
Fast and Compact Exact Distance Oracle for Planar Graphs

Vincent Cohen-Addad, Søren Dahlgaard∗, and Christian Wulff-Nilsen

University of Copenhagen
[vincent.v,soerend,koolooz]@di.ku.dk

Abstract

For a given a graph, a distance oracle is a data structure that answers distance queries
between pairs of vertices. We introduce an Opn5{3q-space distance oracle which answers exact
distance queries in Oplog nq time for n-vertex planar edge-weighted digraphs. All previous
distance oracles for planar graphs with truly subquadratic space (i.e., space Opn2´εq for
some constant ε ą 0) either required query time polynomial in n or could only answer
approximate distance queries.

Furthermore, we show how to trade-off time and space: for any S ě n3{2, we show how
to obtain an S-space distance oracle that answers queries in time Opn

5{2

S3{2 log nq. This is a
polynomial improvement over the previous planar distance oracles with opn1{4q query time.

∗Research partly supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council
for Independent Research under the Sapere Aude research career programme.

ar
X

iv
:1

70
2.

03
25

9v
3

 [
cs

.D
S]

 2
 M

ay
 2

01
7

1 Introduction

Efficiently storing distances between the pairs of vertices of a graph is a fundamental problem
that has receive a lot of attention over the years. Many graph algorithms and real-world problems
require that the distances between pairs of vertices of a graph can be accessed efficiently. Given
an edge-weighted digraph G “ pV,Eq with n vertices, a distance oracle is a data structure that
can efficiently answer distance queries between pairs of vertices u, v P V .

A naive approach consists in storing an nˆn distance matrix, giving a distance query time of
Op1q by a simple table lookup. The obvious downside is the huge Θpn2q space requirement which
is in many cases impractical. For example, several popular routing heuristics (e.g.: for the travel-
ling salesman problem) require fast access to distances between pairs of vertices. Unfortunately
the inputs are usually too big to allow to store an nˆ n distance matrix (see e.g.: [1])1.

Fast and compact data structures for distances are also critical in many routing problems.
One important challenge in these applications is to process a large number of online queries
while keeping the space usage low, which is important for systems with limited memory or
memory hierarchies. Therefore, the alternative naive approach consisting in simply storing the
graph G and answering a query by running a shortest path algorithm on the entire graph is also
prohibitive for many applications.

Since road networks and planar graphs share many properties, planar graphs are often
used for modeling various transportation networks (see e.g.: [26]). Therefore obtaining good
space/query-time trade-offs for planar distance oracles has been studied thoroughly over the
past decades [10, 3, 8, 12, 30, 4, 26].

If S represents the space usage andQ represents the query time, the trivial solutions described
above would suggest a trade-off ofQ “ n2{S2. Up to logarithmic factors, this trade-off is achieved
by the oracles of Djidjev [10] and Arikati, et al. [3]. The oracle of Djidjev further improves on
this trade-off obtaining an oracle with Q “ n{

?
S for the range S P rn4{3, n3{2s suggesting that

this trade-off might instead be the correct one. Extending this trade-off to the full range of S was
the subject of several subsequent papers by Chen and Xu [8], Cabello [4], Fakcharoenphol and
Rao [12], and finally Mozes and Sommer [26] (see also the result of Nussbaum [27]) obtaining
a query time of Q “ n{

?
S for the entire range of S P rn, n2s (again ignoring constant and

logarithmic factors).
It is worth noting that the above mentioned trade-off between space usage and query

time is no better than the trivial solution of simply storing the n ˆ n distance matrix when
constant (or even polylogarithmic) query time is needed. In fact the best known result in
this case due to Wulff-Nilsen [30] who manages to obtain very slightly subquadratic space of
Opn2 polyloglogpnq{ logpnqq and constant query time. It has been a major open question whether
an exact oracle with truly subquadratic (that is, Opn2´εq for any constant ε ą 0) space usage
and constant or even polylogarithmic query time exists. Furthermore, the trade-offs obtained in
the literature suggest that this might not be the case.

In this paper we break this quadratic barrier:

Theorem 1. Let G “ pV,Eq be a weighted planar digraph with n vertices. Then there exists
a data structure with Opn2q preprocessing time and Opn5{3q space and a data structure with
Opn11{6q space and Opn11{6q expected preprocessing time. Given any two query vertices u, v P V ,
both oracles report the shortest path distance from u to v in G in Oplog nq time.

In addition to Theorem 1 we also obtain a distance oracle with a trade-off between space
and query time.

1In these cases, the inputs are then embedded into the 2-dimensional plane so that the distances can be
computed in Op1q time at the expense of working with incorrect distances.

2Using the Opnq shortest path algorithm for planar graphs of Henzinger et al. [16].

1

Theorem 2. Let G “ pV,Eq be a weighted planar digraph with n vertices. Let S denote the
space, P denote the preprocessing time, and Q denote the query time. Then there exists planar
distance oracles with the following properties:

• P “ Opn2q, S ě n3{2, and Q “ Opn
5{2

S3{2 log nq.

• P “ S, S ě n16{11, and Q “ Opn
11{5

S6{5 log nq.

In particular, this result improves on the current state-of-the-art [26] trade-off between space
and query time for S ě n3{2. The main idea is to use two r-divisions, where we apply our
structure from Theorem 1 to one and do a brute-force search over the boundary nodes of the
other.

Recent developments We note that the main focus of this paper is on space usage and query
time, and the the preprocessing time follows directly from our proofs (and by applying the result
of [5] for subquadratic time).

After posting a preliminary version of this paper on arXiv [9], the algorithm of Cabello [5]
was improved by Gawrychowski et al. [15] to run in Õpn5{3q deterministically. As noted in [15]
this also improves the preprocessing time of our Theorem 1 to Õpn5{3q while keeping the space
usage at Opn5{3q. It is also possible to use Gawrychowski et al. to speed-up the pre-processing
time of our distance oracle described in Theorem 2. This yields a distance oracle (in the notation
of Theorem 2) with P “ ÕpSq, S ě n3{2, and Q “ Opn

5{2

S3{2 log nq, thus eliminating entirely the
need of the second bullet point of Theorem 2.

Techniques

We derive structural results on Voronoi diagrams for planar graphs when the centers of the
Voronoi cells lie on the same face. The key ingredients in our algorithm are a novel and technical
separator decomposition and point location structure for the regions in an r-division allowing us
to perform binary search to find a boundary vertex w lying on a shortest-path between a query
pair u, v. These structures are applied on top of weighted Voronoi diagrams, and our point
location structure relies heavily on partitioning each region into small “easy-to-handle” wedges
which are shared by many such Voronoi diagrams. More high-level ideas are given in Section 3.

Our approach bears some similarities with the recent breakthrough of Cabello [5]. Cabello
showed that abstract Voronoi diagrams [24, 25] studied in computational geometry combined
with planar r-division can be used to obtain fast planar graphs algorithms for computing the di-
ameter and wiener index. We start from Cabello’s approach of using abstract Voronoi diagrams.
While Cabello focuses on developing fast algorithms for computing abstract Voronoi diagrams of
a planar graph, we introduce a decomposition theorem for abstract Voronoi diagrams of planar
graphs and a new data structure for point location in planar graphs.

1.1 Related work

In this paper, we focus on distance oracles that report shortest path distances exactly. A closely
related area is approximate distance oracles. In this case, one can obtain near-linear space and
constant or near-constant query time at the cost of a small p1` εq-approximation factor in the
distances reported [28, 21, 19, 20, 32].

One can also study the problem in a dynamic setting, where the graph undergoes edge
insertions and deletions. Here the goal is to obtain the best trade-off between update and query
time. Fakcharoenphol and Rao [12] showed how to obtain Õpn2{3q for both updates and queries

2

and a trade-off of Oprq and Opn{
?
rq in general. Several follow up works have improved this

result to negative edges and shaving further logarithmic factors [22, 17, 18, 14]. Furthermore,
Abboud and Dahlgaard [2] have showed that improving this bound to Opn1{2´εq for any constant
ε ą 0 would imply a truly subcubic algorithm for the All Pairs Shortest Paths (APSP) problem
in general graphs.

In the seminal paper of Thorup and Zwick [29], a p2k ´ 1q-approximate distance oracle
is presented for undirected edge-weighted n-vertex general graphs using Opkn1`1{kq space and
Opkq query time for any integer k ě 1. Both query time and space has subsequently been
improved to Opn1`1{kq space and Op1q query time while keeping an approximation factor of
2k ´ 1 [31, 6, 7]. This is near-optimal, assuming the widely believed and partially proven girth
conjecture of Erdős [11].

