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Abstract

A tight criterion under which the abstract version Lovász Local Lemma (abstract-LLL) holds
was given by Shearer [43] decades ago. However, little is known about that of the variable version
LLL (variable-LLL) where events are generated by independent random variables, though this model
of events is applicable to almost all applications of LLL. We introduce a necessary and sufficient
criterion for variable-LLL, in terms of the probabilities of the events and the event-variable graph
specifying the dependency among the events. Based on this new criterion, we obtain boundaries
for two families of event-variable graphs, namely, cyclic and treelike bigraphs. These are the first
two non-trivial cases where the variable-LLL boundary is fully determined. As a byproduct, we
also provide a universal constructive method to find a set of events whose union has the maximum
probability, given the probability vector and the event-variable graph.

Though it is #P-hard in general to determine variable-LLL boundaries, we can to some extent
decide whether a gap exists between a variable-LLL boundary and the corresponding abstract-LLL
boundary. In particular, we show that the gap existence can be decided without solving Shearer’s
conditions or checking our variable-LLL criterion. Equipped with this powerful theorem, we show
that there is no gap if the base graph of the event-variable graph is a tree, while gap appears if the
base graph has an induced cycle of length at least 4. The problem is almost completely solved except
when the base graph has only 3-cliques, in which case we also get partial solutions.

A set of reduction rules are established that facilitate to infer gap existence of an event-variable
graph from known ones. As an application, various event-variable graphs, in particular combinatorial
ones, are shown to be gapful/gapless.

∗Part of the work has been published at FOCS2017
†Institute of Computing Technology, Chinese Academy of Sciences. University of Chinese Academy of Sciences. Beijing,

China. Email:hekun@ict.ac.cn
‡Department of Artificial Intelligence, Ant Financial Services Group, China. Email:liangli.ll@antfin.com.
§Correspondence author
¶Institute of Computing Technology, Chinese Academy of Sciences. University of Chinese Academy of Sciences. Beijing,

China. Email:liuxingwu@ict.ac.cn.
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1 Introduction
1 Lovász Local Lemma, or LLL for short, is one of the most important probabilistic methods that has
numerous applications since proposed in 1975 by Erdős and Lovász [12]. Basically, LLL aims at finding
conditions under which any given set A of bad events in a probability space can be avoided simultane-
ously, namely PpXAPAAq ą 0. In the most general setting, the dependency amongA is characterized by
an undirected graph G “ prns, Eq, called a dependency graph of A, which satisfies that for any vertex i,
Ai is independent of tAj : j ‰ i, j R N piqu, where N piq stands for the neighborhood of i in G. In this
context, finding the conditions on A is reduced to the fundamental challenge: Given a graph G, deter-
mine its abstract interior IapGq which is the set of vectors p such that P

`

XAPAA
˘

ą 0 for any event set
A with dependency graph G and probability vector p. Local solutions to this problem are collectively
called abstract-LLL. The most frequently used abstract-LLL is as follows:

Theorem 1 ([44]). Given a graph G “ prns, Eq and a vector p P p0, 1qn, if there exist real numbers
x1, ..., xn P p0, 1q such that pi ď xi

ś

jPN piqp1´ xjq for any i P rns, then p P IapGq.

An exact characterization of IapGq was presented by Shearer [43] over 30 years ago.

Theorem 2 ([43]). Given a graph G “ prns, Eq and a vector p P p0, 1qn, p P IapGq if and only
if for any S P IndpGq,

ř

TĚS,TPIndpGqp´1q|T |´|S|
ś

iPT pi ą 0, where IndpGq is the collection of
independent sets of G.

As in Theorem 1 and Theorem 2, only dependency graphs and probabilities of events are involved
in abstract-LLL. However, dependency graphs can only capture which events are dependent (more pre-
cisely, which events are independent), but not how they are dependent.

A nice model of richer dependency structures is the variable-generated system A of events, where
each event is a constraint on a set X of independent random variables that can be continuous or discrete.
Suppose A “ tA1, ..., Anu and X “ tX1, ..., Xmu. Let Xi Ď X be a set of variables that completely
determines Ai for each i P rns. The model can be characterized by an event-variable graph which is a
bigraphH “ prns, rms, Eq where each pair pi, jq P rnsˆrms is an edge if and only ifXj P Xi. Then the
fundamental challenge of LLL becomes the VLLL problem as follows: Given a bigraph H , determine
its interior IpHq which is the set of vectors p such that P

`

XAPAA
˘

ą 0 for any variable-generated
event system A with event-variable graph H and probability vector p. LLLs solving this problem are
collectively called variable-LLL.

The model of variable-generated event systems is important, mainly because most applications of
LLL have natural underlying independent variables, e.g., hypergraph coloring [30], satisfiability [14, 15],
counting solutions to CNF formulas [31], acyclic edge coloring [18], etc. Besides, most results on the
algorithmic aspects of LLL are based on this model (see Section 1.1). However, there are no special
studies on the VLLL problem. A common approach for using LLL in the variable setting is ignoring the
variable information and applying abstract-LLL to a dependency graph. This approach only produces
results that cannot be better than Shearer’s bound. Recently, Harris [22] presents a condition for lopsided
version [13] of variable-LLL which can go beyond Shearer’s criterion, but his condition is based on more
information than the event-variable graph (i.e., how events disagree on variables is needed). Thus, the
VLLL problem remains open.

Meanwhile, it is widely believed that Shearer’s bound is generally not tight for variable-LLL. More
precisely, given a bigraph H “ pU, V,Eq, its base graph is defined as the graph GH “ pU,E1q where
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two nodes u1, u2 P U are adjacent if and only if u1, u2 share some common neighbor in H . A property
of base graph is that if H is an event-variable graph of variable-generated event system A, then GH is a
dependency graph of A, which immediately implies that IapGHq Ď IpHq. When IapGHq ‰ IpHq, we
say that Shearer’s bound is not tight for H , or H has a gap. The only reported bigraph that has a gap is
the 4-cyclic one [28], namely a bigraph whose base graph is the 4-cycle. An exact characterization of the
conditions for gap existence is far from clear.

Therefore, we try to solve two closely related peoblems:

1. VLLL problem: characterize the interior IpHq for any bigraphH . Kolipaka et al. [28] have shown
that the Moser-Tardos algorithm is efficient up to the Shearer’s bound. However, it remains un-
known whether the algorithm converges up to the tight bound of variable-LLL and whether it is
efficient even beyond Shearer’s bound. Moreover, it is widely believed that better bounds can be
obtained through variable-LLL for many combinatorial problems, but how much better can it be?
A prerequisite for answering these questions is to know what IpHq is since it tightly upper-bounds
the range of variable-LLL.

2. Gap problem: characterize the conditions for a bigraph to have a gap. The status in quo of variable-
LLL is to ignore variable information and apply abstract-LLL. This over-simplification generally
compromises the power of variable-LLL, but it is lossless and can be safely used when there is
no gap. In addition, VLLL problem makes sense only when a gap exists, otherwise it’s solved by
Shearer’s theorem. All this calls for a solution to the gap problem.

1.1 Related Work

LLL provides a powerful tool to show the existence of some complex combinatorial objects meeting a
prescribed collection of requirements. The first result for abstract-LLL was proved by Erdős and Lovász
[12] and the first asymmetric one (Theorem 1) was presented in [44]. Though these results are useful,
they are not tight in general. A tight, but not local, criterion (Theorem 2) for abstract-LLL was proposed
by Shearer [43] over 30 years ago.

Shearer’s criterion is hard to verify since it involves all possible independent sets, so efforts have
been made to obtain simpler (hence weaker) forms. Pegden [35][36] introduced lefthanded-LLL which
does not hold on all dependency graphs, but it is generally tighter than the condition in Theorem 1
and provides a much simpler form of (tight) conditions on special classes of dependency graphs, e.g.,
chordal graphs. Instead of bounds only working for some dependency graphs, Bissacot et al. [6] proposed
to improve Theorem 1 by cluster expansion. Kolipaka [27] further introduced a hierarchy of bounds (e.g.,
the clique-LLL) which can be applied to any dependency graph and are all tighter than the condition in
Theorem 1. Note that almost all the bounds either lose applicability for some dependency graphs or are
not tight in general.

Erdös and Spenser [13] introduced lopsided-LLL, which extends the results in [12] to lopsidepen-
dency graphs. Scott and Sokal [42] proved that Shearer’s condition is tight for lopsided dependency
graphs.

There are settings in which Shearer’s bound are not tight in general. The best known one may be
the variable-generated event systems, whose tight conditions are one of the main contributions of this
paper. Harris [22] extended the concept of lopsidependency to variable-LLL, and proposed a condition
which can go beyond Shearer’s bound in some cases, but not so in general. Note that Harris’ bound
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cannot be applied to standard variable-LLL, because the key concept of orderability cannot be defined
on event-variable graphs alone.

To make LLL constructive, various sampling algorithms have been proposed so as to avoid all bad
events. Algorithm design for LLL is closely related to different bounds mentioned above. Beck [5] first
showed that an algorithmic version LLL (algorithmic-LLL) is possible and proposed an efficient deter-
ministic sequential algorithm. In that paper, it was required that the degree of the dependency graph
under consideration be upper bounded by 2n{48, which is a very strong restriction. Several work has been
done to relax this requirement [11, 33, 38, 39].

Under the model of variable-generated event systems, Moser and Tardos [34] proposed a simple
sampling-based algorithm with expected polynomial runtime. Their algorithm is Las Vegas and outputs
an assignment to the random variables so as to avoid all bad events. Though a strong model is used, the
condition needed in their analysis is the same as Theorem 1 which is even not tight for the abstract-LLL.
Pegden [37] proved that Moser and Tardos’s algorithm efficiently converges even under the condition
of the cluster expansion local lemma. Kolipaka and Szegedy [28] further showed that under the same
model, Moser-Tardos algorithm actually works efficiently up to Shearer’s bound. Harris [22] presented
an algorithm for lopsided version of variable-LLL under the lopsided condition mentioned above. It is
still open what conditions are tight for an efficient constructive variable-LLL. Catarata et al. [9] tried
experimental methods to observe the possibilities.

Moser-Tardos algorithm can be naturally parallelized because it is not harmful to do sampling for
independent events at the same time. Moser and Tardos showed that this parallelization achieves a better
expected runtime, but the condition required in their analysis is slightly stronger than that for the se-
quential case. In fact, parallel algorithms for LLL has been considered much earlier than the invention
of Moser-Tardos algorithm [3]. Recently, there are new researches for parallel algorithms inspired by
Moser-Tardos algorithm [21, 23]. Besides, algorithmic-LLL has been studied using distributed compu-
tation models [7, 10, 16].

Algorithms have also been devised for LLL with dependent variables and other conditions. Harris
and Srinivasan [24] first considered the space of permutations. Achlioptas and Iliopoulos [2] studied
algorithms specified by certain multigraphs. Frameworks with resampling oracles are also investigated
[1, 25, 29].

Actually, variable-LLL has strong connection with sampling. Guo et al. [19] proposed an algorith-
mic framework, called partial rejection sampling, which establishes this connection in scenarios such
as uniform sampling. In a parallel work, Moitra [32] presended an algorithm to approximately sample
solutions to general k-CNF under Lovász Local Lemma-like conditions.

Apart from algorithms, LLL has affected (or has been affected by) many other disciplines, in par-
ticular physics. For example, alternating-sign independence polynomials of dependency graphs, which
is a key element in Shearer’s criterion, are also related to the concept of partition functions in statistical
physics [20, 41, 45, 46]. Inspired by this connection, cluster expansion local lemma has been proposed
[6], and the lower bound of a singularity point in the hard-core lattice gas model has been improved [27].
LLL has also been enriched by the concept of quantum in physics [4, 17, 40].

Notation

• rns: the set t1, 2, ..., nu for positive integer n.

• X ,Y: sets of mutually independent random variables.

4



• X,Y : random variables.

• p,q, r: vectors of positive real numbers.

• φp¨q: given p P p0,`8qn, φppq P p0, 1sn is the vector whose i-th entry is mint1, piu.

• A,B: sets of events, or sets of cylinders.

• A,B: events, or cylinders.

• A: the complementary of the event/cylinder A.

• PpAq: the probability of event A.

• PpAq: the vector whose i-th entry is the probability of the i-th event in A.

• µ: Lebesgue measure on Euclidean (sub)spaces.

• G “ pV,Eq: the undirected graph with vertex set V and edge set E.

• H “ pV1, V2, Eq: the bigraph with vertex set V1 Y V2 and edge set E Ď V1 ˆ V2. V1 and V2 are
called the left part and the right part of H , denoted by LpHq and RpHq, respectively.

• NGpvq: the neighborhood of vertex v in graph G, or N pvq when G is implicit.

• Itiu: the unit interval in the i-th dimension of an Euclidean space, or simply I when i is implicit.

• IS : the unit cube
ś

iPS Itiu, or simply Im when S “ rms for some integer m.

2 Results and Discussion

The main results of this paper are listed and discussed as follows.

Tight condition for variable-LLL As we mentioned, Shearer’s condition is sufficient and necessary
for abstract-LLL, but in general it is not tight for variable-LLL. Our first contribution is a sufficient
and necessary condition for variable-LLL, namely an exact characterization of IpHq for any bigraph
H . Characterizing IpHq is equivalent to delimiting its boundary, simply called the boundary of H and
denoted by BpHq, which consists of the vectors p such that p1 ´ εqp P IpHq and p1 ` εqp R IpHq for
any ε P p0, 1q.

Theorem 3. Given a bigraph H “ prns, rms, Eq, let d “ pd1, ..., dmq where dj is the degree of the
vertex j P RpHq. For any vector q P p0, 1qn, λq lies on the boundary of H if and only if λ is the optimal
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solution to the program:

min λ

s.t.
ÿ

iPrns

Ci,k1,k2,...,km ě 1 for any kj P rdjs, j P rms;

Ci,k1,k2,...,km does not depend on kj for any pi, jq P prns ˆ rmsqzE;
ÿ

k1Prd1s,...,kmPrdms

p
ź

jPrms

xjkj qCi,k1,k2,...,km “ λqi for i P rns;

ÿ

kPrdjs

xjk “ 1 for j P rms;

xjk P r0, 1s for j P rms, k P rdjs;

Ci,k1,k2,...,km P t0, 1u for i P rns, kj P rdjs, j P rms.

As far as we know, this is the first condition for general variable-LLL. It essentially means that the
variables can be discretized. Namely, to determine the boundary vectors, it is enough to consider the
discrete variables taking dj values. Small finite domains of the variables enable to study the events by at
least the method of exhaustion. In addition, the program facilitates to construct the “worst-case” set of
events, which means that the probability of the union of the events is maximized.

This optimization problem looks like a geometric program, but it is not the case. Actually, it must be
hard to solve, since we show that it is #P-hard to decide the boundary of variable-LLL.

Boundary of cyclic bigraphs Though the program above is hard to solve in general, its insight of
discretization makes it possible to fully determine the boundary of any cyclic bigraph as in the following
theorem. Here a bigraph is called n-cyclic if its base graph is a cycle of length n. We propose a method
to calculate the boundary vectors of cycles.

Theorem 4. Given a vector p P p0, 1qn, for each i P rns, let λi be the minimum positive solution to the
equation system: b1 “ λpi, bk “

λpk`i´1

1´bk´1
for 2 ď k ď n ´ 1, bn´1 “ 1 ´ λpi´1. Let λ0 “ miniPrns λi.

Then λ0p lies on the boundary of any n-cyclic bigraph.

In the literature, cyclic bigraphs are attractive as they are the only example showing a gap exists,
i.e., only one vector on the boundary of 4-cyclic bigraphs has been identified. The above theorem shows
that the whole boundary of any n-cyclic bigraph can be determined by solving an pn ´ 1q-degree poly-
nomial equation. The method works for any cyclic bigraph, no matter whether the probability vector is
symmetrical or not.

Not only for cyclic bigraphs, we also give a procedure to exactly determine the boundary of treelike
bigraphs. A bigraph is called treelike if its base graph is a tree.

A sufficient and necessary condition for gap existence Since a bigraph provides more information
than its base graph, it is naturally expected to have a gap, namely Shearer’s bound is not tight for bigrpahs.
We propose a necessary and sufficient condition to decide whether such a gap exist. For conciseness of
presentation, we also call a bigraph gapful if it has a gap, and gapless otherwise.

Theorem 5. Given a bigraph H and a vector p of positive reals, the following three conditions are
equivalent:
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1. For any λ such that λp P IpHq, there is an exclusive variable-generated event system A with
event-variable graph H and probability vector λp.

2. For the λ such that λp P BpHq, there is an exclusive variable-generated event system A with
event-variable graph H and probability vector λp.

3. H is gapless in the direction of p.

Here the qualifier “exclusive” means that the events in A are either independent or disjoint, and
“gapless in the direction of p” means that for any λ, λp P IpHq if and only if λp P IapGHq.

By this criterion, one can check the existence of a gap just by examining the bigraph, without com-
puting Shearer’s bound of its base graph.

