring Hamming Distance). Given a text T of length N by an SLP T of
size n and a pattern P of length M by an SLP P of size m, both over some alphabet Σ, com-
pute min0≤i≤N−M

∑M
j=1

[
P [j] 6= T [i+ j]

]
, i.e., the minimum Hamming distance of any alignment.

Problem 3.5 (Pattern Matching with Wildcards). For some alphabet Σ, we are given a text T of
length N by an SLP T of size n over alphabet Σ and a pattern P of length M by an SLP P of size
m over alphabet Σ ∪ {∗}. We say that σ′ ∈ Σ ∪ {∗} and σ ∈ Σ match if σ′ = ∗ or σ′ = σ. Decide
whether for some offset 0 ≤ i ≤ N −M all pairs P [j], T [i+ j] match for 1 ≤ j ≤M .

In this section, for all three problems we show an upper bound of O(min{|Σ|N logN,nM}) and
a SETH-based lower bound of min{N,nM}1−o(1). This yields a tight bound in case of constant
alphabet size, as the lower bound constructs constant-alphabet strings. We leave it as an open
problem to get tight bounds for larger alphabet size.

Note that it suffices to prove the upper bound for Generalized Pattern Matching and the lower
bound for the special cases Substring Hamming Distance and Pattern Matching with Wildcards.
We start with the following two upper bounds, which follow standard arguments.

Lemma 3.6. Generalized Pattern Matching can be solved in time O(|Σ|N logN).

Proof. Decompress both the text T and the pattern P . For each symbol σ ∈ Σ, build the vector
vσ ∈ RN with vσi := cost(σ, T [i]) and the vector uσ ∈ {0, 1}M with uσj := [P [j] = σ]. Compute

their convolution wσ ∈ RN−M+1 with wσi =
∑M

j=1 u
σ
j v

σ
i+j . Using FFT, wσ can be computed in time

O(N logN). Finally, compute the vector r ∈ RN−M+1 with ri =
∑

σ∈Σw
σ
i and return the minimal

entry of r. Note that

ri =
∑
σ∈Σ

wσi =
∑
σ∈Σ

M∑
j=1

uσj v
σ
i+j =

∑
σ∈Σ

M∑
j=1

[P [j] = σ] · cost(σ, T [i+ j]) =
M∑
j=1

cost(P [j], T [i+ j]),

which proves correctness.

Lemma 3.7. Generalized Pattern Matching can be solved in time O(nM).

Proof Sketch. Let S1, . . . , Sn be the non-terminals of the SLP T that generates the text T . In this
proof, for simplicity we write Ti := eval(Si). We decompress the pattern P . For 1 ≤ i ≤ n we
define

Match(i) := min
0≤d≤|Ti|−M

M∑
j=1

cost(P [j], Ti[j + d]),

or∞, if |Ti| < M . This solves the Generalized Pattern Matching problem restricted to the substring
Ti of T . Clearly, we can solve the given Generalized Pattern Matching instance (T, P) by calling
Match(n). Moreover, for any offset d and any i ∈ [n] we define

FixMatch(i, d) :=
∑

j:
1≤j+d≤|Ti|,

1≤j≤M

cost(P [j], Ti[j + d]).

16

In other words, FixMatch(i, d) is equal to the total cost between Ti and a shifted pattern P (by d
symbols to the right, or −d symbols to the left), where we consider only the symbols that have an
aligned counterpart.

In the remainder we show how to compute these functions by simple recursive algorithms. We
precompute all lengths |Ti| in time O(n). For FixMatch(., .), observe that for a rule Si → S`Sr we
have

FixMatch(i, d) = FixMatch(`, d) + FixMatch(r, d− |T`|),

since the offset with respect to the first symbol of Tr differs to the offset with respect to the first
symbol of Ti by |T`|. Moreover, for a rule Si → σ ∈ Σ we can compute FixMatch(i, d) in constant
time. Note that whenever the offset d is such that no symbols get aligned, we can immediately
return 0. This completes our algorithm for FixMatch(., .).

Now consider Match(i). For a rule Si → S`Sr, the optimal alignment of the pattern in Ti is
either completely contained in T` or completely contained in Tr or it has a non-empty intersection
with both of them, in which case it has an offset −M < d < 0 with respect to the starting symbol
of Tr, or equivalently an offset |T`|+ d with respect to the starting symbol of T`. Hence, we have

Match(i) = min
{

Match(`), Match(r), min
−M<d<0

FixMatch(r, d) + FixMatch(`, |T`|+ d)
}
.

Again, for a rule Si → σ ∈ Σ we can compute Match(i) in constant time. This completes the
algorithm for Match(.).

To obtain the claimed running time, we use memoization to ensure that each argument is called
at most once. Clearly, there are n possible arguments for Match(.), and each call takes time O(M),
resulting in time O(nM). Note that Match(.) only calls FixMatch(i, d) for offsets d such that the
pattern crosses the left or right boundary of Ti. This property also holds as an invariant in the
recursive subproblems of FixMatch(i, d). Hence, there are less than 2M possible offsets d (i.e., less
than M offsets for the left and right boundary). As there are n possible values for i, and each call
to FixMatch(., .) takes time O(1), we obtain the claimed total running time of O(nM).

This completes the upper bound O(min{|Σ|N logN,nM}) for Generalized Pattern Matching.
It remains to prove the SETH-based lower bound of min{N,nM}1−o(1) for Substring Hamming
Distance and Pattern Matching with Wildcards.

We now make the intuition given at the beginning of Section 3 formal, by designing a text
T that enumerates all combinations of k vectors in a given k-OV instance, while still being well
compressible. We give a slightly more general construction that will also be useful later for our
SETH-based lower bounds for LCS, see Section 3.3. As usual, we consider k as a constant.

Lemma 3.8. Consider a k-OV instance A = {a1, . . . , aA} ⊆ {0, 1}d. Let b ∈ {0, 1}d be an
additional vector, and let S(0), S(1) be strings of length γ (S(i) is a sequence that represents an
entry that is equal to i). We define the tuplified representation as follows:

V = tuplify
(
A, k, b, S(0), S(1)

)
:=

d
©
`=1

©
i1,...,ik∈[A]

S
(
b[`] · ai1 [`] · · · aik [`]

)
,

where the second © goes over all tuples (i1, . . . , ik) ∈ [A]k in lexicographic order. This representa-
tion satisfies the following properties.

17

1. We can compute, in linear time in the output size, an SLP V generating V of size O(dA+ γ)
or, when given SLPs S(0),S(1) generating S(0), S(1), of size O(dA+ |S(0)|+ |S(1)|).

2. Write V = ©dAk
i=1 Vi with Vi ∈ {S(0), S(1)}. Then there exist i1, . . . , ik ∈ [A] such that

(b, ai1 , . . . , aik) is orthogonal if and only if there is an offset 1 ≤ ∆ ≤ Ak such that

V∆ = V∆+Ak = . . . = V∆+(d−1)Ak = S(0).

Proof. For the second property, note that by definition V∆, V∆+Ak , . . . , V∆+(d−1)Ak are all equal to

S(0) for ∆ ∈ [Ak] if and only if the ∆-th tuple (i1, . . . , ik) ∈ [A]k in the lexicographic ordering of
[A]k satisfies

b[`] · ai1 [`] · · · aik [`] = 0 for all ` ∈ [d].

This condition is equivalent to (b, ai1 , . . . , aik) being an orthogonal pair, so the claim follows.
It remains to construct a short SLP V generating V . We construct non-terminals PS(0), PS(1)

with eval(PS(i)) = S(i) by an SLP of size γS = O(γ) as in Observation 2.2, or of size γS =
O(|S(0)| + |S(1)|) by using given SLPs S(0),S(1). We can extend this, using Observation 2.2, to
a slightly larger SLP of size O(logA+ γS) that includes, for every 1 ≤ j ≤ k, a non-terminal P jS(0)

with eval(P jS(0)) = S(0)A
j
.

The crucial observation is the following: for any tuple (i1, . . . , ik) ∈ [A]k, let p`(i1, . . . , ik) =
ai1 [`] · · · aik [`]. Then for any ` ∈ [d], j ∈ [k] and (i1, . . . , ij) ∈ [A]j , we have that aij [`] = 0 implies
p`(i1, . . . , ij , i

′
j+1, . . . , i

′
k) = 0 for all (i′j+1, . . . , i

′
k) ∈ [A]k−j . We now define the final SLP using the

starting non-terminal S0 and the following productions

S0 → Test1 . . .Testd

Test` →

{
P kS(0) if b[`] = 0

List
(1)
` otherwise

` ∈ [d],

List
(j)
` → ©

i∈[A]

{
P k−jS(0) if ai[`] = 0,

List
(j+1)
` otherwise

` ∈ [d], j ∈ [k],

List
(k+1)
` → PS(1).

It is straight-forward to verify that eval(S0) = V . Note that the size of this SLP, i.e., the total
number of non-terminals on the right hand side of the above rules, is bounded by O(γS + dA).
Moreover, the SLP can be constructed in linear time in its size.

After this preparation, we can prove our conditional lower bounds.

Theorem 3.9. Assuming the k-OV conjecture, Pattern Matching with Wildcards over alphabet
{0, 1} (plus wildcards ∗) takes time min{N,nM}1−o(1). This holds even restricted to instances with
n = Θ(Nαn), M = Θ(NαM) and m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

Before we prove Theorem 3.9, let us sketch the main idea by providing a simple N1−o(1)-time
conditional lower bound in the setting n,m = O(N ε) and N = Θ(M). Let A ⊆ {0, 1}d of size A be
an arbitrary k-OV instance with k > 1/ε, and assume for simplicity d ≤ Ao(1). Using Lemma 3.8
on A, k, S(0) = 0, S(1) = 1 and b = (1, . . . , 1) ∈ {0, 1}d, we compute an SLP T for

T = tuplify(A, k, b, S(0), S(1)).

18

We define the pattern P as

P = 0(∗Ak−10)d−1.

Note that Pattern Matching with Wildcards on instance T, P checks whether for some offset ∆ we
have T [∆] = T [∆ +Ak] = . . . = T [∆ + (d−1)Ak] = 0. Hence, by Lemma 3.8, pattern P matches T
if and only if there is an orthogonal tuple (a1, . . . , ak) ∈ Ak, showing correctness of the reduction.

Note that we have N = Θ(M) = Θ(dAk). By Lemma 3.8, T has an SLP of size O(dA), and
by Observation 2.2, P has an SLP of size O(d logA). By d ≤ Ao(1) and k > 1/ε, we are indeed
in the setting n,m = O(N ε) and N = Θ(M). An O(N1−ε) algorithm for Pattern Matching with
Wildcards would now imply an O(Ak(1−ε)poly(d)) for k-OV, contradicting the k-OV conjecture.

We now give the slightly more involved general construction.

Proof of Theorem 3.9. For k ≥ 2, let A = {a1, . . . , aA} be a k-OV instance in d dimensions, and
let k1, k2 ≥ 1 with k1 + k2 = k. We will construct an equivalent instance of Pattern Matching
with Wildcards with N = O(dAk), M = O(dAk1), n = O(dAk2+1), and m = O(d logA). Any
O(min{N,nM}1−ε) algorithm for Pattern Matching with Wildcards would then imply an algorithm
for k-OV in time O(A(k+1)(1−ε)poly(d)) = O(Ak(1−ε/2)poly(d)) for k ≥ 2/ε, contradicting the k-OV
conjecture. Below we strengthen this statement to hold restricted to instances with n = Θ(Nαn),
M = Θ(NαM) and m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

To give such a reduction, we define the text as

T = ©
(j1,...,jk2

)∈[A]k2

1A
k1 ◦ tuplify(A, k1,min(aj1 , . . . , ajk2

), 0, 1),

where min(b1, . . . , b`) denotes the component-wise minimum of b1, . . . , b`.
We define the pattern P as

P = 0(∗Ak1−10)d−1.

Correctness Observe that P cannot overlap any 1A
k1 -block, since never more than Ak1−1 wild-

cards are followed by a 0 in P . Thus, P matches T if and only if there is a tuple (j1, . . . , jk2) ∈ [A]k2

such that P matches T ((j1, . . . , jk2)) := tuplify(A, k1,min(aj1 , . . . , ajk2
), 0, 1). By the structure of

the pattern, P matches any string S if and only if there is an offset ∆ such that S[∆] = S[∆+Ak1] =
· · · = S[∆+(d−1)Ak1] = 0. Thus, by Lemma 3.8, P matches T ((j1, . . . , jk2)) if and only if there are
vectors a1, . . . , ak1 ∈ A for which (a1, . . . , ak1 ,min(aj1 , . . . , ajk2

)) is an orthogonal tuple. The latter
condition is equivalent to (a1, . . . , ak1 , aj1 , . . . , ajk2

) being an orthogonal tuple. Since k1 + k2 = k

and T contains T ((j1, . . . , jk2)) for all (j1, . . . , jk2) ∈ [A]k2 , this proves that P matches T if and
only if there is an orthogonal k-tuple in the instance A.

Size Bounds Note that N = |T | = O(dAk). By Lemma 3.8 and Observation 2.2, we can
compute an SLP T of size n = O(dAk2+1) generating T , in linear time. Similarly, note that
M = |P | = O(dAk1). By Observation 2.2, we can compute an SLP P of length m = O(d logA)
generating P , in linear time. This proves the claimed bounds.

Strengthening the Statement We now prove the lower bound restricted to instances with
n = Θ(Nαn), M = Θ(NαM) and m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.
Let ε > 0 and set β := min{1, αM + αn}. We choose k1, k2 ≥ 1 such that k1 + k2 = k and

19

k1 ≈ min{αM , 1−αn}k/β and k2 ≈ αnk/β. Note that k1, k2 are restricted to be integers, however,
for sufficiently large k depending only on ε, αM , αn, we can ensure k1 ≤ (1+ε/4) min{αM , 1−αn}k/β
and k2 + 1 ≤ (1 + ε/4)αnk/β. Note that for the dimension d we can assume d ≤ A, since
otherwise an O(Ak−εpoly(d)) algorithm clearly exists. In particular, for sufficiently large k we have
d ≤ A(ε/4)·min{αM ,αm,αn,1−αn}k/β. This yields

N = O(dAk) = O(A(1+ε/2)k/β),

M = O(dAk1) = O(A(1+ε/2) min{αM ,1−αn}k/β) = O(A(1+ε/2)αMk/β),

n = O(dAk2+1) = O(A(1+ε/2)αnk/β),

m = O(d logA) = O(A(1+ε/2)αmk/β).

Standard padding7 of these four parameters allows us to achieve equality, up to constant fac-
tors, in the above inequalities, which yields the desired n = Θ(Nαn), M = Θ(NαM) and m =
Θ(Nαm). Any O(min{N,nM}1−ε) algorithm for Pattern Matching with Wildcards in this setting
would now imply an algorithm for k-OV in time O(min{A(1+ε/2)k/β, A(1+ε/2)(αM+αn)k/β}1−ε) =
O(A(1+ε/2)(1−ε) min{1,αM+αn}k/β) = O(A(1−ε/2)k), where we used the definition of β and (1+ε/2)(1−
ε) ≤ 1− ε/2. This contradicts the k-OV conjecture, finishing the proof.

We next prove a lower bound similar to Theorem 3.9 for another special case of generalized
pattern matching, namely Substring Hamming Distance. Instead of a direct reduction from k-OV,
we present a linear-time reduction from Pattern Matching with Wildcards over alphabet {0, 1} to
Substring Hamming Distance.

Theorem 3.10. Assuming the k-OV conjecture, Substring Hamming Distance on constant-size
alphabet takes time min{N,nM}1−o(1). This holds even restricted to instances with n = Θ(Nαn),
M = Θ(NαM) and m = Θ(Nαm) for any 0 < αn < 1 and 0 < αm ≤ αM ≤ 1.

Proof. For short, we write dH(X,Y) for the Hamming distance of strings X,Y . We prove the result
by reducing any Pattern Matching with Wildcards instance TPM, PPM over alphabet Σ = {0, 1} to
an instance THD, PHD of Substring Hamming Distance. We first define coordinate strings

sT (0) := 100, sT (1) := 010,

sP (0) := 101, sP (1) := 011, sP (∗) := 000.

Observe that these strings are defined in such a way that dH(sP (∗), sT (y)) = 1 for y ∈ {0, 1},
dH(sP (x), sT (y)) = 1 for x = y ∈ {0, 1}, and dH(sP (x), sT (y)) = 3 if x 6= y, x, y ∈ {0, 1}.

We introduce the guarding G(s) := s ◦ 2 3 4 for length-3 strings s ∈ {0, 1}3. This allows us to
reduce TPM, PPM to the following instance, using alphabet Σ = {0, 1, 2, 3, 4},

THD := G(sT (TPM[1])) . . . G(sT (TPM[N])),

PHD := G(sP (PPM[1])) . . . G(sP (PPM[M])).

Note that for any 0 ≤ i ≤ N −M ,

dH(THD[6i+ 1..6i+ 6M], PHD) =

M∑
j=1

dH(sP (PPM[j]), sT (TPM[i+ j]))

= M + 2 ·mismatch(TPM[i+ 1..i+M], PPM),

7Add a prefix of wildcards to the pattern and a prefix of 1’s to the text, and partially decompress the SLPs.

20

where mismatch(z, z′) = #{i | z′[i] 6= ∗, z[i] 6= z′[i]} is the number of mismatches of z and z′.
We now observe that for all i with i mod 6 6= 0, we have dH(THD[i+ 1..i+ 6M], PHD) ≥ 3M , as

no two symbols 2, 3, 4 in PHD are aligned, so that each G(sP (PPM[j])) contributes at least 3 to the
Hamming distance. Since dH(THD[6i+1..6i+6M], PHD) ≤ 3M for all i, the substring with smallest
Hamming distance has thus a Hamming distance of M + 2 ·min0≤i≤N−M mismatch(TPM[i+ 1..i+
M], PPM). This value is equal to M if and only if PPM matches TPM, proving correctness.

The corresponding reduction of the compressed problems is straightforward: We can aug-
ment the SLP TPM for TPM by O(1)-sized productions to obtain an SLP THD for THD, by re-
placing each terminal σ ∈ {0, 1, ∗} by a non-terminal evaluating to G(sT (σ)). Analogously, we
can compute an SLP for PHD of size |PHD| = |PPM| + O(1) in linear time. Overall, since also
|THD| = O(|TPM|), |PHD| = O(|PPM|), all parameters are preserved up to constant factors. By this
linear-time parameter-preserving reduction, the lower bound of Theorem 3.9 translates to Substring
Hamming Distance, yielding the claim.

3.3 Longest Common Subsequence

In this section, we study the Longest Common Subsequence (LCS) problem. Recall that a string
S of length ` is a substring of a string X if there are 1 ≤ i1 < · · · < i` ≤ |X| with S[j] = X[ij] for
any j ∈ [`]. In the LCS problem, given two strings X,Y , the task is to determine the longest string
S that is a subsequence of both X and Y . We denote the length of the LCS by L(X,Y) = |S|, and
more precisely consider the problem of computing L(X,Y). In the whole section, the alphabet Σ
has constant size.

