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Abstract

We consider the Similarity Sketching problem: Given a universe rus “ t0, . . . , u ´ 1u we
want a random function S mapping subsets A Ď rus into vectors SpAq of size t, such that
the Jaccard similarity JpA,Bq “ |A X B|{|A Y B| between sets A and B is preserved. More
precisely, define Xi “ rSpAqris “ SpBqriss and X “

ř

iPrts Xi. We want ErXis “ JpA,Bq,
and we want X to be strongly concentrated around ErXs “ t ¨ JpA,Bq (i.e. Chernoff-style
bounds). This is a fundamental problem which has found numerous applications in data
mining, large-scale classification, computer vision, similarity search, etc. via the classic
MinHash algorithm. The vectors SpAq are also called sketches. Strong concentration is
critical, for often we want to sketch many sets B1, . . . , Bn so that we later, for a query set
A, can find (one of) the most similar Bi. It is then critical that no Bi looks much more
similar to A due to errors in the sketch.

The seminal tˆMinHash algorithm uses t random hash functions h1, . . . , ht, and stores
pminaPA h1pAq, . . . ,minaPA htpAqq as the sketch of A. The main drawback of MinHash is,
however, its Opt ¨ |A|q running time, and finding a sketch with similar properties and faster
running time has been the subject of several papers. Addressing this, Li et al. [NIPS’12]
introduced one permutation hashing (OPH), which creates a sketch of size t in Opt ` |A|q

time, but with the drawback that possibly some of the t entries are “empty” when |A| “

Optq. One could argue that sketching is not necessary in this case, however the desire
in most applications is to have one sketching procedure that works for sets of all sizes.
Therefore, filling out these empty entries is the subject of several follow-up papers initiated
by Shrivastava and Li [ICML’14]. However, these “densification” schemes fail to provide
good concentration bounds exactly in the case |A| “ Optq, where they are needed.

In this paper we present a new sketch which obtains essentially the best of both worlds.
That is, a fast Opt log t ` |A|q expected running time while getting the same strong con-
centration bounds as tˆMinHash. Our new sketch can be seen as a mix between sampling
with replacement and sampling without replacement. We demonstrate the power of our new
sketch by considering popular applications in large-scale classification with linear Support
Vector Machines (SVM) as introduced by Li et al. [NIPS’11] as well as approximate simi-
larity search using the Locality Sensitive Hashing (LSH) framework of Indyk and Motwani
[STOC’98].

∗A preliminary version of this work was presented in the Proceedings of the 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS’17, Berkeley, CA, USA, pages October 15-17, 2017, pages 663–671.
This full version has stronger results and Jakob Houen as an added author.
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1 Introduction

In this paper we consider the following problem which we call the similarity sketching problem.
Given a large key universe rus “ t0, . . . , u´1u and positive integer t we want a random function
S mapping subsets A Ď rus into vectors (which we will call sketches) SpAq of size t, such that
similarity is preserved. More precisely, we consider the Jaccard similarity JpA,Bq “ |A X

B|{|A Y B| between sets A and B. Define Xi “ rSpAqris “ SpBqriss for each i P rts, where
SpAqris denotes the ith entry of the vector SpAq and rxs is the Iverson bracket notation with
rxs “ 1 when x is true and 0 otherwise. We want ErXis “ JpA,Bq for each i P t. Moreover, we
want X “

ř

iPrts Xi to be strongly concentrated around ErXs “ t ¨JpA,Bq. That is, the sketches
can be used to estimate JpA,Bq by doing a pair-wise comparison of corresponding entries. We
will call this the alignment property of the similarity sketch. Strong concentration, with error
probabilities dropping exponentially in t like with Chernoff-bounds, is critical. Often we want
to sketch many sets B1, . . . , Bn so that we later, for a query set A, can find (one of) the most
similar Bi. It is then critical that no Bi looks much more similar to A due to errors in the
sketch.

The standard solution to the similary sketching problem is tˆMinHash algorithm1. The
algorithm works as follows: Let h0, . . . , ht´1 : rus Ñ r0, 1s be random hash functions and define
SpAq “ pminaPA h0paq, . . . ,minaPA ht´1paqq. This corresponds to sampling t elements from A
with replacement and thus has all the above desired properties.

MinHash was originally introduced by Broder et al. [4, 6, 5] for the AltaVista search engine
and has since been used as a standard tool in many applications including duplicate detec-
tion [6, 12], all-pairs similarity [3], large-scale learning [17], computer vision [22], and similarity
search [14]. The application [17] to Support Vector Machines (SVMs) in Machine Learning is
an instructive example of the use of the alignment property. The basic idea is that we want
the similarity between sets to be grow with a dot-product between associated vectors. To get
a bit vector, [17] suggests that for each coordinate, we hash to get a single bit and based on
this bit, replace the coordinate with two bits: 01 or 10. Now, for the dot-product, if we had a
match in a coordinate, we get a match in both bits, adding two to the dot-product. If we did
not have a match, then with probability 1/2, either both or no bits will match. Dissimilarity
is thus essentially halved in the reduction. The more important thing is that more similar sets
are expected to get higher dot-products, and this is the main point for the SVM applications.
Mathematically, a cleaner alternative is to use the hash bit to replace the the coordinate with
´1{

?
t or 1{

?
t. Now, in expectation, the dot-product is exactly the Jaccard similarity.

The main drawback of tˆMinHash is the Opt ¨ |A|q running time that we pay because we
have to find the minimum in A with t independent hash functions. To appreciate the scale of the
different parameters, let us just consider the classic application from [4, 6, 18] for text similarity.
For each text, they look at the set of w-shingles2 where a w-shingle is a tuple of w consecutive
words, e.g., [4, 6] use w “ 4. The similarity between texts are the similarity between their sets
of w-shingles. With roughly 105 common english words, the number of possible 4-shingles is
u « 1020. Also, note that the number of distinct 4-shingles in a large text can be close to the
text size even though the number of distinct words is much smaller, so the sets we consider can
be quite large.

While the sketch size t is typically meant to be much smaller than the set size, it can still
be sizeable, e.g., [17] suggests using t “ 500 and [15] suggests using t “ 4000. From a more
theoretical perspective, if we use Locallity Sensitive Hashing (LSH) for set similarity among n

1https://en.wikipedia.org/wiki/MinHash
2w-shingles are also referred to as w-grams, e.g., when used for finding similarity between DNA sequences (see

wikipedia.org/wiki/N-gram).
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sets, then t “ Ωpnρq where ρ is a constant parameter. We shall return to this application later.
If we do not care about alignment, then an alternative to tˆMinHash sketching is the Bottom-

t sketch described in [4, 8, 26]. The idea is to use a single hash function and just store the t
smallest hash values from A (so 1ˆMinHash=Bottom-1). We can find the bottom-t sketch of
A in Op|A|q time. However, with t ą 1, there is no alignment between the t sketch values from
different sets, and the alignment is needed for applications in LSH as well as for Support Vector
Machines (SVM) that we will also discuss later.

Bachrach and Porat [2] suggested a more efficient way of computing tˆMinHash values with
t different hash functions. They use t different polynomial hash functions that are related, yet
pairwise independent, so that they can systematically maintain the MinHash for all t polynomials
in Oplog tq time per element of A. There are two issues with this approach: It is specialized
to work with polynomials and MinHash is known to have constant bias unless the polynomials
considered have super-constant degree [20], and this bias does not decay with independent
repetitions. Also, because the experiments are only pairwise independent, the concentration is
only limited by Chebyshev’s inequality and thus nowhere near the Chernoff bounds we want for
many applications.

