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Abstract

A tight criterion under which the abstract version Lovasz Local Lemma (abstract-LLL) holds
was given by Shearer [43]] decades ago. However, little is known about that of the variable version
LLL (variable-LLL) where events are generated by independent random variables, though this model
of events is applicable to almost all applications of LLL. We introduce a necessary and sufficient
criterion for variable-LLL, in terms of the probabilities of the events and the event-variable graph
specifying the dependency among the events. Based on this new criterion, we obtain boundaries
for two families of event-variable graphs, namely, cyclic and treelike bigraphs. These are the first
two non-trivial cases where the variable-LLL boundary is fully determined. As a byproduct, we
also provide a universal constructive method to find a set of events whose union has the maximum
probability, given the probability vector and the event-variable graph.

Though it is #P-hard in general to determine variable-LLL boundaries, we can to some extent
decide whether a gap exists between a variable-LLL boundary and the corresponding abstract-LLL
boundary. In particular, we show that the gap existence can be decided without solving Shearer’s
conditions or checking our variable-LLL criterion. Equipped with this powerful theorem, we show
that there is no gap if the base graph of the event-variable graph is a tree, while gap appears if the
base graph has an induced cycle of length at least 4. The problem is almost completely solved except
when the base graph has only 3-cliques, in which case we also get partial solutions.

A set of reduction rules are established that facilitate to infer gap existence of an event-variable
graph from known ones. As an application, various event-variable graphs, in particular combinatorial
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ones, are shown to be gapful/gapless.
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1 Introduction

EILovész Local Lemma, or LLL for short, is one of the most important probabilistic methods that has
numerous applications since proposed in 1975 by Erd6s and Lovéasz [12]. Basically, LLL aims at finding
conditions under which any given set A of bad events in a probability space can be avoided simultane-
ously, namely P(n e 4 A) > 0. In the most general setting, the dependency among A is characterized by
an undirected graph G = ([n], E), called a dependency graph of .A, which satisfies that for any vertex 1,
A; is independent of {A; : j # 1,7 ¢ N (i)}, where A/ (i) stands for the neighborhood of 7 in G. In this
context, finding the conditions on A is reduced to the fundamental challenge: Given a graph G, deter-
mine its abstract interior Z,(G) which is the set of vectors p such that P (m Ae AZ) > ( for any event set
A with dependency graph GG and probability vector p. Local solutions to this problem are collectively
called abstract-LLL. The most frequently used abstract-LLL is as follows:

Theorem 1 ([44]). Given a graph G = ([n], E) and a vector p € (0,1)", if there exist real numbers
T,y T € (0,1) such that p; < @i [ Lienrsy (1 — ;) for any i € [n], then p € Lo(G).

An exact characterization of Z,(G) was presented by Shearer [43] over 30 years ago.

Theorem 2 ([43])). Given a graph G = ([n], E) and a vector p € (0,1)", p € Z,(G) if and only
if for any S € Ind(G), ZT;S,Telnd(G)(_l)m_‘S‘ [Lierpi > 0, where Ind(G) is the collection of
independent sets of G.

As in Theorem |1} and Theorem [2} only dependency graphs and probabilities of events are involved
in abstract-LLL. However, dependency graphs can only capture which events are dependent (more pre-
cisely, which events are independent), but not how they are dependent.

A nice model of richer dependency structures is the variable-generated system A of events, where
each event is a constraint on a set X of independent random variables that can be continuous or discrete.
Suppose A = {41,..., Ay} and X = {X1,..., X;,}. Let X; € X be a set of variables that completely
determines A; for each i € [n]. The model can be characterized by an event-variable graph which is a
bigraph H = ([n], [m], E') where each pair (i, j) € [n] x [m] is an edge if and only if X; € X;. Then the
fundamental challenge of LLL becomes the VLLL problem as follows: Given a bigraph H, determine
its interior Z(H ) which is the set of vectors p such that P ( N Ac AZ) > 0 for any variable-generated
event system A with event-variable graph H and probability vector p. LLLs solving this problem are
collectively called variable-LLL.

The model of variable-generated event systems is important, mainly because most applications of
LLL have natural underlying independent variables, e.g., hypergraph coloring [30], satisfiability [[14}[15],
counting solutions to CNF formulas [31], acyclic edge coloring [18]], etc. Besides, most results on the
algorithmic aspects of LLL are based on this model (see Section [I.T). However, there are no special
studies on the VLLL problem. A common approach for using LLL in the variable setting is ignoring the
variable information and applying abstract-LLL to a dependency graph. This approach only produces
results that cannot be better than Shearer’s bound. Recently, Harris [22]] presents a condition for lopsided
version [13] of variable-LLL which can go beyond Shearer’s criterion, but his condition is based on more
information than the event-variable graph (i.e., how events disagree on variables is needed). Thus, the
VLLL problem remains open.

Meanwhile, it is widely believed that Shearer’s bound is generally not tight for variable-LLL. More
precisely, given a bigraph H = (U, V, E), its base graph is defined as the graph Gy = (U, E’) where
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two nodes w1, ug € U are adjacent if and only if u;, us share some common neighbor in H. A property
of base graph is that if H is an event-variable graph of variable-generated event system .4, then G is a
dependency graph of .4, which immediately implies that Z,(Gg) € Z(H). When Z,(G ) # Z(H), we
say that Shearer’s bound is not tight for /1, or i has a gap. The only reported bigraph that has a gap is
the 4-cyclic one [28]], namely a bigraph whose base graph is the 4-cycle. An exact characterization of the
conditions for gap existence is far from clear.

Therefore, we try to solve two closely related peoblems:

1. VLLL problem: characterize the interior Z(H) for any bigraph H. Kolipaka et al. [28] have shown
that the Moser-Tardos algorithm is efficient up to the Shearer’s bound. However, it remains un-
known whether the algorithm converges up to the tight bound of variable-LLL and whether it is
efficient even beyond Shearer’s bound. Moreover, it is widely believed that better bounds can be
obtained through variable-LLL for many combinatorial problems, but how much better can it be?
A prerequisite for answering these questions is to know what Z(H) is since it tightly upper-bounds
the range of variable-LLL.

2. Gap problem: characterize the conditions for a bigraph to have a gap. The status in quo of variable-
LLL is to ignore variable information and apply abstract-LLL. This over-simplification generally
compromises the power of variable-LLL, but it is lossless and can be safely used when there is
no gap. In addition, VLLL problem makes sense only when a gap exists, otherwise it’s solved by
Shearer’s theorem. All this calls for a solution to the gap problem.

1.1 Related Work

LLL provides a powerful tool to show the existence of some complex combinatorial objects meeting a
prescribed collection of requirements. The first result for abstract-LLL was proved by Erdds and Lovész
[12] and the first asymmetric one (Theorem m) was presented in [44]. Though these results are useful,
they are not tight in general. A tight, but not local, criterion (Theorem [2)) for abstract-LLL was proposed
by Shearer [43]] over 30 years ago.

Shearer’s criterion is hard to verify since it involves all possible independent sets, so efforts have
been made to obtain simpler (hence weaker) forms. Pegden [35]][36]] introduced lefthanded-LLL which
does not hold on all dependency graphs, but it is generally tighter than the condition in Theorem [I]
and provides a much simpler form of (tight) conditions on special classes of dependency graphs, e.g.,
chordal graphs. Instead of bounds only working for some dependency graphs, Bissacot et al. [6] proposed
to improve Theorem I|by cluster expansion. Kolipaka [27] further introduced a hierarchy of bounds (e.g.,
the clique-LLL) which can be applied to any dependency graph and are all tighter than the condition in
Theorem [1| Note that almost all the bounds either lose applicability for some dependency graphs or are
not tight in general.

Erdos and Spenser [13] introduced lopsided-LLL, which extends the results in [[12]] to lopsidepen-
dency graphs. Scott and Sokal [42] proved that Shearer’s condition is tight for lopsided dependency
graphs.

There are settings in which Shearer’s bound are not tight in general. The best known one may be
the variable-generated event systems, whose tight conditions are one of the main contributions of this
paper. Harris [22] extended the concept of lopsidependency to variable-LLL, and proposed a condition
which can go beyond Shearer’s bound in some cases, but not so in general. Note that Harris’ bound



cannot be applied to standard variable-LLL, because the key concept of orderability cannot be defined
on event-variable graphs alone.

To make LLL constructive, various sampling algorithms have been proposed so as to avoid all bad
events. Algorithm design for LLL is closely related to different bounds mentioned above. Beck [3] first
showed that an algorithmic version LLL (algorithmic-LLL) is possible and proposed an efficient deter-
ministic sequential algorithm. In that paper, it was required that the degree of the dependency graph
under consideration be upper bounded by 2"/48, which is a very strong restriction. Several work has been
done to relax this requirement [[11} 33} 38}, [39].

Under the model of variable-generated event systems, Moser and Tardos [34] proposed a simple
sampling-based algorithm with expected polynomial runtime. Their algorithm is Las Vegas and outputs
an assignment to the random variables so as to avoid all bad events. Though a strong model is used, the
condition needed in their analysis is the same as Theorem I which is even not tight for the abstract-LLL.
Pegden [37/]] proved that Moser and Tardos’s algorithm efficiently converges even under the condition
of the cluster expansion local lemma. Kolipaka and Szegedy [28] further showed that under the same
model, Moser-Tardos algorithm actually works efficiently up to Shearer’s bound. Harris [22]] presented
an algorithm for lopsided version of variable-LLL under the lopsided condition mentioned above. It is
still open what conditions are tight for an efficient constructive variable-LLL. Catarata et al. [9] tried
experimental methods to observe the possibilities.

Moser-Tardos algorithm can be naturally parallelized because it is not harmful to do sampling for
independent events at the same time. Moser and Tardos showed that this parallelization achieves a better
expected runtime, but the condition required in their analysis is slightly stronger than that for the se-
quential case. In fact, parallel algorithms for LLL has been considered much earlier than the invention
of Moser-Tardos algorithm [3]]. Recently, there are new researches for parallel algorithms inspired by
Moser-Tardos algorithm [21} 23]]. Besides, algorithmic-LLL has been studied using distributed compu-
tation models [[7, (10, [16].

Algorithms have also been devised for LLL with dependent variables and other conditions. Harris
and Srinivasan [24]] first considered the space of permutations. Achlioptas and Iliopoulos [2] studied
algorithms specified by certain multigraphs. Frameworks with resampling oracles are also investigated
[} 251 29]].

Actually, variable-LLL has strong connection with sampling. Guo et al. [19] proposed an algorith-
mic framework, called partial rejection sampling, which establishes this connection in scenarios such
as uniform sampling. In a parallel work, Moitra [32] presended an algorithm to approximately sample
solutions to general k-CNF under Lovész Local Lemma-like conditions.

Apart from algorithms, LLL has affected (or has been affected by) many other disciplines, in par-
ticular physics. For example, alternating-sign independence polynomials of dependency graphs, which
is a key element in Shearer’s criterion, are also related to the concept of partition functions in statistical
physics [20} 41} 145} 146]. Inspired by this connection, cluster expansion local lemma has been proposed
[6], and the lower bound of a singularity point in the hard-core lattice gas model has been improved [27]].
LLL has also been enriched by the concept of quantum in physics [4, 17, 40]].

Notation
e [n]: the set {1,2,...,n} for positive integer n.

e X, Y: sets of mutually independent random variables.



e X, Y:random variables.

e p,q,r: vectors of positive real numbers.

o ¢(-): given p € (0,400)", ¢p(p) € (0, 1]™ is the vector whose i-th entry is min{1, p;}.
e A, B: sets of events, or sets of cylinders.

e A, B: events, or cylinders.

e A: the complementary of the event/cylinder A.

e P(A): the probability of event A.

e [P(A): the vector whose i-th entry is the probability of the i-th event in A.

e 1: Lebesgue measure on Euclidean (sub)spaces.

e G = (V, E): the undirected graph with vertex set V' and edge set E.

e H = (V1,Vh, E): the bigraph with vertex set V] U V5 and edge set E € V; x V,. Vj and V5 are
called the left part and the right part of H, denoted by L(H ) and R(H ), respectively.

e Ng(v): the neighborhood of vertex v in graph G, or N'(v) when G is implicit.

e T} the unit interval in the i-th dimension of an Euclidean space, or simply I when i is implicit.

T°: the unit cube [ [,.q 11", or simply I™ when S = [m] for some integer m.

2 Results and Discussion

The main results of this paper are listed and discussed as follows.

Tight condition for variable-LLL. As we mentioned, Shearer’s condition is sufficient and necessary
for abstract-LLL, but in general it is not tight for variable-LLL. Our first contribution is a sufficient
and necessary condition for variable-LLL, namely an exact characterization of Z(H) for any bigraph
H. Characterizing Z(H) is equivalent to delimiting its boundary, simply called the boundary of H and
denoted by 0(H ), which consists of the vectors p such that (1 — e)p € Z(H) and (1 + €)p ¢ Z(H) for
any € € (0,1).

Theorem 3. Given a bigraph H = ([n],[m], E), let d = (di,...,d,,) where d; is the degree of the
vertex j € R(H). For any vector q € (0,1)", \q lies on the boundary of H if and only if X is the optimal



solution to the program:
min A

st Y, Ciky ko = 1forany k; € [dy],j € [m];
i€[n]

Ci k1 ka,... b does not depend on kj for any (i, j) € ([n] x [m])\E;
> (T 2k, )Cirkrkrrnn = A fori € [n];

ki€[di],...,km€[dm] jE[m]

> zjp =1forj e [m];

keld;]
zji, € [0, 1] for j € [m], k € [d;];
Ci,kl,kg,.‘.,km € {0, 1}f0ri (S [n], kj (S} [dj],j (S [m]

As far as we know, this is the first condition for general variable-LLL. It essentially means that the
variables can be discretized. Namely, to determine the boundary vectors, it is enough to consider the
discrete variables taking d; values. Small finite domains of the variables enable to study the events by at
least the method of exhaustion. In addition, the program facilitates to construct the “worst-case” set of
events, which means that the probability of the union of the events is maximized.

This optimization problem looks like a geometric program, but it is not the case. Actually, it must be
hard to solve, since we show that it is #P-hard to decide the boundary of variable-LLL.

Boundary of cyclic bigraphs Though the program above is hard to solve in general, its insight of
discretization makes it possible to fully determine the boundary of any cyclic bigraph as in the following
theorem. Here a bigraph is called n-cyclic if its base graph is a cycle of length n. We propose a method
to calculate the boundary vectors of cycles.

Theorem 4. Given a vector p € (0,1)", for each i € [n], let \; be the minimum positive solution to the
equation system: by = A\p;, by, = )f’fbiﬁfor 2<k<n—10by1=1-Api—1. Let A\g = minep,) ;.
Then A\gp lies on the boundary of any n-cyclic bigraph.

In the literature, cyclic bigraphs are attractive as they are the only example showing a gap exists,
i.e., only one vector on the boundary of 4-cyclic bigraphs has been identified. The above theorem shows
that the whole boundary of any n-cyclic bigraph can be determined by solving an (n — 1)-degree poly-
nomial equation. The method works for any cyclic bigraph, no matter whether the probability vector is
symmetrical or not.

Not only for cyclic bigraphs, we also give a procedure to exactly determine the boundary of treelike
bigraphs. A bigraph is called treelike if its base graph is a tree.