Problem 3.11 (LCS). Given strings X,Y of length at most N by grammar-compressed represen-
tations X ,Y of size at most n, compute the length of the LCS of X and Y .

As discussed in the introduction, the O(nN
√

logN/n) time algorithm by Gawrychowski [35]
is the fastest known. Here we prove a matching lower bound of (Nn)1−o(1), assuming the k-OV
conjecture.

Theorem 3.12. Assuming the k-OV conjecture, there is no (nN)1−ε-time algorithm for LCS for
any ε > 0. This even holds restricted to instances with n = Θ(Nαn) for any 0 < αn < 1, and an
alphabet of constant size.

The general approach is very similar to the lower bound for Pattern Matching with Wildcards
given in Section 3.2. In particular, we again use the tuplified representation T = ©dAk

i=1 T [i] of
Lemma 3.8 for a k-OV instance A. Recall that this allows us to decide the k-OV instance by testing
whether there is a subsequence of d substrings T [∆], T [∆ + Ak], . . . , T [∆ + (d− 1)Ak] all equal to
a certain 0-coordinate string. Finding a pattern to test this was quite simple for Pattern Matching
with Wildcards, yielding an N1−o(1) lower bound. For LCS, enforcing a coherent offset is much more
complicated, since the “pattern” is matched as a subsequence not as a substring. Furthermore, the
extension to a (nN)1−o(1) lower bound is more involved and relies on the quadratic-time nature
of LCS. Fortunately, we can overcome the technical obstacles for LCS using (an extension of)
alignment gadgets developed in [17]. We first redevelop and extend the corresponding alignment
gadget tools in Section 3.3.1, then give the lower bound for compressed instances for general distance
measures in Section 3.3.2 and then finish our LCS lower bound by designing an alignment gadget
for LCS in Section 3.3.3.

21

3.3.1 Alignment Gadget Framework

We start by reviewing and adapting the definitions of [17]. In particular, we extend the alignment
gadget definition for our purposes.

More generally than LCS, we consider an arbitrary similarity measure δ : I ×I → N. For LCS,
the set of inputs I is the set of all strings over some sufficiently large constant-sized alphabet Σ,
and δ(X,Y) := |X|+ |Y | − 2L(X,Y), where L(X,Y) is the length of the LCS of X and Y .

Any sequence X ∈ I is assigned an (abstract) type type(X). For LCS, we use type(X) :=
(|X|,Σ), where |X| is the length of X and Σ the alphabet over which X is defined. We define
It := {X ∈ I | type(X) = t} as the set of all inputs of type t.

Alignments Let n ≥ m. An alignment is a set Λ = {(i1, j1), . . . , (ik, jk)} with 0 ≤ k ≤ m such
that 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ m. We say that (i, j) ∈ Λ are aligned. Any
i ∈ [n] or j ∈ [m] that is not contained in any pair in Λ is called unaligned. We denote the set of
all alignments (with respect to n,m) by Λn,m.

We call the alignment {(∆+1, 1), . . . , (∆+m,m)}, with 0 ≤ ∆ ≤ n−m, a structured alignment.
We denote the set of all structured alignments by Sn,m.

Defining the cost of an alignment Λ ∈ Λn,m, we deviate from [17]: for any X1, . . . , Xn ∈ I and
Y1, . . . , Ym ∈ I, we define the cost of Λ = {(i1, j1), . . . , (i|Λ|, j|Λ|)} as

cost(Λ) = costX1,...,Xn
Y1,...,Ym

(Λ) :=

|Λ|∑
k=1

δ(Xik , Yjk) +

{
(m− |Λ|)γ, if |Λ| < m

(im − i1 −m+ 1)γ if |Λ| = m,

where we set γ := maxi,j δ(Xi, Yj). In other words, (1) for any j ∈ [m] which is aligned to some
i, we “pay” the distance δ(Xi, Yj), (2) if Λ is unstructured because it contains an unaligned j, we
“pay” a penalty of γ for each such unaligned j (note that there are m − |Λ| unaligned j ∈ [m])
and (3) if Λ is unstructured because it aligns all j but leaves out some i between the first and last
aligned i, then for any unaligned i that is between the first aligned i1 and last aligned i|Λ|, we also

“pay” a penalty of γ (note that
∑|Λ|−1

k=1 (ik+1 − ik − 1) = i|Λ| − i1 − |Λ| + 1). This means that we
incur punishment for any deviation from a structured alignment.

In [17], the cost of an alignment was defined to be the smaller quantity
∑|Λ|

k=1 δ(Xik , Yjk) +
(m − |Λ|)γ, i.e., unstructured alignments (that still align all j ∈ [m]) were punished less. For
structured alignments both definitions coincide. Hence, the following extended alignment gadget
is more powerful than the alignment gadget defined in [17].

Definition 3.13 (Extended alignment gadget). The similarity measure δ admits an extended
alignment gadget, if the following conditions hold: given instances X1, . . . , Xn ∈ Itx, Y1, . . . , Ym ∈
Ity with m ≤ n and types tx = (`x,Σ), ty = (`y,Σ), we can construct new instances X =
GAm,ty

x (X1, . . . , Xn) and Y = GAn,tx
y (Y1, . . . , Ym) and C ∈ Z such that

min
Λ∈Λn,m

cost(Λ) ≤ δ(X,Y)− C ≤ min
Λ∈Sn,m

cost(Λ). (2)

Moreover, type(X), type(Y) and C only depend on n,m, tx, ty. Finally, |X|, |Y | = Θ((n+m)(`x +
`y)).

22

Definition 3.14 (Compressible alignment gadget). We call an extended alignment gadget com-
pressible, if X and Y are of the form X = XL (©n

i=1 padx(Xi))XR and Y = YL
(
©m
j=1 pady(Yj)

)
YR

for some strings XL, XR, YL, YR and functions padx : Itx → I and pady : Ity → I that satisfy the
following properties:

1. XL, XR, YL, YR have SLPs of size O(log n + log(`x + `y)), computable in linear time in the
output.

2. Given SLPs Xi,Yj for Xi, Yj, we can compute SLPs for padx(Xi), pady(Yj) of size O(|Xi|+
log(`x + `y)), O(|Yj |+ log(`x + `y)) in linear time in the output.

In Section 3.3.3, we provide a compressible extended alignment gadget for LCS.
At the lowest level of our construction, we need the following notion.

Definition 3.15. The similarity measure δ admits coordinate values, if there exist 0x,0y,1x,1y ∈
I satisfying

δ(1x,1y) > δ(0x,1y) = δ(0x,0y) = δ(1x,0y),

and, moreover, type(0x) = type(1x) and type(0y) = type(1y).

3.3.2 General Lower Bound

The following theorem proves a conditional lower bound of (Nn)1−o(1) for any similarity measure
admitting a compressible extended alignment gadget and coordinate values.

Theorem 3.16. Let δ be a similarity measure admitting a compressible extended alignment gadget
and coordinate values. Then unless the k-OV conjecture fails, there is no (nN)1−o(1)-time algorithm
for computing the value δ(X,Y), given SLPs X ,Y of size at most n generating strings X,Y of length
at most N . This even holds restricted to instances with n = Θ(Nαn) for any 0 < αn < 1, and
constant alphabet size.

We prove this theorem in the remainder of this section.
Let A = {a1, . . . , aA} be a k-OV instance in d − 1 dimensions. We augment all vectors in A

by another dimension where all vectors are 0 to obtain A0, or where all vectors are 1 to obtain
A1. For any k′ ≥ 1 we let A(k′) := {min(ai1 , . . . , aik′) | i1, . . . , ik′ ∈ [A]}, i.e., for each k′-tuple of

vectors in A the set A(k′) contains the pointwise minimum of this k′-tuple. Note that A(k′) is in
general a multiset, it has size |A(k′)| = Ak

′
, and is naturally ordered by the lexicographic ordering

on k′-tuples (i1, . . . , ik′) ∈ [A]k
′
. Similarly, we define A(k′)

0 and A(k′)
1 for the augmented vectors. We

split k = k1 + 2k2 for some k1, k2 ≥ 1 and set

A := A(k1)
0 , B = A(k2)

0 , C := A(k2)
1 .

Observe that deciding the given k-OV instance is equivalent to testing whether there are orthogonal
vectors (a, b, c) with a ∈ A, b ∈ B and c ∈ C. In particular, the additional dimension is irrelevant
for orthogonality, since we choose at least one vector in A and any such vector has the last coordinate
equal to 0. For any ` ∈ [Ak1], we denote by a(`) the `-th vector in A.

23

Tuple gadgets. For any b ∈ B, c ∈ C, we define vectors ub ∈ {0, 1}dA
k1 and vc ∈ {0, 1}(d−1)Ak1+1:

ub := (a(1)[1] · b[1], . . . ,a(Ak1)[1] · b[1], . . . ,a(1)[d] · b[d], . . . ,a(Ak1)[d] · b[d])

vc := (c[1], 0, . . . , 0︸ ︷︷ ︸
Ak1−1 times

, c[2], . . . , 0, . . . , 0︸ ︷︷ ︸
Ak1−1 times

, c[d]).

In other words, for j ∈ [d] and ` ∈ [Ak1] we have (ub)j·d+` = a(`)[j + 1] · b[j + 1] as well as
(vc)j·d+` = c[j + 1] if ` = 1 and (vc)j·d+` = 0 otherwise.

The key idea is as follows. Consider a structured alignment Λ = {(∆ + 1, 1), . . . , (∆ +m,m)} ∈
Sn,m for the above vectors, where n = dAk1 and m = (d − 1)Ak1 + 1. This chooses some tuple
a(∆ + 1) ∈ A and aligns the pairs (a(∆ + 1)[`] · b[`], c[`]) for all ` ∈ [d], additional to some trivial
pairs where the coordinate of vc is 0. This allows us to determine whether (a(∆ + 1), b, c) is
orthogonal.

To formalize this, create ũb by replacing each 0- and 1-entry in ub by 0x and 1x (from Defini-
tion 3.15), and create ṽc by replacing each 0- and 1-entry in vc by 0y and 1y, respectively. Let tx
and ty be the types of 0x,1x and 0y,1y, respectively. Set δ0 := δ(0x,0y) = δ(0x,1y) = δ(1x,0y)
and δ1 := δ(1x,1y). We define the tuple gadgets

TGx(b) := GA(d−1)Ak1+1,ty(ũb),

TGy(c) := GAdAk1 ,tx(ṽc).

Let t′x, t
′
y denote the types of TGx(b), TGy(c), and let C be the number obtained from Defini-

tion 3.13 when creating TGx(b), TGy(c). Note that t′x, t
′
y, and C do not depend on the choice of

b ∈ B, c ∈ C.

Claim 3.17. Let b ∈ B, c ∈ C and set n := dAk1 and m := (d−1)Ak1+1. If there exists a ∈ A such
that (a, b, c) are orthogonal, then δ(TGx(b),TGy(c)) = C+m ·δ0. Otherwise δ(TGx(b),TGy(c)) ≥
C + (m− 1)δ0 + δ1.

Proof. If there is an a ∈ A for which (a, b, c) are orthogonal, let ∆ be such that a = a(∆ + 1),
where a(`) is the `-th tuple in the lexicographic ordering of A. The structured alignment Λ =
{(∆ + 1, 1), . . . , (∆ +m,m)} satisfies

cost(Λ) =

(
d∑
`=1

δa(∆+1)[`]·b[`]·c[`]

)
+ (Ak1 − 1)(d− 1)δ0 = m · δ0.

Furthermore, for any Λ ∈ Λn,m, we have cost(Λ) ≥ m · δ0, since cost(Λ) contains at least m sum-
mands of value at least min{γ,mini,j δ(Xi, Yj)} = mini,j δ(Xi, Yj) ≥ δ0. Thus δ(TGx(b),TGy(c)) =
C +m · δ0 by Definition 3.13.

Otherwise, if no such a exists, let Λ ∈ Λn,m be arbitrary. If Λ = {(∆ + 1, 1), . . . , (∆ + m,m)}
is a structured alignment, then

cost(Λ) =

(
d∑
`=1

δa(∆+1)[`]·b[`]·c[`]

)
+ (Ak1 − 1)(d− 1)δ0 ≥ (m− 1) · δ0 + δ1,

since there exists some ` ∈ [d] with a(∆ + 1)[`] = b[`] = c[`] = 1 which contributes a value of δ1.

24

If Λ = {(i1, j1), . . . , (i|Λ|, j|Λ|)} is unstructured, then either |Λ| < m, in which case we have

cost(Λ) ≥ |Λ| · δ0 + (m− |Λ|)γ ≥ (m− 1)δ0 + δ1,

or |Λ| = m and im − i1 > m− 1, and thus

cost(Λ) ≥ mδ0 + (im − i1 − (m− 1))γ ≥ (m− 1)δ0 + δ1.

Thus by Definition 3.13, δ(TGx(b),TGy(c)) ≥ C + (m− 1)δ0 + δ1.

Normalization. As usual in these kinds of reductions, we need a normalization step. We define
a normalization sequence as

TGnorm = GA(d−1)Ak1+1,ty(0x, ,0x︸ ︷︷ ︸
(d−1)Ak1 times

,1x, . . . ,1x︸ ︷︷ ︸
Ak1 times

).

Claim 3.18. For any c ∈ C, we have δ(TGnorm,TGy(c)) = C + (m− 1)δ0 + δ1.

Proof. Let n = dAk1 and m = (d − 1)Ak1 + 1. Let Λ = {(∆ + 1, 1), . . . , (∆ + m,m)} ∈ Sn,m be a
structured alignment. Then by construction of TGnorm and TGy(c), the only pair corresponding to
1x and possibly 1y entries is the pair (∆ +m,m), since only the last Ak1 entries of TGnorm are 1x,
and the only possible 1y-entry of TGy(c) that could be aligned with one of them is its final entry.

Now we use that we constructed the vectors C as A(k2)
1 , i.e., we augmented all vectors by a d-th

coordinate 1, which implies that the m-th entry of TGy(c) is indeed 1y. Hence, the pair (∆+m,m)
contributes a distance of δ1 while all others contribute δ0. This yields cost(Λ) = (m− 1)δ0 + δ1.

Let Λ ∈ Λn,m\Sn,m be an unstructured alignment. Then its cost is at least cost(Λ) ≥ (m−1)δ0+
γ ≥ (m−1)δ0 + δ1, since it contains at least m−1 summands of value min{γ,mini,j δ(Xi, Yj)} ≥ δ0

and at least one punishment term γ ≥ δ1 for a deviation from a structured assignment. Thus by
Definition 3.13, we have δ(TGnorm,TGy(c)) = C + (m− 1)δ0 + δ1.

We now define for any b ∈ B, c ∈ C the normalized tuple gadgets

NTGx(b) := GA1,t′y(TGx(b),TGnorm),

NTGy(c) := GA2,t′x(TGy(c)).

We let t′′x, t
′′
y denote the resulting types of NTGx(b),NTGy(c), and C ′ be the number obtained

from Definition 3.13 when creating NTGx(b),NTGy(c). Note that t′′x, t
′′
y, and C ′ do not depend on

the choice of b ∈ B, c ∈ C. This definitions satisfies the following properties.

Claim 3.19. Let b ∈ B, c ∈ C. If there exists a ∈ A such that (a, b, c) are orthogonal, then
δ(NTGx(b),NTGy(c)) = δorth, otherwise we have δ(NTGx(b),NTGy(c)) = δnon, where

δorth := C ′ + C + ((d− 1)Ak + 1) · δ0,

δnon := C ′ + C + (d− 1)Ak · δ0 + δ1.

Proof. We check all possible alignments Λ ∈ Λ2,1: If Λ = {(1, 1)}, then cost(Λ) = δ(TGx(b),TGy(c)).
If Λ = {(2, 1)}, we have cost(Λ) = δ(TGnorm,TGy(c)). For the only unstructured alignment Λ = ∅,
we have cost(Λ) = γ ≥ max{δ(TGx(b),TGy(c)), δ(TGnorm,TGy(c))}. Thus by Definition 3.13, we
have δ(NTGx(b),NTGy(c)) = C ′ + min{δ(TGx(b),TGy(c)), δ(TGx(b),TGnorm)}. The claim now
follows from Claims 3.17 and 3.18.

25

Final construction. To obtain our final instance, we enumerate all b(1), . . . , b(Ak2) ∈ B and
c(1), . . . , c(Ak2) ∈ C in an arbitrary fashion. We finally combine their corresponding normalized
tuple gadgets by defining

X := GAAk2 ,t′′y (NTGx(b(1)), . . .NTGx(b(Ak2)),NTGy(b(1)), . . .NTGy(b(Ak2))),

Y := GA2Ak2 ,t′′x (NTGy(c(1)), . . .NTGy(c(Ak2))).

Let C ′′ be the number obtained from Definition 3.13 when creating X, Y .

Claim 3.20. We have δ(X,Y) ≤ C ′′ + (Ak2 − 1)δnon + δorth if and only if there are a ∈ A, b ∈
B, c ∈ C such that (a, b, c) is orthogonal.

Proof. Assume that there exists an orthogonal set of vectors and let a ∈ A, b(i) ∈ B, c(j) ∈
C be the vectors representing them. Let n = 2Ak2 and m = Ak2 . If i ≥ j, we consider the
structured alignment Λ = {(i−j+1, 1), . . . , (i−j+m,m)}. Then Λ aligns NTGx(b(i)),NTGy(c(j)),
yielding cost δorth by Claim 3.19. Since δ(NTGx(b),NTGy(c)) ≤ δnon for any b, c, we conclude
that cost(Λ) ≤ (m − 1)δnon + δorth. Similarly, if i < j, we define the structured alignment Λ =
{(n + i − j + 1, 1), . . . , (n + i − j + m,m)}. Then, again, Λ aligns NTGx(b(i)),NTGy(c(j))).
As before, we obtain cost(Λ) ≤ (m − 1)δnon + δorth. Thus, in both cases Definition 3.13 yields
δ(X,Y) ≤ C ′′ + (m− 1)δnon + δorth.

To prove the claim, it remains to prove that δ(X,Y) ≥ C ′′ +mδnon if all choices of vectors are
non-orthogonal. Note that for any Λ ∈ Λn,m, cost(Λ) consists of m summands with a value of at
least mini,j δ(NTGx(b(i)),NTGy(c(j))) ≥ δnon. This concludes the claim by Definition 3.13.

It remains to prove bounds on the lengths and compressed sizes of the constructed strings.

Claim 3.21. The strings X,Y have length O(dAk1+k2). We can, in linear time in the output size,
compute SLPs X ,Y for X,Y of size O(dAk2+1).