2 Preliminaries and Notations

Throughout this paper we denote the input graph by G and we assume that it is a directed
planar graph with a fixed embedding. We assume that G is connected (when ignoring edge
orientations) as otherwise each connected component can be treated separately.

Section 4 will make use of the geometry of the plane and associate Jordan curves to cycle
separators. Let H be a planar embedded edge-weighted digraph. We use V pHq to denote the
set of vertices of H and we denote by H˚ the dual of H (with parallel edges and loops) and
view it as an undirected graph. We assume a natural embedding of H˚ i.e., each dual vertex
is in the interior of its corresponding primal face and each dual edge crosses its corresponding
primal edge of H exactly once and intersects no other edges of G. We let dHpu, vq denote the
shortest path distance from vertex u to vertex v in H.

r-division We will rely on the notion of r-division introduced by Frederickson [13] and further
developed by Klein et al. [23]. For a subgraph H of G, a vertex v of H is a boundary vertex if G
contains an edge not in H that is incident to v. We let δH denote the set of boundary vertices
of H. Vertices of V pHqzδH are called internal vertices of H. A hole of a subgraph H of G is a
face of H that is not a face of G.

Let c1 and c2 be constants. For a number r, an r-division with few holes of (connected) graph
G (with respect to c1, c2) is a collection R of subgraphs of G, called regions, with the following
properties.

1. Each edge of G is in exactly one region.

2. The number of regions is at most c1|V pGq|{r.

3. Each region contains at most r vertices.

4. Each region has at most c2
?
r boundary vertices.

5. Each region contains only Op1q holes.

We make the simplifying assumption that each hole H of each region R is a simple cycle and
that all its vertices belong to δR. We can always reduce to this case as follows. First, turn H
into a simple cycle by duplicating vertices that are visited more than once in a walk of the hole.
Then for each pair of consecutive boundary vertices in this walk, add a bidirected edge between
them unless they are already connected by an edge of R; the new edges are embedded such that
they respect the given embedding of R. We refer to the new simple cycle obtained as a hole and
it replaces the old hole H.

3

We also make the simplifying assumption that each face of a region R is either a hole or a
triangle and that each edge of R is bidirected. This can always be achieved by adding suitable
infinite-weight edges that respect the current embedding of R.

Non-negative weights and unique shortest paths As mentioned earlier, we may assume
w.l.o.g. that G has non-negative edge weights. Furthermore, we assume uniqueness of shortest
paths i.e., for any two vertices x, y of a graph G, there is a unique path from x to y that minimizes
the sum of the weights of its edges. This can be achieved either with random perturbations of
edge weights or deterministically with a slight overhead as described in [5]; we need the shortest
paths uniqueness assumption only for the preprocessing step and thus the overhead only affects
the preprocessing time and not the query time of our distance oracle.

Voronoi diagrams We now define the key notion of Voronoi diagrams. Let G be a graph and
r ą 0. Consider an r-division with few holes R of G and a region R P R and let H be a hole of
R. Let u be a vertex of G not in R.

Let RH be the graph obtained from R by adding inside each hole H 1 ‰ H of R, a new vertex
in its interior and infinite-weight bidirected edges between this vertex and the vertices of H 1

(which by the above simplifying assumption all belong to δR), embedding the edges such that
they are pairwise non-crossing and contained in H 1.

Some of the following definitions are illustrated in Figure 1. Consider the shortest path
tree Tu in G rooted at u. For any vertex x P V pTuq, define Tupxq to be the subtree of Tu
rooted at x. For each vertex x P V pHq we define the Voronoi cell of x (w.r.t. u, R, and H)
as the set of vertices of RH that belong to the subtree Tupxq and not to any subtree Tupyq
for y P pV pHq ´ txuq X V pTupxqq. The weighted Voronoi diagram of u w.r.t. R and H is the
collection of all the Voronoi cells of the vertices in H. For each vertex x P H we say that its
weight is the shortest path distance from u to x in G. Note that since we assume unique shortest
paths and bidirectional edges, the weighted Voronoi diagram of u w.r.t. R and H is a partition
of the vertices of RH . Furthermore, each Voronoi cell contains exactly one vertex of H. For
any Voronoi cell C, we define its boundary edges to be the edges of RH that have exactly one
endpoint in C. Let B˚H be the subgraph of R˚H consisting of the (dual) boundary edges over
all Voronoi cells w.r.t. u and RH ; we ignore edge orientations and weights so that B˚H is an
unweighted undirected graph. We define VorHpR, uq to be the multigraph obtained from B˚H
by replacing each maximal path whose interior vertices have degree two by a single edge whose
embedding coincides with the path it replaces. When H is clear from context, we simply write
VorpR, uq.

3 High-level description

We now give a high-level description of our distance oracle where we omit the details needed to
get our preprocessing time bounds. Our data structure is constructed on top of an r-division
of the graph. For each region R of the r-division we store a look-up table of the distance in G
between each ordered pair of vertices u, v P V pRq. We also store a look-up table of distances in G
from each vertex u P V to the boundary vertices of R. In total this part requires Opnr`n2{

?
rq

space.
The difficult case is when two vertices u and v from different regions are queried. To do

this we will use weighted Voronoi diagrams. More specifically, for every vertex u, every region
R, and every hole H of R, we construct a recursive separator decomposition of the weighted
Voronoi diagram of u w.r.t. R and H. The goal is to determine the boundary vertex w such
that v is contained in the Voronoi cell of u. If we can do this, we know that dGpu, vq “

4

1

3

2

5

4

1

2

Figure 1: Illustration of the weighted Voronoi diagram of a vertex u (not shown) w.r.t. a region
R (grey) and a hole H (dotted edges and seven grey vertices). Edges of R are bidirected and
have weight 1. The number next to a vertex of H is the weight of that vertex. Vertices of the
Voronoi diagram (which are dual vertices and hence faces of the primal) and its boundary are
shown in black except the one embedded inside H. The graph VorHpR, uq has seven edges. Note
that this illustration does not have unique shortest paths as assumed in this paper. Note also
that the shortest path from u to the node with weight 5 goes through the nearby node with
weight 2. Thus the rest of the shortest-path tree from u has been assigned to the node with
weight 5. Note also that the illustration is not triangulated.

dGpu,wq ` dRH
pw, vq for one of the holes H of R. To determine this we use a carefully selected

recursive decomposition. This decomposition is stored in a compact way and we show how it
enables binary search to find w in Oplog rq time.

In order to store all of the above mentioned parts efficiently we will employ the compact
representation of the abstract Voronoi diagram (namely VorpR, uq as defined in the previous
section). This requires only Op

?
rq space for each choice of u, R, and H for a total of Opn2{

?
rq

space. This also dominates the space for storing the recursive decompositions.
Finally, we store for each graph RH and each possible separator of RH the set of vertices on

one side of the separator, since this is needed to perform the binary search. This is done in a
compact way requiring only Opr2q space per region. Thus, the total space requirement of our
distance oracle is Opnr ` n2{

?
rq. Picking r “ n2{3 gives the desired Opn5{3q space bound.

4 Recursive Decomposition of Regions

In this section, we consider a region R in an r-division of a planar embedded graph G “ pV,Eq, a
vertex u P V ´V pRq, and a hole H of R which we may assume is the outer face of R. To simplify
notation, we identify R with RH and let δR denote the boundary vertices of R belonging to H,
i.e., δR “ V pHq (by our simplifying assumption regarding holes in the preliminaries). The dual
vertex corresponding to H is denoted v8pR, uq or just v8.

We assume that R contains at least three boundary vertices. Recall that each face of R other
than the outer face is a triangle and so, each vertex of VorpR, uq other than v8 has degree 3.
Moreover, every cell of VorpR, uq contains exactly one boundary vertex, therefore the boundary
of each cell of VorpR, uq contains exactly one occurrence of v8 and contains at least one other
vertex. Also note that the cyclic ordering of cells of VorpR, uq around v8 is the same as the
cyclic ordering δR of boundary vertices of R.