A sufficient and necessary condition for gap existence Since a bigraph provides more information
than its base graph, it is naturally expected to have a gap, namely Shearer’s bound is not tight for bigrpahs.
We propose a necessary and sufficient condition to decide whether such a gap exist. For conciseness of
presentation, we also call a bigraph gapful if it has a gap, and gapless otherwise.

Theorem 5. Given a bigraph H and a vector p of positive reals, the following three conditions are
equivalent:



1. For any X\ such that \p € Z(H), there is an exclusive variable-generated event system A with
event-variable graph H and probability vector \p.

2. For the X such that \p € O(H), there is an exclusive variable-generated event system A with
event-variable graph H and probability vector \p.

3. H is gapless in the direction of p.

Here the qualifier “exclusive” means that the events in A are either independent or disjoint, and
“gapless in the direction of p” means that for any A\, Ap € Z(H ) if and only if Ap € Z,(G ).

By this criterion, one can check the existence of a gap just by examining the bigraph, without com-
puting Shearer’s bound of its base graph.

On this basis, we investigate gap existence for two families of bigraphs.

Theorem 6. Treelike bigraphs are gapless.

Based on this theorem, we develop a simple algorithm to efficiently compute Shearer’s bound for any
dependency graph which is a tree.

In contrast, we obtain an opposite result for cyclic bigraphs, which considerably extends the only
gap-existing example in literature [28]].

Theorem 7. Cyclic bigraphs are gapful.

Another interesting perspective of gaps is dependency-graph-oriented: we say that a graph G is a-
gapful if there is a gapful bigraph whose base graph is GG, otherwise it’s called a-gapless; G is said to be
strongly a-gapful if any bigraph with GG as base graph is gapful, otherwise it’s called strongly a-gapless.
Six years ago Kolipaka et al. [28]] proposed to characterize strongly a-gapful graphs, but the problem
remains open. We provide an exact characterization for both concepts.

Theorem 8. A graph is a-gapless if and only if it is a tree.

Theorem 9. A graph is strongly a-gapful if and only if it is chordal.

Reduction method To discover more instances that have or have no gaps, we propose a set of reduction
rules which allow us transforming a bigraph without changing the existence or nonexisence of a gap. We
identify five basic operations. Three of them as well as their inverses preserve both gapful and gapless;
the other two preserve gapful, while the inverses of the two preserve gapless. Applying these operations,
we show that a bigraph is gapful if it contains a gapful one. This, together with Theorem [/} intuitively
means that Shearer’s criterion is not tight for almost all cases of variable-LLL. Likewise, we show that
combinatorial bigraphs H,, ,,, are gapful if m is small enough and are gapless if m is large enough.

3 Probability Boundary of Variable-LLL

This section aims at solving the VLLL problem: given a bigraph H, determine all the vectors p such that
P (m Ac AZ) > 0 for any variable-generated event system .A with event-variable graph H and probability
vector p. Basically, we will transform the problem into a geometric one and solve it in the framework of
Euclidean geometry.



For conciseness of presentation, a variable-generated event system A is said to conform with a bi-
graph H, denoted by A ~ H, if H is an event-variable graph of A.

Throughout this section, we only consider bigraphs whose base graphs are connected. This restriction
does not lose generality for the following reason. If a bigraph has disconnected base graph, itself must
also be disconnected and each component is again a bigraph. In this case, the interior of the original
bigraph is exactly the direct product of the interiors of the component bigraphs.

3.1 A Geometric Counterpart

Now we formulate a geometric counterpart of the VLLL problem, called the GLLL problem. Consider
the m-dimensional Euclidean space R™ endowed with Lebesgue measure u. Let X; be the coordinate
variable of the i-th dimension, i € [m]. For any S  [m)], the S-unit cube, denoted by I°, is defined to be
the |:S|-dimensional unit hypercube [0, 1]/ working as the domain range of the variables {X; : i € S}
such that for each i € S, X; € [0,1]. When S = [k] for some k < m, we simply write I¥ for Il*].
A cylinder A in I' is a subset of the form B X I°, where B < TlmI\S ig called a base of A; define
dim(B) = [m]\S. Given a bigraph H = ([n], [m], E') and a set A of cylinders A, ..., A, in ["*, we say
that A conforms with H, also denoted by A ~ H, if there are bases Bj, ..., B, of A1, ..., A, such that
E ={(i,j) € [n] x [m] : j € dim(B;)}. Now comes the GLLL problem: given bigraph H, determine
all the vectors p such that p(Uac4A) < 1 for any cylinder set A ~ H with u(A) = p.

One can easily see that the VLLL problem is equivalent to the GLLL problem in the sense that
they have the same solutions. Hence, the rest of the paper will be presented in the context of the GLLL
problem. For ease understanding, the terms “event” and “cylinder” will be used interchangeably, and so
will “probability” and “Lebesgue measure”. The complementary of a cylinder A in I[™ is defined to be
the cylinder A = Il™\ A.

3.2 A Sufficient and Necessary Criterion

Definition 1 (Interior). The interior of a bigraph H, denoted by Z(H), is the set of vectors p on (0,1)
such that i (N aeaA) > 0 for any cylinder set A ~ H with pi(A) = p.

Definition 2 (Exterior). The exterior of a bigraph H = ([n],[m], E), denoted by E(H), is the set
(0, 1]"\Z(H).

Definition 3 (Boundary). The boundary of a bigraph H, denoted by 0(H ), is the set of vectors p on
(0,1] such that (1 — €)p € Z(H) and (1 + €)p ¢ Z(H) for any € € (0,1). Any p € 0(H) is called a
boundary vector of H.

We can show that there is a boundary vector in every direction.

Lemma 10. Given a bigraph H = ([n], [m], E), for any p € (0, 1]", there exists a unique X\ > 0 such
that A\p € 0(H).

Proof. Let A = {\ > 0: Ap ¢ Z(H)}. If X is so large that A\p; > 1 for some i, then A € A since
Ap ¢ Z(H). If X is so small that A}, p; is smaller than 1, then A\ ¢ A because Ap € Z(H). Thus, A
is non-empty and its infimum, denoted by Ag, must be positive. It is easy to see that A\op € (H). The
uniqueness is trivial. ]

In the rest of this section, we propose a program to characterize boundary vectors. The cornerstone of
the program is the observation that cylinders can be properly discretized without changing the boundary.



Given an integer d > 0, a cylinder A < 1" is said to be d-discrete in dimension j, if there is a
partition of 17} into d disjoint intervals Ay, ..., A4 such that A = u%zlS,f x Ay, for some S,? c TlmI\}
k =1,...,d. A cylinder set A is called d-discrete in dimension j, or discrete in dimension j when d
is implicit, if so is every A € A. Given a vector d = (dy, ..., d,,), a cylinder A is called d-discrete, if
it is d;-discrete in dimension j for any j € [m]. Likewise, A is called d-discrete, or discrete when d is
implicit, if so is every A € A; then the vector d is called a discreteness degree of .A.

Given two vectors p and q, we say p < q if the inequality holds entry-wise. Additionally, if the
inequality is strict on at least one entry, we say that p < q.

In the rest of this section, fix a bigraph H = ([n], [m], E) and a probability vector p € J(H ). Let
qe = ¢((1 + €)p) for any real number e > 0 and d = (dy, ..., d,,) with each d; being the degree of the
vertex j € [m] in H.

The main results (Theorem[15]and Theorem [3)) of this section present a discrete cylinder set for each
probability vector on the boundary. As a byproduct, it is shown that the boundary lies in the exterior.
Following these theorems, there are two corollaries handling the discretization of interior and exterior
respectively.

The boundary is discretized in four steps, as shown in the coming four lemmas. First, we show that
for any € > 0, there is a discrete cylinder set whose measure vector lies in the exterior and is e-close to
p. Unfortunately, the discreteness degree of this cylinder set depends on €, and may be unbounded when
€ tends to 0. Second, we show that the set of cylinders can be chosen such that the discreteness degree is
no more than d. However, the measure vector may not be lower-bounded by p, though it is still upper-
bounded by q,. Third, with € tending to 0, a mathematic program and a calculus argument guarantee the
existence of a d-discrete cylinder set whose measure vector lies in the exterior and is upper-bounded by
p. Finally, we show that the measure vector of this cylinder set is exactly p, which immediately leads to
the main theorem.

The basic idea of proving the next lemma is to discretize cylinders dimension by dimension. To
discretize the j-th dimension, the axis I/} is partitioned so that every cylinder varies little in each part,
which naturally leads to an approximation (that is discrete in dimension j) to the origin cylinders. The
partition is found by approximating an integral with a finite summation.

Lemma 11. For any € > 0, there exists a discrete cylinder set A ~ H such that p < u(A) < qc and
p(Uacad) = 1.

Proof. Since p € (), there is a cylinder set A" ~ H such that ;1(A’) = q./9 and pi(Upcar4) = 1.

We prove this lemma by showing the following claim.

Claim: Suppose there is a cylinder set B ~ H such that u(uUpegB) = 1 and q, < pu(B) < Qe
for some 0 < o < €/2. Then there exists a discrete cylinder set A ~ H such that p < u(A) < g and
pw(Uaead) = 1.

Proof of the claim: Arbitrarily fix a cylinder set B = {Bj, ..., By} satisfying the condition of the
claim. Let 7 = {j € [m] : B is discrete in dimension j}. We prove the claim by induction on |7 |.

Basis: | 7| = m. The claim trivially holds.

Hypothesis: The claim holds when | J| > .

Induction: Consider | 7| =1 < m.

Without loss of generality, assume that 1 ¢ 7.

For each i € [n] and z € [0, 1], let Bi(x) = B; n (X1 = x). By Fubini’s Theorem, Bi(x) is Lebesgue
(z)

measurable for almost all = € [0, 1]. Without loss of generality, assume that 3, is Lebesgue measurable



forall z € [0, 1]. Let f; be the Lebesgue measurable function on [0, 1] such that f;(z) = ,u(Bi(x)) . Then
we have p(B;) = S[o 1] fi(z)dp, where the integration is Lebesgue.

Let § = §po where pg = mine[,) p;. For any integer 1 < k < [%], consider intervals

Fkﬁ{

For each list of integers 1 < ki, ..., ky, < [%], define a set Ay, k, = Nicln] £ H(Ty,). Arbitrarily
re-number the A’s with non-zero measure into A1, --- , Ag, where K < [%]" We observe that:

((k — 1)8, min{ks, 1}] ifk > 1 )
[0,6 if k=1 M

L UiergAi € [0, 1] and p(uerAi) = 1

2. Ay, -+, Ak are pairwise disjoint;

3. Forany k € [K ]|, any z, 2’ € Ay, and any i € [n], it holds that | f;(x) — f;(2')| <.

Since (Use[n) Bi) = 1, for any k € [ K], we can choose 3 € Ay, such that ,u(uie[n]Bi(x'“)) = 1.
Partition I{'} into disjoint intervals A7, ..., A% such that j(A}) = u(Ay) for any k € [K].

For each i € [n], define B] £ Uk (Bi(x’“) x A} ). One can easily check that for any ¢ € [n] and
Jj € [m], B} is independent of X; if so is B;. Then the cylinder set B = { B, ..., B}, } satisfies:

1. B’ conforms with H;
2. [u(B;) — pu(B))| < dforany i€ [n], 80 qgp < u(B') < Qe_g/os

3. Since Ugepr](Viep BY™) x AL) = Usepng (Unerg (B x AL)) = User Bl it holds that
M(Uie[n]Bz{) = Zke[K] ﬂ(uie[n]Bi(mk)>M(A;c> =1

Now consider the set 7' = {j € [m] : B is discrete in dimension j}. The construction of 5’ indi-
cates that 7 u {1} < J'. Hence, |J'| = [ + 1, applying the induction hypothesis to /3’ finishes the proof
of the Claim.

The lemma follows immediately. L]

The basic idea of proving the next lemma is as follows. By Lemma we have a discrete cylinder
set. The vector of the measures of the cylinders that depend on a common variable X; turns out to be a
convex combination of d;-dimensional vectors. A simple combinatorial argument indicates that at most
d; out of the latter vectors are enough to generate (also by convex combination) former one, which
immediately implies the desired discreteness degree.

Lemma 12. For any ¢ > 0, there exists a d-discrete cylinder set A ~ H such that u(A) < q. and
p(Uacad) = 1.

Proof. By Lemma|l1] there is a discrete cylinder set A’ = {4], ..., A},} ~ H such that u(A’) < qc and
M(Uien1A;) = 1. Let ' = p(A’) and the discreteness degree of A’ be (d, ..., d;,,). Now by induction
onl = |{j € [m]: d; > d;}|, we show that the existence of such an A" implies the existence of a desired
A.

Basis: If [ = 0, the lemma holds by letting A = A’.

Hypothesis: The lemma holds if | < L.

10



Induction: Consider the case [ = L + 1. Without loss of generality, assume d} > dj.

By the definition of discreteness, there is a partition of I into d} disjoint measurable sets A, ..., Ad’l
such that A} = uzllzlSivk x A}, forany i € [n], where each S; , € I™MU Let T = {i e [n] : (4,1) € E}.
We know that |Z| = dy. Since p1(Ujen)A;) = 1, we have U Si = I} up to a set of measure
zero, forany 1 < k < d.

Consider 7 = q'|z, which is a d;-dimensional vector. Note that p1(A}) = > <.« a, 1(Si k) Oy, for any
i € Z, where 0, = pu(Ag). Hence m = Zlgksd’l 0 vy, with each v, = (u(S; k) : @ € ) being a vector in

the d;-dimensional Euclidean space RZ. Since each §; > 0 and Di<is & d; = 1, from the perspective of
geometry, 7 lies in the convex hull of vy, - - V. The segment between the origin and 7 must intersect
with the boundary of the convex hull; let u be an intersection point. The boundary of the convex hull
has a natural triangulation of dimension at most d; — 1. As a result, u must be located inside a simplex
spanned by K < d; points among vy, - - - v, - Without loss of generality, assume that the /X points are
V1, Vi. Hence, there are A1, ..., Ax > Osuchthatu = >}, ;e Aeveand 35y p g Ax = 1.

For i € [n], define A} = U1<p<iSi i X A}, where the disjoint intervals {A], ..., A, } is an partition
of T} and ;(A}) = A\ for 1 < k < K. Fori € [n]\Z, since A/ is independent of X1, S; ;. does not
depend on k, which in turn implies that A7 = S; 1 x i = A!. Moreover, one can easily check that for
any i € Z and j € [m], A7 is independent of X if so is A7.

Let A” = {Af, ..., Al}. We have the following observations:

1. A” conforms with H;

2. w(Viem) A7) = m(Urer) (Vieln) Sik) * A%) = 2perr] #(Vie[n) Sip) Ak = 1

3. w(A") < p(A) < qe.
Denote by (df, ..., dy,) the discreteness degree of .A”. The construction of A" indicates that d} < d; for
j>1,andd] = K < d;.Itholds that |{j € [m] : d! > d;}| < (L+1)—1 = L. Applying the induction
hypothesis to A” immediately finishes the proof. 0

By Lemma for any small € > 0, there is a d-discrete cylinder set .4, whose measure is upper
bounded by q.. The next lemma claims that this is the case even if ¢ = 0. The basic idea is to show
that as e tends to 0, A, converges in some sense and the limit is a d-discrete cylinder set. For this
end, we establish an equivalence between the existence of a d-discrete cylinder set and a mathematical
program consisting of polynomial constraints. This equivalence, together with an argument based on the

continuity of the constraints, ensures that a sequence of A, converges and the limit cylinder set is as
desired.