Another direction introduced by Li et al. [16] is one permutation hashing (OPH) which works
by hashing the elements of A into t buckets and performing a MinHash in each bucket using
the same hash function. While this procedure gives Opt ` |A|q sketch creation time it also may
create empty buckets and thus only obtains a sketch with t1 ď t entries when |A| “ opt log tq.
One may argue that sketching is not even needed in this case. However, a common goal in
applications of similarity sketching is to have one sketching procedure which works for all set
size – one data structure that works for an entire collection of data sets of different sizes in the
case of approximate similarity search. It is thus very desirable that the similarity sketch works
well independently of the size of the input set.

Motivated by this, several follow-up papers [25, 24, 23] have tried to give different schemes
for filling out the empty entries of the OPH sketch (“densifying” the sketch). These papers
all consider different ways of copying from the full entries of the sketch into the empty ones.
Due to this approach, however, these densification schemes all fail to give good concentration
guarantees when |A| is small, which is exactly the cases in which OPH gives many empty bins and
densification is needed. This is because of the fundamental problem that unfortunate collisions
in the first round cannot be resolved in the second round when copying from the full bins. To
understand this consider the following extreme example: Let A be a set with two elements.
Then with probability 1{t these two elements end in the same bin where only one survives (the
one with the smallest hash value). Densification will then just copy the surviver to all t entries.
Such issues may lead to very poor similarity estimation and this is illustrated with experiments
in Figure 1. A further issue is that the state-of-the-art densification scheme of Shrivastava [23]
has a running time of Opt2q when |A| “ Optq.

1.1 Our contribution

In this paper we obtain a sketch which essentially obtains the best of both worlds. That is, strong
concentration guarantees for similarity estimation as well as a fast expected sketch creation time
of Opt log t` |A|q. On top of that, our new sketching algorithm is simple and easy to implement.

Our new sketch can be seen as a mixture between sampling with and without replacement
and in many cases outperforms tˆMinHash. An example of this can be seen in the toy example of
Figure 1, where the “without replacement”-part of our sketch gives better concentration compared
to MinHash. Our sketch can be employed in places where tˆMinHash is currently employed to
improve the running time from the “quadratic” Opt ¨ |A|q to the “near-linear” Opt log t` |A|q. In
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Similarity estimation of {1,2} and {2,3} with t=16

Figure 1: Experimental evaluation of similarity estimation of the sets A “ t1, 2u and B “ t2, 3u

with different similarity sketches and t “ 16. Each experiment is repeated 2000 times and the
y-axis reports the frequency of each estimate. The green line indicates the actual similarity.
The two methods based on OPH perform poorly as each set has a probability of 1{t to be a
single-element sketch. Our new method outperforms tˆMinHash as it has an element of “without
replacement”.

this paper we focus on two popular applications, which are large-scale learning with linear SVM
and approximate similarity search with LSH. Before discussing these applications, we describe
our result more formally.

Theorem 1. 3 Let rus “ t0, 1, 2, . . . , u ´ 1u be a set of keys and let t be a positive integer.
There exists an algorithm that given a set A Ď rus in expected time O p|A| ` t log tq creates a
size-t vector vpAq of non-negative real numbers with the following properties.

For two sets A,B Ď rus with Jaccard similarity JpA,Bq “ J it holds that vpA Y Bqi “

min tvpAqi, vpBqiu for each index i P rts. For i P rts let Xi “ 1 if vpAqi “ V pBqi and 0
otherwise. Let I Ď rts be a subset of k indices. Let j P rtszI, then,

min

ˆ

J,
tJ ´

ř

iPI Xi

t ´ k

˙

ď Pr rXj “ 1 |σ ppXiqiPIqs ď max

ˆ

J,
tJ ´

ř

iPI Xi

t ´ k

˙

.

If we sampled with replacement then the probability that Xj “ 1 when conditioning on
pXiqiPI is exactly J , and if we sampled without replacement then the probability that Xj “ 1

when conditioning on pXiqiPI is exactly tJ´
ř

iPI Xi

t´k . Thus the theorem shows qualitatively that
our new sketch falls between sampling with replacement and sampling without replacement.

Now a nice implication of the theorem is that we get classic Chernoff concentration bounds.

Corollary 1. Use the same setting as Theorem 1 and let X “ 1
t

ř

iPrts Xi. Then ErXs “ J and

3This powerful theorem was not in our original conference version [10].
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for every δ ą 0 it holds that:

PrrX ě Jp1 ` δqs ď

ˆ

eδ

p1 ` δq1`δ

˙tJ

,

PrrX ď Jp1 ´ δqs ď

ˆ

e´δ

p1 ´ δq1´δ

˙tJ

.

The above theorems assume access to fully random hashing (this is also assumed for the
standard MinHash sketch). However, we will also show how to implement our sketch using
mixed tabulation hashing (introduced by Dahlgaard et al. [9]) which is practical and can be
evaluated in Op1q time. The concentration bounds get slightly weaker and more complicated,
as they do with any realistic hashing scheme.

1.2 Speeding up Locality Sensitive Hashing on Sets

One of the most powerful applications of the tˆMinHash algorithm is for the approximate
set similarity search problem using Locality Sensitive Hashing (LSH). For this application we
will crucially need both the alignment and strong probability bounds from Theorem 1. Our
fundamental contribution will be to improve the time bound, reducing the effect of the set size
from multiplicative to additive. This is very important when dealing with larger sets, e.g., the
above mentioned examples where the sets are the 4-shingles of texts [4, 6, 18].

While our new similarity sketch forms the base of our improvement, we need several other
ideas to address other challenges, particularly when it comes to high probability results. To
describe our contribution, we first need to revisit the Locality Sensitive Hashing framework
introduced by Indyk and Motwani [14]. It is a general framework based on the following type
of data-independent hash families:

Definition 1 (Locality sensitive hashing [14]). Let pX,Sq be a similarity space and let H be a
family of hash functions h : X Ñ R. We say that H is ps1, s2, p1, p2q-sensitive if for any x, y P X
and h P H chosen uniformly random we have that

• If Spx, yq ě s1 then Prrhpxq “ hpyqs ě p1.

• If Spx, yq ď s2 then Prrhpxq “ hpyqs ď p2.

The Locality Sensitive Hashing framework takes a ps1, s2, p1, p2q-sensitive family H for a
similarity space pX,Sq, and uses it to solve the Approximate Similarity Search problem for a
stored set Y Ď X with parameters 0 ă s2 ă s1 ă 1. That is, given a query q P X it returns an
element a P Y with Spa, qq ě s2, if there exists an element b P Y with Spb, qq ě s1 with constant
probability. Note that the definition of the locality sensitive hash function H is oblivious to the
concrete stored set Y .

In this paper we only focus on the Jaccard set similarity with stored set of sets Y “ F .
The classical way of using the LSH framework with respect to the Jaccard similarity is using
the seminal MinHash algorithm, which was originally introduced by Broder et al. [4, 6]. The
MinHash algorithm is defined as follows: Given a family H of hash functions h : U Ñ R we
define a new family Hmin of hash functions hmin : PpUq Ñ U where hminpAq “ argminxPA hpxq

for any A Ď U . If the domain R is large enough, we can assume that there are no colli-
sions, hence that hmin is well-defined. If h P H is chosen uniformly at random we get that
Pr

“

hminpAq “ hminpBq
‰

“ JpA,Bq for any A,B Ď U . This shows that Hmin is a pj1, j2, j1, j2q-
sensitive family for any 0 ă j2 ă j1 ă 1.

4



The next idea from [14] is to create sketches using K functions from Hmin. For a set
A, we get the sketch SpAq “ phmin

0 pAq, . . . , hmin
K´1pAqq where h0, . . . , hK´1 P H. If the hash

functions are independent, then PrrSpAq “ SpBqs “ JpA,BqK , so S is pj1, j2, j
K
1 , jK2 q-sensitive.