On this basis, we investigate gap existence for two families of bigraphs.

Theorem 6. Treelike bigraphs are gapless.

Based on this theorem, we develop a simple algorithm to efficiently compute Shearer’s bound for any
dependency graph which is a tree.

In contrast, we obtain an opposite result for cyclic bigraphs, which considerably extends the only
gap-existing example in literature [28].

Theorem 7. Cyclic bigraphs are gapful.

Another interesting perspective of gaps is dependency-graph-oriented: we say that a graph G is a-
gapful if there is a gapful bigraph whose base graph is G, otherwise it’s called a-gapless; G is said to be
strongly a-gapful if any bigraph with G as base graph is gapful, otherwise it’s called strongly a-gapless.
Six years ago Kolipaka et al. [28] proposed to characterize strongly a-gapful graphs, but the problem
remains open. We provide an exact characterization for both concepts.

Theorem 8. A graph is a-gapless if and only if it is a tree.

Theorem 9. A graph is strongly a-gapful if and only if it is chordal.

Reduction method To discover more instances that have or have no gaps, we propose a set of reduction
rules which allow us transforming a bigraph without changing the existence or nonexisence of a gap. We
identify five basic operations. Three of them as well as their inverses preserve both gapful and gapless;
the other two preserve gapful, while the inverses of the two preserve gapless. Applying these operations,
we show that a bigraph is gapful if it contains a gapful one. This, together with Theorem 7, intuitively
means that Shearer’s criterion is not tight for almost all cases of variable-LLL. Likewise, we show that
combinatorial bigraphs Hn,m are gapful if m is small enough and are gapless if m is large enough.

3 Probability Boundary of Variable-LLL

This section aims at solving the VLLL problem: given a bigraph H , determine all the vectors p such that
P
`

XAPAA
˘

ą 0 for any variable-generated event systemA with event-variable graphH and probability
vector p. Basically, we will transform the problem into a geometric one and solve it in the framework of
Euclidean geometry.
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For conciseness of presentation, a variable-generated event system A is said to conform with a bi-
graph H , denoted by A „ H , if H is an event-variable graph of A.

Throughout this section, we only consider bigraphs whose base graphs are connected. This restriction
does not lose generality for the following reason. If a bigraph has disconnected base graph, itself must
also be disconnected and each component is again a bigraph. In this case, the interior of the original
bigraph is exactly the direct product of the interiors of the component bigraphs.

3.1 A Geometric Counterpart

Now we formulate a geometric counterpart of the VLLL problem, called the GLLL problem. Consider
the m-dimensional Euclidean space Rm endowed with Lebesgue measure µ. Let Xi be the coordinate
variable of the i-th dimension, i P rms. For any S Ď rms, the S-unit cube, denoted by IS , is defined to be
the |S|-dimensional unit hypercube r0, 1s|S| working as the domain range of the variables tXi : i P Su
such that for each i P S, Xi P r0, 1s. When S “ rks for some k ď m, we simply write Ik for Irks.
A cylinder A in Im is a subset of the form B ˆ IS , where B Ď IrmszS is called a base of A; define
dimpBq “ rmszS. Given a bigraph H “ prns, rms, Eq and a setA of cylinders A1, ..., An in Im, we say
that A conforms with H , also denoted by A „ H , if there are bases B1, ..., Bn of A1, ..., An such that
E “ tpi, jq P rns ˆ rms : j P dimpBiqu. Now comes the GLLL problem: given bigraph H , determine
all the vectors p such that µpYAPAAq ă 1 for any cylinder set A „ H with µpAq “ p.

One can easily see that the VLLL problem is equivalent to the GLLL problem in the sense that
they have the same solutions. Hence, the rest of the paper will be presented in the context of the GLLL
problem. For ease understanding, the terms “event” and “cylinder” will be used interchangeably, and so
will “probability” and “Lebesgue measure”. The complementary of a cylinder A in Irms is defined to be
the cylinder A “ IrmszA.

3.2 A Sufficient and Necessary Criterion

Definition 1 (Interior). The interior of a bigraph H , denoted by IpHq, is the set of vectors p on p0, 1q
such that µ

`

XAPAA
˘

ą 0 for any cylinder set A „ H with µpAq “ p.

Definition 2 (Exterior). The exterior of a bigraph H “ prns, rms, Eq, denoted by EpHq, is the set
p0, 1snzIpHq.

Definition 3 (Boundary). The boundary of a bigraph H , denoted by BpHq, is the set of vectors p on
p0, 1s such that p1 ´ εqp P IpHq and p1 ` εqp R IpHq for any ε P p0, 1q. Any p P BpHq is called a
boundary vector of H .

We can show that there is a boundary vector in every direction.

Lemma 10. Given a bigraph H “ prns, rms, Eq, for any p P p0, 1sn, there exists a unique λ ą 0 such
that λp P BpHq.

Proof. Let Λ fi tλ ą 0 : λp R IpHqu. If λ is so large that λpi ě 1 for some i, then λ P Λ since
λp R IpHq. If λ is so small that λ

ř

i pi is smaller than 1, then λ R Λ because λp P IpHq. Thus, Λ
is non-empty and its infimum, denoted by λ0, must be positive. It is easy to see that λ0p P BpHq. The
uniqueness is trivial. l

In the rest of this section, we propose a program to characterize boundary vectors. The cornerstone of
the program is the observation that cylinders can be properly discretized without changing the boundary.
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Given an integer d ą 0, a cylinder A Ď Im is said to be d-discrete in dimension j, if there is a
partition of Itju into d disjoint intervals ∆1, ...,∆d such thatA “ Ydk“1S

A
k ˆ∆k for some SAk Ď Irmsztju,

k “ 1, . . . , d. A cylinder set A is called d-discrete in dimension j, or discrete in dimension j when d
is implicit, if so is every A P A. Given a vector d “ pd1, ..., dmq, a cylinder A is called d-discrete, if
it is dj-discrete in dimension j for any j P rms. Likewise, A is called d-discrete, or discrete when d is
implicit, if so is every A P A; then the vector d is called a discreteness degree of A.

Given two vectors p and q, we say p ď q if the inequality holds entry-wise. Additionally, if the
inequality is strict on at least one entry, we say that p ă q.

In the rest of this section, fix a bigraph H “ prns, rms, Eq and a probability vector p P BpHq. Let
qε fi φpp1 ` εqpq for any real number ε ą 0 and d fi pd1, ..., dmq with each dj being the degree of the
vertex j P rms in H .

The main results (Theorem 15 and Theorem 3) of this section present a discrete cylinder set for each
probability vector on the boundary. As a byproduct, it is shown that the boundary lies in the exterior.
Following these theorems, there are two corollaries handling the discretization of interior and exterior
respectively.

The boundary is discretized in four steps, as shown in the coming four lemmas. First, we show that
for any ε ą 0, there is a discrete cylinder set whose measure vector lies in the exterior and is ε-close to
p. Unfortunately, the discreteness degree of this cylinder set depends on ε, and may be unbounded when
ε tends to 0. Second, we show that the set of cylinders can be chosen such that the discreteness degree is
no more than d. However, the measure vector may not be lower-bounded by p, though it is still upper-
bounded by qε. Third, with ε tending to 0, a mathematic program and a calculus argument guarantee the
existence of a d-discrete cylinder set whose measure vector lies in the exterior and is upper-bounded by
p. Finally, we show that the measure vector of this cylinder set is exactly p, which immediately leads to
the main theorem.

The basic idea of proving the next lemma is to discretize cylinders dimension by dimension. To
discretize the j-th dimension, the axis Itju is partitioned so that every cylinder varies little in each part,
which naturally leads to an approximation (that is discrete in dimension j) to the origin cylinders. The
partition is found by approximating an integral with a finite summation.

Lemma 11. For any ε ą 0, there exists a discrete cylinder set A „ H such that p ď µpAq ď qε and
µpYAPAAq “ 1.

Proof. Since p P BpEq, there is a cylinder set A1 „ H such that µpA1q “ qε{2 and µpYAPA1Aq “ 1.
We prove this lemma by showing the following claim.
Claim: Suppose there is a cylinder set B „ H such that µpYBPBBq “ 1 and qσ ď µpBq ď qε´σ

for some 0 ă σ ă ε{2. Then there exists a discrete cylinder set A „ H such that p ď µpAq ď qε and
µpYAPAAq “ 1.

Proof of the claim: Arbitrarily fix a cylinder set B “ tB1, ..., Bnu satisfying the condition of the
claim. Let J “ tj P rms : B is discrete in dimension ju. We prove the claim by induction on |J |.

Basis: |J | “ m. The claim trivially holds.
Hypothesis: The claim holds when |J | ą l.
Induction: Consider |J | “ l ă m.
Without loss of generality, assume that 1 R J .
For each i P rns and x P r0, 1s, let Bpxqi “ Bi X pX1 “ xq. By Fubini’s Theorem, Bpxqi is Lebesgue

measurable for almost all x P r0, 1s. Without loss of generality, assume thatBpxqi is Lebesgue measurable
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for all x P r0, 1s. Let fi be the Lebesgue measurable function on r0, 1s such that fipxq “ µpB
pxq
i q . Then

we have µpBiq “
ş

r0,1s fipxqdµ, where the integration is Lebesgue.
Let δ “ σ

2p0 where p0 “ miniPrns pi. For any integer 1 ď k ď r1
δ s, consider intervals

Γk fi

"

ppk ´ 1qδ,mintkδ, 1us if k ą 1
r0, δs if k “ 1

(1)

For each list of integers 1 ď k1, ..., kn ď r1
δ s, define a set ∆k1,...,kn “ XiPrnsf

´1
i pΓkiq. Arbitrarily

re-number the ∆’s with non-zero measure into ∆1, ¨ ¨ ¨ ,∆K , where K ď r1
δ s
n. We observe that:

1. YiPrKs∆i Ď r0, 1s and µpYiPrKs∆iq “ 1;

2. ∆1, ¨ ¨ ¨ ,∆K are pairwise disjoint;

3. For any k P rKs, any x, x1 P ∆k, and any i P rns, it holds that |fipxq ´ fipx1q| ď δ.

Since µpYiPrnsBiq “ 1, for any k P rKs, we can choose xk P ∆k such that µpYiPrnsB
pxkq
i q “ 1.

Partition It1u into disjoint intervals ∆1
1, ...,∆

1
K such that µp∆1

kq “ µp∆kq for any k P rKs.
For each i P rns, define B1i fi YkPrKspB

pxkq
i ˆ ∆1

kq. One can easily check that for any i P rns and
j P rms, B1i is independent of Xj if so is Bi. Then the cylinder set B1 “ tB11, ..., B1nu satisfies:

1. B1 conforms with H;

2. |µpBiq ´ µpB1iq| ď δ for any i P rns, so qσ{2 ď µpB1q ď qε´σ{2;

3. Since YkPrKsppYiPrnsB
pxkq
i q ˆ ∆1

kq “ YiPrnspYkPrKspB
pxkq
i ˆ ∆1

kqq “ YiPrnsB
1
i, it holds that

µpYiPrnsB
1
iq “

ř

kPrKs µpYiPrnsB
pxkq
i qµp∆1

kq “ 1.

Now consider the set J 1 “ tj P rms : B1 is discrete in dimension ju. The construction of B1 indi-
cates that J Yt1u Ď J 1. Hence, |J 1| ě l`1, applying the induction hypothesis to B1 finishes the proof
of the Claim.

The lemma follows immediately. l

The basic idea of proving the next lemma is as follows. By Lemma 11, we have a discrete cylinder
set. The vector of the measures of the cylinders that depend on a common variable Xj turns out to be a
convex combination of dj-dimensional vectors. A simple combinatorial argument indicates that at most
dj out of the latter vectors are enough to generate (also by convex combination) former one, which
immediately implies the desired discreteness degree.

Lemma 12. For any ε ą 0, there exists a d-discrete cylinder set A „ H such that µpAq ď qε and
µpYAPAAq “ 1.

Proof. By Lemma 11, there is a discrete cylinder set A1 “ tA11, ..., A1nu „ H such that µpA1q ď qε and
µpYiPrnsA

1
iq “ 1. Let q1 “ µpA1q and the discreteness degree of A1 be pd11, ..., d

1
mq. Now by induction

on l “ |tj P rms : d1j ą dju|, we show that the existence of such anA1 implies the existence of a desired
A.

Basis: If l “ 0, the lemma holds by letting A “ A1.
Hypothesis: The lemma holds if l ď L.
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Induction: Consider the case l “ L` 1. Without loss of generality, assume d11 ą d1.
By the definition of discreteness, there is a partition of It1u into d11 disjoint measurable sets ∆1, ...,∆d11

such thatA1i “ Y
d11
k“1Si,kˆ∆k for any i P rns, where each Si,k Ď Irmszt1u. Let I “ ti P rns : pi, 1q P Eu.

We know that |I| “ d1. Since µpYiPrnsA1iq “ 1, we have YiPrnsSi,k “ Irmszt1u up to a set of measure
zero, for any 1 ď k ď d11.

Consider π “ q1|I , which is a d1-dimensional vector. Note that µpA1iq “
ř

1ďkďd11
µpSi,kqδk for any

i P I, where δk “ µp∆kq. Hence π “
ř

1ďkďd11
δkvk with each vk “ pµpSi,kq : i P Iq being a vector in

the d1-dimensional Euclidean space RI . Since each δi ě 0 and
ř

1ďiďd11
δi “ 1, from the perspective of

geometry, π lies in the convex hull of v1, ¨ ¨ ¨vd11 . The segment between the origin and π must intersect
with the boundary of the convex hull; let u be an intersection point. The boundary of the convex hull
has a natural triangulation of dimension at most d1 ´ 1. As a result, u must be located inside a simplex
spanned by K ď d1 points among v1, ¨ ¨ ¨vd11 . Without loss of generality, assume that the K points are
v1, ¨ ¨ ¨vK . Hence, there are λ1, ..., λK ą 0 such that u “

ř

1ďkďK λkvk and
ř

1ďkďK λk “ 1.
For i P rns, defineA2i “ Y1ďkďKSi,kˆ∆1

k, where the disjoint intervals t∆1
1, ...,∆

1
Ku is an partition

of It1u and µp∆1
kq “ λk for 1 ď k ď K. For i P rnszI, since A1i is independent of X1, Si,k does not

depend on k, which in turn implies that A2i “ Si,1 ˆ It1u “ A1i. Moreover, one can easily check that for
any i P I and j P rms, A2i is independent of Xj if so is A1i.

Let A2 “ tA21, ..., A2nu. We have the following observations:

1. A2 conforms with H;

2. µpYiPrnsA2i q “ µpYkPrKspYiPrnsSi,kq ˆ∆1
kq “

ř

kPrKs µpYiPrnsSi,kqλk “ 1;

3. µpA2q ď µpA1q ď qε.

Denote by pd21, ..., d
2
mq the discreteness degree of A2. The construction of A2 indicates that d2j ď d1j for

j ą 1, and d21 “ K ď d1. It holds that |tj P rms : d2i ą diu| ď pL`1q´1 “ L. Applying the induction
hypothesis to A2 immediately finishes the proof. l

By Lemma 12, for any small ε ą 0, there is a d-discrete cylinder set Aε whose measure is upper
bounded by qε. The next lemma claims that this is the case even if ε “ 0. The basic idea is to show
that as ε tends to 0, Aε converges in some sense and the limit is a d-discrete cylinder set. For this
end, we establish an equivalence between the existence of a d-discrete cylinder set and a mathematical
program consisting of polynomial constraints. This equivalence, together with an argument based on the
continuity of the constraints, ensures that a sequence of Aε converges and the limit cylinder set is as
desired.

Lemma 13. There is a d-discrete cylinder set A „ H such that µpAq ď p and µpYAPAAq “ 1.

Proof. Arbitrarily choose a sequence of positive real numbers εl such that lim
lÑ8

εl “ 0.

Now arbitrarily fix an l ą 0. Define the vector qplq “ pqplq1 , ..., q
plq
n q fi qεl . By Lemma 12, there exists

a d-discrete cylinder set Aplq “ tAplq1 , ..., A
plq
n u „ H such that µpAplqq ď qplq and µpYiPrnsA

plq
i q “ 1.

Let rplq “ prplq1 , ..., r
plq
n q fi µpAplqq. The existence of Aplq is equivalent to the following condition Q.

Condition Q: there are xplqjk P r0, 1s for j P rms, k P rdjs and Cplqi,k1,k2,...,km P t0, 1u for i P rns, kj P
rdjs, j P rms such that

1.
ř

iPrnsC
plq
i,k1,k2,...,km

ě 1 for any kj P rdjs, j P rms;
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2. For any i P rns and j P rms, if pi, jq R E, then Cplqi,k1,k2,...,km is independent of kj ;

3.
ř

k1Prd1s,...,kmPrdms
p
ś

jPrms x
plq
jkj
qC
plq
i,k1,k2,...,km

“ r
plq
i ď q

plq
i for i P rns, and

4.
ř

kPdj
x
plq
jk “ 1 for j P rms.

