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Abstract

Dictionary learning is a popular approach for inferring a hidden basis in which data
has a sparse representation. There is a hidden dictionary or basis A which is an n×m
matrix, with m > n typically (this is called the over-complete setting). Data generated
from the dictionary is given by Y = AX where X is a matrix whose columns have
supports chosen from a distribution over k-sparse vectors, and the non-zero values
chosen from a symmetric distribution. Given Y , the goal is to recover A and X in
polynomial time (in m,n). Existing algorithms give polynomial time guarantees for
recovering incoherent dictionaries, under strong distributional assumptions both on
the supports of the columns of X , and on the values of the non-zero entries. In this
work, we study the following question: can we design efficient algorithms for recovering
dictionaries when the supports of the columns of X are arbitrary?

To address this question while circumventing the issue of non-identifiability, we
study a natural semirandom model for dictionary learning. In this model, there are
a large number of samples y = Ax with arbitrary k-sparse supports for x, along with
a few samples where the sparse supports are chosen uniformly at random. While
the presence of a few samples with random supports ensures identifiability, the sup-
port distribution can look almost arbitrary in aggregate. Hence, existing algorithmic
techniques seem to break down as they make strong assumptions on the supports.

Our main contribution is a new polynomial time algorithm for learning incoherent
over-complete dictionaries that provably works under the semirandom model. Addi-
tionally the same algorithm provides polynomial time guarantees in new parameter
regimes when the supports are fully random. Finally, as a by product of our techniques,
we also identify a minimal set of conditions on the supports under which the dictio-
nary can be (information theoretically) recovered from polynomially many samples for

almost linear sparsity, i.e., k = Õ(n).

1 Introduction

In many machine learning applications, the first step towards understanding the structure
of naturally occurring data such as images and speech signals is to find an appropriate
basis in which the data is sparse. Such sparse representations lead to statistical efficiency
and can often uncover semantic features associated with the data. For example images
are often represented using the SIFT basis [Low99]. Instead of designing an appropriate
basis by hand, the goal of dictionary learning is to algorithmically learn from data, the
basis (also known as the dictionary) along with the data’s sparse representation in the
dictionary. This problem of dictionary learning or sparse coding was first formalized in
the seminal work of Olshausen and Field [OF97], and has now become an integral approach
in unsupervised learning for feature extraction and data modeling.
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The dictionary learning problem is to learn the unknown dictionary A ∈ R
n×m and

recover the sparse representation X given data Y that is generated as follows. The typical
setting is the “over-complete” setting when m > n. Each column Ai of A is a vector
in R

n and is part of the over-complete basis. Data is then generated by taking random
sparse linear combinations of the columns of A. Hence the data matrix Y ∈ R

n×N is
generated as Y = AX, where X ∈ R

m×N captures the representation of each of the N
data points1. Each column of X is a vector drawn from a distribution D(s)⊙D(v). Here D(s)

is a distribution over k sparse vectors in {0, 1}m and represents the support distribution.
Conditioning on support of the column x, each non-zero value is drawn independently
from D(v), which represents the value distribution.

The goal of recovering (A,X) from Y is particularly challenging in the over-complete
setting – notice that even if A is given, finding the matrix X with sparse supports such
that Y = AX is the sparse recovery or compressed sensing problem which is NP-hard in
general [DMA97]. A beautiful line of work [DS89, DH01, CT05, CRT06] gives polynomial
time recovery of X (given A) under certain assumptions about A like Restricted Isometry
Property (RIP) and incoherence. See Section 2 for formal definitions.

While there have been several heuristics and algorithms proposed for dictionary learn-
ing, the first rigorous polynomial time guarantees were given by Spielman et al. [SWW13]
who focused on the full rank case, i.e., m = n. They assumed that the support distri-
bution D(s) is uniformly random (each entry is non-zero independently with probability
p = k/m = 1/

√
m) and the value distribution D(v) is a symmetric sub-Gaussian distri-

bution, and this has subsequently been improved by [QSW14] to handle almost linear
sparsity. The first algorithmic guarantees for learning over-complete dictionaries (m can
be larger than n) from polynomially many (in m,n) samples, and in polynomial time
were independently given by Arora et al. [AGM14] and Agarwal et al. [AAN13].In partic-
ular, the work of [AGMM15] and its follow up work [AGMM15] provide guarantees for
sparsity up to n1/2/ logm, and also assumes slightly weaker assumptions on the support
distribution D(s), requiring it to be approximately O(1)-wise independent. The works of
[BKS15] and [MSS16] gives Sum of Squares (SoS) based quasi-polynomial time algorithms
(and polynomial time guarantees in some settings) to handle almost linear sparsity under
similar distributional assumptions. See Section 1.3 for a more detailed discussion and
comparison of these works.

While these algorithms give polynomial time guarantees even in over-complete settings,
they crucially rely on strong distributional assumptions on both the support distribution
D(s) and the value distribution D(v). Curiously, it is not known whether these strong
assumptions are necessary to recover A,X from polynomially many samples, even from
an information theoretic point of view. This motivates the following question that we
study in this work:

Can we design efficient algorithms for learning over-complete dictionaries when the support
distribution is essentially arbitrary?

As one might guess, the above question as stated, is ill posed since recovering the
dictionary is impossible if there is a column that is involved in very few samples2. In fact
we do not have a good understanding of when there is a unique (A,X) pair that explains
the data (this is related to the question of identifiability of the model). However, consider
the following thought-experiment: suppose we have an instance with a large number of
samples, each of the form y = Ax with x being an arbitrary sparse vector. In addition,
suppose we have a few samples (N0 of them) that are drawn from the standard dictionary

1In general there can also be noise in the model where each column of Y is given by y = Ax+ψ where
ψ is a noise vector of small norm. In this paper we focus on the noiseless case, though our algorithms are
also robust to inverse polynomial error in each sample.

2See Proposition 4.8 for a more interesting example.
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learning model where the supports are random. The mere presence of the samples with
random supports will ensure that there is a unique dictionary A that is consistent with all
the samples (as long as N0 = Ω(n2) for example). On the other hand, since most of the
samples have arbitrary sparse supports, the aggregate distribution looks fairly arbitrary3.
This motivates a natural semirandom model towards understanding dictionary learning
when the sparse supports are arbitrary.

The semirandom model. In this model we have N samples of the form y = Ax
with most of them having arbitrary k-sparse supports for x, and a few samples (N0 of
them) that are drawn from the random model for dictionary learning. We will use D̃(s)

to represent the arbitrary distribution over k-sparse supports and D(s)
R to represent the

random distribution over k-sparse supports (as considered in prior works) and a parameter

β to represent the fraction of samples from D(s)
R ⊙D(v) (it will be instructive to think of β

as very small e.g., an inverse polynomial in n,m). N samples from the semirandom model

Mβ(D(s)
R , D̃(s),D(v)) are generated as follows.

1. The supports of N0 = βN samples x(1), . . . , x(N0) are generated from the random

distribution D(s)
R over k-sparse { 0, 1 }m vectors 4.

2. The adversary chooses the k-sparse supports of N1 = (1 − β)N samples arbitrarily
(or equivalently from an arbitrary distribution D̃(s)). Note that the adversary can
also see the supports of the N0 “random” samples.

3. The values of each of the non-zeros in X = {x(ℓ) : ℓ ∈ [N ] } are picked independently
from the value distribution D(v) e.g., a Rademacher distribution (±1 with equal
probability).

4. The x(1), . . . , x(N) are reordered randomly to form matrix X ∈ R
m×N and the data

matrix Y = AX. Y is the instance of the dictionary learning problem.

The samples that are generated in step 1 will be referred to as the random portion (or ran-
dom samples), and the samples generated in step 2 will be referred to adversarial samples.
As mentioned earlier, the presence of just the random portion ensures that the model is
identifiable (assuming βN = nΩ(1)) from known results, and there is unique solution A.
The additional samples that are added in step 2 represent more k-sparse combinations of
the columns of A – hence, intuitively the adversary is only helpful by presenting more in-
formation about A (such adversaries are often called monotone adversaries). On the other
hand, the fraction of random samples β can be very small (think of β = O(1/poly(n))) –
hence the adversarial portion of the data can completely overwhelm the random portion.
Further, the support distribution D̃(s) chosen by the adversary (or the supports of the
adversarial samples) could have arbitrary correlations and also depend on the the support
patterns in the random portion. Hence, the support distribution can look very adversarial,
and this is challenging for existing algorithmic techniques, which seem to break down in
this setting (see Sections 1.3 and 1.2).

Semirandom models starting with works of [BS95, FK98] have been a very fruitful
paradigm for interpolating between average-case analysis and worst-case analysis. Further,
we believe that studying such semirandom models for unsupervised learning problems will
be very effective in identifying robust algorithms that do not use strong distributional
properties of the instance. For instance, algorithms based on convex relaxations for related
problems like compressed sensing [CT05] and matrix completion [CT10] are robust in the

3since we do not know which of the samples are drawn with random support.
4More generally, D(s)

R can be any distribution that is τ -negatively correlated – here ∀S s.t. |S| =
O(logm), i /∈ S, the probability P[i ∈ supp(x) | S ⊂ supp(x)] ≤ τk/m, and P[i ∈ supp(x)] ≈ k/m.
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presence of a similar monotone adversary where there are additional arbitrary observations
in addition to the random observations.

1.1 Our Results

We present a new polynomial time algorithm for dictionary learning that works in the
semirandom model and obtain new identifiability results under minimal assumptions about
the sparse supports of X. We give an overview of our results for the simplest case, when the
value distribution D(v) is a Rademacher distribution i.e., each non-zero value xi is either
{+1,−1 } with equal probability. These results also extend to a more general setting
where the value distribution D(v) can be a mean-zero symmetric distribution supported in
[−C,−1] ∪ [1, C] for a constant C > 1 – this is called Spike-and-Slab model [GCB12] and
has been considered in past works on sparse coding [AGM14]. As with existing results
on recovering dictionaries in the over-complete setting, we need to assume that the matrix
satisfies some incoherence or Restricted Isometry Property (RIP) conditions (these are
standard assumptions even in the sparse recovery problem when A is given). A matrix A
is (k, δ)-RIP iff (1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 for all k-sparse vectors, and a matrix
is µ-incoherent iff |〈Ai, Aj〉| ≤ µ/

√
n for every two columns i 6= j ∈ [m]. Random n ×m

matrices satisfy the (k, δ)-RIP property as long as k = O(δn/ log( n
δk )) [BDDW08], and are

µ = O(
√

logm) incoherent. Please see Section 2 for the formal model and assumptions.
Our main result is a polynomial time algorithm for learning over-complete dictionaries

when we are given samples from the semirandom model proposed above.

Informal Theorem 1.1 (Polytime algorithm for semirandom model). Consider a dictio-
nary A ∈ R

n×m that is µ-incoherent with spectral norm σ. There is a polynomial time al-
gorithm that given poly(n,m, k, 1/β) samples generated from the semirandom model (with
β fraction random samples) with sparsity k ≤ √n/(µO(1)(σm/n)O(1)polylogm), recovers
with high probability the dictionary A up to arbitrary (inverse-polynomial) accuracy (up to
relabeling the columns, and scaling by ±1)5.

Please see Theorem 5.1 for a formal statement. The above algorithm recovers the
dictionary up to arbitrary accuracy in the semirandom model for sparsity k = Õ(n1/2) –
as we will see soon, this is comparable to the state-of-the-art polynomial time guarantees
even when there are no adversarial samples. By using standard results from sparse recov-
ery [CT05, CRT06], one can then use our knowledge of A to recover X. We emphasize in
the above bounds that the sparsity assumption and recovery error do not have any depen-
dence on β the fraction of samples generated from the random portion. The dependence
on 1/β in the sample complexity simply ensures that there are a few samples from the
random portion in the generated data.

When there are no additional samples from the adversary i.e., β = 1, our algorithm in
fact handles a significantly larger sparsity of k = Õ(m2/3)

Informal Theorem 1.2 (Beyond
√
n with no adversarial supports (β = 1)). Consider

a dictionary A ∈ R
n×m that is µ-incoherent and (k, 1/polylogm)-RIP with spectral norm

σ. There is a polynomial time algorithm that given poly(n,m, k) samples generated from
the “random” model with sparsity k ≤ n2/3/(µO(1)(σm/n)O(1)polylogm), recovers with high
probability the dictionary A up to arbitrary accuracy.

Please see Theorem 6.1 for a formal statement. For the sake of comparison, consider the
case when the amount of over-completeness is Õ(1) or even nε for some small constant ε > 0

5We will recover a dictionary Â such that ‖Âi − biAi‖2 ≤ η0 for some b ∈ {−1, 1 }m, where η0 is the
desired inverse-polynomial accuracy. While we state our guarantees for the noiseless case of Y = AX, our
algorithms are robust to inverse polynomial additive noise.

4



i.e., m/n, σ ≤ nε.6 The results of Arora et al. [AGM14, AGMM15] recover the dictionaries
for sparsity k = Õ(

√
n), when there are no adversarial samples. On the other hand,

sophisticated algorithms based on Sum-of-Squares (SoS) relaxations [BKS15, MSS16]
give quasi-polynomial time guarantees in general (and polynomial time guarantees when
σ = O(1)) for sparsity going up to k = O(m/polylogm) when there are no adversarial
samples. Hence, our algorithm gives polynomial time guarantees in new settings when
sparsity k = ω(

√
n) even in the absence of any adversarial samples (Theorem 1.2), and at

the same time gives polynomial time guarantees for k = Õ(
√
n) in the semirandom model

even when the supports are almost arbitrary. Please see Section 1.3 for a more detailed
comparison.

A key component of our algorithm that is crucial in handling the semirandom model is
a new efficient procedure that allows us to test whether a given unit vector is close to a col-
umn of the dictionary A. In fact this procedure works up to sparsity k = O(n/polylog(m)).

Informal Theorem 1.3 (Test Candidate Column). Given any unit vector z ∈ R
n, there

is a polynomial time algorithm (Algorithm 1) that uses poly(m,n, k, 1/η0) samples from
the semirandom model with the sparsity k ≤ n/polylog(m) and the dictionary A satisfying
(k, δ = 1/polylog(m))-RIP property, that with probability at least 1− exp(−n2):

• (Completeness) Accepts z if ∃i ∈ [m], b ∈ {±1 } s.t. ‖z − bAi‖2 ≤ 1/polylog(m).

• (Soundness) Rejects z if ‖z − bAi‖2 > 1/poly log(m) for every i ∈ [m], b ∈ {±1 }.

Moreover in the first case, the algorithm also returns a vector ẑ s.t. ‖ẑ−bAi‖2 ≤ η0, where
η0 represents the desired inverse polynomial accuracy.

Please see Theorem 3.1 for a formal statement7. Our test is very simple and proceeds
by computing inner products of the candidate vector z with samples and looking at the
histogram of the values. Nonetheless, this provides a very powerful subroutine to discard
vectors that are not close to any column. The full algorithm then proceeds by efficiently
finding a set of candidate vectors (by simply considering appropriately weighted averages
of all the samples), and running the testing procedure on each of these candidates. The
analysis of the candidate-producing algorithm requires several ideas such as proving new
concentration bounds for polynomials of rarely occurring random variables, which we
describe in Section 1.2.

In fact, the above test procedure works under more general conditions about the sup-
port distribution. This immediately implies polynomial identifiability for near-linear spar-
sity k = O(n/polylogm), by simply applying the procedure to every unit vector in an
appropriately chose ε-net of the unit sphere.