Lemma 13. There is a d-discrete cylinder set A ~ H such that 1(A) < p and p(UacaA) = 1.
Proof. Arbitrarily choose a sequence of positive real numbers ¢; such that llim e = 0.
—00

Now arbitrarily fix an [ > 0. Define the vector q(l) = (qgl), . qfll )) = (- By Lemma there exists
a d-discrete cylinder set A = {Agl), ...,Ag)} ~ H such that u(A®) < q® and u(uie[n]Agl)) =1
Letr() = (r%l), ey rg)) = 11(AW). The existence of A() is equivalent to the following condition Q.

Condition (): there are azglk) € [0,1] for j € [m], k € [d;] and Cf,lle,k2,...,k,,n € {0,1} fori € [n], k; €
[d;], 7 € [m] such that

! .
1. Zie[n] C’Z-(le’,wkam > 1 for any k; € [d;],j € [m];

11



()

2. Foranyi € [n] and j € [m],if (4,j) ¢ E, then C; ., is independent of k;;

-----

)

(l)j)C(l) = < for i € [n], and

0
3. 2krefdr],bomeldm] L Liepm] T ) Ciky kpobon =700 < G

l .

Intuitively, d-discreteness means that each dimension j is partitioned into d; segments, with xyk) standing

for the length of the k-th segment. This leads to a partition of the unit cube I"* into sub-cubes, where the
(k1, k2, ..., ki )-th subcube has measure [ [ cp,,,) xglk)J The variable Cl.(’l,ghkgwkm indicates whether the
(k1, k2, ..., km )-th subcube is in the cylinder Agl). Then the equivalence trivially holds.

Note that each Ci(l,zl Koo o is binary and i, k1, ko, ..., ky, all range on finite sets that do not depend

7777777

denoted by C; i, k,,... k.- Without loss of generality, assume that the subsequence is the whole sequence.

Arbitrarily fix j € [m] and k£ € [d;]. Then the sequence {xg.lk)}l;l must have a convergent sub-
sequence, because the interval [0, 1] is a compact topological space. Again without loss of generality,

assume that the whole sequence {:L‘glk) }1=1 converges. Denote the limit by .

Likewise, without loss of generality, we can assume that the sequence {rgl)}@l converges for any
O] O]
i

i€ [n]. Letr; = llim r; . Obviously, r; < llim q;’ = piforany i€ [n].
—00 —00
Letting [ approaches infinity, we can see that x;, with j € [m],k € [d;] and C; , k,,.. K, With
i € [n], k; € [d;],j € [m] satisfy the condition ). As a result, there is a d-discrete cylinder set A ~ H

such that u(A) = (r1,...,7,) < pand p(Uae4A) = 1. ]

Remark 1. The equivalence mentioned in the proof of Lemma implies a necessary and sufficient
condition for deciding the interior of H. Namely, a vector q = (q1,...,qn) € E(H) if and only if there
are x5, € [0,1] for j € [m], k € [d;] and C; j, ... iy € 10,1} fori € [n], k; € [d;], 5 € [m] such that

L Yietn) Cik kayob = 1for any kj € [d;], j € [m];

2. Foranyie€ [n]and j € [m], if (i,7) ¢ E, then C; , ks.... k. is independent of k;;

3. Zkle[dl],...,kme[dm](Hje[m] Tjk; ) Cier ko, om < i for i € [n], and
4. Zke[dj] xji = 1 for j € [m].

For the cylinder set A obtained in Lemma the next lemma claims that ;(.A) = p. Roughly
speaking, if there are A; and A; both depending on X; and satistying that ;1(A;) < p; and p(A4;) =
pj, we can remove a thin slice (perpendicular to the axis X;) from A; and attach it to A;. After this
operation, both 11(A;) < p; and p(A;) < pj, no extra dependency is brought about, and the whole cube
remains been filled up. Iteratively, we can finally get p(Ay) < py for any k, which is contradictory to the
assumption that p is a boundary vector.

Lemma 14. [f there is a cylinder set A ~ H such that ;/(A) < p and p(UaeaA) = 1, then u(A) = p.

Proof. First of all, we prove the following claim:
Claim: Suppose there exists a cylinder set A ~ H such that u(A) < p and (U geqA) = 1. Then
there are € > 0 and a cylinder set B ~ H satisfying u(B) < (1 —¢)p and p(upepB) = 1.

12



Proof of the Claim: Arbitrarily choose A ~ H such that r = u(A) < p and p(Uep,Ai) = 1.
Assume A = {A1, ..., Ap}, P = (P1,osPn), T = (11, ..., ). Let A(r,p) = |{i € [n] : 7y < pi}|- We
proceed by induction on A(r, p).

Basis: A(r,p) = n. Choose € > 0 such that r < (1 — €)p. The claim trivially holds by letting
B =A.

Hypothesis: The claim holds for any A(r,p) > K.

Induction: Consider the case A(r,p) = K < n. Choose i,j € L(H) such that r; < p;, 7; = pj,
and Ny (i) n N (j) # &. Such i, j exist due to the assumption that the base graph of H is connected.

Let 6 = min{p; — r;,p;}. Arbitrarily choose ly € N (i) n N (j) < [m]. Let D, be the cylinder
[z, + %] x ImI\lo} < T where 0 < = < 1 — g. Since 0 < pj, there must be some x such that 0 <
p#(Dz N Aj) < pj. Fix such an z. Define A} = A;\D; and A} = A; U D,. Consider A" = {47, ..., A} }
where A} = Ay, for k € [n]\{i,j}. Letr’ = (1], ..., 7,) = p(A’). We observe that:

ey 'y

1. réénﬁ—%<p,~and0<pj—g<r;:pj—,u(DxmAj)<pj,s0r’<p;

2. A" ~ H, since A conforms with H and Aj, does not depend on X; for any (k, 1) ¢ E, and
3. ,u(uie[n]Aé) = 1 because M(Uie[n]A;;) > ,u(uie[n]Ai)) = 1.

Note that A(r’,p) = A(r,p) + 1 > K. Applying the induction hypothesis to A’, we finish the
proof of the Claim.

Now we get back to prove the lemma. Suppose for contradiction that there is a cylinder set A ~ H
such that ;1(A) < p and p(uaeaA) = 1. By the Claim, there are ¢ > 0 and a cylinder set B ~ H
satisfying p(B) < (1 — €)p and u(upepB) = 1. We reach a contradiction since p € 0(H). ]

Theorem 15. Given a bigraph H = ([n],[m],E) and p € 0(H), letd = (d1, ..., d,,) where d; is the
degree of the vertex j € R(H ). Then there is a d-discrete cylinder set A ~ H such that (A) = p and
1(Uaead) = 1.

Proof. This immediately follows from Lemma|[l3|and Lemma O

Theorem |15|and Lemma [14] essentially give a necessary and sufficient condition for deciding the
boundary: p is a boundary vector if and only if it is a minimal probability vector that allows a cylinder set
as in Theorem [T5] Due to discreteness, such cylinders have only finitely many forms, so their existence
can be checked at least by the exhaustive method. In this sense, not only can we decide boundary vectors,
but also constructively find the “worst-case” cylinders (i.e., the measure of the union is maximized). The
method is as in Theorem [31

Theorem 3. Given a bigraph H = ([n],[m], E), let d = (di,...,d,,) where d; is the degree of the
vertex j € R(H). For any vector q € (0,1)", \q lies on the boundary of H if and only if X is the optimal
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solution to the program:

min A

s.t. Z Ci k1 ko, ki = 1 forany kj € [d;],j € [m];
[n]
Ci,khkm...,km does not depend on k; for any (i, j) € ([n] x [m])\E;

Z H Tik; ) Ci ey koo = AGi fOr 1 € [n];
kle[dl]v 7kme[d’m] [
Z xji = 1 for j € [m];
keld;]
zjk € [0,1] for j € [m], k € [d;];
Ciky ks € {0, 1} for i € [n], kj € [d;], j € [m].

Given a solution to the program, [ is partitioned into subcubes by cutting every axis X into d;
intervals of length z, k; € [d;]. For each i € [n], let A; be the union of the subcubes numbered by
(k1, k2, ..., k) With Cj gy ko g, = 1. Then A = {Aq, ..., A,,} satisfies the requirement of Theorem

By Theorem for p € 0(H), the worst set of cylinders can be d-discrete. We will generalize the
result to non-boundary vectors. When p is in the interior of H, the basic idea of the next corollary is to
add an extra cylinder to the original set of cylinders so that their union has measure 1. By minimizing
the extra cylinder, the union of the original cylinders should be maximized. Then the discreteness degree
follows from Theorem [131

Corollary 16. Given a bigraph H = ([n],[m], E) and p € Z(H), define d = (dy, ..., dy,) where d;j is
the degree of the vertex j € R(H). Letd’ = (dy + 1, ..., dy,, + 1). Then there is a d’-discrete cylinder set
B = arg max 4 g ,(A)=p w(UaeaA).

Proof. Let & = sup g ,(4)=p #(Uae4A). Suppose { < 1. Define a bigraph H' = ([n + 1], [m], E')
where B = E U {(n + 1,7) : j € [m]}. Let p’ € (0,1]""! be such that p} = p; for 1 < i < n and
p;1+1 =1-¢

Arbitrarily choose € > 0 and 0 < § < €(1 — &£). We have two facts:

1. There is a cylinder set A" ~ H' such that y(A") < (1 + ¢€)p’ and p(Uge 42A) = 1. The reason lies
in two aspects. On the one hand, by the definition of &, there is a cylinder set A ~ H satisfying
p(A) = pand p(Uaead) = € — 6. On the other hand, let A, be an arbitrary cylinder such that
w(Ani1) = (1+€)(1 — &) and Naes A S Apyq. Itis easy to check that A’ = A U {A,, 11} is the
desired cylinder set.

2. p(UgenA) < 1 for any cylinder set A" ~ H' with u(A") = (1 — €)p’. To show this, arbitrarily
choose A" = {Ay, ..., Aps1} ~ H with u(A") = (1—¢)p’. Then A = A\{A,,4+1} conforms with
H and p(A) = (1 — €)p. By the definition of £, (U eaA) < £ We further have pu(Uge g A) <
p(UacaA) + p(Anpr) =6+ (1—€)(1-¢) < 1.

Asaresult, p’ € 0(H'). By Theorem[13] there is a d’-discrete cylinder set A’ = {A1, ..., Ap1} ~ H
such that 1(A") = p’ and p(U e A) = 1. Again, A = A"\{A,+1} conforms with H and p(A) = p.
Note that 1 = p(UaeaA) < p(UaeaA)+u(Ans1) < E+1-E = 1,50 p(UgeaA) = 1—pu(Ani1) = &
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Now deal with the case £ = 1. Let H’ be as defined above. Define vector p() = (py, ..., pp, €) for
any € > 0. Using an argument like in the first fact mentioned above, we know that there is a cylinder
set A©) ~ H’ such that 1(A©)) < p'©) and p1(U 4e g A) = 1. Following the proof of Lemma |13} we
know that p = lim_,g p(e) lies in the exterior of H, contradictory to the assumption that p € Z(H). As
a result, it is impossible that & = 1. The proof ends. O

The next corollary indicates that for p € £(H), the discreteness degree is also small. The basic idea
is opposite to that of proving Corollary Some events and/or a part of one are removed so that the
remaining events exactly fill the cube. Then the rest events are discretized according to Theorem [15]
Finally, a slight refinement of the discretization also discretizes the removed events.

Corollary 17. Given a bigraph H = ([n],[m], E) and p € E(H), define d = (du, ..., dy,) where d; is
the degree of the vertex j € R(H). There is a d-discrete cylinder set A ~ H such that ji(A) = p and
p(UacaA) =1, where d;, = dj, + 1 for some jo € [m] and d; = d; for j # jo.

Proof. We prove by induction on n.

Basis: n = 1. It trivially holds.

Hypothesis: The lemma holds whenever n < N.

Induction: Consider n = N. Define H' = ([n — 1], [m], E’) to be an induced subgraph of H , and
p’ = (p1,...,Pn—1). Now we proceed case by case.

Case 1: p’ € £(H'). By the induction hypothesis, there is a d’-discrete cylinder set A" ~ H' such
that u(A") = p’ and (U gearA) = 1, where d; = d;;, + 1 for some jo € [m], d’ = d;; for j # jo, and
eachd; = |{i e [n — 1] : (i,j) € E"}].

Wlthout loss of generality, assume that (n,m) € E. The discreteness of A’ in dimension m means
that T{} is partitioned into d’ disjoint intervals. Now refine the partition into d’ + 1 intervals such that
the union of some intervals is [0, p,]. Let A = A’ U {A,}, where A,, = I™~! x [0, p,,]. Then u(A) = p
and p(Ugeqd) = 1.

As to the discreteness, obviously A is (d}, ...,d’, ,d, + 1)-discrete. If jo = m, then cz/ =d; <d;

9 ¥ m—1""m
forj <m—1,andd, +1 = (d\,+1)+1 = d,, +1.If jo # m, thend’ =d; < d;jforj¢ {jo,m}, =
d +1<dj,+1,and d +1=d, +1=d,. Asaresult,letd = (dl, ey djo,l, djo +1,djg+15 s dim),
and we always have that A is d-discrete.

Case 2: p' € Z(H'). Define p” = (p1,..., Pn—1,P0) € (0,1]", where 0 < p! < p,, is chosen such
that p” € d(H). By Theorem[15] there is a d-discrete cylinder set A” ~ H such that yu(.A”) = p” and
(U gearA) = 1. Again, without loss of generality, assume that (n,m) € E. Then as in Case 1, the
discreteness of A" implies a partition of I{m} . We likewise refine that partition and construct the desired
cylinder set A. The detail is omitted. L]

Remark 2. The above theorems and corollaries mean that given a bigraph and a vector in (0, 1]", the
worst case cylinders can be discretized. More importantly, the discreteness degree is determined by the
bigraph only.

The discreteness degrees mentioned in Theorems|[I5] [3|and Corollaries[I6] [T7]are tight in general. For
example, consider the complete bigraph H = ([n], [1], £'). For any p € (0,1]", p € Z(H) if and only if
2ie[n) Pi < 1, while p € 0(H) if and only if >},c,,; pi = 1. One can easily check that the discreteness
degrees in the Theorems and Corollaries are the smallest possible for this example.
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4 Breaking cycles

In this section, we compute the boundary of cyclic bigraphs. Roughly speaking, a cyclic bigraph models
the variable-generated system of events where events are located on a cycle and neighbors (and only
neighbors) depend on common variables. Note that the only gapful bigraph reported in the literature is
4-cyclic [28].

Definition 4 (Cyclic bigraph). A bigraph H is said to be n-cyclic if the base graph Gy is a cycle of
length n. When n = 3, it additionally requires ﬁieL(H)NH(i) = . In case of no ambiguity, an n-cyclic
bigraph is simply called a cyclic bigraph.

As far as the GLLL problem is concerned, an n-cyclic bigraph is always equivalent to the canonical
one H,, = ([n], [n], E,) where E,, = {(i,4), (i, (i + 1)(mod n)) : i € [n]}. Here the value k(mod n) is
defined to be (k — 1)(mod n) + 1. Hence, we will focus on H), in the rest of this section.

To simplify notation, the operator “(mod n)” will be omitted whenever clear from context.

A concept that is opposite to cyclic bigraphs is as follows.

