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Abstract

We design a deterministic polynomial time cn approximation algorithm for the permanent of positive
semidefinite matrices where c = eγ+1 ≃ 4.84. We write a natural convex relaxation and show that
its optimum solution gives a cn approximation of the permanent. We further show that this factor is
asymptotically tight by constructing a family of positive semidefinite matrices.

1 Introduction

Given a matrix A ∈ C
n×n, its permanent is defined as

per(A) =
∑

σ∈Sn

n∏

i=1

Ai,σ(i),

where Sn is the set of permutations on {1, . . . , n}. There is a very rich body of work on permanent
of matrices and its algebraic properties, see [Bap07] for a recent survey on several theorems and open
problems in this area.

The problem has been also studied from the point of view of computational complexity. Valiant
[Val79] showed that it is #P complete to compute the permanent of {0, 1}-matrices. Aaronson [Aar11]
gave a new proof of the #P hardness, using the model of linear optical quantum computing. In addi-
tion, he showed that it is #P hard to compute the sign of per(A), essentially ruling out a multiplicative
approximation. Grier and Schaeffer [GS16] extended Aaronson’s proof and proved #P hardness of com-
puting the permanent of real orthogonal matrices. They also showed by a simple polynomial interpolation
argument that it is #P hard to compute the permanent of PSD matrices.

Given a general matrix A ∈ R
n×n, Gurvits [Gur05] designed a randomized algorithm that in time

O(n2/ǫ2) approximates per(A) within ±|A|n additive error, where |A| is the largest singular value of A.
Chakhmakhchyan, Cerf, and Garcia-Patron [CCG16] improve on Gurvits’s algorithm if the matrix A is
PSD and its eigenvalues satisfy a certain smoothness property.

If all entries of A are nonnegative then per(A) ≥ 0 by definition. In particular, if A ∈ {0, 1}n×n, then
per(A) is equal to the number of perfect matchings of the bipartite graph associated with A. Jerrum,
Sinclair, and Vigoda [JSV04] in a breakthrough obtained a fully polynomial time randomized approxi-
mation scheme (FPRAS) for the permanent of matrices with nonnegative entries. In other words, they
designed a randomized algorithm that for any given ǫ > 0, outputs a 1 + ǫ multiplicative approximation
of the permanent, in time polynomial in n and 1/ǫ.

The focus of this paper is on the permanent of PSD matrices, which has received significant attention
in the last decade because of its close connection to quantum optics. In particular, permanent of PSD
matrices describe output probabilities of a boson sampling experiment in which the input is a tensor
product of thermal states. They form the generating function of the quantum linear optical distribution
[GS16].
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It turns out that the permanent is a monotone function with respect to the Loewner order on the
cone of PSD matrices and therefore the permanent of every PSD matrix is nonnegative (see corollaries 1
and 2). This fact is a priori not obvious considering that a PSD matrix can have negative entries. Since
the permanent is nonnegative, unlike general matrices, there is no difficulty in computing the sign. So, it
may be possible to design a polynomial time approximation scheme for the permanent of PSD matrices.
This question has been posted as an open problem in several sources [Aar; GS16]. Our main result can
be seen as a first step along this line.

To this date, not much is known about multiplicative approximation of the permanent of PSD matri-
ces. To the best of our knowledge, the only previous result is the work of Marcus [Mar63] which shows
that the product of the diagonal entries of a PSD matrix gives an n! approximation of the permanent.
For any PSD matrix A ∈ R

n×n,
n∏

i=1

Ai,i ≤ per(A) ≤ n!
n∏

i=1

Ai,i.

This approximation can be slightly improved using Lieb’s permanent inequality [Lie02]. Using this in-
equality one can show that per(A) can be approximated to within a factor of n!/m!n/m in time 2O(m+log n).

In this paper we design a cn multiplicative approximation algorithm for computing the permanent
of PSD matrices, where c > 0 is a universal constant. Prior to our paper, no efficient algorithm (deter-
ministic, randomized, or quantum) was known for simply exponential approximation of the permanent
of general positive semidefinite matrices.

Theorem 1. There is a deterministic polynomial time algorithm that for any given PSD matrix A
returns a number rel(A) such that

rel(A) ≥ per(A) ≥ c−n rel(A)

where c = eγ+1 and γ is Euler’s constant.

Our result uses a semidefinite relaxation. Because of the aformenetioned monotonicity of the perma-
nent with respect to the positive semidefinite order, a natural way to upper bound the permanent of a
hermitian PSD matrix A ∈ C

n×n is to find another matrix D � A whose permanent is easy to compute,
and to use per(D) as the upper bound. For example if D � A is a diagonal matrix, then

per(D) = D11D22 . . . Dnn

gives an easy-to-compute upper bound on per(A). This motivates the following natural relaxation for
the permanent of PSD matrices.

Definition 1. For an n× n hermitian PSD matrix A define

rel(A) := inf{per(D) : D is diagonal and D � A}. (1)

Our main result is to prove that rel(A) also lower bounds per(A) up to a multiplicative factor.
Additionally, we show that rel(A) can be efficiently computed using convex programming, thus giving a
polynomial-time approximation algorithm for per(A).

2 Preliminaries

We denote the set {1, . . . , n} by [n]. We use Sn to denote the set of permutations on [n].

