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Abstract

In this work we provide a new technique to design fast approximation algorithms for graph problems

where the points of the graph lie in a metric space. Specifically, we present a sampling approach for such

metric graphs that, using a sublinear number of edge weight queries, provides a linear sampling, where

each edge is (roughly speaking) sampled proportionally to its weight.

For several natural problems, such as densest subgraph and max cut among others, we show that by

sparsifying the graph using this sampling process, we can run a suitable approximation algorithm on the

sparsified graph and the result remains a good approximation for the original problem. Our results have

several interesting implications, such as providing the first sublinear time approximation algorithm for

densest subgraph in a metric space, and improving the running time of estimating the average distance.

1 Introduction

In this paper, we aim to design approximation algorithms for several natural graph problems, in the setting

where the points in the graph lie in a metric space. Following the seminal work of [34], we aim to provide

sublinear approximation algorithms; that is, on problems with n points and hence
(n
2

)

edge distances, we

aim to provide randomized algorithms that require o(n2) time and in fact only consider o(n2) edges, by

making use of sampling. Similar to the previous work, we assume we can query the weight of any single

edge in O(1) time; when we use the term “query”, we mean an edge weight query throughout.

A well known technique to design sublinear algorithms is uniform sampling; that is, a subset of edges (or

vertices) is sampled uniformly at random. Several algorithms use uniform sampling to improve speed, space,

or the number of queries [4, 5, 6, 7, 12, 13, 18, 26, 31, 46]. Uniform sampling is very easy to implement,

but problematically it is oblivious to the edge weights. When it comes to maximization problems on graphs,

a few high weight edges may have a large effect on the solution, and hence the uniform sampling technique

may fail to provide a suitable solution because it fails to sample these edges. For example, consider the

densest subgraph problem, where the density of a subgraph is the sum of the edges weights divided by the

number of vertices. It is known that for general unweighted graphs, the densest subgraph of a uniformly

sampled subgraph with Õ( n
ǫ2
) edges is a 1 − ǫ approximation of the densest subgraph of the original graph

[31, 46, 47]. However, as we show in Appendix A this result is not true for weighted graphs, even in a

metric space. This problem suggests we should design approaches that sample edges with probabilities

proportional to (or otherwise related to) their weight in a metric space.

As our main result, we design a novel sampling approach using a sublinear number of queries for graphs

in a metric space, where independently for each edge, the probability the edge is in the sample is proportional
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to its weight; we call such a sampling a linear sampling. Specifically, for a fixed factor α, we can ensure for

an edge e with weight we, if αwe ≤ 1 then the edge appears in the sample with weight 1 with probability

αwe, and if αwe > 1, then the edge is in the sample with weight αwe. Hence the edge weights are

“downsampled” by a factor of α, in a natural way. We can choose an α to suitably sparsify our sample,

graph, run an approximation algorithm on that sample, and use that result to obtain a corresponding, nearly-

as-good approximation to the original problem. Interestingly, we only query Õ(n + β)1 edge weights to

provide the sample, where β is “almost” the expected weight of the edges in the sampled graph. (See

Subsection 1.1 for a formal definition). Our algorithm to construct the sample also runs in Õ(n+ β) time.

Utilizing our sampling approach, we show that for several problems a φ-approximate solution on a

linear sample with expected weight (roughly) β ∈ o(n2) is a (φ − ǫ)-approximate solution on the input

graph. From an information theory perspective this says that Õ(n+ β) queries are sufficient to find a 1− ǫ
approximate solution for these problems. Moreover, as the sampled graph has a reduced number of edges,

if an approximation algorithm on the sampled graph runs in linear time on the sampled edges, the total time

is sublinear in the size of the original graph.

In what follows, after describing the related work and a summary of our results, we present our sam-

pling method. Our approach decomposes the graph into a sequence of subgraphs, where the decomposition

depends strongly on the fact that the graph lies in a metric space. Using this decomposition, and an estimate

of the average edge weight in the graph, we can determine a suitable sampled graph. We then show this

sampling approach allows us to find sublinear approximation algorithms for several problems, including

densest subgraph and max cut, in the manner described above.

In some applications, such as diversity maximization, it can be beneficial to go slightly beyond metric

distances [56]. We can extend our results to more general spaces that satisfy what is commonly referred

to as a parametrized triangle inequality [8, 15, 20], in which for every three points a, b and c we have

wa,b + wb,c ≥ λwc,a for a parameter λ. As an example, if the weight of each edge (u, v) is the squared

distance between the two points, the graph satisfies a parametrized triangle inequality with λ = 1/2. We

provide analysis for this more general setting throughout, and refer to a graph satisfying such a parametrized

triangle inequality as a λ-metric graph. (Throughout, we take λ ≤ 1).

1.1 Our Results

As our main technical contribution we provide an approach to sample a graph Hβ = (V,EH) from a

λ-metric graph G = (V,EG) with the properties specified below that makes only Õ(n+β
λ ) queries and

succeeds with probability at least 1−O(1/n). It is easy to observe that our algorithm runs in Õ(n+β
λ ) time

as well.

• For some fixed factor α (which is a function of β) independently for each edge e we have:

◦ If αwe ≤ 1, we have edge e with weight 1 in EH with probability αwe.

◦ If αwe > 1, we have edge e with weight αwe in EH .

• We have β ≤ E
[

∑

e∈EH
w′
e

]

≤ 2β, where w′
e is the weight of e in Hβ .2

As the weight of each edge in EH is at least 1, E
[

∑

e∈EH
we

]

≤ 2β implies that E [|EH |] ≤ 2β.

1Õ(·) notation hides logarithmic factors.
2This can be extended to β ≤ E

[

∑

e∈EH
w′

e

]

≤ (1 + γ)β, for any arbitrary γ (See the footnote on Theorem 10 for details.)

In our work, the upper bound only affects the number of queries; we prefer to set γ = 1 and simplify the argument.
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We note that for three points a, b and c in a λ-metric space and any parameter p, wa,b + wb,c ≥ λwc,a

directly implies wp
a,b + wp

b,c ≥ λ
2pw

p
c,a. Therefore one can use our technique to sample edges proportional

to wp
e (a.k.a. lp sampling). In the streaming setting, lp sampling has been extensively studied and appears to

have several applications [49]; as far as we are aware, our approach provides the first lp sampling techniques

that uses a sublinear number of edge weight queries.

As previously mentioned, in Section 3 we consider several problems and show that for some β ∈ o(n2),
any φ-approximate solution of the problem on Hβ is an (φ− ǫ)-approximate solution on the original graph

with high probability. Specifically, we show that β ∈ O(n logn
ǫ2 ) is sufficient to approximate densest sub-

graph and max cut, β ∈ O(n
2 logn
ǫ2k

) is sufficient to approximate k-hypermatching, and β ∈ O( logn
ǫ2

) is

sufficient to approximate the average distance. Notice that these results directly imply (potentially expo-

nential time) (1 − ǫ) approximation algorithms with sublinear number of queries for each of the problems.

Often our methodology can also yield sublinear time algorithms (since it uses a sublinear number of edges)

with possibly worse approximation ratios.

We now briefly describe specific results for the various problems we consider, although we defer the

formal problem definitions to Section 3. All of the algorithms discussed below work with high probability.

We note that, throughout the paper, we use log n for loge n.

For average distance, we provide a (1 − ǫ)-approximation algorithm that simply finds the sum of the

weights of the edges in Hβ for β ∈ O( logn
ǫ2

), and hence our algorithm runs in time Õ(
n+ 1

ǫ2

λ ). For a metric

graph, this improves the running time of the previous result of Indyk [34] that runs in O( n
ǫ3.5

) time, with

constant probability.

For densest subgraph, the greedy algorithm yields a 1/2-approximate solution in time quasilinear in the

number of edges [21]. The expected number of edges of Hβ can be bounded by Õ( n
λǫ2

) for the densest

subgraph on λ-metric graphs. Therefore, our result implies a (1/2− ǫ)-approximation algorithm for densest

subgraph in λ-metric spaces requiring Õ( n
λǫ2 ) time.