Informal Theorem 1.4 (Polynomial Identifiability for Rademacher Value Distribution).
Consider a dictionary A ∈ R

n×m that is (k, δ = 1/polylog(m))-RIP property for sparsity
k ≤ n/polylog(m) and suppose we are given N = poly(n,m, k, 1/β) samples with arbitrary
k-sparse supports that satisfies the following condition:
∀i1, i2, i3 ∈ [m], there at least a few samples (at least 1/poly(n) fraction) y = Ax such

that i1, i2, i3 ∈ supp(x).
Then, there is a algorithm (potentially exponential runtime) that recovers with high

probability a dictionary Â such that ‖Âi− biAi‖2 ≤ 1/poly(m) for some b ∈ {−1, 1 }m (up
to relabeling the columns).

6The parameter σ is an analytic measure of over-completeness; for any dictionary A of size n × m,
σ ≥

√
m/n. Conversely, one can also upper bound σ in terms of m/n under RIP-style assumptions. When

the columns of A are random, then σ = O(
√
m/n); otherwise, σ = O(

√
m/k) when A is (k, O(1))-RIP.

7The above procedure is also noise tolerant – it is robust to adversarial noise of 1/polylog(n) in each
sample.
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Please see Corollary 4.2 for a formal statement, and Corollary 3.3 for related polynomial
identifiability results under more general value distributions.

The above theorem proves polynomial identifiability for arbitrary set of supports as
long as every triple of columns i1, i2, i3 co-occur i.e., there are at least a few samples where
they jointly occur (this would certainly be true if the support distribution has approximate
three-wise independence). On the other hand in Proposition 4.8, we complement this by
proving a non-identifiability result using an instance that does not satisfy the “triples”
condition, but where every pair of columns co-occur. Hence, Corollary 4.2 gives polyno-
mial identifiability under arguably minimal assumptions on the supports. To the best
of our knowledge, prior identifiability results were only known through the algorithmic
results mentioned above, or using nO(k) many samples. Hence, while designed with the
semirandom model in mind, our test procedure also allows us to shed new light on the
information-theoretic problem of polynomial identifiability with adversarial supports.

Developing polynomial time algorithms that handle a sparsity of k = Õ(n) under the
above conditions (e.g., Theorem 1.4) that guarantee polynomial identifiability, or in the
semirandom model, are interesting open questions.

1.2 Technical Overview

We now give an overview of the technical ideas involved in proving our algorithmic and
identifiability results. Some of these ideas are also crucial in handling sparsity of k = ω(

√
n)

in the random model. Further, as we will see in the discussion that follows, the algorithm
will make use of samples from both the random portion and the semi-random portion for
recovering the columns. For the sake of exposition, let us restrict our attention to the value
distribution being Rademacher i.e., each non-zero xi is either +1 or −1 independently with
equal probability.

Challenges with semirandom model for existing approaches. We first describe
the challenges and issues that come in the semirandom model, and more generally when
dealing with arbitrary support distributions. Many algorithms for learning over-complete
dictionaries typically proceed by computing aggregate statistics of the samples e.g., ap-
propriate moments of the samples y = Ax (where x ∼ D), and then extracting individual
columns of the dictionary – either using spectral approaches [AGMM15] or using ten-
sor decompositions [BKS15, MSS16]. However, in the semirandom model, the adversary
can generate many more samples with adversarial supports, and dominate the number of
random samples (it can be poly(n) factor larger) — this can completely overwhelm the
contribution of the random samples to the aggregate statistic . In fact, the supports of
these adversarial samples can depend on the random samples as well.

To further illustrate the above point, let us consider the algorithm of Arora et al. [AGMM15].
They guess two fixed samples u(1) = Aζ(1), u(2) = Aζ(2) and consider the statistic

B = E
y=Ax

[
〈y, u(1)〉〈y, u(2)〉y ⊗ y

]
=
∑

i∈[m]

(
E

x∼D

[
x4i
]
〈Ai, ζ

(1)〉〈Ai, ζ
(2)〉
)
· Ai ⊗Ai+

+
∑

i 6=i′
E

x∼D
[x2ix

2
i′ ]
(
〈Ai, ζ

(1)〉〈Ai′ , ζ
(2)〉Ai ⊗Ai′ + 〈Ai′ , ζ

(1)〉〈Ai, ζ
(2)〉Ai′ ⊗Ai

)
+ . . . (1)

To recover the columns of A there are two main arguments involved. For the correct guess
of u(1), u(2) with supp(ζ(1)), supp(ζ(2)) containing exactly one co-ordinate in common e.g.,
i = 1, they show that one gets B = q1A1A

T
1 +E where ‖E‖ = o(q1). In this way A1 can be

recovered up to reasonable accuracy (akin to completeness). To argue that ‖E‖ = o(q1),
one can use the randomness in the support distribution to get that E[x2i x

2
i′ ] = O(k2/m2)

is significantly smaller (by a factor of approximately k/m) compared to E[x21] ≈ k/m. On

6



the other hand, one also needs to argue that for the wrong guess of u(1), u(2), the resulting
matrix B is not close to rank 1 (soundness). The argument here, again relies crucially on
the randomness in the support distribution.

In the semirandom model, both completeness and soundness arguments are affected
by the power of the adversary. For instance, if the adversary generates samples such
that a subset of co-ordinates T ⊆ [m] co-occur most of the time, then for every i, i′ ∈
T, E[x2ix

2
i′ ] = Ω(E[x2i ]). Hence, completeness becomes harder to argue since the cross-

terms in (1) can be much larger (particularly for k = Ω(m1/8)). The more critical issue is
with soundness, since it is very hard to control and argue about the matrices B that are
produced by incorrect guesses of u(1), u(2) (note that they can also be from the portion with
adversarial support). For the above strategy in particular, there are adversarial supports
and choices of samples such that B is close to rank 1 but whose principal component is not
aligned along any of the columns of A (e.g., it could be along

∑
i∈T Ai). We now discuss

how we overcome these challenges in the semirandom model.

Testing for a Single Column of the Dictionary. A key component of our algorithm
is a new efficient procedure, which when given a candidate unit vector z tests whether
z is indeed close to one of the columns of A (up to signs) or is far from every column
of the dictionary i.e., ‖z − bAi‖2 > η for every i ∈ [m], b ∈ {−1, 1 } (η can be chosen
to be 1/poly log(n) and the accuracy can be amplified later). Such a procedure can be
used as a sub-routine with any algorithm in the semirandom model since it addresses the
challenge of ensuring soundness. We can feed a candidate set of test vectors generated by
the algorithm and discard the spurious ones.

The test procedure (Algorithm 1) is based on the following observation: if z = bAi for
some column i ∈ [m] and b ∈ {±1 }, then the distribution of |〈z,Ax〉| will be bimodal,
depending on whether xi is non-zero or not. This is because

|〈bAi, Ax〉| = |xi| ±
∣∣∑

j 6=i

〈Ai, Aj〉xj
∣∣ = |xi| ± o(1) with high probability,

when A satisfies the RIP property (or incoherence). Hence Algorithm TestColumn

(Algorithm 1) just computes the inner products |〈z,Ax〉| with polynomially many samples
(it could be from the random or adversarial portion), and checks if they are always close
to 0 or 1, with a non-negligible fraction of them (roughly k/m fraction, if each of the i
occur equally often) taking a value close to 1.

The challenge in proving the correctness of this test is the soundness analysis: if unit
vector z is far from any column of Ai, then we want to show that the test fails with high
probability. Consider a candidate z that passes the test, and let αi := 〈z,Ai〉. Suppose
|αi| = o(1) for each i ∈ [m] (so it is far from every column). For a sample y = Ax with
supp(x) = S,

〈z,Ax〉 =
∑

i∈S
xi〈z,Ai〉 =

∑

i∈S
αixi. (2)

The quantity 〈z,Ax〉 is a weighted sum of symmetric, independent random variables xi,
and the variance of 〈z,Ax〉 equals ‖αS‖22 =

∑
i∈S α

2
i . When ‖αS‖2 = Ω(1), Central

Limit Theorems like the Berry-Esséen theorem tells us that the distribution of the values
of 〈z,Ax〉 is close to a Normal distribution with Ω(1) variance. In this case, we can
use anti-concentration of a Gaussian to prove that |〈z,Ax〉| takes a value bounded away
from 0 or 1 (e.g., in the interval [14 ,

3
4 ]) with constant probability. However, the variance

‖αS‖22 =
∑

i∈S α
2
i can be much smaller than 1 (for a random unit vector z, we expect

‖αS‖22 = O(k/n)). In general, we have very little control over the αS vector since the
candidate z is arbitrary. For an arbitrary spurious vector z, we need to argue that either

7



|〈z,Ax〉| (almost) never takes large values close to 1, or takes values bounded away from
0 and 1 (e.g., in [0.1, 0.9]) for a non-negligible fraction of the samples.

The correctness of our test relies crucially on such an anti-concentration statement,
which may be of independent interest.

Claim 1.5 (See Lemma 3.6 for a more general statement). Let X1,X2, . . . ,Xℓ be indepen-
dent Rademacher random variables and let Z =

∑ℓ
i=1 aiXi where ‖a‖2 = 1. There exists

constants c, c′ > 0 s.t. for any η′, κ ∈ (0, 1), β ∈ ( 1
16 ,

7
16) and any t ≥ max { 1, c′‖a‖∞ },

P
X

[
Z ∈

[
(1− η′)t, (1 + η′)t

]]
≥ κ =⇒ P

X

[
Z ∈

[β
2 (1− η′)t, 32β(1 + η′)t

]]
≥ Ω(κ). (3)

Note that in the above statement a is normalized; we will apply the above claim with
a = α/‖α‖2.

When κ is large e.g., a constant or t = Ω(‖a‖2), one can use CLTs together with
Gaussian anti-concentration to prove the claim. However, even when the weights are all
equal, such bounds do not work when κ = 1/poly(n,m)≪ 1/

√
k or t≫ ‖a‖2, which is our

main setting of interest (this regime of κ corresponds to the tail of a Gaussian, as opposed
to the central portion of a Gaussian where CLTs can be applied for good bounds). In
this regime near the tail, we prove the claim by using an argument that carefully couples
occurrences of |Z| ≈ t/3 with occurrences of |Z| ≈ 1.

The above test works for k = O(n/poly log(m)), only uses the randomness in the non-
zero values, and works as long as the co-efficients |αi| are all small compared to t = 1 i.e.,
‖αS‖∞ < ct.8 The full proof of the test uses a case analysis depending on whether there
are some large co-efficients, and uses such a large coefficient in certain “nice” samples
that exist under mild assumptions (e.g., in a semirandom model), along with the above
lemma (Lemma 3.6) to prove that a unit vector z that is far from every column fails the
test with high probability (the failure probability can be made to be exp(−n2)). Given
the test procedure, to recover the columns of the dictionary, it now suffices (because of
Algorithm 1) to design an algorithm that produces a set of candidate unit vectors that
includes the columns of A.

Identifiability. The test procedure immediately implies polynomial identifiability (i.e.,
with polynomially many samples) for settings where the test procedure works, by simply
running the test procedure on every unit vector in an ε-net of the unit sphere. When the
value distribution D(v) is a Rademacher distribution, we prove that just a condition on
the co-occurrence of every triple suffices to construct such a test procedure (Algorithm 2).
This implies the polynomial identifiability results of Theorem 1.4 for sparsity up to k =
O(n/polylogn). For more general value distributions defined in Section 2, it just needs
to hold that that there are a few samples where a given column i appears, but a few
other O(log n) given columns do not appear (e.g., for example when a subset of samples
satisfy very weak pairwise independence; see Lemma 3.8). This condition suffices for
Algorithm 1 to work for sparsity k = O(n/polylogn)– and implies the identifiability results
in Corollary 3.3.

Efficiently Producing Candidate Vectors. Our algorithm for producing candidate
vectors is inspired by the initialization algorithm of [AGMM15]. We guess 2L− 1 samples

8There are certain configurations where |αi| are large, for which the above anti-concentration statement
is not true. For example when α1 = α2 = 1/2 and 0 for rest of i ∈ S, then any ±1 combination of α1, α2

is in {−1, 0, 1 }. In fact, in Proposition 4.8 we construct instances that are non-identifiable instances for
which there are bad candidates z which precisely result in such combinations. However, Lemma 4.5 shows
that this is essentially the only bad situation for this test.
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u(1) = Aζ(1), u(2) = Aζ(2), . . . , u(2L−1) = Aζ(2L−1) for some appropriate constant L, and
simply consider the weighted average of all samples given by

v = E

[
〈y,Aζ(1)〉〈y,Aζ(2)〉 . . . 〈y,Aζ(2L−1)〉 y

]

and consider the unit vector along v. Let us consider a “correct” guess of ζ(1), . . . , ζ(2L−1)

where all of them are from the random portion, and their supports all contain a fixed co-
ordinate (say coordinate 1). In this case we show that with at least a constant probability
the vector v = q1A1 + ṽ where ‖ṽ‖2 = o(qmax/ logm). Here qi is the fraction of samples
x with i in its support and qmax = maxi qi. Hence, by running over all choices of 2L − 1
tuples in the data we can hope to produce candidate vectors that are good approximations
to frequently appearing columns of A. Notice that any spurious vectors that we produce
will be automatically discarded by our test procedure. While the above algorithm is very
simple, its analysis requires several new technical ideas including improved concentration
bounds for polynomials of rarely occurring random variables. To see this, we note that
vector v can be written as v =

∑
i∈[m] γiAi where

∀i ∈ [m], γi =
∑

j1,...,j2L−1∈[m]

( ∑

i1,...,i2L−1∈[m]

E
[
xixi1 . . . xi2L−1

xi
] ∏

ℓ∈[2L−1]
Miℓ,jℓ

)
ζ
(1)
j1
. . . ζ

(2L−1)
j2L−1

.

Here M denote the matrix ATA. To argue that we will indeed generate good candidate vec-
tors, we need to prove that ‖∑i 6=1 γiAi‖2 = o(qmax/ logm). For the fully random case this
corresponds to proving that |γi| = o(k/(m

√
m)) for each i ∈ [m] \ { 1 }. Both these state-

ments boil down to proving concentration bounds for multilinear polynomials of the ran-
dom variables ζ(1), . . . , ζ(2L−1), where { ζ(ℓ) : ℓ ∈ [2L− 1] } are rarely occurring mean-zero
random variables i.e., they are non-zero with probability roughly p = k/m. Concentration
bounds for multilinear degree-d polynomials of O(1) hypercontractive random variables are
known, giving bounds of the form P[g(x) > t‖g‖2] ≤ exp(−ct2/d) [O’D14]. More recently,
sharper bounds (analogous to the Hanson-Wright inequality for quadratic forms [HW71])
that do not necessarily incur a d factor in the exponent and get bounds of the form
exp(−Ω(t2)) have also been obtained by Latala, Adamczak and Wolff [Lat06, AW15] for
sub-gaussian random variables and more generally, random variables of bounded Orlicz
ψ2 norm. However, these seem to give sub-optimal bounds for rarely occurring random
variables, as we demonstrate below. On the other hand, bounds that apply in the rarely
occurring regime [KV00, SS12] typically apply to polynomials of non-negative random vari-
ables with non-negative coefficients, and do not seem directly applicable in our settings.

There are several different terms that arise in these calculations; we give an example
of one such term to motivate the need for better concentration bounds in this setting with
rarely occurring random variables. One of the terms that arises in the expansion of γi is

Z =
∑

j1,j2∈[m]

Bj1,j2ζ
(1)
j1
ζ
(2)
j2

:=
∑

i∈[m]

∑

j1,j2∈[m]\{ i }
Mij1Mij2ζ

(1)
j1
ζ
(2)
j2
.