2.1 Linear Algebra

We identify vectors v ∈ C
n with n× 1 matrices. For a matrix A ∈ C

n×m we let A† ∈ C
m×n denote its

conjugate transpose; in other words (A†)ij = Aji. A matrix A ∈ C
n×n is called hermitian iff A = A†. A

hermitian matrix A is called positive semidefinite (PSD) iff v†Av ≥ 0 for all v ∈ C
n. We let � denote

the usual Loewner order on hermitian matrices, i.e., A � B iff A − B is PSD. For a vector v ∈ C
n, we

let diag(v) ∈ C
n×n denote the diagonal matrix with coordinates of v as its main diagonal, i.e.,

diag(v) :=








v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vn







.
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For matrices A ∈ C
n×m and B ∈ C

p×q we let A ⊗ B denote the Kronecker product, i.e., the following
block matrix:

A⊗B :=






A11B . . . A1mB
...

. . .
...

An1B . . . AnmB




 .

For a matrix A and n ≥ 0, we define A⊗n as

n
︷ ︸︸ ︷

A⊗ A⊗ · · · ⊗ A. The Kronecker product respects the
Loewner order on hermitian PSD matrices:

Fact 1. If A � B � 0 and C � D � 0, then A⊗C � B ⊗D � 0.

2.2 Standard Complex Normal Distribution

We say that a complex-valued random variable g = Re(g)+ i Im(g) is distributed according to a standard
complex normal, which we denote by g ∼ CN (0, 1), iff (Re(g), Im(g)) ∼ N (0, 1

2
I). The probability

density function (over C ≃ R
2) for this distribution is given by

1

π
e−(Re(g)2+Im(g)2) =

1

π
e−|g|2 .

Fact 2. If g ∼ CN (0, 1), then for integers n,m ≥ 0 we have

E[gngm] =

{

0 if n 6= m,

n! if n = m.

Proof. The distribution of g is circularly symmetric, i.e. for u ∈ C with |u| = 1, we have ug ∼ CN (0, 1).
This means that

E[gngm] = E[(ug)n(ug)m] = un−m
E[gngm].

Therefore, unless n − m = 0, we have E[gngm] = 0. When m = n, we have gngm = |g|2n. If we let

r = |g| ∈ R≥0, then the probability density function of r is given by 2πr 1
π
e−r2 = 2re−r2 . Therefore we

have

E[|g|2n] =
∫ ∞

0

r2n · 2re−r2dr = −r2n · e−r2
∣
∣
∣

∞

0
+

∫ ∞

0

2nr2n−1 · e−r2dr

= n

∫ ∞

0

r2n−2 · 2re−r2dr = n · E[|g|2n−2],

where we used integration by parts. We can finally derive

E[|g|2n] = n · E[|g|2n−2] = n(n− 1) · E[|g|2n−4] = · · · = n! · E[|g|0] = n!.

Fact 3. If g ∼ CN (0, 1), then
E[ln(|g|2)] = −γ,

where γ is Euler’s constant.

Proof. Note that |g|2 = Re(g)2 + Im(g)2 = 1
2
(2Re(g)2 + 2 Im(g)2). Since (Re(g), Im(g)) ∼ N (0, 1

2
I),

the random variable 2Re(g)2 + 2 Im(g)2 is distributed according to a χ2-distribution with 2 degrees of
freedom, which is identical to a Γ(1, 2) distribution [Cha93]. Therefore we have

E[ln(2|g|2)] = ψ(1) + ln(2),

where ψ is the digamma function [Cha93]. This implies that E[ln(|g|2)] = ψ(1), and the latter is equal
to −γ [AS64].

We say that a random vector v ∈ C
n is distributed according to a standard complex normal, which

we denote by v ∼ CN (0, I), iff v1, . . . , vn are independent standard complex normals.

Fact 4. If v ∼ CN (0, I), and u ∈ C
n is a unit vector, i.e., |u|2 = u†u = 1, then u†v ∼ CN (0, 1).
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Proof. Note that (Re(u†v), Im(u†v)) are linear combinations of the real and imaginary parts of v; as
such, this 2-dimensional vector is distributed according to N (µ,Σ) for some µ ∈ R

2 and Σ ∈ R
2×2.

The distribution of u†v is circularly symmetric; i.e., if φ ∈ C is such that |φ| = 1, then φu†v is
distributed the same way as u†v. This is true because φu†v = u†(φv), and φv has the same distribution
as v. Being circularly symmetric implies that µ = 0 and Σ = cI for some constant c. On the other hand,
we have

2c = E[|u†v|2] = E[u†vv†u] = u†
E[vv†]u = u†Iu = |u|2 = 1.

Therefore (Re(u†v), Im(u†v)) ∼ N (0, 1
2
I) or in other words, u†v ∼ CN (0, 1).

2.3 Permanent and Loewner Order

For a matrix A ∈ C
n×n, its permanent is defined as

per(A) :=
∑

σ∈Sn

n∏

i=1

Ai,σ(i).

Permanent is a monotone function on the space of PSD matrices w.r.t. the Loewner order. For
completeness we sketch the proof given in [Bap07] here.

Lemma 1. For any matrix M ∈ C
n×n, there is a vector 1Sn ∈ C

nn

such that

per(M) :=
1

n!
1†Sn

M⊗n1Sn .