Intuitively, d-discreteness means that each dimension j is partitioned into dj segments, with xplqjk standing
for the length of the k-th segment. This leads to a partition of the unit cube Im into sub-cubes, where the
pk1, k2, ..., kmq-th subcube has measure

ś

jPrms x
plq
jkj

. The variable Cplqi,k1,k2,...,km indicates whether the

pk1, k2, ..., kmq-th subcube is in the cylinder Aplqi . Then the equivalence trivially holds.
Note that each Cplqi,k1,k2,...,km is binary and i, k1, k2, ..., km all range on finite sets that do not depend

on l. Hence, there is a subsequence of l such that for any fixed i, k1, k2, ..., km, Cplqi,k1,k2,...,km is a constant
denoted by Ci,k1,k2,...,km . Without loss of generality, assume that the subsequence is the whole sequence.

Arbitrarily fix j P rms and k P rdjs. Then the sequence txplqjkulě1 must have a convergent sub-
sequence, because the interval r0, 1s is a compact topological space. Again without loss of generality,
assume that the whole sequence txplqjkulě1 converges. Denote the limit by xjk.

Likewise, without loss of generality, we can assume that the sequence trplqi ulě1 converges for any
i P rns. Let ri “ lim

lÑ8
r
plq
i . Obviously, ri ď lim

lÑ8
q
plq
i “ pi for any i P rns.

Letting l approaches infinity, we can see that xjk with j P rms, k P rdjs and Ci,k1,k2,...,km with
i P rns, kj P rdjs, j P rms satisfy the condition Q. As a result, there is a d-discrete cylinder set A „ H
such that µpAq “ pr1, ..., rnq ď p and µpYAPAAq “ 1. l

Remark 1. The equivalence mentioned in the proof of Lemma 13 implies a necessary and sufficient
condition for deciding the interior of H . Namely, a vector q “ pq1, ..., qnq P EpHq if and only if there
are xjk P r0, 1s for j P rms, k P rdjs and Ci,k1,k2,...,km P t0, 1u for i P rns, kj P rdjs, j P rms such that

1.
ř

iPrnsCi,k1,k2,...,km ě 1 for any kj P rdjs, j P rms;

2. For any i P rns and j P rms, if pi, jq R E, then Ci,k1,k2,...,km is independent of kj;

3.
ř

k1Prd1s,...,kmPrdms
p
ś

jPrms xjkj qCi,k1,k2,...,km ď qi for i P rns, and

4.
ř

kPrdjs
xjk “ 1 for j P rms.

For the cylinder set A obtained in Lemma 13, the next lemma claims that µpAq “ p. Roughly
speaking, if there are Ai and Aj both depending on Xl and satisfying that µpAiq ă pi and µpAjq “
pj , we can remove a thin slice (perpendicular to the axis Xl) from Aj and attach it to Ai. After this
operation, both µpAiq ă pi and µpAjq ă pj , no extra dependency is brought about, and the whole cube
remains been filled up. Iteratively, we can finally get µpAkq ă pk for any k, which is contradictory to the
assumption that p is a boundary vector.

Lemma 14. If there is a cylinder set A „ H such that µpAq ď p and µpYAPAAq “ 1, then µpAq “ p.

Proof. First of all, we prove the following claim:
Claim: Suppose there exists a cylinder set A „ H such that µpAq ă p and µpYAPAAq “ 1. Then

there are ε ą 0 and a cylinder set B „ H satisfying µpBq ď p1´ εqp and µpYBPBBq “ 1.
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Proof of the Claim: Arbitrarily choose A „ H such that r fi µpAq ă p and µpYiPrnsAiq “ 1.
Assume A “ tA1, ..., Anu, p “ pp1, ..., pnq, r “ pr1, ..., rnq. Let ∆pr,pq “ |ti P rns : ri ă piu|. We
proceed by induction on ∆pr,pq.

Basis: ∆pr,pq “ n. Choose ε ą 0 such that r ď p1 ´ εqp. The claim trivially holds by letting
B “ A.

Hypothesis: The claim holds for any ∆pr,pq ą K.
Induction: Consider the case ∆pr,pq “ K ă n. Choose i, j P LpHq such that ri ă pi, rj “ pj ,

and NHpiq XNHpjq ‰ H. Such i, j exist due to the assumption that the base graph of H is connected.
Let δ “ mintpi ´ ri, pju. Arbitrarily choose l0 P NHpiq X NHpjq Ď rms. Let Dx be the cylinder

rx, x ` δ
2 s ˆ Irmsztl0u Ă Im, where 0 ď x ď 1 ´ δ

2 . Since δ ď pj , there must be some x such that 0 ă
µpDx XAjq ă pj . Fix such an x. Define A1j “ AjzDx and A1i “ Ai YDx. Consider A1 “ tA11, ..., A1nu
where A1k “ Ak for k P rnszti, ju. Let r1 “ pr11, ..., r

1
nq fi µpA1q. We observe that:

1. r1i ď ri `
δ
2 ă pi and 0 ă pj ´

δ
2 ď r1j “ pj ´ µpDx XAjq ă pj , so r1 ă p;

2. A1 „ H , since A conforms with H and A1k does not depend on Xl for any pk, lq R E, and

3. µpYiPrnsA1iq “ 1 because µpYiPrnsA1iq ě µpYiPrnsAiqq “ 1.

Note that ∆pr1,pq “ ∆pr,pq ` 1 ą K. Applying the induction hypothesis to A1, we finish the
proof of the Claim.

Now we get back to prove the lemma. Suppose for contradiction that there is a cylinder set A „ H
such that µpAq ă p and µpYAPAAq “ 1. By the Claim, there are ε ą 0 and a cylinder set B „ H
satisfying µpBq ď p1´ εqp and µpYBPBBq “ 1. We reach a contradiction since p P BpHq. l

Theorem 15. Given a bigraph H “ prns, rms, Eq and p P BpHq, let d “ pd1, ..., dmq where dj is the
degree of the vertex j P RpHq. Then there is a d-discrete cylinder set A „ H such that µpAq “ p and
µpYAPAAq “ 1.

Proof. This immediately follows from Lemma 13 and Lemma 14. l

Theorem 15 and Lemma 14 essentially give a necessary and sufficient condition for deciding the
boundary: p is a boundary vector if and only if it is a minimal probability vector that allows a cylinder set
as in Theorem 15. Due to discreteness, such cylinders have only finitely many forms, so their existence
can be checked at least by the exhaustive method. In this sense, not only can we decide boundary vectors,
but also constructively find the “worst-case” cylinders (i.e., the measure of the union is maximized). The
method is as in Theorem 3.

Theorem 3. Given a bigraph H “ prns, rms, Eq, let d “ pd1, ..., dmq where dj is the degree of the
vertex j P RpHq. For any vector q P p0, 1qn, λq lies on the boundary of H if and only if λ is the optimal
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solution to the program:

min λ

s.t.
ÿ

iPrns

Ci,k1,k2,...,km ě 1 for any kj P rdjs, j P rms;

Ci,k1,k2,...,km does not depend on kj for any pi, jq P prns ˆ rmsqzE;
ÿ

k1Prd1s,...,kmPrdms

p
ź

jPrms

xjkj qCi,k1,k2,...,km “ λqi for i P rns;

ÿ

kPrdjs

xjk “ 1 for j P rms;

xjk P r0, 1s for j P rms, k P rdjs;

Ci,k1,k2,...,km P t0, 1u for i P rns, kj P rdjs, j P rms.

Given a solution to the program, Im is partitioned into subcubes by cutting every axis Xj into dj
intervals of length xjkj , kj P rdjs. For each i P rns, let Ai be the union of the subcubes numbered by
pk1, k2, ..., kmq with Ci,k1,k2,...,km “ 1. ThenA “ tA1, ..., Anu satisfies the requirement of Theorem 15.

By Theorem 15, for p P BpHq, the worst set of cylinders can be d-discrete. We will generalize the
result to non-boundary vectors. When p is in the interior of H , the basic idea of the next corollary is to
add an extra cylinder to the original set of cylinders so that their union has measure 1. By minimizing
the extra cylinder, the union of the original cylinders should be maximized. Then the discreteness degree
follows from Theorem 15.

Corollary 16. Given a bigraph H “ prns, rms, Eq and p P IpHq, define d “ pd1, ..., dmq where dj is
the degree of the vertex j P RpHq. Let d1 “ pd1` 1, ..., dm` 1q. Then there is a d1-discrete cylinder set
B “ arg maxA„H,µpAq“p µpYAPAAq.

Proof. Let ξ “ supA„H,µpAq“p µpYAPAAq. Suppose ξ ă 1. Define a bigraph H 1 “ prn` 1s, rms, E1q

where E1 “ E Y tpn ` 1, jq : j P rmsu. Let p1 P p0, 1sn`1 be such that p1i “ pi for 1 ď i ď n and
p1n`1 “ 1´ ξ.

Arbitrarily choose ε ą 0 and 0 ă δ ă εp1´ ξq. We have two facts:

1. There is a cylinder setA1 „ H 1 such that µpA1q ď p1` εqp1 and µpYAPA1Aq “ 1. The reason lies
in two aspects. On the one hand, by the definition of ξ, there is a cylinder set A „ H satisfying
µpAq “ p and µpYAPAAq ě ξ´ δ. On the other hand, let An`1 be an arbitrary cylinder such that
µpAn`1q “ p1` εqp1´ ξq and XAPAA Ď An`1. It is easy to check that A1 “ AY tAn`1u is the
desired cylinder set.

2. µpYAPA1Aq ă 1 for any cylinder set A1 „ H 1 with µpA1q “ p1 ´ εqp1. To show this, arbitrarily
chooseA1 “ tA1, ..., An`1u „ H 1 with µpA1q “ p1´ εqp1. ThenA “ A1ztAn`1u conforms with
H and µpAq “ p1´ εqp. By the definition of ξ, µpYAPAAq ď ξ. We further have µpYAPA1Aq ď
µpYAPAAq ` µpAn`1q “ ξ ` p1´ εqp1´ ξq ă 1.

As a result, p1 P BpH 1q. By Theorem 15, there is a d1-discrete cylinder setA1 “ tA1, ..., An`1u „ H 1

such that µpA1q “ p1 and µpYAPA1Aq “ 1. Again, A “ A1ztAn`1u conforms with H and µpAq “ p.
Note that 1 “ µpYAPA1Aq ď µpYAPAAq`µpAn`1q ď ξ`1´ξ “ 1, so µpYAPAAq “ 1´µpAn`1q “ ξ.
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Now deal with the case ξ “ 1. Let H 1 be as defined above. Define vector ppεq fi pp1, ..., pn, εq for
any ε ą 0. Using an argument like in the first fact mentioned above, we know that there is a cylinder
set Apεq „ H 1 such that µpApεqq ď ppεq and µpYAPApεqAq “ 1. Following the proof of Lemma 13, we
know that p “ limεÑ0 p

pεq lies in the exterior of H , contradictory to the assumption that p P IpHq. As
a result, it is impossible that ξ “ 1. The proof ends. l

The next corollary indicates that for p P EpHq, the discreteness degree is also small. The basic idea
is opposite to that of proving Corollary 16. Some events and/or a part of one are removed so that the
remaining events exactly fill the cube. Then the rest events are discretized according to Theorem 15.
Finally, a slight refinement of the discretization also discretizes the removed events.

Corollary 17. Given a bigraph H “ prns, rms, Eq and p P EpHq, define d “ pd1, ..., dmq where dj is
the degree of the vertex j P RpHq. There is a d̃-discrete cylinder set A „ H such that µpAq “ p and
µpYAPAAq “ 1, where d̃j0 “ dj0 ` 1 for some j0 P rms and d̃j “ dj for j ‰ j0.

Proof. We prove by induction on n.
Basis: n “ 1. It trivially holds.
Hypothesis: The lemma holds whenever n ă N .
Induction: Consider n “ N . Define H 1 “ prn´ 1s, rms, E1q to be an induced subgraph of H , and

p1 “ pp1, ..., pn´1q. Now we proceed case by case.
Case 1: p1 P EpH 1q. By the induction hypothesis, there is a d̃1-discrete cylinder set A1 „ H 1 such

that µpA1q “ p1 and µpYAPA1Aq “ 1, where d̃1j0 “ d1j0 ` 1 for some j0 P rms, d̃1j “ d1j for j ‰ j0, and
each d1j “ |ti P rn´ 1s : pi, jq P E1u|.

Without loss of generality, assume that pn,mq P E. The discreteness of A1 in dimension m means
that Itmu is partitioned into d̃1m disjoint intervals. Now refine the partition into d̃1m` 1 intervals such that
the union of some intervals is r0, pns. LetA “ A1YtAnu, where An “ Im´1ˆr0, pns. Then µpAq “ p
and µpYAPAAq “ 1.

As to the discreteness, obviouslyA is pd̃11, ..., d̃
1
m´1, d̃

1
m` 1q-discrete. If j0 “ m, then d̃1j “ d1j ď dj

for j ď m´1, and d̃1m`1 “ pd1m`1q`1 “ dm`1. If j0 ‰ m, then d̃1j “ d1j ď dj for j R tj0,mu, d̃1j0 “
d1j0`1 ď dj0`1, and d̃1m`1 “ d1m`1 “ dm. As a result, let d̃ “ pd1, ..., dj0´1, dj0`1, dj0`1, ..., dmq,
and we always have that A is d̃-discrete.

Case 2: p1 P IpH 1q. Define p2 “ pp1, ..., pn´1, p
2
nq P p0, 1s

n, where 0 ă p2n ď pn is chosen such
that p2 P BpHq. By Theorem 15, there is a d-discrete cylinder set A2 „ H such that µpA2q “ p2 and
µpYAPA2Aq “ 1. Again, without loss of generality, assume that pn,mq P E. Then as in Case 1, the
discreteness of A2 implies a partition of Itmu. We likewise refine that partition and construct the desired
cylinder set A. The detail is omitted. l

Remark 2. The above theorems and corollaries mean that given a bigraph and a vector in p0, 1sn, the
worst case cylinders can be discretized. More importantly, the discreteness degree is determined by the
bigraph only.

The discreteness degrees mentioned in Theorems 15, 3 and Corollaries 16, 17 are tight in general. For
example, consider the complete bigraph H “ prns, r1s, Eq. For any p P p0, 1sn, p P IpHq if and only if
ř

iPrns pi ă 1, while p P BpHq if and only if
ř

iPrns pi “ 1. One can easily check that the discreteness
degrees in the Theorems and Corollaries are the smallest possible for this example.
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4 Breaking cycles

In this section, we compute the boundary of cyclic bigraphs. Roughly speaking, a cyclic bigraph models
the variable-generated system of events where events are located on a cycle and neighbors (and only
neighbors) depend on common variables. Note that the only gapful bigraph reported in the literature is
4-cyclic [28].

Definition 4 (Cyclic bigraph). A bigraph H is said to be n-cyclic if the base graph GH is a cycle of
length n. When n “ 3, it additionally requiresXiPLpHqNHpiq “ H. In case of no ambiguity, an n-cyclic
bigraph is simply called a cyclic bigraph.

As far as the GLLL problem is concerned, an n-cyclic bigraph is always equivalent to the canonical
one Hn “ prns, rns, Enq where En “ tpi, iq, pi, pi` 1qpmod nqq : i P rnsu. Here the value kpmod nq is
defined to be pk ´ 1qpmod nq ` 1. Hence, we will focus on Hn in the rest of this section.

To simplify notation, the operator “pmod nq” will be omitted whenever clear from context.
A concept that is opposite to cyclic bigraphs is as follows.

Definition 5 (Linear bigraph). A bigraph H is said to be n-linear if the base graph GH is a path of
length n. In case of no ambiguity, an n-linear bigraph is simply called linear.

A rather surprising phenomenon of cyclic bigraphs is that they can be reduced to linear bigraphs in
the following sense: Any boundary vector of an n-cyclic bigraph is also that of an n-linear one. That is,
to find the boundary vector in a certain direction, some pair of neighboring events can be decoupled (i.e.,
become independent of each other) by ignoring their shared variables. In this sense we say that the cycle
is broken. The result is stated in the next theorem.

Theorem 18. For any vector p P BpHnq, there is a d-discrete cylinder setA „ Hn such that µpAq “ p,
µpYAPAAq “ 1, and d ă p2, 2, ..., 2q.

Remark 3. d ă p2, 2, ..., 2q means that dj “ 1 for some j P rns. Then all the cylinders (especially Aj
andAj`1) are independent ofXj . As a result,A also conforms withHtjun , the n-linear bigraph obtained
by removing the vertex j P RpHnq, meaning that p P EpHtjun q. Due to the assumption that p P BpHnq

and the easy fact that EpHtjun q Ď EpHnq, p must also lie on the boundary of Htjun .