A sublinear time algorithm for a (1 − ǫ) approximation for metric max cut is already known [35]. The

previous result uses Õ( n
ǫ5 ) queries, while we use only Õ( n

ǫ2 ) queries. (We note that this result does not

improve the running time, but remains interesting from an information theoretic point of view. Indeed, there

are several interesting results on sublinear space algorithms that ignore the computational complexity e.g.,

max cut [16, 38, 37, 40], set cover [9, 33], vertex cover and hypermatching [24, 22].)

Finally, on the hardness side, in Section 4 we show that Ω(n) queries are necessary even if one just

wants to approximate the size of the solution for densest subgraph, k-hypermatching, max cut, and average

distance.

1.2 Other Related Work

Metric spaces are natural in their own right. For example, they represent geographic information, and hence

graph problems such as the densest subgraph problem often have a natural interpretation in metric spaces.

It also is often reasonable to manage large data sets by embedding objects within a suitable metric space.

In networks, for example, the idea of finding network coordinates consistent with latency measurements to

predict latency has been widely studied [25, 44, 52, 53, 54, 55].

There are several works on designing sublinear algorithms for different variants of clustering problems in

metric spaces due to their application to machine learning [7, 11, 26, 27, 35]. We briefly summarize some of

these papers. Alon et al. studies the efficiency of uniform sampling of vertices to check for given parameters

k and b if the set of points can be clustered into k subsets each with diameter at most b, ignoring up to an

ǫ fraction of the vertices [7]. Czumaj and Sohler studies the efficiency of uniform sampling of vertices for

k-median, min-sum k-clustering, and balanced k-median [26]. Badoiu et al. consider the facility location
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problem in metric space [11]. They compute the optimal cost of the minimum facility location problem,

assuming uniform costs and demands, and assuing every point can open a facility. Moreover, they show that

there is no o(n2) time algorithm that approximates the optimal solution of general case of metric facility

location problem to within any factor.

A basic and natural difference between these previous works on clustering problems and the densest

subgraph problem that we consider here is that all previous problems aim to decompose the graph into two

or more subsets, where each subset consists of points that are close to each other. However, densest subgraph

in a metric space aims to pick a diverse, spread out subset of points. (While perhaps counterintuitive, this is

clear from the definition, which we provide shortly.) The application of metric densest subgraph in diversity

maximization and feature selection is well studied [17, 56].

Sublinear algorithms may also refer to sublinear space algorithms such as streaming algorithms. A

related, well-studied setting is semi-streaming [50], often used for graph problems. In the semi-streaming

setting the input is a stream of edges and we take one (or a few) passes over the stream, while only using

Õ(n) space. Semi-steaming algorithms have been extensively studied [1, 2, 29, 32, 39, 43].

For the densest subgraph problem, there have been a number of recent papers showing the efficiency

of uniform edge sampling in unweighted graphs [18, 31, 46, 47]. Initially, Bhattacharya et al. provided a

0.5 approximation semi-streaming algorithm for this problem [18]. They extended their approach to obtain

a 0.25 approximation algorithm for this problem for dynamic streams with Õ(1) update time and Õ(n)
space. McGregor et al. and Esfandiari et al. independently provide a (1− ǫ)-approximation semi-streaming

algorithm for this problem [31, 46]. Esfandiari et al. extend the analysis of uniform sampling of edges

to several other problem. Mitzenmacher et al. study the efficiency of uniform edge sampling for densest

subgraph in hypergraphs [47].

For the max cut problem, Kapralov, Khanna, and Sudan [37] and independently Kogan and

Krauthgamer [40] showed that a streaming (1 − ǫ)-approximation algorithm to estimate the size of max

cut requires n1−O(ǫ) space. Later, Kapralov, Khanna and Sudan [38] show that for some small ǫ any stream-

ing (1 − ǫ)-approximation algorithm to estimate the size of max cut requires Ω(n) space. Very recently,

Bhaskara et al. [16] provide a 2-pass (1 − ǫ)-approximation streaming algorithm using Õ(n1−δ) space for

graphs with average degree nδ.

Finally, when considering matching algorithms, there are numerous works on maximum matching in

streaming and semi-streaming setting [10, 14, 23, 24, 22, 42, 41, 30, 36]. Note that a maximal matching is

a 0.5 approximation to the maximum matching, and it is easy to provide one in the semi-streaming setting.

However, improving this approximation factor in one pass is yet open. There are several works that improve

this approximation factor in a few passes [3, 14, 42, 45]. Maximum matching in hypergraphs has also been

considered in the streaming setting [22].

While a 0.5-approximation for unweighted matching in the semi-streaming setting is trivial, such an

approximation for weighted matching appears nontrivial. There is a sequence of works improving the ap-

proximation factor of weighted matching in the semi-streaming setting [19, 29, 51], and just recently Paz

and Schwartzman provide a semi-streaming (0.5 − ǫ)-approximation algorithm.

There are, of course, many, many other related problems; see [28], for example, for a survey on sublinear

algorithms.

2 Providing a Linear Sampling

In this section we provide a technique to construct the desired sampled graph Hβ = (V,EH) from a metric

graph G = (V,EG). We first provide a useful decomposition of the graph. We show this decomposition

allows us to obtain a graph Hα that satisfies the first property of Hβ , namely that edge weights are scaled

down (in expectation, for edges with scaled weights less than 1) by a factor of α. We then show how to
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determine a proper value α so that expected sum of the edge weight is between β and 2β as desired.

2.1 A Graph Decomposition

We start with a decomposition for a metric graph G, assuming an upper bound L on the weight of the edges.

For an suitable number t determined later we define the following sequences.

• A sequence of graphs G = G1 ⊇ G2 ⊇ · · · ⊇ Gt.

• A sequence of vertex sets ν1, . . . , νt.

• A sequence of weights, L1 = L,L2 =
L1
2 , . . . , Lt =

Lt−1

2 .

We denote the vertex set and edge set of Gi by Vi and Ei respectively. We begin with G1 = G, and Gi is

constructed from Gi−1 by removing vertices in νi−1, i.e. Gi = Gi−1 \ νi−1. However, defining νi, which

depends on Gi, requires the following additional definitions. For any i ∈ {1, . . . , t} and Λ ∈ [0, 1], define

GΛ
i = (Vi, E

Λ
i ) to be the graph obtained by removing all edges with weight less than ΛLi from Gi, i.e.,

e ∈ EΛ
i if and only if e ∈ Ei and we ≥ ΛLi.

We now define Gi and νi iteratively as follows. We define νi,ξ to be the set of vertices in G
λ/4
i with

degree at least ξ|Vi|. We let νi be an arbitrary subset such that νi,1/2 ⊆ νi ⊆ νi,1/4. As mentioned, G1 = G
and Gi = Gi−1 \ νi−1. We define Eνi = Ei \ Ei+1. Note that Eνi is the set of edges neighboring νi in Gi.

Lemma 1 For any i ∈ {1, . . . , t}, the set of vertices in G
λ/4
i with degree at least

|Vi|
2 (i.e., νi,1/2) is a vertex

cover for G
1/2
i .

Proof : Let (u, v) ∈ E
1/2
i be an edge in G

1/2
i , and let du and dv be the degrees of u and v in G

λ/4
i

respectively. Next we show that du + dv ≥ |Vi|. Hence we have du ≥ |Vi|
2 or dv ≥ |Vi|

2 . This means that

νi,1/2 covers (u, v) as desired.