Proof. The vector 1Sn ∈ C
nn

is constructed in the following way: Index each of the nn coordinates by
σ ∈ [n]n in the usual way (so that the indices respect the Kronecker product); we can think of σ as a
function from [n] to [n]. Then let the σ-th coordinate of 1Sn be 1 iff σ is a permutation on [n], and let
it be 0 otherwise. Then, for a matrix M we have

1†Sn
M⊗n1Sn =

∑

σ∈Sn

∑

σ′∈Sn

n∏

i=1

Mσ(i),σ′(i) =
∑

σ∈Sn

per(M) = n! · per(M).

Corollary 1. If A,B ∈ C
n×n are hermitian and A � B � 0, then

per(A) ≥ per(B).

Proof. The statement of the lemma follows, because A � B � 0 implies that A⊗n � B⊗n � 0 by fact 1.
So, by lemma 1,

per(A) =
1

n!
1†Sn

A⊗n1Sn ≥ 1

n!
1†Sn

B⊗n1Sn = per(B)

as desired.

Corollary 2. For any hermitian PSD matrix A ∈ C
n×n, per(A) ≥ 0.

Proof. This follows from corollary 1 by setting B = 0.

There is another way to show nonnegativity of the permanent over the PSD cone with the help of
the complex normal distribution. For a vector v ∈ C

n define

|v|Π :=

√
√
√
√

n∏

i=1

|vi|2 ≥ 0.

Then with the help of |·|Π we can express the permanent of a PSD matrix as an expectation of a
nonnegative value.

Lemma 2. Let U ∈ C
d×n be arbitrary and let x ∈ C

d be a random vector distributed according to the

standard complex normal CN (0, I). Then

per(U†U) = Ex∼CN (0,I)[|U†x|2Π].
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Lemma 2 is a sepcial case of the relationship between the so-called G-norm and the quantum perma-
nent shown in [Gur03]. In particular if the rows of U are u†

1, . . . , u
†
d, then

|U†x|2Π = |det(
d∑

i=1

xi diag(vi))|2,

and therefore Ex[|U†x|2Π] is the same as the G-norm of the polynomial det(
∑d

i=1 xi diag(ui)). In [Gur03]
this is shown to be equal to the quantum permanent of the linear operator with Choi form given by the
matrices diag(u1), . . . ,diag(ud). It can be further shown that in this special case, the quantum permanent
reduces to per(U†U). For exact definitions and further details see [Gur03].

For the sake of completeness, we give a self-contained proof of lemma 2 below.

Proof of lemma 2. We will use the fact that the expression |U†x|2Π is a polynomial in x1, . . . , xd and
x1, . . . , xd; therefore we can evaluate its expectation with the help of fact 2. We have

|U†x|2Π = |
n∏

i=1

d∑

j=1

Ujixj |2

If we define

p(x) :=

n∏

i=1

d∑

j=1

Ujixj ,

then |U†x|2Π = p(x)p(x). Note that p(x) is a polynomial in terms of x1, . . . , xd. We can expand p(x) as
follows:

p(x) =
∑

σ:[n]→[d]

n∏

i=1

Uσ(i),ixσ(i),

where the sum is taken over all nd functions σ : [n] → [d]. For a function σ : [n] → [d], let sig(σ) be
(k1, . . . , kd) ∈ Z

d where kj is the number of i ∈ [n] such that σ(i) = j. Then we can alternatively write

p(x) =
∑

k1+···+kd=n
k1,...,kd≥0






xk1

1 . . . x
kd

d

∑

σ:[n]→[d]
sig(σ)=(k1,...,kd)

n∏

i=1

Uσ(i),i






.

For (k1, . . . , kd) 6= (k′1, . . . , k
′
d), by fact 2 we have Ex[x

k1

1 . . . xkd

d x
k′
1

1 . . . x
k′
d

d ] = 0. Therefore we can write

Ex[p(x)p(x)] =
∑

k1+···+kd=n
k1,...,kd≥0







k1! . . . kd!

∑

σ:[n]→[d]
sig(σ)=(k1,...,kd)

∑

σ′:[n]→[d]

sig(σ′)=(k1,...,kd)

n∏

i=1

Uσ(i),iUσ′(i),i







,

where we used that E[xk1

1 . . . xkd
d xk1

1 . . . xkd
d ] = k1! . . . kd! by fact 2. Note that when sig(σ) = sig(σ′), there

is a permutation π ∈ Sn such that σ′ = σ ◦ π. In fact if sig(σ) = sig(σ′) = (k1, . . . , kd), then the number
of π ∈ Sn for which σ′ = σ ◦ π is exactly equal to k1! . . . kd!. Therefore we can rewrite the above sum as

Ex[p(x)p(x)] =
∑

σ:[n]→[d]

∑

π∈Sn

n∏

i=1

Uσ(i),iUσ(π(i)),i =
∑

π∈Sn

∑

σ[n]→[d]

n∏

i=1

(U†)i,σ(i)Uσ(i),π−1(i)

=
∑

π∈Sn

n∏

i=1

d∑

j=1

(U†)i,jUj,π−1(i) =
∑

π∈Sn

n∏

i=1

(U†U)i,π−1(i) = per(U†U).
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3 Approximation of Permanent on the PSD Cone

In this section we prove theorem 1. Recall the definition of rel(A) from definition 1. Our first step is to
prove that for every n× n hermitian PSD matrix A � 0:

cn per(A) ≥ rel(A), (2)

where c = eγ+1.
In order to prove eq. (2), we also introduce a lower bound on per(A). We find a vector v ∈ C

n such
that A � vv†. By corollary 1, per(A) ≥ per(vv†). So in order to prove eq. (2) it suffices to prove:

Theorem 2. For a hermitian PSD matrix A ∈ C
n×n, there exists v ∈ C

n such that A � vv† and

cn per(vv†) ≥ rel(A),

where c = eγ+1.