5

Construct a plane multigraph R∆puq from VorpR, uq as follows. First, for every Voronoi cell
C, add an edge from v8 to each vertex of C other than v8 itself; these edges are embedded such
that they are fully contained in C and such that they are pairwise non-crossing. For each such
edge e, denote by Cpeq the cell it is embedded in. To complete the construction of R∆puq, remove
every edge incident to v8 belonging to VorpR, uq. The construction of R∆puq is illustrated in
Figure 2.

v∞

Figure 2: Illustration of R∆puq highlighted in bold black edges. To avoid clutter, most edges
incident to v8 are only sketched.

Recursive decomposition using a Voronoi diagram In this section, we show how to
obtain a recursive decomposition of R∆puq into subgraphs called pieces. A piece Q is decomposed
into two smaller pieces by a cycle separator S of size 2 containing v8. Each of the two subgraphs
of Q is obtained by replacing the faces of Q on one side of S by a single face bounded by S. The
separator S is balanced w.r.t. the number of faces of Q on each side of S. The recursion stops
when a piece with at most six faces is obtained. It will be clear from our construction below
that the collection of cycle separators over all recursive calls form a laminar family, i.e., they are
pairwise non-crossing.

We assume a linked list representation of each piece Q where edges are ordered clockwise
around each vertex.

Lemma 2 below shows how to find the cycle separators needed to obtain the recursive de-
composition into pieces. Before we can prove it, we need the following result.

Lemma 1. Let Q be one of the pieces obtained in the above recursive decomposition. Then for
every vertex v of Q other than v8,

1. v has at least two edges incident to v8,

2. for each edge pv, wq of Q where w ‰ v8, the edge preceding and the edge following pv, wq
in the clockwise ordering around v are both incident to v8, and

3. for every pair of edges e1 “ pv, v8q and e2 “ pv, v8q where e2 immediately follows e1 in
the clockwise ordering around v, if both edges are directed from v to v8 then the subset of
the plane to the right of e1 and to the left of e2 is a single face of Q.

Proof. The proof is by induction on the depth i ě 0 in the recursion tree of the node corre-
sponding to piece Q. Assume that i “ 0 and let v ‰ v8 be given. The first and third part of the

6

lemma follow immediately from the construction of R∆puq and the assumption that |δR| ě 3.
To show the second part, it suffices by symmetry to consider the edge e following pv, wq in the
cyclic ordering of edges around v in Q “ R∆puq. Since e and pv, wq belong to the same face of
Q and since each face of Q contains v8 and at most three edges, the second part follows.

Now assume that i ą 0 and that the claim holds for smaller values. Let v ‰ v8 be given.
Consider the parent piece Q1 of Q in the recursive decomposition tree and let S be the cycle
separator that was used to decompose Q1. Then S contains v8 and one additional vertex v1. To
show the inductive step, we claim that we only need to consider the case when v1 “ v. This is
clear for the first and second part since if v1 ‰ v then v has the same set of incident edges in Q1

and in Q. It is also clear for the third part since Q is a subgraph of Q1.
It remains to show the induction step when v1 “ v. The first part follows since the two edges

of S are incident to v and to v8 and belong to Q. The second part follows by observing that
the clockwise ordering of edges around v in Q is obtained from the clockwise ordering around v
in Q1 by removing an interval of consecutive edges in this ordering; furthermore, the first and
last edge in the remaining interval are both incident to v8. Applying the induction hypothesis
shows the second part.

For the third part, if e2 immediately follows e1 in the clockwise ordering around v in Q1 then
the induction hypothesis gives the desired. Otherwise, e1 and e2 must be the two edges of S and
Q is obtained from Q1 by removing the faces to the right of e1 and to the left of e2 and replacing
them by a single face bounded by S.

In the following, let Q be a piece with more than six faces. The following lemma shows that
Q has a balanced cycle separator of size 2 which can be found in Op|Q|q time.

Lemma 2. Q as defined above contains a 2-cycle S containing v8 such that the number of faces
of Q on each side of S is a fraction between 1{3 and 2{3 of the total number of faces of Q.
Furthermore, S can be found in Op|Q|q time.

Proof. We construct S iteratively. In the first iteration, pick an arbitrary vertex v1 ‰ v8 of Q
and let S1 consist of two distinct arbitrary edges, both incident to v1 and v8. This is possible
by the first part of Lemma 1.

Now, consider the ith iteration for i ą 1 and let vi´1 and v8 be the two vertices of the
2-cycle Si´1 obtained in the previous iteration. If Si´1 satisfies the condition of the lemma, we
let S “ Si´1 and the iterative procedure terminates.

Otherwise, one side of Si´1 contains more than 2{3 of the faces of Q. Denote this set of
faces by Fi´1 and let Ei´1 be the set of edges of Q incident to vi´1, contained in faces of Fi´1,
and not belonging to Si´1. We must have Ei´1 ‰ H; otherwise, it follows from the third part
of Lemma 1 that Fi´1 contains only a single face of Q (bounded by Si´1), contradicting our
assumption that Q contains more than six faces and that Fi´1 contains more than 2{3 of the
faces of Q.

If Ei´1 contains an edge incident to v8, pick an arbitrary such edge ei´1. This edge partitions
Fi´1 into two non-empty subsets; let F 1i´1 be the larger subset. We let vi “ vi´1 and let Si be
the 2-cycle consisting of ei´1 and the edge of Si´1 such that one side of Si contains exactly the
faces of F 1i´1.

Now, assume that none of the edges of Ei´1 are incident to v8. Then by the second part
of Lemma 1, Ei´1 contains exactly one edge ei´1. We let vi ‰ vi´1 be the other endpoint of
ei´1 and we let Si consist of the two edges incident to vi which belong to the two faces of Fi´1

incident to ei´1.
To show the first part of the lemma, it suffices to prove that the above iterative procedure

terminates. Consider two consecutive iterations i ą 1 and i` 1 and assume that the procedure

7

does not terminate in either of these. We claim that then Fi Ă Fi´1. If we can show this, it
follows that |F1| ą |F2| ą . . . which implies termination.

If Ei´1 contains an edge incident to v8 then F 1i´1 contains more than 1{3 of the faces of Q.
Since the procedure does not terminate in iteration i` 1, F 1i´1 must in fact contain more than
2{3 of the faces so Fi “ F 1i´1 Ă Fi´1, as desired.

Now, assume that none of the edges of Ei´1 are incident to v8. Then one side of Si contains
exactly the faces of Fi´1 excluding two. Since we assumed that Q contains more than six faces,
this side of Si contains more than 2{3 of these faces. Hence, Fi Ă Fi´1, again showing the
desired.

For the second part of the lemma, note that counting the number of faces of Q contained
in one side of a 2-cycle containing v8 can be done in the same amount of time as counting the
number of edges incident to v8 from one edge of the cycle to the other in either clockwise or
counter-clockwise order around v8. This holds since every face of Q contains v8. It now follows
easily from our linked list representation of Q with clockwise orderings of edges around vertices
that the ith iteration can be executed in Op|Fi´1| ´ |Fi|q time for each i ą 1. This shows the
second part of the lemma.

Corollary 1. Given VorpR, uq and R∆puq, its recursive decomposition can be computed in
Op
?
r log rq time.

Proof. VorpR, uq has complexity |VorpR, uq| “ Op
?
rq and R∆puq can be found in time linear in

this complexity. Since the recursive decomposition of R∆puq has Oplog rq levels and since the
total size of pieces on any single level is Op|R∆puq|q “ Op|VorpR, uq|q “ Op

?
rq, the corollary

follows from Lemma 2.

Lemma 3. The recursive decomposition of R∆puq can be stored using Op
?
rq space.

Proof. Observe that the number of nodes of the tree decomposition is Op
?
rq and each separator

consists of two edges and so takes Op1q space.

Embedding of R∆puq: We now provide a more precise definition of the embedding of R∆puq.
Let f8 be the face of R corresponding to v8 in R˚, i.e., f8 is the hole H. Consider the graph
R̃ that consists of R plus a vertex ṽ8 located in f8 and an edge between each vertex of f8 and
ṽ8. The rest of R̃ is embedded consistently with respect to the embedding of R.

Now, consider the following embedding of R∆puq. First, embed v8 to ṽ8. We now specify
the embedding of each edge adjacent to v8. Recall that each edge e that is adjacent to v8 lies
in a single cell Cpeq of VorpR, uq. For each such edge e going from v8 to a vertex w˚ of R∆puq,
we embed it so that it follows the edge from ṽ8 to the boundary vertex be of Cpeq, then the
shortest path in R̃ from be to the vertex of Cpeq on the face corresponding to w˚ in R̃. Note
that by definition of R∆puq such a vertex exists. We also remark that since the edges follow
shortest paths and because of the uniqueness of the shortest paths they may intersect but not
cross (and hence do not contradict the definition of R∆puq).

