
Removing Depth-Order Cycles Among Triangles:

An Efficient Algorithm Generating Triangular Fragments

Mark de Berg∗

Abstract

More than 25 years ago, inspired by applications in computer graphics, Chazelle et
al. (FOCS 1991) studied the following question: Is it possible to cut any set of n lines
or other objects in R3 into a subquadratic number of fragments such that the resulting
fragments admit a depth order? They managed to prove an O(n9/4) bound on the number
of fragments, but only for the very special case of bipartite weavings of lines. Since then
only little progress was made, until a recent breakthrough by Aronov and Sharir (STOC
2016) who showed that O(n3/2 polylog n) fragments suffice for any set of lines. In a
follow-up paper Aronov, Miller and Sharir (SODA 2017) proved an O(n3/2+ε) bound for
triangles, but their method uses high-degree algebraic arcs to perform the cuts. Hence,
the resulting pieces have curved boundaries. Moreover, their method uses polynomial
partitions, for which currently no algorithm is known. Thus the most natural version of
the problem is still wide open: Is it possible to cut any collection of n disjoint triangles in
R3 into a subquadratic number of triangular fragments that admit a depth order? And if
so, can we compute the cuts efficiently?

We answer this question by presenting an algorithm that cuts any set of n disjoint
triangles in R3 into O(n7/4 polylog n) triangular fragments that admit a depth order. The
running time of our algorithm is O(n3.69). We also prove a refined bound that depends
on the number, K, of intersections between the projections of the triangle edges onto the
xy-plane: we show that O(n1+ε +n1/4K3/4 polylog n) fragments suffice to obtain a depth
order. This result extends to xy-monotone surface patches bounded by a constant number
of bounded-degree algebraic arcs in general position, constituting the first subquadratic
bound for surface patches. Finally, as a byproduct of our approach we obtain a faster
algorithm to cut a set of lines into O(n3/2 polylog n) fragments that admit a depth order.
Our algorithm for lines runs in O(n5.38) time, while the previous algorithm uses O(n8.77)
time.

1 Introduction

Let T and T ′ be two disjoint triangles (or other objects) in R3. We that T is below T ′—or,
equivalently, that T ′ is above T—when there is a vertical line ` intersecting both T and T ′

such that `∩T has smaller z-coordinate than `∩T ′. We denote this relation by T ≺ T ′. Note
that two triangles may be unrelated by the ≺-relation, namely when their vertical projections
onto the xy-plane are disjoint. Now let T be a collection of n disjoint triangles in R3. A

∗Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
Email: m.t.d.berg@tue.nl. MdB is supported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 024.002.003.

1

ar
X

iv
:1

70
1.

00
67

9v
2

 [
cs

.C
G

]
 6

 A
pr

 2
01

7

depth order (for the vertical direction) on T is a total order on T that is consistent with the
≺-relation, that is, an ordering T1, . . . , Tn of the triangles such that Ti ≺ Tj implies i < j.

Depth orders play an important role in many applications. For example, the Painter’s
Algorithm from computer graphics performs hidden-surface removal by rendering the triangles
forming the objects in a scene one by one, drawing each triangle “on top of” the already drawn
ones. To give the correct result the Painter’s Algorithm must handle the triangles in depth
order with respect to the viewing direction. Several object-space hidden-surface removal
algorithms and ray-shooting data structures need a depth order as well. Depth orders also
play a role when one wants to assemble a product by putting its constituent parts one by one
into place using vertical translations [23]. The problem of computing a depth order for a given
set of objects has therefore received considerable attention [2, 7, 10, 11]. However, a depth
order does not always exist since there can be cyclic overlap, as illustrated in Fig. 1(i). In
such cases the algorithms above simply report that no depth exists. What we would then like
to do is to cut the triangles into fragments such that the resulting set of fragments is acyclic
(that is, admits a depth order). This gives rise to the following problem: How many fragments
are needed in the worst case to ensure that a depth order exists? And how efficiently can we
compute a set of cuts resulting in a small set of fragments admitting a depth order?

(ii)(i)

Fig. 1: (i) Three triangles with cycle overlap. (ii) A bipartite weaving.

The problem of bounding the worst-case number of fragments needed to remove all cycles
from the depth-order relation has a long history. In the special case of lines (or line segments)
one can easily get rid of all cycles using O(n2) cuts: project the lines onto the xy-plane and
cut each line at its intersection points with the other lines. A lower bound on the worst-case
number of cuts is Ω(n3/2) [15]. It turned out to be amazingly hard to get any subquadratic
upper bound. In 1991 Chazelle et al. [15] obtained such a bound, but only for so-called
bipartite weavings; see Fig. 1(ii). Moreover, their O(n9/4) bound is still far away from the
Ω(n3/2) lower bound. Later Aronov et al. [5] obtained a subquadratic upper bound for general
sets of lines, but they only get of all triangular cycles—that is, cycles consisting of three
lines—and their bounds are only slightly subquadratic: they use O(n2−1/69 log16/69 n) cuts to
remove all triangular cycles. (They obtained a slightly better bound of O(n2−1/34 log8/17 n)
for removing all so-called elementary triangular cycles.) Finally, several authors studied the
algorithmic problem of computing a minimum-size complete cut set—a complete cut set is
a set of cuts that removes all cycles from the depth-order relation—for a set of lines (or
line segments). Solan [21] and Har-Peled and Sharir [17] gave algorithms that produce a
complete cut sets of size roughly O(n

√
opt), where opt is the minimum size of any complete

cut set for the given lines. Aronov et al. [3] showed that this problem is np-hard, and they
presented an algorithm that computes a complete cut set of size O(opt · logopt · log logopt)
in O(n4+2ω log2 n) = O(n8.764) time, where ω < 2.373 is the exponent of the best matrix-
multiplication algorithm.

2

Eliminating depth cycles from a set of triangles is even harder than it is for lines. The
trivial bound on the number of fragments is O(n3), which can for instance be obtained by
taking a vertical cutting plane containing each triangle edge. Paterson and Yao [19] showed
already in 1990 that any set of disjoint triangles admits a so-called binary space partition
(BSP) of size O(n2), which immediately implies an O(n2) bound on the number of fragments
needed to remove all cycles. Indeed, a BSP ensures that the resulting set of triangle fragments
is acyclic for any direction, not just for the vertical direction. Better bounds on the size of
BSPs are known for fat objects (or, more generally, low-density sets) [8] and for axis-aligned
objects [1, 20, 22], but for arbitrary triangles there is an Ω(n2) lower bound on the worst-case
size of a BSP [13]. Thus to get a subquadratic bound on the number of fragments needed to
obtain a depth order, one needs a different approach.