Definition 5 (Linear bigraph). A bigraph H is said to be n-linear if the base graph G is a path of
length n. In case of no ambiguity, an n-linear bigraph is simply called linear.

A rather surprising phenomenon of cyclic bigraphs is that they can be reduced to linear bigraphs in
the following sense: Any boundary vector of an n-cyclic bigraph is also that of an n-linear one. That is,
to find the boundary vector in a certain direction, some pair of neighboring events can be decoupled (i.e.,
become independent of each other) by ignoring their shared variables. In this sense we say that the cycle
is broken. The result is stated in the next theorem.

Theorem 18. For any vector p € 0(H,,), there is a d-discrete cylinder set A ~ Hy, such that ji(A) = p,
w(ugesd) =1, andd < (2,2, ...,2).

Remark 3. d < (2,2, ...,2) means that d; = 1 for some j € [n]. Then all the cylinders (especially A;
and Aj 1) are independent of X ;. As a result, A also conforms with H,{Lj ) , the n-linear bigraph obtained
by removing the vertex j € R(H, ), meaning that p € S(H,{Lj}). Due to the assumption that p € 0(H,,)
and the easy fact that E(H,{lj}) < E(H,), p must also lie on the boundary ofHéj}.

To prove Theorem 18] first arbitrarily fix p € d(H,,). By Theorem[15] there is a (2, 2, ..., 2)-discrete
cylinder set A ~ H,, such that u(A) = p and p(uaeqA) = 1. Arbitrarily choose such a cylinder set
A = {A,...,A,}. Foreach i € [n], let B; be the base of A; such that dim(B;) = {i,7 + 1}.

Define function F' as follows. For any 57 © 1t} and Sy C 9k} where i # J # k,let F(S1,S2) be
the largest set S < 1195} such that S x II"\k < g s TMIMEdY G Gy x TPNUKY Let F(Sy, Ss, ..., S)) =
F(S1,F(Ss,83,...,8;)) for any 2 < [ < n. For any i € [n], there is a set B; < It»*+1} such that
A; = B; x IPNGi+} Forany 1 < 4,5 < n, let Bi; = {Bi,...,B;} if i < j, otherwise B;; =
{Bi,...,Bpn, B, ..., Bj}.

Note that F(B; j) = F(B;, F(Bit1;)) = F(F(Bij-1),B;) for any i # j € [n]. For simplify,
let F(B;;) = B;. To emphasize this important definition F'(B; ;), we leave it to readers to verify that
p(Uacad) = 1if and only if (F(B; ;) v F(Bj+1,i—1)) = 1 forany i < j.

Due to the discreteness of A, each I{"7} is partitioned into four rectangles as in Figure [1|and only
unions of some of the rectangles make sense. Especially interesting is the 14 types of non-trivial unions,
namely 77, through to Ty4, grouped into the four categories 71, ..., T4, as shown in Figure 2] For any
i,j € [n], B; and F'(B; ;) must have one of the 14 types in [{#4+1} and in 1% 1 respectively.
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Figure 1: Partitioning 1%/} into four rectangles

Lemma 19. Foranyi,j € [n], F(Bji1.-1) = IWNF(B; ).

Proof. Since p(uUaeaA) = 1, we know that pu(F(Bjy1,i-1) v F(B;;)) = 1, which is equivalent to
F(Bji1-1) 2 TN F(B; ;). By the definition of F, each of F(B; ;) and F(B;11,_1) also has one of
the 14 types in Figure

Suppose for contradiction that F'(B; j) N F(Bj41,i—1)) # <. Then one of the rectangles in F'(B; ;)
can be removed so as to preserve the property p(F(Bjt1-1) U F(B;;)) = 1. It is straightforward to
see that this can be achieved by removing a rectangle from either B; or F'(B;;1 ;). Iteratively, we see
that pu(F(Bj41,-1) U F(B;;)) = 1 remains true event if one element in B; ; gets smaller. Considering
Lemma|[I4]and the assumption that p is a boundary vector, we reach a contradiction. O

Now, we explore how B;, B; 1 are correlated in terms of their types.

If some B; has type Tb, then A; is independent of either X; or X; 1. It is easy to see that A is
1-discrete either in dimension ¢ or in dimension ¢ + 1. Hence we have

Lemma 20. If B; has type Ts for some i € [n], then A has a discreteness degree smaller than (2,2, ..., 2).

Proof. Arbitrarily choose i € [n] such that B; has type T5. Without loss of generality, assume that B;

is independent of X;. This means that all events except B;_; are independent of X;. By Lemma [I9]

B, = ]I{i_l’i}\F(Bi,i_g) which is also independent of X;. As a result, .4 do not depend on X;, namely,

it is 1-discrete in dimension i. U
As aresult, in the rest of this section, it is assumed that no bases have type 75.

Lemma 21. For anyi,j € [n] such thati < j ori > j + 1, we have the following observations.
1. If F(B; ;) has type T}, then both B; and F (B4 ;) has type T1.
2. If F(B; ;) has type T3, then both B; and F(Bj1 ;) has type T5.

3. Suppose that none of B;, ..., Bj has type Ty. If F'(B; ;) has type T}, then one of B; and F'(B;41,5)
has type T, and the other has type Ty.

Proof. In each case, it is straightforward to check two facts. First, the claimed combination of types of B;
and F(B;1,;) is feasible, namely, it can produce the given type of F'(5; ;). Second, this combination is
minimum in the following sense: if B; and F'(B;11 ;) have other feasible types, then at least one of them
can be reduced without changing F'(B; ;). Thus, similar to the proof of Lemma at least one element
in BB; j can be reduced without changing F'(5; ;). The detailed proofs of the two facts are omitted.

By the second fact and Lemma [T4] since p is a boundary vector, we know that the other feasible
combinations are impossible. ]

Now we can show that there are at most two essentially different possibilities of the types of By, ..., By,
as indicated in the following lemma.
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Figure 2: Types 111 through to Ty4 in 1143}, indicated by the shaded areas

Lemma 22. There are at most two possible combinations of the types of the bases.
1. Ty-dominant: all bases have type T except one has type Tj.
2. T3-dominant: all bases have type T5.

Proof. We do a case by case analysis.

Case 1: B has type 1. By Lemma F(Ba,,) has type T,. Applying Lemmato F(By,,) results
in two possibilities. One is that By has type T and F'(Bs3 ;) has type 71, and the other is that By has type
Ty and F'(Bs ;) has type 7. Then iteratively apply Lemma 21|to F'(B3 ). Altogether, we see that all B;
have type T except one has type 7.

Case 2: B has type T5. By Lemma F(Ba,y,) has type T5. Applying Lemmato F(B3,,) shows
that both B and F'(Bs ) have type T53. Repeat this process, and one can observe that all B; have type
Ts.

Case 3: B; has type Ty. Then F'(B; ;) has type T due to Lemma Iteratively applying Lemma
to F'(Ba,,,) indicates that all the other B; have type T7. O

However, the two possibilities are ruled out by the following two lemmas, respectively.
Lemma 23. The T5-dominant combination is impossible.

Proof. For contradiction, suppose that all B; have type T3. Then F'(B;,,—2) also has type T3. Without
loss of generality, assume that F'(B;,,—2) and B,,_; are as illustrated in Figure a) and b). Then
w(An—1) = ce + df. Again without loss of generality, we assume ¢ < d.

On the one hand, F'(B; ;1) is as illustrated in Figure c). By Lemma B, must be as in Figure
B(d). We have p(A,) = ac + bd.
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On the other hand, construct B by properly removing one of the two rectangles from B; for each
1 < i < n—2suchthat F(B,, 2) is as shown in Figure [3(e). Let B],_; be as illustrated in Figure
f). One can check that F (Blmfl) must be as illustrated in Figure g). Choose Bj, as in Figure h).
Let A’ is the set of cylinders whose bases are BY, ..., B}, respectively. We know that (A}) < p(A;) for
1<i<n—2, u(A) =p(4;)forie{n,n—1}, P(Ule n)A4;) = 1, and A’ conforms with H,,. Since p
is a boundary vector, by Lemma [[4] we reach a contradlctlon

0

Lemma 24. The T'-dominant combination is impossible.

Proof. For contradiction, suppose without loss of generality that B, has type Ty while the others B;
have 77. We can further assume that B; has type 714 as in Figure ) for every 1 < ¢ < n — 1. Let
(p1,-.spn) = p. We have a;b; = pjforl < i <n-—1landbj +aj;1 = 1forl < j < n—2. The
parameters a;’s and b;’s should be chosen to maximize the measure of F'(B; ,,—1), namely a1b,—_;.

Letz = b2 € (0,1). Thenb,_1 = 5=t ay o = fo(z) 2 22 ay 9 p = fr(z) = %,1 <
kén—3.Deﬁneg( ) 2 a1bp_1 = fro 3( )Plnxl

To maximize g(z), we consider its derivative %42 — £, () T T A 3(x) En=1_Since only
the sign of dg(x) matters, let h(x) = dil—(m)% = fn,g( ) + df”dii()(l — ) One can check that
dh(z) _ & f32;< J(1— ). On the other hand, for any 0 < k < n — 4, T — pucaci Pl

2(1p"fk3( ’)“) (df’;lg(f)> Since & fo(x) > 0, by induction we know that @ f’“( ) > 0forany1 <k <n-—3.

Altogether, ( ) >~ 0 whenz € (0,1). This implies three possible cases:
1. h(z) > O0forallz € (0,1);

2. h(z) <Oforallx e (0,1);
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3. There is 29 € (0, 1) such that h(x) < 0 for all z € (0,z¢) and h(xz) > 0 for all z € (x¢, 1) and
h(zg) =0.

Since h(x) and dg(z ( ) always have the same sign, g(x) is either strictly monotonic on (0, 1) or de-
creasing on (0, zg) and increasing on (o, 1).

On the other hand, we show that x = b,,_5 ranges over a closed interval in (0, 1). First, due to
1>b,1 = ’1":11, x increases as b,_ increases, so it reaches upper bound when B,,_; has type 75.
Second, it is easy to see that x decreases as a; increases, so x reaches lower bound when B has type 7.

Note that g(x) gets maximized either at the lower bound or upper bound of 2. When ¢() is maxi-
mized, either B, _1 or By has type 15, contradictory to our assumption that the measure of F’ (Bl,n_l) is

maximized in the case B,, has type T while the others B; have T7. OJ

It is time to prove Theorem 18]
Proof. Theorem [18/immediately follows from Lemmas O

Theorem 4. Given a vector p € (0,1)", for each i € [ |, let \; be the minimum positive solution to the
equation system: by = Ap;, by, = Ap’““ ! f0r2 <n—10bp1=1—Api—1. Let \g = min;e[y) Ai-
Then A\gp lies on the boundary of any n- cyclzc bzgraph

Proof. Arbitrarily choose a vector p € (0,1]". By Lemma |10} there is a unique A > 0 such that A\p €
0(H,,). By Theorem[18] there is a d-discrete cylinder set A ~ H,, such that u(A) = Ap, p(Uacad) = 1,
and d < (2,2, ...,2). Then each A; € A has a base B; € I{»*1}, Arbitrarily choose i € [n] such that
d; = 1, which means that both B; and B;_; have type T and F'(B;_1 ;) have type T,. More precisely,
the type of B;_1 is Th3 or T4, and that of B; is T»; or T52. By Lemma F(Bj+1,i—2) has type T. By
Lemma we can show that for any j ¢ {i — 1,1}, B; has type 7. The types are illustrated in Figure
Using the notation as in Figure it is easy to check that a;_1 = Ap;—1, b; = Ap;, b; + a1 = 1 for any
j #i—1,and byap = A\py, for any k ¢ {i — 1,4}. Eliminate all a’s, properly re-number the b’s, and we
get the desired equation. As a result, the unique )\, say Ag, is a solution to that equation.

Forany 0 < X < Ao, let b) = Np;, b, = % for 2 < k < n — 1. By an argument of
1

monotonicity, we know that 0 < b}, < by, for 1 < k < n — 1. On the other hand, if it also holds that
b,y =1—XNp;_1,thend]_; > b,_1, which is a contradiction. Therefore, A’ cannot be a solution to the
equation system. Altogether, \g is the minimum positive solution. The proof ends. ]

As an application of Theorem ] we explicitly characterize the boundary of the 3-cyclic bigraph H3.

Example 1. For Hs, consider an arbitrary p € (0,1)3 with py + pa + p3 = 1. Fori € {1,2, 3}, we have

L 1/Tdpipiy . 1%z . . . . . L

i = — % DL Since the function # is increasing with x > 0, the final \g is the \; with i
1 —

minimizing p;p;—1. For example, if p1 = ps and p1 = ps, then A\sp = 1=V apaps Wp is a boundary vector.

S Gap between Abstract- and Variable-LLL

In this section, we investigate conditions under which Shearer’s bound remains tight for Variable-LLL.

5.1 A Theorem for Gap Decision

Definition 6 (Exclusiveness). An event set A is said to be exclusive with respect to a graph G, if G is a
dependency graph of A and j1(A; n Aj) = 0 for any i, j such that i € N (7). A cylinder set A is called
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exclusive with respect to a bigraph H, if A conforms with H and A is exclusive with respect to G . We
do not mention “with respect to G or H” if it is clear from context.

The next lemma claims that exclusive cylinder sets always exist if all the probabilities are small
enough.

Lemma 25. For any bigraph H, there is € > 0 such that for any vector p on (0, €), there exists a cylinder
set A that is exclusive with respect to H and j1(A) = p.

Proof. Let H = ([n],[m], E). For each i € L(H), define a cylinder 4; = {(z1,...,zm) : =l <
z; < £,¥j € N(i)}. Obviously, {A1, ..., A,} is exclusive with respect to H. The lemma holds with
€ = mineyp) 1(As). O

Definition 7 (Abstract Interior). The abstract interior of a graph G = ([n], E), denoted by Z,(QG), is the
set {p € (0,1)" : P (nacaA) > 0 for any event set A ~, G with P(A) = p}, where “A ~, G means
that G is a dependency graph of A. Given a bigraph H, we simply write Z,(H) for Z,(Gg).

It is obvious that Z,(H) < Z(H) for any bigraph H.

Definition 8 (Abstract Boundary). The abstract boundary of a graph G = ([n], E), denoted by 0,(G),
is the set {p € (0,1]" : (1 —€)p € Z,(G) and (1 + €)p ¢ L,(G) for any e € (0,1)}. Any p € 0,(G) is
called an abstract boundary vector of G.

Here is an interesting property of exclusive event sets.

Lemma 26. Given a graph G and p € Z,(G) U 0o(G). Among all event sets A ~, G with P(A) = p,
there is an exclusive one such that P(U ac 4 A) is maximized.

Proof. It is a byproduct of the proof of [43, Theorem 1]. O

Definition 9 (Gap). A bigraph H is called gapful in the direction of p € (0, 1)", if there is A > 0 such
that \p € Z(H)\Z,(H), otherwise it is called gapless in this direction. H is said to be gapful if it is
gapful in some direction, otherwise it is gapless.

For convenience, “being gapful” will be used interchangeably with “having a gap”.