It follows that there exists a 1-to-1 correspondence between 2-cycle separators going through
v8 of R∆puq and cycle separators of R̃ consisting of an edge pu, vq, the shortest paths between
u and a boundary vertex b1 and v and a boundary vertex b2 and pb1, ṽ8q and pb2, ṽ8q. We call
the set tb1, u, v, b2u the representation of this separator. This is illustrated in Figure 3. Thus,
for any 2-cycle separator S going through v8, we say that the set of vertices of R that is in
the interior (resp. exterior) of S is the set of vertices of R that lie in the bounded region of
the place defined by the Jordan curve corresponding to the cycle separator in R̃ that is in 1-1
correspondence with S.

We can now state the main lemma of this section.

8

v∞
~

b1

u

v

b2

Figure 3: Example of a 2-cycle separator of R∆puq and its corresponding embedding into the
actual graph.

Lemma 4. Let w be a vertex of R. Assume there exists a data structure that takes as input
a the representation tb1, x, y, b2u of a 2-cycle separator S of VorpR, uq going through v8 and
answers in t time queries of the following form: Is w in the bounded closed subset of the plane
with boundary S? Then there exists an algorithm running in time Opt log rq that returns a set
of at most 6 Voronoi cells of VorpR, uq such that one of them contains w.

Proof. The algorithm uses the recursive decomposition of R∆puq described in this section. Note
that the decomposition consists of 2-cycle separators going through v8. Thus, using the above
embedding, each of the 2-cycle of the decomposition corresponds to a separator consisting of an
edge px, yq and the shortest paths PRpx, b1q and PRpy, b2q where b1, b2 are boundary vertices of
R. Additionally, y belongs to the Voronoi cell of b2 in VorpR, uq and x belongs to the Voronoi
cell of b1 in VorpR, uq. Therefore, PRpx, b1q and PRpy, b2q are vertex disjoint and so the data
structure can be used to decide on which side of such a separator w is.

The algorithm is the following: proceed recursively along the recursive decomposition of
R∆puq and for each 2-cycle separator of the decomposition use the data structure to decide in
t time in which side of the 2-cycle w is located and then recurse on this side. If w belongs to
both sides, i.e., if w is on the 2-cycle separator, recurse on an arbitrary side. The algorithm
stops when there are at most 6 faces of R∆puq and then it returns the Voronoi cells of VorpR, uq
intersecting those 6 faces.

Observe that the separators do not cross. Thus, when the algorithm obtains at a given
recursive call that w is in the interior (resp. exterior) of a 2-cycle S and in the exterior (resp.
interior) of the 2-cycle separator S1 corresponding to the next recursive call, we can deduce that
w lies in the intersection of the interior of S and the exterior of S1 and hence deduce that it
belongs to a Voronoi cell that lies in this area of the plane.

Note that by Lemma 2 the number of faces of R∆puq in a piece decreases by a constant
factor at each step. Thus, since the number of boundary vertices is Op

?
rq, the procedure takes

at most Opt log rq time.
Finally, observe that each face of R∆puq that is adjacent to v8 lies in a single Voronoi cell

of VorpR, uq. Thus, since at the end of the recursion there are at most 6 faces in the piece, they
correspond to at most 6 different Voronoi cells of VorpR, uq. Hence the algorithm returns at
most 6 different Voronoi cells of VorpR, uq.

9

5 Preprocessing a Region

Given a query separator S in a graph RH “ R and given a query vertex w in R, our data
structure needs to determine in Op1q time the side of S that w belongs to. In this section, we
describe the preprocessing needed for this.

In the following, fix R as well as an ordered pair pu, vq of vertices of R such that either pu, vq
or pv, uq is an edge of R. The preprocessing described in the following is done over all such
choices of R and pu, vq (and all holes H).

The vertices of δR are on a simple cycle and we identify δR with this cycle which we orient
clockwise (ignoring the edge orientations of R). We let b0, . . . , bk denote this clockwise ordering
where bk “ b0. It will be convenient to calculate indices modulo k so that, e.g., bk`1 “ b1.

Given vertices w and w1 in R, let P pw,w1q denote the shortest path in R from w to w1.
Given two vertices bi, bj P δR, we let δpbi, bjq denote the subpath of cycle δR consisting of the
vertices from bi to bj in clockwise order, where δpbi, bjq is the single vertex bi if i “ j and
δpbi, bjq “ δR if j “ i` k. We let ∆pw, bi, bjq denote the subgraph of R contained in the closed
and bounded region of the plane with boundary defined by P pbi, wq, P pbj , wq, and δpbi, bjq.
We refer to ∆pw, bi, bjq as a wedge and call it a basic wedge if bi and bj are consecutive in the
clockwise order, i.e., if j “ i` 1 pmod kq. We need the following lemma.

Lemma 5. Let w be a given vertex of R. Then there is a data structure with Oprq preprocessing
time and size which answers in Op1q time queries of the following form: given a vertex x P V pRq
and two distinct vertices bi1 , bi2 P δR, does x belong to ∆pw, bi1 , bi2q?

Proof. Below we present a data structure with the bounds in the lemma which only answers
restricted queries of the form “does x belong to ∆pw, b0, biq?” for query vertices x P V pRq
and bi P δR. In a completely symmetric manner, we obtain a data structure for restricted
queries of the form “does x belong to ∆pw, bi, bkq?” for query vertices x P V pRq and bi P δR.
We claim that this suffices to show the lemma. For consider a query consisting of x P V pRq
and bi, bj P δR. If b0 P δpbi, bjq then ∆pw, bi, bjq “ ∆pw, bi, bkq Y ∆pw, b0, bjq and otherwise,
δpw, bi, bjq “ ∆pw, b0, bjq X ∆pw, bi, bkq. Hence, answering a general query can be done using
two restricted queries and checking if b0 P δpb1, b2q can be done in constant time by comparing
indices of the query vertices.

It remains to present the data structure for restricted queries of the form “does x belong
to ∆pw, b0, biq?”. In the preprocessing step, each v P V pRq is assigned the smallest index iv P
t0, . . . , ku for which v P ∆pw, b0, bivq. Clearly, this requires only Oprq space and below we show
how to compute these indices in Oprq time.

Consider a restricted query specified by a vertex x of R and a boundary vertex bi P δR where
0 ď i ď k. Since x P ∆pw, b0, biq iff ix ď i, this query can clearly be answered in Op1q time.

It remains to show how the indices iv can be computed in a total of Oprq time. Let R1 be
R with all its edge directions reversed. In Oprq time, a SSSP tree T 1 from w in R1 is computed.
Let T be the tree in R obtained from T 1 by reversing all its edge directions; note that all edges
of T are directed towards w and for each v P V pRq, the path from v to w in T is a shortest path
from v to w in R.

Next, ∆pw, b0, b0q “ P pb0, wq is computed and for each vertex v P ∆pw, b0, b0q, set iv “ 0.
The rest of the preprocessing algorithm consists of iterations i “ 1, . . . , k where iteration i assigns
each vertex v P V p∆pw, b0, biqqzV p∆pw, b0, bi´1qq the index iv “ i. This correctly computes
indices for all vertices of R. In the following, we describe how iteration i is implemented.

First, the path P pbi, wq is traversed in T until a vertex vi is encountered which previously
received an index. In other words, vi is the first vertex on P pbi, wq belonging to ∆pw, b0, bi´1q.
Note that vi is well-defined since w P ∆pw, b0, bi´1q. Vertices that are in V pP pbi, viqqztviu or in

10

a subtree of T rooted in a vertex of V pP pbi, viqqztviu and extending to the right of this path
are assigned the index value i. Furthermore, vertices belonging to a subtree of T rooted in a
vertex of V pP pbi´1, viqqztviu and extending to the left of this path are assigned the index value
i, except those on P pbi´1, viq (as they belong to ∆pw, b0, bi´1q).