In 2016, using Guth’s polynomial partitioning technique [16], Aronov and Sharir [4]
achieved a breakthrough in the area by proving that any set of n lines in R3 in general
position can be cut into O(n3/2 polylog n) fragments such that the resulting set of fragments
admits a depth order. A complete cut set of size O(n3/2 polylog n) can then be computed us-
ing the algorithm of Aronov et al. [3] mentioned above. (They also gave a more refined bound
for line segments, which depends on the number of intersections, K, between the segments
in the projection. More precisely, they show that O(n+ n1/2K1/2 polylog n) cuts suffice.) In
a follow-up paper, Aronov, Miller and Sharir [6] extended the result to triangles: they show
that, for any fixed ε > 0, any set of disjoint triangles in general position can be cut into
O(n3/2+ε) fragments that admit a depth order. This may seem to almost settle the problem
for triangles, but the result of Aronov, Miller and Sharir has two serious drawbacks.

• The technique does not result in triangular fragments, since it cuts the triangles using
algebraic arcs. The degree of these arcs is exponential in the parameter ε appearing in
O(n3/2+ε) bound.
• The technique, while being in principle constructive, does not give an efficient algorithm,

since currently no algorithms are known for constructing Guth’s polynomial partitions.

Arguably, the natural way to pose the problem for triangles is that one requires the fragments
to be triangular as well—polygonal fragments can always be decomposed further into triangles,
without increasing the number of fragments asymptotically—so especially the first drawback
is a major one. Indeed, Aronov, Miller and Sharir state that “It is a natural open problem
to determine whether a similar bound can be achieved with straight cuts [. . .]. Even a weaker
bound, as long as it is subquadratic and generally applicable, would be of great significance.”
Another open problem stated by Aronov, Miller and Sharir is to extend the result to surface
patches: “Extending the technique to curved objects (e.g., spheres or spherical patches) is also
a major challenge.”

Our contribution. We prove that any set T of n disjoint triangles in R3 can be cut into
O(n7/4 polylog n) triangular fragments that admit a depth order. Thus we overcome the first
drawback of the method of Aronov, Miller and Sharir (although admittedly our bound is not
as sharp as theirs). We also overcome the second drawback, by presenting an algorithm to
perform the cuts in O(n5/2+ω/2 log2 n) = O(n3.69) time. Here ω < 2.373 is, as above, the
exponent of the best matrix-multiplication algorithm. As a byproduct, we improve the time
to compute a complete cut set of size O(n3/2 polylog n) for a collection of lines: we show that
a simple trick reduces the running time from O(n4+2ω log2 n) to O(n3+ω log2 n).

3

We also present a more refined approach that yields a bound ofO(n1+ε+n1/4K3/4 polylog n)
on the number of fragments, where K is the number of intersections between the triangles in
the projection. This result extends to xy-monotone surface patches bounded by a constant
number of bounded-degree algebraic arcs in general position. Thus we make progress on all
open problems posed by Aronov, Miller and Sharir.

Finally, as a minor contribution we get rid of the non-degeneracy assumptions that Aronov
and Sharir [4] make when eliminating cycles from a set of segments. Most degeneracies can
be handled by a straightforward perturbation argument, but one case—parallel segments that
overlap in the projection—requires some new ideas. Being able to handle degeneracies for
segments implies that our method for triangles can handle degeneracies as well.

2 Eliminating cycles among triangles

Overview of the method. We first prove a proposition that gives conditions under which
the existence of a depth order for a set of triangles is implied by the existence of a depth order
for the triangle edges. The idea is then to take a complete cut set for the triangle edges—
there is such a cut set of size O(n3/2 polylog n) by the results of Aronov and Sharir—and
“extend” the cuts (by taking vertical planes through the cut points) so that the conditions
of the proposition are met. A straightforward extension would generate too many triangle
fragments, however. Therefore our cutting procedure has two phases. In the first phase
we localize the problem by partitioning space into regions such that (i) the collection of
regions admits a depth order, and (ii) each region is intersected by only few triangles. (This
localization is also the key to speeding up the algorithm for lines.) In the second phase we
then locally (inside each region) extend the cuts from a complete cut set for the edges, so
that the conditions of the proposition are met.

Notation and terminology. Let T denote the given set of disjoint non-vertical triangles,
let E denote the set of edges of the triangles in T , and let V denote the set of vertices of the
triangles. We assume the triangles in T are closed. However, at the places where a triangle is
cut it becomes open. Thus the edges of a triangle fragment that are (parts of) edges in E are
part of the fragment, while edges that are induced by cuts are not. We denote the (vertical)
projection of an object o in R3 onto the xy-plane by o.

A proposition relating depth orders for edges to depth orders for triangles. We
define a column to be a 3-dimensional region C∆ := ∆ × (−∞,+∞), where ∆ is an open
convex polygon on the xy-plane. Our cutting procedure is based on the following proposition.

Proposition 1 Let T be a set of disjoint triangles in R3, and let E be the set of edges of the
triangles in T . Let C∆ be a column whose interior does not contain a vertex of any triangle
in T , and let T∆ := {T ∩ C∆ : T ∈ T } and E∆ := {e ∩ C : e ∈ E}. Then T∆ admits a depth
order if E∆ admits a depth order.

Proof. For a triangle Ti ∈ T , define Pi := Ti ∩ C. Thus T∆ = {Pi : Ti ∈ T }. Assume E∆

admits a depth order and suppose for a contradiction that T∆ does not.
Consider a cycle C := P0 ≺ P1 ≺ · · · ≺ Pk−1 ≺ P0 in T∆. As observed by Aronov et al. [6]

we can associate a closed curve in R3 to C, as follows. For each pair Pi, Pi+1 of consecutive
polygons in C—here and in the rest of the proof indices are taken modulo k—let bi ∈ Pi

4

ai

ai+1

ai+2

p

ai

ai+1

ai−1

ai+2

p

q

Case A Case B

ai−1

e

e

q

∆ ∆

Fig. 2: The two cases in the proof of Proposition 1. Polygon Pi is shown in green.

and ai+1 ∈ Pi+1 be points such that the segment biai+1 is vertical. We refer to the closed
polygonal curve whose ordered set of vertices is b1, a2, b2, a3, . . . , ak, bk, a1 as a witness curve
for C. We call the vertical segments biai+1 the connections of Γ(C), and we call the segments
aibi the links of Γ(C). Since the connections are vertical, we have ai+1 = bi and so we can
write Γ(C) as a1, a2, . . . , ak, a1. Note that ai ∈ Pi−1 ∩ Pi for all i. In general, the points ai
and bi can be chosen in many ways and so there are many possible witness curves. We will
need a specific witness curve, as specified next. We say that a link aibi is good if ai and bi
lie on the same edge of their polygon Pi—this edge is also an edge in E∆—and we say that
aibi is bad otherwise. We now define the weight of a witness curve Γ to be the number of bad
links in Γ, and we define Γ(C) to be any minimum-weight witness curve for C.