Proof. We will frequently make use of the compressibility of the alignment gagdet (Definition 3.14).
We start by constructing an SLP T Gx(b) for TGx(b) for any b ∈ [A]k2 . Note that we can split

TGx(b) into TGx(b)L ◦(©dAk1

i=1 padx(ũi)) ◦TGx(b)R. We can apply Lemma 3.8 by observing that

dAk1

©
i=1

padx(ũi) = tuplify(A0, k1, b, padx(0x), padx(1x)), (3)

where Sx(0) := padx(0x) and Sx(1) := padx(1x). Since 0x,1x are of constant size, we can compute
SLPs S(0),S(1) for Sx(0), Sx(1) of size O(1) by the compressibility assumption. Thus we can
compute an SLP for (3) of size O(dA). Since the left and right bounding string of TGx(b) have SLPs
of size O(logA), we obtain an SLP T Gx(b) for TGx(b) of size O(dA), while |TGx(b)| = Θ(dAk1).

To compute an SLP T Gy(c) for TGy(c) for any c ∈ C, we note that

TGy(c) = TGy(c)L ◦

(
(d−1)Ak1+1

©
i=1

pady(ṽi)

)
◦TGy(c)R,

where
(d−1)Ak1+1

©
i=1

pady(ṽi) =

(
d−1
©
`=1

Sy(c[`]) ◦Sy(0)A
k1−1

)
◦Sy(c[d]),

26

where Sy(0) := pady(0y) and Sy(1) := pady(1y). This immediately admits an SLP of size O(d +
logA) by Observation 2.2. Again, using SLPs of size O(logA) for TGy(c)L,TGy(c)R, we obtain
an SLP T Gy(c) for TGy(c) of size O(d+ logA), while |TGy(c)| = O(dAk1).

In the construction of NTGx(b),NTGy(c) we use constant n,m. Together with the compress-
ibility of the alignment gadget, we obtain SLPs NT Gx(b),NT Gy(c) for NTGx(b),NTGy(c) of size
O(|T Gx(b)|), O(|T Gy(c)|). Furthermore, |NTGx(b)| = Θ(|TGx(b)|), |NTGy(c)| = Θ(|TGy(c)|).

Finally, to obtain SLPs X ,Y for X,Y , we use a final application of the compressibility of
the alignment gadget. This yields |X | = O(logA +

∑
b∈B |NT Gx(b)|) = O(dAk2+1) and |Y| =

O(logA+
∑

c∈C |NT Gy(c)|) = O(Ak2(d+ logA)). Note that |X|, |Y | = Θ(dAk1+k2). It is easy to
verify that constructing X ,Y takes time O(dAk1+k2).

We are now ready to prove the theorem.

Proof of Theorem 3.16. Let 0 < αn < 1 and set β := αn
1+αn

. Let k ≥ 2 and let A be a k-OV
instance with A vectors in dimension d. We split k = k1 + 2k2 with k1, k2 ≥ 1 and k2 ≈ βk and
k1 ≈ (1−2β)k. Note that k1, k2 are restricted to be integers, however, for any ε > 0 and sufficiently
large k depending only on ε and αn we can ensure k2 +1 ≤ (1−ε/8)βk and k1 ≤ (1+ε/4)(1−2β)k.
Since k = k1 + 2k2, it follows that k1 +k2 ≥ (1−β)k. Note that for the dimension d we can assume
d ≤ A, since otherwise an O(Ak−εpoly(d)) algorithm clearly exists. In particular, for sufficiently
large k we have d ≤ A(ε/8)·min{β,1−β}k. By Claim 3.21, the constructed strings X,Y have length
N bounded from above by Θ(dAk1+k2) = O(dA(1+ε/4)(1−β)k) = O(A(1+ε/2)(1−β)k) and bounded
from below by Θ(dAk1+k2) = Ω(A(1−β)k). The constructed SLPs have size n = O(dAk2+1) =
O(dA(1−ε/8)βk) = O(Aβk). Since β/(1 − β) = αn, it follows that n = O(Nαn), and by partially
decompressing the SLPs we can ensure the desired n = Θ(Nαn), while keeping n = O(A(1+ε/2)βk).
By Claim 3.20, computing δ(X,Y) allows us to decide feasibility of the given k-OV instance. Hence,
any O((nN)1−ε) time algorithm for δ(., .) in the setting n = Θ(Nαn) would yield an algorithm for
k-OV in time O((A(1+ε/2)k)1−ε) = O(A(1−ε/2)k), contradicting the k-OV conjecture.

3.3.3 Extended Alignment Gadget for LCS

In this section, we fix the distance measure to be the LCS distance δ(X,Y) = |X|+|Y |−2·L(X,Y),
where L(X,Y) denotes the length of an LCS S of X and Y . Note that δ(X,Y) counts the number of
symbols to be deleted in X to obtain S plus the number of symbols to be deleted in Y to obtain S.
We show that δ admits coordinate values and a compressible extended alignment gadget. Together
with Theorem 3.16, this will yields our conditional lower bound for LCS.

We make use of the same coordinate values as in [17].

Lemma 3.22 ([17, Lemma V.2]). LCS admits coordinate values by setting

1x := 11100, 0x := 10011, 1y := 00111, 0y := 11001.

These strings have type (5, {0, 1}).

It remains to implement a compressible extended alignment gadget. Let us first disregard
compressibility.

27

Lemma 3.23. The following construction implements an extended alignment gadget: Let X1, . . . , Xn

of length `x and Y1, . . . , Ym of length `y be strings over Σ. We introduce new symbols σ, ρ, µ /∈ Σ,
define κ1 := 4(`x + `y) and κ2 := 2κ1 + `x, and set

G(S) := σκ1Sρκ1 ,

The alignment gadget is now defined as

X = G(X1)Zx
1 G(X2) . . .Zx

n−1 G(Xn),

Y = LyG(Y1) Zy
1 G(Y2) . . .Zy

m−1G(Ym)Ry,

where Zx
i = Zy

j = µκ2 for i ∈ [n− 1], j ∈ [m− 1] and Ly = Ry = µnκ2. This satisfies property (2)
of Definition 3.13 with C := 2nκ2.

Proof. To analyze our alignment gadget construction (adapting the proof of the LCS gadget of the
full version of [17]), we prepare some useful facts.

Claim 3.24 ([17, Fact V.7]). Let X and Z1, . . . , Zk be strings. Set Z := Z1 ◦ . . . ◦Zk. We have

δ(X,Z) = min
X(Z1),...,X(Zk)

k∑
j=1

δ(X(Zj), Zj),

where X(Z1), . . . , X(Zk) range over all ordered partitions of X into k substrings, i.e., X(Z1) =
x[i0 + 1..i1], X(Z2) = x[i1 + 1..i2], . . . , X(Zk) = x[ik−1 + 1..ik] for any 0 = i0 ≤ i1 ≤ . . . ≤ ik = |X|.

Claim 3.25. Let U, V be strings over Σ, α ∈ Σ and k ∈ N0. Then we have

(i) δ(U, V) ≥ ||U | − |V ||,

(ii) δ(αkU,αkV) = δ(U, V),

(iii) Let W be a string not containing α. Then δ(WαU,αkV) ≥ min{k, δ(αU,αkV)}.

We obtain symmetric statements by reversing all involved strings.

Proof. (i) Suppose |U | ≥ |V |, then at least |U | − |V | many symbols must be deleted in U . The
claim follows by symmetry.

(ii) It suffices to show the claim for k = 1, then the general statement follows by induction.
Consider a LCS S of (αU,αV). At least one α is matched in S, as otherwise we can extend S
by matching both α’s. If exactly one α is matched in S, then the other α is free, so we may
instead match the two α’s. Thus, without loss of generality a LCS of (αU,αV) matches the two
α’s. This yields L(αU,αW) = 1 + L(U, V). Hence, δ(αU,αV) = |αU | + |αV | − 2L(αU,αV) =
|U |+ |V | − 2L(U, V) = δ(U, V).

(iii) Fix an LCS S of WαU and αkV . If S starts with a symbol other than α, then S cannot use
any symbol from the αk-prefix of αkV , i.e., the αk-prefix has to be deleted and thus δ(WαU,αkV) ≥
k. Otherwise, if S starts with an α, then S cannot us any symbol from W (which is a string over
Σ\{α}), i.e., S is an LCS of αU and αkW . Thus δ(WαU,αkV) = |WαU |+ |αkV |−2L(αU,αkV) =
|W |+ δ(αU,αkV) and the claim follows.

28

Claim 3.26. Let ` ≥ 0. For any prefix X ′ of X we have δ(X ′, µ`) ≥ `. Moreover, if X ′ is of
the form G(X1)Zx

1 . . .G(Xi)Z
x
i for some 0 ≤ i < n and ` ≥ i · κ2, then δ(X ′, µ`) = `. Symmetric

statements hold for any suffix of X.

Proof. Note that for any i ∈ [n] the string G(Xi)Z
x
i contains |Zx

i | = κ2 many µ’s and |G(Xi)| =
2κ1 +`x = κ2 many non-µ’s. Furthermore, any prefix of G(Xi)Z

x
i contains at least as many non-µ’s

as µ’s. Hence, the LCS of X ′ and µ` has a length of at most |X ′|/2. This yields δ(X ′, µ`) = |X ′|+
|µ`| − 2L(X ′, µ`) ≥ `. If X ′ is of the form G(X1)Zx

1 . . .G(Xi)Z
x
i and µ` has at least |X ′|/2 = iκ2

many µ’s, we have equality.

We now prove that our construction yields an extended alignment gadget. We start with the
upper bound of property (2), i.e., δ(X,Y) ≤ 2nκ2 + minΛ∈Sn,m cost(Λ).

Let Λ = {(∆+1, 1), . . . , (∆+m,m)} be a structured alignment and consider an ordered partition
of X as in Claim 3.24 defined as follows:

X(G(Yj)) := G(X∆+j) for j ∈ [m],

X(Zy
j) := Zx

∆+j for j ∈ [m− 1],

X(Ly) := G(X1)Zx
1 . . .G(X∆)Zx

∆,

X(Ry) := Zx
∆+mG(X∆+m+1) . . . Zx

n−1G(Xn).

Claim 3.24 thus yields

δ(X,Y) ≤ δ(X(Ly), Ly) + δ(X(Ry), Ry) +
m∑
j=1

δ(G(X∆+j),G(Yj)) +
m−1∑
j=1

δ(Zx
∆+j , Z

y
j).

By Claim 3.26, we obtain δ(X(Ly), Ly) = nκ2 and symmetrically, δ(X(Ry), Ry) = nκ2. Triv-
ially, δ(Zx

∆+j , Z
y
j) = 0. Finally, by matching the padding around Xi, Yj in G(Xi),G(Yj), we obtain

δ(G(X∆+j),G(Yj)) = δ(X∆+j , Yj) by Claim 3.25(ii). Summing up all contributions, we obtain

δ(X,Y) ≤ 2nκ2 +
∑

(i,j)∈Λ

δ(Xi, Yj),

which holds for an arbitrary Λ ∈ Sn,m, thus concluding the upper bound.
It remains to prove the lower bound of property (2), i.e., δ(X,Y) ≥ 2nκ2 + minΛ∈Λn,m cost(Λ).

Set My = G(Y1)Zy
1 . . . Z

y
m−1G(Ym). Using Claim 3.24, we let X(Ly), X(My) and X(Ry) be an

ordered partition of X such that

δ(X,Y) = δ(X(Ly), Ly) + δ(X(My),My) + δ(X(Ry), Ry).

Since Ly = µnκ2 and X(Ly) is a prefix of X, by Claim 3.26 we have δ(X(Ly), Ly) ≥ nκ2, and
similarly we get δ(X(Ry), Ry) ≥ nκ2. It remains to construct an alignment Λ ∈ Λn,m satisfying

cost(Λ) ≤ δ(X(My),My), (4)

then together we have shown the desired inequality δ(X,Y) ≥ 2nκ2 + minΛ∈Λn,m cost(Λ).

29

As in Claim 3.24, we let X(G(Yj)) for j ∈ [m] and X(Zy
j) for j ∈ [m−1] be an ordered partition

of X(My) such that

δ(X(My),My) =
m∑
j=1

δ(X(G(Yj)),G(Yj)) +
m−1∑
j=1

δ(X(Zy
j), Zy

j).

Let µ(U) be the number of µ’s in a string U and let δdel−µ(U, V) denote the LCS distance of U
and V after deleting all µ’s in U and V . Clearly, since |µ(U)− µ(V)| µ’s have to be deleted in any
LCS, we have

δ(X(My),My) ≥

 m∑
j=1

δdel−µ(X(G(Yj)),G(Yj))

+ |µ(U)− µ(V)|. (5)

Let us construct an alignment Λ satisfying (4). For any j ∈ [m], if X(G(Yj)) contains more
than half of some Xi′ (which is part of G(Xi′)), then let i be the leftmost such index and align i
and j. Note that the set Λ of all these aligned pairs (i, j) is a valid alignment in Λn,m, since no Xi

or Yj can be aligned more than once.
We prove the following claims:

Claim 3.27. For any aligned pair (i, j) ∈ Λ, we have δdel−µ(X(G(Yj)),G(Yj)) ≥ δ(Xi, Yj).

Proof. Let U be X(G(Yj)) with all µ’s deleted (note that G(Yj) contains no µ’s). We will prove
δ(U,G(Yj)) ≥ δ(Xi, Yj). Recall that X(G(Yj)) contains more than half of Xi, thus so does U . If
||U | − |G(Yj)|| ≥ `x + `y, then we have δ(U,G(Yj)) ≥ `x + `y ≥ δ(Xi, Yj) by Claim 3.25(i). Since
|G(Yj)| = 2κ1 + `y, we may hence assume 2κ1 − `x ≤ |U | ≤ 2κ1 + `x + 2`y.

We distinguish three cases: Either U contains Xi fully (C1), or at least its right half but not
fully (C2), or at least its left half but not fully (C3).

In case (C2), U is of the form X ′iρ
κ1σaX ′i+1ρ

b where X ′i is a suffix of Xi, a ≤ κ1, X ′i+1 is a
prefix of Xi+1 and b ≤ 2`y. In this case, by Claim 3.25(iii) with α = σ and W = X ′iρ

κ1 , we have
δ(U,G(Yj)) ≥ min{κ1, δ(σ

aX ′i+1ρ
b, σκ1Yjρ

κ1)}. Note that since the second string contains κ1 ρ’s
and the first string contains less than 2`y ρ’s, we have δ(σaX ′i+1ρ

b, σκ1Yjρ
κ1) ≥ κ1 − 2`y. Thus

δ(U,G(Yj)) ≥ κ1 − 2`y ≥ `x + `y ≥ δ(Xi, Yj).
The case (C3) is symmetric to (C2).
Finally, in case (C1), U takes one of three forms: either (F1) σaXiρ

κ1σbX ′i+1ρ
c, where a ≥ 0,

b ≤ κ1, X ′i+1 is a (possibly empty) prefix of Xi+1 and c ≤ 2`y, or the symmetric version (F2)
X ′i−1ρ

bσκ1Xiρ
a with X ′i−1 a suffix of Xi−1 and all other paremeters as before, or finally (F3)

ρaσκ1Xiρ
κ1σb with a, b ≤ 2`y.

For form (F1), we compute

δ(U,G(Yj)) = δ(σaXiρ
κ1σbX ′i+1, σ

κ1Yjρ
κ1−c)

≥ min{κ1 − c, δ(σaXiρ
κ1 , σκ1Yjρ

κ1)},

where we used Claim 3.25(ii) in the first line and Claim 3.25(iii) with α = ρ and W = σbX ′i+1 in
the second line. Note that by Claim 3.25(ii) and by deleting all σ’s only occuring in one string,
δ(σaXiρ

κ1 , σκ1Yjρ
κ1) = (κ1 − a) + δ(Xi, Yj) ≥ δ(Xi, Yj). Since κ1 − c ≥ `x + `y ≥ δ(Xi, Yj), the

claim follows for (F1). Symmetrically, we can do the same for (F2).

30

For the final form (F3), we compute, using Claim 3.25(iii) from the left with α = σ and W = ρa

and from the right with α = ρ and W = σb, δ(U,G(Yj)) ≥ min{κ1, δ(σ
κ1Xiρ

κ1 , σκ1Yjρ
κ1)} =

δ(Xi, Yj), where the last equality follows from Claim 3.25(ii) and κ1 ≥ δ(Xi, Yj).

Claim 3.28. If j is unaligned in Λ, then δdel−µ(X(G(Yj)),G(Yj)) ≥ `x + `y.

Proof. Let U be X(G(Yj)) with all µ’s deleted (note that G(Yj) contains no µ’s). We will prove
δ(U,G(Yj)) ≥ `x + `y. Since X(G(Yj)) contains less than half of any G(Xi), U is of the form
X ′iρ

aσbX ′i+1 for some i, a suffix X ′i of Xi, some a, b ≤ κ1 and a prefix X ′i+1 of Xi+1.
Furthermore using Claim 3.25(iii) with α = σ and W = X ′iρ

a, we obtain that δ(U,G(Yj)) ≥
min{κ1, δ(σ

bX ′i+1, σ
κ1Yjρ

κ1)}. Since σκ1Yjρ
κ1 contains κ1 ρ’s, while σbX ′i+1 contains none, we con-

clude δ(U,G(Yj)) ≥ κ1 ≥ `x + `y.

Let us prove (4). If |Λ| < m, that is, there is an unaligned j, combining the two previous claims
with (5) results in

δ(X(My),My) ≥

 ∑
(i,j)∈Λ

δ(Xi, Yj)

+ (m− |Λ|)(`x + `y) + |µ(X(My))− µ(My)|κ2 ≥ cost(Λ),

since `x + `y ≥ maxi,j δ(Xi, Yj) and |µ(X(My))− µ(My)| ≥ 0.
Otherwise, if |Λ| = m, we have Λ = {(i1, 1), . . . , (im,m)} with i1 < i2 < · · · < im. Note that

X(My) is a substring that contains at least half of all Xi1 , . . . , Xim by definition of the alignment Λ.
Thus, µ(X(My)) ≥ (im − i1)κ2, since it contains all Zx

i1
, . . . , Zx

im−1. Since µ(My) = (m− 1)κ2, we
obtain by (5) and Claim 3.28,

δ(X(My),My) ≥

 ∑
(i,j)∈Λ

δ(Xi, Yj)

+ (im − i1 −m+ 1)κ2 ≥ cost(Λ),

where we used that κ2 ≥ `x + `y ≥ maxi,j δ(Xi, Yj).
This concludes the proof of Lemma 3.23, showing that our construction yields an extended

alignment gadget.

It remains to argue that a slight adaption of this gadget is compressible.

Lemma 3.29. Consider the setting of Lemma 3.23. Adapt the definition of the extended alignment
gadget slightly by defining

X ′ =Zx
0 X Zx

n = Zx
0 G(X1)Zx

1 . . .Z
x
n−1 G(Xn)Zx

n ,

Y ′ =Zy
0 Y Zy

m = Ly Zy
0 G(Y1) Zy

1 . . .Z
y
m−1 G(Ym)Zx

mR
y,

where we define the additional blocks Zx
i , Z

y
j = µκ2 with i ∈ {0, n}, j ∈ {0,m}. This construction

(X ′, Y ′) yields a compressible extended alignment gadget.