Notice that, (u, v) ∈ E
1/2
i means that wu,v ≥ Li

2 . Hence, by the λ-triangle inequality, for any v′ ∈ Vi

we have w(u,v′) + w(v′,v) ≥ λw(u,v) ≥
λLi
2 . Now we are ready to bound du + dv.

du + dv =
(

1 +
∑

v′∈Vi\{u,v}

1
(u,v′)∈E

λ/4
i

)

+
(

1 +
∑

v′∈Vi\{u,v}

1
(v,v′)∈E

λ/4
i

)

Extra 1 is for (u, v)

= 2 +
∑

v′∈Vi\{u,v}

(

1
(u,v′)∈E

λ/4
i

+ 1
(v,v′)∈E

λ/4
i

)

= 2 +
∑

v′∈Vi\{u,v}

(

1w(u,v′)≥λLi/4 + 1w(v,v′)≥λLi/4

)

≥ 2 +
∑

v′∈Vi\{u,v}

1 Since w(u,v′) + w(v′,v) ≥
λLi

2

= 2 + |Vi| − 2 = |Vi|,

which completes the proof. ✷

Lemma 2 For any i ∈ {1, . . . , t}, Li is an upper bound on weight of the edges in Gi, i.e., we have

maxe∈Ei we ≤ Li.
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Proof : For i = 1, L1 = L which is an upper bound on weight of the edges in G1 = G. For i > 1, νi−1,1/2

is a vertex cover of G
1/2
i−1, by Lemma 1. Moreover, by definition we have νi−1,1/2 ⊆ νi−1. Hence νi−1 is a

vertex cover of G
1/2
i−1. This means that every edge with weight at least

Li−1

2 has a neighbor in νi−1. Recall

that Gi = Gi−1 \ νi−1, and hence, Gi has no edge with weight at least
Li−1

2 = Li. ✷

The following theorem compares the average weight of the edges in Eνi with Li. We later use this in

Theorem 7 to bound the number of queries.

Lemma 3 For any i ∈ {1, . . . , t}, we have

λ

32
Li|Vi||νi| ≤

∑

e∈Eνi

we ≤ Li|Vi||νi|.

Proof : We start by proving the upper bound. Recall that Eνi is the set of edges neighboring νi in Gi.

Hence the number of edges in Eνi is upper bounded by sum of the degrees of the vertices of νi in Gi. The

degree of each vertex in Gi is |Vi|−1 < |Vi|, and there are |νi| vertices in νi. Thus, we have |Eνi | ≤ |Vi||νi|.
Moreover, by Lemma 2, for each e ∈ Eνi ⊆ Ei we have we ≤ Li. Therefore we have

∑

e∈Eνi

we ≤
∑

e∈Eνi

Li ≤ Li|Vi||νi|.

Next we prove the lower bound. Recall that we have νi ⊆ νi,1/4. Thus, for each v ∈ νi, the degree of v

in G
λ/4
i is at least

|Vi|
4 . Thus, for any fixed v ∈ νi we have

∑

(u,v)∈Eνi

w(u,v) =
∑

(u,v)∈Ei

w(u,v) Definition of Eνi for v ∈ νi (1)

≥
∑

(u,v)∈E
λ/4
i

w(u,v) G
λ/4
i ⊆ Gi

≥
∑

(u,v)∈E
λ/4
i

λLi

4
Definition of G

λ/4
i

≥
|Vi|

4

λLi

4
=

λ

16
|Vi|Li. v ∈ νi ⊆ νi,1/4 (2)

Note that each edge in Eνi intersects at most two vertices in νi. Therefore, we have

∑

e∈Eνi

we ≥
1

2

∑

v∈νi

∑

(u,v)∈Eνi

w(u,v)

≥
1

2

∑

v∈νi

λ

16
|Vi|Li By Inequality 1

≥
λ

32
Li|Vi||νi|,

which completes the proof of the lemma. ✷

Lemma 5 provides a technique to construct νi using Õ(n) queries, with high probability. This to prove

this lemma we sample some edges. Notice that these sampled edges are different from the edges that we

sample to keep in Hβ . We use the following standard version of the Chernoff bound (see e.g. [48]) in

Lemma 5 as well as the rest of the paper.

6



Lemma 4 (Chernoff Bound) Let x1, x2, . . . , xr be a sequence of independent binary (i.e., 0 or 1) random

variables, and let X =
∑r

i=1 xi. For any ǫ ∈ [0, 1], we have

Pr (|X −E[X]| ≥ ǫE[X]) ≤ 2 exp(−ǫ2E[X]/3).

As we are now moving to doing sampling, we briefly remark on some noteworthy points. First, there is

some probability of failure in our results. We therefore refer to the success probability in our results, and

note that our algorithms may fail “silently”; that is, we may not realize the algorithm has failed (because of a

low probability event in the sampling). Also, we emphasize that in general, in what follows, when referring

to the number of queries required, we mean the expected number of queries. However, using expectations

is for convenience; all of our results throughout the paper could instead be turned into results bounding the

number of queries required with high probability (say probability 1−O(1/n) using Chernoff bounds at the

cost of at most constant factors in the standard way. Finally, in some places we may sample which edges

we decide to query from a set of edges with a fixed probability p. In such situations, instead of iterating

through each edge (which could take time quadratic in the number of vertices) we can generate the number

of samples from a binomial distribution and then generate the samples without replacement; alternatively,

we could determine which sample is the next sample at each step using by calculating a geometrically

distributed random variable. We assume this work can be done in constant time per sample. For this reason,

our time depends on the number of queries, and not the total number of edges.

Lemma 5 For any i ∈ {1, . . . , t}, given Gi and Li, one can construct νi using 192(log n + log t)|Vi| ∈
Õ(n) expected queries, succeeding with probability at least 1− 1

nt .

Proof : If |Vi| ≤ 384(log n+ log t), we have Ei =
(|Vi|

2

)

= 1
2384(log n+ log t)(|Vi| − 1) ≤ 192(log n+

log t)|Vi|. Hence in this case we query all the edges and construct νi. In what follows we assume |Vi| ≥

384(log n+ log t). To construct νi we sample each edge in Ei with probability p = 384(log n+log t)
|Vi|

. We add

a vertex v to νi if and only if at least 3
8384(log n + log t) of its sampled neighbors has weight λLi

4 . The

number of sampled edges is p
(|Vi|

2

)

= 1
2384(log n+ log t)(|Vi| − 1) ≤ 192(log n+ log t)|Vi|.

We denote the degree of a vertex v ∈ Vi in G
λ/4
i by dv. Let Ye be a binary random variable that is 1 if

we sample e and 0 otherwise. Let us define Ze = Ye1we≥λLi/4 and Zv =
∑

u∈Vi
Z(u,v). Recall that we add

v ∈ Vi to νi if and only if Zv ≥ 3
8384(log n+ log t). Notice that, for any v ∈ Vi we have

E [Zv] = E





∑

u∈Vi

Z(u,v)



 =
∑

u∈Vi

E
[

Y(u,v)

]

1wu,v≥λLi/4 = p
∑

u∈Vi

1wu,v≥λLi/4 = pdv. (3)

7



As Zv is the sum of independent binary random variables, by the Chernoff bound we have

Pr

[

|Zv − E [Zv] | ≥
384(log n+ log t)

8

]

≤ 2 exp
(

−
1

3

(384(log n+ log t)

8E [Zv]

)2
E [Zv]

)

Chernoff bound

= 2exp
(

−
768(log n+ log t)2

E [Zv]

)

= 2exp
(

−
768(log n+ log t)2

pdv

)

E [Zv] = pdv

= 2exp
(

−
2(log n+ log t)|Vi|

dv

)

p =
384(log n+ log t)

|Vi|

≤ 2 exp
(

− 2(log n+ log t)
)

dv ≤ |Vi|

=
2

n2t2
≤

1

n2t
. Assuming t ≥ 2

By applying the union bound we have

Pr [∃v∈Vi |Zv − E [Zv] | ≥ 48(log n+ log t)] ≤
∑

v∈Vi

Pr [|Zv − E [Zv] | ≥ 48(log n+ log t)] = |Vi|
1

n2t
≤

1

nt
.

This means that with probability at least 1− 1
nt , simultaneously for all vertices v ∈ Vi we have

|Zv − E [Zv] | ≤ 48(log n+ log t). (4)

Next assuming that for all vertices v ∈ Vi we have |Zv − E [Zv] | ≤ 48(log n+ log t) we show that the νi
that we pick satisfy the property νi,1/2 ⊆ νi ⊆ νi,1/4.