To prove Theorem 18, first arbitrarily fix p P BpHnq. By Theorem 15, there is a p2, 2, ..., 2q-discrete
cylinder set A „ Hn such that µpAq “ p and µpYAPAAq “ 1. Arbitrarily choose such a cylinder set
A “ tA1, ..., Anu. For each i P rns, let Bi be the base of Ai such that dimpBiq “ ti, i` 1u.

Define function F as follows. For any S1 Ď Iti,ju and S2 Ď Itj,ku where i ‰ j ‰ k, let F pS1, S2q be
the largest set S Ď Iti,ku such that SˆIrnszti,ku Ď S1ˆIrnszti,juYS2ˆIrnsztj,ku. Let F pS1, S2, ..., Slq “
F pS1, F pS2, S3, ..., Slqq for any 2 ă l ď n. For any i P rns, there is a set Bi Ď Iti,i`1u such that
Ai “ Bi ˆ Irnszti,i`1u. For any 1 ď i, j ď n, let Bij “ tBi, ..., Bju if i ď j, otherwise Bij “
tBi, ..., Bn, B1, ..., Bju.

Note that F pBi,jq “ F pBi, F pBi`1,jqq “ F pF pBi,j´1q,Bjq for any i ‰ j P rns. For simplify,
let F pBi,iq “ Bi. To emphasize this important definition F pBi,jq, we leave it to readers to verify that
µpYAPAAq “ 1 if and only if µpF pBi,jq Y F pBj`1,i´1qq “ 1 for any i ď j.

Due to the discreteness of A, each Iti,ju is partitioned into four rectangles as in Figure 1 and only
unions of some of the rectangles make sense. Especially interesting is the 14 types of non-trivial unions,
namely T11 through to T44, grouped into the four categories T1, ..., T4, as shown in Figure 2. For any
i, j P rns, Bi and F pBi,jq must have one of the 14 types in Iti,i`1u and in Iti,j`1u, respectively.
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Figure 1: Partitioning Iti,ju into four rectangles

Lemma 19. For any i, j P rns, F pBj`1,i´1q “ Iti,juzF pBi,jq.

Proof. Since µpYAPAAq “ 1, we know that µpF pBj`1,i´1q Y F pBi,jqq “ 1, which is equivalent to
F pBj`1,i´1q Ě Iti,juzF pBi,jq. By the definition of F , each of F pBi,jq and F pBj`1,i´1q also has one of
the 14 types in Figure 2.

Suppose for contradiction that F pBi,jq X F pBj`1,i´1qq ‰ H. Then one of the rectangles in F pBi,jq
can be removed so as to preserve the property µpF pBj`1,i´1q Y F pBi,jqq “ 1. It is straightforward to
see that this can be achieved by removing a rectangle from either Bi or F pBi`1,jq. Iteratively, we see
that µpF pBj`1,i´1q Y F pBi,jqq “ 1 remains true event if one element in Bi,j gets smaller. Considering
Lemma 14 and the assumption that p is a boundary vector, we reach a contradiction. l

Now, we explore how Bi, Bi`1 are correlated in terms of their types.
If some Bi has type T2, then Ai is independent of either Xi or Xi`1. It is easy to see that A is

1-discrete either in dimension i or in dimension i` 1. Hence we have

Lemma 20. IfBi has type T2 for some i P rns, thenA has a discreteness degree smaller than p2, 2, ..., 2q.

Proof. Arbitrarily choose i P rns such that Bi has type T2. Without loss of generality, assume that Bi
is independent of Xi. This means that all events except Bi´1 are independent of Xi. By Lemma 19,
Bi´1 “ Iti´1,iuzF pBi,i´2q which is also independent ofXi. As a result,A do not depend onXi, namely,
it is 1-discrete in dimension i. l

As a result, in the rest of this section, it is assumed that no bases have type T2.

Lemma 21. For any i, j P rns such that i ă j or i ą j ` 1, we have the following observations.

1. If F pBi,jq has type T1, then both Bi and F pBi`1,jq has type T1.

2. If F pBi,jq has type T3, then both Bi and F pBi`1,jq has type T3.

3. Suppose that none of Bi, ..., Bj has type T2. If F pBi,jq has type T4, then one of Bi and F pBi`1,jq

has type T1, and the other has type T4.

Proof. In each case, it is straightforward to check two facts. First, the claimed combination of types ofBi
and F pBi`1,jq is feasible, namely, it can produce the given type of F pBi,jq. Second, this combination is
minimum in the following sense: if Bi and F pBi`1,jq have other feasible types, then at least one of them
can be reduced without changing F pBi,jq. Thus, similar to the proof of Lemma 19, at least one element
in Bi,j can be reduced without changing F pBi,jq. The detailed proofs of the two facts are omitted.

By the second fact and Lemma 14, since p is a boundary vector, we know that the other feasible
combinations are impossible. l

Now we can show that there are at most two essentially different possibilities of the types ofB1, ..., Bn,
as indicated in the following lemma.
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Figure 2: Types T11 through to T44 in Iti,ju, indicated by the shaded areas

Lemma 22. There are at most two possible combinations of the types of the bases.

1. T1-dominant: all bases have type T1 except one has type T4.

2. T3-dominant: all bases have type T3.

Proof. We do a case by case analysis.
Case 1:B1 has type T1. By Lemma 19, F pB2,nq has type T4. Applying Lemma 21 to F pB2,nq results

in two possibilities. One is thatB2 has type T4 and F pB3,nq has type T1, and the other is thatB2 has type
T1 and F pB3,nq has type T4. Then iteratively apply Lemma 21 to F pB3,nq. Altogether, we see that all Bi
have type T1 except one has type T4.

Case 2: B1 has type T3. By Lemma 19, F pB2,nq has type T3. Applying Lemma 21 to F pB2,nq shows
that both B2 and F pB3,nq have type T3. Repeat this process, and one can observe that all Bi have type
T3.

Case 3: B1 has type T4. Then F pB2,nq has type T1 due to Lemma 19. Iteratively applying Lemma
21 to F pB2,nq indicates that all the other Bi have type T1. l

However, the two possibilities are ruled out by the following two lemmas, respectively.

Lemma 23. The T3-dominant combination is impossible.

Proof. For contradiction, suppose that all Bi have type T3. Then F pB1,n´2q also has type T3. Without
loss of generality, assume that F pB1,n´2q and Bn´1 are as illustrated in Figure 3(a) and 3(b). Then
µpAn´1q “ ce` df . Again without loss of generality, we assume c ď d.

On the one hand, F pB1,n´1q is as illustrated in Figure 3(c). By Lemma 19, Bn must be as in Figure
3(d). We have µpAnq “ ac` bd.
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Figure 3: The all-T3-case is impossible

On the other hand, construct B1i by properly removing one of the two rectangles from Bi for each
1 ď i ď n ´ 2 such that F pB11,n´2q is as shown in Figure 3(e). Let B1n´1 be as illustrated in Figure
3(f). One can check that F pB11,n´1q must be as illustrated in Figure 3(g). Choose B1n as in Figure 3(h).
Let A1 is the set of cylinders whose bases are B11, ..., B

1
n, respectively. We know that µpA1iq ă µpAiq for

1 ď i ď n´ 2, µpA1iq “ µpAiq for i P tn, n´ 1u, PpYiPrnsA1iq “ 1, and A1 conforms with Hn. Since p
is a boundary vector, by Lemma 14, we reach a contradiction.

l

Lemma 24. The T1-dominant combination is impossible.

Proof. For contradiction, suppose without loss of generality that Bn has type T4 while the others Bi
have T1. We can further assume that Bi has type T14 as in Figure 2(a) for every 1 ď i ď n ´ 1. Let
pp1, ..., pnq “ p. We have aibi “ pi for 1 ď i ď n ´ 1 and bj ` aj`1 “ 1 for 1 ď j ď n ´ 2. The
parameters ai’s and bi’s should be chosen to maximize the measure of F pB1,n´1q, namely a1bn´1.

Let x “ bn´2 P p0, 1q. Then bn´1 “
pn´1

1´x , an´2 “ f0pxq fi
pn´2

x , an´2´k “ fkpxq fi
pn´2´k

1´fk´1pxq
, 1 ď

k ď n´ 3. Define gpxq fi a1bn´1 “ fn´3pxq
pn´1

1´x .

To maximize gpxq, we consider its derivative dgpxq
dx “ fn´3pxq

pn´1

p1´xq2
`

dfn´3pxq
dx

pn´1

1´x . Since only

the sign of dgpxq
dx matters, let hpxq fi

dgpxq
dx

p1´xq2

pn´1
“ fn´3pxq `

dfn´3pxq
dx p1 ´ xq. One can check that

dhpxq
dx “

d2fn´3pxq
d2x

p1 ´ xq. On the other hand, for any 0 ď k ď n ´ 4, d
2fk`1pxq
d2x

“
pn´3´k

p1´fkpxqq2
d2fkpxq
d2x

`

2
pn´3´k

p1´fkpxqq3

´

dfkpxq
dx

¯2
. Since d2f0pxq

d2x
ą 0, by induction we know that d

2fkpxq
d2x

ą 0 for any 1 ď k ď n´ 3.

Altogether, dhpxqdx ą 0 when x P p0, 1q. This implies three possible cases:

1. hpxq ą 0 for all x P p0, 1q;

2. hpxq ă 0 for all x P p0, 1q;
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3. There is x0 P p0, 1q such that hpxq ă 0 for all x P p0, x0q and hpxq ą 0 for all x P px0, 1q and
hpx0q “ 0 .

Since hpxq and dgpxq
dx always have the same sign, gpxq is either strictly monotonic on p0, 1q or de-

creasing on p0, x0q and increasing on px0, 1q.
On the other hand, we show that x “ bn´2 ranges over a closed interval in p0, 1q. First, due to

1 ě bn´1 “
pn´1

1´x , x increases as bn´1 increases, so it reaches upper bound when Bn´1 has type T2.
Second, it is easy to see that x decreases as a1 increases, so x reaches lower bound when B1 has type T2.

Note that gpxq gets maximized either at the lower bound or upper bound of x. When gpxq is maxi-
mized, either Bn´1 or B1 has type T2, contradictory to our assumption that the measure of F pB1,n´1q is
maximized in the case Bn has type T4 while the others Bi have T1. l

It is time to prove Theorem 18.
Proof. Theorem 18 immediately follows from Lemmas 20, 22, 23, 24. l

Theorem 4. Given a vector p P p0, 1qn, for each i P rns, let λi be the minimum positive solution to the
equation system: b1 “ λpi, bk “

λpk`i´1

1´bk´1
for 2 ď k ď n ´ 1, bn´1 “ 1 ´ λpi´1. Let λ0 “ miniPrns λi.

Then λ0p lies on the boundary of any n-cyclic bigraph.

Proof. Arbitrarily choose a vector p P p0, 1sn. By Lemma 10, there is a unique λ ą 0 such that λp P
BpHnq. By Theorem 18, there is a d-discrete cylinder setA „ Hn such that µpAq “ λp, µpYAPAAq “ 1,
and d ă p2, 2, ..., 2q. Then each Ai P A has a base Bi P Iti,i`1u. Arbitrarily choose i P rns such that
di “ 1, which means that both Bi and Bi´1 have type T2 and F pBi´1,iq have type T4. More precisely,
the type of Bi´1 is T23 or T24, and that of Bi is T21 or T22. By Lemma 19, F pBi`1,i´2q has type T1. By
Lemma 21, we can show that for any j R ti´ 1, iu, Bj has type T1. The types are illustrated in Figure 2.
Using the notation as in Figure 2, it is easy to check that ai´1 “ λpi´1, bi “ λpi, bj ` aj`1 “ 1 for any
j ‰ i ´ 1, and bkak “ λpk for any k R ti ´ 1, iu. Eliminate all a’s, properly re-number the b’s, and we
get the desired equation. As a result, the unique λ, say λ0, is a solution to that equation.

For any 0 ă λ1 ă λ0, let b11 “ λ1pi, b
1
k “

λ1pk`i´1

1´b1k´1
for 2 ď k ď n ´ 1. By an argument of

monotonicity, we know that 0 ă b1k ă bk for 1 ď k ď n ´ 1. On the other hand, if it also holds that
b1n´1 “ 1´λ1pi´1, then b1n´1 ą bn´1, which is a contradiction. Therefore, λ1 cannot be a solution to the
equation system. Altogether, λ0 is the minimum positive solution. The proof ends. l

As an application of Theorem 4, we explicitly characterize the boundary of the 3-cyclic bigraph H3.

Example 1. For H3, consider an arbitrary p P p0, 1q3 with p1 ` p2 ` p3 “ 1. For i P t1, 2, 3u, we have

λi “
1´
?

1´4pipi´1

2pipi´1
. Since the function 1´

?
1´2x
x is increasing with x ą 0, the final λ0 is the λi with i

minimizing pipi´1. For example, if p1 ě p2 and p1 ě p3, then λ3p “
1´
?

1´4p2p3
2p2p3

p is a boundary vector.

5 Gap between Abstract- and Variable-LLL

In this section, we investigate conditions under which Shearer’s bound remains tight for Variable-LLL.

5.1 A Theorem for Gap Decision

Definition 6 (Exclusiveness). An event set A is said to be exclusive with respect to a graph G, if G is a
dependency graph of A and µpAi XAjq “ 0 for any i, j such that i P NGpjq. A cylinder set A is called
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exclusive with respect to a bigraph H , if A conforms with H and A is exclusive with respect to GH . We
do not mention “with respect to G or H” if it is clear from context.

The next lemma claims that exclusive cylinder sets always exist if all the probabilities are small
enough.

Lemma 25. For any bigraphH , there is ε ą 0 such that for any vector p on p0, εq, there exists a cylinder
set A that is exclusive with respect to H and µpAq “ p.

Proof. Let H “ prns, rms, Eq. For each i P LpHq, define a cylinder Ai “ tpx1, ..., xmq : i´1
n ď

xj ă
i
n ,@j P N piqu. Obviously, tA1, ..., Anu is exclusive with respect to H . The lemma holds with

ε “ miniPLpHq µpAiq. l

Definition 7 (Abstract Interior). The abstract interior of a graph G “ prns, Eq, denoted by IapGq, is the
set tp P p0, 1qn : P

`

XAPAA
˘

ą 0 for any event set A „a G with PpAq “ pu, where “A „a G” means
that G is a dependency graph of A. Given a bigraph H , we simply write IapHq for IapGHq.

It is obvious that IapHq Ď IpHq for any bigraph H .

Definition 8 (Abstract Boundary). The abstract boundary of a graph G “ prns, Eq, denoted by BapGq,
is the set tp P p0, 1sn : p1 ´ εqp P IapGq and p1 ` εqp R IapGq for any ε P p0, 1qu. Any p P BapGq is
called an abstract boundary vector of G.

Here is an interesting property of exclusive event sets.

Lemma 26. Given a graph G and p P IapGq Y BapGq. Among all event sets A „a G with PpAq “ p,
there is an exclusive one such that PpYAPAAq is maximized.

Proof. It is a byproduct of the proof of [43, Theorem 1]. l

Definition 9 (Gap). A bigraph H is called gapful in the direction of p P p0, 1qn, if there is λ ą 0 such
that λp P IpHqzIapHq, otherwise it is called gapless in this direction. H is said to be gapful if it is
gapful in some direction, otherwise it is gapless.

For convenience, “being gapful” will be used interchangeably with “having a gap”.
The main result of this section, namely Theorem 5, is a necessary and sufficient condition for deciding

whether a bigraph is gapful. Intuitively, it bridges gaplessness and exclusiveness both in the interior and
on the boundary. At the first glance, the connection between gaplessness and exclusiveness seems to be
an immediate corollary of the well-known Lemma 26 by Shearer. However, this is not the case. The main
difficulty lies in boundary vectors. Suppose the bigraph is gapless. On the one hand, for a vector on its
boundary, there is an exclusive event set whose union has probability 1, by Lemma 26. These events are
not necessarily cylinders, so we cannot claim the existence of an exclusive cylinder set. On the other
hand, there indeed is a cylinder set whose union has measure 1. Such a cylinder set must be exclusive as
desired, if the union of non-exclusive events always has smaller probability than that of exclusive ones.
But Lemma 26 just claims that the union of non-exclusive events cannot have bigger probability, not
precluding the possibility that the probabilities are equal. Our proof essentially distills down to ruling out
this possibility, as in Lemma 29.

The next lemma will be used in proving Lemma 29. It claims that every individual event in an
exclusive event set contributes to the overall probability.
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Lemma 27. Given an exclusive set A of events, PpYAPA1Aq ă PpYAPAAq for any A1 Ĺ A.

Proof. The proof is by induction on |A|, the size of A.
Basis: |A| “ 1. It trivially holds.
Hypothesis: The lemma whenever |A| ă n.
Induction: Consider |A| “ n. LetA “ tA1, ..., Anu, and G “ prns, Eq be a dependency graph with

respect to whichA is exclusive. For contradiction, suppose that there isB P A such that PpYAPAztBuAq “
PpYAPAAq. We try to reach a contradiction. Without loss of generality, assume B “ An.