Using the fact that the columns of A are incoherent, for this quadratic form we get that
‖B‖F = Ω̃(

√
m). We can then apply Hanson-Wright inequality to this quadratic form,

and conclude that the |Z| ≤ √mpoly log(n) with high probability9. On the other hand,
the ζ random variables are non-zero with probability at most p = k/m and are τ = O(1)-
negatively correlated, and hence we get that Var[Z] ≤ mσ4(k/m)2 = Õ(k2/m) (and
E[Z] = 0). Here σ is the spectral norm of A. Hence, in the ideal case, we can hope to

9The random variables ζ
(ℓ)
j has its ψ2 Orlicz-norm bounded by K ≤ log(1/p) = O(logm); Hanson-

Wright inequality shows that P[|Z| > t] ≤ exp
(
− cmin

{
t2

K4‖B‖2
F

, t
K2‖B‖

})
. Using Hypercontractivity for

these distributions also gives similar bounds up to poly log n factors.
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show a much better upper bound of |Z| ≤ kpoly log(n)/
√
m (smaller by a factor of k/m).

Obtaining bounds that take advantage of the small probability of occurrence seems crucial
in handling k = Ω(

√
m) for the semirandom case, and k = ω(

√
m) for the random case.

To tackle this, we derive general concentration inequalities for multilinear degree-d
polynomials of rarely occurring random variables.

Informal Proposition 1.6 (Same as Proposition 5.4). Consider a degree d multilinear
polynomial f in ζ(1), . . . , ζ(d) ∈ R

m of the form

f(ζ(1), . . . , ζ(d)) =
∑

(j1,...,jd)∈[m]d

Tj1,...,jdζ
(1)
j1
. . . ζ

(d)
jd
,

where each of the random variables ζj are independent, bounded and non-zero with prob-
ability at most p. Further for any Γ ⊂ [d], let MΓ,Γc be the m|Γ| ×md−|Γ| be the matrix
obtained by flattening along Γ and [d] \ Γ respectively and

ρ =
∑

Γ⊂[d]

‖MΓ,Γc‖22→∞
‖T‖2F

· p−|Γ| =
(‖MΓ,Γc‖22→∞

md−|Γ|

)(‖T‖2F
md

)−1
· 1

(pm)|Γ|
, (4)

where ‖·‖2→∞ is the maximum ℓ2 norm of the rows. Then, for any η > 0, we have

P

[
|f(ζ(1), . . . , ζ(d))| ≥ log(2/η)d

√
ρ · pd/2‖T‖F

]
≤ η. (5)

Here ρ is a measure of how well-spread out the corresponding tensor T is: it depends in
particular, on the maximum row norm (‖·‖2→∞ operator norm) of different “flattenings” of
the tensor T into matrices. This is reminiscent of how the bounds of Latala [Lat06, AW15]
depends on the spectral norm of different “flattenings” of the tensor into matrices, but
they arise for different reasons. We defer to Section 5.1 for a formal statement and more
background. To the best of our knowledge, we are not aware of similar concentration
bounds for arbitrary multilinear (with potentially non-negative co-efficients) for rarely
occurring random variables, and we believe these bounds may be of independent interest
in other sparse settings.

The analysis for both the semirandom case and random case proceeds by carefully
analyzing various terms that arise in evaluating { γi : i ∈ [m] }, and using Proposition 5.4
in the context of each of these terms along with good bounds on the norms of various
tensors and their flattenings that arise (this uses sparsity of the samples, the incoherence
assumption and the spectral norm bound among other things). We now describe one of the
simpler terms that arise in the random case, to demonstrate the advantage of considering
larger L i.e., more fixed samples. Consider the expression

Z =
∑

(j1,...,j2L−1)

∈[m]2L−1

Mi,j2L−1
ζ
(2L−1)
j2L−1

∑

i1,...,iL−1

E
[
x2i x

2
i1 . . . x

2
iL−1

] ∏

ℓ∈[L−1]
Miℓ,j2ℓ−1

Miℓ,j2ℓζ
(2ℓ−1)
j2ℓ−1

ζ
(2ℓ)
j2ℓ

.

(6)
In the random case, E[x2i x

2
i1
. . . x2iL−1

] ≈ E[x2i ]E[x2i1 ] . . .E[x2iL−1
] ≤ (k/m)L, since the

support distribution is essentially random (this also assumes the value distribution is
Rademacher). Further, for the corresponding tensor T of co-efficients, one can show
a bound of ‖T‖F = O

(
m(L−1)/2). Hence, applying Proposition 5.4, we would get an

ideal bound (assuming the imbalance factor ρ = O(1) ) of roughly c · (k/m)L
√
m

L−1 ·
(k/m)L−1/2 = c

(
k2

m
√
m

)L−1 · (k/m)3/2, which becomes o(k/(m
√
m)) as required for L being

a sufficiently large constant when k = o(m3/4−ε) 10. On the other hand, with higher values

10The bound that we actually get in this case is off by a c =
√
mpoly log n factor since ρ = ω(1), but

this also becomes small for large L.
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of L there are some lower-order terms that start becoming larger comparatively, for which
Proposition 5.4 becomes critical. Balancing out these terms allows us to handle a sparsity
of k = Õ(m2/3) for the random case. This is done in Section 6.

The semirandom model presents several additional difficulties as compared to the ran-
dom model. Firstly, as most of the data is generated with arbitrary supports, we cannot
assume that the x variables are τ = O(1)-negatively correlated. As a result, the term
E[x2i x

2
i1
. . . x2iL−1

] does not factorize as the adversary can make the joint probability distri-
bution of the non-zeros very correlated. Hence, to bound various expressions that appear
in the expansion of γi, we need to use inductive arguments to upper bound the magnitude
of each inner sum and eliminating the corresponding running index (this needs to be done
carefully since these quantities can be negative). We bound each inner sum using Proposi-
tion 5.4, using the fact that

∑
id∈[m] E[x2i x

2
i1
. . . x2id ] ≤ kE[x2ix

2
i1
. . . x2id−1

], and some elegant
linear algebraic facts. This is done in Section 5.2.

Finally, the above procedure can be used to recover all the columns Ai of the dictionary
whose corresponding occurrence probabilities qi = E[x2i ] are close to the largest i.e., qi =

Ω̃(maxj∈[m] qj). To recover all the other columns, we use a linear program and subsample
the data (just based on columns recovered so far), so that one of the undiscovered columns
has largest occurrence probability. We defer to the details in Sections 5.3 and 5.5.

1.3 Related Work

Polynomial Time Algorithms. Spielman et al. [SWW13] were the first to provide a
polynomial time algorithm with rigorous guarantees for dictionary learning. They handled
the full rank case, i.e, m = n, and assumed the following distributional assumptions about
X: each entry is chosen to be non-zero independently with probability k/m = O(1)/

√
n

(the support distribution D(s) is essentially uniformly random) and conditioned on the
support, each non-zero value is set independently at random from a sub-Gaussian dis-
tribution e.g., Rademacher distribution (the value distribution D(v)). Their algorithm
uses the insight that w.h.p. in this model, the sparsest vectors in the row space of Y
correspond to the rows of X, and solve a sequence of LPs to recover X and A. Subse-
quent works [LV15, BN16, QSW14] have focused on improving the sample complexity and
sparsity assumptions in the full-rank setting. However in the presence of the semirandom
adversary, the sparsest vectors in the row space of Y may not contain rows of X and hence
the algorithmic technique of [SWW13] breaks down.

For the case of over-complete dictionaries the works of Arora et al. [AGM14] and
Agarwal et al. [AAN13] provided polynomial time algorithms when the dictionary A is
µ-incoherent. In particular, the result of [AGM14] also holds under a weaker assump-
tion that the support distribution D(s) is approximately ℓ = O(1)-wise independent i.e.,
Px∼D(s) [i1, i2, . . . , iℓ ∈ supp(x)] ≤ τ ℓ(k/m)ℓ for some constant τ > 0. Under this assump-

tion they can handle sparsity up to Õ(min(
√
n,m1/2−ε)) for any constant ε > 0 with

ℓ = O(1/ε). Their algorithm computes a graph G over the samples in Y by connecting
any two samples that have a high dot product – these correspond to pairs of samples
whose supports have at least one column in common. Recovering columns of A then
boils down to identifying communities in this graph with each community identifying
a column of A. Subsequent works have focused on extending this approach to handle
mildly weaker or incomparable assumptions on the dictionary A or the distribution of
X [ABGM14, AGMM15]. For example, the algorithm of [AGMM15] only assumes O(1)-
wise independence on the non-zero values of a column x. The state of the art results along
these lines can handle k = Õ(

√
n) sparsity for µ = Õ(1)-incoherent dictionaries. Again,

we observe that in the presence of the semirandom adversary, the community structure
present in the graph G could become very noisy and one might not be able to extract good
approximations to the columns of A, or worse still, find spurious columns.
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The work of Barak at al. [BKS15] reduce the problem of recovering the columns of A
to a (noisy) tensor decomposition problem, which they solve using Sum-of-Squares (SoS)
relaxations. Under assumptions that are similar to that of [AGM14] (assuming approxi-
mate Õ(1)-wise independence), these algorithms based on SoS relaxations [BKS15, MSS16]
handle almost linear sparsity k = Õ(n) and recover incoherent dictionaries with quasi-
polynomial time guarantees in general, and polynomial time guarantees when σ = O(1)
(this is obtained by combining Theorem 1.5 in [MSS16] with [BKS15]). The recent work
of Kothari et al. [KS17] also extended these algorithms based on tensor decompositions
using SoS, to a setting when a small fraction of the data can be adversarially corrupted or
arbitrary. This is comparable to the setting in the semirandom model when β = 1− ε (for
a sufficiently small constant ε), but the non-zero values for these samples can also be
arbitrary. However in the semirandom model, the reduction from dictionary learning to
tensor decompositions breaks down because the supports can have arbitrary correlations
in aggregate, particularly when β is small. Hence these algorithms do not work in the
semirandom model.

Moreover, even in the absence of any adversarial samples, Theorem 1.2 and the current
state-of-the-art guarantees [MSS16, AGMM15] are incomparable, and are each optimal in
their own setting. For instance, consider the setting when the over-completeness m/n, σ =
O(nε) for some small constant ε > 0. In this case, Arora et al. [AGMM15] can handle
a sparsity of Õ(

√
n) in polynomial time and Ma et al. [MSS16] handle Õ(n) sparsity in

quasi-polynomial time, while Theorem 1.2 handles a sparsity of Õ(n2/3) in polynomial
time. On the other hand, [AGMM15] has a better dependence on σ, while [MSS16] can
handle Õ(n) sparsity when σ = O(1). Further, both of these prior works do not need full
independence of the value distribution D(v) and the SoS-based approaches work even under
mild incoherence assumptions to give some weak recovery guarantees11 However, we recall
that in addition our algorithm works in the semirandom model (almost arbitrary support
patterns) up to sparsity Õ(

√
n), and this seems challenging for existing algorithms.

Heuristics and Associated Guarantees. Many iterative heuristics like k-SVD, method
of optimal direction (MOD), and alternate minimization have been designed for dictionary
learning, and recently there has also been interest in giving provable guarantees for these
heuristics. Arora et al. [AGM14] and Agarwal et al. [AAJ+13] gave provable guarantees for
k-SVD and alternate minimization assuming initialization with a close enough dictionary.
Arora et al. [AGMM15] provided guarantees for a heuristic that at each step computes
the current guess of X by solving sparse recovery, and then takes a gradient step of the
objective ‖Y −AX‖2 to update the current guess of A. They initialize the algorithm using
a procedure that finds the principal component of the matrix E[〈u(1), y〉〈u(2), y〉 yyT ] for
appropriately chosen samples u(1), u(2) from the data set. A crucial component of our
algorithm in the semirandom model is a procedure to generate candidate vectors for the
columns of A and is inspired by the initialization procedure of [AGMM15].

Identifiability Results. As with many statistical models, most identifiability results
for dictionary learning follow from efficient algorithms. As a result identifiability results
that follow from the results discussed above rely on strong distributional assumptions. On
the other hand results establishing identifiability under deterministic conditions [AEB06,
GTC05] require exponential sample complexity as they require that every possible support
pattern be seen at least once in the sample, and hence require O(mk) samples. To the best
of our knowledge, our results (Theorem 1.4) lead to the first identifiability results with
polynomial sample complexity without strong distributional assumptions on the supports.

11However, to recover A and X to high accuracy, incoherence and RIP assumptions of the kind assumed
in our work and [AGMM15] seem necessary.
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Other Related Work. A problem which has a similar flavor to dictionary learning is
Independent Component Analysis (ICA), which has been a rich history in signal processing
and computer science [Com94, FJK96, GVX14]. Here, we are given Y = AX where each
entry of the matrix X is independent, and there are polynomial time algorithms both in
the under-complete [FJK96] and over-complete case [DLCC07, GVX14] that recover A
provided each entry of X is non-Gaussian. However, these algorithms do not apply in our
setting, since the entries in each column of X are not independent (the supports can be
almost arbitrarily correlated because of the adversarial samples).

Finally, starting with the works of Blum and Spencer [BS95], semirandom models
have been widely studied for various optimization and learning problems. Feige and Kil-
ian [FK98] considered semi-random models involving monotone adversaries for various
problems including graph partitioning, independent set and clique. Semirandom models
have also been studied in the context of unique games [KMM11], graph partitioning prob-
lems [MMV12, MMV14] and learning communities [PW17, MPW15, MMV16], correlation
clustering [MS10, MMV15], noisy sorting [MMV13], coloring [DF16] and clustering [AV17].

2 Preliminaries

We will use A to denote an n × m over-complete (m > n) dictionary with columns
A1, A2, . . . Am. Given a matrix or a higher order tensor T , we will uses ‖T‖F to de-
note the Frobenius norm of the tensor. For matrices A we will use ‖A‖2 to denote the
spectral norm of A. We first define the standard random model for generating data from
an over-complete dictionary.

Informally, a vector y = Ax is generated as a random linear combination of a few
columns of A. We first pick the support of x according to a support distribution denoted
by D(s), and then draw the values of each of the non-zero entries in x independently
according to the value distribution denoted by D(v). D(s) is a distribution that is over the
set of vectors in {0, 1}m with at most k ones.

Value Distribution: As is standard in past works on sparse coding [AGM14, AGMM15],
we will assume that the value distribution D(v) is any mean zero symmetric distribution
supported in [−C,−1] ∪ [1, C] for a constant C > 1. This is known as the Spike-and-Slab
model [GCB12]. For technical reasons we also assume that D(v) has non-negligible density
in [1, 1 + η] for η = 1/(poly log n). Formally we assume that

∃γ0 ∈ (0, 1) s.t. ∀η ≥ 1

logc n
,PD(v)([1, 1 + η]) ≥ γ0. (7)

In the above definition, we will think of γ0 as just being non-negligible (e.g., 1/poly(n)).
This assumption is only used in Section 3, and the sample complexity will only involve in-
verse polynomial dependence on γ0. The above condition captures the fact that the value
distribution has some non-negligible mass close to 1 12. Further, this is a benign assump-
tion that is satisfied by many distributions including the Rademacher distribution that is
supported on {+1,−1} (with γ0 = 1/2), and the uniform distribution over [−C,−1]∪[1, C]
(with γ0 = 1/(2C)).

Random Support Distribution D(s)
R . Let ξ ∈ R

m be drawn from D(s)
R . To ensure that

each column appears reasonably often in the data so that recovery is possible information

12If the value distribution has negligible mass in [1, 1 + η] ∪ [−1 − η,−1], one can arguably rescale the
value distribution by (1+ η) so that all of the value distribution is essentially supported on [1, C/(1+ η)]∪
[−C/(1 + η),−1].
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theoretically we assume that each coordinate i in ξ is non-zero with probability k
m . We

do not require the non-zero coordinates to be picked independently and there could be
correlations provided that they are negatively correlated up to a slack factor of τ .