The main result of this section, namely Theorem[5] is a necessary and sufficient condition for deciding
whether a bigraph is gapful. Intuitively, it bridges gaplessness and exclusiveness both in the interior and
on the boundary. At the first glance, the connection between gaplessness and exclusiveness seems to be
an immediate corollary of the well-known Lemma[26|by Shearer. However, this is not the case. The main
difficulty lies in boundary vectors. Suppose the bigraph is gapless. On the one hand, for a vector on its
boundary, there is an exclusive event set whose union has probability 1, by Lemma [26] These events are
not necessarily cylinders, so we cannot claim the existence of an exclusive cylinder set. On the other
hand, there indeed is a cylinder set whose union has measure 1. Such a cylinder set must be exclusive as
desired, if the union of non-exclusive events always has smaller probability than that of exclusive ones.
But Lemma [26| just claims that the union of non-exclusive events cannot have bigger probability, not
precluding the possibility that the probabilities are equal. Our proof essentially distills down to ruling out
this possibility, as in Lemma

The next lemma will be used in proving Lemma [29] It claims that every individual event in an
exclusive event set contributes to the overall probability.
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Lemma 27. Given an exclusive set A of events, P(U gc 40 A) < P(UacaA) for any A’ < A.

Proof. The proof is by induction on |.A|, the size of A.

Basis: | A| = 1. It trivially holds.

Hypothesis: The lemma whenever |A| < n.

Induction: Consider |A| = n.Let A = {4, ..., A,}, and G = ([n], E) be a dependency graph with
respect to which A is exclusive. For contradiction, suppose that there is B € A such that P(U 4¢ 4\ (5} A) =
P(UaeaA). We try to reach a contradiction. Without loss of generality, assume B = A,,.

Since P(Ujefn—1]4i) = P(Ujen)Ai), we have A, S Ujep—174i- Recall that A is exclusive, so
Ap 0 (VienmyAi) = . As aresult, Ay S Uggprt () Ai, where N7 (n) = N (n) u {n}. Note that A,
and {A; : i ¢ N (n)} are independent, so P(A,) = P(An N Uignr+ () Ai) = P(An)P(Uignrt () Ai),
which implies that P(Ui¢N+(n)Ai) = 1.

Consider the connected components of G after AT (n) has been removed. There must be a compo-
nent I" such that P(u,er A;) = 1, because of two facts. First, event sets on different connected compo-
nents are independent. Second, if the union of independent events has probability 1, at least one of them
has probability 1.

Because the vertex n is isolated from I" and G is connected, there must be some vertex k € A/ (n) that
isadjacentto I'. Let IV = T'uU {k}, G’ be the induced subgraph of G onI”, p’ = p|p, A" = {A; : i e T'}.
Then A’ is exclusive with respect to G’, and P(A’) = p’. Since G’ has less than n vertices, by induction
hypothesis, P(U;errA;) > P(uUier4;) = 1 which is a contrdiction. O

The following corollary means that the probability vector of any exclusive cylinder set must lie in
the interior or on the boundary. It can be regarded as the converse of Lemma [26]

Corollary 28. Given a bigraph H and a vector p on (0, 1], if there is a cylinder set A that is exclusive
with respect to H and (A) = p, then p € Z(G) v 0(G).

Proof. Assume H = ([n],[m],E), A = {A1,..., A}, and p = (p1,...,pn). Consider the vertex
n € L(H), and let B, be the base of A,, that lies in Wa(n), Arbitrarily fix 0 < € < p,. Choose a subset
Bl < B, with u(B},)) = p, — €. Let B! = B,\B,. Define a bigraph H' = ([n + 1],[m], E) such
that N/ (i) = Ny (i) forany i € L(H) < L(H') and Ny:(n + 1) = Ng(n) forn + 1 € L(H').
Let A = {Ay,...,Ap_1, A}, A} where A}, and A/, are the cylinders with bases B;, and B,,,
respectively. It is easy to see that A’ is exclusive with respect to H and p(A’") = (p1, .., Pn—1, Pn — €, €).
By Lemma 27} p(UaearA) < p(UaeaA) < 1, where A” = {Ay, ..., Ap—1, Al }. One can check that
A" is exclusive with respect to H and p(A”) = pe = (p1, ..., pn—1,Pn — €). Hence p. € Z(H). Since €
can be arbitrarily small, we know that p € Z(G) u 0(G). O

The following lemma is key to the proof of Theorem [5] Intuitively, it claims that the overall proba-
bility is maximized by and only by an exclusive set of event. The “by” part was proved in [43, Theorem

1], and the “only by’ part will be proved here. The proof is inspired by that of [43, Theorem 1].

Lemma 29. Suppose that G is a dependency graph of event sets A and B, P(A) = P(B), and B is
exclusive. Then P(U gc 4 A) < P(UpenB), and the equality holds if and only if A is exclusive.

Proof. Shearer proved P(Ugc4A) < P(UpepB) in [43] Theorem 1], so we focus on the other part.
Assume G = ([n], E), A = {A1,..., A}, and P(A) = (p1, ..., pn). Let’s borrow the notation from
the proof of [43, Theorem 1]. For any S < [n], define a(S) = P(nies4;) and B(S) = P(niesB;). We
proceed case by case.
Case 1: 5([n]) > 0. Suppose that A is not exclusive.
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We first prove by induction on | S| that a(S)/3(S) increases with inclusion. The base case holds since
a() = (D) and a(S) = B(S) for any singleton S. For induction, given S; < [n] and j € [n]\S1, let
SQ = Sl ) {]}, T2 = 51 M N(]), and T1 = Sl\TQ. ‘We have

a(S2) alS) _ alS) —pja(Tt)  o(S1) _ piB(Th) [a(Sl) _a(Th)

B(S2)  B(S1) ~ B(S) —piB(T)  B(S1)  B(S1) —pB(T) [B(S1)  B(Th)

The last inequality is by induction, and the first one holds because on the one hand

} > 0. 2)

a(S2) = P(nies,Ai) = P(nies, Ai) — P(Nies, Ai 0 Aj)
= P(njes, A ) IP’(mZeTlA N Aj) +P(nier Ai 0 Aj 0 (Vier, 4i)) 3)
> P(nies, Ai) — P(nier, Ai 0 A j) = a(S1) — pja(Ty),

and on the other hand, 5(S2) = B(S1) — p;jB(T1) due to a similar process like formula (3| and the
assumption that 5 is exclusive. Hence, «(.5)/3(.9) is increasing.

As a special case, choose 4, j € [n] such that j € N (i) and P(4; n A;) > 0. Such a pair of i, j
exists because of the assumption that A is not exclusive. Apply (2) to S1 = {z}, Sy = {i,j}, Tr =
{i}, Ty = . Since the inequality in (3] . ) turns out to be “>", the first inequality in (2)) is also “>". Thus

gg;; > E%lg = 1, which, together with the monotonicity of «(S)/3(.S), implies that E{ }; >1.Asa

result, a([n]) > B([n]).
Case 2: 5([n]) = 0. Assume that P(UaecaA) = P(UpepB) while A is NOT exclusive. We try to

reach a contradiction.
Let Sy = [n]. Since A is NOT exclusive, there is j € [n] such that P(A; N (Usepr(j)4i)) > 0. Let
S1=8\{7}, 71 = Si\WN(j), T2 = Si\T1 = N(j). The property Q1 holds immediately:
Q1: T # & and P(A] N (UieTgAi)) > 0.
Then note that

0= a(82) > a($) —pja(Ty) = 53 (BS) — pra(T3ES)

g&sli(ﬁwl) JB(T1)) = S3B(S2) = 0

where 5(S1) > 0 due to Lemma The first inequality in (4)) is due to . The second follows from

Zﬁgig > ggi), by the monotonicity of % Since both inequalities turns out to be equal, we get the

properties (o, Q3:
Qy: a(s1) _ o(Th)
B(S1) — B(T1)
Qg: P(mieTlAi N Aj N (UieTgAi)) =0.
Consequently, the proof is reduced to proving the following claim.
Claim: For any Sy < [n] and j € S, let S1 = So\{j}, T1 = S1\N(j), T = S1\T3. It is impossible
that the properties 1, @2, 3 hold simultaneously.
Proof of the Claim: The proof is by induction on the size of 7.
Basis: T1 = @ By Qg, 0= P(mieTl Az N Aj N (UiETQAi)) = IP)(A] N (UieTgAi))e which is
contradictory to Q1.
Hypothesis: The claim holds if |77| < t.
Induction: Consider the case where |77 | = ¢. Assume for contradiction that @1, Q2, Q3 hold simul-
taneously.
By Q1, one can choose j' € T such that P(4; n Aj)) > 0
We first show that 77 n N (j') # . This is because if T3 N N (j') = ¢, then

“

\YARRY

—
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by Q3

0 P(niery Ai 0 Aj 0 (Vier, Ai)) = P(niery Ai 0 Aj 0 Ayr)
by T1 N (j )= )
= P(nier, A))P(A; n Aj) > 0 A contradiction!
A byproduct of (5) is that ()3 implies
IP(('\Z‘ETIE M Aj M Aj/) = 0. (6)

Then we prove that P(Ajr N (Ujer, anr(j1)Ai)) > 0. This is due to

P(Aj/ N (UieTlmN(j’)A )

P(Aj 0 (Vier, nn iy Ai) 0 Aj Okery\ W)
P(Aj 0 (YierynnnAi) 0 Aj Okery\ W)
+P((W,L'ET1A¢ N A]’ N A )

P(Aj 0 Ay ckeryw(y Ak)

P(A; 0 A )P(Agery gy Ak) > 0

k)

>
by:@ )

”\ ”\

Now let S = Ty v {j'}, S = Th, 1] = SI\N(J'), Ty = S{\T] = Th n N(j'). We have shown
Q: Ty # Jand P(Aj 0 (VieryAi)) > 0.
Now we show other properties.

On the one hand, 525,3 gg,g = 0 due to four facts: S| = Ty, S) < S, ESg is monotone, and ()
holds. o(S5) (5D (51) (T1) (s B(T7) (59) (1)
a(S) a(Sy)—pa(T] a(Sy) P B(T] a(S])  oTy

One the other hand. §(68 — 55 > S(styra(ry — (50 = B, | 35 — 8| = 0

1
by formula (2). Since both inequalities should be equality, we have a(Sy) = «(S]) — pyra(T7) and

Q3 = 3.
B(Sy) — BT
Applying formula (3)) to .S, the equality o(S5) = «(S7) — pjra(T7) implies
Q5 P(ﬁz‘eT{Az‘ N Ajn (UieTQ’Az’» = 0.

Altogether, the properties Q}, Q%, Q5 remains true for S, 5/, 51,17, Ty.

However, since |T7| < |T1| = t, by the induction hypothesis, the properties Q] , Q%, Q% can’t holds
simultaneously. We reach a contradiction. The Claim is proven. Il

Intuitively, the next lemma shows that any set of events can be reduced proportionally so that the
dependency graph and exclusiveness are preserved and the probability of the union decreases at most
linearly. Basically, in order to reduce an event A, construct cylinders with height 1 whose bases are the
events, respective. Then adjust the height of A-based cylinder to A. Regard the cylinders as new events
and repeat this process until each original event has been handled.

Lemma 30. Given a graph G = ([n], E) and a vector p € (0, 1]", suppose that event set A ~, G and
P(A) = p. Forany X\ € (0,1), there is an event set B ~, G with P(B) = Ap such that

1. If Ais exclusive, so is B;
2. P(Ugesd) — (1 =X) Zie[n] pi < P(UpepB) < P(Uaeqd).

Proof. Assume A = {A1, ..., A,}. Let S() be the probability space from which the events in A come.
Define probability space S (1) = SO x I where I is the unit interval [0, 1] endowed with Lebesgue
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measure. Let A1) be the set of events in S() defined as Agl) = A; x[0, A\] and A,(:) = Ap xIfork # 1.
Let p() = (Ap1,p2, ..., pn). It is easy to see that A ~, G, P(AD) = p(), and P(uie[n]Agl)) >
P(UicpnAi) — (1 = A)p1.

Likewise, we define probability space S = S() x I, and event set A in S@) with Agz) =
Aél) x [0, A] and A,(f) = A,(:) x Ifor k # 2. Let p® = (Ap1, Ap2, p3, ..., pn). We have that A®) ~, G,
P(A®) = p®, and P(U;e[AP)) = P(UgepyAi) — (1 A)(p1 + p2).

Iterate until we get A = (Agn), o A <, G P(A™) = p(™ = Ap, and P(uie[n]A(”)) >

P(UiemAi) — (1 = A) 2ie[n] Pi-
One can check that

1. If A is exclusive, so is A® for any i € [n];
2. P(UgeaA) <P(Usend) forany i e [n].

Let B = A" The proof ends. ]
Now we are ready to present a counterpart of Lemma

Lemma 31. For any graph G = ([n], E) and p € (0, 1)", there is a unique X\ > 0 such that A\p € 0,(G).

Proof. Arbitrarily fix a graph G = ([n], E) and p € (0,1)". Let A = {\ > 0: \p ¢ Z,(G)}.
It is easy to see that

1. If X is so big that an entry of Ap equals 1, P(U4c4A4) = 1 for any event set A ~, G such that
P(A) = 6(\p).

2. If X is so small that [;-norm of Ap is smaller than 1, P(Ugc4A) < 1 for any event set A ~, G
such that P(A) = Ap.

Thus, A is non-empty and its infimum, denoted by A, must be positive. Let q = Agp. In order to show
that q € 0,(G), consider an arbitrary real number € > 0.

On the one hand, because \g = inf A, we have (1 — €)q € Z,(G).

On the other hand, assume for contradiction that (1 + €)q € Z,(G). By Lemma 26, we can choose
an exclusive event set A ~, G such that P(A) = (1 + €)q and P(UseqA) < 1. By Lemma
for any 0 < 0 < 1, there is an exclusive event set As ~, G such that P(As) = d(1 + €)q and
P(Uaea;A) < P(UgenA) < 1. By Lemma P(UgeqA) < 1 for any event set A ~, G with
P(A) = §(1 + €)q, so (1 + €)q € Z,(G), which means 6(1 + €)\g ¢ A. Since 0 ranges over (0, 1), we
have (0, (1 + €)A\g) N A = ¢, contradictory to the fact that Ay = inf A. As aresult, (1 + €)q ¢ Z,(G).

Altogether, \op € 0,(G). The uniqueness immediately follows from the definition of abstract bound-
ary vectors. ]

Now we are ready to prove the main theorem of this section.

Theorem 5. Given a bigraph H and a vector p of positive reals, the following three conditions are
equivalent:

1. For any X\ such that \p € Z(H), there is an exclusive variable-generated event system A with
event-variable graph H and probability vector \p.
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2. For the )\ such that \p € 0(H), there is an exclusive variable-generated event system A with
event-variable graph H and probability vector \p.

3. H is gapless in the direction of p.

Proof. (I]={3): Arbitrarily fix A > O such thatq = Ap € Z(H). Let A ~ H be an exclusive cylinder set
such that ;1(A) = q and (U geaA) < 1. It also holds that A is exclusive with respect to the base graph
Gp. Since p1(UacaA) < 1, by Lemma9] p(upepB) < 1 for any event set B ~, Gy with P(B) = q.
As aresult, q € Z,(H). Altogether, H is gapless in the direction of p.

={ 2): Assume that H is gapless in the direction of p. Let A be such that g = A\p € d(H). By
Theorem [15] there is a cylinder set A ~ H such that u(A) = q and p(Ue44) = 1. On the other
hand, q € d,(H ) due to the assumption that H is gapless in the direction of p. By Lernma there is an
exclusive event set B ~, G such that ;(B) = q and P(UpegB) = 1. Because A also conforms with
Gp and P(UpepB) = P(UgeqA) = 1, by Lemma A must be exclusive with respect to G g7, hence
exclusive with respect to H.