Proof. By Claim 3.25(ii), we see that δ(X ′, Y ′) = δ(X,Y), and thus X ′, Y ′ satisfies the extended
alignment gadget condition (2) of Definition 3.13 by Lemma 3.23.

We define padx(S) = pady(S) = µκ2/2G(S)µκ2/2 and XL = XR = µκ2/2 and YL = YR =
µnκ2+κ2/2. Then we have X ′ = XL (©n

i=1 padx(Xi))XR and Y ′ = YL
(
©m
j=1 padx(Yj)

)
YR. By

31

Observation 2.2, we can construct SLPs XL,XR,YL,YR for XL, XR, YL, YR of size O(log nκ2) =
O(log n+log(`x +`y)). Likewise, given SLPs Xi,Yj for Xi, Yj , we can construct SLPs for padx(Xi),
pady(Yj) of size O(|Xi| + log(`x + `y)), O(|Yj | + log(`x + `y)), respectively, as we can generate
the paddings µκ2/2σκ1 and ρκ1µκ2/2 around Xi and Yj using Observation 2.2. This concludes the
proof.

Our LCS lower bound now follows.

Proof of Theorem 3.12. Since δ admits coordinate values and a compressible extended alignment
gadget by Lemmas 3.22 and 3.29, we obtain the claim by the general lower bound of Theorem 3.16,
as computing the length of the LCS of X and Y is equivalent to computing δ(X,Y).

4 Tight Bounds Assuming (Combinatorial) k-Clique

In this section we prove matching conditional lower bounds based on the k-Clique conjecture or
combinatorial k-Clique conjecture for the following problems:

• NFA Acceptance, i.e., deciding whether a given non-deterministic finite automaton accepts a
given string,

• CFG Parsing, i.e., deciding whether a given context-free grammar generates a given string,

• RNA Folding, i.e., computing the maximum number of non-crossing matching pairs of indices
in a given string.

See the respective subsections for precise problem definitions.
For NFA Acceptance, the compression used in our proof is extremely simple, in that we only rely

on the fact that any repetition T ` can be generated by an SLP of sizeO(|T |+log `) (Observation 2.2).
For CFG Parsing and RNA Folding, our construction is much more subtle. For both problems, we
use that the following string and some variants thereof are compressible:

Sv := ©
u1,...,uk∈V

[v is adjacent to every ui]

That is, we enumerate all k-tuples (u1, . . . , uk) ∈ V k and for each one check whether all ui’s are
adjacent to a fixed vertex v, writing 1 or 0 depending on this check. This string is generated by
an SLP of size O(V): Enumerate all u1 ∈ V . If u1 is not adjacent to v, then for all u2, . . . , uk the

check results in 0, so we can simply write 0V
k−1

, which is well compressible by Observation 2.2.
Otherwise, if u1 is adjacent to v, then we can recurse to u2, and the following V k−1 symbols do

not depend on u1 anymore. More formally, denote by Repeat
(d)
0 an SLP generating the string 0V

d
.

Then with the following SLP rules, for 1 ≤ d ≤ k, we have Sv = eval(Adj
(k)
v).

Adj(0)
v → 1,

Adj(d)
v → ©

u∈V

{
Adj

(d−1)
v , if {u, v} ∈ E

Repeat
(d−1)
0 , otherwise

Here we use the “syntactic sugar” of having more than two SLP symbols on the right hand side,
but clearly this can be converted to a proper SLP of size O(V).

32

We stress that if in the string Sv we would enumerate only the k-cliques instead of all k-tuples,
then S would no longer be easily compressible, since then even the length of a substring depends
on the “history” of choosing u1, . . . , uk−d, and thus the above recursive way of writing S would fail.
This demonstrates how subtle our argument is.

Known Lower Bounds from Classic Complexity Theory Plandowski and Rytter [61]
showed that deciding whether a given compressed text can be generated by a given CFG is PSPACE-
complete. Later, Lohrey [51] showed that this holds even if we restrict the CFG to be fixed (i.e.,
not part of the input) and deterministic. We observe that the RNA Folding problem is at least as
hard as Longest Common Subsequence (see, e.g. [1]). This implies that RNA Folding is PP-hard
(see the discussion at the beginning of Section 5.2). Finally, the NFA Acceptance problem can be
solved in polynomial O(nqω) time (see below) and previously no conditional lower bounds were
known.

4.1 NFA Acceptance

For general notation regarding finite automata, see Section 3.1. Consider the compressed variant
of the acceptance problem of nondeterministic finite automata (NFAs).

Problem 4.1 (NFA Acceptance). We are given a text T of length N by a grammar-compressed
representation T of size n as well as a NFA F with q states, i.e., for any two states z, z′ and any
symbol σ ∈ Σ we are given whether z

σ→ z′. Decide whether T is accepted by F .

Note that the input size is Õ(n+q2), since we again assume the alphabet size |Σ| to be constant.
The naive solution is to decompress T to obtain T and run the standard acceptance algorithm

for NFAs, which takes time O(|T |q2) = O(Nq2). Exploiting the compressed setting, one can obtain
an O(nqω)-time algorithm [61]: Recall that T is a set of rules of the form Si → S`(i)Sr(i) or Si → σi,
with `(i), r(i) < i and σi ∈ Σ, for 1 ≤ i ≤ n. We compute, for increasing i, the state transition
matrix Ai, where (Ai)z,z′ = 1 if we can start in state z, read the string eval(Si), and end in state
z′, and (Ai)z,z′ = 0 otherwise. For Si → S`(i)Sr(i) we can compute Ai as A`(i) · Ar(i), where · is

Boolean matrix multiplication. For Si → σi we simply have (Ai)z,z′ = 1 if z
σi→ z′, and 0 otherwise.

Hence, Ai can be computed in time O(qω) for every i. The text T is then accepted by F if there
is an accepting state z such that (An)z0,z = 1, where z0 is the starting state of F .

Note that this best-known upper bound O(min{nqω, Nq2}) contains “mixed terms” with some
factors having exponent ω but not all. Since no standard conjecture contains such mixed terms,
we cannot hope to prove a matching lower bound of min{nqω, Nq2}1−o(1). However, restricting our
attention to combinatorial algorithms the best-known running time simplifies to O(min{nq3, Nq2}),
and we can hope to prove a matching lower bound under some assumption on combinatorial algo-
rithms, say for matrix multiplication or k-Clique. For matrix multiplication, the typical issue that
we would need to considerably compress the input graph [1] is a barrier for a reduction. Hence, we
can only hope to prove a matching lower bound for combinatorial algorithms assuming the k-Clique
conjecture. We prove such a result in the following.

Theorem 4.2. Assuming the combinatorial k-Clique conjecture, there is no combinatorial algo-
rithm for NFA Acceptance in time O(min{nq3, Nq2}1−ε) for any ε > 0. This holds even restricted
to instances with n = Θ(qαn) and N = Θ(qαN) for any αN ≥ αn > 0.

33

Proof. Let k ≥ 3 and let G = (V,E) be a k-Clique instance. In the following, for any κ, κ′ ≥ 1 with
3κ+κ′ = k we will construct an equivalent NFA Acceptance instance with q = O(V κ+1 log V), N =
|T | = O(V κ+κ′ log V), and n = |T | = O(V κ′ log V). Note that a combinatorialO(min{nq3, Nq2}1−ε)
time algorithm for NFA Acceptance then yields a combinatorial algorithm for k-Clique in time
O(V (3κ+κ′+3)(1−ε) log4 V) = O(V (k+4)(1−ε)), which for k ≥ 8/ε is O(V k(1+ε/2)(1−ε)) = O(V k(1−ε/2)),
contradicting the combinatorial k-Clique conjecture. This yields the desired conditional lower
bound. At the end of this proof we will strengthen this statement to even hold for all restrictions
n = Θ(qαn) and N = Θ(qαN).

Our construction uses the following gadgets.

Neighborhood Gadgets Let V = {v1, . . . , vn} and denote by NGT (vi) the binary encoding of
the number i using dlog V e bits. For any v ∈ V , let NGF (v) be the NFA that has start state s and
target state t, and |N(v)| disjoint directed paths from s to t such that the path corresponding to
neighbor u ∈ N(v) spells NGT (u). Clearly, we can walk from s to t in NGF (v) parsing the string
NGT (u) if and only if u is a neighbor of v.

Clique Gadgets For two neighborhood gadgets NGF (u), NGF (v) as above, we define their
concatenation NGF (u) ◦NGF (v) as the NFA where we identify the target state t of NGF (u) with
the starting state s of NGF (v). The start state of the concatenation is the start state of NGF (u),
and the target state is the target state of NGF (v). We combine neighborhood gadgets to clique
gadgets as follows. Let κ, κ′ ≥ 1. Let C = {u1, . . . , uκ} be a κ-clique and C ′ = {u′1, . . . , u′κ′} be a
κ′-clique in G. We define the following concatenation of NFAs and strings, respectively:

CGF (C, κ, κ′) :=
κ
©
i=1

κ′

©
j=1

NGF (ui),

CGT (C ′, κ, κ′) :=
κ
©
i=1

κ′

©
j=1

NGT (u′j).

Observe that we can walk from start to target state of CGF (C, κ, κ′) parsing CGT (C ′, κ, κ′) if and
only if C ∪C ′ forms a (κ+κ′)-clique, since the neighborhood gadgets check adjacency for each pair
of nodes ui ∈ C and u′j ∈ C ′.

Complete Construction For κ ≥ 1, let C(κ) be the set of κ-cliques in G, and set m(κ) := |C(κ)|.
Let κ, κ′ ≥ 1 such that 3κ+ κ′ = k. The final text is defined as

T := $ ◦ ©
C′∈C(κ′)

((
◦CGT (C ′, κ, κ′)

)m(κ)+4 ◦ $
)
,

using alphabet {0, 1,#, $}.
The NFA F consists of four copies of the clique gadgets CGF (C, κ, κ′) for any κ-clique C,

denoted by CGr(i) for 1 ≤ i ≤ m(κ) and 1 ≤ r ≤ 4. Additionally, we have states s, s1, s2, . . . , sm(κ)

and t, t1, t2, . . . , tm(κ). These states are connected as follows. In the starting state s we can stay
as long as we want, reading any symbol in the alphabet {0, 1,#, $}. When reading $ we can
alternatively go to state s1. In any state si when reading 0 or 1 we stay in si, while when reading
we either go to to the starting state of CG1(i) or to si+1 (the latter is only possible if i < m(κ)).
For any 1 ≤ r < 4 and i, j, from the ending state of CGr(i) when reading # we can go to the

34

CG1 CG2 CG3 CG4

s

0, 1,#, $

0, 1 s1

0, 1 s2

0, 1 s3

0, 1 s4

...

0, 1

0, 1

$

#

#

#

#

#

#

...

#

#

#

#

#

#

...
...

...#

#

#

0, 1t1

0, 1t2

0, 1t3

0, 1t4

...

0, 1

0, 1

t

#

#

#

#

#

#

$

#

#

#

#

#

#

0, 1,#, $

Figure 3: An illustration of the NFA constructed in the proof of Theorem 4.2. s is the starting
state and t is the only accepting state. The first column consists of states s, s1, s2, . . . , sm(κ),
the last column consists of t1, t2, . . . , tm(κ), t. The second, third, fourth and fifth columns contain
the gadgets CG1(i), CG2(i), CG3(i), CG4(i), respectively. We do not show all transitions between
gadgets CGr(i) and CGr+1(j) for r = 1, 2, 3. As shown in the picture and as we prove, an accepting
execution must visit CG1(i) and CG4(j) for i = j.

starting state of CGr+1(j) if the corresponding cliques together form a 2κ-clique. From the ending
state of CG4(i) when reading # we go to ti. In any state ti when reading 0 or 1 we stay in ti, while
when reading # we go to ti+1, or to t if i = m(κ). Finally, t is the only accepting state and we stay
in t reading any symbol in the alphabet. This finishes the construction of the NFA Acceptance
instance. See Figure 3 for the illustration of the NFA.

Correctness Let us first show that if G contains a (3κ + κ′)-clique C then F accepts T . Write
C = C1 +C2 +C3 +C ′, where C ′ is a κ′-clique and C1, C2, C3 are κ-cliques (with indices i1, i2, i3 in

C(κ)). We can stay in s until the beginning of the substring T ′ := $ ◦
(
◦CGT (C ′, κ, κ′)

)m(κ)+4 ◦ $.

With the first symbol $ in T ′ we go to s1. We then walk to si1 reading
(
◦CGT (C ′, κ, κ′)

)i1−1
.

With # we then step to the starting state of CG1(i1), corresponding to clique C1. Since C1 ∪ C ′
forms a (κ + κ′)-clique, we can walk to the ending state of CG1(i1) reading CGT (C ′, κ, κ′). Since
C1 ∪ C2 forms a 2κ-clique, we can next step to the starting state of CG2(i2) (corresponding to
C2). Similarly, we can then walk through CG2(i2), CG3(i3) (corresponding to C3), and CG4(i1)

35

(corresponding to C1 again). Next we step to ti1 reading #, and then we simply walk to tm(κ)

reading
(
◦CGT (C ′, κ, κ′)

)m(κ)−i1 . Note that the number of times we read a symbol # is i1 − 1
(for walking to si1) plus 5 (for walking from si1 to ti1) plus m(κ)− i1 (for walking from ti1 to tm(κ)),
summing to m(κ) + 4. Hence, indeed we parse all symbols # in T ′. Thus, we can next step to t
reading the final symbol $ of T ′. We then stay in t reading the remainder of T . Since t is accepting,
we are done.

For the other direction, note that if F accepts T then it also accepts some substring T ′ :=

$ ◦
(
◦CGT (C ′, κ, κ′)

)m(κ)+4 ◦ $. Moreover, when reading T ′ we must walk through some clique
gadgets CG1(i1), CG2(i2), CG3(i3), and CG4(i4), corresponding to κ-cliques C1, C2, C3, and C4.
Note that the number of symbols # on such a walk is i1− 1 (for walking to si1) plus 5 (for walking
from si1 to ti4) plus m(κ)− i4 (for walking from ti4 to tm(κ)), summing to m(κ) + 4 + i1− i4. Since
T ′ contains exactly m(κ) + 4 symbols #, we obtain i1 = i4 and thus C1 = C4. By the restrictions
on the edges from CGr(i) to CGr+1(j) we see that C1 ∪C2, C2 ∪C3, and C3 ∪C4 = C3 ∪C1 form
2κ-cliques. Moreover, since we walked through the clique gadgets we see that C ′∪C1, C ′∪C2, and
C ′∪C3 form (κ+κ′)-cliques. In total, we obtain that C1∪C2∪C3∪C ′ forms a (3κ+κ′ = k)-clique,
finishing the correctness argument.

Size Bounds Note that clique gadgets CGT in the text have length O(log V), while the clique
gadgets CGF in the automaton have O(V log V) states. We can thus read off a text length

of N = O(m(κ)m(κ′) log V) = O(V κ+κ′ log V). Since the repetition
(
◦CGT (C ′, κ, κ′)

)m(κ)+4

can be easily compressed to size O(log V) by Observation 2.2, we obtain a compressed size of
n = O(m(κ′) log V) = O(V κ′ log V). Finally, the number of states is q = O(m(κ)V log V) =
O(V κ+1 log V). Note also that the output of this reduction can be computed in time O(n + q2),
i.e., in linear time in the output description. We thus obtain the desired reduction which, as argued
in the beginning of this proof, rules out a combinatorial O(min{nq3, Nq2}1−ε) algorithm for NFA
Acceptance, assuming the combinatorial k-Clique conjecture.

Strengthening the Statement In the remainder, we verify that our construction proves the
desired lower bound even restricted to instances with n = Θ(qαn) and N = Θ(qαN) for any αN ≥
αn > 0. Note that the number of states, the size of the SLP, and the text length can all three be
increased by easy padding. E.g., to increase the text length we introduce a garbage symbol “!”
that can be read at any state of the automaton, not changing the current state, and add a suitable
number of copies of “!” to the text. We now consider two cases.

Case 1: If αN ≥ αn + 1, then set κ, κ′ ≥ 1 such that 3κ + κ′ = k and κ ≈ k/(αn + 3)
(recall that κ, κ′ are restricted to be integers). We can ensure that κ < k/(αn + 3) + 2 and
κ′ < αnk/(αn + 3) + 3. Note that for any ε > 0, for sufficiently large k = k(ε, αn) we have
κ+ 1 < (1 + ε/2)k/(αn+ 3) and κ′ < (1 + ε/2)αnk/(αn+ 3). We can thus pad the number of states
from O(V κ+1 log V) to q = Θ(V (1+ε/2)k/(αn+3)) and the compressed size from O(V κ′ log V) to n =
Θ(V (1+ε/2)αnk/(αn+3)) = Θ(qαn). Similarly, for the decompressed text length, using αN ≥ αn+1, we
have N = O(V κ+κ′ log V) = O(V (1+ε/2)(αn+1)k/(αn+3)) = O(V (1+ε/2)αNk/(αn+3)) = O(qαN), which
we can pad to equality. Then we indeed end up with an instance with N = Θ(qαN) and n = Θ(qαn).
Hence, if NFA Acceptance can be solved in combinatorial time O(min{nq3, Nq2}1−ε) restricted to
such instances, then we obtain a combinatorial algorithm for k-Clique in time O((nq3)1−ε) =
O(V (αn+3)·(1−ε)(1+ε/2)k/(αn+3)) = O(V k(1−ε/2)), contradicting the combinatorial k-Clique conjec-
ture.

36

Case 2: If αN < αn + 1, then we have to slightly adapt the above construction. We introduce
a third parameter κ̂ ≤ κ and let the first and fourth column of clique gadgets CG1(i) and CG4(i)
range over κ̂-cliques. At the same time, we change the number of repetitions of each part in the
text from m(κ) + 4 to m(κ̂) + 4. We are now detecting (2κ + κ̂ + κ′)-cliques in G. It can be
checked that this does not violate the correctness of the construction. The new size bounds are
N = O(V κ̂+κ′ log V), n = O(V κ′ log V), and q = O(V κ log V). Furthermore, we now allow to set
κ′ = 0, in which case the text is not responsible for choosing any part of the clique. Since in this
case we do not need any clique gadgets, we define CGF (C, κ, 0) to consist of a single state s = t and
CGT (C ′, κ, 0) to be the empty string. In this case we set the final string to be T := $ #m(κ)+4 $.
The same correctness proof goes through.