Since R is connected, it follows that the vertices assigned an index of i are exactly those
belonging to V p∆pw, b0, biqqzV p∆pw, b0, bi´1qq and that the running time for making these as-
signments is Op|V p∆pw, b0, biqqzV p∆pw, b0, bi´1qq| ` |P pbi´1, viq ´ vi| ` 1q. Over all i, total
running time is Oprq; this follows by a telescoping sums argument and by observing that vertex
sets V pP pbi´1, viqqztviu are pairwise disjoint.

Given distinct vertices bi1 , bi2 P δR, if P pbi1 , uq and P pbi2 , vq do not cross (but may touch and
then split), let lpbi1 , bi2 , u, vq denote the subgraph of R contained in the closed and bounded
region of the plane with boundary defined by P pbi1 , uq, P pbi2 , vq, δpbi1 , bi2q, and an edge of R
between vertex pair pu, vq. In order to simplify notation, we shall omit u and v and simply write
lpbi1 , bi2q.

It follows from planarity that there is at most one bi P δR such that pu, vq belongs to
Ep∆pu, bi, bi`1qqzEpP pbi`1, uqq when ignoring edge orientations. If bi exists, we refer to it as
buv; otherwise buv denotes some dummy vertex not belonging to R.

The goal in this section is to determine whether a given query vertex belongs to a given
query subgraph lpbi1 , bi2q. The following lemma allows us to decompose this subgraph into
three simpler parts as illustrated in Figure 4. We will show how to answer containment queries
for each of these simple parts.

uv

bi
bi

1
2

bibi+1

Figure 4: Example of decomposing the region into three parts using bi: The dashed wedges
represent shortest paths to u, the dotted edges represent shortest paths to v, and the dashed-
dotted box lpbi, bi`1q.

Lemma 6. Let bi1 and bi2 be distinct vertices of δR and assume that P pbi1 , uq and P pbi2 , vq are
vertex-disjoint. Then lpbi1 , bi2q “ ∆pu, bi1 , biq Y lpbi, bi`1q Y ∆pv, bi`1, bi2q where bi “ buv if
buv P δpbi1 , bi2´1q and bi “ bi2´1 otherwise.

Proof. Figure 5 gives an illustration of the proof. We first show the following result: given a
vertex bj P δpbi1`1, bi2q such that buv R δpbi1 , bj´1q, P pbj1 , uq is contained in lpbi1 , bi2q for each

11

bj1 P δpbi1 , bjq. The proof is by induction on the number i of edges in δpbi1 , bj1q. The base case
i “ 0 is trivial since then bj1 “ bi1 so assume that i ą 0 and that the claim holds for i ´ 1.
If pv, uq is the last edge on P pbj1 , uq, the induction step follows from uniqueness of shortest
paths. Otherwise, neither pu, vq nor pv, uq belong to ∆pu, bj1´1, bj1q (since bj1´1 ‰ buv). By
the induction hypothesis, P pbj1´1, uq is contained in lpbi1 , bi2q and since P pbj1 , uq cannot cross
P pbj1´1, uq, P pbj1 , uq cannot cross P pbi1 , uq. Also, P pbj1 , uq cannot cross P pbi2 , vq since then
either pu, vq or pv, uq would belong to ∆pu, bj1´1, bj1q. Since bj1 R tbi1`1, bi2´1u, it follows that
P pbj1 , uq is contained in lpbi1 , bi2q which completes the proof by induction.

Next, assume that buv R δpbi1 , bi2´1q so that bi “ bi2´1. Note that ∆pv, bi`1, bi2q “ P pbi2 , vq.
Picking bj “ bi2 above implies that ∆pu, bi1 , biq is contained in lpbi1 , bi2q and hence lpbi1 , bi2q “
∆pu, bi1 , biq Ylpbi, bi`1q Y∆pv, bi`1, bi2q.

Now consider the other case of the lemma where bi “ buv P δpbi1 , bi2´1q. Picking bj “ bi
above, it follows that ∆pu, bi1 , biq is contained in lpbi1 , bi2q. It suffices to show that P pbi`1, vq is
contained in lpbi1 , bi2q since this will imply that lpbi, bi`1q is well-defined and that lpbi, bi`1qY

∆pv, bi`1, bi2q is contained in lpbi1 , bi2q and hence that ∆pu, bi1 , biqYlpbi, bi`1qY∆pv, bi`1, bi2q “
lpbi1 , bi2q.

Assume for contradiction that P pbi`1, vq is not contained in lpbi1 , bi2q.
By uniqueness of shortest paths, P pbi`1, uq does not cross P pbi, uq. Since bi “ buv, we

have that when ignoring edge orientations, pu, vq belongs to Ep∆pu, bi, bi`1qqzEpP pbi`1, uqq Ď
Ep∆pu, bi1 , bi`1qqzEpP pbi`1, uqq. Hence P pbi`1, uq is not contained in lpbi1 , bi2q so it crosses
P pbi2 , vq. Let x be a vertex on P pbi`1, uqXP pbi2 , vq such that the successor of x on P pbi` 1, uq
is not contained in lpbi1 , bi2q. By our assumption above that P pbi`1, vq is not contained in
lpbi1 , bi2q, there is a first vertex y on P pbi`1, vq such that its successor y1 does not belong to
lpbi1 , bi2q. By uniqueness of shortest paths, y cannot belong to P pbi2 , vq so it must belong to
P pbi1 , uq. This also implies that y ‰ x since x P P pbi2 , vq and P pbi1 , uq and P pbi2 , vq are vertex-
disjoint. Since P py, vq is a subpath of P pbi`1, vq and y ‰ x, shortest path uniqueness implies
that P py, vq and P pbi`1, uq are vertex-disjoint.

Since P pbi`1, yq is contained in lpbi1 , bi2q, v belongs to the subgraph of ∆pu, bi1 , bi`1q con-
tained in the closed region of the plane bounded by P pbi`1, yq, P py, uq, and P pbi`1, uq. Since
P py, vq does not intersect P pbi`1, uq, P py1, vq thus intersects either P pbi`1, yq or P py, uq. How-
ever, it cannot intersect P pbi`1, yq since then P pbi`1, vq would be non-simple. By uniqueness of
shortest paths, P py1, vq also cannot intersect P py, uq since P py1, vq is a subpath of P py, vq and
y1 R P py, uq. This gives the desired contradiction, concluding the proof.

Let P be a collection of subpaths such that for each path δpbi1 , bi2q in P, buv R δpbi1 , . . . , bi2´1q

and bvu R δpbi1`1, . . . , bi2´1q. We may choose the paths such that |P| “ Op1q and such that
all edges of δR except pbuv, bvuq (if it exists) belongs to a path of P. It is easy to see that
this is possible by considering a greedy algorithm which in each step picks a maximum-length
path which is edge-disjoint from previously picked paths and which satisfies the two stated
requirements.

The next lemma allows us to obtain a compact data structure to answer queries of the form
“does face f belong to lpbi, bi`1q” for given query face f and query index i.

Lemma 7. Let P “ δpbi1 , bi2q P P be given. Then

1. an index jpP q exists with i1 ď jpP q ď i2 such that lpbi, bi`1q is undefined for i1 ď i ă jpP q
and well-defined for jpP q ď i ă i2,

2. for each face f ‰ δR of R, there is at most one index jf pP q with jpP q ď jf pP q ď i2 ´ 2
such that f Ď lpbjf pP q, bjf pP q`1q and f Ę lpbjf pP q`1, bjf pP q`2q, and

12

uv

bi

bi

x

y

y'

1bi2

Figure 5: Illustration of the proof of Lemma 6. The figure shows how unique shortest paths
imply a contradiction (highlighted with grey) if the path from bi`1 to v is not contained in
lpbi1 , bi2q.

3. for each face f ‰ δR of R, there is at most one index j1f pP q with jpP q ď j1f pP q ď i2 ´ 2
such that f Ę lpbj1

f pP q
, bj1

f pP q`1q and f Ď lpbj1
f pP q`1, bj1

f pP q`2q.

Furthermore, there is an algorithm which computes the index jpP q and for each face f ‰ δR of
R the indices jf pP q and j1f pP q if they exist. The total running time of this algorithm is Opr log rq
and its space requirement is Oprq.

Proof. Let path P “ δpbi1 , bi2q P P and face f ‰ δR of R be given. To simplify notation in the
proof, we shall omit reference to P and write, e.g., j instead of jpP q.

Let j be the smallest index such that lpbj , bj`1q is well-defined; if j does not exist, pick
instead j “ i2. We will show that j satisfies the first part of the lemma. This is clear if j “ i2
so assume therefore in the following that j ă i2.