Note that the above shows that for every hermitian PSD matrix A ∈ C
n×n, there exists a diagonal

matrix D and a rank 1 matrix vv† such that

D � A � vv†,

and per(D) ≤ cn per(vv†) for c = eγ+1. Thus per(A) is sandwiched between per(D) and per(vv†), two
quantities that differ by at most a simply exponential factor.

It is also worth noting that there is no additional loss in approximating per(A) by the permanent of
a rank one matrix. In section 4, we will show that the constant eγ+1 is not only asymptotically tight in
theorem 2, but also in eq. (2).

Another interesting corollary of theorem 2 is that that instead of rel(A) we can use per(vv†) as an
approximation of per(A), with the same en(γ+1) approximation factor:

sup{per(vv†) : v ∈ C
n and A � vv†}. (3)

Moreover, per(vv†) is easily computable.

Fact 5. For a vector v ∈ C
n, we have per(vv†) = n! ·∏n

i=1|vi|2.

Proof. For any permutation σ ∈ Sn we have

n∏

i=1

(vv†)i,σ(i) =
n∏

i=1

vivσ(i) =
n∏

i=1

vi ·
n∏

i=1

vi =
n∏

i=1

|vi|2.

Since per(vv†) is the sum of the above quantity for all σ ∈ Sn, we get that per(vv†) = n! ·∏n
i=1|vi|2.

Even though per(vv†) has a closed form, we do not have an efficient way of computing the sup in
eq. (3), whereas, as we show in section 3.2, rel(A) can be computed efficiently.

The next section is dedicated to proving theorem 2. To finish up the proof of theorem 1 we need to
design an algorithm to compute rel(A) for a given PSD matrix A.

Theorem 3. There is an algorithm that outputs an en(γ+1)-approximation of per(A) for any hermitian

PSD A ∈ C
n×n in time poly(n+ 〈A〉), where 〈A〉 represents the bit complexity of A.

We will prove the above theorem in section 3.2. Theorems 2 and 3 together complete the proof of
theorem 1. In section 4 we show that the constant c = eγ+1 in eq. (2) is asymptotically tight.

3.1 Proof of the Main Result

In order to prove theorem 2, we use a seemingly unrelated quantity about distributions on unit vectors
{u ∈ C

d : |u|2 = u†u = 1}. Let us define this quantity below.

Definition 2. For a discrete distribution U supported on the sphere {u ∈ C
d : |u|2 = u†u = 1}, define

f(U) := sup
x∈span(U)

{

eEu∼U [ln(|u†x|2)]

Eu∼U [|u†x|2]

}

,

where span(U) is the span of the support of U, i.e., the set of vectors for which the denominator is

nonzero.

6



We will prove theorem 2 by showing that there exists v ∈ C
n such that A � vv† and

per(vv†) ≥ n!

nn
f(U)n · rel(A),

where U is an appropriately constructed distribution on unit vectors. The expression n!/nn is lower
bounded by e−n. Thus if we show that f(U) ≥ e−γ , the above inequality would imply the multiplicative
factor of en(γ+1) desired in theorem 2.

To gain some intuition about f(U), note that by Jensen’s inequality, applied to the concave function
ln, it is easy to see that f(U) ≤ 1:

eEu∼U [ln(|u†x|2)]

Eu∼U [|u†x|2] ≤ eln(Eu∼U [|u†x|2])

Eu∼U [|u†x|2] = 1.

On the other hand, we will show that for all U , f(U) ≥ e−γ .

Proposition 1. For all discrete distributions U supported on the sphere {u ∈ C
d : |u|2 = u†u = 1},

f(U) ≥ e−γ .

This universal lower bound is independent of the dimension d or the size of the support of U . We
defer the proof of proposition 1 to the end of this section.

Let us now prove theorem 2, assuming correctness of proposition 1.

Proof of theorem 2. Let us break down the proof into a series of claims, and then prove them one by one.

Claim 1. The infimum in eq. (1) is achieved by some diagonal matrix D̂ = D̂(A). In other words there

exists a diagonal matrix D̂ � A such that per(D̂) = rel(A).

Claim 2. We may assume without loss of generality that D̂ = I.

Claim 3. The first-order optimality condition of D̂ implies that there exists a correlation matrix B ∈
C

n×n, i.e., a hermitian PSD matrix with 1s on its main diagonal, such that AB = B.

We may use the Cholesky decomposition to write B = U†U where U ∈ C
d×n for d = rank(B).

Claim 4. For any x ∈ C
d the vector v = U†x/|U†x| satisfies

A � vv†.

Naturally we may want to choose x so as to maximize per(vv†).