Since PpYiPrn´1sAiq “ PpYiPrnsAiq, we have An Ď YiPrn´1sAi. Recall that A is exclusive, so
An X pYiPN pnqAiq “ H. As a result, An Ď YiRN`pnqAi, where N`pnq fi N pnq Y tnu. Note that An
and tAi : i R N`pnqu are independent, so PpAnq “ PpAn X YiRN`pnqAiq “ PpAnqPpYiRN`pnqAiq,
which implies that PpYiRN`pnqAiq “ 1.

Consider the connected components of G after N`pnq has been removed. There must be a compo-
nent Γ such that PpYiPΓAiq “ 1, because of two facts. First, event sets on different connected compo-
nents are independent. Second, if the union of independent events has probability 1, at least one of them
has probability 1.

Because the vertex n is isolated from Γ andG is connected, there must be some vertex k P N pnq that
is adjacent to Γ. Let Γ1 “ ΓYtku,G1 be the induced subgraph ofG on Γ1, p1 “ p|Γ1 ,A1 “ tAi : i P Γ1u.
Then A1 is exclusive with respect to G1, and PpA1q “ p1. Since G1 has less than n vertices, by induction
hypothesis, PpYiPΓ1Aiq ą PpYiPΓAiq “ 1 which is a contrdiction. l

The following corollary means that the probability vector of any exclusive cylinder set must lie in
the interior or on the boundary. It can be regarded as the converse of Lemma 26.

Corollary 28. Given a bigraph H and a vector p on p0, 1s, if there is a cylinder set A that is exclusive
with respect to H and µpAq “ p, then p P IpGq Y BpGq.

Proof. Assume H “ prns, rms, Eq, A “ tA1, ..., Anu, and p “ pp1, ..., pnq. Consider the vertex
n P LpHq, and let Bn be the base of An that lies in INHpnq. Arbitrarily fix 0 ă ε ă pn. Choose a subset
B1n Ă Bn with µpB1nq “ pn ´ ε. Let B2n “ BnzB

1
n. Define a bigraph H 1 “ prn ` 1s, rms, Eq such

that NH 1piq “ NHpiq for any i P LpHq Ă LpH 1q and NH 1pn ` 1q “ NHpnq for n ` 1 P LpH 1q.
Let A1 “ tA1, ..., An´1, A

1
n, A

1
n`1u where A1n and A1n`1 are the cylinders with bases B1n and B2n,

respectively. It is easy to see thatA1 is exclusive with respect toH 1 and µpA1q “ pp1, ..., pn´1, pn´ε, εq.
By Lemma 27, µpYAPA2Aq ă µpYAPA1Aq ď 1, where A2 “ tA1, ..., An´1, A

1
nu. One can check that

A2 is exclusive with respect to H and µpA2q “ pε fi pp1, ..., pn´1, pn ´ εq. Hence pε P IpHq. Since ε
can be arbitrarily small, we know that p P IpGq Y BpGq. l

The following lemma is key to the proof of Theorem 5. Intuitively, it claims that the overall proba-
bility is maximized by and only by an exclusive set of event. The “by” part was proved in [43, Theorem
1], and the “only by” part will be proved here. The proof is inspired by that of [43, Theorem 1].

Lemma 29. Suppose that G is a dependency graph of event sets A and B, PpAq “ PpBq, and B is
exclusive. Then PpYAPAAq ď PpYBPBBq, and the equality holds if and only if A is exclusive.

Proof. Shearer proved PpYAPAAq ď PpYBPBBq in [43, Theorem 1], so we focus on the other part.
Assume G “ prns, Eq, A “ tA1, ..., Anu, and PpAq “ pp1, ..., pnq. Let’s borrow the notation from

the proof of [43, Theorem 1]. For any S Ď rns, define αpSq “ PpXiPSAiq and βpSq “ PpXiPSBiq. We
proceed case by case.

Case 1: βprnsq ą 0. Suppose that A is not exclusive.
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We first prove by induction on |S| that αpSq{βpSq increases with inclusion. The base case holds since
αpHq “ βpHq and αpSq “ βpSq for any singleton S. For induction, given S1 Ă rns and j P rnszS1, let
S2 “ S1 Y tju, T2 “ S1 XN pjq, and T1 “ S1zT2. We have

αpS2q

βpS2q
´
αpS1q

βpS1q
ě
αpS1q ´ pjαpT1q

βpS1q ´ pjβpT1q
´
αpS1q

βpS1q
“

pjβpT1q

βpS1q ´ pjβpT1q

„

αpS1q

βpS1q
´
αpT1q

βpT1q



ě 0. (2)

The last inequality is by induction, and the first one holds because on the one hand

αpS2q “ PpXiPS2Aiq “ PpXiPS1Aiq ´ PpXiPS1Ai XAjq

“ PpXiPS1Aiq ´ PpXiPT1Ai XAjq ` PpXiPT1Ai XAj X pYiPT2Aiqq
ě PpXiPS1Aiq ´ PpXiPT1Ai XAjq “ αpS1q ´ pjαpT1q,

(3)

and on the other hand, βpS2q “ βpS1q ´ pjβpT1q due to a similar process like formula 3 and the
assumption that B is exclusive. Hence, αpSq{βpSq is increasing.

As a special case, choose i, j P rns such that j P N piq and PpAi X Ajq ą 0. Such a pair of i, j
exists because of the assumption that A is not exclusive. Apply (2) to S1 “ tiu, S2 “ ti, ju, T2 “

tiu, T1 “ H. Since the inequality in (3) turns out to be “ą”, the first inequality in (2) is also “ą”. Thus
αpS2q

βpS2q
ą

αpS1q

βpS1q
“ 1, which, together with the monotonicity of αpSq{βpSq, implies that αprnsqβprnsq ą 1. As a

result, αprnsq ą βprnsq.
Case 2: βprnsq “ 0. Assume that PpYAPAAq “ PpYBPBBq while A is NOT exclusive. We try to

reach a contradiction.
Let S2 “ rns. Since A is NOT exclusive, there is j P rns such that PpAj X pYiPN pjqAiqq ą 0. Let

S1 “ S2ztju, T1 “ S1zN pjq, T2 “ S1zT1 “ N pjq. The property Q1 holds immediately:
Q1: T2 ‰ H and PpAj X pYiPT2Aiqq ą 0.

Then note that

0 “ αpS2q ě αpS1q ´ pjαpT1q “
αpS1q

βpS1q
pβpS1q ´ pjαpT1q

βpS1q

αpS1q
q

ě
αpS1q

βpS1q
pβpS1q ´ pjβpT1qq “

αpS1q

βpS1q
βpS2q “ 0

(4)

where βpS1q ą 0 due to Lemma 27. The first inequality in (4) is due to (3). The second follows from
αpS1q

βpS1q
ě

αpT1q
βpT1q

, by the monotonicity of αpSq
βpSq . Since both inequalities turns out to be equal, we get the

properties Q2, Q3:
Q2: αpS1q

βpS1q
“

αpT1q
βpT1q

.

Q3: PpXiPT1Ai XAj X pYiPT2Aiqq “ 0.
Consequently, the proof is reduced to proving the following claim.
Claim: For any S2 Ď rns and j P S2, let S1 “ S2ztju, T1 “ S1zN pjq, T2 “ S1zT1. It is impossible

that the properties Q1, Q2, Q3 hold simultaneously.
Proof of the Claim: The proof is by induction on the size of T1.
Basis: T1 “ H. By Q3, 0 “ PpXiPT1Ai X Aj X pYiPT2Aiqq “ PpAj X pYiPT2Aiqq, which is

contradictory to Q1.
Hypothesis: The claim holds if |T1| ă t.
Induction: Consider the case where |T1| “ t. Assume for contradiction that Q1, Q2, Q3 hold simul-

taneously.
By Q1, one can choose j1 P T2 such that PpAj XAj1q ą 0.
We first show that T1 XN pj1q ‰ H. This is because if T1 XN pj1q “ H, then
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0
by Q3
“ PpXiPT1Ai XAj X pYiPT2Aiqq ě PpXiPT1Ai XAj XAj1q

by T1XN pj1q“H
“ PpXiPT1AiqPpAj XAj1q ą 0 A contradiction!

(5)

A byproduct of (5) is that Q3 implies

PpXiPT1Ai XAj XAj1q “ 0. (6)

Then we prove that PpAj1 X pYiPT1XN pj1qAiqq ą 0. This is due to

PpAj1 X pYiPT1XN pj1qAiqq
ě PpAj1 X pYiPT1XN pj1qAiq XAj XkPT1zN pj1q Akq

by p6q
“ PpAj1 X pYiPT1XN pj1qAiq XAj XkPT1zN pj1q Akq

`PpXiPT1Ai XAj XAj1q
“ PpAj XAj1 XkPT1zN pj1q Akq
“ PpAj XAj1qPpXkPT1zN pj1qAkq ą 0

Now let S12 fi T1 Y tj
1u, S11 fi T1, T

1
1 fi S11zN pj1q, T 12 fi S11zT

1
1 “ T1 XN pj1q. We have shown

Q11: T 12 ‰ H and PpAj1 X pYiPT 12Aiqq ą 0.
Now we show other properties.
On the one hand, αpS

1
2q

βpS12q
´

αpS11q
βpS11q

“ 0 due to four facts: S11 “ T1, S12 Ď S1, αpSqβpSq is monotone, and Q2

holds.
One the other hand, αpS

1
2q

βpS12q
´

αpS11q
βpS11q

ě
αpS11q´pj1αpT

1
1q

βpS11q´pj1βpT
1
1q
´

αpS11q
βpS11q

“
pj1βpT

1
1q

βpS11q´pj1βpT
1
1q

”

αpS11q
βpS11q

´
αpT 11q
βpT 11q

ı

ě 0

by formula (2). Since both inequalities should be equality, we have αpS12q “ αpS11q ´ pj1αpT
1
1q and

Q12: αpS
1
1q

βpS11q
“

αpT 11q
βpT 11q

.

Applying formula (3) to S12, the equality αpS12q “ αpS11q ´ pj1αpT
1
1q implies

Q13: PpXiPT 11Ai XAj1 X pYiPT 12Aiqq “ 0.
Altogether, the properties Q11, Q

1
2, Q

1
3 remains true for S12, j

1, S11, T
1
1, T

1
2.

However, since |T 11| ă |T1| “ t, by the induction hypothesis, the properties Q11, Q
1
2, Q

1
3 can’t holds

simultaneously. We reach a contradiction. The Claim is proven. l

Intuitively, the next lemma shows that any set of events can be reduced proportionally so that the
dependency graph and exclusiveness are preserved and the probability of the union decreases at most
linearly. Basically, in order to reduce an event A, construct cylinders with height 1 whose bases are the
events, respective. Then adjust the height of A-based cylinder to λ. Regard the cylinders as new events
and repeat this process until each original event has been handled.

Lemma 30. Given a graph G “ prns, Eq and a vector p P p0, 1sn, suppose that event set A „a G and
PpAq “ p. For any λ P p0, 1q, there is an event set B „a G with PpBq “ λp such that

1. If A is exclusive, so is B;

2. PpYAPAAq ´ p1´ λq
ř

iPrns pi ď PpYBPBBq ď PpYAPAAq.

Proof. Assume A “ tA1, ..., Anu. Let Sp0q be the probability space from which the events in A come.
Define probability space Sp1q “ Sp0q ˆ I where I is the unit interval r0, 1s endowed with Lebesgue

24



measure. LetAp1q be the set of events in Sp1q defined asAp1q1 “ A1ˆr0, λs andAp1qk “ AkˆI for k ‰ 1.
Let pp1q “ pλp1, p2, ..., pnq. It is easy to see that Ap1q „a G, PpAp1qq “ pp1q, and PpYiPrnsA

p1q
i q ě

PpYiPrnsAiq ´ p1´ λqp1.

Likewise, we define probability space Sp2q “ Sp1q ˆ I, and event set Ap2q in Sp2q with Ap2q2 “

A
p1q
2 ˆ r0, λs and Ap2qk “ A

p1q
k ˆ I for k ‰ 2. Let pp2q “ pλp1, λp2, p3, ..., pnq. We have that Ap2q „a G,

PpAp2qq “ pp2q, and PpYiPrnsA
p2q
i q ě PpYiPrnsAiq ´ p1´ λqpp1 ` p2q.

Iterate until we get Apnq “ pA
pnq
1 , ..., A

pnq
n q „a G, PpApnqq “ ppnq “ λp, and PpYiPrnsA

pnq
i q ě

PpYiPrnsAiq ´ p1´ λq
ř

iPrns pi.
One can check that

1. If A is exclusive, so is Apiq for any i P rns;

2. PpYAPApiqAq ď PpYAPAAq for any i P rns.

Let B “ Apnq. The proof ends. l

Now we are ready to present a counterpart of Lemma 10.

Lemma 31. For any graphG “ prns, Eq and p P p0, 1qn, there is a unique λ ą 0 such that λp P BapGq.

Proof. Arbitrarily fix a graph G “ prns, Eq and p P p0, 1qn. Let Λ fi tλ ą 0 : λp R IapGqu.
It is easy to see that

1. If λ is so big that an entry of λp equals 1, PpYAPAAq “ 1 for any event set A „a G such that
PpAq “ φpλpq.

2. If λ is so small that l1-norm of λp is smaller than 1, PpYAPAAq ă 1 for any event set A „a G
such that PpAq “ λp.

Thus, Λ is non-empty and its infimum, denoted by λ0, must be positive. Let q “ λ0p. In order to show
that q P BapGq, consider an arbitrary real number ε ą 0.

On the one hand, because λ0 “ inf Λ, we have p1´ εqq P IapGq.
On the other hand, assume for contradiction that p1 ` εqq P IapGq. By Lemma 26, we can choose

an exclusive event set A „a G such that PpAq “ p1 ` εqq and PpYAPAAq ă 1. By Lemma 30,
for any 0 ă δ ă 1, there is an exclusive event set Aδ „a G such that PpAδq “ δp1 ` εqq and
PpYAPAδAq ă PpYAPAAq ă 1. By Lemma 29, PpYAPAAq ă 1 for any event set A „a G with
PpAq “ δp1` εqq, so δp1` εqq P IapGq, which means δp1` εqλ0 R Λ. Since δ ranges over p0, 1q, we
have p0, p1` εqλ0q X Λ “ H, contradictory to the fact that λ0 “ inf Λ. As a result, p1` εqq R IapGq.

Altogether, λ0p P BapGq. The uniqueness immediately follows from the definition of abstract bound-
ary vectors. l

Now we are ready to prove the main theorem of this section.

Theorem 5. Given a bigraph H and a vector p of positive reals, the following three conditions are
equivalent:

1. For any λ such that λp P IpHq, there is an exclusive variable-generated event system A with
event-variable graph H and probability vector λp.
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2. For the λ such that λp P BpHq, there is an exclusive variable-generated event system A with
event-variable graph H and probability vector λp.

3. H is gapless in the direction of p.

Proof. (1 ñ 3): Arbitrarily fix λ ą 0 such that q fi λp P IpHq. LetA „ H be an exclusive cylinder set
such that µpAq “ q and µpYAPAAq ă 1. It also holds that A is exclusive with respect to the base graph
GH . Since µpYAPAAq ă 1, by Lemma 29, µpYBPBBq ă 1 for any event set B „a GH with PpBq “ q.
As a result, q P IapHq. Altogether, H is gapless in the direction of p.

(3 ñ 2): Assume that H is gapless in the direction of p. Let λ be such that q fi λp P BpHq. By
Theorem 15, there is a cylinder set A „ H such that µpAq “ q and µpYAPAAq “ 1. On the other
hand, q P BapHq due to the assumption that H is gapless in the direction of p. By Lemma 26, there is an
exclusive event set B „a GH such that µpBq “ q and PpYBPBBq “ 1. Because A also conforms with
GH and PpYBPBBq “ PpYAPAAq “ 1, by Lemma 29, A must be exclusive with respect to GH , hence
exclusive with respect to H .

(2 ñ 1): Arbitrarily fix λ ą 0 such that q fi λp P IpHq. Let δ ą 1 be such that δλp P BpHq.
Arbitrarily choose an exclusive cylinder setA „ H which satisfies µpAq “ δλp. LetA “ tA1, ..., Anu.
For each i P LpHq, there is a base Bi of Ai such that dimpBiq “ NHpiq. Arbitrarily choose a subset
B1i Ă Bi with µpB1iq “ µpBiq{δ. Let A1 “ tA11, ..., A1nu where each A1i is the cylinder with base B1i. It
is easy to check that A1 „ H , µpA1q “ q, and A1 is exclusive. l

The significance of Theorem 5 lies in that it enables to decide whether a gap exists without checking
Shearer’s bound.

Remark 4. Given a bigraph H “ prns, rms, Eq and a vector p P p0, 1qn, consider three real numbers
that are of special interest. λ1, λ2 are such that λ1p P BpHq and λ2p P BapGHq, respectively. λ3 is the
maximum λ such that there is an exclusive cylinder set A „ H with µpAq “ λp. It is not difficult to see
that λ1 ě λ2 ě λ3. An equivalent form of Theorem 5 is that the three numbers are either all equal or
pairwise different.