Definition 2.1. For any τ ≥ 1, a set of non-negative random variables Z1, Z2, . . . , Zm

where P (Zi 6= 0) ≤ p is called τ -negatively correlated if for any i ∈ [m] and any S ⊆ [m]
such that i /∈ S and |S| = O(logm) we have that for a constant τ > 0,

P
(
Zi 6= 0

∣∣ ⋂

j∈S
Zj 6= 0

)
≤ τp. (8)

In the random model the variables ξ1, ξ2, . . . , ξm are τ -negatively correlated with p =
k
m . We remark that for our algorithms we only require the above condition (for the
random portion of the data) to hold for sets S of size up to O(logm). Of course in the
semi-random model described later, the adversary can add additional data from supports
distributions with arbitrary correlations; hence they are not τ -negatively correlated, and
each co-ordinate of x need not be non-zero with probability at most p = k/m.

Random model for Dictionary Learning. Let D(s)
R ⊙ D(v) denote the distribution

over R
m obtained by first picking a support vector from D(s)

R and then independently
picking a value for each non zero coordinate from D(v). Then we have that a sample y
from the over complete dictionary is generated as

y =
∑

i∈[m]

xiAi,

where (x1, x2, . . . , xm) is generated from D(s)
R ⊙ D(v). Given S = {y(1), y(2), . . . , y(N)}

drawn from the model above, the goal in standard dictionary learning is to recover the
unknown dictionary A∗, up to signs and permutations of columns.

2.1 Semi-random model

We next describe the semi-random extension of the above model for sparse coding. In
the semi-random model an initial set of samplesis generated from the standard model
described above. A semi-random adversary can then an arbitrarily number of additional
samples with each sample y = Ax generated by first picking the support of x arbitrarily
and then independently picking values of the non-zeros according to D(v). Formally we
have the following definition

Definition 2.2 (Semi-Random Model: Mβ(D(s)
R , D̃(s),D(v))). A semi-random model for

sparse coding, denoted as Mβ(D(s)
R , D̃(s),D(v)), is defined via the following process of

producing N samples

1. Given a τ -negatively correlated support distribution D(s)
R , N0 = βN “random” sup-

port vectors ξ(1), ξ(2), . . . , ξ(N0) are generated from D(s)
R .

2. Given the knowledge of the supports of ξ(1), . . . , ξ(N0), the semi-random adversary
generates (1− β)N additional support vectors ξ(N0+1), ξ(N0+2), . . . , ξ(N) from an ar-
bitrary distribution D̃(s). The choice of D̃(s) can depend on ξ(1), ξ(2), . . . , ξ(N0).

3. Given a value distribution D(v) that satisfies the Spike-and-Slab model, the vectors
x(1), x(2), . . . , x(N0), x(N0+1), . . . , x(N) are form by picking each non-zero value (as
specified by ξ(1), . . . , ξ(N) respectively) independently from the distribution D(v).
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4. x(1), x(2), . . . , x(N) are randomly reordered as columns of an m×N matrix X. Then
the output of the model is Y = AX.

We would like to stress that the amount of semi-random data can overwhelm the
initial random set. In other words, β need not be a constant and can be a small inverse
polynomial factor. The number of samples needed for our algorithmic results will have an
inverse polynomial dependence on β. While the above description of the model describes
a distribution from which samples can be drawn, one can also consider a setting where
there a fixed number of samples N , of which βN = N0 samples were drawn with random

supports i.e., from D(s)
R . These two descriptions are essentially equivalent in our context

since the distribution D̃(s) is arbitrary. However, since there are multiple steps in the
algorithm, it will be convenient to think of this as a generative distribution that we can
draw samples from (in the alternate view, we can randomly partition the samples initially
with one portion for each step of the algorithm).

Definition 2.3 (Marginals and Expectations). Given (x1, x2, . . . , xm) generated from
D̃(s)⊙D(v) and a subset of indices i1, i2, . . . , iR ∈ [m] we denote qi1,i2,...,iR as the marginals
of the support distribution, i.e.

qi1,i2,...,iR = PD̃(s)(ξi1 6= 0 and, ξi2 6= 0 and, . . . , ξiR 6= 0). (9)

Here D̃(s) is an arbitrary distribution over k-sparse vectors in {0, 1}m, and the notation
PD̃(s) denotes that the randomness is over the choice of the support distribution and not
the value distribution. We will also be interested in analyzing low order moments of
subsets of indices w.r.t. the value distribution D(v). Hence we define

qi1,i2,...,iR(d1, d2, . . . , dR) = ED̃(s)⊙D(v) [x
d1
i1
xd2i2 . . . x

dR
iR

]. (10)

Here d1, d2, . . . , dR ≥ 0. Notice that the above expectation is non-zero only if all
djs are even numbers. This is because conditioned on the support the values are drawn
independently from a mean 0 distribution. Furthermore, it is easy to see that when all
djs are even we have that

1 ≤ qi1,i2,...,iR(d1, d2, . . . , dR) ≤ C
∑R

j=1 djqi1,i2,...,iR (11)

We next state two simple lemmas about the marginals and expectations defined above
that we will use repeatedly in our algorithmic results and analysis. The proofs can be
found in the Appendix.

Lemma 2.4. For any R ≥ 2 and any subset of indices i1, i2, . . . , iR ∈ [m] we have that

1 ≤
∑

iR∈[m]

qi1,i2,...,iR
qi1,i2,...,iR−1

≤ k.

Furthermore, if the support distribution satisfies (8) then we also have that

qi1,i2,...,iR
qi1,i2,...,iR−1

≤ τk

m
.

Lemma 2.5. For any R ≥ 2, any subset of indices i1, i2, . . . , iR ∈ [m] and any even
integers d1, d2, . . . , dR we have that

1 ≤
∑

iR∈[m]

qi1,i2,...,iR(d1, d2, . . . , dR)

qi1,i2,...,iR−1
(d1, d2, . . . , dR−1)

≤ kCdR . (12)

Furthermore, if the support distribution satisfies (8) then we also have that

qi1,i2,...,iR(d1, d2, . . . , dR)

qi1,i2,...,iR−1
(d1, d2, . . . , dR−1)

≤ τkCdR

m
.
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2.2 Properties of the dictionary

Our results on dictionary learning will make two assumptions on the structure of the
unknown dictionary. These assumptions, namely incoherence and Restricted Isometry
Property are standard in the literature on sparse recovery and dictionary learning. Next
we define the two assumptions, discuss relationships among them and state simple con-
sequences that will be used later in the analysis. All the proofs can be found in the
Appendix.

Definition 2.6 (Incoherence). We say that an n×m matrix with unit length columns is
µ-incoherent if for any two columns Ai, Aj , we have that

〈Ai, Aj〉 ≤
µ√
n

The
√
n factor above is a natural scaling since random n×m matrices are O(

√
logm)

incoherent. Notice that every matrix is
√
n-incoherent. Hence values of µ = o(

√
n) provide

non-trivial amount of incoherence. In general, smaller values of µ force the columns of A
to be more uncorrelated. In this work we will think of µ as poly log n13. Next we state a
simple lemma characterizing the spectral norm of incoherent matrices.

Lemma 2.7. Let A be an n × m matrix with unit length columns that is µ-incoherent.
Then we have that √

m

n
≤ ‖A‖2 ≤

√
1 +

mµ√
n

Definition 2.8 (Restricted Isometry Property (RIP)). We say that an n × m matrix
satisfies (k, δ)-RIP if for any k-sparse vector x ∈ R

m, we have that

(1− δ) ≤ ‖Ax‖‖x‖ ≤ (1 + δ).

In other words, RIP matrices preserve norms of sparse vectors. In this work we will
be interested in matrices that satisfy (k, δ)-RIP for δ = 1/poly log n. It is well known
that a random n×m matrix will be (k, δ)-RIP when k ≤ O(δn/ log( n

δk )) [BDDW08]. The
following lemma characterizes the spectral norm of matrices that have the RIP property.

Lemma 2.9. Let A be an n×m matrix with unit length columns that satisfies the (k, δ)-
RIP property. Then we have that

√
m

n
≤ ‖A‖2 ≤ (1 + δ)

√
m

k
.

The two notions of incoherence and RIP are also intimately related to each other. The
next well known fact shows that when k = o(

√
n), incoherence implies the (k, δ)-RIP

property.

Lemma 2.10. Let A be an n ×m matrix with unit length columns that is µ-incoherent.

Then for any δ ∈ (0, 1), we have that A also satisfies (k, δ)-RIP for k =
√
nδ
2µ .

In fact incoherent matrices are one of a handful ways to explicitly construct RIP
matrices [BDF+11]. Conversely we have that RIP matrices have incoherent columns for
non-trivial values of µ. In fact the following lemma implies a much stronger statement,
and will be used in Section 3 for analyzing the test procedure.

13Although our results also extend to values of µ upto nε for a small constant ε. The sparsity requirement
will weaken accordingly.
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Lemma 2.11. Let A be an n×m matrix that satisfies the (k, δ)-RIP property for δ < 1.
Then for any column i ∈ [m] and (k − 1) other columns T ⊂ [m], we have

∑

j∈T
〈Ai, Aj〉2 ≤ 2δ + δ2.

We next state a useful consequence of the RIP property that we will crucially rely on
in our testing procedure in Section 3.

Lemma 2.12. Let A be a (k, δ)-RIP matrix and z be any unit vector. Then for any γ
with 1√

k−1 < γ < 1,

∀T ⊆ [m] s.t. |T | ≤ k,
∑

i∈T
〈z,Ai〉2 ≤ 1 + δ, and

|{ i ∈ [m] : |〈z,Ai〉| > γ }| < 1 + δ

γ2
.

3 Testing Procedure and Identifiability

In this section we describe and prove the correctness of our testing procedure that checks
if a given unit vector z is close to any column of the dictionary A. The procedure works
as follows: it takes a value η as input and checks if the inner product |〈z,Ax〉| only takes
values in [0, η]∪ [1−η,C(1+η)] for most samples x, and if |〈z,Ax〉| ∈ [1−η,C(1+η)] for a
non-negligible fraction of samples. In other words, a vector z is rejected only if |〈z,Ax〉| ∈
(2η, 1 − 2η) for a non-negligible fraction of the samples, or if |〈z,Ax〉| ∈ [1 − η,C(1 + η)]
for a negligible fraction of samples. For any η ∈ (0, 1), we will often use the notation Iη
to denote the set { t ∈ R : |t| ∈ [1− η,C(1 + η)] ∪ [0, η] }, i.e. the range of values close to
0 or 1.

Algorithm TestColumn(z, Y = { y(1), . . . , y(N) } , κ0, κ1, η)

1. Let κ̃1 be the fraction of samples such that |〈z, y(r)〉| ∈ [1− η,C(1 + η)] and κ̃0 be
the fraction of samples such that |〈z, y(r)〉| /∈ [1− η,C(1 + η)] ∪ [0, Cη].

2. If κ̃0 < κ0 and κ̃1 ≥ κ1, return (YES, ẑ), where z′ =
mean

(
{ y(r) : r ∈ [N ] s.t. 〈y(r), z〉 ≥ 1

2 }
)

and ẑ = z′/‖z′‖2.

3. Else return (NO, ∅).

Figure 1:

We show the following guarantees for Algorithm TestColumn. We will prove the
guarantees in a slightly broader setup so that it can be used both for the identifiabil-
ity results and for the algorithmic results. We assume that we are given N samples
{ y(r) = Ax(r) : r ∈ [N ] }, when the value distribution (distribution of each non-zero co-
ordinate of a given sample x(r)) is given by D(v) (see (7) in Section 2). We make the follow-
ing mild assumption about the sparsity pattern (support); for any i and any T ⊂ [m]\{ i },
we assume that there are at least qminN samples which contain i but do not contain T in
the support. Note that for the semi-random model, if β fraction of the samples come from
the random portion, then qmin ≥ 1

2βk/m with high probability.

In what follows, it will be useful to think of η = O(1/poly log(n)), γ0 = n−Ω(1), the de-
sired accuracy η0 = 1/poly(n), sparsity k = O(n/poly log(n)), and the desired failure prob-
ability to be γ = exp(−n). Hence, in this setting κ0 = n−Ω(1) and δ = O(1/poly log(n))
as well.
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Theorem 3.1 (Guarantees for TestColumn). There exists constants c0, c1, c2, c3, c4, c5 >
0 (potentially depending on C) such that the following holds for any γ ∈ (0, 1), η0 < η ∈
(0, 1) satisfying

√
c3k
m < η < c1

log2
(

mn
qminη0

) . Set κ0 := c4γ0ηqmin/(km). Suppose we are

given N ≥ c2knm log(1/γ)
η30γ0κ0

samples y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ <
( η
16C log(1/κ0)

)2
,

• ∀i ∈ [m], T ⊂ [m]\{ i } with |T | ≤ c3/η2, there at least qminN samples whose supports
all contain i, but disjoint from T .

Suppose we are given a unit vector z ∈ R
n, then TestColumn(z, { y(1), . . . , y(N) } , 2κ0, κ1 =

c5qminγ0η, η) runs in times O(N) time, and we have with probability at least 1− γ that

• (Completeness) if ‖z− bAi‖2 ≤ η′ = η/(8C log(1/κ0)) for some i ∈ [m], b ∈ {−1, 1 },
then Algorithm Testvector outputs (YES, ẑ).

• (Soundness) if unit vector z ∈ R
n passes TestColumn, then there exists i ∈ [m], b ∈

{−1, 1 } such that ‖z − bAi‖2 ≤
√

8η. Further, in this case ‖ẑ − bAi‖2 ≤ η0.

Remark 3.2. We note that the above algorithm is also robust to adversarial noise. In
particular, if we are given samples of the form y(r) = Ax(r) + ψ(r), where ‖ψ(r)‖2 ≤ O(η),
then it is easy to see that the completeness and soundness guarantees go through since
the contribution to 〈y(r), z〉 is at most |〈ψ(r), z〉| ≤ ‖ψ(r)‖ = O(η).

The above theorem immediately implies an identifiability result for the same model
(and hence the semi-random model). By applying Algorithm TestColumn to each z in
an Ω̃(η)-net over R

n dimensional unit vectors and choosing γ = exp
(
− Ω(n log(1/η))

)
in

Theorem 3.1 and performing a union bound over every candidate vector z in the net, we
get the following identifiability result as long as k < n/poly log(n).

Corollary 3.3 (Identifiability for Semi-random Model). There exists constants c0, c1, c2, c3, c4, c5, c6 >
0 (potentially depending on C) such that the following holds for any k < n/ log2c1 m,

η0 ∈ (0, 1). Set κ0 := c0γ0 log−c1 mqmin. Suppose we are given N ≥ c2knm logc1 m log(1/κ0)
η30γ0qmin

samples y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ < c5
log(1/κ0) log

c6 m ,

• ∀i ∈ [m], T ⊂ [m] \ { i } with |T | ≤ c4 log2c1 m, there at least qminN samples whose
supports all contain i, but disjoint from T .

Then there is an algorithm that with probability at least 1− exp(−n) finds the columns Â
such that ‖Âi − biAi‖2 ≤ η0 for some b ∈ {−1, 1 }m.

The second condition in the identifiability statement is a fairly weak condition on the
support distribution. Lemma 3.8 for instance shows that a subset of samples which satisfy
a weak notion of pairwise independence in the samples suffices for this to hold.

The guarantees for the test (particularly the soundness analysis) relies crucially on
an anti-concentration statement for weighted sums of independent symmetric random
variables, which may be of independent interest. Assuming that a weighted sum of inde-
pendent random variables that are symmetric and bounded take a value close to t with
non-negligible probability κ, then we would like to conclude that it also takes values in
[t/3, 2t/3] with non-negligible probability that depends on κ. Central limit theorems like
the Berry-Esseén theorem together with Gaussian anti-concentration imply such a state-
ment when κ is large e.g., κ = Ω(1); however even when the weights are all equal, they
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do not work when when κ = 1/poly(n,m) ≪ 1/
√
k, which is our main setting of interest

(this interest of κ corresponds to the tail of a Gaussian, as opposed to the central portion
of a Gaussian where CLTs can be applied for good bounds).