Applying Equality 3 to Inequality 4 gives us |Zv − pdv| ≥ 48(log n+ log t). By replacing p with
384(log n+log t)

|Vi|
and rearranging the inequality we have

Zv ≤
384(log n+ log t)

|Vi|
dv + 48(log n+ log t) <

3

8
384(log n+ log t) assuming dv <

|Vi|

4
.

This means that if dv < |Vi|
4 we have Zv < 3

8384(log n + log t) and hence v /∈ νi. Therefore we have

νi ⊆ νi,1/4. Similarly, we have

Zv ≥
384(log n+ log t)

|Vi|
dv − 48(log n+ log t) ≥

3

8
384(log n+ log t) assuming dv ≥

|Vi|

2
.

This means that if dv ≥ |Vi|
2 we have Zv ≥ 3

8384(log n + log t) and hence dv ∈ νi. Therefore we have

νi,1/2 ⊆ νi.
✷

Finally, for completeness we use the following lemma to find a good upper bound L on maxe∈E we in

order to start our construction of the graph decomposition (which required an upper bound on the weight of

the edges).

Lemma 6 For any λ-metric graph G = (V,E), one can compute a number L such that maxe∈E we ≤ L ≤
2
λ maxe∈E we using n− 1 queries.

8



Proof : Let v′ ∈ V be an arbitrary vertex. We set L = 2
λ maxu′∈V wu′,v′ . Note that, one can simply query

all the n − 1 neighbors of v′ and calculate L. Clearly, we have L = 2
λ maxu′∈V wu′,v′ ≤

2
λ maxe∈E we.

Next, we show that maxe∈E we ≤ L.

Let (u, v) be an edge such that w(u,v) = maxe∈E we. If v′ ∈ {u, v} we have maxu′∈V wu′,v′ =

maxe∈E we which directly implies L ≤ 2
λ maxe∈E we as desired. Otherwise, note that by the λ-triangle

inequality we have w(u,v′) + w(v,v′) ≥ λw(u,v). Thus, we have max(w(u,v′), w(v,v′)) ≥
λ
2w(u,v). Therefore,

we have

L =
2

λ
max
u′∈V

wu′,v′ ≥
2

λ
max(w(u,v′), w(v,v′)) ≥ w(u,v) = max

e∈E
we,

as desired. ✷

2.2 Constricting Hα

We know show how to construct what we call Hα, which is derived from our original metric graph G.

Recall Hα has the property that for each original edge e of weight we, independently, if αwe > 1, then Hα

contains edge e with weight αwe, and if αwe < 1, then Hα contains edge e with weight 1 with probability

αwe.

We define w to be the average of the weight of edges in G. We use this notion in the following lemma

as well as Lemma 8 and Theorem 10.

The following theorem constructs Hα using an expected O(n log2 n + n log2 maxe∈E αwe + αw
(n
2

)

)
queries.

Theorem 7 For any α one can construct Hα using O
(

n log2 n + n log2 maxe∈E αwe +
1
λαw

(

n
2

)

+ n
λ

)

queries in expectation, succeeding with probability at least 1− 1
n .

Proof : By Lemma 6 we find an upper bound L on the weight of the edges, using n − 1 queries. Recall

that t is the number of graphs in our decomposition. We set t = log2 n+log2 maxe∈E αwe. Given L1 = L,

by definition we have

Lt =
L

2t
=

L

nmaxe∈E αwe
t = log2 n+ log2 max

e∈E
αwe

≤
2

λαn
. L ≤

2

λ
max
e∈E

we (5)

Recall that, using Lemma 5, one can construct νi and thus Vi+1 using 192(log n + log t)n queries,

succeeding with probability at least 1 − 1
nt . We start with G1 = G and iteratively apply Lemma 5 to

construct the sequence G1, . . . , Gt and ν1, . . . , νt. We apply Lemma 5 t times, and hence using a union

bound, all of the Gi were successfully constructed with probability at least 1− t 1
nt = 1− 1

n . Next, we show

how to construct Hα assuming the sequences G1, . . . , Gt and ν1, . . . , νt are valid. Note that constructing the

graph decomposition we use at most 192(log n+ log t)n× t ∈ O(n log2 n+ n log2 maxe∈E αwe) queries.

Recall that Eνi = Ei \ Ei+1. Also, we have E1 = E. Thus, the sequence Eν1 , . . . , Eνt−1 is a decom-

position of E \ Et. Also, note that Eνi = {(u, v)
∣

∣u ∈ νi and v ∈ Vi}. Therefore, given G1, . . . , Gt and

ν1, . . . , νt we can decompose the edge set E into Eν1 , . . . , Eνt .

Let j be the smallest index such that Lj ≤ 1
α . Notice that j ≤ t by Inequality 5. For each i ∈

{1, . . . , j − 1} we query each edge e ∈ Eνi . If αwe > 1, add edge e with weight αwe to EH . If αwe ≤ 1,

we add edge e with weight 1 to EH with probability αwe independently.

9



For each i ∈ {j, . . . , t − 1} we query each edge e ∈ Eνi with probability αLi. We add a queried edge

e to EH with probability we
Li

and withdraw it otherwise. Note that αLi ≤ αLj ≤ α 1
α = 1. Also Li is an

upper bound on the edge weights in Ei ⊇ Eνi , and thus we
Li

≤ 1. Therefore, the probabilities αLi and we
Li

are valid. Also, notice that we add each edge to EH with probability αLi ×
we
Li

= αwe as desired.

For each edge e ∈ Et we query e with probability 2
λn . We add a queried edge e to EH with probability

λn
2 αwe and withdraw it otherwise. Recall Lt is an upper bound on the edges edges weights in Et, and by

Inequality 5 we have Lt ≤
2

λαn . Thus, we have

λn

2
αwe ≤

λn

2
αLt ≤

λn

2
α

2

λαn
= 1.

Therefore, λn
2 αwe is a valid probability. Again, notice that we add each edge to EH with probability

2
λn × λn

2 αwe = αwe as desired. Next we bound the total number of edges that we query.

Let Ye be a random variable that is 1 if we query e and 0 otherwise. We bound the expected number of

edges that we query by

E

[

∑

e∈E

Ye

]

=
∑

e∈E

E [Ye]

=

j−1
∑

i=1

∑

e∈Eνi

E [Ye] +
t−1
∑

i=j

∑

e∈Eνi

E [Ye] +
∑

e∈Et

E [Ye] Eν1 , . . . , Eνt−1 , Et is a decomposition of E

=

j−1
∑

i=1

∑

e∈Eνi

1 +

t−1
∑

i=j

∑

e∈Eνi

αLi +
∑

e∈Et

2

λn

≤
t

∑

i=1

∑

e∈Eνi

αLi +
∑

e∈Et

2

λn
∀i<jαLi ≥ 1

≤

t
∑

i=1

∑

e∈Eνi

αLi +
n

λ
|Et| ≤

(

n

2

)

≤ α
t

∑

i=1

|νi||Vi|Li +
n

λ
|Eνi | ≤ |νi||Vi|

≤ α
t

∑

i=1

∑

e∈Eνi

32

λ
we +

n

λ
By Lemma 3

≤
32

λ
α
∑

e∈E

we +
n

λ
Eν1 , . . . , Eνt ⊆ E are disjoint

=
32

λ
α

(

n

2

)

w +
n

λ

∈ O(
1

λ
α

(

n

2

)

w +
n

λ
).

We used O(n log2 n + n log2 maxe∈E αwe) queries to construct the sequences G1, . . . , Gt and

ν1, . . . , νt, and used O( 1λα
(

n
2

)

w + n
λ ) queries to construct Hα based on these sequences. Therefore, in

total we used O
(

n log2 n+ n log2maxe∈E αwe +
1
λαw

(

n
2

)

+ n
λ

)

queries in expectation. ✷
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2.3 Constructing Hβ

The following lemma relates β with α. We use this to construct Hβ using Hα.

Lemma 8 Let γ ∈ [1,∞) be an arbitrary number. Let 1
γw ≤ ŵ ≤ w, α = β

(n2)ŵ
, and Hα = (V,EH). We

have

β ≤ E





∑

e∈EH

w′
e



 ≤ γβ,

where w′
e is the weight of e in Hα.