Now consider a minimal cycle C∗ := P0 ≺ P1 ≺ · · · ≺ Pk−1 ≺ P0 in T∆. (A cycle is
minimal if any strict subset of polygons from the cycle is acyclic.) We will argue that we can
find a cycle in E∆ consisting of edges of the polygons in C∗, thus contradicting that E∆ admits
a depth order.

Claim. All links aibi of Γ(C∗) are good.

Proof. Consider any link aibi. Observe that ai−1 and ai+2 must both lie outside Pi,
otherwise C∗ is not minimal. Consider ∆ \ Pi, the complement of Pi inside the column
base ∆. The region ∆ \ Pi consists one or more connected components. (It cannot be
empty since then Pi cannot be part of any cycle in T∆.) Each connected component is
separated from Pi by a single edge of Pi, since by assumption Ti does not have a vertex
inside C and so Pi does not have a vertex inside ∆ either. We now consider two cases,
as illustrated in Fig. 2.

Case A: ai−1 and ai+2 lie in different components of ∆ \ Pi. Let p be the point where
ai−1ai enters Pi. Let p ∈ Pi project onto p and let e be the edge of Pi containing p.
(Possibly p = ai.) Since ai+2 lies in a different connected component of ∆ \ Pi than
ai−1, the projection Γ(C∗) must cross e a second time, at some point q. This leads to a
contradicting with the minimality of C∗. To see this, let q ∈ Γ(C∗) be a point projecting
onto q and let Pj be such that q ∈ Pj . Then j 6∈ {i − 1, i, i + 1}, because ai−1bi−1, and
aibi, and ai+1bi+1 are the only links of Γ(C∗) on Pi−1, and Pi, and Pi+1, respectively.
But since Pi ∩Pj 6= ∅ we have Pi ≺ Pj or Pj ≺ Pi, and so j 6∈ {i− 1, i, i+ 1} contradicts
that C∗ is minimal. Thus Case A cannot happen.

Case B: ai−1 and ai+2 lie in the same component of ∆ \ Pi. In this case aibi must

5

be a good link, because ai and bi must both lie on the edge e bordering the component
of ∆\Pi that contains ai−1 and ai+2. Indeed, if ai and/or ai+1 would not lie on e then we
can obtain a witness curve of lower weight for C∗, namely if we replace ai by the point p
such that p = ai−1ai ∩ e and we replace ai+1 by the point q such that q = a1ai+1 ∩ e.
(Note that if ai−1 = ai+2, which happens when C∗ consists of only three polygons, then
the argument still goes through.)

Thus aibi is a good link, as claimed. �

If all links ai, bi of Γ(C∗) are good then C∗ gives a cycle in E∆, contradicting that E(σ) admits
a depth order. Hence, the assumption that T∆ contains a cycle is false. �

The cutting procedure. A naive way to apply Proposition 1 would be the following:
compute a complete cut set X for the set E of triangle edges, and take a vertical plane parallel
to the yz-plane through each point in V∪X. This subdivides R3 into columns C∆ (where each
column base ∆ is an infinite strip). These columns do not contain triangle vertices and the
edge fragments inside each column are acyclic, and so the triangle fragments we obtain are
acyclic. Unfortunately this straightforward approach generates too many fragments. Hence,
we first subdivide space such that we do not cause too much fragmentation when we take
the vertical planes through V ∪X. The crucial idea is to create the subdivision based on the
projections of the triangle edges. This allows us to use an efficient 2-dimensional partitioning
scheme resulting in cells that are intersected by only few projected triangles edges. The 2-
dimensional subdivision will then be extended into R3, to obtain 3-dimensional regions in
which we can take vertical planes through V ∪X without creating too many fragments. We
cannot completely ignore the triangles themselves, however, when we extend the 2-dimensional
subdivision into R3—otherwise we already create too many fragments in this phase. Thus we
create a hierarchical 2-dimensional subdivision, and we use the hierarchy to avoid cutting the
input triangles into too many fragments. Next we make these ideas precise.

Let L be a set of n lines in the plane. A (1/r)-cutting for L is a partition Ξ of the plane
into triangular1 cells such that the interior of any cell ∆ ∈ Ξ intersects at most n/r lines
from L. We say that a cutting Ξ c-refines a cutting Ξ′, where c is some constant, if every cell
∆ ∈ Ξ is contained in a unique parent cell ∆′ ∈ Ξ′, and each cell in Ξ′ contains at most c cells
from Ξ. An efficient hierarchical (1/r)-cutting for L [18] is a sequence Ψ := Ξ0,Ξ1, . . . ,Ξk of
cuttings such that there are constants c, ρ such that the following four conditions are met:

(i) ρk−1 < r 6 ρk;
(ii) Ξ0 is the single cell R2;

(iii) Ξi is a (1/ρi)-cutting for L of size O(ρ2i), for all 0 6 i 6 k;
(iv) Ξi is a c-refinement of Ξi−1, for all 1 6 i 6 k.

It is known that for any set L and any parameter r with 1 6 r 6 n, an efficient hierarchical
(1/r)-cutting exists and can be computed in O(nr) time [14, 18]. We can view Ψ as a tree
in which each node u at level i corresponds to a cell ∆u ∈ Ξi, and a node v at level i is the
child of a node u at level i− 1 if ∆v ⊆ ∆u.

Our cutting procedure now proceeds in two steps. Recall that T denotes the given set of
n triangles in R3, and E the set of 3n edges of the triangle in T .

1The cells may be unbounded, that is, we also allow wedges, half-planes, and the entire plane, as cells.

6

1. We start by constructing an efficient hierarchical (1/r)-cutting for L, with r = n3/4,
where L is the set of lines containing the edges in E . Next we cut the projection T
of each triangle T ∈ T into pieces. This is done by executing the following recursive
process on Ψ, starting at its root. Suppose we reach a node u of the tree. If ∆u ⊆ T
or u is a leaf, then ∆u ∩ T is one of the pieces of T . Otherwise, we recursively visit all
children v of u such that ∆v ∩ T 6= ∅.
After cutting each projected triangle T in this manner, we cut the original triangles
T ∈ T accordingly. Let T1 denote the resulting collection of polygonal pieces.

We extend the 2-dimensional cutting Ξk into R3 by erecting vertical walls through each
of the edges in Ξk. Thus we create a column C∆ := ∆× (−∞,∞) for each cell ∆ ∈ Ξk.
Next, we cut each column C∆ into vertical prisms by slicing it with each triangle T ∈ T
that completely cuts through C∆ (that is, we slice the column with each triangle T such
that ∆ ⊆ T). Let S denote the resulting 3-dimensional subdivision.