={ 1)): Arbitrarily fix A > 0 such that q = A\p € Z(H). Let § > 1 be such that 6Ap € J(H).
Arbitrarily choose an exclusive cylinder set A ~ H which satisfies (. A) = dAp. Let A = {Aq, ..., Ap}.
For each i € L(H), there is a base B; of A; such that dim(B;) = Ny (). Arbitrarily choose a subset
B! ¢ B; with u(B}) = u(B;)/0. Let A" = {A], ..., A} where each A is the cylinder with base B.. It
is easy to check that A’ ~ H, u(A’) = q, and A’ is exclusive. O

The significance of Theorem [5]lies in that it enables to decide whether a gap exists without checking
Shearer’s bound.

Remark 4. Given a bigraph H = ([n],[m], E) and a vector p € (0,1)", consider three real numbers
that are of special interest. \1, Ao are such that \yp € 0(H) and \ap € 0o(Gpr), respectively. A3 is the
maximum X\ such that there is an exclusive cylinder set A ~ H with i(A) = Ap. It is not difficult to see
that Ay = Ao = A3. An equivalent form of Theorem |5\ is that the three numbers are either all equal or
pairwise different.

5.2 Reduction Rules

Given a bigraph H, we define the following 5 types of operations on H.
1. Delete-Variable: Delete a vertex j € R(H) with |JNV(j)| < 1, and remove the incident edge if any.

2. Duplicate-Event: Given a vertex i € L(H), add a vertex i’ to L(H ), and add edges incident to ¢’
so that N/ (i) = N (q).

3. Duplicate-Variable: Given a vertex j € R(H), add a vertex j’ to R(H), and add some edges
incident to j’ so that N'(j") < N (j).

4. Delete-Edge: Delete an edge from E provided that the base graph remains unchanged.
5. Delete-Event: Delete a vertex ¢ € L(H ), and remove all the incident edges.

We also define the inverses of the above operations. The inverse of an operation O is the operation O’
such that for any H, O'(O(H)) = O(O'(H)) = H.
The next theorems show how these operations influence the existence of gaps.
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Theorem 32. A bigraph H is gapful, if and only if it is gapful after applying Delete-Variable, Duplicate-
Event, Duplicate-Variable, or their inverse operations.

Proof. (Delete-Variable): It is trivial.

(Duplicate-Event): Without loss of generality, assume that the vertex n + 1 is added to L(H) and
N(n+1)=N(n). Let H = ([n + 1], [m], E’) be the resulting bigraph.

On the one hand, suppose that H is gapless. Arbitrarily choose p’. Let p = (p, ..., D}, _1, D}, + P s1)-
From Lemma we have there exists a unique A > 0 such that Ap € 0(H ). From Theorem we have
there is a exclusive cylinder set A = {41, ..., A, } in I" such that A conforms with H and p(A) = Ap.
Partition the base of cylinder A,, such that the resulting disjoint cylinders A;, and A7, . ; satisfy p1(A;,) =
Aoy, (A1) = Aph g Let A" = {Ay,..., A1, A}, A7, }. One can check that A’ is exclusive with
respective to with H', u(A’) = Ap’, and p(U 4c 4 A) = 1. This means that H' is gapless, by Theorem [3]

On the other hand, suppose that H' is gapless. Arbitrarily choose p. Let p’ = (p1, ..., Pn—1,P}1s Py 41)
such that p), + p/, .| = py. From Lemma we have there exists a unique A > 0 such that A\p’ € d(H’).
From Theorem |5, we have there is a exclusive cylinder set A" = {A', ..., A}, A}, ;} in I such that
A’ conforms with H' and u(A’) = Ap’. By Lemma|[14] it is easy to see that u(A}, N A;,, ;) = 0. Let
A= {A],.., A}, U A}, ;}. One can check that A is exclusive with respective to with H, u(A) = Ap,
and p(Uae4A) = 1. This means that H is gapless, by Theorem [3]

(Duplicate-Variable): Without loss of generality, assume that the vertex m + 1 is added to R(H ) and
N(m +1) € N(m). Let H = ([n],[m + 1], E’) be the resulting bigraph. Since G = Gy, we only
have to show 0(H) = 0(H'). Arbitrarily fix p € (0,1)". Suppose A\p € 0(H) and N'p € 0(H').

Since Ap € 0(H), there is a cylinder set A = {Aq,..., A,} in I" such that A ~ H, u(A) = Ap,
and 1(UjepnAi) = 1. For any i € [n], define A} = A; x Tim+1} Let A’ = {A], ..., A"}. We have A’
conforms with H', u(A’) = Ap, and p(Ujen)47) = 1, so X' < .

On the other hand, since N'p € 0(H'), there is a discrete cylinder set A’ = {4}, ..., A"} in I™*!
such that A’ conforms with H', u(A") = N'p, and p(Ujef,A;) = 1. By discreteness, one can partition
I{tmm+1} jnto disjoint rectangles Ay, ..., Ax such that for each i € [n], there are sets A;, < I for
k € [K] satisfying A} = Uper)Air X Ag. Foreach i € L(H)\N (m), since {m, m + 1} n N(i) = &,
Ajj, does not depend on k, and is denoted by B;. Since 11(Uje[n)4;) = 1, we have p( e Ain) = 1
for any k. Now partition 11"} into disjoint intervals T'y, ..., T'x with (I';) = p(A}) for each k. Define
A ={Ay, ..., A} inT" such that A; = Upeg)Aix x T fori e N(m) and A; = B; x I™ = Aj fori e
L(H)\N (m). Itis straightforward to check that .A conforms with H, ji(A) = N'p, and pu(Ujepn) 4i) = 1.
Hence, A < V.

As aresult, )(H) = 0(H'). Recall that Gy = G/, so H is gapful if and only if so is H’. ]

Theorem 33. A gapless bigraph remains gapless after applying Delete-Event or the inverse of Delete-
Edge.

Theorem 34. A gapful bigraph remains gapful after applying Delete-Edge or the inverse of Delete-
Event.

The proofs of the above two theorems are similar to that of Theorem 32] so they are omitted.
Because the operations can be pipelined, applying them in combination may produce interesting
results. The following corollaries are some examples.

Definition 10 (Combinatorial bigraph). Given two positive integers m < n, let Hy, , = ([(})], [n], Enm)

where (i,j) € Ey n, if and only if j is in the m-sized subset of [n] represented by i. H,, ,, is called the
(n, m)-combinatorial bigraph.
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Corollary 35. If H,, ., is gapless, then so is Hy . m+c for any integer ¢ > 1.

Proof. We only need to prove for ¢ = 1.

First, apply Delete-Edge to Hy,41,m+1 as follows. For each vertex i in [(21])], if (i,n + 1) €
Epi1,m+1, delete (i,n + 1). Otherwise, delete an arbitrary edge of 1.

Then, apply Delete-Variable to the bigraph, i.e., delete the vertex n + 1.

Finally, apply the inverse operation of Duplicate-Event to the bigraph.

For any m-set S < [n], suppose the set S U {n + 1} is represented by i € [(2"})]. After applying
Delete-Edge to ¢, the neighborhood of 7 is exactly S. This means that the final bigraph is exactly H,, ;.
Because H),, ,, is gapless, from Theorem@and Theorem@ we have that H,, 11 ,,+1 1s also gapless. []

Corollary 36. If H,, ., is gapful, then for any integer ¢ = 1, Hcp e is also gapful.

Proof. We apply operations to Hy, ¢, in two steps.

First, apply Delete-Event to Hcy, ¢, Given an m-set S < [n], define f(S) = uUes{ki : k € [c]}.
Delete all vertices from L(Hcy cm) except those representing f(.S) for some S < [n]. Let H' be the
resulting bigraph.

Second, apply the inverse operation of Duplicate-Variable to H’. It is easy to see that for any
kij,kej € R(H') with k1,ks € [c] and j € [n], Ny (k1j) = Npg/(kaj). Hence, we delete all ver-
tices in R(H')\[n] from R(H’), preserving gapful/gapless.

It is easy to verify that the final bigraph is exactly H,, ,,. Because H,, ,, is gapful, from Theorem
and Theorem @ we have that H, ¢, is also gapful. O

Definition 11 (Sparsified bigraphs). A bigraph H' = ([n'],[m/], E') is called a sparsification of H =
([n], [m], E) if [n'] = [n],[m'] € [m], E' < E and their base graphs are the same.

By Theorem[32]and Theorem[33] we know that if H is gapful, all sparsifications of H must be gapful.
Applying Corollary [36] we get the following result.

Corollary 37. If H,, ,,, is gapful, all sparsifications of Hy, cm are also gapful for any integer ¢ > 1.

6 Relationship between gaps and cycles

In this section, we show that a bigraph has a gap is almost equivalent to that its base graph has an cycle.
The only case that is not completely known is when the bigraph does not contain any cyclic bigraph but
its base graph has a 3-clique. Many examples in this case is gapless, but we find one that turns out to be
gapful.

We also study gaps from a dependency-graph-oriented perspective. Namely, a dependency graph is
a-gapful if at least one corresponding bigraph is gapful, while is strongly a-gapful if all corresponding
bigraphs are gapful. Intuitively speaking, the two concepts serve as a lower bound and an upper bound
of the notion of gapfulness. Characterization of strongly a-gapful graphs was initiated by Kolipaka et al.
[28] and has been open for 6 years.

6.1 Gaps are not equivalent to cycles

First of all, we prove that any treelike bigraph is gapless. Recall that a bigraph is called treelike if its base
graph is a tree. Basically, for a vector on boundary, we construct an exclusive cylinder set, which leads
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to the result by Theorem [5] To ensure exclusiveness, the unit interval in each dimension is divided into
two disjoint parts, each of which is assigned to one of the two cylinders depending on this dimension.
The construction is feasible because the base graph is a tree.

Theorem 6. Treelike bigraphs are gapless.

Proof. Arbitrarily choose a treelike bigraph H = ([n + 1],[m], E). Since the case where n = 1 is
trivial, we just consider n > 1. G is a tree means that any vertex in R(H ) has at most two neighbors in
H . Hence, by Theorem it does not lose generality to assume that: 1. any vertex in R(H ) has exactly
two neighbors in H, and 2. any two vertices in L(H) have no more than one common neighbor in H.
Since G g is a tree, one has m = n.

Let p € (0,1)"*! be a boundary vector of H. We will construct a set A of cylinders A1, ..., A, 11
I'™ = I" such that 1(A) = p and A conforms with H. Recall that for any j € [n], X; is the coordinate
variable of the j-th dimension of I".

We regard Gy as a tree rooted at the vertex n + 1. For any vertex i € [n + 1], let C(¢) be the set of
children of 7. Without loss of generality, for any & € C(7), assume that N7 (k) n Ny (i) = {k}, which
means that both A; and A; depend on Xj.

Define q = (q1, ..., qn) € R™ to be

) pi if vertex ¢ is a leaf of G o
%= pi/ erC(z)(l - Qk) otherwise

Claim: q € (0,1)".

Proof of the Claim: Suppose for contradiction that there is i € [n] such that ¢; ¢ (0, 1). Fix such an
i each of whose descendant k satisfies g, € (0, 1). By the definition of q, we must have ¢; > 1.

Let T; be the subtree of Gy rooted at i. For each k € [n + 1], if k is not a vertex of 7T}, define A; =
& < I'". When k is in T, construct a cylinder Aj < I" which consists of all the vectors (z1, x2, ..., Zr,)
such that

0<ar <qx if k is a leaf of T}
q <z < 1,VleC(i) ifk=14
0<zp <qpq <z <1,VieC(k) otherwise

Define vector p’ = (p}, ..., P, ) such that

[Treciy(L—ar) ifk =i
P =1 Dk if kisinT; and k # 1
0 otherwise

Then the cylinder set A" = {4} |k € [n + 1]} conforms with H, and p(A’) = p’ < p.

Now we prove that Uep,11)4), = I". Arbitrarily fix x = (21, ..., z,) € I".

Let [ = . Then, if there is k € C(l) such that 0 < xj, < g, let I be such a k. Iterate this process and
finally one of the following two cases must be reached.

Case 1: C(I) = J, namely [ is a leaf.

Case 2: C(l) # ¢ and g < xp < 1forany k € C(1).

Let the final [ be lp. We can see that x € A} if [y = i. Otherwise, the iteration guarantees that
0 < m, < g, S0 it also holds that x € A . To sum, we always have x € Aj , which implies that
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Ukeln+1] A} = T". Considering that p € d(H) and p > p’, we reach a contradiction due to Lemma
The Claim is proven.

Then we can construct cylinders Ay, ..., A,+1 < [" as follows. For any i € [n + 1], A; < I" consists
of all the vectors (z1, 2, ..., Z,,) such that

0<x; <q if 7 is a leaf of Gy
qk<xk<1,VkEC(i) ifi=n+1
0<m <q,qr <xp <1,VkeC(i) otherwise

Define p’ = (p1, ..., Pn, P}, 1) Where pf, | = erC(n+1)(1 — qi). It is easy to observe three facts.

First, A = {A;|i € [n + 1]} is exclusive and conforms with H.

Second, p(A) = p'.

Third, Uje[n41]4i = 1", which follows from the proof of Uy, +1]A2; = I" in the above Claim.

Since p € d(H ), we have p’ > p. Arbitrarily choose A7, . | < Ay, 11 such that: 1. A” | only depends
on X;’s with i € C(n + 1), and 2. p(A, ;) = pnt1. Let A” = {Ay,..., A,, A7 }. We know that
p(A”) = p and A” is exclusive with respect to H. Because p € d(H), by Theorem[5] H is gapless in
the direction of p. L]

Using of the constructed cylinders, we obtain a system of equations whose solution determines the
boundary of a treelike bigraph.

Corollary 38. Given a bigraph H = ([n],|m], E) such that G is a tree, appoint the vertex n as the
root of Gg. For any p € (0,1)", Ap € 0(H) if and only if \ is the minimum positive solution to the
equation system: q; = \p; if vertex i is a leaf of G, ¢i = \pi/ | 11 is a enita ori(1 — Q&) if © # n and is not
a leaf, and Apy,, = Hk’ isachildofn(l - Qk’)'

Proof. This immediately follows from the construction of A in the proof of Theorem [6] ]

Now we show that cyclic bigraphs are gapful. Though in principle this can be shown by a combination
of [43] Theorem 1] and the results in Section4] it is tough since both Shearer’s inequality system and the
high degree polynomial in Theorem [ are hard to solve. Hence we do it in another way. Specifically, for
the vector q = (% + €y % + €) where € > 0 is small enough, we show two facts. First, the vector q lies
in the interior of the cyclic bigraph. Second, q does not allow any exclusive cylinder set. By Theorem [5}
these facts immediately imply Theorem 7]

Theorem 7. Cyclic bigraphs are gapful.

Proof. It is enough to consider the canonical n-cyclic bigraphs H,, = ([n],[n], E,) where E, =
{(i,1), (4, (i + 1)(mod n)) : i € [n]}. Again for convenience of presentation, “(mod n)” will be omitted
when it is clear from the context. Arbitrarily fix n.

Forany i € [n],let 4; = {(21,...,%n) : 3 < 2; < 1,0 < 341 < 3}. Let A = {Ay, ..., A,}, and

p= (i, vy %) € (0,1)™. It is straightforward to check that A is exclusive with respect to H,,, u(.A) = p,

and p(Ujep,Ai) < 1. Arbitrarily choose 0 < € < %(1 — (Ve Ai))- Let q = (i + €, ...,i +€) €
(0,1)™. Then we prove two claims.