We now choose integers κ, κ̂ ≥ 1 and κ′ ≥ 0 with 2κ + κ̂ + κ′ = k and κ̂ ≤ κ such that
κ ≈ k/(αN + 2), κ′ ≈ max{0, (αN − 1)k/(αN + 2)}, and κ̂ ≈ min{αN , 1} · k/(αN + 2). Similarly to
case 1, we can ensure for any ε > 0 and sufficiently large k = k(ε, αN) that κ < (1+ε/2)k/(αN +2),
κ′ ≤ max{0, (1+ε/2)(αN −1)k/(αN +2)}, and κ̂ < (1+ε/2) min{αN , 1} ·k/(αN +2). We can thus
pad the number of states to q = Θ(V (1+ε/2)k/(αN+2)) and since κ̂+κ′ < (1+ε/2)αNk/(αN+2) we can
pad the decompressed text length to N = Θ(V (1+ε/2)αNk/(αN+2)) = Θ(qαN). For the compressed
size, note that by the assumptions αN < αn + 1 and αn > 0 we have κ′ ≤ max{0, (1 + ε/2)(αN −
1)k/(αN + 2)} < (1 + ε/2)αnk/(αN + 2), and thus n = O(V (1+ε/2)αnk/(αN+2)) = O(qαn), which we
can pad to equality. Then we indeed end up with an instance with N = Θ(qαN) and n = Θ(qαn).
Hence, if NFA Acceptance can be solved in combinatorial time O(min{nq3, Nq2}1−ε) restricted
to such instances, then we obtain a combinatorial algorithm for k-Clique in time O((Nq2)1−ε) =
O(V (αN+2)·(1−ε)(1+ε/2)k/(αN+2)) = O(V k(1−ε/2)), contradicting the combinatorial k-Clique conjec-
ture.

4.2 Context-Free Grammar Parsing

We again assume that the alphabet size |Σ| is constant throughout this section.
In this section we show a strong conditional lower bound for context-free grammar parsing.

Recall that a context-free grammar (CFG) Γ consists of a set of terminals Σ, a set of non-terminals
Ω, a starting non-terminal S ∈ Ω, and a set of productions Φ, each of the form A → α, where
A ∈ Ω and α ∈ (Σ ∪ Ω)∗. The size |Γ| is the total length of all α over all productions. Applying
a production A → α to a string β = β1Aβ2 ∈ (Σ ∪ Ω)∗ means to generate the string β1αβ2. The
language L(Γ) is the set of strings in Σ∗ that can be generated by starting with S and repeatedly
applying productions. More generally, for any non-terminal A the language L(A) is the set of
strings in Σ∗ that can be generated by starting with A.

Problem 4.3 (CFG Recognition). Given a text T of length N by a grammar-compressed represen-
tation T of size n as well as a CFG Γ, decide whether T ∈ L(Γ).

(CFG parsing is an augmentation of this decision problem where in case T ∈ L(Γ) we also need
to return a sequence of productions as a certificate.)

As discussed in the introduction, after decompressing the text T we can use classic parsers to
solve CFG recognition in time O(N3poly(|Γ|)) [25, 46, 80, 29], while Valiant’s parser uses fast matrix
multiplication to obtain an improved running time of O(Nωpoly(|Γ|)) [72].8 In the uncompressed
setting, matching lower bounds based on the k-Clique conjecture were shown by Abboud et al. [1].

8We ignore the specific polynomial dependence on |Γ|, since we are more interested in the dependence on N .

37

In the compressed setting no improved algorithms are known, even for, say, n = N0.01. Below
we prove a matching lower bound for both running times O(N3) and O(Nω), even restricted to very
small grammars and quite compressible strings. Our proof differs considerably from the conditional
lower bound in the uncompressed setting by Abboud et al. [1], as their strings are not compressible
in a strong sense. On a high level, their construction implements adjacency tests locally, around
three chosen positions that encode three k-cliques. In our construction, we instead implement
adjacency tests on a more global level, by choosing three offsets and reading all text positions that
adhere to these offsets. This global view makes it possible to construct a compressible text.

Theorem 4.4. Assuming the k-Clique conjecture, there is no O(Nω−ε) time algorithm for CFG
recognition for any ε > 0. Assuming the combinatorial k-Clique conjecture, there is no combinato-
rial O(N3−ε) time algorithm for CFG recognition for any ε > 0. Both results hold even restricted
to instances with |Γ| = O(logN) and n = O(N ε).

Proof. Let k ≥ 1 and let G = (V,E) be a k-Clique instance. We will construct a CFG Γ of size
O(log V) and a text T of length N = O(V k+2) generated by an SLP T of size n = O(V 3) such that
T ∈ L(Γ) holds if and only if G contains a 3k-clique. Note that an O(Nω−ε) = O(Nω(1−ε/3)) algo-
rithm for CFG recognition would then imply an algorithm for 3k-Clique in time O(V (k+2)ω(1−ε/3)),
which for k ≥ 12/ε is bounded by O(V k(1+ε/6)ω(1−ε/3)) = O(V ωk(1−ε/3)), contradicting the 3k-
Clique conjecture. The argument for combinatorial algorithms is analogous. Moreover, we have
|Γ| = O(log V) = O(logN) and n = O(V 3) = O(N3/(k+2)) = O(N ε) for k ≥ 3/ε.9

In our construction we enumerate all k-tuples of vertices U = (u1, . . . , uk). Choosing three
such k-tuples U1, U2, U3 we then need to check that (1) each k-tuple Ui forms a k-clique and (2)
each pair Ui, Uj forms a biclique for i 6= j. We remark that it is indeed necessary to enumerate
all k-tuples and not just, say, all k-cliques, as the k-tuples are much more structured, leading to
compressible strings. In the following we construct gadgets that perform these tests. We will use
alphabet Σ = {0, 1,#, $, x, y, z}.

Offsets Let U(i) be the i-th k-tuple (u1, . . . , uk) ∈ V k in lexicographic order. Choosing a k-tuple
thus correspond to choosing a number 1 ≤ i ≤ V k, which we will interpret as an offset in the text T ,
resulting in relevant positions of the form i+ V k · N. In order to only read the relevant positions,
we need to implement jumping over V k − 1 symbols, so that after reading one relevant symbol we
can jump to the next one. To this end, we construct a non-terminal X of Γ with L(X) = ΣV k−1.

This can be build by constructing non-terminals Xd with L(Xd) = Σ2d by the productions

X0 → σ for any σ ∈ Σ,

Xd → Xd−1Xd−1 for 1 ≤ d ≤ log(V k − 1).

Then the production X → Xi1 . . . Xi` , where i1, . . . , i` are the 1-bits in the binary encoding of
V k − 1, yields the desired non-terminal X. Note that this yields a grammar of size O(log V).

Clique Test We now design gadgets that allow to test for any offset i whether U(i) forms a
k-clique. Let Ē =

(
V
2

)
\ E be the non-edges of G. Let [.] be the Kronecker symbol, i.e., [true] = 1

9Strictly speaking, we need to pad the text length to Θ(V k+2) first. This can easily be accomplished by adding
garbage to the text and garbage handling rules to the grammar.

38

and [false] = 0. We use the following text:

TC := $V
k ◦
(
©

{u,v}∈Ē
©

1≤i≤V k

[
u and v appear in U(i)

])
◦ $V

k
.

For any offset 1 ≤ i ≤ V k, if U(i) = (u1, . . . , uk) forms a k-clique then no non-edge appears
among {u1, . . . , uk}, and thus TC [i+ j ·V k] = 0 for all 1 ≤ j ≤ |Ē|. The opposite implication holds
as well. This leads us to testing for a k-clique via the following CFG rules:

C → $XC̃, C̃ → 0X C̃ | $.

Lemma 4.5. We call TC(i) := TC [i..i+ 1 + (|Ē|+ 1) · V k] for 1 ≤ i ≤ V k the valid substrings of
TC . Any substring of TC that is parsable by C is valid. Moreover, substring TC(i) is parsable by C
if and only if the k-tuple U(i) forms a k-clique in G.

Proof. The first statement follows by C starting and ending with a $ symbol and advancing by
V k − 1 steps via X. The second statement follows from the argument above this lemma.

Lemma 4.6. The string TC has an SLP of size O(V 3).

Proof. For any 1 ≤ d ≤ k, σ ∈ Σ = {0, 1, $,#, x, y, z}, and S ⊆ V with |S| ≤ 2 we define the
following SLP rules:

Repeat(0)
σ → σ,

Repeat(d)
σ → ©

v∈V
Repeat(d−1)

σ ,

Incl
(0)
S →

{
1, if S = ∅,
0, otherwise

Incl
(d)
S → ©

v∈V
Incl

(d−1)
S\{v},

C-Test→ Repeat
(k)
$ ◦

(
©

{u,v}∈Ē
Incl

(k)
{u,v}

)
◦Repeat

(k)
$.

We claim that eval(C-Test) = TC . Note that Repeat
(d)
σ generates the string σV

d
, and thus the

prefix and suffix $V
k

is correct. Further, it can be checked that Incl
(d)
S generates a string of length

V d where the i-th position, corresponding to a d-tuple (u1, . . . , ud) ∈ V d, is 1 if S ⊆ {u1, . . . , ud}
and 0 otherwise. Hence, writing the string Incl

(k)
{u,v} for all {u, v} ∈ Ē yields the middle part of the

string TC . This proves the claim.
Note that the total size of the above SLP for TC , i.e., the total number of symbols on the right

hand sides of the above rules, is indeed O(V 3).

Biclique Test We next design gadgets that allow us to test for two offsets i, j whether u ∼ v
for all u ∈ U(i), v ∈ U(j), i.e., whether U(i), U(j) form a biclique. To this end, we let V rev be the
reverse ordering of the vertices in V and define the texts

TB := #V k ◦
(
©
u∈V

©
1≤i≤V k

[
u appears in U(i)

])
◦#V k ,

T ′B := #V k ◦
(
©

u∈V rev
©

1≤i≤V k

[
u is adjacent to every vertex in U(i)

])
◦#V k .

39

Note that U(i), U(j) form a biclique if every vertex that appears in U(i) is adjacent to every
vertex in U(j). Thus, for every 1 ≤ ` ≤ V we want that if TB[i+ ` · V k] = 1 then also T ′B[j + (V +
1− `) · V k] = 1. This leads us to testing for a biclique via the following CFG rules:

Bin → #X BX #

B → 1X BX 1 | 0X BX 1 | 0X BX 0 | #Bout#

We view this part of the grammar as a subroutine that is started by invoking Bin and that can be
followed by further operations by adding productions starting from Bout. Note that each call of a
rule of Bin or B reads V k symbols from the left and from the right, except for the last one, which
reads 1 symbol from the left and from the right. That is, the offsets are never changed throughout
the parsing process. The parsing rules check that a 1 at a certain position in TB implies a 1 at
the corresponding position in T ′B. Hence, when starting with offsets i in TB and j in T ′B, this
process checks that U(i), U(j) form a biclique. It stops when we reach the #-blocks at the end of
TB and at the beginning of T ′B, where we exit to Bout. Then it depends on the (not yet defined)
productions involving Bout whether the remainder of the string can be parsed. In summary, we
obtain the following.

Lemma 4.7. We call TB(i) := TB[i..i+ 1 + (V + 1) · V k] and T ′B(j) := T ′B[j..j + 1 + (V + 1) · V k]
for 1 ≤ i, j ≤ V k the valid substrings of TB and T ′B, respectively. Let R be any string. Then Bin

can parse TB(i)RT ′B(j) if and only if U(i), U(j) form a biclique and Bout can parse R. Moreover,
if T̃B and T̃ ′B are substrings of TB and T ′B, respectively, and Bin can parse T̃B R T̃

′
B such that Bout

parses R, then T̃B and T̃ ′B are valid.

Lemma 4.8. The strings TB and T ′B have SLPs of size O(V 2).

Proof. Note that TB is the string generated by the following SLP, where we use notation as in
Lemma 4.6:

B-Test→ Repeat
(k)
◦

(
©
v∈V

Incl
(k)
{v}

)
◦Repeat

(k)
.

This has size O(V 2) as shown in the proof of Lemma 4.6.
For T ′B we use the following SLP rules for 1 ≤ d ≤ k and v ∈ V :

Adj(0)
v → 1,

Adj(d)
v → ©

u∈V

{
Adj

(d−1)
v , if {u, v} ∈ E

Repeat
(d−1)
0 , otherwise

B’-Test→ Repeat
(k)
◦

(
©

v∈V rev
Adj(k)

v

)
◦Repeat

(k)
#

An easy inductive proof shows that Adj
(d)
v generates a string of length V d where the i-th position,

corresponding to a d-tuple (u1, . . . , ud) ∈ V d, is 1 if v is adjacent to every ui, and 0 otherwise.

Hence, writing Adj
(k)
v for all v ∈ V (in reverse order) yields the middle part of T ′B, and thus B’-Test

generates T ′B. Again, the total size of the right hand sides is O(V 2), so the SLP has size O(V 2).

40

Complete Construction The final string is

T := xV
k
TC TB TB T

′
B y

V k TC TB T
′
B T

′
B TC z

V k .

Here, the parts xV
k
, yV

k
, and zV

k
are used to choose three offsets i1, i2, i3, corrsponding to three

k-tuples U(i1), U(i2), U(i3). The three copies of TC are used to check that each U(ij) forms a
k-clique. The left copy of TBT

′
B is used for checking that U(i1), U(i2) forms a biclique, similarly

for the right copy and U(i2), U(i3). Finally, the leftmost TB and rightmost T ′B are used to check
that U(i1), U(i3) form a biclique. Note that T uses alphabet Σ = {0, 1,#, $, x, y, z}.

We now describe the final grammar Γ. We copy the non-terminals Bin, B,Bout to B̃in, B̃, B̃out,
since we need this subroutine twice with different productions starting from Bout. We let S be a
new starting symbol and define the following productions, additional to the ones defined above:

S → xS | S z | X CX BinX CX

Bout → X B̃inX yX C X B̃inX

B̃out → # B̃out | ε,

where ε denotes the empty string. This finishes the construction of the CFG recognition instance.

Correctness We show that T ∈ L(Γ) holds if and only if there is a 3k-clique in G. Assume that G
contains a 3k-clique and let 1 ≤ i1, i2, i3 ≤ V k be such that U(i1)∪U(i2)∪U(i3) forms a 3k-clique.
Remove i1 symbols x from the left end of T and V k− i3 +1 symbols z from the right, leaving offsets
i1 and i3, respectively. Then apply the rule S → X CX BinX CX. The outer calls to X keep the
offsets i1 and i3 by advancing to the next relevant positions w.r.t. offsets i1 and i3, respectively. By
Lemma 4.5, the calls of C parse valid substrings of TC starting and ending with offset i1 and i3,
respectively. The lemma is applicable since U(i1) and U(i3) form k-cliques. The further calls to X
again advance to the next relevant positions w.r.t. offsets i1 and i3, now lying in the outer #-blocks
in the leftmost TB and rightmost T ′B, respectively. Finally, by Lemma 4.7 the call to Bin reads
valid substrings of the leftmost TB and rightmost T ′B and ends with Bout. The lemma is applicable
since U(i1), U(i3) forms a biclique. The outer calls to X in the rule Bout → X B̃inX yX C X B̃inX
then advances the left and right end to the first relevant position w.r.t. offset i1 in the second copy
of TB and the last relevant position w.r.t. offset i3 in the second-to-last copy of T ′B. We match

the y appearing in this rule to the i2-th y in the yV
k

part of T . To the right of y, C parses a
valid substring of TC , which works since U(i2) forms a k-clique. The remaining B̃in then has to
parse valid substrings of the right copy of TBT

′
B, starting with offset i2 and ending with offset i3.

Similarly, to the left of y, B̃in has to parse valid substrings of the left copy of TBT
′
B, starting with

offset i1 and ending with offset i2. This works as U(i1), U(i2) and U(i2), U(i3) form bicliques. Note
that after reaching B̃out we are left with some symbols of the last #-block of TB and some symbols
of the first #-block of T ′B. Both can be parsed completely using the rules involving B̃out. Thus, we
have T ∈ L(Γ).

For the other direction, we follow the same line of arguments, observing that there was no
choice except for the offsets i1, i2, i3. The core of the argument is that U(i1) ∪ U(i2) ∪ U(i3) forms
a 3k-clique if and only if each U(ij) forms a k-clique and each pair U(ij), U(ij′) forms a biclique.

Size Bounds Since T consists of O(|V | + |Ē|) parts of length V k, the text length is O(V k+2).

By Lemmas 4.6 and 4.8 and since xV
k

has an SLP of size O(log V), T has an SLP of size O(V 3).

41

Finally, the size of the grammar Γ is O(log V), the bottleneck being the non-terminal X that ensures
offset consistency. Hence, all claimed size bounds are met. Note also that the constructed instance
can be computed in time linear in the output size. This finishes the proof of Theorem 4.4.

4.3 RNA Folding

We now give a variant of the construction for CFG recognition, proving a matching conditional
lower bound for RNA folding.

Again we consider a constant-size aphabet Σ, however, now each symbol σ ∈ Σ has a unique
counterpart σ̄ ∈ Σ such that ¯̄σ = σ. We say that σ ∈ Σ and its counterpart σ̄ match.

Two pairs of indices (i, j), (i′, j′) with i < j and i′ < j′ are said to cross if at least one of
the following conditions holds: (1) i = i′ or i = j′ or j = i′ or j = j′, (2) i < i′ < j < j′, or
(3) i′ < i < j′ < j. In other words, (i, j), (i′, j′) with i < j and i′ < j′ are non-crossing if they
are disjoint, i.e., i < j < i′ < j′ or i′ < j′ < i < j, or they are nesting, i.e., i < i′ < j′ < j or
i′ < i < j < j′.

Problem 4.9 (RNA Folding). Given a text T of length N by a grammar-compressed representation
T of size n, compute the maximum number of pairs R ⊆ {(i, j) | 1 ≤ i < j ≤ N} such that for
every (i, j) ∈ R the symbols T [i] and T [j] match and there are no crossing pairs in R. We denote
this maximum number by RNA(T).

We refer to the set R as a matching of T .
In the uncompressed setting, RNA Folding has an easy dynamic programming solution in time

O(N3) [30]. Using fast matrix multiplication, this was recently improved to O(N2.82) [15]. For
combinatorial algorithms, a matching lower bound of N3−o(1) assuming the combinatorial k-Clique
conjecture was recently shown by Abboud et al. [1]. They also prove a conditional lower bound of
Nω−o(1) assuming the k-Clique conjecture, however, this leaves a gap to the current upper bound.

As for CFG parsing, no improved algorithms are known in the compressed setting, even for,
say, n = N0.01. Here we prove lower bounds of N3−o(1) for combinatorial algorithms and Nω−o(1)

in general, assuming the (combinatorial) k-Clique conjecture.

Theorem 4.10. Assuming the k-Clique conjecture, there is no O(Nω−ε) time algorithm for RNA
Folding for any ε > 0. Assuming the combinatorial k-Clique conjecture, there is no combinatorial
O(N3−ε) time algorithm for RNA Folding for any ε > 0. Both results hold even restricted to
instances with n = O(N ε).

Abboud et al. [1] showed that RNA Folding is equivalent to the following weighted variant.

Problem 4.11 (Weighted RNA Folding). We are given a text T of length N by a grammar-
compressed representation T of size n as well as a weight function w : Σ→ [M] with w(σ) = w(σ̄)
for all σ ∈ Σ. For any set R ⊆ {(i, j) | 1 ≤ i < j ≤ N} define its weight as

∑
(i,j)∈R w(T [i]).

Compute the maximum weight of any set R such that for every (i, j) ∈ R the symbols T [i] and T [j]
match and there are no crossing pairs in R. We denote this maximum weight by WRNA(T).