2. For each prism σ in the subdivision S, proceed as follows. Let T1(σ) ⊆ T1 be the set of
pieces that have an edge intersecting the interior of σ, and let E(σ) := {e ∩ σ : e ∈ E}.
Note that E(σ) is the set of edges of the pieces in T1(σ), where we only take the edges
in the interior of σ. Let X(σ) be a complete cut set for E(σ), and let V(σ) ⊆ V be
the set of triangle vertices in the interior of σ. For each point q ∈ X(σ) ∪ V(σ), take a
plane h(q) containing q and parallel to the yz-plane, and let H(σ) be the resulting set
of planes. Cut every piece P ∈ T1(σ) into fragments using the planes in H(σ).

We denote the set of fragments generated in Step 2 inside a prism σ by T2(σ), and we denote
the set of pieces in T1 that do not have an edge crossing the interior of any prism σ ∈ S
by T ∗1 . (Note that T ∗1 contains all pieces generated at internal nodes of Ψ.) Then T2 :=
T ∗1 ∪

⋃
σ∈S T2(σ) is our final set of fragments.

Lemma 2 The set T2 of triangle fragments resulting from the procedure above is acyclic,
and the size of T2 is O(n7/4 + |X| · n1/4), where X :=

⋃
σ∈S X(σ).

Proof. To prove that T2 is acyclic, define S∗ to be the set of (open) prisms in S, and consider
the set S∗ ∪ T ∗1 .

Claim. The set S∗ ∪ T ∗1 admits a depth order.

Proof. By construction, for any object oi ∈ S∗ ∪ T ∗1 there is a node u ∈ Ψ such that
oi = ∆u. Hence, for any two objects o1, o2 ∈ S∗ ∪ T ∗1 we have

o1 ⊆ o2, or o2 ⊆ o1, or o1 ∩ o2 = ∅. (1)

This implies that S∗ ∪ T ∗1 is acyclic. Indeed, suppose for a contradiction that S∗ ∪ T ∗1
does not admit a depth order. Consider a minimal cycle C∗ := o1 ≺ o2 ≺ · · · ≺ ok ≺ o1.
Obviously k > 3. But then (1) implies that we can remove o1 or o2 and still have a cycle,
contradicting the minimality of C∗. �

The claim above implies that T2 is acyclic if each of the sets T2(σ) is acyclic. To see that
T2(σ) is acyclic, note that the planes in H(σ) partition σ into subcells that do not contain a
point from X(σ) in their interior. Hence the set of edges of the fragments in such a subcell
is acyclic—if this were not the case, then there would be a cycle left in E(σ), contradicting

7

that X(σ) is a complete cut set for E(σ). Moreover, a subcell does not contain any point
from V(σ) in its interior, and so it does not contain a vertex of any fragment in its interior.
We can therefore use Proposition 1 to conclude that within each subcell, the fragments are
acyclic; the fact that the subcell is strictly speaking not a column—it may be bounded from
above and/or below by a piece in T ∗1 —clearly does not invalidate the conclusion. Since the
fragments in each subcell of σ are acyclic and the subcells are separated by vertical planes,
T2(σ) must be acyclic.

It remains to prove that |T2| = O(n7/4 + |X| · n1/4). We start by bounding |T1|. To this
end, consider a triangle T ∈ T and let P ∈ T1 be a piece generated for T in Step 1. Let v be
the node in Ψ where P was created. Then the cell ∆u of the parent u of v is intersected by
an edge of T . Since each node in Ψ has O(1) children and each cell ∆ ∈ Ξi intersects at most
n/ρi projected triangle edges, this means that

|T1| = O

k−1∑
i=0

∑
∆∈Ξi

n/ρi

 = O

(
k−1∑
i=0

ρ2i · (n/ρi)

)
= O(nρk) = O(nr) = O(n7/4).

The number of additional fragments created in Step 2 can be bounded by observing that
each prism σ in the subdivision S intersects at most n/r = O(n1/4) triangle edges, and so
|T1(σ)| = O(n1/4). If we now sum the number of additional fragments over all prisms σ in
the subdivision S we obtain

number of additional fragments in Step 2 6
∑

σ∈S |H(σ)| · |T1(σ)|

6 O(n1/4) ·
(∑

σ∈S |X(σ)|+
∑

σ∈S |V(σ)|
)

= O(n1/4(|X|+ n)).

�

Lemma 2 leads to the following result.

Corollary 3 Suppose that any set of n lines has a complete cut set of size γ(n). Then any
set T of n disjoint triangles in R3 can be cut into O(n7/4 + γ(3n) · n1/4) triangular fragments
such that the resulting set of fragments admits a depth order.

Proof. Define opt to be the minimum size of a complete cut set for E and, for a prism σ ∈ S,
define optσ to be the minimum size of a complete cut for E(σ). Then

∑
σ∈S optσ 6 opt.

Indeed, if Xopt denotes a minimum-size complete cut set for E , then Xopt ∩ σ must eliminate
all cycles from E(σ). Since opt 6 γ(3n), the bound on the number of fragments generated
by our cutting procedure is as claimed.

The procedure above cuts the triangles in T into constant-complexity polygonal fragments,
which we can obviously cut further into triangular fragments without increasing the number
of fragments asymptotically. �

The results of Aronov and Sharir [4] thus imply that any set of n triangles can be cut into
O(n7/4 polylog n) fragments such that the resulting set of fragments is acyclic. (Aronov and
Sharir assume general position, but in the appendix we show this is not necessary.)

Remark 4 We use a factor O(n1/4) more cuts than Aronov and Sharir need for the case
of segments. Observe that we already generate up to Θ(n7/4) fragments in Step 1, since

8

Fig. 3: An example showing that one sometimes needs more cuts to eliminate all cycles from
T1(σ′) than from E(σ′). The set T1(σ′) consists of the green triangle, and two red and two
blue segments. (The red and blue segments can easily be replaced by very thin triangles.)
The set E(σ′) consists of the dark green edge of the green triangle, and the red and blue
segments. Note that the configuration shown in the figure is realizable.

we take r = n3/4. To reduce the total number of fragments to O(n3/2 polylog n) using our
approach, we would need to set r :=

√
n in Step 1. In Step 2 we could then only use the

set V(σ) to generate the vertical planes in H(σ). This would lead to vertical prisms that do
not have any vertex in their interior, while only using O(n3/2) fragments so far. However,
each such prism σ′ ⊆ σ can contain up to Θ(

√
n) triangle fragments. Hence, we cannot afford

to compute a cut set X(σ′) for E(σ′) and cut each triangle fragment in σ′ with a vertical
plane containing each q ∈ X(σ′). One may hope that if we can eliminate all cycles from
E(σ′) using |X(σ′)| cuts, then we can also eliminate all cycles from T1(σ′) using |X(σ′)| cuts.
Unfortunately this is not the case, as shown in Fig. 3.