Claim 5. We have

sup
x∈Cd

{per(vv†)} =
n!

nn
f(U)n,

where U is the uniform distribution on the columns of U .

And now the statement of theorem 2 follows, because rel(A) = per(D̂) = 1 when D̂ = I ; we have
found v ∈ C

n such that A � vv† and

en(γ+1) per(vv†) ≥ nn

n!
f(U)−n per(vv†) ≥ 1 = rel(A).

Let us now prove the claims one by one.

Proof of claim 1. We divide the proof into two cases. First assume that Aii > 0 for all i ∈ [n]. Let λ ≥ 0
be larger than the maximum eigenvalue of A. Then λI � A. This proves that rel(A) ≤ λn. Note that
D � A implies Dii ≥ Aii for all i ∈ [n]. If any entry Dii of D satisfies

Dii >
λnAii
∏n

j=1 Ajj
,

then

per(D) >
λnAii
∏n

j=1Ajj

∏

j 6=i

Ajj = λn.

7



This effectively eliminates such a D as a candidate for the inf in eq. (1). Therefore we may take inf of
per(D) over the set of all diagonal matrices D which in addition to D � A satisfy

Dii ≤ λnAii
∏n

j=1Ajj

for all i ∈ [n]. This is a compact set, and per(D) is a continuous function. Therefore the inf is achieved
by some matrix D̂.

For the second case, assume that Aii = 0 for some i. Then since A is PSD, the i-th row and the i-th
column of A are both zero. Let λ be larger than the largest eigenvalue of A. Define D̂ by D̂ii = 0 and
D̂jj = λ for j 6= i. It is easy to see that D̂ � A and per(D̂) = 0. Therefore rel(A) = 0 and it is achieved
at D̂.

Proof of claim 2. First note that without loss of generality we may assume D̂(A) ≻ 0, since otherwise
rel(A) = 0 and the conclusion of theorem 2 is trivial.

Now let λ ∈ R
n
>0 be an arbitrary positive vector and define Tλ : Cn×n → C

n×n by

Tλ(M) = diag(λ)M diag(λ).

Note that Tλ respects the Loewner order and maps diagonal matrices to diagonal matrices. It is one-
to-one and surjective on the space of diagonal matrices. The matrix Tλ(M) is obtained from M by
multiplying column i by λi for i ∈ [n] and then row i by λi for i ∈ [n]. Therefore

per(Tλ(M)) = λ2
1 . . . λ

2
n per(M).

This implies that

λ2
1 . . . λ

2
n rel(A) = inf{λ2

1 . . . λ
2
n per(D) : D is diagonal and D � A}

= inf{per(Tλ(D)) : Tλ(D) is diagonal and Tλ(D) � Tλ(A)} = rel(Tλ(A)).

It is also easy to see that the above also implies D̂(Tλ(A)) = Tλ(D̂(A)). In particular if λ is set so that

λi = 1/
√

D̂ii, then D̂(Tλ(A)) = I . So we can replace A by Tλ(A) and continue the proof of theorem 2
to find v ∈ C

n satisfying
Tλ(A) � vv†,

and cn per(vv†) ≥ rel(Tλ(A)) = 1 with c = eγ+1. Let w = diag(λ)−1v. Then Tλ(ww
†) = vv†. This

implies that
A � ww†,

and

cn per(ww†) =
1

λ2
1 . . . λ

2
n

cn per(vv†) ≥ 1

λ2
1 . . . λ

2
n

rel(Tλ(A)) = rel(A).

Proof of claim 3. We use the first-order optimality condition of per(D) at D = I . Let us change I to
I +X where X is a diagonal matrix. Then if X is small enough per(I +X) ≃ 1+ tr(X). More precisely,
we have

d

dt
per(I + tX)

∣
∣
∣
∣
t=0

=
d

dt

n∏

i=1

(1 + tXii)

∣
∣
∣
∣
∣
t=0

=

n∑

i=1

Xii = tr(X).

If I+X � D then I+tX � D for all t ∈ [0, 1]. If tr(X) < 0, then for small enough t, per(I+tX) < per(I)
which contradicts the fact that D̂(A) = I . This implies that the optimal solution of the following SDP
is 0:

minX tr(X)
subject to I +X � A

Xij = 0 ∀i 6= j

The dual of this SDP has variables B � 0, corresponding to the constraint I +X � A, and µij for i 6= j,
corresponding to the constraint Xij = 0:

maxB,µij
tr((A− I)B)

subject to Bij + µij = 0 ∀i 6= j
Bii = 1 ∀i
B � 0

8



Because of strong duality, the optimum of this SDP is 0. The optimal B satisfies B � 0 and Bii = 1 for
i ∈ [n], i.e., B is a correlation matrix. We also have tr((I − A)B) = 0. But since I − A � 0 and B � 0,
this implies that (I − A)B = 0 or in other words AB = B.

Proof of claim 4. We have B = U†U with U ∈ C
d×n and rank(B) = d. This implies that UU† ∈ C

d×d

is invertible. Now we have

BU†(UU†)−1x = U†UU†(UU†)−1x = U†x.

This together with AB = B implies that

AU†x = ABU†(UU†)−1x = BU†(UU†)−1x = U†x.

In other words, U†x is an eigenvector of A with eigenvalue 1. This means that v = U†x/|U†x| is also
such an eigenvector. So Av = v and |v| = 1. We conclude that A � vv†.