We first recall the Berry-Esseén central limit theorem (see e.g., [Fel68]).

Theorem 3.4 (Berry-Esseén). Let Z1, . . . , Zℓ be independent r.v.s satisfying E[Zi] = 0,
|Zi| ≤ η ∀i ∈ [ℓ], and

∑
i∈[ℓ] E[Z2

i ] = 1. If Z =
∑ℓ

i=1 Zi and F is the cdf of Z and Φ is the
cdf of a standard normal distribution, then supx |F (x)− Φ(x)| ≤ η.

The following is a simple consequence the Berry-Esseén theorem by using the properties
of a normal distribution.

Fact 3.5. Under the conditions of Theorem 3.4, for any a < b we have

P
Z

[a ≤ Z ≤ b] ≥ Φ(b)− Φ(a)− 2η.

We now proceed to the anti-concentration type lemma which will crucial in the analyis
of the test; the setting of parameters that is of most interest to us is when κ = 1/poly(n),
η = O(1/poly log(m)) and ℓ = k (this corresponds to the support of a sample x).

Lemma 3.6. For any constant C ≥ 1, there exists constants c0 = c0(C) ∈ (0, 1), c1 =
c1(C) ∈ (0, 1), such that the following holds. Let η′ ∈ (0, 1

32C ), κ ∈ (0, 1) and let X1,X2, . . . ,Xℓ

be independent zero mean symmetric random variables taking any distribution over values
in [−C,−1]∪ [1, C] and Z =

∑ℓ
i=1 aiXi where ‖a‖2 = 1 and ‖a‖∞ ≤ η. For any t ≥ 1 and

β ∈ ( 1
16C ,

7
16C ) with η < c1t,

P
X

[
Z ∈

[
(1−η′)t, (1+η′)Ct

]]
≥ κ =⇒ P

X

[
Z ∈

[β
2 (1−η′)t, 32β(1+η′)Ct

]]
≥ min

{κ
2
, c0

}
.

(13)

In the above lemma, c0, c1 > 0 are appropriately chosen small constants such that

c0 = min
r∈[1/(32C2),10C]

1
2(Φ(3r)− Φ(r)) ≥ 1

2

(
Φ
(

10C + 1
16C2

)
− Φ(10C)

)
, c1 = c0

80C2

where Φ(t) is the c.d.f. of a standard normal at t > 0. Note that for our choice of C, the
two intervals [(1− η′)t, (1 + η′)Ct] and [β2 (1− η′)t, 3β2 (1 + η′)Ct] are non-overlapping. We
also remark that the desired interval [βt/2, 3Cβ/2] can be improved to a smaller interval
around [(β − ε)t, (β + ε)Ct] with corresponding losses both in various constants.

Proof. We will denote the two intervals of interest by I ′1 = [1 − η′, (1 + η′)C] and I ′β =

[12β(1−η′)t, 32β(1+η′)Ct]. Let c′ ≥ 1 be a sufficiently large absolute constant that depends
on C (c′ = 40C2 suffices). We have two cases depending on how large t is compared to the
variance (remember ‖a‖2 = 1). The first case when t ≥ c′ corresponds to the tail of the
distribution, while the second case when t < c′ corresponds to the central portion around
the mean.

Case t ≥ c′: In this case, we will couple the event when Z ∈ I ′1 to the event when Z ∈ I ′β.

Let (x1, . . . , xℓ) ∈ ([−C,−1] ∪ [1, C])ℓ be a fixed instantiation of X and let λi = aixi and∑
i λi = λ.
Choose a random partition T ⊆ { 1, . . . , ℓ } by picking each index i ∈ [ℓ] i.i.d. with

probability µ = 1 − 2β . Let Yi be the corresponding indicator random variable; note
that E[

∑
i λiYi] = µλ where µ ∈ (18 ,

7
8) for C ≥ 1, and Var[

∑
i λiYi] = µ(1 − µ)

∑
i λ

2
i ≤

C2‖a‖22/2 ≤ C2/2. By Chebychev inequality, we have that when λ ∈ I ′1,

P

[∣∣∑

i∈T
λi − µλ

∣∣ > βλ

2

]
= P

Y

[∣∣∑

i

λiYi − µλ
∣∣ > βλ

2

]
<

2C2

β2λ2
<

1

2
, (14)
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where the last inequality holds since λ ≥ (1 − η′)t and βλ ≥ 0.9βt ≥ 0.9c′/(16C) ≥ 2C,
from our choice of c′. Hence, the contribution to the sum Z from the random partition T
is around (1−2β) fraction of the total sum with probability 1/2 (over just the randomness
in the partition).

For X = (X1,X2, . . . ,Xℓ) consider the following r.v. coupled to X based on the
random set T that is chosen beforehand:

X ′ = (X ′1,X
′
2, . . . ,X

′
ℓ), where X ′i =

{
−Xi if i ∈ T
Xi otherwise

.

Each of the Xi are symmetric with E[Xi] = 0 and Xi are independent of ai and mutu-
ally independent, so X and X ′ are identically distributed, and the corresponding map is
bijective. Hence if

∑

i

αiXi = λ ∈ I ′1, then
∑

i

αiX
′
i ∈ [(β−β

2 )λ, (β+β
2 )λ] = [β2λ,

3β
2 λ],with probability ≥ 1

2 ,

over just the randomness in the partition T . Let E0 represent the event that Z ∈ [(1 −
η′)t, (1 + η′)Ct] and E∗ be the event that Z ∈ [β2 (1− η′)t, 32β(1 + η′)Ct]. Let x ∈ R

ℓ be an
occurrence of E0; for every fixed occurrence x ∈ E0, since (14) holds with probability at
least 1/2, we have that the corresponding coupled occurrence x′ ∈ E∗ with probability at
least 1/2 (the map from x to x′ corresponding to the coupling bijective). Hence, P[E∗] ≥
κ/2, as required.

Case t ≤ c′: In this case, we cannot use the above coupling argument since the variance
from the random partition is too large compared to the sum Z. However, here we will just
use the Berry-Esseén theorem to argue the required concentration. Firstly ‖a‖∞ ≤ η <

1
80C2 c0t ≤ c0c

′/(80C2) ≤ c0/2. Note that [β2 t,
3β
2 Ct] corresponds to an interval of size at

least βt around βt ≥ t/(16C). Further β ∈ ( 1
16C ,

7
16C ). We also have if σ2 = Var[Z], then

1 ≤ σ2 ≤ C2 since ‖a‖2 = 1. Let Z ′ = Z/σ.
Hence, from Fact 3.5 applied to Z ′ we conclude that

P

[
Z ∈ [β2 (1− η′)t, 3β2 (1 + η′)Ct]

]
≥ P

[
Z ′ ∈ [ βt2σ ,

3βCt
2σ ]

]
≥ Φ

(3βt

2σ

)
− Φ

( βt
2σ

)
− 2η

≥ min
r= βt

2σ
∈[ 1

32C2 ,10C]

(Φ(3r)− Φ(r))− 2η ≥ 2c0 − 2η ≥ c0,

where the last line uses our choice of c0.

3.1 Analysis and Identifiability of the Semirandom model for k = Ω̃(m)

We start with the soundness analysis for the test.

Lemma 3.7 (Soundness). There exists constants c0, c1, c2, c3, c4 > 0 (potentially depend-
ing on C) such that the following holds for any η, γ, κ ∈ (0, 1) satisfying

√
c3k/m < η < c1.

Suppose ∀i ∈ [m], T ⊂ [m]\{ i } with |T | ≤ c3/η2 , there at least N0 ≥ c2Cη−1γ−10 · log(1/γ)
samples whose supports contain i, but not any of T . Suppose z is a given unit vector
such that |〈z,Ai〉| < 1 − 4η for all i ∈ [m]. Furthermore, suppose there are at least
κN ≥ c2 log(1/γ) samples such that |〈z,Ax〉| ∈ [1 − η,C(1 + η)]. Then with probabil-
ity at least 1 − γ, there are at least min {κN/4, c4γ0ηN0 } samples such that |〈z,Ax〉| ∈
[η/(36C), 1 − 2η].
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In the above lemma, a typical setting of parameters is η = 1/poly log(n), κ = 1/poly(n),
and γ will be chosen depending on how many candidate unit vectors z we have; for instance,
to be exp(−O(n)). We first present a couple of simple lemmas which will be useful in
the soundness analysis. The following lemma shows that in a semirandom set, among
the “random” portion of the samples, given a fixed i ∈ [m] and T ⊆ [m] \ { i } of small
size, there are many samples x ∈ R

m whose support contains i and not T . This only
uses approximate pairwise independence of the support distribution. This will be used
crucially by our testing procedure.

Lemma 3.8. For any s ≥ 2(t + 1) logm, suppose we have N0 ≥ 8sm/k samples drawn

from the “random” model D(s)
R ⊙ D(v) (random support). Then with probability at least

1−exp(−s), we have that for all i ∈ [m], and all T ⊂ [m]\{ i } such that |T | ≤ t ≤ m/(2τk)
we have at least s samples that all contain i but do not contain T in their support.

Proof. Consider a fixed i ∈ [m], and a fixed set T ⊆ [m] \ { i } with |T | ≤ t. Then

P
x∼D(s)

[
supp(x) ∋ i ∧ supp(x) ∩ T = ∅

]
≥ P
D(s)

[
i ∈ supp(x)

]
−
∑

j∈T
P
D(s)

[
i ∈ supp(x) ∧ j ∈ supp(x)

]

≥ k

m

(
1− τk|T |

m

)
≥ k

2m
.

since t ≤ m/(2τk). Hence, if we have N0 samples, the expected number of samples that
do not contain T but contain i in its support is at least N0k/(2m) ≥ 2s. Hence, by using
Chernoff bounds, and a union bound over all possible choices (at most mt+1 of them), the
claim follows.

The following lemma is a simple consequence of Berry-Esséen theorem that lower
bounds the probability that the sum of independent random variables is very close to 0.

Lemma 3.9. Let C ≥ 1 and η1 ∈ (0, 1/(32C)] be constants. Let Z =
∑ℓ

i=1 αiXi where Xi

are mean zero, symmetric, independent random variables taking values in [−C,−1]∪ [1, C]
and let ‖α‖2 ≤ 1 and ‖α‖∞ < η1. Then there exists a constant c1 = c1(C) > 0 (potentially
depending on C) such that

P

[ ℓ∑

i=1

αiXi ∈ [0, 9Cη1)
]
≥ c1η1.

Proof. If σ21 is the variance of Z, then σ21 =
∑

i α
2
i Var[xi] . Hence, ‖α‖2 ≤ σ1 ≤ C‖α‖2.

We split the elements depending on how large they are compared to the variance. Let
η′ = min { η1, σ/(16C) }. Let Tg = { i ∈ [ℓ] : |αi| ≤ η′ }, and let Tb = { i ∈ [ℓ] : |αi| > η′ }.
Firstly, when η′ = η1 we have |Tb| = 0 since ‖α‖∞ ≤ η1. Otherwise, |Tb| ≤ 256C2.

Applying Fact 3.5 due to the Berry-Esséen theorem to the sum restricted to the small
terms i.e., in Tg,

P

[∑

i∈Tg

αixi ∈ [0, 8η1C]
]
≥ P

[∑

i∈Tg

αixi ∈ [0, 8η′C]
]
≥ Φ

(
8η′C
σ1

)
− Φ(0)− 2η′C

σ1

≥ 1
2erf

(
4
√

2η′C
σ1

)
− 2η′C

σ1
≥ η′C

8σ1
≥ η′

8‖α‖2

≥ min

{
η1

8‖α‖2
,

σ1
128C‖α‖2

}
≥ η1

128C‖α‖2
,

where the second line uses the fact that 1
2erf(4

√
2δ) ≥ (2 + 1

8)δ for all δ ≤ 0.2.
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Further, since each xi is independent and symmetric, we have
∑

i∈Tb
αixi ∈ [0, η1C]

with probability at least 2−|Tb| ≥ 2−256C
2
. Since

∑
i∈Tb

αixi and
∑

i∈Tg
αixi are indepen-

dent, we have for some constant c1 > 0 (e.g., c1 = 2−256C
2
/4 suffices)

P

[∑

i∈ℓ
αixi ∈ [0, 9Cη1)

]
≥ P

[∑

i∈Tg

αixi ∈ [0, 8Cη′]
]
× P

[∑

i∈Tb

αixi ∈ [0, Cη1]
]
≥ c1η1
C‖α‖2

.

We now proceed to the soundness proof, which crucially the weak anti-concentration
statement in Lemma 3.6.

Proof of Lemma 3.7. For convenience, let η′ = η/(18C). Let Tlg = { i ∈ [m] : |〈z,Ai〉| > η′ }.
Note that from Lemma 2.12, we have that |Tlg| ≤ 2/(η′)2. Let αi = 〈z,Aj〉.

Case |Tlg| = 0. In this case, it follows by applying Lemma 3.6, and stitching its guar-
antees across different supports. Let S be a fixed support, and condition on x having a
support of S. Let

κ(S) = P
x∼D

[∣∣∑

i∈S
〈z,Ai〉xi

∣∣ ∈ [1− η,C(1 + η)]
∣∣ supp(x) = S

]
.

Let α ∈ R
S be defined by αi = 〈z,Ai〉 for each i ∈ S. We will apply Lemma 3.6 to the

linear form given by Z =
∑

i∈S aiXi, where random variable Xi = xi, a = α/‖α‖2 and
consider t = 1/‖α‖2. Also ‖a‖∞ = γ/‖α‖2 < c1t. Applying Lemma 3.6 with η′ = η and
β = 1/(3C), we have

P

[∣∣∑

i

αixi
∣∣ ∈ [1− η,C(1 + η)]

]
≥ κ(S) =⇒ P

[∣∣∑

i∈S
αixi

∣∣ ∈ [ 1
6C − η, 12 + η]

]
≥ c0κ(S)

2
.

Since η <
1

16C
, P

[∣∣∑

i∈S
αixi

∣∣ ∈ [2η, 12 + η]
]
≥ c0κ(S)

2
.

Summing up over all S, and using κ =
∑

S q(S)κ(S), we get that

P
x∼D

[
2η ≤ |〈z,Ax〉| ≤ 1− 4η

]
≥ c0

2
· κ.

Further, c0κN ≥ Ω(log(1/γ)). Hence, using Chernoff bounds we have with probability
at least (1− γ) that if κN samples x satisfy |〈z,Ax〉| ∈ [1− η,C + η], then c0

4 κN samples
satisfy |〈z,Ax〉| ∈ (2η, 1 − 2η). Hence z fails the test with probability at least 1− γ.

Case |Tlg| ≥ 1. Let j ∈ Tlg. Let D̃ be the distribution over vectors x conditioned on
supp(x) ∩ Tlg = { j }. Since |Tlg| ≤ 2/(η′)2 ≤ c3/η

2, we have that at least N0 samples x
s.t. j ∈ supp(x) and Tlg ∩ supp(x) = { j }.

On the other hand for any given sample with given support S (|S| ≤ k), ‖αS‖22 ≤
‖AS‖22 ≤ 1 + δ . Further, ‖α‖∞ ≤ η′ ≤ η/(18C). Applying Lemma 3.9, we have for some
constant c′ > 0 (potentially depending on C) that

P
x∼D̃

[ ∑

i∈S\{ j }
αixi ∈ [0, η/2]

]
≥ c′η. (15)

Further, since j ∈ Tlg, η′ ≤ |αj | ≤ 1 − 4η. However, recall that |xj | ∈ [1, C], hence |αjxj |
can be as large as (1 − 4η)C ≥ 1. However, since j ∈ supp(x), we are given that with
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probability at least γ0, xj ∈ [1 − η, 1 + η] (and similarly [−1 − η,−1 + η]). Hence with
probability at least γ0, we have that η′(1− η) ≤ αjxj ≤ (1− 4η)(1 + η) ≤ 1− 3η. Further
from (15) and independence of xi, we have with probability at least c′γ0η that

η

36C
≤ η′(1− η) ≤

∑

i∈S
αixi = αjxj +

∑

i∈S\Tlg

αixi ≤ 1− 3η +
η

2
≤ 1− 5η/2.