In the example, there are two cycles in T1(σ′): the green triangle together with the blue
segments and the green triangle with the red segments. The set E(σ′) also contains two cycles.
The cycles from E(σ′) can be eliminated by cutting the green edge at the point indicated by the
arrow. However, a single cut of the green triangle cannot eliminate both cycles from T1(σ′).
Indeed, to eliminate the blue-green cycle the cut should separate (in the projection) the parts
of the blue edges projecting onto the green triangle, while to eliminate the red-green cycle
the cut should separate the parts of the red edges projecting onto the green triangle—but a
single cut cannot do both. The example can be generalized to sets T1(σ′) of arbitrary size, so
that all cuts in E(σ′) can be eliminated by a single cut, while eliminating cycles from T1(σ′)
requires Ω(|T1(σ′)|) cuts. Thus a more global reasoning is needed to improve our bound.

3 Efficient algorithms to compute complete cut sets

The algorithm for triangles. The hierarchical cutting Ψ can be computed in O(nr) =
O(n7/4) time [14, 18], and it is easy to see that we can compute the set T1 within the same
time bound. Constructing the 3-dimensional subdivision S can trivially be done in O(n5/2)
time, by checking for each of the O(n3/2) columns and each triangle T ∈ T if T slices the
column. Next we need to find the sets T1(σ) for each prism σ in S. The computation of
the hierarchical cutting also tells us for each cell ∆ ∈ Ξk which projected triangle edges
intersect ∆. It remains to check, for each triangle T corresponding to such an edge, which of
the O(n) prisms of the column C∆ is intersected by T . Thus, we spend O(n) time for each of
the O(n7/4) triangle pieces in T1, so the total time to compute the sets T1(σ) is O(n11/4).

Next we need to compute the cut sets X(σ). To this end we use the algorithm by Aronov et

9

al. [3], which computes a complete cut set of size O(optσ ·logoptσ ·log logoptσ), where optσ
is the minimum size of a complete cut set for E(σ). Thus |X|, the total size of all cut sets
X(σ) we compute, is bounded by

O

(∑
σ∈S

optσ · logoptσ · log logoptσ

)
= O(opt · logopt · log logopt) = O(n3/2 polylog n).

Now define nσ := |T1(σ)|. Since the algorithm of Aronov et al. runs in time O(m4+2ω log2m)
for m segments, the total running time is

O

(∑
σ∈S

n4+2ω
σ log2 nσ

)
.

Since nσ = O(n1/4) for all σ and
∑

σ∈S nσ = O(n7/4), the total time to compute the sets
X(σ) is

O

(∑
σ∈S

n4+2ω
σ log2 nσ

)
= O

(
n3/2 · (n1/4)4+2ω log2 n

)
= O(n5/2+ω/2 log2 n).

Finally, for each prism σ we cut all triangles in T1(σ) by the planes in H(σ) in a brute-force
manner, in total time O(n7/4 polylog n).

The following theorem summarizes our main result.

Theorem 5 Any set T of n disjoint non-vertical triangles in R3 can be cut intoO(n7/4 polylog n)
triangular fragments such that the resulting set of fragments admits a depth order. The time
needed to compute the cuts is O(n5/2+ω/2 log2 n), where ω < 2.373 is the exponent in the
running time of the best matrix-multiplication algorithm.

A fast algorithm for lines. The running time in Theorem 5 is better than the running
time obtained by Aronov and Sharir [4] to compute a complete cut set for a set of lines in R3.
The reason is that we apply the algorithm of Aronov et al. [3] locally, on a set of segments
whose size is significantly smaller than n. We can use the same idea to speed up the algorithm
to compute a complete cut set of size O(n3/2 polylog n) for a set L of n lines in R3. To this
end we project L onto the xy-plane, and compute a (1/r)-cutting Ξ for L of size O(r2), with
r :=

√
n. We then cut each line ` ∈ L at the points where its projection ` is cut by the

cutting (that is, where ` crosses the boundary of a cell ∆ in Ξ). Up to this point we make
only O(nr) = O(n3/2) cuts, which does not affect the worst-case asymptotic bound on the
number of cuts.

Each cell ∆ of the cutting defines a vertical column C∆. Within each column, we apply the
algorithm of Aronov et al. [3] to compute a cut set of size O(opt∆ · logopt∆ · log logopt∆),
where opt∆ is the size of an optimal cut set inside the column. In total this gives O(opt ·
logopt · log logopt) = O(n3/2 polylog n) cuts in time O(n · (n1/2)4+2ω) = O(n3+ω).

This leads to the following result.

Theorem 6 For any set L of n disjoint lines in R3, we can compute in O(n3+ω) time a set
of O(n3/2 polylog n) cut points on the lines such that the resulting set of fragments admits
a depth order, where ω < 2.373 is the exponent in the running time of the best matrix-
multiplication algorithm.

10

4 A more refined bound and an extension to surface patches

Let T be a set of disjoint surface patches in R3. We assume each surface patch is xy-monotone,
that is, each vertical line intersects a patch in a single point or not at all, and we assume
each surface patch is bounded by a constant number of bounded-degree algebraic arcs. We
refer to the arcs bounding a surface patch as the edges of the surface patch. We assume the
edges are in general position as defined by Aronov and Sharir [4], except that edges of the
same patch may share endpoints. We will show how to cut the patches from T into fragments
such that the resulting fragments admit a depth order. The total number of fragments will
depend on K, the number of intersections between the projections of the edges: for any fixed
ε > 0, we can tune our procedure so that it generates O(n1+ε+n1/4K3/4 polylog n) fragments.
Trivially this implies that the same intersection-sensitive bound holds for triangles.

The extension of our procedure to obtain an intersection-sensitive bound for surface
patches is fairly straightforward. First we observe that the analog of Proposition 1 still holds,
where the base of the column can now have curved edges. In fact, the proof holds verbatim,
if we allow the links of the witness cycles Γ(C) that connect points ai and bi on the same
surface patch to be curved. Now, instead of using efficient hierarchical cuttings [14, 18] we
recursively generate a sequence of cuttings using the intersection-sensitive cuttings of De Berg
and Schwarzkopf [12]. (This is somewhat similar to the way in which Aronov and Sharir [4]
obtain an intersection-sensitive bound on the number of cuts needed to eliminate all cycles
for a set of line segments in R3.) Below we give the details.