We prove by induction on i that lpbi, bi`1q is well-defined for j ď i ă i2. By definition of j,
this holds when i “ j. Now, consider a well-defined subgraph lpbi, bi`1q where j ď i ď i2 ´ 2.
We need to show that lpbi`1, bi`2q is well-defined. Since bi ‰ buv, P pbi`1, uq is contained in
lpbi, bi`1q and since bi`1 ‰ bvu, P pbi`2, vq is contained in the closed region of the plane bounded
by the boundary of lpbi, bi`1q and not containing lpbi, bi`1q. In particular, lpbi`1, bi`2q is well-
defined. This shows the first part of the lemma.

Next, we show that j can be computed in Opr log rq time. Checking that lpbi, bi`1q is well-
defined (i.e., that paths P pbi, uq and P pbi`1, vq do not cross) for a given index i can be done in
Oprq time. Because of the first part of the lemma, a binary search algorithm can be applied to
identify j in Oplog rq steps where each step checks if lpbi, bi`1q is well-defined for some index i.
This gives a total running time of Opr log rq, as desired. Space is clearly Oprq.

To show the second part of the lemma, assume that there is an index jf with i1 ď jf ď
i2 ´ 2 such that f Ď lpbjf , bjf`1q and f Ę lpbjf`1, bjf`2q. It follows from the observations
in the inductive step above that ∆pu, bjf , bjf`1q contains exactly the faces of R contained in
lpbjf , bjf`1q and not in lpbjf`1, bjf`2q which implies that f Ď ∆pu, bjw , bjw`1q. Since no face
of R belongs to more than one graph of the form ∆pu, bi, bi`1q, jf must be unique, showing the
second part of the lemma.

13

Next, we give an Oprq time and space algorithm that computes indices jf . Let T be con-
structed as in the proof of Lemma 5. Initially, vertices of P pbi2´1, uq are marked and all other
vertices of R are unmarked. The remaining part of the algorithm consists of iterations i2´2, . . . , j
in that order. In iteration i, P pbi, uq is traversed until a marked vertex vi is visited and then
the vertices of P pbi, viq are marked. The faces of R contained in the bounded region of the
plane defined by P pbi, viq, P pbi`1, viq, and δpbi, bi`1q are exactly those that should be given an
index value of i. The algorithm performs this task by traversing each subtree of T emanating to
the right of P pbi, viq and each subtree of T emanating to the left of P pbi`1, viq; for each vertex
visited, the algorithm assigns the index value i to its incident faces.

We now show that the algorithm for computing indices jf has Oprq running time. Using the
same arguments as in the proof of Lemma 5, the total time to traverse and mark paths P pbi, viq
is Oprq. The total time to assign indices to faces is Oprq; this follows by observing that the time
spent on assigning indices to faces incident to a vertex of T is bounded by its degree and this
vertex is not visited in other iterations.

The third part of the lemma follows with essentially the same proof as for the second part.

We can now combine the results of this section to obtain the data structure described in the
following lemma.

Lemma 8. Let pu, vq be a vertex pair connected by an edge in R. Then there is a data structure
with Opr log rq preprocessing time and Oprq space which answers in Op1q time queries of the
following form: given a vertex w P R and two distinct vertices bi, bj P δR such that P pbi, uq and
P pbj , vq are vertex-disjoint, does w belong to lpbi, bj , u, vq?

Proof. We present a data structure Dpu, vq satisfying the lemma. First we focus on the prepro-
cessing. Boundary vertices buv and bvu and set P as defined above are precomputed and stored.
Vertices of δR are labeled with indices b0, . . . , b|V pδRq|´1 according to a clockwise walk of δR.
Each path of the form δpbi1 , bi2q (including each path in P) is represented by the ordered index
pair pi1, i2q. Checking if a given boundary vertex belongs to such a given path can then be done
in Op1q time.

Next, two instances of the data structure in Lemma 5 are set up, one for u denoted Du,
and one for v denoted Dv. Then the following is done for each path P “ δpbi1 , bi2q P P. First,
the algorithm in Lemma 7 is applied. Then if lpbjpP q, bjpP q`1, u, vq is well-defined, its set of
faces FjpP q is computed and stored; otherwise, FjpP q “ H. Similarly, if lpbi2´1, bi2 , u, vq is well-
defined, its set of faces Fi2´1 is computed and stored, and otherwise Fi2´1 “ H. If pbuv, bvuq P
δR, Dpu, vq computes and stores the set Fuv of faces of R contained in lpbuv, bvu, u, vq. This
completes the description of the preprocessing for Dpu, vq. It is clear that preprocessing time is
Opr log rq and that space is Oprq.

Now, consider a query specified by a vertex w P R and two distinct vertices bi1 , bi2 P δR
such that P pbi1 , uq and P pbi2 , vq are pairwise vertex-disjoint. First, Dpu, vq identifies a boundary
vertex bi such that lpbi1 , bi2 , u, vq “ ∆pu, bi1 , biq Y lpbi, bi`1q Y ∆pv, bi`1, bi2q; this is possible
by Lemma 6. Then Du and Dv are queried to determine if w P ∆pu, bi1 , biq Y∆pv, bi`1, bi2q; if
this is the case then w P lpbi1 , bi2 , u, vq and Dpu, vq answers “yes”. Otherwise, Dpu, vq identifies
an arbitrary face f ‰ δR of R incident to w. At this point, the only way that w can belong to
lpbi1 , bi2 , u, vq is if w belongs to the interior of lpbi, bi`1, u, vq which happens iff f is contained
in lpbi, bi`1, u, vq. If pbi, bi`1q “ pbuv, bvuq, Dpu, vq checks if f P Fuv and if so outputs “yes”.
Otherwise, there exists a path P P P containing pbi, bi`1q and Dpu, vq identifies this path. It
follows from Lemma 7 and from the definition of P that f is contained in lpbi, bi`1, u, vq iff at
least one of the following conditions hold:

1. jf pP q and j1f pP q are well-defined and j1f pP q ă i ď jf pP q.

14

2. f P Fi2´1, j1f pP q is well-defined, and i ą j1f pP q,

3. f P FjpP q, jf pP q is well-defined, and i ď jf pP q,

4. f P FjpP q and jf pP q is undefined,

Data structure Dpu, vq checks if any one these conditions hold and if so outputs “yes”; otherwise
it outputs “no”. Two of the cases are illustrated in Figure 6.

bi
bi+1

bj(P)
bjf(P)

bj'f(P)

bi
bi+1

bj(P)

bj'f(P)

bi1
bi2

bi2 bi1

Figure 6: Illustration of how to determine if the face f belongs to lpbi, bi`1, u, vq. The illustra-
tion includes cases 1 and 4 in the proof of Lemma 8. The large gray subpath indicates the part,
where f is contained in each box defined by consecutive boundary nodes.

It remains to show that Dpu, vq has query time Op1q. By Lemma 6, identifying bk can be
done in Op1q time. Querying Du and Dv takes Op1q time by Lemma 5. Checking whether
f P Fuv can clearly be done in Op1q time since this set of faces is stored explicitly. With our
representation of paths by the indices of their endpoints, identifying P takes Op1q time. Finally,
since sets FjpP q and FjpP q are explicitly stored, the four conditions above can be checked in Op1q
time.

6 The Distance Oracle

In this section we give a detailed presentation of both our algorithm for answering distance
queries and our distance oracle data structure.

Combining Lemmas 9, 10 and 11 with r “ n2{3 directly implies Theorem 1.

6.1 The Data Structure

We present the algorithm for building our data structure.

Preprocessing G

1. Compute an r-division R of G. Let δ be the set of all boundary vertices.

2. Store for each internal vertex the region to which it belongs.

3. Compute and store the distances from each vertex to each boundary vertex.

4. For each region R P R, compute and store the distances between any pair of internal
vertices of R.

15

5. For each region R, for each vertex u R R, for each hole H, compute VorHpR, uq and store
a separator decomposition as described in Section 4.

6. For each region R, for each edge px, yq P R, for each hole H, compute and store the data
structure described in Section 5.

Lemma 9. The total size of the data structure computed by Preprocessing is Opn2{
?
r`n¨rq.

Proof. Recall that by definition of the r-division, there are Opn{
?
rq boundary vertices and

Opn{rq regions. Thus, the number of distances stored at step 3 of the algorithm is at most
Opn2{

?
rq.