Setting K “

Q

logpnq

logp1{j2q

U

, we get that S is pj1, j2, Op1{nρq, 1{nq-sensitive where ρ “
logp1{j1q

logp1{j2q
.

While the above construction may seem a bit ad-hoc, O’Donnell et al. [19] have shown it to be
optimal in the sense that we cannot in general construct a pj1, j2, op1{nρq, 1{nq-sensitive family
of hash functions. With n “ |F | stored sets, we only expect a constant number of false matches
SpAq “ SpQq where A P F and JpA,Qq ă j2.

To get a positive match with constant probability, we use L “ rnρs sketch functions S0, . . . , SL´1.
If we have a set B with JpQ,Bq ě j2, then with constant probability, there is an i P rLs such
that SipBq “ SipQq. To create a data structure, for each i, we have a hash table that with
each sketch value s stores pointers to all sets A P F with SipAq “ s. When we query a set
Q we compute the sketch SipQq and lookup all the matches A P F with SipAq “ SipQq using
the hash tables for each i P rLs. We check the matches one by one to see if JpA,Qq ď j2,
stopping if a good one is found. This data structure has constant 1-sided error probability. It
uses Opn ¨ L `

ř

APF |A|q “ Opn1`ρ `
ř

APF |A|q space and OpL ¨ K ¨ |Q|q “ Opnρ log n ¨ |Q|q

query time. More precisely, the query time is dominated by two parts:

(1) We have to compute OpL ¨Kq hash values for similarity sketches which takes OpL ¨K ¨ |Q|q

time using OpL ¨ KqˆMinHash.

(2) In expectation the data structure returns OpLq false positives which have to be filtered
out. This takes OpL ¨ |Q|q time.

Different techniques has been used to speed up the query time and mostly the focus has been on
improving the dominant part (1). Andoni and Indyk [1] looked at the general LSH framework
and limited the number of evaluations of locality sensitive hash functions. The idea is to create
the sketches by combining smaller sketches together. More precisely, a much smaller collection
of sketches of size m “ opLq is created and then every

`

m
t

˘

combination of sketches is formed.
This technique is also known as tensoring. In the context of Jaccard similarity it improved part
(1) of the query time from OpL ¨ K ¨ |Q|q to OpL ¨ |Q|q, matching the bound for part (2). Thus
they got an overall query time of OpL ¨ |Q|q “ Opnρ ¨ |Q|q.

Contribution Our original conference version [10] had overlooked [1] and focussed directly on
improving the original bounds in (1) and (2). Concerning (1), we note that the analysis assumes
that all the values in the OpL ¨ KqˆMinHash are independent. This is not the case for our new
similarity sketch from Theorem 1 with t “ OpL ¨Kq, but it turns out that the probability bounds
from Theorem 1 do suffice. This implements (1) in Opt log t ` |Q|q “ OpL ¨ K ¨ log n ` |Q|q. For
a better implementation, we can first create an intermediate sketch of size Oplog2pnqq and then
sample the L sketches of size K from this intermediate sketch. This improves part (1) of the
query time to OpK ¨ L ` |Q|q.

Improving (2) requires some different ideas, but already in [10], we improved part (2) of the
query time to OpL ` |Q|q.

Christiani [7] noticed that our construction also composes nicely with tensoring technique [1]
so that we only need L instead of L ¨ K sketch values. As a result, part (1) of the query time is
improved from OpK ¨ L ` |Q|q to OpL ` |Q|q, matching the time for part (2). Hence the total
query time becomes OpL ` |Q|q “ OpL ` |Q|q “ Opnρ ` |Q|q, which is the natural target for
constant error probability. This is the combined solution presented in the current full paper.

Often we want a smaller error probability ε ą 0, e.g., ε “ 1{n. The generic standard approach
is to use Oplogp1{εqq independent data structures, each failing with constant probability, and

5



then return the best solution found, if any. Indeed this is suggested by Motwani and Indyk
in [14, p. 605] and [11, p. 327]. Since the data structures can use a common representation
of the sets, we would get a space usage of Opn1`ρ logp1{εq `

ř

APF |A|q and a query time of
Oppnρ ` |Q|q logp1{εqq.

Here we further improve the query time to O pnρ logp1{εq ` |Q|q while having the same space
usage. Thus we preserve our optimal linear dependence on |Q| even for high probability results.
Adding it all up, we prove the following result for the approximate set similarity search problem
using LSH:

Theorem 2. We are given a family F of up to n sets from a large universe U . Moreover, we
are given two constant parameters j1 and j2 with 0 ă j2 ă j1 ă 1, as well as an error parameter
ε ą 0 which may be subconstant.

We present an Approximate Similarity Search data structure with 1-sided error probability ε:
given a query set Q Ď U , if there is a set B P F with JpB,Qq ě j1, the data structure returns
a set A P F with JpA,Qq ě j2 with probability 1 ´ ε. Moreover, if A is returned, it always has
JpA,Qq ě j2. With ρ “

logp1{j1q

logp1{j2q
our data structure uses O

`

n1`ρ logp1{εq `
ř

APF |A|
˘

space
and it has query time O pnρ logp1{εq ` |Q|q.

1.3 Notation

For a real number x and an integer k we define xk “ xpx ´ 1qpx ´ 2q . . . px ´ k ` 1q. For
an expression P we let rP s denote the variable that is 1 if P is true and 0 otherwise. For a
non-negative integer n we let rns denote the set rns “ t0, 1, 2, . . . , n ´ 1u.

2 Fast Similarity Sketching

In this section we present our new sketching algorithm, which takes a set A Ď rus as input and
produces a sketch SpA, tq of size t. When t is clear from the context we may write just SpAq.

Our new similarity sketch is simple to describe: Let h0, . . . , h2t´1 be random hash functions
such that for i P rts we have hi : rus Ñ rts ˆ ri, i ` 1q and for i P tt, . . . , 2t ´ 1u we have
hi : rus Ñ ti ´ tu ˆ ri, i ` 1q. For each hash function hi we say that the output is split into a
bin, bi, and a value, vi. That is, for i P r2ts and a P rus we have hipaq “ pbipaq, vipaqq, where
bipaq and vipaq are restricted as described above. We may then define the jth entry of the sketch
SpAq as follows:

SpAqrjs “ mintvipaq | a P A, i P r2ts, bipaq “ ju . (1)

In particular, the hash functions ht, . . . , h2t´1 ensure that each entry of SpAq is well-defined.
Furthermore, since we have vipaq ă vjpbq for any a, b P rus and 0 ď i ă j ă 2t we can efficiently
implement the sketch defined in (1) using the Similarity-Sketch procedure in Algorithm 1. A bin
Srbs gets “filled” the first time it gets assigned a value ă 8 in line 5. The algorithm terminates
when all bins are filled, and if this happens in the first round with i “ 0, then the sketch created
is identical to that of one permutation hashing [16].

We will start our analysis of SpAq by bounding the running time of Algorithm 1.

Lemma 1. Let A Ď rus be some set and let t be a positive integer. Then the expected running
time of Algorithm 1 is Opt log t ` |A|q.