Proof : We have

E





∑

e∈EH

w′
e



 =
∑

e∈E

E
[

w′
e

]

=
∑

e∈E

αwe

=
∑

e∈E

β
(n
2

)

ŵ
we =

β

ŵ

∑

e∈E we
(n
2

) Definition of α

=
w

ŵ
β. Definition of w

This together with 1
γw ≤ ŵ gives us

E





∑

e∈EH

w′
e



 =
w

ŵ
β ≤ γβ.

Similarly, by applying ŵ ≤ w we have

E





∑

e∈EH

w′
e



 =
w

ŵ
β ≥ β.

✷

Lemma 9 shows how to estimate w. We use this lemma together with Lemma 8 to find a proper α based

on the desired β to construct Hβ . We note that in a metric space, i.e. λ = 1, the following lemma gives a

1 − ǫ approximation of the average weight of the edges using Õ( n
ǫ2
) queries, while the previous algorithm

of Indyk [34] uses O( n
ǫ3.5

) queries3. In the next section, using Hβ we improve this lemma and estimate the

average weight of the edges using only Õ(n+ 1
ǫ2 ) queries.

Lemma 9 For ǫ ∈ (0, 1], one can find an estimator ŵ of the average weight of the edges w such that

(1− ǫ)w ≤ ŵ ≤ (1 + ǫ)w, with probability 1− 2
n , using O

(

n log2 n+ n logn
ǫ2λ

)

∈ Õ( n
ǫ2λ

) queries.

3Note that the algorithm in [34] works with a constant probability while our algorithm works with probability 1 − 1
n

. The

previous algorithm requires an extra logarithmic factor to work with probability 1− 1
n

.
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Proof : We first use O(nλ ) queries to provide an estimate ŵ′ such that 1
2nw ≤ ŵ′ ≤ w. Next we set

α = β

(n2)ŵ
and construct a corresponding Hα. We use Lemma 8 and Theorem 7 to lower bound the total

weight of sampled edges by
3 log(2n)

ǫ2 and upper bound the number of queries by O
(

n log2 n + n logn
ǫ2λ

)

. At

the end we use the lower bound on the total weight of sampled edges to show that the average weight of

edges in Hα is concentrated around w.

Let v be an arbitrary vertex. We have

∑

u∈V \{v}

wu,v =
1

n

∑

u∈V \{v}

wu,v +
n− 1

n

∑

u∈V \{v}

wu,v

≥
1

n

∑

u∈V \{v}

wu,v +
n− 1

n

λ

n− 2

∑

u,u′∈V \{v}

wu,u′ λ-triangle inequality

>
λ

n

∑

e∈E

we

Hence for a set S ⊆ V with |S| = ⌈ 1
λ⌉ we have

∑

v∈S

∑

u∈V \{v}

wu,v >
∑

v∈S

λ

n

∑

e∈E

we ≥
1

n

∑

e∈E

we.

On the other hand every edge appears at most twice in
∑

v∈S

∑

u∈V \{v} wu,v and hence we have
∑

v∈S

∑

u∈V \{v} wu,v ≤ 2
∑

e∈E we. Therefore, by setting ŵ′ = 1
2(n2)

∑

v∈S

∑

u∈V \{v} wu,v we have

1
2nw ≤ ŵ′ ≤ w. Hence, one can query at most n

⌈λ⌉ edges to find a number ŵ′ such that 1
2nw ≤ ŵ′ ≤ w.

Next, we set α = 3 log(2n)

ǫ2(n2)ŵ′
. By Lemma 8 we have

3 log(2n)

ǫ2
≤ E





∑

e∈EH

w′
e



 ≤
6n log(2n)

ǫ2
, (6)

where w′
e is the weight of e in Hα. By Lemma 7, with probability 1 − 1

n , the expected number of queries

we need to construct Hα is at most

O
(

n log2 n+ n log2 max
e∈E

αwe +
1

λ
αw

(

n

2

)

+
n

λ

)

∈

O
(

n log2 n+ n log2
(3n log(2n)

ǫ2

)

+
1

λ

6n log(2n)

ǫ2
+

n

λ

)

∈

O
(

n log2 n+
n log n

ǫ2λ

)

. Assuming ǫ ≥
1

n
w.l.o.g.

Now we set ŵ = 1

(n2)

∑

e∈EH

w′
e
α , where w′

e is the weight of e in Hα. To complete the proof we show

that (1− ǫ)w ≤ ŵ ≤ (1 + ǫ)w, with probability 1− 1
n . Notice that

E [ŵ] = E





1
(n
2

)

∑

e∈EH

w′
e

α



 =
1
(n
2

)

∑

e∈E

we = w. (7)
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Let χe be a binary random variable that indicates whether χe is sampled in Hα or not. Note that

ŵ − E [ŵ] =
1
(

n
2

)

∑

e∈EH

w′
e

α
−

1
(

n
2

)

∑

e∈E

E

[

w′
e

α

]

=
1

(

n
2

)

α

(

∑

e∈EH

w′
e −

∑

e∈E

E
[

w′
e

]

)

=
1

(

n
2

)

α

(

∑

we≤
1
α

χe −
∑

we≤
1
α

E
[

w′
e

]

)

. w′
e = E

[

w′
e

]

when we >
1

α
(8)

Therefore, we have

Pr [|ŵ − w| ≤ ǫw] = Pr [|ŵ − E [ŵ] | ≤ ǫw] By Equality 7

= Pr







∣

∣

∣

1
(n
2

)

α

(

∑

we≤
1
α

χe −
∑

we≤
1
α

E
[

w′
e

]

)
∣

∣

∣
≤ ǫw






By Equality 8

= Pr







∣

∣

∣

∑

we≤
1
α

χe −
∑

we≤
1
α

E
[

w′
e

]

∣

∣

∣
≤ ǫα

(

n

2

)

w







≤ 2 exp
(

−
1

3

( ǫα
(n
2

)

w
∑

we≤
1
α
E [w′

e]

)2
∑

we≤
1
α

E
[

w′
e

]

)

Chernoff Bound

≤ 2 exp
(

−
1

3

ǫ2α2
(

n
2

)2
w2

∑

we≤
1
α
E [w′

e]

)

= 2exp
(

−
1

3

ǫ2
(
∑

e∈E E [w′
e]
)2

∑

we≤
1
α
E [w′

e]

)

≤ 2 exp
(

−
1

3
ǫ2

∑

e∈E

E
[

w′
e

]

)

≤ 2 exp
(

−
1

3
ǫ2
3 log(2n)

ǫ2

)

By Inequality 6

= 2exp
(

− log(2n)
)

=
1

n
.

This means that with probability 1− 1
n we have (1− ǫ)w ≤ ŵ ≤ (1 + ǫ)w as desired. ✷

The following theorem constructs Hβ using Õ(n+β
λ ) queries, with high probability.

Theorem 10 For any β one can construct Hβ using expected O(n log2 n+n log2 β+ β
λ+

n logn
λ ) ∈ Õ(n+β

λ )
expected queries, with probability of success at least 1− 3

n .

Proof : First, using Lemma 9 we find an estimator ŵ of the average weight of the edges w such that
1
2w ≤ ŵ ≤ w, with probability 1 − 2

n , using O(n log2 n + n logn
λ ) expected queries. Lemma 8 says that

by picking α = β

(n2)ŵ
, we have β ≤ E

[

∑

e∈EH
w′
e

]

≤ 2β, where w′
e is the weight of e in Hα = (V,EH).
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4 By Theorem 7 one can construct Hα using O(n log2 n + n log2 maxe∈E αwe +
1
λαw

(n
2

)

+ n
λ ) expected

queries, with probability 1− 1
n . Note that, we have

max
e∈E

αwe = αmax
e∈E

we

≤ α

(

n

2

)

w w ≥
maxe∈E we

(n
2

)

=
4β

3
(n
2

)

ŵ

(

n

2

)

w α =
4β

3
(n
2

)

ŵ

≤ 2β
2

3
w ≤ ŵ

Also, we have

αwn2 =
4β

3
(n
2

)

ŵ
w

(

n

2

)

By α =
4β

3
(n
2

)

ŵ

=
4w

3ŵ
β

≤ 2β. By
2

3
w ≤ ŵ

By αwn2 ≤ 2β and maxe∈E αwe ≤ 2β we have

n log2 n+ n log2 max
e∈E

αwe +
1

λ
αw

(

n

2

)

+
n

λ
≤ n log2 n+ nlog2(2β) +

2β

λ
+

n

λ

∈ O(n log2 n+ n log2 β +
β + n

λ
).