Note that the value distribution is independent of the sparsity. Hence as before, apply-
ing Chernoff bounds for the N0 samples we get that with probability at least 1 − γ that
c′

18C δ0ηN0 ≥ Ω(log(1/γ)) samples have η/(36C) ≤ |〈z,Ax〉| ≤ 1− 2η.

We now present a simple lemma that is useful for completeness.

Lemma 3.10. For any η ∈ (0, 1), κ0 ∈ (0, 12 ), suppose for some i ∈ [m] and b ∈ {−1, 1 },
let Âi be a vector such that ‖Âi − bAi‖2 ≤ η′ < η

8C log(1/κ0)
. Let { y(1), y(2), . . . y(N) } be a

set of samples generated from the model where y(r) = Ax(r), where x(r) is a k-sparse vector
with arbitrary sparsity pattern, and the non zero values drawn independently from the dis-
tribution D(v). Furthermore, assume that A is (k, δ)-RIP for 0 <

√
δ < η/(16C log(1/κ0)).

Then for a fixed sample r ∈ [N ]

P

[
|〈y(r), Âi〉 − bxi| ≥ η

]
≤ κ0. (16)

Further, we have with probability at least 1− κ0N that

∀r ∈ [N ], |〈y(r), Âi〉 − 〈y(r), bAi〉| ≤ 4Cη′ log(1/κ0) < η/2. (17)

|〈y(r), Âi〉 − bxi| ≤ 4C log(1/κ0)(η′ + 2
√
δ) < η. (18)

Proof. Consider a fixed sample y(r) = Ax(r). Define the random variable Qr = 〈y(r), bAi−
Âi〉; here the support of x(r) is fixed, but the values of the k non-zero entries of x(r) are
independent and picked from D(v). Similarly, let Rr = 〈y(r), bAi〉 − bxi. For each r ∈ [N ],
let Er represent the event

[
|Qr| ≥ 4Cη′ log(1/κ0) or |Rr| ≥ 8C

√
δ log(1/κ0)

]
.

Let T denote the support of x(r), and let x = x(r) for convenience. Let ψ = bAi − Âi.
Note that ψ,A are fixed, and xj are picked independently. If AT represents the submatrix
of A formed by the columns corresponding to T , then we have using the (k, δ)-RIP property
of A that if we denote by

Qr = 〈ψ,Ax〉 =
∑

j∈T
〈ψ,Aj〉xj

Var[Qr] =
∑

j∈T
〈ψ,Aj〉2Var[xi] ≤ C2

∑

j∈T
〈ψ,Aj〉2 ≤ C2‖AT ‖2‖ψ‖22 ≤ (1 + δ)2C2(η′)2.

Further each entry is at most |〈ψ,Aj〉xj | ≤ C‖ψ‖2 ≤ Cη′. Applying Bernstein’s inequality
with t = 4Cη′ log(1/κ0)

P

[
|Qr| ≥ t

]
≤ 2 exp

(
− t2

2Var[Qr] + Cη′t

)
≤ 2e−2 log(1/κ0) ≤ κ0

2
.

Similarly, we analyze Rr − bxi = 〈bAi, Ax〉 − bxi =
∑

j∈T\{ i }〈Ai, Aj〉xj, where xi = 0 if

i /∈ T . From Lemma 2.11 we have that the Var[Rr] ≤ 3C2δ, E[Rr] = 0 and |〈Ai, Aj〉xj | ≤
2C
√
δ. Hence, from Bernstein inequality with t = 8C log(1/κ0)

√
δ we again get

P

[
|Rr| ≥ 8C

√
δ log(1/κ0)

]
≤ 2e−2 log(1/κ0) < κ0/2.

Hence P[Er] ≤ P

[
|Qℓ| > 4Cη′ log(1/κ0)

]
+ P

[
|Rr| > 8C

√
δ log(1/κ0)

]
≤ κ0.
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Hence, performing a union bound over all the s events E1, . . . , EN for the N samples,
we have that both (17), and (18) hold with probability at least 1− κ0N .

The completeness analysis follows in straightforward fashion from Lemma 3.10. In

what follows, given N samples y(1), . . . , y(N), let q(1) = mini∈[m]
1
N

∑
r∈[N ] I[x

(r)
i 6= 0].

Note that q(1) ≥ qmin.

Lemma 3.11 (Completeness). There exists constants c2, c3 > 0 (potentially depending on
C) such that the following holds for any η, γ ∈ (0, 1), κ0 ∈ (0, q(1)/2) satisfying

√
c3k/m <

η < c1. Let A be (k, δ)-RIP for
√
δ < η/(16C log(1/κ0)) and z ∈ R

n be a given unit vector
such that ‖z − bAi‖ ≤ η′ ≤ η/(8C log(1/κ0)) for some i ∈ [m], b ∈ {−1, 1 }. Suppose
we are given N ≥ c2 log(1/γ)/min {κ0, q(1) } samples of the form { y(r) = Ax(r) : r ∈ [N ] }
drawn with arbitrary sparsity pattern and each non-zero value drawn randomly from D(v)

(as in Section 2). Then, we have with probability at least 1− γ
∣∣{|〈z,Ax〉| /∈ Iη = [0, η) ∪ [1− η,C(1 + η)]

}∣∣ ≤ 2κ0N (19)∣∣∣
{
r ∈ [N ] : |〈z,Ax(r)〉| ∈ [1− η,C(1 + η)]

}∣∣∣ ≥ 1
4q

(1)N. (20)

Proof. Let z = bAi +ψ where ‖ψ‖2 ≤ η.We have from (16) of Lemma 3.10 that |〈z,Ax〉−
bxi| ≥ η with probability at most κ0. Further |xi| ∈ { 0 } ∪ [1, C]; hence, for a fixed
sample r ∈ [N ], |〈z,Ax(r)〉| /∈ Iη with probability at most κ0. Hence, at most κ0N =
Ω(log(1/γ)) samples have |〈z,Ax(r)〉| /∈ Iη in expectation. Note that the value distribution
is independent of the sparsity. Hence applying Chernoff bounds for the N independent
samples we get that with probability at least 1− γ that (19) holds.

Similarly, |xi| 6= 0 for at least q(1)N fraction of the samples, and the value distribution
is symmetric. Further, from (16) of Lemma 3.10 |〈z,Ax〉| ≥ 1−η with probability at least
q(1) − κ0/2 ≥ q(1)/2. Hence, using a similar argument involving Chernoff bounds, (20)
holds.

Lemma 3.12 (Amplifying Accuracy). There exists constants c1, c2, c3 > 0 (potentially
depending on C) such that the following holds for any η0 < c1, γ ∈ (0, 1).Let A be (k, δ)-
RIP for

√
δ < c′/(16C log( mn

q(1)η0
)) and z ∈ R

n be a given unit vector such that ‖z− bAi‖ ≤
η2 := c′/(8C log( mn

q(1)η0
)) for some i ∈ [m], b ∈ {−1, 1 }. Suppose we are given N ≥

c2knmη
−3
0 log(1/γ)/q(1) samples of the form { y(r) = Ax(r) : r ∈ [N ] } drawn with arbitrary

sparsity pattern and each non-zero value drawn randomly from D(v) (as in Section 2).
Then, we have with probability at least 1− γ that if

ẑ =

∑
r∈[N ] y

(r)
I
[
〈z, y(r)〉 ≥ 1

2

]
∑

r∈[N ] I
[
〈z, y(r)〉 ≥ 1

2

] , then

∥∥∥∥
ẑ

‖ẑ‖2
− bAi

∥∥∥∥
2

≤ η0. (21)

Proof. Let z∗ = Ex∼D
[
y
∣∣〈y, z〉 ≥ 1

2

]
. We will show ‖ẑ−z∗‖2 ≤ η0/2 and ‖z∗−bAi‖2 ≤ η0/2.

For the former, we will use concentration bounds for each of the n co-ordinates. Let ℓ ∈ [n].
Observe that for any sample y, |y(ℓ)| ≤ Ck, and Var[y(ℓ)] ≤ C2k2. By applying Hoeffding
bounds, we see that with N ≥ c2Cnkη

−2
0 log(n/γ), we have that with probability at least

1− γ/2, ∀ℓ ∈ [n], |ẑ(ℓ)− z∗(ℓ)| < η0/(2
√
n); hence ‖ẑ − z∗‖2 ≤ η0/2.

Set κ0 = η0q
(1)/(16Ckm), and c1 < 1/4, and let µj = ED[xj | xj ≥ 1] for each j ∈ [m].

From Lemma 3.10 we have

P

[∣∣〈y, z〉 − bxi
∣∣ ≥ c1

]
≤ κ0 =⇒ P

[
I[〈y, z〉 ≥ 1

2 ] 6= I[bxi ≥ 1]
]
≤ κ0

E
D

[
y
∣∣ bxi ≥ 1

]
=
∑

j∈[m]

E
D

[
xj
∣∣ bxi ≥ 1

]
Aj = bµiAi

24



where the last line follows from symmetry. Further, bxi ≥ 1 with probability at least
q(1)/2. If D̃ be the conditional distribution of D conditioned on 〈y, z〉 ≥ 1

2 ,

z∗ =
∑

j∈[m]

E
D̃

[xj ]Aj = bµiAi +
∑

j∈[m]

(
E
D̃

[xj ]− E
D

[xj | bxi ≥ 1]
)
Aj

‖z∗ − bµiAi‖2 ≤
∑

j∈[m]

∣∣∣∣ED̃
[xj ]− E

D
[xj | bxi ≥ 1]

∣∣∣∣ ≤
4κ0Ckm

1
2q

(1)
< η0/2,

since ‖Aj‖2 = 1. Hence, the lemma follows.

We now wrap up the proof of Theorem 3.1 and Corollary 3.3.

Proof of Theorem 3.1. The proof follows in a straightforward way by combining Lemma 3.11
and Lemma 3.7. Set κ1 = 1

2c4γ0η. Firstly, note that qmin ≤ q(1). If ‖z − bAi‖2 ≤ η for
some i ∈ [m], b ∈ {−1, 1 } then from Lemma 3.11, we have that with probability at least
1− γ/2 that |〈z, y(r)〉| /∈ Iη for at most 2κ0N samples, and |〈z, y(r)〉| ∈ [1− η,C(1 + η)] for
at least qminN/4 samples. Hence it passes the test, proving the completeness case.

On the other hand, from Lemma 3.7 applied with κ = qmin/8 and since min { 1
32 , c4γ0η } qmin ≥

2κ1 = 2c5γ0ηqmin (picking c5 = c4/2), we also get that if z passes the test, then with prob-
ability at least 1 − γ/2, we have |〈z,Ai〉| ≤ 1 − 4η i.e., ‖z − bAi‖2 ≤

√
8η for some

i ∈ [m], b ∈ {−1, 1 } as required. Further, from our choice of parameters
√

8η < η2 :=
c1/(8C log( mn

qminη0
)). Hence applying Lemma 3.12 we also get that ‖ẑ − bAi‖2 ≤ η0 with

probability at least 1− γ/2. Combining the two, we get the soundness claim.

Proof of Corollary 3.3. Consider a η′-net over R
n dimensional unit vectors where η′ =

c′η/(C log n) for some constant c′ > 0. Since we have k/m < log−2c1 m, we can set
η = log−c1 m,γ = (η′/4)n for c1 > 2. Applying Theorem 3.1 and performing a union bound
over every candidate vector z in the η′-net, we get with probability at least 1− exp(−n),
that only vectors that are O(

√
η) close to a column passes TestColumn, and there is

at least one candidate in the net η′-close to each column that passes the test. Further
‖Ai − Aj‖2 ≥ 1/2 for each i 6= j. Hence, we can cluster the candidates into exactly m
clusters of radius O(

√
η) around each true column. Picking one such candidate z for each

column Ai, and looking at its corresponding ẑ returns each column up to η0 accuracy.

4 Stronger Identifiability for Rademacher Value Distribu-

tion

In the special case when the value distribution is a Rademacher distribution (each xi is +1
or −1 with probability 1/2 each), we can obtain even stronger guarantees for the testing
procedure. We do not need to assume that there are non-negligible fraction of samples
y = Ax where the support distribution is “random” 14. Here, we just need that for every
triple i1, i2, i3 ∈ [m] of columns, they jointly occur in at least a non-negligible number of
samples.On the other hand, we remark that the triple co-occurrence condition is arguably
the weakest condition under which identifiability is possible. Proposition 4.8 shows a non-
identifiability statement even when the value distribution is a Rademacher distribution. In
this example, for every pair of columns there are many samples where these two columns
co-occur.

14In particular, we don’t need to assume for any i, T ⊆ [m] \ { i } of small size, that we have many
samples that contain i but not T .
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Theorem 4.1 (Rademacher Value Distribution). There exists constants c0, c1, c2, c3, c4 >

0 such that the following holds for any γ ∈ (0, 1), η0 < η ∈ (0, 1) satisfying
√

c3k
m <

η < c1

log2
(

mn
q0η0

) . Set κ0 := c4ηq0/(km). Suppose we are given N ≥ c2knm log(1/γ)
η30κ0

samples

y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ <
( η
16 log(1/κ0)

)2
,

• ∀i1, i2, i3 ∈ [m], there at least q0N samples whose supports all contain i1, i2, i3.

Suppose we are given a unit vector z ∈ R
n, then Algorithm 2 i.e., TestCol Rad called

with parameters (z, { y(1), . . . , y(N) } , 2κ0, κ1 = c5ηq0, η) runs in times O(N) time, and we
have with probability at least 1− γ that

• (Completeness) if ‖z − bAi‖2 ≤ η′ = η/(8 log(1/κ0)) for some i ∈ [m], b ∈ {−1, 1 },
then Algorithm 2 outputs (YES, z′).

• (Soundness) if unit vector z ∈ R
n passes Algorithm 2, then there exists i ∈ [m], b ∈

{−1, 1 } such that ‖z − bAi‖2 ≤
√

8η. Further, in this case ‖z′ − bAi‖2 ≤ η0.

As before, we note that the above algorithm is also robust to adversarial noise of the
order of magnitude O(η) in every sample. Further, the above theorem again implies an
identifiability result by applying it to each candidate unit vector z in an Ω̃(η)-net over R

n

dimensional unit vectors and choosing γ = exp
(
− Ω(n log(1/η))

)
for k < n/poly log(n).

Corollary 4.2 (Identifiability for Rademacher Value Distribution). There exists constants
c0, c1, c2, c3, c4, c5, c6 > 0 such that the following holds for any k < n/ log2c1 m, η0 ∈
(0, 1). Set κ0 := c0 log−c1 mq0. Suppose we are given N ≥ c2knmη

−3
0 q−10 logc1 m log(1/κ0)

samples y(1), . . . , y(N) satisfying

• the dictionary A is (k, δ)-RIP for δ < c5
log(1/κ0) log

c6 m ,

• ∀i1, i2, i3 ∈ [m], there at least q0N samples whose supports all contain i1, i2, i3.

Then there is an algorithm that with probability at least 1− exp(−n) finds the columns Â
(up to renaming columns) such that ‖Âi − biAi‖2 ≤ η0 for some b ∈ {−1, 1 }m.

The test procedure for checking whether unit vector z is close to a column is slightly
different. In addition to Algorithm TestColumn, there is an additional procedure that

Algorithm TestCol Rad(z, Y = { y(1), . . . , y(N) } , κ0, κ1, η)

1. Let κ̃1 be the fraction of samples such that |〈z, y(r)〉| ∈ [1− η, 1 + η] and κ̃0 be the
fraction of samples such that |〈z, y(r)〉| /∈ [1− η, 1 + η] ∪ [0, 1

32η].