5.2 Reduction Rules

Given a bigraph H , we define the following 5 types of operations on H .

1. Delete-Variable: Delete a vertex j P RpHq with |N pjq| ď 1, and remove the incident edge if any.

2. Duplicate-Event: Given a vertex i P LpHq, add a vertex i1 to LpHq, and add edges incident to i1

so that N pi1q “ N piq.

3. Duplicate-Variable: Given a vertex j P RpHq, add a vertex j1 to RpHq, and add some edges
incident to j1 so that N pj1q Ď N pjq.

4. Delete-Edge: Delete an edge from E provided that the base graph remains unchanged.

5. Delete-Event: Delete a vertex i P LpHq, and remove all the incident edges.

We also define the inverses of the above operations. The inverse of an operation O is the operation O1

such that for any H , O1pOpHqq “ OpO1pHqq “ H .
The next theorems show how these operations influence the existence of gaps.
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Theorem 32. A bigraphH is gapful, if and only if it is gapful after applying Delete-Variable, Duplicate-
Event, Duplicate-Variable, or their inverse operations.

Proof. (Delete-Variable): It is trivial.
(Duplicate-Event): Without loss of generality, assume that the vertex n ` 1 is added to LpHq and

N pn` 1q “ N pnq. Let H 1 “ prn` 1s, rms, E1q be the resulting bigraph.
On the one hand, suppose thatH is gapless. Arbitrarily choose p1. Let p “ pp11, ..., p

1
n´1, p

1
n`p

1
n`1q.

From Lemma 10, we have there exists a unique λ ą 0 such that λp P BpHq. From Theorem 5, we have
there is a exclusive cylinder set A “ tA1, ..., Anu in Im such that A conforms with H and µpAq “ λp.
Partition the base of cylinder An such that the resulting disjoint cylinders A1n and A1n`1 satisfy µpA1nq “
λp1n, µpA

1
n`1q “ λp1n`1. Let A1 “ tA1, ..., An´1, A

1
n, A

1
n`1u. One can check that A1 is exclusive with

respective to with H 1, µpA1q “ λp1, and µpYAPA1Aq “ 1. This means that H 1 is gapless, by Theorem 5.
On the other hand, suppose thatH 1 is gapless. Arbitrarily choose p. Let p1 “ pp1, ..., pn´1, p

1
n, p

1
n`1q

such that p1n` p
1
n`1 “ pn. From Lemma 10, we have there exists a unique λ ą 0 such that λp1 P BpH 1q.

From Theorem 5, we have there is a exclusive cylinder set A1 “ tA11, ..., A
1
n, A

1
n`1u in Im such that

A1 conforms with H 1 and µpA1q “ λp1. By Lemma 14, it is easy to see that µpA1n X A1n`1q “ 0. Let
A “ tA11, ..., A1n Y A1n`1u. One can check that A is exclusive with respective to with H , µpAq “ λp,
and µpYAPAAq “ 1. This means that H is gapless, by Theorem 5.

(Duplicate-Variable): Without loss of generality, assume that the vertex m` 1 is added to RpHq and
N pm ` 1q Ď N pmq. Let H 1 “ prns, rm ` 1s, E1q be the resulting bigraph. Since GH “ GH 1 , we only
have to show BpHq “ BpH 1q. Arbitrarily fix p P p0, 1qn. Suppose λp P BpHq and λ1p P BpH 1q.

Since λp P BpHq, there is a cylinder set A “ tA1, ..., Anu in Im such that A „ H , µpAq “ λp,
and µpYiPrnsAiq “ 1. For any i P rns, define A1i “ Ai ˆ Itm`1u. Let A1 “ tA11, ..., A1nu. We have A1
conforms with H 1, µpA1q “ λp, and µpYiPrnsA1iq “ 1, so λ1 ď λ.

On the other hand, since λ1p P BpH 1q, there is a discrete cylinder set A1 “ tA11, ..., A
1
nu in Im`1

such that A1 conforms with H 1, µpA1q “ λ1p, and µpYiPrnsA1iq “ 1. By discreteness, one can partition
Itm,m`1u into disjoint rectangles ∆1, ...,∆K such that for each i P rns, there are sets Aik Ď Im´1 for
k P rKs satisfying A1i “ YkPrKsAik ˆ∆k. For each i P LpHqzN pmq, since tm,m` 1u XN piq “ H,
Aik does not depend on k, and is denoted by Bi. Since µpYiPrnsA1iq “ 1, we have µpYiPrnsAikq “ 1

for any k. Now partition Itmu into disjoint intervals Γ1, ...,ΓK with µpΓkq “ µp∆kq for each k. Define
A “ tA1, ..., Anu in Im such that Ai “ YkPrKsAik ˆ Γk for i P N pmq and Ai “ Bi ˆ Im “ A1i for i P
LpHqzN pmq. It is straightforward to check thatA conforms withH , µpAq “ λ1p, and µpYiPrnsAiq “ 1.
Hence, λ ď λ1.

As a result, BpHq “ BpH 1q. Recall that GH “ GH 1 , so H is gapful if and only if so is H 1. l

Theorem 33. A gapless bigraph remains gapless after applying Delete-Event or the inverse of Delete-
Edge.

Theorem 34. A gapful bigraph remains gapful after applying Delete-Edge or the inverse of Delete-
Event.

The proofs of the above two theorems are similar to that of Theorem 32, so they are omitted.
Because the operations can be pipelined, applying them in combination may produce interesting

results. The following corollaries are some examples.

Definition 10 (Combinatorial bigraph). Given two positive integersm ă n, letHn,m “ prp
n
mqs, rns, En,mq

where pi, jq P En,m if and only if j is in the m-sized subset of rns represented by i. Hn,m is called the
pn,mq-combinatorial bigraph.
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Corollary 35. If Hn,m is gapless, then so is Hn`c,m`c for any integer c ě 1.

Proof. We only need to prove for c “ 1.
First, apply Delete-Edge to Hn`1,m`1 as follows. For each vertex i in rpn`1

m`1qs, if pi, n ` 1q P
En`1,m`1, delete pi, n` 1q. Otherwise, delete an arbitrary edge of i.

Then, apply Delete-Variable to the bigraph, i.e., delete the vertex n` 1.
Finally, apply the inverse operation of Duplicate-Event to the bigraph.
For any m-set S Ă rns, suppose the set S Y tn ` 1u is represented by i P rpn`1

m`1qs. After applying
Delete-Edge to i, the neighborhood of i is exactly S. This means that the final bigraph is exactly Hn,m.
Because Hn,m is gapless, from Theorem 32 and Theorem 34, we have that Hn`1,m`1 is also gapless. l

Corollary 36. If Hn,m is gapful, then for any integer c ě 1, Hcn,cm is also gapful.

Proof. We apply operations to Hcn,cm in two steps.
First, apply Delete-Event to Hcn,cm. Given an m-set S Ă rns, define fpSq “ YiPStki : k P rcsu.

Delete all vertices from LpHcn,cmq except those representing fpSq for some S Ă rns. Let H 1 be the
resulting bigraph.

Second, apply the inverse operation of Duplicate-Variable to H 1. It is easy to see that for any
k1j, k2j P RpH

1q with k1, k2 P rcs and j P rns, NH 1pk1jq “ NH 1pk2jq. Hence, we delete all ver-
tices in RpH 1qzrns from RpH 1q, preserving gapful/gapless.

It is easy to verify that the final bigraph is exactly Hn,m. Because Hn,m is gapful, from Theorem 32
and Theorem 33, we have that Hcn,cm is also gapful. l

Definition 11 (Sparsified bigraphs). A bigraph H 1 “ prn1s, rm1s, E1q is called a sparsification of H “

prns, rms, Eq if rn1s “ rns, rm1s Ď rms, E1 Ď E and their base graphs are the same.

By Theorem 32 and Theorem 33, we know that ifH is gapful, all sparsifications ofH must be gapful.
Applying Corollary 36, we get the following result.

Corollary 37. If Hn,m is gapful, all sparsifications of Hcn,cm are also gapful for any integer c ě 1.

6 Relationship between gaps and cycles

In this section, we show that a bigraph has a gap is almost equivalent to that its base graph has an cycle.
The only case that is not completely known is when the bigraph does not contain any cyclic bigraph but
its base graph has a 3-clique. Many examples in this case is gapless, but we find one that turns out to be
gapful.

We also study gaps from a dependency-graph-oriented perspective. Namely, a dependency graph is
a-gapful if at least one corresponding bigraph is gapful, while is strongly a-gapful if all corresponding
bigraphs are gapful. Intuitively speaking, the two concepts serve as a lower bound and an upper bound
of the notion of gapfulness. Characterization of strongly a-gapful graphs was initiated by Kolipaka et al.
[28] and has been open for 6 years.

6.1 Gaps are not equivalent to cycles

First of all, we prove that any treelike bigraph is gapless. Recall that a bigraph is called treelike if its base
graph is a tree. Basically, for a vector on boundary, we construct an exclusive cylinder set, which leads
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to the result by Theorem 5. To ensure exclusiveness, the unit interval in each dimension is divided into
two disjoint parts, each of which is assigned to one of the two cylinders depending on this dimension.
The construction is feasible because the base graph is a tree.

Theorem 6. Treelike bigraphs are gapless.

Proof. Arbitrarily choose a treelike bigraph H “ prn ` 1s, rms, Eq. Since the case where n “ 1 is
trivial, we just consider n ą 1. GH is a tree means that any vertex in RpHq has at most two neighbors in
H . Hence, by Theorem 32, it does not lose generality to assume that: 1. any vertex in RpHq has exactly
two neighbors in H , and 2. any two vertices in LpHq have no more than one common neighbor in H .
Since GH is a tree, one has m “ n.

Let p P p0, 1qn`1 be a boundary vector of H . We will construct a set A of cylinders A1, ..., An`1 Ă

Im “ In such that µpAq “ p and A conforms with H . Recall that for any j P rns, Xj is the coordinate
variable of the j-th dimension of In.

We regard GH as a tree rooted at the vertex n ` 1. For any vertex i P rn ` 1s, let Cpiq be the set of
children of i. Without loss of generality, for any k P Cpiq, assume that NHpkq X NHpiq “ tku, which
means that both Ai and Ak depend on Xk.

Define q “ pq1, ..., qnq P Rn to be

qi “

"

pi if vertex i is a leaf of GH
pi{

ś

kPCpiqp1´ qkq otherwise (7)

Claim: q P p0, 1qn.
Proof of the Claim: Suppose for contradiction that there is i P rns such that qi R p0, 1q. Fix such an

i each of whose descendant k satisfies qk P p0, 1q. By the definition of q, we must have qi ě 1.
Let Ti be the subtree of GH rooted at i. For each k P rn` 1s, if k is not a vertex of Ti, define A1k “

H Ă In. When k is in Ti, construct a cylinder A1k Ă In which consists of all the vectors px1, x2, ..., xnq
such that

$

&

%

0 ď xk ď qk if k is a leaf of Ti
ql ă xl ď 1,@l P Cpiq if k “ i
0 ď xk ď qk, ql ă xl ď 1,@l P Cpkq otherwise

Define vector p1 “ pp11, ..., p
1
n`1q such that

p1k “

$

&

%

ś

kPCpiqp1´ qkq if k “ i

pk if k is in Ti and k ‰ i
0 otherwise

Then the cylinder set A1 “ tA1k|k P rn` 1su conforms with H , and µpA1q “ p1 ă p.
Now we prove that YkPrn`1sA

1
k “ In. Arbitrarily fix x “ px1, ..., xnq P In.

Let l “ i. Then, if there is k P Cplq such that 0 ď xk ď qk, let l be such a k. Iterate this process and
finally one of the following two cases must be reached.

Case 1: Cplq “ H, namely l is a leaf.
Case 2: Cplq ‰ H and qk ă xk ď 1 for any k P Cplq.
Let the final l be l0. We can see that x P A1i if l0 “ i. Otherwise, the iteration guarantees that

0 ď xl0 ď ql0 , so it also holds that x P A1l0 . To sum, we always have x P A1l0 , which implies that
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YkPrn`1sA
1
k “ In. Considering that p P BpHq and p ą p1, we reach a contradiction due to Lemma 14.

The Claim is proven.
Then we can construct cylinders A1, ..., An`1 Ă In as follows. For any i P rn` 1s, Ai Ă In consists

of all the vectors px1, x2, ..., xnq such that
$

&

%

0 ď xi ď qi if i is a leaf of GH
qk ă xk ď 1,@k P Cpiq if i “ n` 1
0 ď xi ď qi, qk ă xk ď 1,@k P Cpiq otherwise

Define p1 “ pp1, ..., pn, p
1
n`1q where p1n`1 “

ś

kPCpn`1qp1´ qkq. It is easy to observe three facts.
First, A “ tAi|i P rn` 1su is exclusive and conforms with H .
Second, µpAq “ p1.
Third, YiPrn`1sAi “ In, which follows from the proof of YkPrn`1sA

1
k “ In in the above Claim.

Since p P BpHq, we have p1 ě p. Arbitrarily choose A2n`1 Ď An`1 such that: 1. A2n`1 only depends
on Xi’s with i P Cpn ` 1q, and 2. µpA2n`1q “ pn`1. Let A2 “ tA1, ..., An, A

2
n`1u. We know that

µpA2q “ p and A2 is exclusive with respect to H . Because p P BpHq, by Theorem 5, H is gapless in
the direction of p. l

Using of the constructed cylinders, we obtain a system of equations whose solution determines the
boundary of a treelike bigraph.

Corollary 38. Given a bigraph H “ prns, rms, Eq such that GH is a tree, appoint the vertex n as the
root of GH . For any p P p0, 1qn, λp P BpHq if and only if λ is the minimum positive solution to the
equation system: qi “ λpi if vertex i is a leaf of GH , qi “ λpi{

ś

k is a child of ip1´ qkq if i ‰ n and is not
a leaf, and λpn “

ś

k is a child of np1´ qkq.

Proof. This immediately follows from the construction of A in the proof of Theorem 6. l

Now we show that cyclic bigraphs are gapful. Though in principle this can be shown by a combination
of [43, Theorem 1] and the results in Section 4, it is tough since both Shearer’s inequality system and the
high degree polynomial in Theorem 4 are hard to solve. Hence we do it in another way. Specifically, for
the vector q “ p1

4 ` ε, ...,
1
4 ` εq where ε ą 0 is small enough, we show two facts. First, the vector q lies

in the interior of the cyclic bigraph. Second, q does not allow any exclusive cylinder set. By Theorem 5,
these facts immediately imply Theorem 7.

Theorem 7. Cyclic bigraphs are gapful.

Proof. It is enough to consider the canonical n-cyclic bigraphs Hn “ prns, rns, Enq where En “
tpi, iq, pi, pi` 1qpmod nqq : i P rnsu. Again for convenience of presentation, “pmod nq” will be omitted
when it is clear from the context. Arbitrarily fix n.

For any i P rns, let Ai “ tpx1, ..., xnq : 1
2 ď xi ď 1, 0 ď xi`1 ă

1
2u. Let A “ tA1, ..., Anu, and

p “ p1
4 , ...,

1
4q P p0, 1q

n. It is straightforward to check thatA is exclusive with respect to Hn, µpAq “ p,
and µpYiPrnsAiq ă 1. Arbitrarily choose 0 ă ε ă 1

np1 ´ µpYiPrnsAiqq. Let q “ p1
4 ` ε, ..., 1

4 ` εq P
p0, 1qn. Then we prove two claims.

Claim 1: q P IpHnq.
Assume for contradiction that there is a cylinder set B “ tB1, ..., Bnu „ Hn such that µpBq “ q

and PpYiPrnsBiq “ 1. For each i P rns, arbitrarily choose a cylinderB1i such thatB1i Ă Bi, µpB1iq “ 1{4,
and B1i only depends on Xi and Xi`1. Let B1 “ tB11, ..., B1nu. We have that B1 conforms with Hn and
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µpB1q “ p. On the one hand, µpYiPrnsB1iq ě 1 ´ nε ą µpYiPrnsAiq. On the other hand, since A is
exclusive, by Lemma 29, µpYiPrnsB1iq ď µpYiPrnsAiq. We reach a contradiction, so Claim 1 holds.

Claim 2: For any cylinder set B „ Hn with µpBq “ q, B is not exclusive.
Arbitrarily fix a cylinder set B “ tB1, ..., Bnu „ Hn with µpBq “ q. For each i P rns, let ĂBi Ă

Iti,i`1u be a base of Bi, and choose the minimum subsets ∆1
i Ď Itiu and ∆i`1 Ď Iti`1u such that

µpĂBizp∆
1
i ˆ ∆i`1qq “ 0. Let xi “ µp∆iq, x

1
i “ µp∆1

iq. Then µpĂBizp∆1
i ˆ ∆i`1qq “ 0 implies that

x1ixi`1 ě µpĂBiq “ µpBiq ą
1
4 . Hence,

śn
i“1pxix

1
iq ą

1
4n . There must be some i P rns such that xix1i ą

1
4 , which in turn means that xi` x1i ą 1. As a result, µp∆iX∆1

iq ą 0, implying that µpBi´1XBiq ą 0.
Claim 2 holds.