Therefore, the total number of expected queries is O(n logn
λ + n log2 n + n log2 β + β+n

λ ) ∈ Õ(β+n
λ ).

We properly estimate ŵ with probability at least 1− 2
n and Theorem 7 holds with probability at least 1− 1

n .

Therefore, by the union bound, the statement of this theorem holds with probability at least 1− 3
n . ✷

3 Applications of Linear Sampling

In this section we use the sketch Hβ to develop approximation algorithms for densest subgraph, maximum k-

hypermatching, and maximum cut, as well as estimating the average distance. We first define the problems

and provide relevant notation. The densest subgraph of a graph G = (V,E) is an induced subgraph of

G, indicated by its set of vertices S∗ ⊆ V , that maximizes

∑
u,v∈S∗ wu,v

|S∗| . We indicate the value of the

densest subgraph by optD. The max cut of a graph G = (V,E) is a decomposition of the vertex set of

G into two sets S∗, V \ S∗ ⊆ V , that maximizes
∑

u∈S∗,v∈V \S∗ wu,v. We indicate the value of the max

cut by optC. A k-hypermatching of a set of points V is a decomposition of V into a collection of n/k sets

S
∗ = {S∗

1 , S
∗
2 , . . . , S

∗
n/k}, each of size k. One can also see this as covering a graph G = (V,E) with clusters

4Note that, for any η ∈ (0, 1], one can use lemma 9 to find ŵ such that 1
1+η

w ≤ ŵ ≤ w, with probability 1 −
2
n

, us-

ing O(n log2 n + n logn
η2λ

) expected queries, and then apply Lemma 8 to show that by picking α = β

(n
2
)ŵ

, we have β ≤

E
[

∑

e∈EH
w′

e

]

≤ (1 + η)β. We use η = 1 throughout for convenience.
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of size k. A maximum k-hypermatching is a k-hypermatching that maximizes
∑n/k

i=1

∑

u,v∈S∗
i
wu,v. We use

optM to indicate the value of the maximum k-hypermatching.

For a sketch Hβ = (V,EH) we define random variables Xu,v and Yu,v. Yu,v is 0 if (u, v) /∈ EH , and

is equal to the weight of the edge (u, v) in Hβ otherwise. Xu,v = 1 if Yu,v = 1 and Xu,v = 0 otherwise.

Recall that if we sample an edge e with αwe ≤ 1, weight of e in Hβ is 1. Note that E[Yu,v] = αwu,v.

We first start with a simple application, using Hβ to estimate the average weight of the edges using

β = O( lognε2 ). This together with Theorem 10 allows us to find the average weight of the edges in a λ-

metric space with probability 1 − 4
n using O(n log2 n + logn

λε2
+ n logn

λ ) ∈ Õ(n+1/ε2

λ ) expected queries.5

In particular for a metric space this gives a 1 − ε approximation of the average weight of the edges using

Õ(n+ 1
ǫ2 ) queries.

In what follows (throughout this section), when considering the failure probability of the approximation

algorithms, we assume that Hβ has been constructed successfully. That is, we provide for a failure probabil-

ity in this stage of at most 1/n, which when combined with Theorem 10 allows for our success probability

of at least 1− 4
n overall.

Theorem 11 Take β = 3 log(2n)
ǫ2

. We have

(1− ε)w ≤
1

α
(

n
2

)

∑

e∈E

Ye ≤ (1 + ε)w,

with probability at least 1− 1
n .

Proof : We define ŵ = 1
α(n2)

∑

e∈E Ye Notice that

E [ŵ] = E

[

1
(

n
2

)

∑

e∈E

Ye

α

]

=
1
(

n
2

)

∑

e∈E

we = w. (9)

5Again, we emphasize that we can turn these results into bounds with a corresponding upper bound on the queries, with a small

increase in the failure probability.
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We have

Pr [|ŵ − w| ≤ ǫw] = Pr [|ŵ − E [ŵ] | ≤ ǫw] By Equality 9

= Pr

[

∣

∣

∣

1
(

n
2

)

α

(

∑

e∈E

Ye −
∑

e∈E

E [Ye]
)
∣

∣

∣
≤ ǫw

]

= Pr

[

∣

∣

∣

1
(

n
2

)

α

(

∑

e∈E

Xe −
∑

e∈E

E [Xe]
)
∣

∣

∣
≤ ǫw

]

If Ye 6= Xe, Ye = E[Ye]

= Pr

[

∣

∣

∣

∑

e∈E

Xe −
∑

e∈E

E [Xe]
∣

∣

∣
≤ ǫα

(

n

2

)

w

]

≤ 2 exp
(

−
1

3

( ǫα
(n
2

)

w
∑

e∈E E [Xe]

)2
∑

e∈E

E [Xe]
)

Chernoff Bound

≤ 2 exp
(

−
1

3

ǫ2α2
(n
2

)2
w2

∑

e∈E E [Xe]

)

= 2exp
(

−
1

3

ǫ2
(
∑

e∈E E [Ye]
)2

∑

e∈E E [Xe]

)

≤ 2 exp
(

−
1

3
ǫ2

∑

e∈E

E [Ye]
)

≤ 2 exp
(

−
1

3
ǫ2
3 log(2n)

ǫ2

)

β =
3 log(2n)

ǫ2

= 2exp
(

− log(2n)
)

=
1

n
.

This means that with probability 1− 1
n we have (1− ǫ)w ≤ ŵ ≤ (1 + ǫ)w as desired. ✷

Next we provide our results for the densest subgraph problem.

Theorem 12 Take β = 9 logn
ε2

n. Let S be a φ-approximation solution to the densest subgraph problem on

Hβ . S is a φ− 2ε approximation solution to the densest subgraph on G, with probability at least 1− 1
n .

Proof : We start by lower bounding optD.

optD ≥

∑

u,v∈V wu,v

|V |
=

1
α

∑

u,v∈V E[Yu,v]

n
≥

1

α

β

n
=

1

α

9 log n

ε2
. (10)

Let S′ be a subset of V . We define XS′ =
∑

u,v∈S′ Xu,v, and YS′ =
∑

u,v∈S′ Yu,v. Note that we have

XS′ ≤ YS′ . We have E[YS′ ] =
∑

u,v∈S′ E[Yu,v] = α
∑

u,v∈S′ wu,v. Hence, we have

optD ≥

∑

u,v∈S′ wu,v

|S′|
=

E[YS′ ]

α|S′|
≥

E[XS′ ]

α|S′|
(11)

Note that Xu,v’s are chosen independently, and hence by applying the Chernoff bound to XS′ for ǫ =
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εαoptD|S
′|

E[XS′ ]
we have

Pr
[

|YS′ −E[YS′ ]| ≥ εαoptD|S
′|
]

= Pr
[

|XS′ −E[XS′ ]| ≥ εαoptD|S
′|
]

If Ye 6= Xe, Ye = E[Ye]

≤ 2 exp
(

−
1

3

(

ε
αoptD|S

′|

E[XS′ ]

)2
E[XS′ ]

)

Chernoff bound

= 2exp
(

−
1

3
ε2

α2optD
2|S′|2

E[XS′ ]

)

≤ 2 exp
(

−
1

3
ε2αoptD|S

′|
)

By Inequality 11

≤ 2 exp
(

−
1

3
ε2

9 log n

ε2
|S′|

)

By Inequality 10

= 2exp
(

− 3|S′| log n
)

.

Next we union bound over all choices of S′.