Let E denote the set of O(n) edges of the surface patches in T . A (1/r)-cutting for E
is a subdivision of R2 into trapezoidal cells, such that the interior of each cell intersects at
most n/r edges from E. Here a trapezoidal cell is a cell bounded by at most two segments
that are parallel to the y-axis and at most two pieces of edges in E (at most one bounding
it from above and at most one bounding it from below). Set r := min(n5/4/K1/4, n). Let ρ
be a sufficiently large constant, and let k be such that ρk−1 < r 6 ρk; the exact value of ρ
depends on the desired value of ε in the final bound. We recursively construct a hierarchy
Ψ := Ξ0,Ξ1, . . . ,Ξk of cuttings such that Ξi is a (1/ρi)-cutting for E , as follows. The initial
cutting Ξ0 is the entire plane R2. To construct Ξi we take each cell ∆ of Ξi−1 and we construct
a (1/ρ)-cutting for the set E∆ := {e ∩∆ : e ∈ E}. De Berg and Schwarzkopf [12] have shown
that there is such a cutting consisting of O(ρ+K∆ρ

2/n2
∆) cells, where n∆ := |E∆| and K∆ is

the number of intersections inside ∆. One easily shows by induction on i that for each cell ∆
in Ξi−1 we have2 n∆ 6 n/ρi−1. Hence, by combining the cuttings Ξ∆ over all ∆ ∈ Ξi−1 we
obtain a (1/ρi)-cutting Ξi.

Let |Ξi| be the number of cells in Ξi. Then |Ξ0| = 1 and, for a suitable constant D
(which depends on the degree of the edges and follows from the construction of De Berg and
Schwarzkopf [12]), we have

|Ξi| 6
∑

∆∈Ξi−1
D(ρ+K∆ρ

2/n2
∆)

6 Dρ · |Ξi−1|+DKρ2i/n2 (since
∑

∆∈Ξi−1
K∆ 6 K and n∆ 6 n/ρi−1)

6 Diρi + DK
n2

∑i
j=0D

jρ2i−j

6 Diρi + DK
n2 · 2ρ2i (assuming ρ > 2D).

2Strictly speaking this is not true, as n denotes the number of patches and not the number of edges. To
avoid cluttering the notation we allow ourselves this slight abuse of notation.

11

Now we can proceed exactly as before. Thus we first traverse the hierarchy Ψ with each
patch T ∈ T , associating T to nodes u such that ∆u ⊆ T and ∆parent(u) 6⊆ T , and to the
leaves that we reach. This partitions T into a number of fragments. The resulting set T1 of
fragments generated over all triangles T ∈ T has total size

|T1| = O
(∑k−1

i=0

∑
∆∈Ξi

n/ρi
)

(2)

= O
(∑k−1

i=0

(
Diρi + DK

n2 ρ
2i
)
· (n/ρi)

)
= O

(
n
∑k−1

i=0D
i + DK

n

∑k−1
i=0 ρ

i
)

= O
(
nDk +DKr/n

)
If we now set ρ := D1/ε then Dk = ρkε = O(rε) = O(nε), and so |T1| = O(n1+ε +Kr/n).

We then decompose R3 into a subdivision S consisting of prisms σ that each intersect at most
n/r surface patches, take a minimum-size complete cut set X(σ) for the edges inside each
prism σ, and generate a set H(S) of cutting planes through the points in X(σ)∪V(σ). (Here
V(σ) is, as before, the set of vertices of the surface patches in the interior of σ.) Since Aronov
and Sharir [4] proved that any set of n bounded-degree algebraic arcs in general position3

admits a complete cut set of size O(n + (nK)1/2 polylog n)—the constant of proportionality
and the exponent of the polylogarithmic factor depend on the degree of the arcs—we have∑

σ∈S
|X(σ)| = O

(
n+ (nK)1/2 polylog n

)
and so the number of additional fragments created in Step 2 is bounded by

O(n/r) ·

(∑
σ∈S

(|V(σ)|+ |X(σ)|)

)
= O

(
n2/r + (n3/2K1/2/r) polylog n

)
.

By picking r := min(n5/4/K1/4, n) our final bound on the number of fragments becomes
O(n1+ε + n1/4K3/4 polylog n).

Theorem 7 Let T be a set of n disjoint xy-monotone surface patches in R3, each bounded
by a constant number of constant-degree algebraic arcs in general position. Then for any fixed
ε > 0 we can cut T into O(n1+ε + n1/4K3/4 polylog n) fragments that admit a depth order,
where K is the number of intersections between the projections of the edges of the surface
patches in T . The constant of proportionality and the exponent of the polylogarithmic
factor depend on the degree of the edges. The expected time needed to compute the cuts is
O
(
n1+ε +K(3+ω)/2+ε/n(1+ω)/2

)
, where ω < 2.373 is the exponent in the running time of the

best matrix-multiplication algorithm.

Proof. The bound on the number of fragments follows from the discussion above. To prove
the time bound we first note that an intersection-sensitive cutting of size O(ρ+K∆ρ

2/n2
∆) can

3We assumed the edges are in general position, but edges of the same patch may share endpoints. However,
there are no endpoints in the interior of σ, and so the only degeneracy that can happen is if two edges of the
same patch share an endpoint that lies on the boundary of σ. In this case we can slightly shorten and perturb
the edges to remove this degeneracy as well.

12

be computed in expected time O(n∆ log ρ+K∆ρ/n∆) [12]. Hence, constructing the hierarchy
takes expected time

O
(∑k−1

i=0

∑
∆∈Ξi

(
n
ρi

log ρ+K∆
ρ

(n/ρi)

))
= O

(∑k−1
i=0

∑
∆∈Ξi

n
ρi

log ρ
)

+O
(∑k−1

i=0 K
ρi−1

n

)
.

The first term is the same as in Equation (2) except for the extra log ρ-factor (which is a
constant), so this term is still bounded by O(n1+ε +Kr/n). Since ρk−1 6 r, the second term
is bounded by O(Kr/n), which is dominated by the first term. Thus the total expected time
to compute the set T1 is O(n1+ε +Kr/n).