Claim 1: q € Z(H,,).

Assume for contradiction that there is a cylinder set B = {Bi, ..., B,} ~ H, such that u(B) = q
and P(Uje[,) Bi) = 1. For each i € [n], arbitrarily choose a cylinder Bj such that B; < B;, u(B;) = 1/4,
and B] only depends on X; and X, ;. Let B’ = {B], ..., B, }. We have that B’ conforms with H,, and
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w(B') = p. On the one hand, p( Ve B;) = 1 — ne > p(Ujefn)Ai). On the other hand, since A is
exclusive, by Lemma 1(Uiepn] Bi) < p(Uiepn)Ai). We reach a contradiction, so Claim 1 holds.

Claim 2: For any cylinder set B ~ H,, with u(B) = q, B is not exclusive.

Arbitrarily fix a cylinder set B = {By, ..., B,} ~ H, with u(B) = q. For each i € [n], let B;
14i+1} pe a base of B;, and choose the minimum subsets Al < I3 and A,y < IUFY such that
((BA(AL x Ag1)) = 0. Let 2 = p(Aq), @, = u(A}). Then pu(B;\(A} x Aj41)) = 0 implies that
ThTip1 = 1(B;) = u(B;) > 1. Hence, [T, (z;2) > 4. There must be some i € [n] such that z;2} >
%, which in turn means that x; + =} > 1. As aresult, u(A; n Al) > 0, implying that p(B;—1 n B;) > 0.
Claim 2 holds.

Altogether, by Theorem [5| H,, is gapful. O

By Theorem[7} we can get a large class of gapful bigraphs.

Definition 12 (Containing). We say that a bigraph H contains another bigraph H', if there are injec-
tions 7y, : L(H') — L(H) and nr : R(H') — R(H) such that the following two conditions hold
simultaneously:

1. Foranyi€ L(H')and j € R(H'), r(j) € Nu(nr(i)) if and only if j € Ny (7).
2. Forany j € R(H)\rg(R(H')), j ¢ Nu(nr(i)) n Ny (7 (k)) for any i,k € L(H').

Intuively, H contains H' means that H' can be embedded in H without incurring extra dependency.
By Theorem [32| and Theorem a bigraph H is gapful if it contains a gapful one. According to
Theorem[7] we obtain the following result.

Corollary 39. Any bigraph containing a cyclic one is gapful.
Based on Theorem [6]and Corollary [39] it is natural to have the following conjecture:
Conjecture 1 (Gap conjecture). A bigraph is gapful if and only if it contains a cyclic bigraph.

We have already known that the sufficiency does hold. As to the necessity, assume that the bigraph
H does not contain any cyclic one. We analyze case by case.

Case 1: the base graph is a tree. By Theorem|[6] H is gapless, as desired.

Case 2: the base graph has cycles. Since H does not contain a cyclic bigraph, its base graph does not
have induced cycles longer than three. As a result, solving the conjecture is equivalent to answering the
following question (): Is a bigraph gapless if it does not contain any cyclic one but its base graph
has 3-cliques?

First have look at a simple example of bigraph H = ([3], [1], E) with E' = [3] x [1]. It satisfies the
condition of question Q. One can easily check that d(H) = {(p1,p2,p3) : p1 +p2+Dp3 = 1} = 0,(Gg).
So, H is gapless.

For more evidence, recall H,, ,, the (n, m)-combinatorial bigraph. As a special case, H3 5 is the
canonical 3-cyclic bigraph H3. Generally, we have the following observations:

First, m = 1: Only sets of independent events can conform with H,, ,.

Second, 2 < m < %n: H,, ,,, contains 3-cyclic bigraphs, so it is gapful.

Third, m > %n: H,, ,,, does not contain cyclic bigraphs, but the base graph have 3-cliques since it is
a complete graph. We mainly consider bigraphs in this category.

Theorem 40. H, 3 is gapless.
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Proof. By [43| Theorem 1], p € 0,(H43) if and only if Zf:lpi = 1. Arbitrarily fix p € 0q(Hay3).
Without loss of generality, assume that p; > p;+1, forany 1 < ¢ < 3. Then py < i, p3 < %, p1 = i

We construct four cylinders in the unit 4-cube. Let the four dimensions be X7, Xo, X3, X4. Specifi-
cally, define the cylinders as follows:

As: Xy > %,Xl < 2ps.

Ag: Xy < 5, X0 < 2pa.

Alli (X4 < %,XQ > 2py, X7 < 2p3) or (X4 > %,X2 < 2pyg, X1 > 2p3).

One can see that p(A4)) = ps +ps—4pspy. Furthermore, if p3 > i, P3+ps—A4p3ps < Pp3+ps—ps =
p3 < p1. When ps < 1., ps + ps — 4psps = p3 + (1 — 4p3)ps < ps + (1 —4dps) = 1 < p1. We always
have that u(A}) < p1.

Arbitrarily choose a set S 1112} in the area X1 > 2p3, X9 > 2py such that u(S) = p1 + 4dpsps —
p3 — pa. Let S’ be the cylinder with base S.

Define A; = A} U S and Ay = A; U A3z U Ay. Tt is easy to see that u(A;) = p; for 1 < i < 4.
The bases B; of A;, 1 < i < 4, can be chosen such that dim(B;) = {1,2,4}, dim(B2) = {1,2,3},
dim(B3) = {1, 3,4}, dim(By) = {2, 3,4}. L]

Theorem 40} together with Corollary [35] immediately implies the following result.

Corollary 41. Forn > 4, H,, ,,1 is gapless.

Actually, Corollary @ can be generalized to H,, ,,_, for any fixed m and large enough n, as shown
in Theorem

Definition 13 (Upper combinatorial bigraph). Given positive integers m < n, let Ty = Y5, ()
Then each k € [T, ] naturally represents a set in [n] that has size at least m. Define bigraph Hi m =
([Tnm], [n), E7 ) where (i, j) € E7,,, if and only if j is in the set represented by i. H . is called the
upper (n, m)-combinatorial bigraph.

Theoremis proved by construction. Basically, given a boundary vector p of H,, ,,_,, we identify
a small number of dimensions, partition the unit cube C spanned by these dimensions into (:;L) parts, and
use each part as the base to construct a cylinder in I". Essentially this means projecting all cylinders to
a low-dimensional cube. For this end, we first show that when n is big enough, there are 10 dimensions
such that any cylinder independent of at least one of these dimensions has very small probability. Then
Lemma[25]ensures that the bases of these cylinders can be chosen as exclusive. Finally, the other cylinders
are obtained by partitioning the part of C that has not yet been covered. Altogether, we get an exclusive
set of cylinders whose measure vector is p.

Theorem 42. For any constant m, when n is large enough, Hy, ,,_, is gapless.

Proof. We just consider m = 2, since the method can be easily generalized to other m.

Apply Lemma [25(to H1>0,8’ and we getan € > 0. Let K = %, n=10K,N = (;fb) Arbitrarily fix a
vector p € (0,1) with Zie[ N Pi = 1. Let f be an arbitrary bijective function which maps unordered
pairs on [n] to N.

Arbitrarily partition the set [n] into K disjoint groups with each containing 10 elements.

Arbitrarily fix a group 7'. For any 9-subset S of T with {i} = T'\S, define g5 = > ;47 Py(; ;). For any
8-subset S of T" with {4, j} = T'\S, define g5 = py(; ;). The vector consisting of all these gg is denoted
by q”'. The I; norm of q” is denoted by v7.

We claim that there is a 7" such that all entries of q” are at most €. If it is not the case, v > ¢ for all

T,s0 Y, pvr = Ke > 2. However, Y, vr < 22,y Pi = 2. Hence, the claim is true.
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Choose such a 7. By the choice of ¢, there is an exclusive cylinder set B3 in the unit cube I7 that
conforms with 12078 and satisfies ;1(B) = ¢”. For any 8- or 9-subset S — T, let Bg denote the cylinder
in BB that corresponds to S.

For each 8-subset S = T'\{4, j}, rename Bg as By, j).

For each 9-subset S < T with {i} = T'\S, divide the cylinder Bg into 10(K — 1) disjoint cylinders
By i,j), for each j ¢ T'. These Bj(; j) can be chosen so that they only depend on those X}, with k € S.

Arbitrarily partition I7\(UpepB) into (";10) disjoint sets, denoted by By(; ;) where i # j and
i,j ¢ T. These By(; j) can be chosen such that p(By(; ;) = ps(i,j)-

For each of the above By ; ;), define a cylinder Ay(; ;) = By(; ;) X I"NT Let A = {Ay, ..., Ax}. It
is straightforward to check that 4 is exclusive with respect to Hy, ;,— ., f1(A) = p, and P(U e 4 A) = 1.

As aresult, H,, ,,_o is gapless. ]

In spite of so much confirmative evidence, the general answer to the question () turns out to be NO!
The following bigraph is an example where gap is not caused by containing cyclic bigraphs. Specifically,
it is the bigraph H* = ([5], [5], E) with E = ({1} x {1,4,5}) u ({2} x {2,4,5}) u ({3} x {3,4,5}) U
({4} x {1,2,3,4}) u ({6} x {1,2,3,5}).

Theorem 43. H* is gapful.

Proof. The base graph G 7+ is complete, so d,(H*) = {p € (0,1)° : p; + ... + p5 = 1}. Arbitrarily fix
p € 0,(H™) with py = p5 = p where p is a constant.

Suppose A = {Aji,..., A5} is a set of cylinders in I° which is exclusive with respect to H* and
satisfies 11(A) = p. Let the coordinate variables of I° be X7, X», ..., X5. Since A is exclusive and
p € 0o(H™), we know that P(U4e4A4) = 1 due to Lemma 29| By Theorem [15| further suppose that
A is d-discrete in every dimension, where d is a positive integer. Namely, the unit interval I}, for any

[ € R(H*), is partitioned into d disjoint subintervals denoted by Al{l},i € [d]. For any pair of integers
i,j € [d] andaset A < I°, let ﬁfj denote the set A N (AZ{“ X Af} X 1[3) ; When A lies in the o-algebra

of A, there must be a set in I%, denoted by 7/}, such that 7, = (Af} X A;B} X 7'{2). Aset B C IPis
said to have e-type if ju(B) = 0, f-type if u(B) = 1, ori-type if B = B x IBI\M# for some B < 14
with 0 < (B < 1, for i € [3]. Let T be the set of the five types. For notational simplicity, let Ay 5
stand for A4 U As.

For any i, j € [d], we observe the following facts.
Fact 1: For any k € [3], Tfj’“ have either e-type, f-type, or k-type.

Fact 2: There is at most one k € [3] such that Tfj’“ does not have e-type. This follows from the exclu-

siveness of .4 and the property that for any k& # £’ € [3], ,u(TA’“

Ak’ . . Ak
0 ) # 0if neither 7, nor

Ay
7,; have e-type.

Fact 3: TZ»A]-4’5 must have one of the five types in 7. It follows from Fact 2, the exclusiveness of .4, and
the property that 7';4]4’5 Uke[3] T{é’“ =I3.

Fact 4: Given k € [3], if T,fj4’5 has k-type, so does Tfj".

Ay
We now focus on 7; ; ** and proceed case by case.
i
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Case 1: There is an ig € [d] such that 7, A45 has e-type for any j € [d]. Because TzA‘;‘r’ = 71?4] V) 71?5],

/L(TZO %) = Oforany j € [d]. Recalhng that A5 is independent of X, yu( lAJ ) = 0foranyi,j e [d].
Hence, 11(As) = 0, contradictary to the choice of p. Symmetrically, we also reach a contradiction

if there is jo € [d] such that 7',;2-:5 has e-type for any i € [d].

Case 2: There exist i, i1, jo, j1 € [d] such that 7' has e-type while both 7' 07 and s At . have other
types. Without loss of generality, we assume that o =1,j0 =1, Tf j s has e-type 1f and only if

1<y <j1,and7- 7 has e-type if and only if 1 <4 < iy.
Ay

Since Ay is independent of X5 and As is independent of X4, A4 = T and 7‘ j = Ty 45 for
gy . Ay " As A As

any 4,4, j,7" € [d]. Hence, for any i,j € [d], we have T” = 7'”4 Ty A: i1 Vv T, and

wu( 2’414 N 7'1’4 3 ) = 0 since A4 and Aj are disjoint. In addition, for any i € [d], T = £4 V) TzAl =

1’414 v 7'{4 1, s0 T,ﬁ and T 1 have the same type and p(7; A, ) = ,u( 1'). Symmetrically, for any
jeld], TlAJ and 75 ; As have the same type and ,LL(TlAj ) = /1,(7'{4]5)
Now consider any i > i; and j > j;. Since (77" i)+ ,u(rlj) = u(T A45)

M(Tﬁ4’5) > (0 and u(rf ]45) > () implies that TA and TlA are neither e-type nor f-type. Assume

< 1, the assumption

that TA4’5 is 1- type and 7'1 ® is 2-type. Then 7"41 is 1-type and 7'1 2 is 2-type, contradictory to the
property that z(7:: T J) = 0.

As a result, without loss of generahty, assume that T 1 and i 43 have 1- -type for any ¢ > 4; and

Ay As

J = 71. Since s il Y 7'1 30T ° have either 1 type or f-typeifi > ¢y or j = j;. By Fact

i.j
2 and Fact 4, both TA2 and 7/ 3 have e-type when ¢ > i1 or j > jj. Therefore, u(As) + pu(As) <

(1 — p(AM)) (1 - (A{5})), where A4} — UilgiSdA,L{él} and A} = UjlgjgdA§5}. We first
prove Claim 1:

Claim 1: (1 — p(AM))(1 — u(ABH) < (1 —2p)2

Proof of the claim: Let r; = ,u(A4mA;‘4} x TN 7, ,u( )8 = M(Ag,mA{ }><]I4) i =
p(r?) ford, j € [d]. We have p = Yo, 7i = Zi%de[d] Tij = Disp 55 = Dicld] i S
Because Ay is independent of X, it holds that r; ; = ri,u,(Af}), SO X <jed iy = rip(APY)
and Zilgisd,jlsjgd Tij = pu(A{E’}). Likewise, we have Zilgigd,jlgjgd i = p,u(A{‘l}).

On the other hand, since A4 and Aj; are disjoint, r; ; + s;; < (A{4}) (A{5}) forany i < i <
d, j1 < j < d, which implies that 3}, _;y . <icq(rij + sij) < p(A™H)p (A{5}).

Hence, (AU u(ABY) = p(u(A™) + w(APH) = 2p4/u(AH) u(ABY), which in turn means
that /(A1) (A5 > 2p. We further have

(1= (AW (1= p(AP)) = 1= (u(AM) + p(AB)) + p(AH (AP
1= 24/ (AU (AB) + p(Alh (A

(1= H(AH)(ABH)? < (1 - 20)2.

N

Claim 1 is proven.
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By Claim 1, one has ;(A4z2) + u(A3) < (1 — 2p)?. Since A is exclusive, it holds that (A1) =
1= Yocres M(AR) = 1= (1= 2p)* = 2p = 2p — 4p*.

Case 3: There is k € [3] such that T j ° is neither e-type nor k-type for any i, j € [d]. Suppose k = 1
satlsﬁes the condition. Then, for any 7, j € [d], among the candidate e-type, f-type, or 1-type of

T; ] , the only possibility is e-type. Hence p(A;) = 0, which is a contradiction.