Proof. We always have a trivial worst-case upper bound of Opt ¨ |A|q and this is Opt log tq if
|A| “ Oplog tq. Otherwise, we may assume |A| ě 2 log t. Fix i to be the smallest value such that

6



Algorithm 1: Similarity-Sketch
input : A, t, h0, . . . , h2t´1

output: The sketch SpA, tq

1 S Ð 8t

2 c Ð 0
3 for i “ 0, ¨ ¨ ¨ , 2t ´ 1 do
4 for a P A do
5 b, v Ð hipaq

6 if Srbs “ 8 then
7 c Ð c ` 1

8 Srbs Ð minpSrbs, vq

9 if c “ t then
10 return S

|A| ¨ i ě 2 ¨ t log t. Then i ď t, and then the probability that a given bin is empty after evaluating
h0, . . . , hi´1 is at most

p1 ´ 1{tq|A|¨i ď p1 ´ 1{tq2¨t log t ď 1{t2 .

It follows that the probability of any bin being empty is at most 1{t and thus the expected
running time is Op|A| ¨ i `

|A|¨t
t q “ Opt log t ` |A|q.

Next, we will prove several properties of the sketch. The first is an observation that the
sketch of the union of two sets can be computed solely from the sketches of the two sets.

Fact 1. Let A,B be two sets and let t be a positive integer. Then

SpA Y B, tqris “ minpSpA, tqris, SpB, tqrisq .

The main technical lemma regarding the sketch is Lemma 2 below. The lemma show that our
sketch can qualitatively be seen as a mixture between sampling with replacement and sampling
without replacement. We will use this lemma to show that we get an unbiased estimator as well
as Chernoff-style concentration bounds.

Lemma 2. Let A,B be sets with Jaccard similarity JpA,Bq “ J , let t be a positive integer For
each i P rts let Xi “ rSpA, tqris “ SpB, tqriss. Let I Ď rts be a subset of k indices. Let j P rtszI
then

min

ˆ

J,
tJ ´

ř

iPI Xi

t ´ k

˙

ď Pr rXj “ 1 |σ ppXiqiPIqs ď max

ˆ

J,
tJ ´

ř

iPI Xi

t ´ k

˙

.

Proof. Define T “ pT0, T1, . . . , T2t´1q in the following way. Let T0 “ b0 pA Y Bq and for i ě 1 let
Ti “ bi pA Y Bq z pT0 Y . . . Y Ti´1q. Assume in the following that T is fixed. It clearly suffices
to prove this theorem for all possible choices of T . Let n “ |A Y B|, then nJ “ |A X B|.

We will prove the claim when the set I is chosen uniformly random among the subsets of
rts of size k, and where j is chosen uniformly random from rtszI. Because of symmetry this will
suffice.

The probability that j P Th is |Th|´|ThXI|

t´k . Conditioned on j P Th the probability that Xj “ 1

is exactly
nJ´

ř

iPThXI Xi

n´|ThXI|
. So the probability that Xj “ 1 is

p “ E

»

–

ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨
nJ ´

ř

iPThXI Xi

n ´ |Th X I|

fi

fl

7



If we fix |Th X I| then Th X I is a uniformly random subset of I of size |Th X I|. This implies
that

E

«

ÿ

iPThXI

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPI , |Th X I|q

ff

“ |Th X I|

ř

iPI Xi

k

and that
ÿ

hPr2ts

E
„

|Th| ´ |Th X I|

t ´ k
¨
nJ ´

ř

iPThXI Xi

n ´ |Th X I|

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPI , |Th X I|q

ȷ

“
ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨
nJ ´ |Th X I|

ř

iPI Xi

k

n ´ |Th X I|

If J ď
tJ´

ř

iPI Xi

t´k then J ě

ř

iPI Xi

k which implies that

J ď
nJ ´ |Th X I|

ř

iPI Xi

k

n ´ |Th X I|
ď

|Th| J ´ |Th X I|

ř

iPI Xi

k

|Th| ´ |Th X I|

and inserting these estimates give us

J “
ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨ J

ď
ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨
nJ ´ |Th X I|

ř

iPI Xi

k

n ´ |Th X I|

ď
ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨

|Th| J ´ |Th X I|

ř

iPI Xi

k

|Th| ´ |Th X I|

“
tJ ´

ř

iPI Xi

t ´ k

Similar calculations shows that if J ě
tJ´

ř

iPI Xi

t´k then

J ě
ÿ

hPr2ts

|Th| ´ |Th X I|

t ´ k
¨
nJ ´ |Th X I|

ř

iPI Xi

k

n ´ |Th X I|
ě

tJ ´
ř

iPI Xi

t ´ k

which finishes the proof.

As a corollary we immediately get that the estimator is unbiased.

Lemma 3. Let A,B be sets with Jaccard similarity JpA,Bq “ J and let t be a positive integer.
Let Xi “ rSpA, tqris “ SpB, tqriss and let X “

ř

iPrts Xi. Then ErXs “ tJ .

Proof. This follows directly by applying Lemma 2 with k “ 0.

We also get nice bounds on the moments even when conditioning on a subset of the indices.
This lemma will be important in Section 3 where we will use it to prove our result of improving
LSH.

Lemma 4. Let A,B be sets with Jaccard similarity JpA,Bq “ J , let t be a positive integer. Let
I Ď rts be a set of k indices and K Ď rtszI another disjoint set of m indices. Then

ˆ

tJ ´ k

t ´ k

˙m

ď E

«

ź

jPK

Xj

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPIq

ff

ď

ˆ

tJ

t ´ k

˙m

.
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Proof. The proof for the lower bound is completely analogous to proof for the upper bound so
we only show the arguments for the upper bound.

First we note that if k ě tp1´ Jq then tJ
t´k ě 1 and the result is trivially true. So in the rest

of the proof we assume that k ď tp1 ´ Jq

We will prove that for any subset K 1 Ď K and h P KzK 1 then the following is true

E

»

–Xh

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPIq ^
ľ

jPK1

pXj “ 1q

fi

fl ď
tJ

t ´ k

This is easily seen by using Lemma 2

E

»

–Xh

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPIq ^
ľ

jPK1

pXj “ 1q

fi

fl ď max

ˆ

J,
tJ ´ |K 1| ´

ř

iPI Xi

t ´ |K 1| ´ k

˙

ď
tJ

t ´ k

Now we enumerate the elements of K “ tv0, . . . , vm´1u and see that

E

»

–

ź

jPrms

Xvj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPIq

fi

fl “
ź

jPrms

E

»

–Xvj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppXiqiPIq ^
ľ

hPrjs

pXvh “ 1q

fi

fl ď

ˆ

tJ

t ´ k

˙m

Finally, we also get Chernoff-style concentration bounds as follows.

Lemma 5. Let A,B be sets with Jaccard similarity JpA,Bq “ J and let t be a positive integer.
Let Xi “ rSpA, tqris “ SpB, tqriss and let X “

ř

iPrts Xi. Then for δ ą 0

PrrX ě Jp1 ` δqs ď

ˆ

eδ

p1 ` δq1`δ

˙t

,

PrrX ď Jp1 ´ δqs ď

ˆ

e´δ

p1 ´ δq1´δ

˙t

.

Proof. The upper bound follows from Lemma 4 with k “ 0 and [21, Corollary 1] since Chernoff
bounds are derived by bounding E

“

eλX
‰

for some λ ą 0.
The lower bounds follows from considering Y “

ř

iPrts Yi where Yi “ 1 ´ Xi and Y “ t ´ X.
Since Yi “ rSpAYB, tqris “ SppAYBqzpAXBq, tqriss we can use the same argument as for the
upper bound, see [21, Page 4].

Practical implementation In Algorithm 1 we used 2t fully random hash functions to im-
plement our new similarity sketch. We now briefly describe how to avoid this requirement by
instead using just one Mixed Tabulation hash function as introduced by Dahlgaard et al. [9].
We do not present the entire details, but refer instead to the theorems of [9] which can be used
directly in a black-box fashion. We note that Dahlgaard et al. [9] did address one permutation
hashing [16] which is identical to our similarity sketch if all bins are filled in the first round with
i “ 0.