Lemma 4.12 (Lemma 2 in [1]). For an instance T of Weighted RNA Folding, consider the string
T̃ := T [1]w(T [1]) . . . T [N]w(T [n]), i.e., each symbol T [i] is repeated w(T [i]) times. Then we have
WRNA(T) = RNA(T̃).

42

Proof of Theorem 4.10. Let k ≥ 1 and let G = (V,E) be a k-Clique instance. We will construct
a Weighted RNA Folding instance T of length O(V k+2) (and Ω(V k)) generated by an SLP T of
size O(V 3) and a number λ such that WRNA(T) ≥ λ holds if and only if G contains a 3k-clique.
The alphabet size will be |Σ| = 48 and the weights are bounded by O(V 2). By Lemma 4.12, the
corresponding unweighted text T̃ has RNA(T̃) = WRNA(T) and thus RNA(T̃) ≥ λ holds if and
only if G contains a 3k-clique. Moreover, since the weights in T are bounded by O(V 2) we have
N = |T̃ | = O(V 2|T |) = O(V k+4). Finally, by compressing O(V 2) repetitions to O(log V) SLP
rules, T̃ has an SLP T̃ of size n = O(|T | log V) = O(V 3 log V).

Hence, an O(Nω−ε) = O(Nω(1−ε/3)) algorithm for RNA Folding would imply an algorithm for
3k-Clique in time O(V (k+4)ω(1−ε/3)), which for k ≥ 24/ε is bounded by O(V k(1+ε/6)ω(1−ε/3)) =
O(V ωk(1−ε/6)), contradicting the 3k-Clique conjecture. The argument for combinatorial algorithms
is analogous. Moreover, we have n = O(V 3 log V) = O(N3/k log V) = O(N ε) for k ≥ 3/ε.

To construct the desired instance T, T of Weighted RNA Folding, we again enumerate all k-
tuples U(i) for 1 ≤ i ≤ V k, as in the proof for CFG parsing. We again choose three such k-tuples
U(i1), U(i2), U(i3) and check that each U(ij) forms a k-clique and all pairs U(ij), U(ij′) form a
biclique for j 6= j′.

Clique Test Consider alphabet {0, 0̄, 1, 1̄} (with weights 1) and set for e ∈ Ē and 1 ≤ i ≤ V k

re,i :=

{
1̄, if some node in e does not appear in U(i)

0̄, otherwise

Since U(i) forms a k-clique iff for every non-edge at least one of the endpoints does not appear in
U(i), we obtain:

Lemma 4.13. Set ri := ©e∈Ē re,i. We have WRNA
(
1Ēri

)
≤ Ē, with equality if and only if U(i)

forms a k-clique.

Biclique Test Consider alphabet {2, 2̄, 3, 3̄, 4, 4̄} (with weights 1) and set for v ∈ V and i ∈ [V k]

pv,i :=

{
2 4, if v appears in U(i)

2 3 4, otherwise
qv,i :=

{
2̄ 4̄, if v is adjacent to every node in U(i)

3̄ 4̄, otherwise

Lemma 4.14. Set pi :=©v∈V pv,i and qi :=©v∈V qv,i. For any i, j, we have WRNA(pi qj) ≤ 2V ,
with equality if and only if U(i), U(j) form a biclique.

Proof. Note that the total weight of qj is 2V , which shows the upper bound WRNA(pi qj) ≤ 2V .
To obtain equality, all symbols in qj must be matched. In particular, the 4̄ in qv,j must be matched
to the 4 in pv,i. If follows that the 2̄ or 3̄ in qv,j can only be matched to a 2 or 3 in pv,i. Hence, we
have WRNA(pi qj) = 2V if and only if there is no v ∈ V such that v appears in U(i) but v is not
adjacent to every node in U(j), which happens if and only if U(i), U(j) form a biclique.

Complete Construction For any symbol σ used so far, we introduce two copies σ′ and σ′′.
For the strings re,i, pv,i, qv,i defined above, we write r′e,i, p

′
v,i, q

′
v,i and r′′e,i, p

′′
v,i, q

′′
v,i to denote that we

replace all symbols by their primed copies. For i1, i2, i3 ∈ [V k] consider the string

T (i1, i2, i3) := 1Ē ri1 pi1 p
′
i1 1′Ē r′i2 q

′
i2 p
′′
i2 1′′Ē r′′i3 q

′′
i3 qi3 .

43

Note that the alphabet is partitioned such that the only possible matchings are among 1Ē ri1 ,
1′Ē r′i2 , 1′′Ē r′′i3 as well as pi1 qi3 , p′i1 q

′
i2

, p′′i2 q
′′
i3

. Also note that these pairs are non-crossing. Hence,
by Lemmas 4.13 and 4.14, we have WRNA(T (i1, i2, i3)) ≤ 6V + 3Ē, with equality if and only if
U(ij) forms a k-clique and U(ij), U(ij′) form a biclique for any j 6= j′, which happens if and only
if U(i1) ∪ U(i2) ∪ U(i3) forms a 3k-clique.

This is close to a complete reduction. It remains to force the choice of consistent offsets i1, i2, i3,
which we accomplish with the following lemma. Its proof is technical and defered to the end of this
section.

Lemma 4.15. Let A,B,W ≥ 1. Let xa,b for a ∈ [A], b ∈ [B] be strings over alphabet Σ, each with
total weight

∑
iw(xa,b[i]) ≤ W . Assume that no two symbols in ©a,b xa,b match. Let 5, 5̄, 6, 6̄, 7, 7̄

be new symbols not appearing in Σ, with weights w(5) = w(5̄) = w(7) = w(7̄) = 4AW and
w(6) = w(6̄) = 8AW . Set ρ := (8A+ 12)ABW and

G({xa,b}) := 5B(6 5̄)B ◦
(
©
a∈[A]

(
©
b∈[B]

6̄xa,b

)
◦ 6B

)
◦ 6̄B(7 6)B 7̄B.

Then for any strings y1, y2 over alphabet Σ we have

WRNA(y1G({xa,b}) y2) = ρ+ max
b∈[B]

WRNA
(
y1 ◦

(
©
a∈[A]

xa,b
)
◦ y2

)
.

We apply the above lemma as follows. Let B = V k and A = V + 2Ē, and for b ∈ [B] set
xa,b := ra,b for a ∈ [Ē], xĒ+a,b := pa,b for a ∈ [V], and xĒ+V+a,b := p′a,b for a ∈ [V]. Note that
©a∈[A] xa,i1 = ri1 pi1 p

′
i1

, which is a substring of T (i1, i2, i3). Construct G({xa,b}). Similarly define
ya,b so that ©a∈[A] ya,i2 = r′i2 q

′
i2
p′′i2 , and construct G′({ya,b}), where the new symbols are now

5′, 5̄′, 6′, 6̄′, 7′, 7̄′. Similarly define za,b so that ©a∈[A] za,i3 = r′′i3 q
′′
i3
qi3 , and construct G′′({za,b}),

where the new symbols are now 5′′, 5̄′′, 6′′, 6̄′′, 7′′, 7̄′′.
The final text is

T := 1Ē G({xa,b}) 1′Ē G′({ya,b}) 1′′Ē G′′({za,b}).

Applying Lemma 4.15 three times, we see that

WRNA(T) = 3ρ+ max
i1,i2,i3∈[V k]

WRNA(T (i1, i2, i3)).

Since WRNA(T (i1, i2, i3)) ≤ 6V + 3Ē with equality if and only if U(i1) ∪ U(i2) ∪ U(i3) forms a
3k-clique, we obtain that WRNA(T) ≥ 3ρ + 6V + 3Ē if and only if G contains a 3k-clique. This
finishes the construction and proves the correctness.

Size Bounds Note that for each symbol σ ∈ {0, 1, . . . , 7} we have a counterpart σ̄, and both have
three primed variants. Thus, the alphabet size is |Σ| = 8 · 2 · 3 = 48. Since A = O(V + Ē) = O(V 2)
and B = V k, the text length is N = O(V k+2). Note that each xa,b, ya,b, and za,b has total weight
W ≤ 3. Hence, the weight of the symbols introduced by the guarding G(.) is 8AW = O(A) =
O(V 2). The following lemma analyzes the compressibility of the constructed text. We thus obtain
all size bounds as claimed in the beginning of this proof.

Lemma 4.16. The text T has an SLP T of size O(V 3).

44

Proof. As in Lemmas 4.6 and 4.8, for any a ∈ A there are SLPs for the strings ©b∈[B] 6̄xa,b,
©b∈[B] 6̄ ya,b, and ©b∈[B] 6̄ za,b of size O(V). Indeed, any such string is equal to ©i∈[V k] 6̄ re,i,

©i∈[V k] 6̄ pv,i, or ©i∈[V k] 6̄ qv,i, or their primed variants, for some v ∈ V, e ∈ Ē. By definition of

re,i, pv,i, qv,i, these strings are generated by Incl
(k)
e , Incl

(k)
v , and Adj

(k)
v , respectively, except that the

terminals 0, 1 are replaced by some constant-length strings over {0, 0̄, . . . , 4, 4̄}. The final text T
consists of O(A) = O(V 2) strings of the form©b∈[B] 6̄xa,b, ©b∈[B] 6̄ ya,b, or©b∈[B] 6̄ za,b, plus some
very repetetive padding strings that can be compressed to length O(log V) by Observation 2.2. The
bound follows.

It remains to prove Lemma 4.15 to finish the proof of Theorem 4.10.

Proof of Lemma 4.15. Let x := G({xa,b}) and fix b ∈ [B]. In every block ©b∈[B] 6̄xa,b or 6̄B of x,
we match the first b 6̄’s to the directly preceeding 6’s, and match the last B − b 6̄’s to the directly
succeeding 6’s. At the beginning, this leaves B − b 5̄’s to be matched to the first 5’s, and at the
end this leaves b 7’s to be matched to the last 7̄’s. Since we match all (A+ 1)B 6̄’s and B − b 5̄’s
and b 7’s, the total weight of this matching is (A+ 1)B · 8AW + (b+ (B− b)) · 4AW = ρ. Note that
this matching leaves all xa,b for a ∈ A unmatched and uncovered, i.e., for no two matched symbols
x[i], x[j] we have that x[i] is to the left of xa,b and x[j] is to the right of xa,b in x. Hence, any
solution to WRNA(y1 ◦(©a∈[A] xa,b) ◦ y2) can be added to the pairs matched so far. This yields

WRNA(y1 x y2) ≥ ρ+ max
b∈[B]

WRNA
(
y1 ◦

(
©
a∈[A]

xa,b
)
◦ y2

)
.

For the other direction, consider an optimal matching R of y1 x y2, realizing WRNA(y1 x y2).
Write wx for the total weight of pairs in R with both indices in x, and let wx,y be the total weight
of pairs in R with one end in x and the other in y1 or y2. Note that wx +wx,y ≥ ρ, since otherwise,
as shown above, we could replace the pairs of R incident with x to obtain wx = ρ and wx,y = 0,
yielding a higher total weight, which contradicts optimality of R.

Note that symbols in xa,b can only be matched to symbols in y1 or y2, and the only possible
matchings between x and y1 or y2 happen in the strings xa,b. Let Z ⊆ [A]×[B] be the set of all pairs
(a, b) such that xa,b contains at least one position matched by R. Consider first the case Z = ∅, so
that wx,y = 0. Denote by m5,m6,m7 the number of matched symbols 5, 6, 7 in x. Note that each
matched 5̄ and each matched 7 covers one 6. Hence, at most B −m5 + B −m7 + AB 6’s can be
matched. Since the number of 6̄’s is (A+1)B, we have m6 ≤ min{B−m5 +B−m7 +AB, (A+1)B}.
We thus obtain an upper bound on wx of

(m5 + 2m6 +m7) · 4AW ≤ (m5 +m7) · 4AW + min{B −m5 +B −m7 +AB, (A+ 1)B} · 8AW
= min{2(A+ 2)B −m5 −m7, 2(A+ 1)B +m5 +m7} · 4AW.

Optimizing over m5,m7 yields
wx ≤ (2A+ 3)B = ρ.

Hence, in the current case Z = ∅ we have wx,y = 0 and wx = ρ, which yields

WRNA(y1 x y2) ≤ ρ+ WRNA(y1y2) ≤ ρ+ max
b∈[B]

WRNA
(
y1 ◦

(
©
a∈[A]

xa,b
)
◦ y2

)
.

45

Now consider the remaining case |Z| ≥ 1. Write Z = {xa1,b1 , . . . , xa`,b`}, lexicographically
sorted by (a, b). Then we can bound wx,y ≤ ` ·W , since the total weight of each xa,b is bounded
from above by W .

In the following we bound wx. Note that between xai,bi and xai+1,bi+1
the only symbols con-

tributing to wx are 6 and 6̄. We count (ai+1 − ai)B 6’s and (ai+1 − ai)B + bi+1 − bi 6̄’s in this
substring. Hence, this contribution is bounded from above by

min{(ai+1 − ai)B, (ai+1 − ai)B + bi+1 − bi} · 8AW =
(
2(ai+1 − ai)B + min{0, 2bi+1 − 2bi}

)
· 4AW.

Using the identity min{0, 2z} = z − |z|, we can rewrite this bound as(
2(ai+1 − ai)B + bi+1 − bi − |bi+1 − bi|

)
· 4AW.

We next analyze the contribution to wx before xa1,b1 . We count (a1 − 1)B + b1 6̄’s and a1B 6’s
as well as B 5’s and 5̄’s in this substring of x. Denote by m5 the number of matched 5’s, and note
that this covers m5 6’s from matching with 6̄’s. Hence, we can match at most min{(a1 − 1)B +
b1, a1B −m5} 6’s. Summing up the weights, we obtain an upper bound on the contribution to wx
before xa1,b1 of

m5 ·4AW + min{(a1−1)B+ b1, a1B−m5} ·8AW = min{2(a1−1)B+ 2b1 +m5, 2a1B−m5} ·4AW.

Optimizing over m5, we obtain an upper bound of ((2a1 − 1)B + b1) · 4AW .
Lastly, we analyze the contribution to wx after xa`,b` . We count (A − a` + 2)B − b` 6̄’s and

(A− a` + 2)B 6’s as well as B 7’s and 7̄’s. Similarly to the last paragraph, when matching m7 7’s
we obtain an upper bound on the contribution of

m7 · 4AW + min{(A− a` + 2)B − b`, (A− a` + 2)B −m7} · 8AW
= min{2(A− a` + 2)B − 2b` +m7, 2(A− a` + 2)B −m7} · 4AW.

Optimizing over m7 yields an upper bound of (2(A− a` + 2)B − b`) · 4AW .
Summing over all three cases, we obtain an upper bound on wx of(
(2a1 − 1)B + b1 + 2(A− a` + 2)B − b` +

`−1∑
i=1

(
2(ai+1 − ai)B + bi+1 − bi − |bi+1 − bi|

))
· 4AW.

Note that all ai’s and almost all bi’s cancel as they form telescoping sums. What remains is

wx ≤
(
−B + 2(A+ 2)B −

∑̀
i=1

|bi+1 − bi|
)
· 4AW = ρ− 4AW

`−1∑
i=1

|bi+1 − bi|.

In combination with the inequalities wx,y ≤ `W and wx + wx,y ≥ ρ shown above, we obtain

`−1∑
i=1

|bi+1 − bi| ≤
`

4A
.

Note that we have |bi+1− bi| = 0 for at most A−1 i’s, since bi+1 = bi implies ai+1 > ai. This yields

`−1∑
i=1

|bi+1 − bi| ≥ `− 1− (A− 1) = `−A.

46

Together with the upper bound, we obtain `−A ≤ `/(4A) ≤ `/2, which yields ` ≤ 2A. Hence, we
have

`−1∑
i=1

|bi+1 − bi| ≤
`

4A
≤ 1/2 < 1,

which implies that bi+1 = bi for all i. Let b := b1 = . . . = b`. Then R matches only the strings xa,b
for a ∈ A, among all strings in X. Since we showed wx ≤ ρ, we indeed obtain

WRNA(T) ≤ ρ+ max
b∈[B]

WRNA
(
y1 ◦

(
©
a∈[A]

xa,b
)
◦ y2

)
.

5 Disjointness, Hamming Distance, and Subsequence

In this section we consider the following three problems on compressed sequences. In all problems
we are given SLPs T and P of size n and m, representing a text T = eval(T) of length N and a
pattern P = eval(P) of length M .

Problem 5.1 (Disjointness). Given two compressed sequences T and P of equal decompressed
lengths N = M over alphabet {0, 1}, decide whether there is a position such that both sequences
have symbol 1 at that position, i.e., whether T [i] = P [i] = 1 holds for some i.

Problem 5.2 (Hamming Distance). Given two compressed sequences T and P of equal decom-
pressed lengths N = M , output Hamming(P, T) = |{i|P [i] 6= T [i]}|. That is, output the number of
positions where the decompressed sequences differ.

Problem 5.3 (Subsequence). Given two compressed sequences T and P of decompressed length
N ≥M , decide whether the pattern sequence P is a subsequence of the text sequence T .

We note that in the uncompressed setting all three problems have linear time trivial algorithms.
This immediately implies that all three problems can be solved in time O(N) by decompressing the
sequences and running the trivial algorithms. Below we show that this running time is not optimal
and can be improved for all three problems for sufficiently compressible strings. Furthermore,
we show conditional lower bounds for the three problems assuming the Combinatorial k-Clique
conjecture, k-SUM conjecture, and Strong k-SUM conjecture (see Section 2.1 for definitions). We
were, however, not able to establish matching upper and lower bounds and we leave it as an open
problem to close the gap.

Known Lower Bounds from Classic Complexity Theory In [49] it was shown that the
Hamming Distance problem is #P-complete and thus a polynomial time (nm)O(1) algorithm for it
is unlikely to exist. Lohrey [52] showed that the Subsequence problem is at least as hard as PP and
is contained in PSPACE. It is conjectured that the subsequence problem is PSPACE-complete [53].
Note that the class PP contains computationally very difficult problems. In particular, Toda’s
theorem states that the entire polynomial hierarchy PH is contained in PPP.

We can easily check that the Disjointness problem is in NP. A variant of our Theorem 5.10
below implies that the Subset Sum problem can be reduced to the Disjointness problem and thus
Disjointness is in fact NP-complete.

47

5.1 Algorithms

We start this section by showing a simple algorithm for the Subsequence problem that runs in time
O((n|Σ| + M) logN) (see Theorem 5.4). An algorithm with very similar guarantees was obtained
in [12]. Note that in a natural setting, namely when |Σ| ≤ O(1), n ≤ M and N ≤ MO(1), the
algorithm runs in time Õ(M). That is, we do not need to decompress the text sequence to be able
to solve the Subsequence problem.