Altogether, by Theorem 5, Hn is gapful. l

By Theorem 7, we can get a large class of gapful bigraphs.

Definition 12 (Containing). We say that a bigraph H contains another bigraph H 1, if there are injec-
tions πL : LpH 1q Ñ LpHq and πR : RpH 1q Ñ RpHq such that the following two conditions hold
simultaneously:

1. For any i P LpH 1q and j P RpH 1q, πRpjq P NHpπLpiqq if and only if j P NH 1piq.

2. For any j P RpHqzπRpRpH 1qq, j R NHpπLpiqq XNHpπLpkqq for any i, k P LpH 1q.

Intuively, H contains H 1 means that H 1 can be embedded in H without incurring extra dependency.
By Theorem 32 and Theorem 33, a bigraph H is gapful if it contains a gapful one. According to

Theorem 7, we obtain the following result.

Corollary 39. Any bigraph containing a cyclic one is gapful.

Based on Theorem 6 and Corollary 39, it is natural to have the following conjecture:

Conjecture 1 (Gap conjecture). A bigraph is gapful if and only if it contains a cyclic bigraph.

We have already known that the sufficiency does hold. As to the necessity, assume that the bigraph
H does not contain any cyclic one. We analyze case by case.

Case 1: the base graph is a tree. By Theorem 6, H is gapless, as desired.
Case 2: the base graph has cycles. Since H does not contain a cyclic bigraph, its base graph does not

have induced cycles longer than three. As a result, solving the conjecture is equivalent to answering the
following question Q: Is a bigraph gapless if it does not contain any cyclic one but its base graph
has 3-cliques?

First have look at a simple example of bigraph H “ pr3s, r1s, Eq with E “ r3s ˆ r1s. It satisfies the
condition of question Q. One can easily check that BpHq “ tpp1, p2, p3q : p1`p2`p3 “ 1u “ BapGHq.
So, H is gapless.

For more evidence, recall Hn,m, the pn,mq-combinatorial bigraph. As a special case, H3,2 is the
canonical 3-cyclic bigraph H3. Generally, we have the following observations:

First, m “ 1: Only sets of independent events can conform with Hn,m.
Second, 2 ď m ď 2

3n: Hn,m contains 3-cyclic bigraphs, so it is gapful.
Third, m ą 2

3n: Hn,m does not contain cyclic bigraphs, but the base graph have 3-cliques since it is
a complete graph. We mainly consider bigraphs in this category.

Theorem 40. H4,3 is gapless.
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Proof. By [43, Theorem 1], p P BapH4,3q if and only if
ř4
i“1 pi “ 1. Arbitrarily fix p P BapH4,3q.

Without loss of generality, assume that pi ě pi`1, for any 1 ď i ď 3. Then p4 ď
1
4 , p3 ď

1
3 , p1 ě

1
4 .

We construct four cylinders in the unit 4-cube. Let the four dimensions be X1, X2, X3, X4. Specifi-
cally, define the cylinders as follows:

A3: X4 ą
1
2 , X1 ď 2p3.

A4: X4 ď
1
2 , X2 ď 2p4.

A11: pX4 ď
1
2 , X2 ą 2p4, X1 ď 2p3q or pX4 ą

1
2 , X2 ď 2p4, X1 ą 2p3q.

One can see that µpA11q “ p3`p4´4p3p4. Furthermore, if p3 ą
1
4 , p3`p4´4p3p4 ď p3`p4´p4 “

p3 ď p1. When p3 ď
1
4 , p3 ` p4 ´ 4p3p4 “ p3 ` p1´ 4p3qp4 ď p3 ` p1´ 4p3q

1
4 “

1
4 ď p1. We always

have that µpA11q ď p1.
Arbitrarily choose a set S Ă It1,2u in the area X1 ą 2p3, X2 ą 2p4 such that µpSq “ p1 ` 4p3p4 ´

p3 ´ p4. Let S1 be the cylinder with base S.
Define A1 “ A11 Y S1 and A2 “ A1 YA3 YA4. It is easy to see that µpAiq “ pi for 1 ď i ď 4.

The bases Bi of Ai, 1 ď i ď 4, can be chosen such that dimpB1q “ t1, 2, 4u, dimpB2q “ t1, 2, 3u,
dimpB3q “ t1, 3, 4u, dimpB4q “ t2, 3, 4u. l

Theorem 40, together with Corollary 35, immediately implies the following result.

Corollary 41. For n ě 4, Hn,n´1 is gapless.

Actually, Corollary 41 can be generalized to Hn,n´m for any fixed m and large enough n, as shown
in Theorem 42.

Definition 13 (Upper combinatorial bigraph). Given positive integers m ă n, let Tn,m “
ř

těm

`

n
t

˘

.
Then each k P rTn,ms naturally represents a set in rns that has size at least m. Define bigraph Hěn,m “
prTn,ms, rns, E

ě
n,mq where pi, jq P Eěn,m if and only if j is in the set represented by i. Hěn,m is called the

upper pn,mq-combinatorial bigraph.

Theorem 42 is proved by construction. Basically, given a boundary vector p of Hn,n´m, we identify
a small number of dimensions, partition the unit cube C spanned by these dimensions into

`

n
m

˘

parts, and
use each part as the base to construct a cylinder in In. Essentially this means projecting all cylinders to
a low-dimensional cube. For this end, we first show that when n is big enough, there are 10 dimensions
such that any cylinder independent of at least one of these dimensions has very small probability. Then
Lemma 25 ensures that the bases of these cylinders can be chosen as exclusive. Finally, the other cylinders
are obtained by partitioning the part of C that has not yet been covered. Altogether, we get an exclusive
set of cylinders whose measure vector is p.

Theorem 42. For any constant m, when n is large enough, Hn,n´m is gapless.

Proof. We just consider m “ 2, since the method can be easily generalized to other m.
Apply Lemma 25 to Hě10,8, and we get an ε ą 0. Let K “ 2

ε , n “ 10K,N “
`

n
m

˘

. Arbitrarily fix a
vector p P p0, 1qN with

ř

iPrNs pi “ 1. Let f be an arbitrary bijective function which maps unordered
pairs on rns to N .

Arbitrarily partition the set rns into K disjoint groups with each containing 10 elements.
Arbitrarily fix a group T . For any 9-subset S of T with tiu “ T zS, define qS “

ř

jRT pfpi,jq. For any
8-subset S of T with ti, ju “ T zS, define qS “ pfpi,jq. The vector consisting of all these qS is denoted
by qT . The l1 norm of qT is denoted by vT .

We claim that there is a T such that all entries of qT are at most ε. If it is not the case, vT ą ε for all
T , so

ř

T vT ě Kε ą 2. However,
ř

T vT ď 2
ř

1ďiďN pi “ 2. Hence, the claim is true.
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Choose such a T . By the choice of ε, there is an exclusive cylinder set B in the unit cube IT that
conforms with Hě10,8 and satisfies µpBq “ qT . For any 8- or 9-subset S Ă T , let BS denote the cylinder
in B that corresponds to S.

For each 8-subset S “ T zti, ju, rename BS as Bfpi,jq.
For each 9-subset S Ă T with tiu “ T zS, divide the cylinder BS into 10pK ´ 1q disjoint cylinders

Bfpi,jq, for each j R T . These Bfpi,jq can be chosen so that they only depend on those Xk with k P S.
Arbitrarily partition IT zpYBPBBq into

`

n´10
2

˘

disjoint sets, denoted by Bfpi,jq where i ‰ j and
i, j R T . These Bfpi,jq can be chosen such that µpBfpi,jqq “ pfpi,jq.

For each of the above Bfpi,jq, define a cylinder Afpi,jq “ Bfpi,jq ˆ IrnszT . Let A “ tA1, ..., ANu. It
is straightforward to check that A is exclusive with respect to Hn,n´m, µpAq “ p, and PpYAPAAq “ 1.

As a result, Hn,n´2 is gapless. l

In spite of so much confirmative evidence, the general answer to the question Q turns out to be NO!
The following bigraph is an example where gap is not caused by containing cyclic bigraphs. Specifically,
it is the bigraph H˚ “ pr5s, r5s, Eq with E “ pt1u ˆ t1, 4, 5uq Y pt2u ˆ t2, 4, 5uq Y pt3u ˆ t3, 4, 5uq Y
pt4u ˆ t1, 2, 3, 4uq Y pt5u ˆ t1, 2, 3, 5uq.

Theorem 43. H˚ is gapful.

Proof. The base graph GH˚ is complete, so BapH˚q “ tp P p0, 1q5 : p1 ` ...` p5 “ 1u. Arbitrarily fix
p P BapH

˚q with p4 “ p5 “ ρ where ρ is a constant.
Suppose A “ tA1, ..., A5u is a set of cylinders in I5 which is exclusive with respect to H˚ and

satisfies µpAq “ p. Let the coordinate variables of I5 be X1, X2, ..., X5. Since A is exclusive and
p P BapH

˚q, we know that PpYAPAAq “ 1 due to Lemma 29. By Theorem 15, further suppose that
A is d-discrete in every dimension, where d is a positive integer. Namely, the unit interval Itlu, for any
l P RpH˚q, is partitioned into d disjoint subintervals denoted by ∆

tlu
i , i P rds. For any pair of integers

i, j P rds and a setA Ď I5, let πAi,j denote the setAX
´

∆
t4u
i ˆ∆

t5u
j ˆ I3

¯

; WhenA lies in the σ-algebra

of A, there must be a set in I3, denoted by τAi,j , such that πAi,j “
´

∆
t4u
i ˆ∆

t5u
j ˆ τAi,j

¯

. A set B Ď I3 is

said to have e-type if µpBq “ 0, f -type if µpBq “ 1, or i-type ifB “ BtiuˆIr3sztiu for someBtiu Ă Itiu
with 0 ă µpBtiuq ă 1, for i P r3s. Let T be the set of the five types. For notational simplicity, let A4,5

stand for A4 YA5.
For any i, j P rds, we observe the following facts.

Fact 1: For any k P r3s, τAki,j have either e-type, f -type, or k-type.

Fact 2: There is at most one k P r3s such that τAki,j does not have e-type. This follows from the exclu-

siveness of A and the property that for any k ‰ k1 P r3s, µpτAki,j X τ
Ak1
i,j q ‰ 0 if neither τAki,j nor

τ
Ak1
i,j have e-type.

Fact 3: τA4,5

i,j must have one of the five types in T . It follows from Fact 2, the exclusiveness of A, and

the property that τA4,5

i,j YkPr3s τ
Ak
i,j “ I3.

Fact 4: Given k P r3s, if τA4,5

i,j has k-type, so does τAki,j .

We now focus on τA4,5

i,j and proceed case by case.
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Case 1: There is an i0 P rds such that τA4,5

i0,j
has e-type for any j P rds. Because τA4,5

i0,j
“ τA4

i0,j
Y τA5

i0,j
,

µpτA5
i0,j
q “ 0 for any j P rds. Recalling thatA5 is independent ofX4, µpτA5

i,j q “ 0 for any i, j P rds.
Hence, µpA5q “ 0, contradictary to the choice of p. Symmetrically, we also reach a contradiction
if there is j0 P rds such that τA4,5

i,j0
has e-type for any i P rds.

Case 2: There exist i0, i1, j0, j1 P rds such that τA4,5

i0,j0
has e-type while both τA4,5

i0,j1
and τA4,5

i1,j0
have other

types. Without loss of generality, we assume that i0 “ 1, j0 “ 1, τA4,5

1,j has e-type if and only if

1 ď j ă j1, and τA4,5

i,1 has e-type if and only if 1 ď i ă i1.

Since A4 is independent of X5 and A5 is independent of X4, τA4
i,j “ τA4

i,j1 and τA5
i,j “ τA5

i1,j for

any i, i1, j, j1 P rds. Hence, for any i, j P rds, we have τA4,5

i,j “ τA4
i,j Y τA5

i,j “ τA4
i,1 Y τA5

1,j , and

µpτA4
i,1 X τ

A5
1,j q “ 0 since A4 and A5 are disjoint. In addition, for any i P rds, τA4,5

i,1 “ τA4
i,1 Y τ

A5
i,1 “

τA4
i,1 Y τA5

1,1 , so τA4,5

i,1 and τA4
i,1 have the same type and µpτA4,5

i,1 q “ µpτA4
i,1 q. Symmetrically, for any

j P rds, τA4,5

1,j and τA5
1,j have the same type and µpτA4,5

1,j q “ µpτA5
1,j q.

Now consider any i ě i1 and j ě j1. Since µpτA4
i,1 q ` µpτA5

1,j q “ µpτ
A4,5

i,j q ď 1, the assumption

µpτ
A4,5

i,1 q ą 0 and µpτA4,5

1,j q ą 0 implies that τA4,5

i,1 and τA4,5

1,j are neither e-type nor f -type. Assume

that τA4,5

i,1 is 1-type and τA4,5

1,j is 2-type. Then τA4
i,1 is 1-type and τA5

1,j is 2-type, contradictory to the
property that µpτA4

i,1 X τ
A5
1,j q “ 0.

As a result, without loss of generality, assume that τA4
i,1 and τA5

1,j have 1-type for any i ě i1 and

j ě j1. Since τA4,5

i,j “ τA4
i,1 Y τA5

1,j , τA4,5

i,j have either 1-type or f -type if i ě i1 or j ě j1. By Fact
2 and Fact 4, both τA2

i,j and τA3
i,j have e-type when i ě i1 or j ě j1. Therefore, µpA2q ` µpA3q ď

p1 ´ µp∆t4uqqp1 ´ µp∆t5uqq, where ∆t4u “ Yi1ďiďd∆
t4u
i and ∆t5u “ Yj1ďjďd∆

t5u
j . We first

prove Claim 1:

Claim 1: p1´ µp∆t4uqqp1´ µp∆t5uqq ď p1´ 2ρq2.

Proof of the claim: Let ri “ µpA4X∆
t4u
i ˆIr5szt4uq, ri,j “ µpπA4

i,j q, sj “ µpA5X∆
t5u
j ˆI4q, si,j “

µpπA5
i,j q for i, j P rds. We have ρ “

ř

iěi1
ri “

ř

iěi1,jPrds
ri,j “

ř

jěj1
sj “

ř

iPrds,jěj1
si,j .

Because A4 is independent of X5, it holds that ri,j “ riµp∆
t5u
j q, so

ř

j1ďjďd
ri,j “ riµp∆

t5uq

and
ř

i1ďiďd,j1ďjďd
ri,j “ ρµp∆t5uq. Likewise, we have

ř

i1ďiďd,j1ďjďd
si,j “ ρµp∆t4uq.

On the other hand, since A4 and A5 are disjoint, ri,j ` si,j ď µp∆
t4u
i qµp∆

t5u
j q for any i1 ď i ď

d, j1 ď j ď d, which implies that
ř

i1ďiďd,j1ďjďd
pri,j ` si,jq ď µp∆t4uqµp∆t5uq.

Hence, µp∆t4uqµp∆t5uq ě ρpµp∆t4uq ` µp∆t5uqq ě 2ρ
a

µp∆t4uqµp∆t5uq, which in turn means
that

a

µp∆t4uqµp∆t5uq ě 2ρ. We further have

p1´ µp∆t4uqqp1´ µp∆t5uqq “ 1´ pµp∆t4uq ` µp∆t5uqq ` µp∆t4uqµp∆t5uq

ď 1´ 2

b

µp∆t4uqµp∆t5uq ` µp∆t4uqµp∆t5uq

“ p1´

b

µp∆t4uqµp∆t5uqq2 ď p1´ 2ρq2.

Claim 1 is proven.
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By Claim 1, one has µpA2q ` µpA3q ď p1 ´ 2ρq2. Since A is exclusive, it holds that µpA1q “

1´
ř

2ďkď5 µpAkq ě 1´ p1´ 2ρq2 ´ 2ρ “ 2ρ´ 4ρ2.

Case 3: There is k P r3s such that τA4,5

i,j is neither e-type nor k-type for any i, j P rds. Suppose k “ 1
satisfies the condition. Then, for any i, j P rds, among the candidate e-type, f -type, or 1-type of
τA1
i,j , the only possibility is e-type. Hence µpA1q “ 0, which is a contradiction.

Case 4: τA4,5

i,j is not e-type for any i, j P rds, and for each k P r3s, there are i, j P rds such that τA4,5

i,j

has k-type.

Claim 2: There are i0, j0, j1 P rds and k1 ‰ k2 P r3s such that τA4,5

i0,j0
has k1-type and τA4,5

i0,j1
has

k2-type, or there are i0, i1, j0 P rds and k1 ‰ k2 P r3s such that τA4,5

i0,j0
has k1-type and τA4,5

i1,j0
has

k2-type.