For a given region, storing the pairwise distances between all its internal vertices takes Opr2q

space. Since there are Opn{rq regions in total, Step 4 takes memory Opn ¨ rq.
We now bound the space taken by Step 5. There are n{r choices for R and n choices for

u. By Lemma 3, each decomposition can be stored using Op
?
rq space. Thus, this step takes

Opn2{
?
rq total space.

We finally bound the space taken by Step 6. There n{r choices for R and r choices for an
edge px, yq.By Lemma 8, for a given edge px, yq, the data structure takes Oprq space. Hence,
the total space taken by this step is Opn ¨ rq and the lemma follows.

Theorem 3. The execution of Preprocessing takes Opn2q time and Opn ¨ r` n2{
?
rq space.

Proof. We analyze the procedure step by step. Computing an r-division with Op1q holes can be
done in linear time and space using the algorithm of Klein et al., see [23].

We now analyze Step 3. There are Opn{
?
rq boundary vertices. Computing single-source

shortest paths can be done in linear time using the algorithm of Henzinger et al. [16]. Hence,
Step 3 takes at most Opn2{

?
rq time and space.

Step 4 takes Opn ¨ rq time and space using the following algorithm. The algorithm proceed
region by region and hole by hole. For a given region and hole, the algorithm adds an edge
between each pair of boundary vertices that are on the hole of length equal to the distance
between these vertices in the whole graph. Note that this is already in memory and was computed
at Step 3. Now, for each vertex of the region, the algorithm runs a shortest path algorithm. Since
there are Op

?
rq boundary vertices, the number of edges added is Oprq. Thus, the algorithm is

run on a graph that has at most Oprq edges and vertices. The algorithm spends at most Oprq
time per vertex of the region. Since there are Opn{rq regions and Oprq vertices per region, both
the running time and the space are Opn ¨ rq.

Step 5 takes Opn2q using the following algorithm. The algorithm proceeds vertex by vertex,
region by region, hole by hole. For a given vertex u, a given region R, and a given hole H the
algorithm computes VorHpR, uq. This can be done by adding a “dummy” vertex reprensenting
u and connecting it to each boundary vertex x of the hole by an edge of length distpu, xq. Thus,
this takes time Oprq using the single-source shortest path algorithm of Henzinger et al [16].
Furthermore, by Lemma 3 and Corollary 1, computing the separator decomposition of Section 4
given VorHpR, uq takes Õp

?
rq time and Op

?
rq space. Thus, over all vertices, regions and holes,

this step takes Opn2q time and Opn2{
?
rq memory.

Finally, we show that Step 6 takes Õpn ¨ rq time and Opn ¨ rq space. The algorithm proceeds
region by region, hole by hole, and edge by edge. By Lemma 8, for a given edge of the region,
computing the data structure of Section 5 takes Opr ¨ log rq time and space. Since the total
number of region is Opn{rq and the total number of edges per region is Oprq, the proof is
complete.

Corollary 2. There exists a distance oracle with total space Opn11{6q and expected preprocessing
time Opn11{6q.

16

Proof. We apply Procedure Preprocessing with r “ n1{3. By Lemma 9, the total size of the
data structure output is Opn11{6q.

We now analyse the total preprocessing time. For Steps 3, 4, and 6, we mimicate the analysis
of the proof of Theorem 3 and obtain a total preprocessing time of Opn ¨ r ` n2{

?
rq.

We now explain how to speed-up Step 5. We show that Step 5 can be done in time Opn ¨r5{2q

using Cabello’s data structure [5] for computing weighted Voronoi diagrams of a given region.
More formally, Cabello introduces a data structure that allows to compute weighted Voronoi

diagrams of a given region in expected time Õp
?
rq. This data structure has preprocessing time

Opr7{2q. Hence the total preprocessing time for computing the data structure for all the regions
is Õpn ¨ r5{2q.

Then, for each vertex u, each region R, each hole H, the algorithm

1. uses the data structure to compute the weighted Voronoi diagram VorHpR, uq in expected
time Õp

?
rq and

2. computes the separator decomposition of Section 4 in time Õp
?
rq (by Lemma 3 and

Corollary 1).

This results in an expected preprocessing time of Opn ¨ r5{2 ` n2{
?
rq. Choosing r “ n1{3 yields

a bound of Opn11{6q.

6.2 Algorithm for Distance Queries

This section is devoted to the presentation of our algorithms for answering distance queries
between pairs of vertices.

We show that any distance query between two vertices u, v can be performed in Oplog rq
time. In the following, let u, v be two vertices of the graph. The algorithm is the following.

Distance Query u, v

1. If u, v belong to the same region or if either u or v is a boundary vertex, the query can be
answered in Op1q time since the distances between vertices of the same region and between
boundary vertices and the other vertices of the graph are stored explicitly.

2. If u and v are internal vertices that belong to two different regions we proceed as follows.
Let R be the region containing v and δR be the set of boundary vertices of region R. The
boundary vertices are partitioned into holes H “ tH0, . . . ,Hku, such that

Ť

HPHH “ δR.
For each H P H, we apply the following procedure. Let V be the weighted Voronoi diagram
where the sites are the vertices of H and the weight of x P H is the distance from u to x.

We now aim at determining to which cell of V, v belongs. We use the binary search
procedure of Lemma 4 on the decomposition of R induced by the separators of the weighted
Voronoi diagram. More precisely, we use the algorithm described in Section 4, Lemma 4,
and the query algorithm described in Section 5, Lemma 8 to identify a set of at most six
Voronoi cells so that one of them contains v. This induces a set of at most six boundary
vertices X “ tx0, . . . , xku that represent the centers of the cells.

Finally, we have the distances from both u and v to all the boundary vertices in X. Let
vpHq “ minxPX distpu, xq ` distpx, vq. The algorithm returns minHPH vpHq.

Lemma 10 (Running time). The Distance Query takes Oplog rq time.

17

Proof. Consider a distance query from a vertex u to a vertex v and assume that those vertices
are internal vertices of two different regions as otherwise the query takes Op1q time. Observe
that we can determine in Op1q time to which region v belongs. Fix a hole H. Let V be the
weighted Voronoi diagram where the sites are the vertices of H and the weight of x P δR is the
distance from u to x. We consider the decomposition of the region of v of VorpR, uq.

Lemma 8 shows that the query time for the data structure defined in Section 5 is t “ Op1q.
Applying Lemma 4 with t “ Op1q implies that the total time to determine in which Voronoi cell
v belongs is at most Oplog rq.

Finally, computing minxPX distpu, xq ` distpx, vq takes Op1q time. By definition of the r-
division there are Op1q holes.

Therefore, we conclude that the running time of the Distance Query algorithm is Oplog rq.

We now prove that the algorithm indeed returns the correct distance between u and v.

Lemma 11 (Correctness). The Distance Query on input u, v returns the length of the shortest
path between vertices u and v in the graph.

Proof. We remark that the distance from any vertex to a boundary vertex is stored explicitly
and thus correct. Hence, we consider the case where u and v are internal vertices of different
regions. Let P be the shortest path from u to v in G. Let x P P be the last boundary vertex of
R on the path from u to v and let Hx be the hole containing x. Let V be the weighted Voronoi
diagram where the sites are the boundary vertices of Hx and the weight of y P Hx is the distance
from u to y.

We need to argue that the data structure of Section 5, Lemma 8 satisfies the conditions
of Lemma 4. Observe that the separators defined in Section 4 consist of two shortest paths
PRpb1, xq and PRpb2, yq where b1, b2 P δR and py, zqis an edge of R. Hence, the set of vertices
of the subgraph lpb1, b2, y, zq correspond to the set of all the vertices that are one of the two
sides of the separator. Thus, by Lemma 8 the data structure described in Section 5 satisfies the
condition of Lemma 4, with query time t “ Op1q.

We argue that v belongs to the Voronoi cell of x. Assume towards contradiction that v is
in the Voronoi cell of y ‰ x, we would have distpy, vq ` wpyq ď distpx, vq ` wpxq, where w is
the weight function associated with the Voronoi diagram. Thus, this implies that distpy, vq `
distpy, uq ď distpx, vq ` distpx, uq. Therefore, there exists a shortest path from u to v that goes
through y. Now observe that if v belongs to the Voronoi cell of y, the shortest path from v to
y does not go through x. Hence, assuming unique shortest paths between pairs of vertices, we
conclude that the last boundary vertex on the path from u to v is y and not x, a contradiction.
Thus, v belongs to the Voronoi cell of x.