In the second stage of the algorithm we use the algorithm of Aronov et al. [3] on the set
E(σ) of edge fragments inside each prism σ ∈ S. Aronov et al. only explicitly state their
result for line segments, but it is easily checked that it works for curves as well; the fact that,
for example, there can already be cyclic overlap between a pair of curves has no influence on
the algorithm’s approximation factor or running time. (The crucial property still holds that
cut points can be ordered linearly along a curve, and this is sufficient for the algorithm to
work.) Thus the time needed to compute all cut sets X(σ) is

O

(∑
σ∈S

n4+2ω
σ log2 nσ

)
,

where nσ is the number of edges inside σ. Since nσ = O(n/r) and
∑

σ∈S nσ = O(|T1|) =
O(n1+ε +Kr/n), computing the cut sets takes

O

(
n4+2ω+ε

r3+2ω
+K

(n
r

)2+2ω+ε
)

time (for a slightly larger ε than before). Because we picked r := min(n5/4/K1/4, n), the time
to compute the cut sets is

O

(
n1+ε + n

1
4
−ω/2+ε ·K

3
4

+ω/2 +
K

3
2

+ω/2 + ε

n
1
2

+ω/2

)
= O

(
n1+ε +K

3
2

+ω/2+ε/n
1
2

+ω/2
)
,

which dominates the time for the first stage. Finally, cutting the patches inside each prism σ
in a brute-force manner takes time linear in the maximum number of fragments we generate,
namely O(n1+ε + n1/4K3/4 polylog n). Thus the total expected time is

O
(
n1+ε +K

3
2

+ω/2+ε/n
1
2

+ω/2
)
.

Observe that for K = n2 the bound we get essentially the same bound as in Theorem 5. �

5 Dealing with degeneracies

We first show how to deal with degeneracies when eliminating cycles from a set of segments
(or lines) in R3, and then we argue that the method for triangles presented in the main text
does not need any non-degeneracy assumptions either. (We do not deal with removing the
non-degeneracy assumptions for the case of surface patches.)

13

Degeneracies among segments. Let S = {s1, . . . , sn} be a set of disjoint segments in R3.
(Even though we allow degeneracies, we do not allow the segments in S to intersect or touch,
since then the problem is not well-defined. If the segments are defined to be relatively open,
then we can also allow an endpoint of one segment to coincide with an endpoint of, or lie
in the interior of, another segment.) We can assume without loss of generality that S does
not contain vertical segments, since eliminating all cycles from the non-vertical segments in S
also eliminates all cycles when we include the vertical segments. Aronov and Sharir [4] make
the following non-degeneracy assumptions:

(i) no endpoint of one segment projects onto any other segment;
(ii) no three segments are concurrent (that is, pass through a common point) in the projec-

tion;
(iii) no two segments in S are parallel.

The main difficulty arises from type (iii) degeneracies where parallel segments overlap in
the projection. The problem is that a small perturbation will reduce the intersection in the
projection to a single point, and cutting one of the segments at the intersection is effective
for the perturbed segments but not necessarily for the original segments. Next we describe
how we handle this and how to deal with the other degeneracies as well.

First we slightly extend each segment in S—segments that are relatively open would
be slightly shortened—to get rid of degeneracies of type (i), and we slightly translate each
segment to make sure no two segments intersect in more than a single point in the projection.
(The translations are not necessary, but they simplify the following description and bring out
more clearly how the ≺-relations between parallel segments are treated.) Next, we slightly
perturb each segment such that all degeneracies disappear and any two non-parallel segments
whose projections intersect before the perturbation still do so after the perturbation. This gets
rid of degeneracies of types (ii) and (iii). Let s′i denote the segment si after the perturbation,
and define S′ := {s′1, . . . , s′n}. The set S′ has the following properties:

• for any two non-parallel segments si, sj ∈ S we have si ≺ sj if and only if s′i ≺ s′j ;
• the order of intersections along segments in the projection is preserved in the following

sense: if s′i ∩ s′j lies before s′i ∩ s′k along s′i as seen from a given endpoint of s′i, then
si∩sj does not lie behind si∩sk along si as seen from the corresponding endpoint of si;

• if si and sj are parallel then s′i and s′j do not intersect.

We will show how to obtain a complete cut set for S from a complete cut set X ′ for S′. The
cut set for S will consist of a cut set X that is derived from X ′ plus a set Y of O(n log n)
additional cuts, as explained next.

• Let q′ ∈ X ′ be a cut point on a segment s′i ∈ S′. Let s′j ∈ S′ be the segment such that

s′i ∩ s′j is the intersection point on s′i closest to q′, with ties broken arbitrarily. (We can

assume that s′j exists, since if s′i does not intersect any projected segment then the cut
point q is useless and can be ignored.) Now we put into X the point q ∈ si such that
q = si ∩ sj . (It can happen that several cut points along s′i generate the same cut point
along si. Obviously we need to insert only one of them into X.) The crucial property
of the cut point q ∈ X generated for q′ ∈ X ′ is the following:

– if q′ coincides with a certain intersection along s′i then q coincides with the corre-
sponding intersection along si;

14

– if q′ separates two intersections along s′i then q separates the corresponding inter-
sections along si or it coincides with at least one of them.

By treating all cut points in X ′ in this manner, we obtain the set X.

• The set Y deals with parallel segments in S whose projections overlap. It is defined as
follows. Let S(X) be the set of fragments resulting from cutting the segments in S at
the cut points in X. Partition S(X) into subsets S`(X) such that S`(X) contains all
fragments from S(X) projecting onto the same line `. Consider such a subset S`(X)
and assume without loss of generality that ` is the x-axis. Construct a segment tree [9]
for the projections of the fragments in S`(X). Each projected fragment f is stored at
O(log |S`(X)|) = O(log n) nodes of the segment tree, which induces a subdivision of f
into O(log n) intervals. We put into Y the O(log n) points on f whose projections define
these intervals. The crucial property of segment trees that we will need is the following:

– Let Iv denote the interval corresponding to a node v. Then for any two nodes v, w
we either have Iv ⊆ Iw (when v is a descendent of w), or we have Iv ⊇ Iw (when
v is an ancestor of w), or otherwise the interiors of Iv and Iw are disjoint. Hence,
a similar property holds for the projections of the sub-fragments resulting from
cutting the fragments in S`(X) as explained above.

Doing this for all fragments si ∈ S`(X) and for all subsets S`(X) gives us the extra cut
set Y .

Lemma 8 The set X ∪ Y is a complete cut set for S.

Proof. Let F denote the set of fragments resulting from cutting the segments in S at the
points in X ∪ Y , and suppose for a contradiction that F still contains a cycle. Let C := f0 ≺
f1 ≺ · · · ≺ fk−1 ≺ f0 be a minimal cycle in F , and let si ∈ S be the segment containing fi.