Proof of the claim: Suppose for contradiction that Claim 2 does not hold in Case 4. There must be
i0, i1, j0, j1 P rds and k1 ‰ k2 P r3s such that τA4,5

i0,j0
has k1-type, τA4,5

i1,j1
has k2-type, and both τA4,5

i1,j0

and τA4,5

i0,j1
have k3-type or f -type. Without loss of generality, assume that both τA4,5

i1,j0
and τA4,5

i0,j1
have

f -type. and both τA4,5

i1,j0
and τA4,5

i0,j1
has f -type. Note that for any i, i1, j, j1 P rds,

τ
A4,5

i,j Y τ
A4,5

i1,j1 “ τA4
i,j Y τ

A5
i,j Y τ

A4
i1,j1 Y τ

A5
i1,j1 “ τA4

i,j1 Y τ
A5
i1,j Y τ

A4
i1,j Y τ

A5
i,j1

“ τA5
i1,j Y τ

A4
i1,j Y τ

A4
i,j1 Y τ

A5
i,j1 “ τ

A4,5

i1,j Y τ
A4,5

i,j1 .
(8)

Hence τA4,5

i0,j0
Yτ

A4,5

i1,j1
“ τ

A4,5

i1,j0
Yτ

A4,5

i0,j1
. Namely, an f -type set equals the union of a k1-type set and a

k2-type set, which is impossible. The cases where τA4,5

i1,j0
and τA4,5

i0,j1
have other types can be proved

similarly.

Claim 2 is proven.

By Claim 2, without loss of generality, assume that τA4,5

1,1 has 1-type and τA4,5

1,2 has 2-type.

Claim 3: For any i, j P rds, τA4,5

i,j and τA4,5

1,j have the same type in T .

Proof of the claim: We first show that for any i, j P rds, if τA4,5

1,j does not have 3-type, τA4,5

i,j can’t

have 3-type. Suppose for contradiction that there are i, j P rds such that τA4,5

i,j has 3-type while

τ
A4,5

1,j does not. If τA4,5

1,j has 1-type, by formula (8), τA4,5

1,j Ă τ
A4,5

1,j Yτ
A4,5

i,2 “ τ
A4,5

1,2 Yτ
A4,5

i,j , meaning
that a 1-type set is inside the union of a 2-type set and 3-type set, which is impossible. Likewise,
we also reach a contradiction if τA4,5

1,j has 2-type or f -type. As a result, under the condition of Case

4, there must be j P rds such that τA4,5

1,j has 3-type. Without loss of generality, assume that τA4,5

1,3

has 3-type.

Now for contradiction, suppose that there is i, j P rds such that τA4,5

i,j and τA4,5

1,j have different types

in T . If τA4,5

1,j has 1-type and τA4,5

i,j has 2-type, by τA4,5

1,j Ă τ
A4,5

1,j Y τ
A4,5

i,3 “ τ
A4,5

1,3 Y τ
A4,5

i,j , we again

reach a contradiction. Likewise, there is a contradiction whenever τA4,5

i,j and τA4,5

1,j have different
types.

Claim 3 is proven.

35



Table 1: Instances of gapful/gapless bigraphs
Gapful Gapless
H˚ Hn,n´c for large n

Sparsifications of H7c,5c Hn,n´1 for n ě 4
cyclic bigraphs treelike bigraphs

We further show that for any i, j P rds, τA4,5

i,j “ τ
A4,5

1,j . To see this, again use formula (8). Take

j “ 1 as an example. For any i ‰ 1, we have τA4,5

1,1 Y τ
A4,5

i,2 “ τ
A4,5

1,2 Y τ
A4,5

i,1 . Since τA4,5

1,1 and τA4,5

i,1

have 1-type while τA4,5

i,2 and τA4,5

1,2 have 2-type, the equality holds only if both τA4,5

i,1 “ τ
A4,5

1,1 and

τ
A4,5

i,2 “ τ
A4,5

1,2 .

As a result, A4 Y A5 is independent of X4. This, together with the fact that A5 is independent of
X4, implies that A4 is independent of X4.

Furthermore, for each j P rds such that τA4,5

1,j has 1-type, τA4,5

i,j also has 1-type for any i P rds, so

τA3
i,j “ I3zτA4,5

i,j . Since τA4,5

i,j is independent of i, so is τA3
i,j . Consequently, A3 is independent of

X4. Likewise, both A1 and A2 are also independent of X4.

Altogether, in Case 4, all cylinders are independent of X4.

The case study above indicates that only Case 2 and Case 4 are possible.
Now consider the probability vector p “ p2

9´
2
3ε,

2
9´

2
3ε,

2
9´

2
3ε,

1
6`ε,

1
6`εq P BapH

˚q, where ε ą 0
is constant to be determined. Arbitrarily choose an exclusive cylinder set A “ tA1, ..., A5u „ H˚ such
that µpAq “ p. Because p1 ă 2p4 ´ 4p2

4 when ε is small enough, only Case 4 is possible for p. Assume
that these events are independent of X4. We can choose B1 Ă It1,5u, B2 Ă It2,5u, B3 Ă It3,5u, B4 Ă

It1,2,3u, B5 Ă It1,2,3,5u as bases of A1, ..., A5, respectively. Choose the minimum sets Γ1,Γ2,Γ3 Ď It5u
and Λi Ď Itiu for i P r3s such that µpBizpΓiˆΛiqq “ 0 for i P r3s. Since the cylinder setA is exclusive,
µpΓi X Γjq “ 0 for any i, j P r3s. Let γi “ µpΓiq, λi “ µpΛiq for i P t1, 2, 3u. The inequalities must
hold simultaneously:

• γiλi ě 2
9 ´

2
3ε, i P t1, 2, 3u

• γ1 ` γ2 ` γ3 ď 1

• p1´ λ1qp1´ λ2qp1´ λ3q ě
1
6 ` ε

where the last inequality is because B4 must lies inside of pIt1uzΛ1q ˆ pIt2uzΛ2q ˆ pIt3uzΛ3q. However,
these inequalities can’t hold simultaneously when ε is small enough.

As a result, there is no cylinder set A which is exclusive with respect to H˚ and µpAq “ p. Since
p P BapH

˚q Ă BpH˚q Y IpH˚q, H˚ is gapful due to Theorem 5. l

By Delete-Event and the inverse operation of Duplicate-Variable, it is not difficult to reduce H7,5 to
H˚. Because H˚ is gapful, H7,5 is also gapful. From Corollary 37, we have the following corollary.

Corollary 44. For any integer c ě 1, every sparsification of H7c,5c is gapful.

In summary, we get some instances of gapful/gapless bigraphs, listed in Table 1.
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6.2 Characterizing a-gapful and strongly a-gapful graphs

Another interesting perspective of gaps is dependency-graph-oriented: we say that a graph G is a-gapful
if there is a gapful bigraph whose base graph is G, otherwise it’s called a-gapless. Kolipaka et al. [28]
considered another closely-related concept: a graph G is strongly a-gapful if any bigraph with G as base
graph is gapful, otherwise it’s called strongly a-gapless.

One can easily observe that a bigraph H is gapless if GH is a-gapless, while it is gapful if GH
is strongly a-gapful. With the above mentioned results, we can completely characterize a-gapless or
strongly a-gapful bigraphs, solving the 6-year open problem proposed by Kolipaka et al. [28].

Theorem 8. A graph is a-gapless if and only if it is a tree.

Proof. It immediately follows from Theorems 6 and 7. l

For strong a-gapfulness, we need the following definition, where CliqpGq is the set of maximal
cliques of the graph G.

Definition 14. Given a graph G “ prns, Eq with CliqpGq “ tC1, ..., Cmu, its canonical bigraph,
denoted by HG, is the bigraph prns, rms, E1q where E1 “ tpi, jq P rns ˆ rms : i P Cju.

Intuitively, HG models the variable generated event system where each maximal clique has a distinct
variable and an event depends on a variable if it is in the corresponding maximal clique.

We claim that among the bigraphs whose base graph is G, HG has the minimum interior. This means
that G is strongly a-gapful if and only if HG is gapful.

Lemma 45. Given a graph G, for any bigraph H with GH “ G, we have IpHq Ě IpHGq.

Proof. We prove the lemma in two steps.
Step 1: For any bigraph H “ prns, rms, Eq with S being a clique in GH , define the bigraph H 1 “

prns, rm` 1s, E1q such that for any j P RpH 1q,NH 1pjq “ S if j “ m` 1, otherwiseNH 1pjq “ NHpjq.
Arbitrarily fix p P EpHq. There is a set A of cylinders in Im such that A „ H , µpAq “ p, and
µpYAPAAq “ 1. Let A1 “ tA ˆ Itm`1u : A P Au. Then A1 is a set of cylinders in Im`1, A1 „ H 1,
µpA1q “ p, and µpYAPA1Aq “ 1. Hence, EpH 1q Ď EpHq.

As a result, given H with GH “ G, for each of the maximal clique in GH , modify H as in Step 1.
Let H be the resulting bigraph. We have IpHq Ě IpHq.

Step 2. H is the same as HG except that there might be j ‰ k P RpHq such that NHpjq Ď NHpkq.
Apply the inverse operation of Variable-Duplicate to H as many times as possible, and the final bigraph
is exactly HG. Recall that in proving that Variable-Duplicate preserves gapful (see Theorem 32), we
actually prove that Variable-Duplicate preserves boundary, hence also preserving interior. This meaning
that IpHq “ IpHGq.

Altogether, we know that IpHq Ě IpHGq. l

A graph is called chordal, if it has no induced cycle of length greater than three. A well known
property of chordal graphs is that it has a vertex which lies in exactly one maximal clique. Now we have
the following result for chordal graphs.

Lemma 46. Any chordal graph is strongly a-gapless.

Proof. Let G “ prns, Eq be a chordal graph. We prove by induction on n.
Basis: n “ 1. It is trivial that G is strongly a-gapless.
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Hypothesis: The lemma holds when n ă N .
Induction: Now consider the case n “ N . Let H “ HG “ prns, rms, Eq. Without loss of generality,

assume that the vertex n of G lies in exactly one maximal clique S “ tn ´ k ` 1, ..., nu. That is,
n P LpHq has only one neighbor, say m, in H , and NHpmq “ S. Let H 1 be the bigraph obtained from
H by deleting the vertex n P LpHq, and G1 be the chordal graph obtained by deleting the vertex n from
G. Obviously, if Sztnu remains a maximal clique in G1, H 1 “ HG1 ; otherwise, HG1 can be obtained
by applying the inverse operation of Variable-Duplicate to H 1. We always have that H 1 is gapless if and
only if so is HG1 .

Arbitrarily fix p P BpHq. Let p1 “ pp1, ..., pn´k,
pn´k`1

1´pn
, ..., pn´1

1´pn
q. Choose λ ą 0 such that

λp1 P BpH 1q. Applying the induction hypothesis to G1, by Theorem 5, there is a set A1 of cylinders
A11, ..., A

1
n´1 Ď Im such that A1 is exclusive with respect to H 1, µpA1q “ λp1, and µpYA1PA1A1q “ 1.

Define Ai “ A1i for 1 ď i ď n ´ k, Ai “ tpx1, ..., xm´1, xmp1 ´ pnqq : px1, ..., xm´1, xmq P A
1
iu for

n ´ k ă i ă n, An “ tpx1, ..., xmq P Im : xm ě 1 ´ pnu. Since µpYA1PA1A1q “ 1 and A11, ..., A
1
n´k

are independent of Xm, we have µppIm´1 ˆ r0, 1 ´ pnsq X pY1ďiďn´1Aiqq “ 1 ´ pn. As a result,
µpYAPAAq “ 1, µpAq “ q fi pλp1, ..., λpn´1, pnq, and A is exclusive with respect to H , where
A “ tA1, ..., Anu. By Corollary 28, we know that q P BpHq, which in turn means that q “ p by Lemma
14.

Altogether, for any p P BpHq, there is a cylinder set A which is exclusive with respect to H and
satisfies µpAq “ p. By Theorem 5, H is gapless, implying that G is strongly a-gapless. l

We are ready to present an exact characterization of strongly a-gapful graphs.

Theorem 9. A graph is strongly a-gapful if and only if it is chordal.

Proof. Arbitrarily fix a graph G.
If it is not chordal, there must be an induced cycle of length at least four. By Corollary 39, HG is

gapful, so G is strongly a-gapful.
On the other hand, if G is chordal, it is strongly a-gapless by Lemma 46. l

Theorem 6 is an immediately corollary of Theorem 9. Its constructive proof is retained since the
construction leads to the explicit equation of boundary vectors.

7 Hardness Results

We define some computational problems that are closely related to the variable-LLL problem and show
that they are difficult to solve.

Definition 15 (MUP Problem). Given a bigraph H “ prns, rms, Eq and vector p P p0, 1sn, compute
ΨpH,pq fi maxA„H,µpAq“p µ pYAPAAq, where A ranges on sets of cylinders in Im and µ is Lebesgue
measure.

Definition 16 (INT Problem). Given a bigraph H and a vector p on p0, 1q, decide whether p P IpHq.

Theorem 47. MUP is #P-hard.

Proof. It is enough to show that MUP is #P-hard even if H is a p3, 2q-regular bigraph and p “

p1
8 ,

1
8 , ...,

1
8q.

Arbitrarily fix a p3, 2q-regular bigraph H “ prns, rms, Eq. We will construct a set A of cylinders in
Im such that µpAq “ p,A is exclusive with respect to H , and the probability of the union is maximized.
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Arbitrarily choose a function f : rms Ñ rns which maps each vertex in rms to one of its neighbors.
For each i P rns, a cylinder Ai Ă Im is defined in this way: for each neighbor j of i, 0 ď Xj ď 1{2 if
fpjq “ i, otherwise 1{2 ă Xj ď 1. Let A “ tA1, ..., Anu.

Since each i P rns has exactly three neighbors in H and each j P rms has exactly two neighbors,
we observe that µpAq “ p and A is exclusive with respect to H . Hence µpYiPrnsAiq “ ΨpH,pq, by
Lemma 29.

The construction actually partitions Im into 2m blocks each having measure 2´m. Any cylinder inA
consists of some blocks. Let Bk1,k2,...,km , kj P t0, 1u for any j, denote the block defined by 0 ď Xj ď

1{2 if kj “ 0 or 1{2 ă Xj ď 1 if kj “ 1, for any j P rms. Given k1, k2, ..., km P t0, 1u and i P rns, the
following two conditions are equivalent.

1. Bk1,k2,...,km Ď Ai.
2. For each neighbor j of i in H , kj “ 0 if and only if fpjq “ i.
Let N be the number of blocks outside of YiPrnsAi. Then we have µpYiPrnsAiq “ 1 ´ N{2m, so

computing ΨpH,pq is equivalent to computing N .
On the other hand, computing N is related to the 3SAT problem. Let ty1, ..., ymu be a set of boolean

variables. For each i P rns, assume j1, j2, j3 are its neighbors in H; define a 3SAT clause φi “ zj1 _
zj2 _ zj3 where the literal zjk fi yjk if fpjkq “ i, otherwise zjk fi yjk , for k “ 1, 2, 3. The constraint-
variable graph of φ fi φ1 ^ ... ^ φn is H . Note that each variable appears twice oppositely, so φ is a
Holantpr0, 1, 0s|r0, 1, 1, 1sq or Rtw-Opp-#3SAT instance.

Now consider an assignment yj “ kj , j P rms. It is straightforward to check that φ is satisfied if and
only if the block Bk1,k2,...,km is outside YiPrnsAi. Thus, N is the number of satisfying assignments of φ,
which is #P-hard to compute even if H is (3,2)-regular, by [8, Theorem 8.1]. l

Remark 5. The proof is inspired by but substantially different from the proofs in Section C of [26].

Remark 6. Given H and p as in Theorem 47, ΨpH,pq is a proper fraction whose denominator is 2m.
This fact will be used in proving the next theorem.

By Theorem 47, one can prove the following result.

Theorem 48. INT is #P-hard.

Proof. Given a p3, 2q-regular bigraph H and p “ p1
8 ,

1
8 , . . . ,

1
8q, suppose that ΨpH,pq “ 1´ N

2m .
Let’s construct H 1 “ prn` 1s, rms, E1q and pprq, where E1 “ E Y tpn` 1, 1q, pn` 1, 2q, . . . , pn`

1,mqu and p1 “ p1
8 ,

1
8 , . . . ,

1
8 , rq with r P r0, 1s.

It is not hard to see pprq P IpH 1q if and only if 1 ´ N
2m ` r ă 1. Obviously, rmax “ N´1

2m , where
rmax is the maximum r, among all proper fractions whose denominator is 2m , such that pprq P IpH 1q.

Using binary search and solving INT on polypmq instances of the form pH 1,pprqq, we can find out
rmax and in turn get ΨpH,pq. By Theorem 47, INT is #P-hard. l
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