Case 4: TA is not e-type for any 4, j € [d], and for each k € [3], there are 4, j € [d] such that TZ ]
has k type
Claim 2: There are i, jo,j1 € [d] and k; # ko € [3] such that T;: % has ky-type and 7 Ass ° has
ko-type, or there are g, i1, jo € [d] and k1 # ko € [3] such that T;;l ' has k;-type and 7; 4 ; ” has
ka-type.
Proof of the claim: Suppose for contradiction that Claim 2 does not hold in Case 4. There must be

00,71, jo, j1 € [d] and ky # ko € [3] such that 7;_ Aas ? has ki-type, 7, ® has ko-type, and both T

741 jl Zl .]0
. 5 A
and Tlo“jf have k3- type or f- type Without loss of generahty, assume that both 7, 4]0 and 7; "’ have
f-type. and both 7 and T,LO A ® has f-type. Note that for any 4,7, j, j' € [d],
A A
T, = 7 u7’A5u7”,44,u7",45,—TA%u7",45u7”,44u7A5
J i\ Tij i i, i\ i.j R 8)
_ A5 Ay Ayq As Ags 4,5
= T,]UTZ/JUTZJ,UTZ] _TZ/] UTi,j/ .
Hence 74 U747 = 7745 745 Namely, an f-type set equals the union of a k1 -type set and a
0,J0 21,J1 11,70 0,71 > A 1=
ka-type set, which is impossible. The cases where 7 1o > and TZO h > have other types can be proved
similarly.

Claim 2 is proven.

By Claim 2, without loss of generality, assume that 7'1 1'° has 1-type and 7'1 2 ® has 2-type.

Claim 3: For any i, j € [d], 7; ;"* and 7, ; A45 have the same type in 7T'.

J
Proof of the claim: We first show that for any i, j € [d], if 1, A45 4oes not have 3- -type, T A ° can’t
have 3-type. Suppose for contradiction that there are i,j € [d] such that T 445 hag 3—type while

A A A Ay,
7'145d0esn0t If7'145has1type byformula 7'145C7-1]45u Tig | =Tio UT, ", meaning

that a 1-type set is 1ns1de the union of a 2-type set and 3-type set, which is impossible. Likewise,
we also reach a contradiction if 7{4 ]4’5 has 2-type or f-type. As aresult, under the condition of Case
4, there must be j € [d] such that 7'1 ] +° has 3-type. Without loss of generality, assume that 7'1
has 3-type.

Now for contradiction, suppose that there is i, j € [d] such that T ° and 1, A45 have different types

. A A A A A

in T If 77 ;° has 1-type and 7; ;*° has 2-type, by 7| ;’5 cnytuT 34 P =737 Ut ", we again
Ay, A

reach a contradiction. L1kew1se there is a contradiction whenever 7; ird ® and T 45 have different

types.

Claim 3 is proven.
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Table 1: Instances of gapful/gapless bigraphs

Gapful Gapless
H* H,, ,,_. for large n
Sparsifications of Hr 5. Hy g forn >4
cyclic bigraphs treelike bigraphs
We further show that for any 4,5 € [d], TZ@‘"S = Tf ]4’5 To see this, again use formula @ Take
j=1lasan example For anyi # 1, we have Tf‘l v, 7'5424 o = 7'1A§ v TAI . Since Tfll and 7, A45
have 1-type while Ti 5° and 7'1 2 >° have 2-type, the equality holds only if both 7' {4 P and
A4 5 A4 5
Ti2 T2 -

As aresult, A4 U As is independent of X4. This, together with the fact that Ay is independent of
X4, implies that A4 is independent of Xj.

Furthermore, for each j € [d] such that 7'{4 +° has 1-type, 7'-AA4"5 also has 1-type for any ¢ € [d], so

A Ay,
TIL; = 113\7' ]4 . Since 7; ird ® is independent of i, so is 7"? Consequently, As is independent of

X,. Likewise, both A; and As are also independent of X}.
Altogether, in Case 4, all cylinders are independent of X}.

The case study above indicates that only Case 2 and Case 4 are possible.

Now consider the probability vector p = (3 —2¢,2 —2¢,2—2¢, L +¢, £ +€) € 0, (H*), where € > 0
is constant to be determined. Arbitrarily choose an exclusive cylinder set A = {A1, ..., A5} ~ H* such
that ;1(A) = p. Because p; < 2py — 4]9?l when e is small enough, only Case 4 is possible for p. Assume
that these events are independent of X,. We can choose B; < I[85} By < 125} By < 135 B, <
H{1’2’3}, Bs c 11:23,5} a4 bases of Ay, ..., As, respectively. Choose the minimum sets 'y, ['9, I's < 15}
and A; < I%% for i € [3] such that pu(B;\(I'; x A;)) = 0 for i € [3]. Since the cylinder set A is exclusive,
u(; nTy) = 0foranyi,j € [3]. Lety; = pu(I';), \s = pu(A;) fori € {1,2,3}. The inequalities must
hold simultaneously:

o Yi\i =2 —2¢cie{l,2,3}
e 1+t <l
o (1-A)(1=X)(1—A3) =5 +e

where the last inequality is because B4 must lies inside of (I1'"\A;) x (I#M\Ay) x (1131 A3). However,
these inequalities can’t hold simultaneously when € is small enough.
As a result, there is no cylinder set A which is exclusive with respect to H* and p(.A) = p. Since
p € 0,(H*) c 0(H*) U Z(H*), H* is gapful due to Theorem [3] ]
By Delete-Event and the inverse operation of Duplicate-Variable, it is not difficult to reduce Hr 5 to
H*. Because H* is gapful, H7 5 is also gapful. From Corollary |37, we have the following corollary.

Corollary 44. For any integer c > 1, every sparsification of Hr, 5. is gapful.

In summary, we get some instances of gapful/gapless bigraphs, listed in Table [T}
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6.2 Characterizing a-gapful and strongly a-gapful graphs

Another interesting perspective of gaps is dependency-graph-oriented: we say that a graph G is a-gapful
if there is a gapful bigraph whose base graph is GG, otherwise it’s called a-gapless. Kolipaka et al. [28]
considered another closely-related concept: a graph G is strongly a-gapful if any bigraph with G as base
graph is gapful, otherwise it’s called strongly a-gapless.

One can easily observe that a bigraph H is gapless if Gy is a-gapless, while it is gapful if G
is strongly a-gapful. With the above mentioned results, we can completely characterize a-gapless or
strongly a-gapful bigraphs, solving the 6-year open problem proposed by Kolipaka et al. [28]].

Theorem 8. A graph is a-gapless if and only if it is a tree.

Proof. It immediately follows from Theorems [6]and ]
For strong a-gapfulness, we need the following definition, where Clig(G) is the set of maximal
cliques of the graph G.

Definition 14. Given a graph G = ([n], E) with Cliq(G) = {C4,...,Cy}, its canonical bigraph,
denoted by Hg, is the bigraph ([n], [m], E') where E' = {(i, j) € [n] x [m] : i € C;}.

Intuitively, Hs models the variable generated event system where each maximal clique has a distinct
variable and an event depends on a variable if it is in the corresponding maximal clique.

We claim that among the bigraphs whose base graph is G, H¢ has the minimum interior. This means
that GG is strongly a-gapful if and only if Hq is gapful.

Lemma 45. Given a graph G, for any bigraph H with Gy = G, we have Z(H) 2 Z(Hg).

Proof. We prove the lemma in two steps.

Step 1: For any bigraph H = ([n],[m], E') with S being a clique in Gy, define the bigraph H' =
([n], [m + 1], E') such that for any j € R(H'), Ni/(j) = S'if j = m + 1, otherwise N/ () = N (j).
Arbitrarily fix p € £(H). There is a set A of cylinders in I"™ such that A ~ H, u(A) = p, and
p(Uacad) = 1. Let A = {A x ™1} . A e A}. Then A’ is a set of cylinders in I™+1, A’ ~ H’,
u(A') = p,and p(UacqA) = 1. Hence, E(H') < E(H).

As aresult, given H with Gy = G, for each of the maximal clique in Gz, modify H as in Step 1.
Let H be the resulting bigraph. We have Z(H) 2 Z(H).

Step 2. H is the same as H; except that there might be j # k € R(H) such that N5 (j) < Ng(k).
Apply the inverse operation of Variable-Duplicate to H as many times as possible, and the final bigraph
is exactly Hc. Recall that in proving that Variable-Duplicate preserves gapful (see Theorem [32)), we
actually prove that Variable-Duplicate preserves boundary, hence also preserving interior. This meaning
that Z(H) = Z(Hg).

Altogether, we know that Z(H) 2 Z(Hg). O

A graph is called chordal, if it has no induced cycle of length greater than three. A well known
property of chordal graphs is that it has a vertex which lies in exactly one maximal clique. Now we have
the following result for chordal graphs.

Lemma 46. Any chordal graph is strongly a-gapless.

Proof. Let G = ([n], E') be a chordal graph. We prove by induction on n.
Basis: n = 1. It is trivial that GG is strongly a-gapless.
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Hypothesis: The lemma holds when n < N.

Induction: Now consider the case n = N. Let H = Hg = ([n], [m], E). Without loss of generality,
assume that the vertex n of G lies in exactly one maximal clique S = {n — k + 1,...,n}. That is,
n € L(H) has only one neighbor, say m, in H, and Nz (m) = S. Let H' be the bigraph obtained from
H by deleting the vertex n € L(H), and G’ be the chordal graph obtained by deleting the vertex n from
G. Obviously, if S\{n} remains a maximal clique in G’, H' = H¢; otherwise, Hg/ can be obtained
by applying the inverse operation of Variable-Duplicate to H'. We always have that H' is gapless if and
only if so is Hy.

Arbitrarily fix p € 0(H). Let p’ = (pl,...,pn_k,pf:’;:l,..., fﬁ;b). Choose A > 0 such that
Ap’ € 0(H'). Applying the induction hypothesis to G’, by Theorem [3| there is a set A’ of cylinders
Al Al < T such that A’ is exclusive with respect to H', u(A’) = Ap’, and p(uareaA’) = 1.
Define A; = A forl <i<n—k, A = {(z1, .., Zm—1,2m(1 — pp)) : (@1, ..c, Tm—1, Ty) € AL} for
n—k<i<n, Ay = {(z1,....xm) €™ : zp, = 1 — pp}. Since p(UaeaA’) = 1and A}, ..., Al _,
are independent of X,,, we have u((I™! x [0,1 — p,]) N (Uicicn—14;)) = 1 — p,. As a result,
wlugesd) = 1, u(A) = q = (A\p1,..., A\Pn—1,Pn), and A is exclusive with respect to H, where
A = {44, ..., A,}. By Corollary 28] we know that g € 0(H ), which in turn means that q = p by Lemma
14

Altogether, for any p € J(H ), there is a cylinder set A which is exclusive with respect to H and
satisfies i(A) = p. By Theorem H is gapless, implying that G is strongly a-gapless. O

We are ready to present an exact characterization of strongly a-gapful graphs.

Theorem 9. A graph is strongly a-gapful if and only if it is chordal.

Proof. Arbitrarily fix a graph G.

If it is not chordal, there must be an induced cycle of length at least four. By Corollary Hg is
gapful, so G is strongly a-gapful.

On the other hand, if G is chordal, it is strongly a-gapless by Lemma [46] O

Theorem [6] is an immediately corollary of Theorem [9} Its constructive proof is retained since the
construction leads to the explicit equation of boundary vectors.

7 Hardness Results

We define some computational problems that are closely related to the variable-LLL problem and show
that they are difficult to solve.

Definition 15 (MUP Problem). Given a bigraph H = ([n],[m], E) and vector p € (0, 1]", compute
U(H,p) £ max g ,(A)=p K (UacaA), where A ranges on sets of cylinders in I"™ and i is Lebesgue
measure.

Definition 16 (INT Problem). Given a bigraph H and a vector p on (0, 1), decide whether p € Z(H ).

Theorem 47. MUP is #P-hard.

Proof. It is enough to show that MUP is #P-hard even if H is a (3,2)-regular bigraph and p =
Arbitrarily fix a (3, 2)-regular bigraph H = ([n], [m], E'). We will construct a set .A of cylinders in

I such that 1(A) = p, A is exclusive with respect to H, and the probability of the union is maximized.
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Arbitrarily choose a function f : [m] — [n] which maps each vertex in [m] to one of its neighbors.
For each i € [n], a cylinder A; < I" is defined in this way: for each neighbor j of 7, 0 < X; < 1/2if
f(j) = i, otherwise 1/2 < X; < 1.Let A = {A4,..., A, }.

Since each i € [n] has exactly three neighbors in H and each j € [m] has exactly two neighbors,
we observe that u(A) = p and A is exclusive with respect to H. Hence p1(Ujep,,)4i) = V(H, p), by
Lemma 29

The construction actually partitions I" into 2™ blocks each having measure 2~"*. Any cylinder in A
consists of some blocks. Let By, k, .. k,.» kj € {0, 1} for any j, denote the block defined by 0 < X; <
1/2ifkj = 0or1/2 < X; < 1ifk; = 1, for any j € [m]. Given k1, kg, ..., ky € {0,1} and i € [n], the
following two conditions are equivalent.
km & A;.

2. For each neighbor j of i in H, k; = 0 if and only if f(j) = 1.

Let N be the number of blocks outside of Uje[,)A;. Then we have p(Uief,Ai) = 1 — N/2™, so
computing V(H, p) is equivalent to computing N.

On the other hand, computing N is related to the 3SAT problem. Let {y1, ..., ¥, } be a set of boolean
variables. For each ¢ € [n], assume j1, jo, j3 are its neighbors in H; define a 3SAT clause ¢; = zj, v
Zj, V zj, where the literal z;, = y;, if f(jr) = 4, otherwise z;, = ¥j, , for k = 1,2, 3. The constraint-
variable graph of ¢ = ¢1 A ... A ¢y, is H. Note that each variable appears twice oppositely, so ¢ is a
Holant([0, 1,0]([0, 1,1, 1]) or Rtw-Opp-#3SAT instance.

Now consider an assignment y; = k;, j € [m]. It is straightforward to check that ¢ is satisfied if and
only if the block By, k,... k,, is outside Ujc(,)A;. Thus, N is the number of satisfying assignments of ¢,
which is #P-hard to compute even if H is (3,2)-regular, by [, Theorem 8.1]. ]

Remark 5. The proof'is inspired by but substantially different from the proofs in Section C of [26]].

Remark 6. Given H and p as in Theorem U(H,p) is a proper fraction whose denominator is 2.
This fact will be used in proving the next theorem.

By Theorem§7] one can prove the following result.
Theorem 48. INT is #P-hard.

L, ...,%), suppose that U(H,p) =1 — &%
where B/ = Eu{(n+1,1),(n+1,2),...,(n+

Proof. Given a (3, 2)-regular bigraph H and p = ( %, .
Let’s construct H' = ([n + 1], [m], E’) and p"),
1,m)}andp’ = (3,%,...,5,7) withr € [0,1].
It is not hard to see p(") € Z(H') if and only if 1 — 2% + r < 1. Obviously, e = % where
Fmaz is the maximum 7, among all proper fractions whose denominator is 2 , such that p(") € (H").
Using binary search and solving INT on poly(m) instances of the form (H’, p(")), we can find out

Tmaz and in turn get ¥(H, p). By Theorem 47} INT is #P-hard. ]
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