Pr
[

∃S′

∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptD|S
′|
]

= Pr
[

∃k∃|S′|=k

∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptDk
]

≤

n
∑

k=2

Pr
[

∃|S′|=k

∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptDk
]

Union bound

≤

n
∑

k=2

∑

|S′|=k

Pr
[
∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptDk
]

Union bound

≤

n
∑

k=2

∑

|S′|=k

2 exp
(

− 3k log n
)

=

n
∑

k=2

2

(

n

k

)

exp
(

− 3k log n
)

≤

n
∑

k=2

2 exp
(

− 3k log n+ k log n
)

(

n

k

)

≤ nk

≤

n
∑

k=2

2 exp
(

− 4 log n
)

k ≥ 2

≤ 2 exp
(

− 3 log n
)

=
2

n3
<

1

n
. n ≥ 2

Therefore, with probability at least 1− 1
n simultaneously for all S′ ⊆ V we have

∣

∣YS′ −E[YS′ ]
∣

∣ ≤ εαoptD|S
′|. (12)

Next we prove the statement of the theorem in the cases where Inequality 12 holds. Let S∗ be a densest

17



subgraph of G. We have

∑

u,v∈S wu,v

|S|
=

1
αE[

∑

u,v∈S Yu,v]

|S|
E[Yu,v] = αwu,v

=
1

α

E[YS ]

|S|
Definition of YS

≥
1

α

YS

|S|
− εoptD By Inequality 12

≥
1

α
φmax

S′′

YS′′

|S′′|
− εoptD S is a φ approximation on Hβ

≥
1

α
φ
YS∗

|S∗|
− εoptD

≥
1

α
φ
E[YS∗ ]

|S∗|
− 2εoptD By Inequality 12

≥ φ

∑

u,v∈S∗ wu,v

|S∗|
− 2εoptD E[Yu,v] = αwu,v

= (φ− 2ε)optD. Definition of S∗

✷

Recall that, as stated in the introduction, this result implies a (1/2 − ǫ)-approximation algorithm for

densest subgraph in λ-metric spaces requiring Õ( n
λǫ2

) time.

The following theorem shows the efficiency of our technique for k-hypermatching.

Theorem 13 Choose β = 6 logn
ε2

n2

k−1 ∈ Õ
(

n2

ǫ2k

)

. Let S = {S1, S2, . . . , Sn/k} be a φ-approximation so-

lution to the k-hypermatching on unweighted graph Hβ . S is a φ − 2ε approximation solution to the

k-hypermatching on G, with probability at least 1− 1
n .

Proof : Let S′′ = {S′′
1 , S

′′
2 , . . . , S

′′
n/k} be a k-hypermatching chosen uniformly at random among all k-

hypermatchings. Note that the number of edges that fall in S
′′ is n

k

(

k
2

)

= n(k−1)
2 , while there are

(

n
2

)

=
n(n−1)

2 edges in G in total. Hence, due to symmetry each edge falls in S
′′ with probability k−1

n−1 ≤ k−1
n .

Now, we give a lower bound on optM. We later use this bound in our concentration bound.

optM ≥ E[

n/k
∑

i=1

∑

u,v∈S′′
i

wu,v] =
k − 1

n

∑

u,v∈V

wu,v =
k − 1

n

1

α

∑

u,v∈V

E[Yu,v] ≥
k − 1

n

1

α
β =

1

α

6n log n

ε2
.

(13)

Let S′ = {S′
1, S

′
2, . . . , S

′
n/k} be a k-hypermatching of G (i.e., a decomposition of V into n/k distinct

subsets of size k). We define XS′ =
∑n/k

i=1

∑

u,v∈S′
i
Xu,v and YS′ =

∑n/k
i=1

∑

u,v∈S′
i
Yu,v. We have E[XS′ ] =

∑n/k
i=1

∑

u,v∈S′
i
E[Xu,v] = α

∑n/k
i=1

∑

u,v∈S′
i
wu,v. Hence we have

optM ≥

n/k
∑

i=1

∑

u,v∈S′
i

wu,v =

n/k
∑

i=1

∑

u,v∈S′
i

1

α
E[YS′ ] ≥

n/k
∑

i=1

∑

u,v∈S′
i

1

α
E[XS′ ]. (14)
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Note that Xu,v’s are chosen independently, and hence by applying the Chernoff bound to XS′ for ǫ = ε αoptM
E[X

S′ ]

we have

Pr [|YS′ −E[YS′ ]| ≥ εαoptM] = Pr [|XS′ −E[XS′ ]| ≥ εαoptM] If Ye 6= Xe, Ye = E[Ye]

≤ 2 exp
(

−
1

3

(

ε
αoptM
E[XS′ ]

)2
E[XS′ ]

)

Chernoff bound

= 2exp
(

−
1

3
ε2

α2optM
2

E[XS′ ]

)

≤ 2 exp
(

−
1

3
ε2αoptM

)

By Inequality 14

≤ 2 exp
(

−
1

3
ε2

6n log n

ε2

)

By Inequality 13

= 2exp
(

− 2n log n
)

Next we union bound over all choices of S′.

Pr
[

∃S′
∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptM
]

≤
∑

S′

Pr
[
∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptM
]

Union bound

≤
∑

S′

2 exp
(

− 2n log n
)

≤ 2nn exp
(

− 2n log n
)

≤ 2 exp
(

− n log n
)

≤
1

n
. n ≥ 2

Therefore, with probability 1− 1
n simultaneously for all S′ ⊆ V we have

∣

∣YS′ −E[YS′ ]
∣

∣ ≤ εαoptM. (15)

Next we prove the statement of the theorem in the cases where Inequality 15 holds. Let S
∗ =

19



{S∗
1 , S

∗
2 , . . . , S

∗
n/k} be a maximum k-hypermatching of G. We have

n/k
∑

i=1

∑

u,v∈Si

wu,v =
1

α
E

[

n/k
∑

i=1

∑

u,v∈Si

Yu,v

]

E[Yu,v] = αwu,v

=
E[YS]

α
Definition of YS

≥
YS

α
− εoptM By Inequality 15

≥ φ
maxS′′ YS′′

α
− εoptM S is a φ approximation on Hβ

≥ φ
YS∗

α
− εoptM

≥ φ
E[YS∗ ]

α
− 2εoptM By Inequality 15

≥ φ

n/k
∑

i=1

∑

u,v∈S∗i

wu,v − 2εoptM E[Yu,v] = αwu,v

= (φ− 2ε)optM. Definition of S∗

✷

Finally we show the efficiency of our sketch for finding the maximum cut, again following the same

basic proof outline. Here, we indicate a cut by the set of vertices of its smaller side, breaking ties arbitrarily.

Theorem 14 Choose β = 18 logn
ε2

n. Let S be a φ-approximation solution to the maximum cut on Hβ . S is

a φ− 2ε approximation solution to the maximum cut on G, with probability at least 1− 1
n .

Proof : First we lower bound optC. Note that in the optimum solution moving a vertex from one side to

the other does not increase the value of the cut. Thus, for each vertex v ∈ V the total weight of the edges

neighboring v in the cut is at least half of the total weight of all edges neighboring v. Hence we have

optC ≥
1

2

∑

v∈V

∑

u∈V

wu,v =
1

2α

∑

v∈V

∑

u∈V

E[Yu,v] ≥
1

2α
β =

1

α

9 log n

ε2
n. (16)

Let S′ be a subset of V . We define XS′ =
∑

v∈S′

∑

u∈V \S′ Xu,v, and YS′ =
∑

v∈S′

∑

u∈V \S′ Yu,v. Note

that we have XS′ ≤ YS′ . We have E[YS′] =
∑

v∈S′

∑

u∈V \S′ E[Yu,v] = α
∑

v∈S′

∑

u∈V \S′ wu,v. Hence,

we have

optC ≥
∑

v∈S′

∑

u∈V \S′

wu,v =
E[YS′ ]

α
≥

E[XS′ ]

α
. (17)

Note that the Xu,v’s are independent, and hence by applying the Chernoff bound to XS′ for ǫ = ε αoptC
E[XS′ ]

we
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have

Pr [|YS′ −E[YS′ ]| ≥ εαoptC] = Pr [|XS′ −E[XS′ ]| ≥ εαoptC] If Ye 6= Xe, Ye = E[Ye]

≤ 2 exp
(

−
1

3

(

ε
αoptC
E[XS′ ]

)2
E[XS′ ]

)

Chernoff bound

= 2exp
(

−
1

3
ε2

α2optC
2

E[XS′ ]

)

≤ 2 exp
(

−
1

3
ε2αoptC

)

By Inequality 17

≤ 2 exp
(

−
1

3
ε2

9 log n

ε2
n
)

By Inequality 16

= 2exp
(

− 3n log n
)

Next we union bound over all choices of S′.