In tabulation-based hashing we view each key, x P rus, as a vector px0, . . . , xc´1q of c char-
acters, where each xi P ru1{cs “ Σ, and Σ is called the alphabet size. The space will be Opc|Σ|q

and hash values are computed in in Opcq time. As in Dahlgaard et al. [9], we need |Σ| ě δ ¨ t log t
for some sufficiently large constant δ. The output of tabulation hashing is a bit-string that we
can easily split into two parts, one for the bin and one for the value.

9



In our similarity sketch from Algorithm 1, we use 2t independent hash fuctions hi. Here we
view the index i as an extra most significant character from r2ts Ď Σ. We then use a single mixed
tabulation hash function H taking indexed keys from Σc1 for c1 “ c ` 1. With with original key
a “ pa0, . . . , ac´1q, we compute hipaq in Line 5 of Algorithm 1 as Hpi, a0, . . . , ac´1q, but fixing
the bin to i ´ t if i ě t,

We now consider two cases:

• Suppose |A| ď |Σ|{2 and let i ď 2t be an integer such i|A| ď |Σ|{2. Then we have at most
|Σ|{2 indexed keys in ris ˆA. It now follows from [9, Theorem 1], that w.h.p., the indexed
keys from ris ˆ A hash fully randomly, just like in our original analysis. If 2t|A| ď |Σ|{2,
we pick i “ 2t, and then this implies full randomness over all indexed keys. Otherwise, we
pick i “ mintt, |Σ|{p2|A|quu. Then i|A| ě |Σ|{p4|A|q. Now, as in the proof of Lemma 1,
the probability that a given bin is empty after i rounds in Algorithm 1 is at most

p1 ´ 1{tq|A|¨i ď p1 ´ 1{tqpδt log tq{4 ă 1{tδ{4.

For a large enough δ, we conclude that all bins are filled, w.h.p., hence that we have full
randomness over all indexed keys considered before termination.

• Suppose now that |A| ą |Σ|{2. In particular this implies that we have a subset A1 of |Σ|{2
keys. As in the previous case, r1s ˆ A1 get hashed fully randomly, filling all bins, w.h.p.,
but this must then also be the case for r1s ˆ A. Thus, w.h.p., Algorithm 1 terminates at
the end of the first round, meaning that it behaves like one permutation hashing [16]. In
this case both correctness and running time follows immediately from [9, Theorem 2].

We note that concentration bounds from [9] for mixed tabulation have been later been improved
by Houen and Thorup in [13, §1.6]. This does not, however, change the above description of
how we would apply mixed tabulation in our similarity sketch.

3 Speeding up LSH

We are now ready to prove Theorem 2. We want to solve the approximate similarity search
problem with parameters 0 ă j2 ă j1 ă 1 on a family, F , of n sets from a large universe U . We
show a solution that uses O

`

n1`ρ logp1{εq `
ř

APF |A|
˘

space and O pnρ logp1{εq ` |Q|q query
time.

3.1 Creating the sketches

We will create a data structure similar to the LSH structure as described in Section 1.2. Our
data structure will have parameters L,K,M . For each A P F (and query Q) we will create
2M ¨ L sketches

´

S1
i,jpAq

¯

iPr2Ms,jPrLs
of size K such that for any two sets A,B Ď U , i P r2M s

and j P rLs we have the following properties

• Pr
”

S1
i,jpAq “ S1

i,jpBq

ı

“ OpJpA,BqKq .

• If JpA,Bq ě j1 then Pr
”

S1
i,jpAq “ S1

i,jpBq

ı

“ ΘpJpA,BqKq .

We will then combine these sketches into M ¨L2 new sketches of size 2K by using the tensoring
technique. Specifically for every i P rM s and j, k P rLs we define Si,j¨L`kpAq “ pS1

2i,jpAq, S1
2i`1,kpAqq

which is clearly well-defined. By using standard hashing techniques the new sketches can be
calculated in OpM ¨ L2q time. Then for any two sets A,B Ď U , i P rM s and j P rL2s we have
the following properties

10



|_| . . . |_|
loooomoooon

S

. . . |_| . . . |_|
loooomoooon

S
looooooooooooomooooooooooooon

K

. . . |_| . . . |_|
loooomoooon

S

. . . |_| . . . |_|
loooomoooon

S
looooooooooooomooooooooooooon

K
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

2M

Figure 2: The intermediate sketch SpAq is first partitioned into 2M segments which corresponds
to the 2M subexperiments. Each of these segments then partitioned further into K blocks of
size S, which corresponds to the K entries in the L sketches in each of the subexperiments.

• PrrSi,jpAq “ Si,jpBqs “ OpJpA,Bq2Kq .

• If JpA,Bq ě j1 then PrrSi,jpAq “ Si,jpBqs “ ΘpJpA,Bq2Kq .

By setting K “

Q

logpnq

2 logp1{j2q

U

, L “ 6
P

p1{j1qK
T

and M “ Θplogp1{εqq and using the analysis of
[14] immediately give us

O

˜

ML2 `
ÿ

APF
|A|

¸

“ O

˜

n1`ρ logp1{εq `
ÿ

APF
|A|

¸

space usage and

O
´

ML2 ` T plogp1{εqnρ{2, logpnq, |Q|q

¯

“ O
´

nρ logp1{εq ` T pnρ{2 logp1{εq, logpnq, |Q|q

¯

query time, where T px, y, zq is the time it takes to calculate x sketches of size y for a set of size
z, and ρ “

logp1{j1q

logp1{j2q
.

Remark 1. The parameters K and L differs from the usual analysis of the LSH framework.
We have that jK2 ď 1?

n
instead of jK2 ď 1

n , and nρ{2 “ L ě 6jK1 instead of nρ “ L ě jK1 .
The use of tensoring entails that most of the analysis will be centered around the sketches
´

S1
i,jpAq

¯

iPr2Ms,jPrLs
. If we used the usual parameters then there would be M

P
?
L

T

sketches of

size
P

K
2

T

. This would clutter the notation making the analysis harder to understand.

In order to create the 2M ¨L sketches
´

S1
i,jpAq

¯

iPr2Ms,jPrLs
described above we first create 2M

tables T0, . . . , T2M´1 of size LˆK such that for each i P r2M s, j P rLs and k P rKs we have that
Tirj, ks is an uniformly random integer chosen from the set tKSi ` Sj, . . . ,KSi ` Spj ` 1q ´ 1u

where S is parameter to be chosen later. The tables are independent of each other. In every
table the rows are chosen independently. Every row in every table is filled using a source of
2-independence. Now for a given A Ď U we do the following

1. Let SpAq be a size 2MKS similarity sketch of Section 2.

2. For each i P r2M s, j P rLs and k P rKs let S1
i,jpAqrks “ SpAq rTirj, kss.

See Figure 2 for an intuition about how the intermediate sketch SpAq is partitioned. It takes
OpMKS logMKS ` |A|q time to create the sketch SpAq by Lemma 1, and it takes OpMLKq

time to calculate S1. Thus the time needed to create sketches
´

S1
i,jpAq

¯

iPr2Ms,jPrLs
for any A Ď U

is O pMLK ` MKS logMKS ` |A|q. We will set S “ ΘpK{j1q. Now the total running time
for creating the sketches pSi,jpAqqiPr2Ms,jPrL2s

becomes

O
`

ML2 ` MLK ` MKS logpMKSq ` |A|
˘

“ O pnρ log p1{εq ` |A|q

11



thus the running time of a query is Opnρ log p1{εq ` |A|q.
The main issue is to prove that the intermediate sketch has the desired properties despite the

entries not being independent. We call the vector of sketches
´

S1
i,jpAq

¯

jPrLs
a subexperiment

for each i P r2M s, and the vector of sketches pSi,jpAqqjPrL2s
an experiment for each i P rM s.