Combining with Lemma 8, it follows that the Voronoi cell of x is in the set of Voronoi
cells X obtained at the end of the recursive procedure. Observe that for any x1 P X there
exists a path (possibly with repetition of vertices) of length distpx1, uq ` distpx1, vq. Therefore,
since we assume unique shortest paths between pairs of vertices, we conclude that distpu, vq “
distpx, uq ` distpx, vq “ minx1PX distpx1, vq ` distpx1, uq “ vpHxq “ minH vpHq.

7 Trade-off

We now prove Theorem 2. We first consider the case with P “ Opn2q and then extend it to the
case with efficient preprocessing time.

Let r1 ď r2 be positive integers to be defined later. The case r1 ď r2 will correspond exactly
to S ě n

?
n. The data structure works as follows.

18

1. We compute an r1-division and an r2-division of G named R1 and R2 respectively. Let δ1

respectively δ2 denote all the boundary vertices of R1 resp. R2.

2. For each region R of R1 and R2, compute and store the pairwise distances of the nodes
of R.

3. For each u P δ1 and v P δ2, compute and store the distance between u and v in G.

4. For each u P δ1, region R P R2 and hole H P R, compute VorHpR, uq and store a separator
decomposition as described in Section 4.

5. For each Region R P R2, for each edge px, yq P R, for each hole H, compute and store the
data structure described in Section 5.

We start by bounding the space.

Lemma 12. The total size of the data structure described above is

O

ˆ

nr2 `
n2

?
r1r2

˙

.

Proof. Consider the steps above. By definition of R1 and R2 step 2 uses Opnr2q space (since we
assumed r1 ď r2) and step 4 uses n?

r1
¨ n?

r2
space. By Lemma 3 step 5 takes Opn{

?
r2q for each

node of δ1 giving Opn2{
?
r1r2q in total. By Lemma 8 the total space of step 6 is Opnr2q.

Now consider a query pair u, v. If u and v belong to the same region in R1 or R2 we return
the stored distance. Otherwise we iterate over each boundary node w in the region of u in R1.
For each such boundary node we compute the distance to v using the data structures of steps
5 and 6 above similar to the query algorithm from Section 6.2. This is possible since we have
stored the distances between all the needed boundary nodes in step 4. The minimum distance
returned over all such w is the answer to the query.

From the description above it is clear that we get a query time of Op
?
r1 logpr2qq. The

correctness follows immediately from the discussion in the proof of Theorem 1. What is left now
is to balance the space to obtain Theorem 2. The expression of Lemma 12 is balanced when

r2 “
n2{3

r
1{3
1

.

Now, since we assumed that S ě n
?
n we can focus on the case when r2 ě

?
n and thus we get

r1 ď r2 as we required. Plugging into the definition of Q we get exactly

Q “ Op
?
r1 log nq “

n5{2

S3{2
log n ,

which gives us Theorem 2.
For pre-processing time, we consider two cases similar to Theorem 3 and Corollary 2. It

follows directly from the discussion above and Theorem 3 that the preprocessing can be per-
formed in Opn2q. We may, however, also consider pre-processing time as a parameter similar
to space and query time. This gives a 3-way trade-off. In Corollary 2 we showed how to lower
pre-processing time by increasing the space. Here we discuss the case of lowering pre-processing
time further by increasing the query time. It follows from the discussion above and Corollary 2
that we can perform pre-processing of the above structure in Opnr1 ` nr

5{2
2 ` n2{

?
r1r2q time

and get the same space bound. If we assume that r1 ď r
5{2
2 we get a data structure with query

19

time Q “ Op
?
r1 log nq and space and pre-processing time S “ Opnr

5{2
2 ` n2{

?
r1r2q. Up to

logarithimic and constant factors, this gives us Q “ n11{5{S6{5. For any S ě n16{11 this sat-
isfies the requirement that r1 ď r

5{2
2 . As an example, we get a data structure with space and

pre-processing time Opn16{11q and a query time of Opn5{11 log nq.

20

References

[1] The TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. Accessed:
2010-09-30.

[2] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar
graph algorithms. In Proc. 57th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 477–486, 2016.

[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M. Smid,
and Christos D. Zaroliagis. Planar spanners and approximate shortest path queries among
obstacles in the plane. In Proc. 4th European Symposium on Algorithms (ESA), pages
514–528, 1996.

[4] Sergio Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2012. See
also SODA’06.

[5] Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances
in planar graphs. In Proc. 28th ACM/SIAM Symposium on Discrete Algorithms (SODA),
pages 2143–2152, 2017.

[6] Shiri Chechik. Approximate distance oracles with constant query time. In Proc. 46th ACM
Symposium on Theory of Computing (STOC), pages 654–663, 2014.

[7] Shiri Chechik. Approximate distance oracles with improved bounds. In Proc. 47th ACM
Symposium on Theory of Computing (STOC), pages 1–10, 2015.

[8] Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proc. 22nd ACM
Symposium on Theory of Computing (STOC), pages 469–478, 2000.

[9] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact
exact distance oracle for planar graphs. CoRR, abs/1702.03259, 2017.

[10] Hristo Djidjev. On-line algorithms for shortest path problems on planar digraphs. In
Graph-Theoretic Concepts in Computer Science, 22nd International Workshop, WG ’96,
Cadenabbia (Como), Italy, June 12-14, 1996, Proceedings, pages 151–165, 1996.

[11] Paul Erdős. Extremal problems in graph theory. In IN “THEORY OF GRAPHS AND ITS
APPLICATIONS,” PROC. SYMPOS. SMOLENICE. Citeseer, 1964.

[12] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. Journal of Computer and System Sciences, 72(5):868–889, 2006. See
also FOCS’01.

[13] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987.

[14] Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense
distance graphs. CoRR, abs/1602.07013, 2016.

[15] Paweł Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann.
Voronoi diagrams on planar graphs, and computing the diameter in deterministic o (n5/3)
time, 2017. arXiv preprint.

21

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[16] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-
path algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,
1997.

[17] Giuseppe F Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In Proc. 43rd
ACM Symposium on Theory of Computing (STOC), pages 313–322, 2011.

[18] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in monge matrices and monge partial matrices, and their applications. In Proc.
23rd ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 338–355, 2012.

[19] Ken-ichi Kawarabayashi, Philip N Klein, and Christian Sommer. Linear-space approxi-
mate distance oracles for planar, bounded-genus and minor-free graphs. In International
Colloquium on Automata, Languages, and Programming, pages 135–146. Springer, 2011.

[20] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles for
approximate distances in undirected planar graphs. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 550–563. SIAM, 2013.

[21] Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In Proc. 13th ACM/SIAM Symposium on Discrete Algorithms (SODA),
pages 820–827, 2002.

[22] Philip N Klein. Multiple-source shortest paths in planar graphs. In Proc. 16th ACM/SIAM
Symposium on Discrete Algorithms (SODA), volume 5, pages 146–155, 2005.

[23] Philip N Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In Proc. 45th ACM Symposium on Theory of
Computing (STOC), pages 505–514. ACM, 2013.

[24] Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in
Computer Science. Springer, 1989.

[25] Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. Abstract voronoi diagrams revisited.
Comput. Geom., 42(9):885–902, 2009.

[26] Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In Proc. 23rd
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 209–222, 2012.

[27] Yahav Nussbaum. Improved distance queries in planar graphs. In Proc. 12th Workshop on
Algorithms and Data Structures (WADS), pages 642–653, 2011.

[28] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM, 51(6):993–1024, 2004. See also FOCS’01.

[29] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–
24, 2005. See also STOC’01.

[30] Christian Wulff-Nilsen. Algorithms for Planar Graphs and Graphs in Metric Spaces. PhD
thesis, University of Copenhagen, 2010.

[31] Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing time.
In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 202–208. Society for Industrial and Applied Mathematics, 2012.

22

[32] Christian Wulff-Nilsen. Approximate distance oracles for planar graphs with improved
query time-space tradeoff. In Proc. 27th ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 351–362, 2016.

23

	1 Introduction
	1.1 Related work

	2 Preliminaries and Notations
	3 High-level description
	4 Recursive Decomposition of Regions
	5 Preprocessing a Region
	6 The Distance Oracle
	6.1 The Data Structure
	6.2 Algorithm for Distance Queries

	7 Trade-off