Pr
[

∃S′

∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptC
]

≤
∑

S′⊆V

Pr
[
∣

∣YS′ −E[YS′ ]
∣

∣ ≥ εαoptCk
]

Union bound

≤
∑

S′⊆V

2 exp
(

− 3n log n
)

= 2n+1 exp
(

− 3n log n
)

≤
1

nn
<

1

n
. n ≥ 2

Therefore, with probability at least 1− 1
n simultaneously for all S′ ⊆ V we have
∣

∣YS′ −E[YS′ ]
∣

∣ ≤ εαoptC. (18)

Next we prove the statement of the theorem in the cases where Inequality 18 holds. Let S∗ be a maximum

cut of G. We have

∑

v∈S∗

∑

u∈V \S∗

wu,v =
∑

v∈S∗

∑

u∈V \S∗

1

α
E[Yu,v] E[Yu,v] = αwu,v

=
1

α
E[YS] Definition of YS

≥
1

α
YS − εoptC By Inequality 18

≥
1

α
φmax

S′′
YS′′ − εoptC S is a φ approximation on Hβ

≥
1

α
φYS∗ − εoptC

≥
1

α
φE[YS∗]− 2εoptC By Inequality 18

≥ φ
∑

v∈S∗

∑

u∈V \S∗

wu,v − 2εoptC E[Yu,v] = αwu,v

= (φ− 2ε)optC. Definition of S∗
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✷

4 Impossibility Results

In this section we consider all of the problems of the previous section and show that it is necessary to use

Ω(n) queries even if we just want to estimate the value of the solutions. In particular, we show that Ω(n)
queries are required to distinguish the following two graphs.

• In G1 we have n vertices {v1, . . . , vn} and the weight of all edges are 0.

• In G2 again we have n vertices. Pick an index r ∈ {1, . . . , n} uniformly at random. The weight of

each edge neighboring vr is 1. The weight of all other edges is 0.

The following lemma shows the hardness of distinguishing G1 and G2.

Lemma 15 For any δ ∈ (0, 0.5], it is impossible to distinguish G1 and G2 using δn − 1 queries with

probability 0.5 + δ.

Proof : Let Alg be a (possibly randomized) algorithm that distinguishes G1 and G2 using at most δn − 1
queries. For simplicity, and without loss of generality, we assume that Alg makes exactly δn−1 queries. Let

(u1, u2), (u3, u4), . . . , (uk−1, uk) be the sequence of edges probed by Alg, where the ui’s may be random

variables and k = 2δn − 2. Notice that vr is chosen uniformly at random. Hence, in case that the input is

G2, for any arbitrary j ∈ {1, . . . , k} we have Pr [uj = vr] =
1
n . Therefore, we have

Pr
[

∃i∈{1,..., k
2
}wu2i−1,u2i 6= 1

]

= Pr
[

∃j∈{1,...,k}uj = vr
]

≤

k
∑

j=1

Pr [ui = vr] By union bound

=
k

n
Since Pr [uj = vr] =

1

n
< 2δ. Since k = 2δn − 2

Hence, in the case that the input is G2, with probability at least 1 − 2δ all the edges that Alg queries have

weight 0. Trivially, in the case that the input is G1 all the queried edges have weight 0. Therefore the

probability that Alg distinguishes G1 and G2 is less than 2δ + 1−2δ
2 = 0.5 + δ. ✷

Note that the weight of the edges of G1 is 0, while average weight of the edges of G2 is n−1

(n2)
= 2

n .

Therefore any algorithm that estimates the average weight of the edges within any multiplicative factor

distinguishes G1 and G2. This together with Lemma 15 proves the following corollary.

Corollary 16 Any approximation algorithm that estimates the average distance a in metric graphs within

any multiplicative factor with probability 0.51 requires Ω(n) queries.

Note that the density of the densest subgraph of G1 is 0, while the density of the densest subgraph of

G2 is n−1
n ≥ 1

2 . Therefore any algorithm that estimates the density of the densest subgraph within any

multiplicative factor distinguishes G1 and G2. This together with Lemma 15 proves the following corollary.

Corollary 17 Any approximation algorithm that estimates the density of the densest subgraph in a metric

graphs within any multiplicative factor with probability 0.51 requires Ω(n) queries.

22



Notice that the value of the maximum matching of G1 is 0 while the value of the maximum match-

ing of G2 is 1. Therefore any algorithm that estimates the value of the maximum matching within any

multiplicative factor distinguishes G1 and G2. This together with Lemma 15 proves the following corollary.

Corollary 18 Any approximation algorithm that estimates the value of the maximum matching in a metric

graphs within any multiplicative factor with probability 0.51 requires Ω(n) queries.

Notice that the value of the maximum cut of G1 is 0 while the value of the maximum cut of G2 is

n− 1. Therefore any algorithm that estimates the value of the maximum cut distinguishes G1 and G2. This

together with Lemma 15 proves the following corollary.

Corollary 19 Any approximation algorithm that estimates the value of the maximum cut in a metric graphs

within any multiplicative factor with probability 0.51 requires Ω(n) queries.

5 Conclusion

We have show that in metric graphs one can efficiently obtain a linear sampling with a sublinear number of

edge queries, allowing efficient sparsification that leads to efficient approximation algorithms. We believe

this technique may be useful in generating approximation algorithms for other problems beyond those con-

sidered here. Open questions include possibly improving the lower bounds, or otherwise bridging the gap

between the upper and lower bounds on required queries.
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A Uniform edge sampling fails to find the densest subgraph

It is known that for general unweighted graphs, if we sample each edge with a small probability p ∈ Ω̃( 1
ǫ2n

),
the densest subgraph of the sampled subgraph is a (1 − ǫ)-approximation of the densest subgraph of the

original graph [31]. Here with a simple example we show that this result is not true for weighted graphs in

a metric space even when p is a small constant.

Consider a graph G with vertex set V = {v1, v2, . . . , vn}, where the weight of each each intersecting v1
is n

2 + 1 and the weight of each other edge is 1. The densest subgraph of G contains the whole graph, and

its density is
(n−1

2 )+(n−1)(n
2
+1)

n = (n−1)n
n = n− 1.

Let Gp be a subgraph of G obtained by sampling each edge with probability p. Using a simple Chernoff

bound it is easy to show that with high probability Gp has at most 2p
(

n−1
2

)

edges of weight 1. Similarly,

with high probability the number of edges of weight n
2 + 1 in Gp is between 1 and 2p(n− 1).

Let H = (VH , EH) be the densest subgraph of Gp. We have

∑

e∈EH
we

|VH |
≤

2p
(

n−1
2

)

+ 2p(n − 1)(n/2 + 1)

|VH |
=

2pn(n− 1)

|VH |
.

On the other hand the density of one single edge with weight n
2 +1 is n

4 +
1
2 . Thus we have n

4 +
1
2 ≤ 2pn(n−1)

|VH |

which implies |VH | ≤ 8pn. Therefore the density of the densest subgraph induced by |VH | is at most

(|VH |−1
2

)

+ |VH |(n2 + 1)

|VH |
≤

|VH | − 1

2
+

n

2
+ 1 ≤ 4pn−

1

2
+

n

2
+ 1 = (

1

2
+ 4p)n+

1

2
.

Therefore, the subgraph of G induced by VH is not better than a
( 1
2
+4p)n+ 1

2
n−1 ≃ 0.5 + 4p approximate

solution.
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