Proof of claim 5. Let us compute per(vv†). By fact 5 we have

per(vv†) = n! ·
n∏

i=1

|vi|2.

Let the columns of U be u1, . . . , un ∈ C
d. Then vi = u†

ix/|U†x|, and note that |U†x|2 =
∑n

i=1|u†
ix|2.

We can rewrite per(vv†) as

per(vv†) = n! ·
∏n

i=1|u
†
ix|2

(
∑n

i=1|u
†
ix|2)n

=
n!

nn
·





n

√
∏n

i=1|u†
ix|2

1
n

∑n
i=1|u

†
ix|2





n

.

Now if we let U be the uniform distribution on u1, . . . , un, we can rewrite the above as

per(vv†) =
n!

nn
·
(
exp(Eu∼U [ln(|u†x|2)])

Eu∼U [|u†x|2]

)n

Therefore

sup
x∈Cd

{per(vv†)} =
n!

nn
f(U)n.

This concludes the proof of theorem 2.

It only remains to prove proposition 1.

Proof of proposition 1. Without loss of generality we may assume that span(U) = C
d; if that is not the

case, we can identify span(U) with C
d′ for some d′ < d using a unitary transformation and nothing

changes.
Let x ∼ CN (0, I) be a d-dimensional standard complex normal. Let

g(x) = exp(Eu∼U [ln(|u†x|2)]),
h(x) = Eu∼U [|u†x|2].

Then our goal is to prove that Px[g(x)/h(x) ≥ e−γ ] > 0 or equivalently Px[g(x)− e−γh(x) ≥ 0] > 0. To
this end, we will prove that Ex[g(x)− e−γh(x)] ≥ 0, and the conclusion follows.

By fact 4, for each fixed u in the support of U , u†x ∼ CN (0, 1). Therefore we have

Ex[h(x)] = ExEu[|u†x|2] = EuEx[|u†x|2] = Eu[1] = 1.

On the other hand by fact 3 we have

Ex[g(x)] = Ex[exp(Eu[ln(|u†x|2)])] ≥ exp(ExEu[ln(|u†x|2)])
= exp(EuEx[ln(|u†x|2)]) = exp(Eu[−γ]) = e−γ ,

where the inequality is an application of Jensen’s to the convex function exp. Putting these together we
get that Ex[g(x)− e−γh(x)] ≥ e−γ − e−γ = 0 as desired.
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3.2 Computing the Approximation

In this section we show how to approximately compute rel(A). The main result of this section will be
theorem 3.

The main ingredient of the proof is transforming rel(D) to the objective of a convex program. The
original optimization problem that computes rel(D) is the following:

minD D11 . . . Dnn

subject to D � A
D is diagonal

The objective is not concave, even if we apply ln to it. The trick is to change from the variables
D11, . . . , Dnn to D−1

11 , . . . , D
−1
nn . If we have the Cholesky decomposition A = V †V for some V ∈ C

d×n,
then D � A if and only if

I � V D−1V †.

So we can turn the optimization problem into the following by identifying D−1 with diag(x).

minx∈Rn − ln(x1 . . . xn)

subject to I � V diag(x)V †

xi ≥ 0 ∀i
(4)

If the objective of the above program is OPT, then rel(A) = eOPT. Note that − ln(x1 . . . xn) is convex
over Rn

≥0, so the above is a valid convex program.

Proof of theorem 3. We can detect whether rel(A) = 0 by checking whether any of A’s main diagonal
entries are 0. See the proof of claim 1.

When all of the main diagonal entries of A are strictly positive, similar to the proof of claim 1, we
can determine upper and lower bounds on the optimum xi. In particular if λ is a number larger than
the largest eigenvalue of A, for the optimum xi we have

A−1
ii ≥ xi ≥

∏n
j=1Ajj

λnAii
.

Thus, we can restrict the domain of the convex program in eq. (4) to a compact bounded domain. We
can compute the Cholesky decomposition of A and then use our favorite convex programming technique,
such as the ellipsoid method, to find the optimum value of eq. (4) to within accuracy ǫ in time poly(n+
〈A〉+log(1/ǫ)). This gives us a 1+ǫ approximation of rel(A) which by eq. (2) is a (1+ǫ)cn approximation
of per(A) for c = eγ+1.

As a final remark, we note that the approximation factor en(γ+1) in eq. (2) can in fact be slightly
strengthened to

nn

n!
enγ ,

if one carefully reviews the proof. The term nn/n! is at most en, but the difference allows us to absorb
1+ ǫ into the approximation factor for an appropriately chosen ǫ. This allows us to state an ǫ-free result:
We can find an en(γ+1) approximation to per(A) in time poly(n+ 〈A〉).

4 Asymptotically Tight Examples

In this section we show that the constant c = eγ+1 cannot be replaced by anything smaller in eq. (2). In
other words we will construct n× n hermitian PSD matrices A such that

n

√

rel(A)

per(A)
→ eγ+1.

The construction will begin with a distribution U that is uniform over n unit vectors u1, . . . , un ∈ C
d.

We will later show how we can construct U so that f(U) is arbitrarily close to e−γ .
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Lemma 3. For any ǫ > 0 there exists a distribution U that is uniform over n unit vectors u1, . . . , un ∈ C
d

for some n and d that satisfies

f(U) ≤ e−γ + ǫ.