It is clear that the experiment pSi,jpAqqjPrL2s
is completely determined by the subexperiments

´

S1
2i,jpAq

¯

jPrLs
and

´

S1
2i`1,jpAq

¯

jPrLs
for every i P rM s by construction. We define FbadpQq “

tA P F | JpA,Qq ď j2u, which we will call the family of bad sets with respect to Q. We also define
FgoodpQq “ tA P F | JpA,Qq ě j1u, which we will call the family of good sets with respect to
Q.

Furthermore it will be useful to define the vector M1
QpAqris which will be the number of

matches that the set A P F has in the i P r2M s subexperiment:

M1
QpAqris “

ÿ

jPrLs

“

S1
i,jpAq “ S1

i,jpQq
‰

,

and the vector MQpAqris which will be the number of matches that the set A P F has in the
i P rM s experiment:

MQpAqris “
ÿ

jPrL2s

rSi,jpAq “ Si,jpQqs “ M1
Qr2isM1

Qr2i ` 1s

Each experiment will provide us with a lot of matches and amongst all those matches we
need to find a set A with JpA,Qq ě j2, so we need to filter away all the bad sets. To do this
each experiment will choose one candidate set amongst the matched sets. This will give us
Oplogp1{εqq candidates which we are allowed to use extra time checking by our time budget. We
will use two different techniques to choose the candidates depending on the number of matches.
If an experiment has OpLq matches then we can afford to check each set using a sketch of size
Opmaxplog n, logp1{εqqq since by using the minwise b-bit hashing trick of Li et al.[17] this can
be done in OpLq time. If an experiment has ωpLq matches then we pick a random match which
also can be done in OpLq time.

We note that the experiments are conditionally independent given the intermediate sketch,
SpQq, that is, if we fix the intermediate sketch then the experiments are independent. The goal
is to show that the intermediate sketch satisfies the following with probability at least 1 ´ ε

3 :
After fixing the intermediate sketch at least a constant fraction of the experiments have the
properties: (a) we expect O

`

j2K2 n
˘

bad matches in expectation, and (b) the probability that a
good set A˚ P FgoodpQq is matched is at least Ωpj2K1 q. To show this we need a bit of notation,
for a set A P F we define

YipAq “

ř

jPrSs rSpAqriS ` js “ SpBqriS ` jss

S

for every i P r2MKs, which corresponds to the block of the subexperiments, and for every
l P r2M s we define ZlpAq “

ś

iPrKs YlK`ipAq. From these definition we get that

Pr rSi,jpAq “ Si,jpQq |Z2lpAq, Z2l`1pAqs “ Z2ipAq ¨ Z2i`1pAq .

If the intermediate sketch is fixed then

E

«

ÿ

APF
MQpAqris

ˇ

ˇ

ˇ

ˇ

ˇ

Z2i, Z2i`1

ff

“ L2
ÿ

APFbad

Z2ipAq ¨ Z2i`1pAq

So to prove (a) we need to show that for most i P rM s then
ř

APFbadpQq Z2ipAq ¨ Z2i`1pAq “

O
`

j2K2 n
˘

, which formalized in the next Lemma.
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Lemma 6. Let I Ď rM s be a set of d indices, and C a constant, then

Pr

»

–

ľ

iPI

¨

˝

ÿ

APFbadpQq

Z2ipAq ¨ Z2i`1pAq ě Cj2K2 n

˛

‚

fi

fl ď

´ e

C

¯d
.

Proof. Using Markov’s inequality we note that

Pr

«

ľ

iPI

˜

ÿ

APFbad

Z2ipAq ¨ Z2i`1pAq ě Cj2K2 n

¸ff

ď Pr

«

ź

iPI

ÿ

APFbad

Z2ipAq ¨ Z2i`1pAq ě
`

Cj2K2 n
˘d

ff

ď

E
”

ś

iPI

ř

APFbad
Z2ipAq ¨ Z2i`1pAq

ı

`

Cj2K2 n
˘d

,

so we just need to show that

E

«

ź

iPI

ÿ

APFbad

Z2ipAq ¨ Z2i`1pAq

ff

ď
`

ej2K2 n
˘d

.

To do this we enumerate I “ tv0, . . . , vd´1u and consider any A0, . . . , Ad´1 P FbadpQq.

E

»

–

ź

iPrds

Z2vipAiq ¨ Z2vi`1pAiq

fi

fl

“
ź

iPrds

E
”

Z2vipAiq ¨ Z2vi`1pAiq

ˇ

ˇ

ˇ
σ

´

`

Z2vj , Z2vj`1

˘

jPri´1s

¯ı

ď
ź

iPrds

ˆ

2MKS ¨ JpAi, Qq

2MKS ´ pi ´ 1q2K

˙2K

ď

˜

ˆ

2MKS ¨ j2
2MKS ´ 2MK

˙2K
¸d

ď

˜

ˆ

S ¨ j2
S ´ 1

˙2K
¸d

ď
`

ej2K2
˘d

where the first inequality follows by using Lemma 4, and the last inequality follows by the
definition of S and K. Using this we see that

E

«

ź

iPI

ÿ

APFbad

Z2ipAq ¨ Z2i`1pAq

ff

ď |FbadpQq|
d

¨
`

ej2K2
˘d

ď
`

ej2K2 n
˘d

which proves the result.

Since Pr rSi,jpAq “ Si,jpQq |Z2lpAq, Z2l`1pAqs “ Z2ipAq ¨ Z2i`1pAq, then to show (b): We
need that for most i P rM s then Z2ipAq ¨ Z2i`1pAq ě Ωpj2K1 q, which is formalized in the next
lemma.

Lemma 7. For every set of indices I Ď rM s of size d and real number δ P r0, 1s, we have that

Pr

«

ľ

iPI

´

Z2ipA
˚q ď p1 ´ δqjK1 _ Z2i`1pA˚q ď p1 ´ δqjK1

¯

ff

ď

´

6e´δ2j1S{p32Kq
¯d

.
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First we need the following technical lemma.

Lemma 8. Let t, k, s be positive integers such that t “ ks and let α be a real number such that
αt is a positive integer. Let B be the set of all t-tuples from t0, 1u

t for which the sum of entries
is exactly αt, i.e.:

B “

$

&

%

pb0, . . . , btq P t0, 1u
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrts

bi “ αt

,

.

-

Let pa0, . . . , atq be drawn uniformly random from B, and let Yi “
ř

jPrss ais`j for every i P rks.
Then for any real number δ P r0, 1s:

Pr

»

–

ź

iPrks

Yi ď p1 ´ δqpαsqk

fi

fl ď 2e´δ2αs{p10kq

Proof. First note that we can assume that 2e´δ2αs{p10kq ď 1 which implies that 5k ď δ2αs.
Let l be a positive integer to be chosen later. If

ś

iPrks Yi ď p1 ´ δqpαsqk, then one of two
events must be true: either there exists i P rks such that Yi ď αs

2 , or we have that
ź

iPrks

pYi ` lql ď
ź

iPrks

pYi ` lql

ď

¨

˝

ź

iPrks

ˆ

1 `
l

Yi

˙l
˛

‚

¨

˝

ź

iPrks

Yi

˛

‚

l

ď

¨

˝

ź

iPrks

ˆ

1 `
l

Yi

˙l
˛

‚p1 ´ δqlpαsqkl

ď e

´

ř

iPrks
1
Yi

¯

l2´δl
pαsqkl

ď e
2k
αs

l2´δlpαsqkl

For any i P rks the probability that Yi ď αs
2 is at most e´αs{8 by standard Chernoff bound.