2. Check if κ̃0 < κ0 and κ̃1 ≥ κ1.

3. If Yes, then compute z′ = mean
(
{ y(r) : 〈y(r), z〉 ∈ (1− 10η, 1 + 10η) }

)
,

and check if ‖z′‖2 ≤ 1.1. If yes, return (YES, ẑ), where z′ =
mean

(
{ y(r) : r ∈ [N ] s.t. 〈y(r), z〉 ≥ 1

2 }
)

and ẑ = z′/‖z′‖2.

4. Else in other cases, return (NO, ∅).

Figure 2:
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4.1 Analysis for Rademacher value distribution.

In the following lemmas, a typical setting of parameters is η = 1/poly log(n), κ = 1/poly(n),
and γ will be chosen depending on how many candidate unit vectors z we have; for instance,
to be exp(−O(n)).

The completeness analysis mainly follows along the same lines as Lemma 3.11 (and
uses Lemma 3.10); but it also has an additional component that argues about the extra
test. The following lemma is stated for a fixed unit vector z and a single sample x drawn
from D.

Lemma 4.3 (Completeness). There exists absolute constants c1, c2, c3 > 0 such that the

following holds for any η0 < η ∈ (0, c1), γ ∈ (0, 1/2) and 0 < κ0 < min
{

η0qmin
16km ,

η0q2min

2
√
k

}
.

Let A be (k, δ)-RIP for
√
δ < η/(16 log(1/κ0)) and z ∈ R

n be a given unit vector such
that ‖z − bAi‖ ≤ η′ ≤ η/(8 log(1/κ0)) for some i ∈ [m], b ∈ {−1, 1 }. Suppose we are
given N ≥ c2η

−2
0 log(1/γ)/min {κ0, qmin } samples of the form { y(r) = Ax(r) : r ∈ [N ] }

drawn with arbitrary sparsity pattern and each non-zero value drawn from a Rademacher
distribution. Then, we have with probability at least 1− γ

∣∣{|〈z,Ax〉| /∈ Iη = [0, 1
16η) ∪ [1− η, 1 + η]

}∣∣ ≤ 2κ0N (22)∣∣∣
{
r ∈ [N ] : |〈z,Ax(r)〉| ∈ [1− η, 1 + η]

}∣∣∣ ≥ 1
4qminN. (23)

‖z′‖2 ≤ 1 + η0 < 1.1, (24)

where z′ = mean
(
{ y(r) : 〈y(r), z〉 ∈ (1− 10η, 1 + 10η) } , r ∈ [N ]

)
is the statistic consid-

ered in step 3 of Algorithm 2.

Proof. The first two parts (22), (23) follow by just applying Lemma 3.11 with C = 1.
We now prove (24). Let z∗ = Ex∼D

[
Ax
∣∣〈Ax, z〉 ≥ 1

2

]
. We will show ‖ẑ − z∗‖2 ≤ η0/2

and ‖z∗ − bAi‖2 ≤ η0/2. For the former, we will use concentration bounds for each of the
n co-ordinates. Let ℓ ∈ [n]. Observe that for any sample y, |y(ℓ)| ≤ Ck, and Var[y(ℓ)] ≤
C2k2. By applying Hoeffding bounds, we see that with N ≥ c2Cnkη

−2
0 log(n/γ), we

have that with probability at least 1 − γ/2, ∀ℓ ∈ [n], |ẑ(ℓ) − z∗(ℓ)| < η0/(2
√
n); hence

‖ẑ − z∗‖2 ≤ η0/2.
Again from (16), we have with probability at least 1− κ0, 〈z,Ax〉 ∈ (1− 10η, 1 + 10η)

if and only if xi = b. If E′ is the event 〈z,Ax〉 ∈ (1 − 10η, 1 + 10η) and E′′ is the event
xi = b, then with probability at least 1− γ,

E
x∼D

[
Ax | E′

]
− E

x∼D

[
Ax | E′′

]
=
∑

x

Ax ·
(
P[x]

P[E′]
− P[x]

P[E′′]

)

∥∥∥z∗ − E
x∼D

[
Ax | xi = b

]∥∥∥
2
≤ max

x
‖Ax‖2 ·

∣∣P[E′′]− P[E′]
∣∣

P[E′′]Pr[E′]
≤ 2κ0

√
k

q2min

≤ η0
2

Further E
x∼D

[
Ax

∣∣ xi = b
]

= Ai +
∑

j 6=i

(
E

x∼D

[
xj
∣∣ xi = b

])
Aj = Ai.

Hence ‖z∗ − bAi‖2 ≤
η0
2
, ‖z′ − bAi‖2 ≤ η0.

Lemma 4.4 (Soundness). There exists constants c0, c1, c2, c3, c4 > 0 such that the fol-
lowing holds for any η0 < η ∈ (0, c1), γ, κ ∈ (0, 1). Suppose ∀i1, i2, i3 ∈ [m], the prob-
ability that i1, i2, i3 are all in the support is at least q0. Given any unit vector z such
that |〈z,Ai〉| < 1 − 4η for all i ∈ [m]. Furthermore, suppose there are at least N ≥
c2η
−2
0 log(1/γ) max {κ−1, q−10 η−1 } samples such that |〈z,Ax〉| ∈ [1 − η, 1 + η]. Then with

probability at least 1−O(γ), at least one of the following two statements hold:
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(i) There are at least min
{

κ
m4 , q0

}
· c4N samples such that |〈z,Ax〉| ∈ [ 1

16η, 1− 2η].

(ii) If z′ is the vector output by Algorithm TestCol Rad, then ‖z′‖2 > (1+
√

2)/2−η0 >
1.1.

As for the case of more general distributions, the soundness analysis for Rademacher
distributions uses the anti-concentration type statement in Lemma 3.6 about weighted
sums of independent Rademacher random variables. The following lemma specializes it
for the Rademacher case, but generalizes it to also handle the case when the weights αi can
be relatively large. While this lemma conditions on a fixed support S, the final soundness
claim will proceed by stitching together this claim over different S, since we expect very
few samples with the same fixed support S.

Lemma 4.5. There exists a universal constant c0 > 0 such that the following holds. Let
η ∈ (0, c0/40), κ ∈ (0, 1), ε ∈ (0, 12), let X1,X2, . . . ,Xm be i.i.d. Rademacher r.v.s and let
S ⊂ [m] be a fixed subset of Rm. Suppose Z =

∑
i∈S αiXi where αS ∈ R

S is any vector
with ‖αS‖2 ≤ 1 and ‖αS‖∞ < 1− 2η. Suppose

P
X

[∣∣∑

i∈S
αiXi

∣∣ ∈ [1− η, 1 + η]
]
≥ κ,

such that at least one of the following two cases holds:

(a)

P
X

[∣∣∑

i∈S
αiXi

∣∣ /∈ [0, 2η) ∪ (1− 2η, 1 + 2η)
]
≥ min

{ εκ
16
,
c0
2

}
, (25)

(b) there exists i∗1, i
∗
2 ∈ S such that |αi∗1 |, |αi∗2 | ∈ [12 − 2η, 12 + 2η] and |αi| ≤ 2η ∀i ∈

S \ { i∗1, i∗2 }, and
P
X

[∣∣ ∑

i∈S\{ i∗1,i∗2 }
αiXi

∣∣ > 8η
]
≤ εκ. (26)

The above lemma shows that if z is not close to a column, then either we have the
case that Z takes values outside of I2η for a non-negligible fraction of samples (25) (so
Algorithm TestColumn would work), or we have a very particular structure – there are
two coefficients which are both close to 1/2 in absolute value, and the rest of the terms do
not contribute much. In fact this is unavoidable – the instances in Proposition 4.8 that
exhibit non-identifiability precisely result in combinations of this form.

Lemma 4.5 involves a careful case analysis depending on the magnitude of the αi =
〈z,Ai〉. On the one hand, when all the αi are small, then Lemma 3.6 shows that 〈z,Ax〉 /∈
I2η with reasonable probability. However, when there are some large αi, it involves a
technical case analysis. Let T1/2 = { i ∈ [m] : |〈z,Ai〉| ∈ [12 − 2η, 12 + 2η] }. Before we
proceed to the proof of Lemma 4.5, we prove the following helper lemma that handles the
case when there is non-negligible contribution from terms i such that |αi| is small.

Lemma 4.6. In the above notation, let S1/2 = { i ∈ S : |αi| ∈ (12 − 2η, 12 + 2η) }, and let
Ssmall = { i ∈ S : |αi| ≤ 2η } and suppose S = S1/2 ∪ Ssmall. Also suppose

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ≥ 8η
]
≥ κ′.

Then there exists a universal constant c ∈ (0, 1) such that

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ /∈ I2η
]
≥ cκ′. (27)

Proof. We split the proof up into cases depending on |S1/2|; note that |S1/2| ≤ 4.
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Case |S1/2| ∈ { 2, 3, 4 }: We have that either

P
X

[ ∑

i∈Ssmall

αiXi ≥ 8η
]
≥ κ′

2
or P

X

[ ∑

i∈Ssmall

αiXi ≤ −8η
]
≥ κ′

2
.

From the independence of Xi, with probability at least 1/16 the signs of αiXi for all
i ∈ S1/2 match, and

∑
i∈S1/2

αiXi ≥ 1− 4η (similarly, it’s negative with probability 1/16).

Hence, (27) follows.

Case |S1/2| = 1: At least one of the two cases hold: either

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ [8η, 12−4η]∪[12+4η, 1+2η)
]
≥ κ′

4
or P

X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ (12−4η, 12+4η)
]
≥ κ′

4
.

In the first case, we have from the symmetry and independence of the Xi that
∑

i∈S1/2
αiXi

and
∑

i∈Ssmall
αiXi are aligned with probability 1/2, thus giving (27) as required. In the

second case, we apply Lemma 3.6 with a = αS
‖αS‖2 , t = 1

2‖αS‖2 , β = 1/2 and η′ = 4η/‖αS‖2
to conclude that

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ (18 − 3η, 38 + 3η)
]
≥ min

{κ′
8
, c0

}
.

Again, using the independence of Xi and since η < 1/80, we have

P
X

[∣∣∑

i∈S
αiXi

∣∣ ∈ (2η, 1 − 2η)
]
≥ min

{ κ′
16
,
c0
2

}
.

Case |S1/2| = 0: Our analysis will be very similar to the case when |S1/2| = 1. If

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ [8η, 1 − 2η] ∪ [1 + 2η, 1 + 2η)
]
≥ κ′

4
,

then this already gives (27). Otherwise we have

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ (1− 2η, 1 + 2η)
]
≥ κ′

4
.

In this case, we apply Lemma 3.6 with a = αS/‖αS‖2, t = 1/‖αS‖2, β = 1/2 and η′ =
2η/‖αS‖2 to conclude that

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ∈ (14 − 3η, 34 + 3η)
]
≥ min

{κ′
8
, c0

}
,

thus establishing (27).

We now proceed to the proof of Lemma 4.5.

Proof of Lemma 4.5. For convenience, let us overload notation and denote α = αS . From
the assumptions of the lemma, ‖α‖∞ < 1 − η. Let Ssmall = { i ∈ S : |αi| < 2η }. We now
have a case analysis depending on the contribution from Ssmall, and whether there are
some large co-efficients |αi| (i ∈ S). Finally let S1/2 = { i ∈ S

∣∣ |αi| ∈ (12 − 2η, 12 + 2η) }.
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Case 1: Ssmall = S. In this case, it follows directly from Lemma 3.6. Set a = α/‖α‖2
and t = 1/‖α‖2 and Z =

∑ℓ
i=1 aiXi. Also ‖a‖∞ = η/‖α‖2 < c0t/20. Applying Lemma 3.6

with β = 1/3, we have

P

[∣∣∑

i

αiXi

∣∣ ∈ [1− η, 1 + η]
]
≥ κ =⇒ P

[∣∣∑

i

αiXi

∣∣ ∈ [16 − η, 12 + η]
]
≥ min

{κ
2
, c0

}
.

Hence, in this case (25) follows.
Case 2: Suppose ∃i∗ ∈ S s.t. |αi∗ | ∈ (2η, 12 − 2η) ∪ (12 + 2η, 1 − 2η).

Consider the simple coupling X ′ where X ′1 = −X1 and X ′i = Xi for i ≥ 2.

∣∣∣
∑

i

αiX
′
i −
∑

i

αiXi

∣∣∣ = 2|α1| ∈ (4η, 1 − 4η) ∪ (1 + 4η, 2 − 4η]

Hence,
∣∣∣
∑

i

αiXi

∣∣∣ ∈ [1− η, 1 + η] =⇒
∣∣∣
∑

i

αiX
′
i

∣∣∣ ∈ [2η, 1 − 2η] ∪ [1 + 2η,∞).

Hence, in this case (25) follows, as PX

[∣∣∑
i∈S αiXi

∣∣ ∈ [2η, 1 − 2η) ∪ (1 + 2η,∞)
]
≥ κ.

Otherwise, S1/2 ∪ Ssmall = S. First note that |S1/2| ≤ 4.

Case 3: S1/2 ∪ Ssmall = S and

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ≥ 8η
]
< εκ.

If |S1/2| = 2, we have (26). Otherwise |S1/2| ∈ { 1, 3, 4 }. Then with probability at least

1/8, we have that
∣∣∑

i∈S1/2
αiXi

∣∣ ∈ ∪b∈{ 1,3,4 }[ b2 − 4η, b2 + 4η]. Since η < 1/20, and Xi are

independent we get (25) since

P
X

[∣∣∑

i∈S
αiXi

∣∣ /∈ [0, 2η]∪[1−2η, 1+2η]
]
≥ P

X

[∣∣∑

i∈S
αiXi

∣∣ ∈ [ b2−12η, b2+12η]
]
≥ (1− ε)κ

8
≥ κ

16
.

Case 4: S1/2 ∪ Ssmall = S and

P
X

[∣∣ ∑

i∈Ssmall

αiXi

∣∣ ≥ 8η
]
≥ εκ.

In this case we just apply Lemma 4.6 with κ′ = εκ to obtain (25).

We now show the soundness analysis of Step 2 in Algorithm 2. This will be useful
to handle the case when there are most of the contribution to 〈z,Ax〉 comes from two
columns.

Lemma 4.7. Let η ∈ (0, 1
80 ) and κ′ > 0 satisfy κ′ = 1/(4m2). Let i1, i2 ∈ [m] satisfy

|〈z,Ai1〉|, |〈z,Ai2〉| ∈ (12 − η, 12 + η), and q0 = Px∼D
[
|xi1 | = |xi2 | = 1

]
, and suppose

P
x∼D

[∣∣ ∑

i 6=i1,i2

xi〈z,Ai〉
∣∣ ≥ 8η

]
< κ′q0. (28)

If D̃ denotes the conditional distribution conditioned on 〈z,Ax〉 ∈ (1− 10η, 1 + 10η), then
‖Ex∼D̃ Ax‖ > (1 +

√
2)/2.
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Proof. Let us denote by αi1 = 〈z,Ai1〉, αi2 = 〈z,Ai2〉, and σi1 = sgn(αi1), σi2 = sgn(αi2).
Note that |αi1 |, |αi2 | ∈ (12 − η, 12 + η). Firstly, Px∼D[xi1 = σi1 ∧ xi2 = σi2 ] = q0/4.

For all samples x such that xi1 = σi1 , xi2 = σi2 (and hence supp(x) ∋ i1, i2), if∣∣∑
i 6=i1,i2

〈z,Ai〉
∣∣ ≤ 8η, then 〈z,Ax〉 ∈ (1− 10η, 1 + 10η). Hence, we have from (28) that

P
x∼D

[
xi1 = σi1 ∧ xi2 = σi2 ∧ 〈z,Ax〉 ∈ (1− 10η, 1 + 10η)

]
≥ q0 − κ′q0 ≥ q0(1− κ′).