We postpone the proof of lemma 3 to the end of this section. For now we use it to show the following.
The following proposition together with lemma 3 show that eγ+1 cannot be improved in eq. (2).

Proposition 2. Given a distribution U that is uniform over a finite number of unit vectors u1, . . . , un,

we can construct a sequence of matrices A1, A2, . . . of sizes n1 × n1, n2 × n2, . . . such that

nk

√

rel(Ak)

per(Ak)
→ ef(U)−1.

Proof. Our goal is to construct a PSD matrix A and relate rel(A)/per(A) to f(U). We will assume
without loss of generality that span{u1, . . . , un} = C

d; otherwise, we use a unitary transformation to
map u1, . . . , un onto a lower dimensional space and f(U) would not change.

Consider the matrix U ∈ C
d×n whose columns are u1, . . . , un. Note that rank(U) = d and U†U � 0

has 1s on the main diaognal. In other words U†U is a correlation matrix of rank d. Since rank(U) = d,
the matrix UU† is invertible and we can define

V := (UU†)−1/2U,

and
A := V †V = U†(UU†)−1U.

We will study rel(A) and per(A) and relate them to f(U).
As observed in the proof of claim 3, correlation matrices can be used as optimality certificates for rel,

albeit in that context first order optimality was just a necessary condition. We now make a formal claim
by certifying that rel(A) = 1 using U†U as the certificate.

Claim 6. If A is constructed as above, then

rel(A) = rel(V †V ) = 1.

Proof. We clearly have I � U†(UU†)−1U = V †V . This implies that rel(A) ≤ 1. Now consider a diagonal
matrix D � A = V †V . We need to show that per(D) ≥ 1. Without loss of generality, by adding a small
multiple of I if necessary, we may assume that D ≻ 0. Now D � V †V implies that

I � V D−1V †,

which in turn implies

UU† = (UU†)1/2(UU†)1/2 � (UU†)1/2V D−1V †(UU†)1/2 = UD−1U†.

By taking the trace we get

tr(U†U) = tr(UU†) ≥ tr(UD−1U†) = tr(D−1U†U).

Since U†U has 1s on the diagonal and D is diagonal the above becomes

n ≥
n∑

i=1

D−1
ii .

By using the AM-GM inequality we get

(D−1
11 . . . D

−1
nn)

1/n ≤
∑n

i=1D
−1
ii

n
≤ 1.

This means that per(D) = D11 . . . Dnn ≥ 1.

Next we study per(A). This is where the term f(U) appears.

11



Claim 7. If A is constructed as above, then

per(A) ≤ n!

nn

(

n+ d− 1

d− 1

)

· f(U)n.

Before proving claim 7, let us show why it suffices to finish the proof of proposition 2. By claim 6
and claim 7 we have

n

√

rel(A)

per(A)
≥ n

√

nn

n!
· n

√
√
√
√

(

n+ d− 1

d− 1

)−1

· f(U)−1.

This is not quite the same as ef(U)−1 yet. However we have one degree of freedom we have not used.
Initially we assumed U was a uniform distribution over n unit vectors. But we might have as well assumed
that it is a uniform distribution over nk unit vectors for any integer k, by simply repeating the vectors
in the support of U . Therefore we may make n as large as we would like without changing d or f(U). As
n→ ∞, by Stirling’s formula we have

n

√

nn

n!
→ e,

and by a simple bound for large enough n

n

√
√
√
√

(

n+ d− 1

d− 1

)−1

≥ n
√
n−d → 1.

Therefore as n→ ∞ we have

n

√

rel(A)

per(A)
→ ef(U)−1.

It only remains to prove claim 7.

Proof of claim 7. We will use lemma 2 to write down per(A) = per(V †V ). Let x ∈ C
d be distributed

according to a d-dimensional standard complex normal CN (0, I). Then according to lemma 2 we have

per(A) = Ex∼CN (0,I)[|V †x|2Π].

Our goal is to use f(U) to bound |V †x|Π. According to the definition of f(U), for the vector y =
(UU†)−1/2x we have

n

√
∏n

i=1|u†
iy|2

1
n

∑n
i=1|u

†
iy|2

=
exp(Eu∼U [ln(|u†y|2)]

Eu∼U [|u†y|2] ≤ f(U).

Note that
u†
iy = (U†y)i = (U†(UU†)−1/2x)i = (V †x)i.

This means that
∏n

i=1|u†
i y|2 = |V †x|2Π. We also have

n∑

i=1

|u†
iy|2 = x†V V †x = x†(UU†)−1/2UU†(UU†)−1/2x = x†x = |x|2.

Putting these together we get

|V †x|2Π ≤
(
f(U)|x|2

n

)n

=

(
f(U)
n

)n

|x|2n.

Let us now compute Ex[|x|2n]. We have

Ex[|x|2n] = Ex[
n∏

j=1

(
d∑

i=1

|xi|2)] =
∑

k1,...,kd≥0
k1+···+kd=n

(

n

k1, . . . , kd

)

Ex[|x1|2k1 . . . |xd|2kd ].
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According to fact 2, we have Ex[|x1|2k1 . . . |xd|2kd ] = k1! . . . kd!. Therefore

Ex[|x|2n] =
∑

k1,...,kd≥0
k1+···+kd=n

(

n

k1, . . . , kd

)

k1! . . . kd! =
∑

k1,...,kd≥0
k1+···+kd=n

n! = n!