Hence the probability that there exists such an i is at most ke´αs{8 by union bound. Now we
note that

ke´αs{8 “ k
´

e´δ2αs{p10kq
¯10k{p8δ2q

ď k
´

e´δ2αs{p10kq
¯k

ď e´δ2αs{p10kq

where the last inequality comes from the fact that xax ď a if a ď 1
2 and x is a positive integer.

Now we want to bound the other event. By using Markov’s inequality we have that

Pr

»

–

ź

iPrks

pYi ` lql ď e
2k
αs

l2´δlpαsqkl

fi

fl “ Pr

»

–

¨

˝

ź

iPrks

pYi ` lql

˛

‚

´1

ě e´ 2k
αs

l2`δlpαsq´kl

fi

fl

ď E

»

–

¨

˝

ź

iPrks

pYi ` lql

˛

‚

´1fi

fl ¨ e
2k
αs

l2´δlpαsqkl

Now we want to show that

E

»

–

¨

˝

ź

iPrks

pYi ` lql

˛

‚

´1fi

fl ď pαsq´kl
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First we define

C “

$

&

%

pc0, . . . , ck´1q P t0, . . . , su
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrks

ci “ αt

,

.

-

and note that for pc0, . . . , ck´1q P C the probability that Yi “ ci for all i P rks is exactly
ˆ

t

αt

˙´1
ź

iPrks

ˆ

s

ci

˙

Thus the expected value is
ˆ

t

αt

˙´1
ÿ

pc0,...,ck´1qPC

ź

iPrks

ˆˆ

s

ci

˙

1

pci ` lql

˙

Now we note that
ˆ

s

ci

˙

1

pci ` lql
“

1

ps ` lql

ˆ

s ` l

ci ` l

˙

Hence we get that
ˆ

t

αt

˙´1
ÿ

pc0,...,ck´1qPC

ź

iPrks

ˆˆ

s

ci

˙

1

pci ` lql

˙

“

ˆ

t

αt

˙´1 ˆ

1

ps ` lql

˙k
ÿ

pc0,...,ck´1qPC

ź

iPrks

ˆ

s ` l

ci ` l

˙

We see that we are in fact summing over all t-tuples pc0, . . . , ck´1q where ci P tl, . . . , l ` su and
ř

iPrks ci “ αt ` kl. So we define

C1 “

$

&

%

pc0, . . . , ck´1q P t0, . . . , s ` luk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrks

ci “ αt ` lk

,

.

-

and get that
ˆ

t

αt

˙´1 ˆ

1

ps ` lql

˙k
ÿ

pc0,...,ck´1qPC

ź

iPrks

ˆ

s ` l

ci ` l

˙

ď

ˆ

t

αt

˙´1 ˆ

1

ps ` lql

˙k
ÿ

pc0,...,ck´1qPC1

ź

iPrks

ˆ

s ` l

ci

˙

“

ˆ

t

αt

˙´1 ˆ

1

ps ` lql

˙k ˆ

t ` kl

αt ` kl

˙

“
pt ` klqkl

pαt ` klqkl

ˆ

1

ps ` lql

˙k

It is clear that
´

klps ` lql
¯k

ě pks ` klqkl “ pt ` klqkl

hence using this we get that

pt ` klqkl

pαt ` klqkl

ˆ

1

ps ` lql

˙k

ď
kkl

pαt ` klqkl
ď

kkl

pαtqkl
“

1

pαsqkl
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So the probability is bounded by
e

2k
αs

l2´δl

which has global minimum when l “ δαs
4k . Since l is an integer we get that the probability is

bounded by

e
2k
αsp δαs

4k
˘ 1

2q
2

´δp δαs
4k

˘ 1
2q “ e´δ2αs{p8kq`k{p2αsq

Now using that 5k ď δ2αs ď αs we get that k{p2αsq ď δ2αs{p50kq. We see that ´δ2αs{p8kq `

δ2αs{p50kq ď ´δ2αs{p10kq which finishes the proof.

We can now prove that most ZipA
˚q ě p1 ´ δqjK1 , which will almost prove Lemma 7.

Lemma 9. For every set of indices I Ď r2M s of size d and real number δ P r0, 1s, we have that

Pr

«

ľ

iPI

ZipA
˚q ď p1 ´ δqjK1

ff

ď

´

3e´δ2j1S{p32Kq
¯d

Proof. The first we do is to write the probability as an expectation

Pr

«

ľ

lPI

Zl ď p1 ´ δqjK1

ff

“ E

«

ź

lPI

“

Zl ď p1 ´ δqjK1
‰

ff

For every l P I we define the random variable αl by

αl “

ř

iPrKs YlK`i

K

and let Plpαq be the probability that Zl ď p1 ´ δqjK1 given that αl “ α. We then get that

E

«

ź

lPI

“

Zl ď p1 ´ δqjK1
‰

ff

“ E

«

E

«

ź

lPI

“

Zl ď p1 ´ δqjK1
‰

ˇ

ˇ

ˇ

ˇ

ˇ

σ ppαlqlPIq

ffff

“ E

«

ź

lPI

Plpαlq

ff

Now we will split the random variable Plpαlq as follows

Plpαlq “

„

αl ď

ˆ

1 ´
δ

4K

˙

j1

ȷ

Plpαlq `

„

αl ą

ˆ

1 ´
δ

4K

˙

j1

ȷ

Plpαlq

If αl ą
`

1 ´ δ
4K

˘

j1 then αK
l ą

`

1 ´ δ
4

˘

jK1 so
`

1 ´ 3
4δ

˘

αK
l ą p1 ´ δqjK1 . Using Lemma 8 we get

that
„

αl ą

ˆ

1 ´
δ

4K

˙

j1

ȷ

Plpαlq ď

„

αl ą

ˆ

1 ´
δ

4K

˙

j1

ȷ

2e´δ2αlS3
2{p42¨10Kq

ď 2e´δ2j1S33{p43¨10Kq

ď 2e´δ2j1S{p32Kq

where the second inequality uses that αl ą
`

1 ´ δ
4K

˘

j1 ě 3
4j1 and last inequality uses that

33

43¨10
ą 1

32 .
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Now using this we get that

E

«

ź

lPI

Plpαlq

ff

ď E

«

ź

lPI

ˆ„

αl ď

ˆ

1 ´
δ

4K

˙

j1

ȷ

` 2e´δ2j1s{p32kq

˙

ff

Now for every subset I 1 Ď I of size d1 we have that

E

«

ź

lPI 1

„

αl ď

ˆ

1 ´
δ

4K

˙

j1

ȷ

ff

ď Pr

„ř

lPI 1 αl

d1
ď

ˆ

1 ´
δ

4K

˙

j1

ȷ

“ Pr

«

ř

lPI 1

ř

iPrKs YlK`i

d1t
ď

ˆ

1 ´
δ

4K

˙

j1

ff

ď e´δ2j1d1S{p32Kq

“

´

e´δ2j1S{p32Kq
¯d1

where the inequality uses that Lemma 5. Hence we get that

Pr

«

ľ

lPI

Zl ď p1 ´ δqjK1

ff

ď

´

3e´δ2j1S{p32Kq
¯d

as we wanted.

We are now ready to prove Lemma 7 which follows easily from Lemma 9.