In Theorems 5.5 and 5.6 below we show O
(
max(m,n)1.5 ·N0.6

)
time algorithms for the Ham-

ming Distance and Subsequence problems, respectively. We observe that both running times that
we obtain for the Subsequence problem are incomparable. Finally, by Theorem 5.7 from Sec-
tion 5.2, the Disjointness problem can be reduced to the Subsequence problem. This implies an
O(max(m,n)1.5 ·N0.6) time algorithm for the Disjointness problem. To the best of our knowledge
these upper bounds are new.

Theorem 5.4. The Subsequence problem can be solved in time O((n|Σ|+M) logN).

Proof. We start by decompressing the pattern sequence P in O(M) time. To decide whether P
is a subsequence of the text sequence T , for i = 1, . . . ,M (in this order) we will find the smallest
j ∈ {1, . . . , N} such that P [1..i] (the prefix of the decompressed pattern of length i) is a subsequence
of T [1..j]. In the rest of the proof we will describe how to do this efficiently.

We start by transforming the compressed text T into an AVL-grammar of size O(n logN) and
depth O(logN) according to Theorem 2.1. This takes O(n logN) time. Additionally, for every
alphabet symbol σ ∈ Σ and every non-terminal Ti of the AVL-grammar, we decide whether the
sequence produced by the non-terminal Ti contains the symbol σ. For every symbol, this can be
done in O(n logN) time. Since the size of the alphabet is |Σ|, this takes O(n|Σ| logN) total time.

Given an index i = 1, . . . ,M , suppose that we know the smallest index j ∈ {1, . . . , N} such
that P [1..i] is a subsequence of T [1..j]. We will show how to find the smallest j′ > j such that
P [1..i+ 1] is a subsequence of T [1..j′]. The required running time will follow since we will be able
to do this in O(logN) time for every index i. We find the smallest j′ > j in two steps. In the first
step we traverse the parse tree bottom-up from the symbol T [j] until the current node has T [j] in
the left subtree and the right subtree contains symbol P [i + 1]. In the second step we go to the
right subtree and then keep going to the left-most child that contains the symbol P [i + 1]. Since
the height of the parse tree is O(logN), this takes O(logN) time. This finishes the description of
the algorithm. Note that we did not decompress the text sequence T in this process.

Theorem 5.5. The Hamming Distance problem can be solved in time

Õ
(

max(m,n)2−1/ log2(2ϕ) ·N1/ log2(2ϕ)
)

= Õ
(
max(m,n)1.409... ·N0.592...

)
,

where ϕ = 1+
√

5
2 is the golden ratio.

Proof. Let P1, P2, . . . , Pm be the SLP P corresponding to the decompressed pattern sequence P and
let T1, T2, . . . , Tn be the SLP T corresponding to the decompressed text sequence T . We assume
that the decompressed length of the sequences P and T is |P | = |T | = N .

By Theorem 2.1 we can assume that P1, P2, . . . , Pm and T1, T2, . . . , Tn are AVL-grammars.
This increases the running time by a factor of at most poly logN , which is hidden in the Õ(·)
notation. Fix an i = 1, . . . ,m and consider the sequence eval(Pi) with the corresponding parse tree

48

of height depth(Pi). Then one can verify that the length of the sequence is bounded from above
by |eval(Pi)| ≤ 2depth(Pi) and from below by

|eval(Pi)| ≥ Fdepth(Pi) ≥ Ω
(
ϕdepth(Pi)

)
, (6)

where Fdepth(Pi) is the depth(Pi)-th Fibonacci number and ϕ is the golden ratio [26]. Analogous
properties hold for Tj for j = 1, . . . , n.

For every Pi and Tj we precompute the length of eval(Pi) and eval(Tj), respectively. We define
the function

Ham(Pi, Tj , d) :=
∑

r:
r∈{1,...,|eval(Pi)|},
r+d∈{1,...,|eval(Tj)|}

[
eval(Pi)r 6= eval(Tj)r+d

]
,

where d is a negative or a non-negative integer. In other words, Ham(Pi, Tj , d) is equal to the
Hamming distance between Tj and a shifted Pi (by d symbols to the right if d > 0 and by |d| symbols
to the left otherwise), where we consider only the symbols that have aligned counterparts. Clearly,
we can solve the Hamming Distance problem by outputting Hamming(P, T) = Ham(Pm, Tn, 0).

A simple algorithm for computing the Hamming distance is the following recursive method.
Assume that the sequence eval(Pi) is longer than the sequence eval(Tj), and Pi → P`(i), Pr(i). Then

Ham(Pi, Tj , d) = Ham(P`(i), Tj , d) + Ham(Pr(i), Tj , d+ |eval(P`(i))|).

Otherwise, if the sequence eval(Tj) is longer and Tj → T`′(j), Tr′(j), then

Ham(Pi, Tj , d) = Ham(Pi, T`′(j), d) + Ham(Pi, Tr′(j), d− |eval(T`′(j))|).

Clearly, for any recursive subproblem where the argument d is such that no symbols get aligned,
we can immediately return 0. When Pi or Tj encode a single symbol, we compute their Hamming
distance in a constant time.

We use this recursive algorithm with memoization, i.e., if we call the same inputs twice, then
we return the stored answer.

Running Time We crucially use the fact that we split the longer text in each step, and property 6.
Both together imply that

|eval(Tj)| ≥ Ω
(
|eval(Pi)|log2 ϕ

)
= Ω

(
|eval(Pi)|0.694...

)
for each call Ham(Pi, Tj , d). We bound the running time by counting for each Pi how many
different calls there are of the form Ham(Pi, Tj , d) with |eval(Tj)| ≤ |eval(Pi)|. The running time
corresponding to the calls with |eval(Tj)| > |eval(Pi)| can be analyzed analogously. Note that
|eval(Tj)| ≤ |eval(Pi)| implies |d| ≤ O(|eval(Pi)|), as larger shifts immediately give answer 0. Let
0 < α < 1 to be fixed later. If |eval(Pi)| < Nα we can thus bound the contribution of Pi to the
running time by nNα (there are n Tj ’s and Nα possible offsets d). Otherwise, if |eval(Pi)| ≥ Nα,
then |eval(Tj)| ≥ Nα log2 ϕ, and thus there are at most N1−α log2 ϕ calls to such Tj in the parse
tree for T = eval(Tn). Thus, there are at most this many calls Ham(Pi, Tj , d), so the contribution
of Pi to the running time is at most N1−α log2 ϕ. Summed over all m different Pi’s the total
running time is bounded by O

(
m(nNα +N1−α log2 ϕ)

)
. Minimizing over α gives the running time

O
(
m · n1−1/ log2(2ϕ) ·N1/ log2(2ϕ)

)
. The running time corresponding to the calls with |eval(Tj)| >

|eval(Pi)| can be similarly bounded by O
(
n ·m1−1/ log2(2ϕ) ·N1/ log2(2ϕ)

)
. It remains to observe that

the total running time is bounded by O
(
max(m,n)2−1/ log2(2ϕ) ·N1/ log2(2ϕ)

)
as required.

49

Theorem 5.6. The Subsequence problem can be solved in time

Õ
(

max(m,n)2−1/ log2(2ϕ) ·N1/ log2(2ϕ)
)

= Õ
(
max(m,n)1.409... ·N0.592...

)
,

where ϕ = 1+
√

5
2 is the golden ratio.

Proof. The algorithm follows a similar recursive method as in Theorem 5.5. As above, we assume
that the SLPs P and T are AVL-grammars.

For non-terminals Pi and Tj and an integer d we define the function Subseq(Pi, Tj , d). If d ≥ 0,
then we assume that we already matched a prefix of eval(Pi) of length d (the prefix is a subsequence
of an earlier part of the text) and our goal is to match the rest of eval(Pi) with eval(Tj). On the other
hand, if d < 0, then we assume that we already matched a prefix of eval(Tj) of length |d| (a previous
part of the pattern is a subsequence of the prefix) and our goal is to match eval(Pi) to the rest of
eval(Tj). The function returns an integer as follows. Let d′ be the length of the longest prefix of
eval(Pi) that can be matched to eval(Tj). (If d ≥ 0, then we match only the remainder of eval(Pi)
to eval(Tj). If d < 0, then we match eval(Pi) to the remainder of eval(Tj).) If d′ < |eval(Pi)|,
that is, we cannot match entire eval(Pi) to eval(Tj), then the function Subseq(Pi, Tj , d) returns d′.
Otherwise, if d′ = |eval(Pi)|, the function returns the length of the shortest prefix of (the remainder
of) eval(Tj) that can be matched to (the remainder of) eval(Pi).

Given the description of the function, the recursive implementation of it is straightforward and
is described below. To evaluate Subseq(Pi, Tj , d), we consider three cases.

Case 1 Pi or Tj represents a single symbol. The problem is trivial to solve in this case.

Case 2 |eval(Pi)| ≥ |eval(Tj)|. Let Pi → P`(i), Pr(i) be the SLP rule corresponding to Pi. If
d ≥ |eval(P`(i))|, then the function returns Subseq(Pr(i), Tj , d − |eval(P`(i))|), which we compute
recursively. If, on the other hand, d < |eval(P`(i))|, we recursively compute d′ := Subseq(P`(i), Tj , d)
and return d′ if d′ ≥ 0 or return Subseq(Pr(i), Tj , d

′) if d′ < 0.

Case 3 |eval(Pi)| < |eval(Tj)|. This case is similar to the previous one. Let Tj → T`′(j), Tr′(j)
be the SLP rule corresponding to Tj . If −d > |eval(T`′(j))|, we return Subseq(Pi, Tr′(j),−d −
|eval(T`′(j))|), which we compute recursively. Otherwise, we define d′ := Subseq(Pi, T`′(j), d) and
return d′ if d′ < 0 or return Subseq(Pi, Tr′(j), d

′) if d′ ≥ 0.
The correctness of the algorithm follows from the description and the definition of the function

Subseq(Pi, Tj , d). The running time analysis is similar to Theorem 5.5 and we omit it.

5.2 Lower Bounds

In this section we show conditional lower bounds for the Disjointness, Hamming Distance and
Subsequence problems. First, we show that the Disjointness problem can be reduced to the Subse-
quence problem (Theorem 5.7) and to the Hamming Distance problem (Theorem 5.8). Thus, any
algorithmic improvement for the latter two problems implies a faster algorithm for the Disjointness
problem. Alternatively, we can think about the Disjointness problem as the core hard problem
explaining hardness for the two other problems. Second, we show a matching N1−o(1) lower bound
for combinatorial algorithms for the Subsequence problem in the setting where N ≈M ≈ n2 ≈ m2.
We use the combinatorial k-Clique conjecture to establish this hardness. Finally, we use the k-SUM

50

conjecture (Conjecture 2.8) for all three aforementioned problems. The lower bounds that we show
are not tight. We show that assuming a stronger version of the k-SUM conjecture (Conjecture 2.9)
allows us to get higher lower bounds, but still not matching.

Theorem 5.7. The Disjointness problem can be reduced to the Subsequence problem. The reduction
loses at most constant factors in the length of compressed and decompressed sequences.

Proof. Let P and T be two binary sequences, forming an instance of the Disjointness problem. We
construct a sequence P ′ from P by replacing every symbol 0 with symbol “0” and every symbol 1
with two symbols “10”. Similarly, we construct a sequence T ′ from T by replacing every symbol 0
with two symbols “10” and every symbol 1 with “0”.

The resulting sequences P ′ and T ′ are compressible similarly as P and T . We can check that
P ′ is a subsequence of T ′ if and only if we have P [i] = 0 or T [i] = 0 for all i. This completes the
reduction.

Theorem 5.8. The Disjointness problem can be reduced to the Hamming Distance problem. The
reduction loses at most constant factors in the length of compressed and decompressed sequences.

Proof. Let P and T be two binary sequences, forming an instance of the Disjointness problem. We
construct a sequence P ′ from P by replacing every symbol 0 with three symbols “011” and every
symbol 1 with three symbols “000”. Similarly, we construct a sequence T ′ from T by replacing
every symbol 0 with “001” and every symbol 1 with “111”.

These four gadget sequences have Hamming distance 1 for all pairs except when both original
symbols are 1. In this case the Hamming distance between the two gadgets is 3. We conclude that
Hamming(P ′, T ′) > N = |P | = |T | if and only if there exists i with P [i] = T [i] = 1. This concludes
the reduction.

Theorem 5.9. The Subsequence problem has no combinatorial O(N1−ε) time algorithm for any
ε > 0 in the setting N = Θ(M) = Θ(n2) = Θ(m2) and |Σ| = O(N ε), assuming the combinatorial
k-Clique conjecture.

Proof. The reduction will rule out combinatorial algorithms with running time N1−ε by using the
Combinatorial k-Clique conjecture 2.7 with k = O(1/ε). Let k ≥ 4 be even, and letG = (V,E) be an
instance of k-Clique. In the following we will construct an equivalent instance of the Subsequence
problem, i.e., a text T = eval(T) and a pattern P = eval(P), satisfying N = |T | = O(V k+1),
n = |T | = O(V (k/2)+1), M = |P | = O(V k), and m = |P| = O(V k/2). The alphabet size will
be |Σ| = O(V). By a simple padding10, we can then ensure that N,M = Θ(V k+2) and n,m =
Θ(V k/2+1), so that indeed N = Θ(M) = Θ(n2) = Θ(m2), and we have |Σ| = O(N ε) for any
k ≥ 1/ε. Finally, a combinatorial O(N1−ε) algorithm for the Subsequence problem in this setting
would yield a combinatorial algorithm for k-Clique in time O(V (k+2)(1−ε)) = O(V k(1−ε/2)) for any
k ≥ 4/ε, contradicting the combinatorial k-Clique conjecture.

We first construct clique gadgets and then the pattern and the text. The alphabet will be
Σ = V ∪ {#, $}.

10Specifically, let \ be a fresh symbol and add \V
k+2

as a prefix to T and P . Compress this string \V
k+2

to length

V k/2+1 by writing it as (\V
k/2+1

)V
k/2+1

and using Observation 2.2.

51

Construction of the clique gadgets CG Given a (k/2)-clique C = {v1, ..., vk/2}, we construct
the clique gadget CG(C) as:

CG(C) = (v1v2...vk/2#)k/2.

That is, we write down the labels of the vertices (in increasing order), put “#” at the end and
repeat the resulting sequence k/2 times.

Construction of the clique gadgets CG′ Given a (k/2)-clique C ′ = {u1, ..., uk/2}, we con-
struct CG′(C ′) as:

CG′(C ′) = Neighbors(u1)#Neighbors(u2)#...#Neighbors(uk/2)#

where Neighbors(u) lists all neighbors of vertex u in increasing order.
We can check that for any (k/2)-cliques C,C ′, CG(C) is a subsequence of CG′(C ′) if and only

if C ∪ C ′ forms a k-clique.

Construction of the sequence Z We construct Z as:

Z := (L#)k/2,

where L is the sequence containing all V vertices in the graph in increasing order. We can verify
the any clique gadget CG(C) is a subsequence of Z.

Construction of the Pattern The pattern consists of clique gadgets as follows. Enumerate all
(k/2)-cliques C1, . . . , CQ with Q ≤ V k/2 in G. The pattern sequence P is constructed as:

P := (CG(C1)$CG(C2)$...$CG(CQ)$)Q .

That is, we concatenate the Q clique gadgets CG(C1), . . . , CG(CQ) in one sequence and put “$”
after every gadget, and repeat the resulting sequence Q times. Note that the symbol “$” does not
appear in any clique gadget.

Construction of the Text The text is somewhat similar to the pattern, defined by:

T := (CG′(C1)Z)Q (CG′(C2)Z)Q ...(CG′(CQ−1)Z)Q (CG′(CQ)Z)Q−1CG′(CQ)$.

Correctness The pattern consists of Q2 clique gadgets with the symbol $ in between any two of
them. The text consist of Q2 cliques gadgets with the sequence Z in between any two of them.
Since there are only Q2 − 1 Z’s in the text, we cannot match all clique gadgets of the pattern to
Z’s in the text. Hence, if P is a subsequence of T , then at least one clique gadget CG(Ci) is a
subsequence of CG′(Cj) for some i, j. This happens only if Ci ∪ Cj form as k-clique in G.

For the other direction, we show that if G contains a k-clique, so that there are i, j with Ci∪Cj
forming a k-clique, implying that CG(Ci) is a subsequence of CG′(Cj), then the pattern is a
subsequence of the text. Indeed, let q = j ·Q+ i. The q-th clique gadget in the pattern is CG(Ci)
and the q-th clique gadget in the text is CG′(C ′j). We match all clique gadgets before the q-th one
as well as after the q-th one to Z’s, and we match CG(Ci) to CG′(C ′j). This shows that P is a
subsequence of T .

52

Since |L| = V , Q ≤ V k/2, and k is a constant, the length bounds N = O(V k+1) and M = O(V k)
are immediate. Using Observation 2.2 to compress strings of the form XQ to size O(|X|+ logQ),
we also immediately obtain n = O(V k/2+1) and m = O(V k/2). This finishes the proof.

Theorem 5.10. Let k ≥ 1 be an integer. Consider the Disjointness problem with N = M =

Θ(n4k+1) = Θ(m4k+1). Solving the Disjointness problem in this setting requires N
1
4

+ 3
16k+4

−o(1)

time assuming the (2k + 1)-SUM conjecture.

Theorem 5.11. Let k ≥ 1 be an integer. Consider the Disjointness problem with N = M =

Θ(n3k+1) = Θ(m3k+1). Solving the Disjointness problem in this setting requires N
1
3

+ 2
9k+3

−o(1) time
assuming the Strong (2k + 1)-SUM conjecture.

By Theorems 5.7 and 5.8, the same kind of hardness holds for the Subsequence and Hamming
Distance problems.

Proof of Theorems 5.10 and 5.11. Let k ≥ 1 be an integer and let A ⊆ {0, 1, . . . , R − 1, R} be an
instance of the (2k+ 1)-SUM problem with |A| = r and target sum t. Without loss of generality, R
is divisible by k+ 1 and t is divisible by k. We define the set B :=

{
t
k +R− a | a ∈ A

}
and the set

C :=
{
Rk
k+1 + a | a ∈ A

}
. We can verify that there exist b1, . . . , bk ∈ B and c1, . . . , ck+1 ∈ C with

b1 + . . .+ bk = c1 + . . .+ ck+1 if and only if there exist a1, . . . , a2k+1 ∈ A with a1 + . . .+ a2k+1 = t.
We note that B,C ⊆ {1, 2, . . . , R′} for R′ := 2R.

In O(r log r) time we will construct an instance to the Disjointness problem with the following
properties.

• Pattern P = eval(P) is constructed from the set B and has length M = R′·r2k and compressed
size m = O(r log r),

• Text T = eval(T) is constructed from the set C and has length N = R′ · r2k and compressed
size n = O(r log r),

• There exists i such that P [i] = T [i] = 1 if and only if there exist b1, . . . , bk ∈ B and
c1, . . . , ck+1 ∈ C with b1 + . . .+ bk = c1 + . . .+ ck+1.