As explained above, the cut points in Y guarantee that for any two parallel fragments
in F whose projections overlap, one is contained in the other in the projection. This implies
that two consecutive fragments fi, fi+1 in C cannot be parallel: if they were, then fi ⊆ fi+1

(or vice versa) which contradicts that C is minimal. Hence, any two consecutive fragments
are non-parallel. Now consider the witness curve Γ(C) for C. Since consecutive fragments in
C are non-parallel, Γ(C) is unique. Let Γ′ be the corresponding curve for S′, that is, Γ′ visits
the segments s′0, s

′
1, . . . , s

′
k−1, s

′
0 from S′ in the given order—recall that fi ⊆ si and that s′i is

the perturbed segment si—and it steps from s′i to s′i+1 using vertical connections. Since X ′

is a complete cut set for S′, there must be a link of Γ′, say on segment s′i, that contains a
cut point q′ ∈ X ′. In other words, q′ separates s′i−1 ∩ s′i from s′i ∩ s′i+1, or it coincides with
one of these points. But then the cut point q ∈ X corresponding to q′ must separate si−1 ∩ si
from si ∩ si+1 or coincide with one of these points, thus cutting the witness curve Γ(C)—a
contradiction. �

Theorem 9 Suppose any non-degenerate set of n disjoint segments can be cut into γ(n)
fragments in T (n) time such that the resulting set of fragments admits a depth order. Then
any set of n disjoint segments can be cut into O(γ(n) log n) fragments in T (n) +O(n2) time
such that the resulting set of fragments admits a depth order.

15

Proof. The bound on the number of fragments immediately follows from the discussion above.
The overhead term in the running time is caused by the computation of the perturbed set S′,
which can be done in O(n2) time if we compute the full arrangement in the projection. �

Degeneracies among triangles. Recall that the cuts we make on the triangles are induced
by vertical planes, and that a triangle becomes open where it is cut. When a triangle is
completely contained in the cutting plane, however, it is not well defined what happens. One
option is to say that the triangle completely disappears; another option it to say that the
triangle is not cut at all. Since vertical triangles can be ignored in the Painter’s Algorithm,
we will simply assume that no triangle in T is vertical. However, we can still have other
degeneracies, such as edges of different triangles being parallel or triples of projected edges
being concurrent. Fortunately, the fact that we do not need non-degeneracy assumptions for
segments immediately implies that we can handle such cases. Indeed, degeneracies are not
a problem for the hierarchical cuttings we use in Step 1 of our procedure, and in Step 2 we
only assumed non-degeneracy when computing the cut set X(σ) for the edge set E(σ)—and
Theorem 9 implies we can get rid of the non-degeneracy assumptions in this step. Note that
the O(n2) overhead term in Theorem 9 is subsumed by the time needed to apply the algorithm
of Aronov et al. [3].

6 Concluding remarks

We proved that any set of n disjoint triangles in R3 can be cut into O(n7/4 polylog n) triangular
fragments that admit a depth order, thus providing the first subquadratic bound for this
important setting of the problem. We also proved a refined bound that depends on the
number of intersections of the triangle edges in the projection, and generalized the result to
xy-monotone surface patches. The main open problem is to tighten the gap between our
bound and the Ω(n3/2) lower bound on the worst-case number of fragments needed: is it
possible to cut any set of triangles into roughly Ω(n3/2) triangular fragments that admit a
depth order, or is this only possible by using curved cuts? One would expect the former, but
curved cuts seem unavoidable in the approach of Aronov, Miller and Sharir [6] and it seems
very hard to push our approach to obtain any o(n7/4) bound.

References

[1] P.K. Agarwal, E.F. Grove, T.M. Murali, and J.S. Vitter. Binary space partitions for fat
rectangles. SIAM J. Comput. 29:1422–1448 (2000).

[2] P.K. Agarwal, M.J. Katz, and M. Sharir. Computing depth orders for fat objects and
related problems. Comput. Geom. Theory Appl. 5:187–206 (1995).

[3] B. Aronov, M. de Berg, C. Gray, and E. Mumford. Cutting cycles of rods in space:
Hardness results and approximation algorithms. In Proc. 19th ACM-SIAM Symp. Discr.
Alg. (SODA), pages 1241–1248, 2008.

[4] B. Aronov and M. Sharir. Almost tight bounds for eliminating depth cycles in three
dimensions. In Proc. 48th ACM Symp. Theory Comp. (STOC), pages 1–8, 2016.

16

[5] B. Aronov, V. Koltun, and M. Sharir. Cutting triangular cycles of lines in space. Discr.
Comput. Geom. 33:231–247 (2005).

[6] B. Aronov, E.Y. Miller, and M. Sharir. Eliminating depth cycles among triangles in three
dimensions. In Proc. 28th ACM-SIAM Symp. Discr. Alg. (SODA), pages 2476–2494,
2017.

[7] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Springer-Verlag
New York, LNCS 703, 1993.

[8] M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica
28:353–366 (2000).

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008.

[10] M. de Berg and C. Gray. Vertical ray shooting and computing depth orders for fat objects.
SIAM J. Comput. 38:257–275 (2008).

[11] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders.
SIAM J. Comput. 23:437–446 (1994).

[12] M. de Berg and O. Schwarzkopf. Cuttings and applications. Int. J. Comput. Geom. Appl.
5:43–55 (1995).

[13] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal
algorithm. SIAM J. Comput. 13:488–507 (1984).

[14] B. Chazelle. Cutting hyperplanes for divide and conquer. Discr. Comput. Geom. 9:145–
158 (1993).

[15] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir, and
J. Snoeyink. Counting and cutting cycles of lines and rods in space. Comput. Geom.
Theory Appl. 1:305–323 (1992). (A preliminary version appeared in In Proc. 31st IEEE
Symp. Found. Comput. Sci. (FOCS), pages 242–251, 1991.)

[16] L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Phil. Soc.
159:459–469 (2015).

[17] S. Har-Peled and M. Sharir. Online point location in planar arrangements and its appli-
cations. Discr. Comput. Geom. 26: 19–40 (2001).

[18] J. Matoušek. Range searching with efficient hierarchical cuttings. Discr. Comput. Geom.
10: 157–182 (1993).

[19] M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface removal
and solid modeling. Discr. Comput. Geom. 5:485–503 (1990).

[20] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects.
J. Alg. 13:99–113 (1992).

[21] A. Solan. Cutting cycles of rods in space. In Proc. 14th Int. Symp. Comput. Geom.
(SoCG), pages 135–142, 1998.

17

[22] C.D. Tóth. Binary space partitions for axis-aligned fat rectangles. SIAM J. Comput. 38:
429–447 (2008).

[23] R.H. Wilson and J.-C. Latombe. Geometric reasoning about mechanical assembly. Arti-
ficial Intelligence 71:371–396 (1994).

18

	1 Introduction
	2 Eliminating cycles among triangles
	3 Efficient algorithms to compute complete cut sets
	4 A more refined bound and an extension to surface patches
	5 Dealing with degeneracies
	6 Concluding remarks