Proof of Lemma 7. By union bound and Lemma 9 we get that

Pr

«

ľ

iPI

`

Z2ipA
˚q ď p1 ´ δqjK1 _ Z2i`1pA˚q ď p1 ´ δqjK1

˘

ff

ď
ÿ

pviqiPIPt0,1u
d

Pr

«

ľ

iPI

`

Z2i`vipA
˚q ď p1 ´ δqjK1

˘

ff

ď
ÿ

pviqiPIPt0,1u
d

´

3e´δ2j1S{p32Kq
¯d

“

´

6e´δ2j1S{p32Kq
¯d

Having Lemma 6 and Lemma 7 it becomes easy to prove the main theorem of this section.

Theorem 3. Let A P FgoodpQq and, Mgood Ď rM s be the set of experiments, such that, for every
i P Mgood

1.
ř

APFbadpQq Z2ipAq ¨ Z2i`1pAq ď 4ej2K2 n ,

2. Z2ipA
˚q ě 1

2j
K
1 ^ Z2i`1pA˚q ě 1

2j
K
1 .

Then |Mgood| ě M
3 with probability at least 1 ´ ε

2 .

Proof. By Lemma 6, Lemma 7, and a standard analysis of Chernoff bounds, we have Chernoff-
type bounds on the number of experiments which does not satisfy either of the requirements.
Now choosing S large enough we get that 6e´ 1

2

2
j1S{p32Kq ď 1

4 , so choosing M large enough at
most M

3 experiments does not satisfy the first requirement with probability at least 1 ´ ε
4 , and

at most M
3 experiments does not satisfy the second requirement with probability at least 1 ´ ε

4 .
Now a union bound finishes the proof.
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3.2 Filtering

Using Theorem 3, we get that good set A˚ P FgoodpQq is matched with probability at least
1 ´ 3

4ε. Now it is not enough to know that a good set A˚ P FgoodpQq is matched in one of
the experiments with high probability, we also need to be able to find the good set amongst
all the matched sets. To do this we will apply a two-tiered filtering algorithm. First we use a
fast and imprecise filtering step to select a candidate Ci P F amongst the matched set in the
i’th experiment for every experiment i P rM s. This will give us M candidates C0, . . . , CM´1 for
which will use a slower and more precise filtering step to select the actual set. We will show that
this two-tiered filtering algorithm finds a good set with high probability if such a set exists.

In the first filtering step we will use two different approaches depending on the number of
matches in an experiment. If there is more than 2CL2 matches in a experiment then we will
choose a random match. If there is less than 2CL2 matches then we will check every match using
a sketch of size Θpmaxplog n, logp1{εqqq, this can be done in constant time per element by using
minwise b-bit hashing, and pick the first element that is above a certain threshold. If no element
is above the threshold then we will for the sake of the analysis assume that the candidate picked
is the empty set.

In the second filtering step we have a set of M “ Oplogp1{εqq candidates, which we will check
using a sketch of size Θplog2pnq logp1{εqq, again using minwise b-bit hashing this can be done in
Θplog2pnqq time per element. This allows us distinguish between elements with similarity less
than j2 and elements with similarity at least j1

2. Again we pick the first element that is above a
certain threshold.

We define
MQpAqris “

ÿ

jPrLs

rSi,jpAq “ Si,jpQqs

to be the number of matches of A P F in the i’th experiment where i P rM s. Now let

IQpA˚q “

$

&

%

i P Mgood

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pMQpA˚qris ą 0q ^

¨

˝

ÿ

APFbadpQq

MQpAqris ď CL2

˛

‚

,

.

-

be the set of experiments where A˚ P FgoodpQq is matched and where there are not to many
bad sets are matched. Using Theorem 3 and the analysis from Dahlgaard et al.[10] we get that
|IQpA˚q| “ Ω plog p1{εqq with probability at least 1 ´ 3

4ε by choosing M “ Θplogp1{εqq and
C “ Θp1q large enough.

We want to show that at least one of the experiments chooses a candidate with similarity at
least j1

2, in particular we will show that

Pr

»

–

ľ

iPIQpA˚q

`

JpCi, Qq ă j1
2

˘

fi

fl ď

ˆ

1

2

˙|IQpA˚q|

Since we will filter in two different ways depending on the number of matches, we will split
IQpA˚q into two: The experiments I 1

QpA˚q with many matches

I 1
QpA˚q “

#

i P IQpA˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

APF
MQpAqris ą 2CL2

+

and the experiments I2
QpA˚q with few matches

I2
QpA˚q “

#

i P IQpA˚q

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

APF
MQpAqris ď 2CL2

+
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First we consider the case where the is at least one good experiment with few matches. As
mentioned we will create a sketch T pQq of size t “ Θpmaxplog n, logp1{εqqq using the minwise
1-bit hashing trick. We then get that

PrrT pQqris “ T pAqriss “ JpA,Qq ` p1 ´ JpA,Qqq
1

2
“

1 ` JpA,Qq

2

for any A P F and i P rts. We pick the threshold γ “
1`

j1`j1
2

2
2 . Using Hoeffding’s inequality we

get that for A P FgoodpQq then

Pr

»

–

ÿ

iPrts

rT pAqris “ T pQqriss ď γt

fi

fl ď
ε

8
¨
1

n

and for A P FbadpQq then

Pr

»

–

ÿ

iPrts

rT pAqris “ T pQqriss ě γt

fi

fl ď
ε

8
¨
1

n

So a union bound over all the sets in all the experiments, for which there are at most OpCL2 logp1{εqq,
shows that the probability that none of the candidates has similarity at least j1

2 is at most ε
8 . It

takes Op1q time to check each set so it takes OpL2q time to filter each experiment.
Now we assume that every good experiment has many matches. We note that since we pick

a random element in every experiment independently then we get that

Pr

»

–

ľ

iPI 1
QpA˚q

`

JpCi, Qq ă j1
2

˘

fi

fl “
ź

iPI 1
QpA˚q

Pr
“

JpCi, Qq ă j1
2

‰

Using Markov’s inequality we get that

Pr
“

JpCi, Qq ă j1
2

‰

ď
1

2

for i P I 1QpA˚q since we know that
ř

APFbadpQq MQpAqris ď CL2. This shows that

Pr

»

–

ľ

iPI 1
QpA˚q

`

JpCi, Qq ă j1
2

˘

fi

fl ď

ˆ

1

2

˙|I 1
QpA˚q|

Since every experiment has many matches this implies that the probability that none of the
candidates has similarity at least j1

2 is at most ε
8 . This shows that the probability that the first

step of filtering fails is at most ε
8 .

We have now shown that the probability, that none of the candidates has Jaccard similarity
at least j1

2, is at most 7
8ε. Now to find the correct candidate we will create a sketch T 1pQq

of size t1 “ Θplog2pnq logp1{εqq using the minwise 1-bit hashing trick. We pick the threshold

γ1 “
1`

j2`j1
2

2
2 . Using Hoeffding’s inequality we get that for candidates C with JpC,Qq ě j1

2 then

Pr

»

–

ÿ

iPrts

rT pCqris “ T pQqriss ď γ1t1

fi

fl ď
ε2

8
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and for candidates C with JpC,Qq ď j2 then

Pr

»

–

ÿ

iPrts

rT pCqris “ T pQqriss ě γ1t1

fi

fl ď
ε2

8

A union bound over all Oplogp1{εqq candidates shows that the probability, that the set chosen
has similarity less than j2, is at most ε

8 . Checking each candidate takes Oplog2pnqq time so we
use a total of Oplog2pnq logp1{εqq time for second filtering step.

Combining all the steps shows that the data structure finds a set A P F with JpA,Qq ě j2
if there exists a set B P F with JpB,Qq ě j1 with probability at least 1´ ε. Now since we want
the data structure to only have a 1-sided error then we calculate the exact Jaccard similarity of
the set in Op|Q|q time.
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