(

n+ d− 1

d− 1

)

,

where in the last equality we used the fact the number of ways to write n as a sum of d nonnegative
integers is

(
n+d−1
d−1

)
. We conclude by getting

per(A) ≤
(
f(U)
n

)n

Ex[|x|2n] = n!

nn

(

n+ d− 1

d− 1

)

f(U)n.

This finishes the proof of proposition 2.

Now we switch gears and construct the distribution U promised by lemma 3.

Proof of lemma 3. The idea is to make U be close to the uniform distribution on the sphere {u ∈
C

d : |u| = 1} for some large d. If we were allowed to pick U to be uniform over the sphere, then
intuitively all choices of x in the definition of f(U) would yield the same value and we would be able
to argue about this common value using the same tricks as in the proof of proposition 1. Instead we
use the uniform distribution on a large number of samples from the sphere to serve as the proxy for the
uniform distribution on the sphere itself. We further need the dimension d to grow, to make the uniform
distribution on the sphere similar to a (scaled) normal distribution. We now make these formal.

Let us fix some d and let S denote the uniform distribution on the sphere {u ∈ C
d : |u| = 1}. For

any fixed distance ǫ we can cover the sphere by a finite number of balls B(o1, ǫ), . . . , B(om, ǫ) where
o1, . . . , om are unit vectors and

B(o, ǫ) = {v ∈ C
d : |o− v| ≤ ǫ}.

Let n be a large number and draw n random points u1, . . . , un from S . We will let U be the uniform
distribution over u1, . . . , un. We would like to argue that f(U) is with high probability close to f(S).
Because the sphere was covered by the balls around oi’s, for each unit vector x we have |x − oi| ≤ ǫ for
some i. This implies that

Eu∼U [ln(|u†x|2)] ≤ Eu∼U [ln((|u†oi|+ ǫ)2)],

Eu∼U [|u†x|2] ≥ Eu∼U [max(0, |u†oi| − ǫ)2].

On the other hand by the law of large numbers for each oi we have with high probability as n→ ∞

Eu∼U [ln((|u†oi|+ ǫ)2)] → Eu∼S [ln((|u†oi|+ ǫ)2)],

Eu∼U [max(0, |u†oi| − ǫ)2] → Eu∼S [max(0, |u†oi| − ǫ)2].

Let us condition on the event that the LHS of the above are sufficiently close to the RHS for all oi. This
event happens with high probability as n → ∞. Note that because of symmetry, the RHS of the above
are independent of the choice of oi. Under this condition we have for all unit vectors x

exp(Eu∼U [ln(|u†x|2)])
Eu∼U [|u†x|2] ≤ exp(Eu∼S [ln((|u†o|+ ǫ)2)])

Eu∼S [max(0, |u†o| − ǫ)2]
+ δ,

where o is any arbitrary vector and δ → 0 as n → ∞. The above bounds the LHS for unit vectors x.
However note that the LHS does not change if we scale x by any constant. Therefore f(U) is bounded
by the RHS. As we take the limit with ǫ → 0 and δ → 0 we get U with f(U) asymptotically bounded by
f(S).

Now it only remains to show that as the dimension d grows f(S) → e−γ . Let o be an arbitrary point
with |o|2 = d such as

√
de1 where e1 is the first element of the standard basis. When u ∼ S is a random
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point on the sphere, we would like to argue that u†o is almost distributed like CN (0, 1). If this were the
case we would have

f(S) =
exp(Eu[ln(|u†o|2)])

Eu[|u†o|2] ≃ exp(Eg∼CN (0,1)[ln(|g|2)])
Eg∼CN (0,1)[|g|2]

= e−γ ,

where in the last equality we used fact 3.
To make this approximation rigorous, let us generate the random point u on the sphere by the

following process: We sample a standard d-dimensional complex normal v ∼ CN (0, I) and then we let
u = v/|v|. We have u†o = v1

d
|v| . Therefore

Eu[ln(|u†o|2)] = Ev[ln(|v1|2)] + 2 ln(d)− 2Ev[ln(|v|2)].

The random variable |v|2 is distributed according to a 1
2
-scaled χ2-distribution with 2d degrees of freedom

which is the same as Γ(d, 1). We can therefore write

Ev[ln(|v|2)] = ψ(d) = ln(d− 1) + o(1),

where ψ is the digamma function [Cha93; AS64]. We therefore have Eu[ln(|u†o|2)] = −γ + o(1).
For Eu[|u†o|2] we observe that

Eu[|u†o|2] = d · Ev

[ |v1|2
|v|2

]

.

The random variables |vi|2/|v|2 are identically distributed for different i. As such we have

Eu[|u†o|2] = d · Ev

[ |v1|2
|v|2

]

= Ev

[ |v1|2
|v|2

]

+ · · ·+ Ev

[ |vd|2
|v|2

]

= Ev

[ |v|2
|v|2

]

= 1.

Therefore
exp(Eu[ln(|u†o|2)])

Eu[|u†o|2] = e−γ+o(1).

This shows that f(S) → e−γ as d→ ∞ and concludes the proof.
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