Simply padding allows us to increase the text length and pattern length to R′r2k logk
′
r for any k′ ≥

0, and to achieve n,m = Θ(r log r). Setting R = r2k+1, we thus have N = M = 2r4k+1 log4k+1 r =
Θ(n4k+1) = Θ(m4k+1). Any O(N1/4+3/(16k+4)−ε) = O(N (k+1−ε)/(4k+1)) time algorithm for Dis-
jointness would now imply an algorithm for (2k+1)-SUM in time O((r log r)k+1−ε) = O(rk+1−ε/2),
contradicting the (2k + 1)-SUM conjecture (Conjecture 2.8). This proves Theorem 5.10. Simi-
larly, setting R = rk+1 and using the Strong (2k + 1)-SUM conjecture (Conjecture 2.9) we obtain
Theorem 5.11.

In the remainder of the proof we present the promised construction.
Without loss of generality, we have R′ > 10k ·max(B ∪ C).

Construction of the Pattern We define the pattern as

P :=
(

©
b1,...,bk∈B

0b1+...+bk 1 0R
′−(b1+...+bk)−1

)rk
,

53

where the © goes over all tuples (b1, . . . , bk) ∈ Bk in lexicographic order. That is, P consists of
rk repetitions of a sequence Z of length R′ · rk. The sequence Z consists of sequences Z1, . . . , Zrk ,
corresponding to k-tuples (b1, . . . , bk) ∈ Bk. Each sequence Zi has length R′, and the sequence Zi
corresponding to tuples (b1, . . . , bk) has 0’s everywhere except at position b1 + . . .+ bk + 1.

Construction of the Text We define the text as

T := ©
c1,...,ck∈C

(
Y (c1, . . . , ck)

)rk
, (7)

where Y (c1, . . . , ck) is a string of length R′ with Y (c1, . . . , ck)[j + 1] = 1 if j ∈ {c + c1 + . . . + ck |
c ∈ C}, and Y (c1, . . . , ck)[j + 1] = 0 otherwise.

Analysis Note that there is an index i with P [i] = T [i] = 1 if and only if there exist b1, . . . , bk ∈ B
and c1, . . . , ck+1 ∈ C with b1 + . . . + bk = c1 + . . . + ck+1. Hence, correctness of the reduction can
be easily verified. The length N = M = R′r2k is immediate. It remains to show that the pattern
and the text are compressible.

Compressing the Pattern Since P = Zr
k
, by Observation 2.2 it suffices to compress Z. We

construct the sequence Z inductively. We write B = {B1, . . . , Br}. We define S0 → 1 to be a
non-terminal generating a sequence of length 1 containing a single symbol 1. For i ∈ [k] we define
the non-terminal Si as follows:

Si →
(
©r−1
w=10BwSi−10R

′ri−1−Bw−|eval(Si−1)|
)
◦ 0BrSi−1. (8)

Finally, we set S → Sk ◦ 0R
′rk−|Sk|. Here the right hand side contains more than two SLP non-

terminals, but using Observation 2.2 it is easy to convert this into a proper SLP of size O(r log r) as
required. It remains to check that Z = eval(S), i.e., eval(S) =©b1,...,bk∈B 0b1+...+bk 1 0R

′−(b1+...+bk)−1.
Indeed, a straightforward induction shows that we constructed Si, i ∈ [k] such that

eval(Si) ◦ 0Rr
i−|eval(Si)| = ©

b1,...,bi∈B
0b1+...+bi 1 0R

′−(b1+...+bi)−1.

The induction step is performed by using the derivation rule (8).

Compressing the Text Let W be a string of length R′ consisting only of 0’s except W [j+1] = 1
for any j ∈ C. We define an SLP non-terminal Y ′ that generates the shortest prefix of W containing
all 1’s of W . We set

Y0 →
(
Y ′0R

′−|eval(Y ′)|
)rk−1

Y ′.

Note that eval(Y ′)0R
′−|eval(Y ′)| = W . Hence, Y0 generates the string W rk where we removed the

longest suffix of 0’s. We write C = {C1, . . . , Cr}.
For i = 1, . . . , k we define sequence Yi as follows:

Yi →
(
©r−1
w=10CwYi−10R

′rk+i−1−Cw−|eval(Yi−1)|
)
◦ 0CrYi−1. (9)

54

Finally, we set T → Yk ◦ 0R
′r2k−|eval(Yk)|. It is easy to verify that the size of the above SLP

T is O(r log r). It remains to show that eval(T) = T as in (7). That is, we want to show that

eval(T) =©c1,...,ck∈C

(
Y (c1, . . . , ck)

)rk
. This follows by a straightforward induction. We can check

that for i = 0, 1, . . . , k we have

eval(Yi) ◦ 0R
′rk+i−|eval(Yi)| = ©

c1,...,ci∈C

(
Y (c1, . . . , ci)

)rk
.

The induction step is performed by using the derivation rule (9).

6 Conclusion

With this paper we started the fine-grained complexity of analyzing compressed data, thus providing
lower bound tools for a practically highly relevant area. We focused on the most basic problems
on strings, leaving many other stringology problems for future work. Besides strings, there is a
large literature on grammar-compressed other forms of data, e.g. graphs. It would be interesting
to apply our framework and classify the important problems in these contexts as well.

Specifically, we leave the following open problems.

• Determine the optimal running time for the Disjointness, Hamming Distance, and Subse-
quence problems.

• Generalize our lower bound for LCS to Edit Distance.

• For NFA Acceptance we obtained tight bounds in case of a potentially dense automaton with
q states and up to O(q2) transitions. Prove tight bounds for the case of sparse automata with
O(q) transitions.

• For large (i.e. superconstant) alphabet size, some bounds given in this paper are not tight,
most prominently for Generalized Pattern Matching, Substring Hamming Distance, and Pat-
tern Matching with Wildcards. Determine the optimal running time in this case.

• For all lower bounds presented in this paper, check whether they can be improved to work
for binary strings.

Acknowledgements

This paper would not have been possible without Oren Weimann and Schloss Dagstuhl. Inspired by
a Dagstuhl seminar on Compressed Pattern Matching in October, and while attending a Dagstuhl
seminar on Fine-Grained Complexity in November, Oren asked in the open problems session
whether SETH can explain the lack of O((nN)1−ε) algorithms for problems like LCS on com-
pressed strings. Later, in January, three of the authors of this paper attended a Dagstuhl seminar
on Parameterized Complexity and made key progress towards the results of this work. Part of the
work was also performed while visiting the Simons Institute for the Theory of Computing, Berkeley,
CA. We thank Pawe l Gawrychowski for helpful comments.

55

A.A. was supported by Virginia Vassilevska Williams’ NSF Grants CCF-1417238 and CCF-
1514339, and BSF Grant BSF:2012338. Arturs Backurs was supported by an IBM PhD Fellowship,
the NSF and the Simons Foundation. While performing part of this work, M. Künnemann was
affiliated with University of California, San Diego.

References

[1] A. Abboud, A. Backurs, and V. Vassilevska Williams. If the current clique algorithms are
optimal, so is Valiant’s parser. In Proc. 56th IEEE Annual Symposium on Foundations of
Computer Science (FOCS’15), pages 98–117. IEEE, 2015.

[2] A. Abboud, A. Backurs, and V. Vassilevska Williams. Tight Hardness Results for LCS and
other Sequence Similarity Measures. In Proc. 56th IEEE Annual Symposium on Foundations
of Computer Science (FOCS’15), pages 59–78, 2015.

[3] A. Abboud, T. D. Hansen, V. Vassilevska Williams, and R. Williams. Simulating branching
programs with edit distance and friends: or: a polylog shaved is a lower bound made. In Proc.
48th Annual ACM Symposium on Theory of Computing (STOC’16), pages 375–388, 2016.

[4] A. Abboud, V. Vassilevska Williams, and O. Weimann. Consequences of faster sequence
alignment. In Proc. 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), pages 39–51, 2014.

[5] A. Abboud, R. Williams, and H. Yu. More applications of the polynomial method to algorithm
design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15),
pages 218–230, 2015.

[6] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing. In
Proc. 41st International Colloquium on Automata, Languages, and Programming (ICALP’14),
pages 114–125. Springer, 2014.

[7] A. Apostolico, G. M. Landau, and S. Skiena. Matching for run-length encoded strings.
In Proc. 1997 International Conference on Compression and Complexity of Sequences (SE-
QUENCES’97), pages 348–356. IEEE, 1997.

[8] O. Arbell, G. M. Landau, and J. S. Mitchell. Edit distance of run-length encoded strings.
Information Processing Letters, 83(6):307–314, 2002.

[9] P. Austrin, P. Kaski, M. Koivisto, and J. Määttä. Space–time tradeoffs for subset sum:
An improved worst case algorithm. In Proc. 40th International Colloquium on Automata,
Languages, and Programming (ICALP’13), pages 45–56, 2013.

[10] A. Backurs and P. Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory of Computing
(STOC’15), pages 51–58, 2015.

[11] A. Backurs and P. Indyk. Which regular expression patterns are hard to match? In Proc.
57th IEEE Annual Symposium on Foundations of Computer Science (FOCS’16), 2016.

56

[12] P. Bille, P. H. Cording, and I. L. Gørtz. Compressed subsequence matching and packed tree
coloring. In Proc. Annual Symposium on Combinatorial Pattern Matching (CPM’14), pages
40–49, 2014.

[13] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random access
to grammar-compressed strings and trees. SIAM Journal on Computing, 44(3):513–539, 2015.

[14] K. Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless seth fails. In Proc. of 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS’14), pages 661–670, 2014.

[15] K. Bringmann, F. Grandoni, B. Saha, and V. Vassilevska Williams. Truly sub-cubic algorithms
for language edit distance and rna-folding via fast bounded-difference min-plus product. In
Proc. 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS’16), pages
375–384. IEEE, 2016.

[16] K. Bringmann, A. Grønlund, and K. G. Larsen. A dichotomy for regular expression mem-
bership testing. In Proc. 58th IEEE Annual Symposium on Foundations of Computer Science
(FOCS’17), 2017.

[17] K. Bringmann and M. Künnemann. Quadratic Conditional Lower Bounds for String Problems
and Dynamic Time Warping. In Proc. 56th IEEE Annual Symposium on Foundations of
Computer Science (FOCS’15), pages 79–97, 2015.

[18] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-length
coded strings. Information Processing Letters, 54(2):93–96, 1995.

[19] C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and clause density
for SAT. In Proc. 21st IEEE Conference on Computational Complexity (CCC’06), pages 252–
260, 2006.

[20] P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence problems
for compressed texts. In Proc. 1st International Computer Science Symposium in Russia
(CSR’06), pages 127–136. Springer, 2006.

[21] T. M. Chan and M. Lewenstein. Clustered Integer 3SUM via Additive Combinatorics. In Proc.
47th Annual ACM Symposium on Theory of Computing (STOC’15), 2015.

[22] Y. Chang. Conditional lower bound for RNA folding problem. CoRR, abs/1511.04731, 2015.

[23] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. STOC’02 and IEEE Transactions on Information Theory,
51(7):2554–2576, 2005.

[24] R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya. The k-mismatch problem
revisited. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17),
pages 2039–2052, 2016.

[25] J. Cocke. Programming languages and their compilers. 1970.

57

[26] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[27] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A subquadratic sequence alignment
algorithm for unrestricted scoring matrices. SIAM Journal on Computing, 32(6):1654–1673,
2003.

[28] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen. Episode matching.
In Proc. Annual Symposium on Combinatorial Pattern Matching (CPM’97), pages 12–27.
Springer, 1997.

[29] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94–
102, 1970.

[30] S. R. Eddy. How do rna folding algorithms work? Nature biotechnology, 22(11):1457–1458,
2004.

[31] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating
set. Theoretical Computer Science, 326(1-3):57–67, 2004.

[32] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster approximate pattern matching in com-
pressed repetitive texts. In International Symposium on Algorithms and Computation, pages
653–662. Springer, 2011.

[33] A. Gajentaan and M. H. Overmars. On a class of O(N2) problems in computational geometry.
Comput. Geom. Theory Appl., 45(4):140–152, 2012.

[34] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-
Ziv encoding. Proc. 5th Scandinavian Workshop on Algorithm Theory (SWAT’96), pages
392–403, 1996.

[35] P. Gawrychowski. Faster algorithm for computing the edit distance between slp-compressed
strings. In International Symposium on String Processing and Information Retrieval, pages
229–236. Springer, 2012.

[36] R. Giancarlo, D. Scaturro, and F. Utro. Textual data compression in computational biology:
a synopsis. Bioinformatics, 25(13):1575–1586, 2009.

[37] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th IEEE
Annual Symposium on Foundations of Computer Science (FOCS’14), pages 621–630, 2014.

[38] S. Grumbach and F. Tahi. Compression of DNA sequences. In Proc. Data Compression
Conference (DCC’93), pages 340–350, 1993.

[39] S. Grumbach and F. Tahi. A new challenge for compression algorithms: genetic sequences.
Information Processing & Management, 30(6):875–886, 1994.

[40] D. Hermelin, G. M. Landau, S. Landau, and O. Weimann. Unified compression-based accel-
eration of edit-distance computation. Algorithmica, 65(2):339–353, 2013.

58

[41] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Automata theory, languages, and computation.
International Edition, 24, 2006.

[42] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of Computer and System
Sciences, 62(2):367–375, 2001.

[43] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63:512–530, 2001.

[44] A. Jeż. A really simple approximation of smallest grammar. Theoretical Computer Science,
616:141–150, 2016.

[45] A. Jeż. Recompression: a simple and powerful technique for word equations. Journal of the
ACM (JACM), 63(1):4, 2016.

[46] T. Kasami. An efficient recognition and syntax algorithm for context-free algorithms. In
Technical Report AFCRL-65-758 Air Force Cambridge Research Lab Bedford, Mass. 1965.

[47] N. J. Larsson. Structures of string matching and data compression. Department of Computer
Science, Lund University, 1999.

[48] A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE Transactions on Informa-
tion Theory, 22(1):75–81, 1976.

[49] Y. Lifshits. Processing compressed texts: A tractability border. In Proc. Annual Symposium
on Combinatorial Pattern Matching (CPM’07), pages 228–240. Springer, 2007.

[50] Q. Liu, Y. Yang, C. Chen, J. Bu, Y. Zhang, and X. Ye. RNACompress: Grammar-based
compression and informational complexity measurement of RNA secondary structure. BMC
bioinformatics, 9(1):176, 2008.

[51] M. Lohrey. Word problems and membership problems on compressed words. SIAM Journal
on Computing, 35(5):1210–1240, 2006.

[52] M. Lohrey. Leaf languages and string compression. Information and Computation, 209(6):951–
965, 2011.

[53] M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology,
4(2):241–299, 2012.

[54] U. Manber. A text compression scheme that allows fast searching directly in the compressed
file. ACM Transactions on Information Systems (TOIS), 15(2):124–136, 1997.

[55] N. Markey and P. Schnoebelen. A ptime-complete matching problem for slp-compressed words.
Information Processing Letters, 90(1):3–6, 2004.

[56] Miscellaneous Authors. Queries and problems. SIGACT News, 16(3):38–47, 1984.

[57] C. G. Nevill-Manning and I. H. Witten. Compression and explanation using hierarchical
grammars. The Computer Journal, 40(2 and 3):103–116, 1997.

59

[58] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes Math.
Universitatis Carolinae, 026(2):415–419, 1985.

[59] M. Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd ACM
Symposium on Theory of Computing (STOC’10), pages 603–610, 2010.

[60] W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the solution of word
equations. Automata, Languages and Programming, pages 731–742, 1998.

[61] W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed
words. In Jewels are forever, pages 262–272. Springer, 1999.

[62] A. Polak. Why is it hard to beat O(n2) for longest common weakly increasing subsequence?
Information Processing Letters, 132:1–5, 2018.

[63] R. Radicioni and A. Bertoni. Grammatical compression: compressed equivalence and other
problems. Discrete Mathematics and Theoretical Computer Science, 12(4):109, 2010.

[64] W. Rytter. Application of Lempel–Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302(1-3):211–222, 2003.

[65] W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input. In
Proc. 31st International Colloquium on Automata, Languages, and Programming (ICALP’04),
pages 15–27. Springer, 2004.

[66] H. Sakamoto. Grammar compression: Grammatical inference by compression and its applica-
tion to real data. In ICGI, pages 3–20, 2014.

[67] D. Sculley and C. E. Brodley. Compression and machine learning: A new perspective on
feature space vectors. In Proc. Data Compression Conference (DCC’06), pages 332–341, 2006.

[68] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S. Arikawa.
Byte pair encoding: A text compression scheme that accelerates pattern matching. Technical
report, Technical Report DOI-TR-161, Department of Informatics, Kyushu University, 1999.

[69] A. Tiskin. Faster subsequence recognition in compressed strings. Journal of Mathematical
Sciences, 158(5):759–769, 2009.

[70] A. Tiskin. Fast distance multiplication of unit-Monge matrices. In Proc. 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’10), pages 1287–1296. SIAM, 2010.

[71] A. Tiskin. Towards approximate matching in compressed strings: Local subsequence recogni-
tion. In Proc. International Computer Science Symposium in Russia (CSR’11), pages 401–414.
Springer, 2011.

[72] L. G. Valiant. General context-free recognition in less than cubic time. Journal of Computer
and System Sciences, 10(2):308–315, 1975.

[73] V. Vassilevska. Efficient algorithms for clique problems. Inf. Process. Lett., 109(4):254–257,
2009.

60

[74] J. Wang. Space-efficient randomized algorithms for k-sum. In Proc. 22nd Annual European
Symposium on Algorithms (ESA’14), pages 810–829, 2014.

[75] T. A. Welch. A technique for high-performance data compression. Computer, 6(17):8–19, 1984.

[76] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. The-
oretical Computer Science, 348(2):357–365, 2005.

[77] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, 1999.

[78] G. J. Woeginger. Space and time complexity of exact algorithms: Some open problems. In
Proc. 1st International Workshop on Parameterized and Exact Computation (IWPEC’04),
pages 281–290, 2004.

[79] T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and don’t-care
pattern matching on compressed texts. In Proc. Annual Symposium on Combinatorial Pattern
Matching (CPM’11), pages 309–322. Springer, 2011.

[80] D. H. Younger. Recognition and parsing of context-free languages in time n3. Information
and Control, 10(2):189–208, 1967.

[81] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory, 23(3):337–343, 1977.

61

	1 Introduction
	1.1 Previous Work
	1.2 Our Work
	1.3 Technical Overview

	2 Preliminaries
	2.1 Hardness Assumptions

	3 Tight Bounds Assuming SETH
	3.1 DFA Acceptance
	3.2 Approximate Pattern Matching and Substring Hamming Distance
	3.3 Longest Common Subsequence
	3.3.1 Alignment Gadget Framework
	3.3.2 General Lower Bound
	3.3.3 Extended Alignment Gadget for LCS

	4 Tight Bounds Assuming (Combinatorial) k-Clique
	4.1 NFA Acceptance
	4.2 Context-Free Grammar Parsing
	4.3 RNA Folding

	5 Disjointness, Hamming Distance, and Subsequence
	5.1 Algorithms
	5.2 Lower Bounds

	6 Conclusion