P
x∼D

[
〈z,Ax〉 ∈ (1− 10η, 1 + 10η)

∣∣ xi1 = σi1 ∧ xi2 = σi2

]
≥ 1− κ′. (29)

From (28) since xi1 , xi2 ∈ {−1, 0, 1 } and our choice of 18η < 1/4, we have for all but κ′q0
fraction of all the samples

〈z,Ax〉 ∈ (1− 10η, 1 + 10η) =⇒ 1− 18η ≤ 1

2
(σi1xi1 + σi2xi2) ≤ 1 + 18η

=⇒ xi1 = σi1 , xi2 = σi2 ,

Hence, P
x∼D̃

[
xi1 = σi1 ∧ xi2 = σi2

]
≥ 1− κ′q0

Px∼D
[
|〈y,Ax〉| ∈ (1− 10η, 1 + 10η)

]

≥ 1− κ′q0
q0(1− κ′)

≥ 1− 2κ′.

Combined with (29) we have, ‖D̃ − D|xi1
=σi1

,xi2
=σi2
‖TV ≤ 3κ′.

Suppose we denote the vector u = σi1Ai1+σi2Ai2 and ū = Ex∼D̃[Ax] =
∑

i∈[m]Ai Ex∼D̃[xi],
then

‖u− ū‖2 ≤
∑

i∈[m]

‖Ai‖2 ·
∣∣∣∣ED[xi|xi1 = σi1 , xi2 = σi2 ]− E

D̃
[xi]

∣∣∣∣

≤
∑

i∈[m]

6κ′ ≤ 6κ′m.

We now give the soundness analysis of Algorithm TestCol Rad

Proof of Lemma 4.4. Let T1/2 = { i ∈ [m] : |αi| ∈ (12 − η, 12 + η) }. Firstly from Lemma 2.12,
|T1/2| ≤ 4. Let

κ(S) = P
x∼D

[∣∣∑

i∈S
〈z,Ai〉xi

∣∣ ∈ (1− η, 1 + η)
∣∣ supp(x) = S

]
.

Note that κ =
∑

S q(S)κ(S).

Case |T1/2| ≤ 1 or more generally, if

P
x∼D

[
|supp(x) ∩ T1/2| ≤ 1 ∧ |〈z,Ax〉| ∈ (1− η, 1 + η)

]
≥ εκ, (30)

for ε ∈ (0, 1/2) being a sufficiently small constant (we can choose ε = 1/2). For any fixed
support S such that |S ∩ T1/2| ≤ 1, applying Lemma 4.5 we get from (25) that

P
x∼D

[
|〈z,Ax〉| /∈ [0, 2η) ∪ (1− 2η, 1 + 2η)

∣∣ supp(x) = S
]
≥ min

{
εκ(S)

32
,
c1
2

}
.

Hence P
x∼D

[∣∣〈z,Ax〉
∣∣ /∈ [0, 2η) ∪ (1− 2η, 1 + 2η)

]
≥

∑

S:|S∩T1/2|≤1
q(S) · εc1κ(S)

64
≥ c1κ

128
.

Further, c1κN ≥ Ω(log(1/γ)). Hence, using Chernoff bounds we have with probability
at least (1− γ) that if κN samples x satisfy |〈z,Ax〉| ∈ [1− η, 1 + η], then c1

256κN samples
satisfy |〈z,Ax〉| ∈ [2η, 1 − 2η]. Hence z fails the test with probability at least 1− γ.
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Case |T1/2| = 2. Let T1/2 = { i1, i2 }. Since the lemma is true when (30) holds, we can
assume

P
x∼D

[
i1, i2 ∈ supp(x) ∧ |〈z,Ax〉| ∈ (1− η, 1 + η)

]
≥ (1− ε)κ. (31)

In particular, we have
∑

S∋i1,i2 q(S) ≥ (1− ε)κ ≥ κ/2.

Suppose (28) holds, then we have that if D̃ is the conditional distribution given by
Lemma 4.7

∥∥E
x∼D̃[Ax]

∥∥
2
≥ (1 +

√
2)/2. Further, as before in Lemma 3.12, we can apply

Hoeffding bounds since N ≥ c2Cnkη
−2
0 κ−1 log(n/γ) to conclude that with probability at

least 1− γ, the vector z′ in Algorithm 2 has norm at least (1 +
√

2)/2− η0 > 1.1; hence z
fails the test. So, we may assume that (28) does not hold i.e.,

P
x∼D

[
|
∑

i 6=i1,i2

xi〈z,Ai〉| ≥ 8η
]
≥ κ′q(2), (32)

where q(2) = Px∼D
[
i1, i2 ∈ supp(x)

]
. Note that the support distribution Ds and the value

distributionDv are independent. Let ES be the event that
[
PxS∼Dv

[
|∑i∈S\{ i1,i2 }〈z,Ai〉xi| ≥

8η
]
≥ κ′/2

]
. Hence we have

∑

S∋i1,i2
q(S)× P

xS∼Dv

[
|

∑

i∈S\{ i1,i2 }
〈z,Ai〉xi| ≥ 8η

]
≥ κ′

∑

S∋i1,i2
q(S)

By a simple averaging argument, P
S∼Ds

[ES ] ≥ κ′

2
· q(2).

Consider any fixed set S such that ES is true i.e., PxS∼Dv

[
|∑i∈S\{ i1,i2 }〈z,Ai〉xi| ≥

8η
]
≥ κ′/2. From Lemma 4.6, for some absolute constant c > 0,

P
xS∼Dv

[
|〈z,Ax〉| /∈ Iη

∣∣ supp(x) = S
]
≥ cκ′.

Combined with P[ES ] ≥ κ′q(2)/2 and q(2) ≥ κ/2, we get

P

[
|〈z,Ax〉| /∈ I2η ∧ i1, i2 ∈ supp(x)

]
≥ κ′q(2)

2
× cκ′ ≥ c′′(κ′)2κ =

c′κ
m4

.

As before, we can now apply Chernoff bounds since c′κN/m4 ≥ Ω(log(1/γ)), to con-
clude that if κN samples x satisfy |〈z,Ax〉| ∈ [1− η, 1 + η], then c′κN/m4 samples satisfy
|〈z,Ax〉| ∈ (2η, 1 − 2η). Hence z fails the test with probability at least 1− γ.

Case |T1/2| ∈ { 3, 4 }. Let us suppose |T1/2| = 3 (an almost identical argument works
for |T1/2| = 4). Let i1, i2, i3 ∈ T1/2. Consider samples that contain i1, i2, i3 in their
support i.e., i1, i2, i3 ∈ S For any S ∋ i1, i2, i3, let q(S) = Px∼D[supp(x) = S]. Hence,∑

S∋i1,i2,i3 q(S) ≥ q0. Since the xi are independent, we have

∀S ⊃ { i1, i2, i3 } , P
x←D

[ ∑

i∈S∩T1/2

xi〈z,Ai〉 ∈ [32 − 4η, 32 + 4η]
∣∣ supp(x) = S

]
≥ 1

8
.

Consider a fixed support S ∋ i1, i2, i3 and suppose on the one hand that for I ′ = [−1
2 −

6η,−1
2 + 6η] ∪ [−3

2 − 6η,−3
2 + 6η] ∪ [−5

2 − 6η,−5
2 + 6η],

P
x∼D

[ ∑

i∈S\T1/2

〈z,Ai〉xi ∈ I ′
∣∣ supp(x) = S

]
< 1

32

then, P
x←D

[
supp(x) = S ∧

∑

i∈S∩T1/2

xi〈z,Ai〉 ∈ [32 − 4η, 32 + 4η]
]
≥ q(S)

32
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Otherwise, for some b ∈ {−1
2 ,−3

2 ,−5
2 }, we have that

P
x∼D

[ ∑

i∈S\T1/2

〈z,Ai〉xi ∈ [b− 6η, b+ 6η]
∣∣ supp(x) = S

]
≥ 1

96 .

Applying Lemma 4.5 with β = 1
15 ,

P
x∼D

[ ∑

i∈S\T1/2

〈z,Ai〉xi ∈ [ b
30 − 6η, b

10 + 6η]
∣∣ supp(x) = S

]
≥ min

{
1

192 , c0
}
≥ c0.

Since |b|10 <
1
4 , P

x∼D

[
supp(x) = S ∧ 〈z,Ax〉 ≥ 1 + 2η

]
≥ c0q(S).

Combining the two cases, and since c0 < 1/32,

∀S ⊃ { i1, i2, i3 } , P
x∼D

[
supp(x) = S ∧ 〈z,Ax〉 ≥ 1 + 2η

]
≥ c0q(S).

Summing over S ⊃ { i1, i2, i3 } P
x∼D

[
〈z,Ax〉 ≥ 1 + 2η

]
≥ c0q0.

Again, we can use Chernoff bounds since c0q0N = Ω(log(1/γ)) to conclude that with
probability at least 1− γ, 〈z,Ax〉 /∈ I2η for at least c0q0N/2 samples, thus failing the test.

We now wrap up the proof of Theorem 4.1. The proof of Corollary 4.2 is identical to
the proof of Corollary 3.3 (we just use Theorem 4.1 as opposed to Theorem 3.1). So we
omit it here.

Proof of Theorem 4.1. The proof follows in a straightforward way by combining Lemma 4.3
and Lemma 4.4. Firstly, note that q(1) ≥ q0 . If ‖z − bAi‖2 for some i ∈ [m], b ∈ {−1, 1 }
then from Lemma 4.3, we have that with probability at least 1− γ/2 that |〈z, y(r)〉| /∈ Iη
for at most 2κ0N samples, |〈z, y(r)〉| ∈ [1 − η,C(1 + η)] for at least q0N/4 samples, and
finally ‖z′‖2 ≤ 1 + η0 < 1.1 where z′ is the vector computed in step 3 of Algorithm 2.
Hence it passes the test, proving the completeness case.

On the other hand, from Lemma 4.4 applied with κ = q0/8 and since min { 1
32 , c4η } q0 ≥

2κ1 = 2c5q0η (for our choice of c5), we also get that if z passes the test, then with
probability at least 1 − γ/2, we have |〈z,Ai〉| ≥ 1 − 4η for some i ∈ [m] as required. As
before, from our choice of parameters

√
8η < η2 := c1/(8C log( mn

qminη0
)). Hence applying

Lemma 3.12 we also get that ‖ẑ−bAi‖2 ≤ η0 with probability at least 1−γ/2. Combining
the two, we get the soundness claim.

4.2 Non-identifiability for arbitrary support distribution

Proposition 4.8 (Non-identifiability). There exists two different incoherent dictionar-
ies A,B which are far apart i.e., minπ∈permm,b∈{−1,1 }m

∑
i∈[m]‖Ai − biBi‖22 = Ω(1), and

corresponding support distributions D(s)
A ,D(s)

B (the value distribution in both cases is the
Rademacher distribution), such that if PA is the distribution over the samples y = Ax

when x ∼ DA = D(s)
A ⊙ D(v) and PB is the distribution over samples y = Bx when

x ∼ DB = D(s)
B ⊙D(v), then PA and PB are identical.

Moreover every pair of columns ii, i2 ∈ [m] occur with non-negligible probability in both

the support distributions D(s)
A and D(s)

B .
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Proof. Our construction will be based on a symmetric construction with 4 vectors. This
can be extended to the case of larger m by padding this construction with m − 4 other
random columns, or combining with many (randomly rotated) copies of the same construc-
tion.

Let A1, A2, . . . , A4 be a set of 4 orthogonal unit vectors in n dimensions. Consider four
unit vectors given by

B1 = 1
2(A1 +A2 +A3 +A4), B2 = 1

2(A1 +A2 −A3 −A4),

B3 = 1
2(A1 −A2 −A3 +A4), B4 = 1

2(A1 −A2 +A3 −A4). (33)

Note that these columnsB1, B2, B3, B4 are also pairwise orthonormal. Further, A1, A2, A3, A4

can also be represented similarly as balanced {+1
2 ,−1

2 } combinations (since the inverse
of the normalized Hadamard matrix is itself). The alternate dictionary B is comprised of
the columns (B1, B2, B3, B4, A5, . . . , Am).

The non-identifiability of the model follows from the following simple observation,
which can be verified easily.

Observation 4.9. Any {+1,−1 } weighted combination of exactly two out of the four
columns {B1, B2, B3, B4 } has one-one correspondence with a {+1,−1 } weighted combi-
nation of exactly two out of the four columns {A1, A2, A3, A4 }.

Let T : ([4]×{−1, 1 })× ([4]×{−1, 1 })→ ([4]×{−1, 1 })× ([4]×{−1, 1 }) represent
this mapping as follows: for i1, i2 ∈ [m], b1, b2 ∈ { 1,−1 }, let T (i1, b1, i2, b2) = (i′1, b

′
1, i
′
2, b
′
2).

Note that this mapping is bijective.

Now consider a support distribution D(s)
A in which every sample x contains exactly two

of the co-ordinates { 1, 2, 3, 4 } in its support, and k − 2 of the other m co-ordinates at
random. In other words, |supp(x) ∩ { 1, 2, 3, 4 }| = 2 for every x generated by DA, and
each of these pairs occur with equal probability i.e.,

∀i1 6= i2 ∈ { 1, 2, 3, 4 } , P
x∼DA

[
supp(x) ∩ { 1, 2, 3, 4 }] = { i1, i2 }

]
=

1(4
2

) =
1

6
. (34)

Consider any sample x generated by DA such that supp(x) ∩ { 1, 2, 3, 4 } = { i1, i2 },
and let xi1 = bi1 , xi2 = bi2 . Hence,

y = Ax = bi1Ai1 + bi2Ai2 +
∑

j∈[m]\{ 1,2,3,4 }
xjAj = b′i′1Bi′1

+ b′i′2Bi′2
+

∑

j∈[m]\{ 1,2,3,4 }
xjAj .

Hence for each sample y = Ax with x ∼ DA, there is a corresponding sample y =
Bx′ that is given by the bijective mapping T , and vice-versa. Note that since each of
the pairs occur equally likely, and each non-zero value is ±1 with equal probability, the

distribution of x′ is given by DB = D(s)
B ⊙ D(v) where the support distribution D(s)

B has
each of these pairs from { 1, 2, 3, 4 } occurring with equal probability 1/6, analogous to
(34). Hence, it is impossible to tell if the dictionary is {A1, A2, A3, A4, A5, . . . , Am } or
{B1, B2, B3, B4, A5, . . . , Am }, thus establishing non-identifiability.

Remark 4.10. We note that the above construction can be extended to show non-identifiability
in a stronger sense. By having k/4 blocks of 4 vectors, where each block is obtained by
applying a random rotation to the block B1, B2, B3, B4 of 4 vectors used in the above con-
struction having a support distribution that has exactly two out of the four indices in each
block, we can conclude it is impossible to distinguish between 2Ω(k) different dictionaries.
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5 Efficient Algorithms by Producing Candidate Columns

The main theorem of this section is a polynomial time algorithm for recovering incoherent
dictionaries when the samples come from the semirandom model.

Theorem 5.1. Let A be a µ-incoherent n×m dictionary with spectral norm σ. For any ε >

0, given N = poly(k,m, n, 1/ε, 1/β) samples from the semi-random modelMβ(D(s)
R , D̃(s),D(v)),

Algorithm RecoverDict with probability at least 1− 1
m , outputs a set W ∗ such that

• For each column Ai of A, there exists Âi ∈W ∗, b ∈ {±1 } such that ‖Ai− bÂi‖ ≤ ε.

• For each Âi ∈W ∗, there exists a column Ai of A, b ∈ {±1 } such that ‖Âi−bAi‖ ≤ ε,

provided k ≤ √n/ν1( 1
m , 16). Here ν1(η, d) := c1τµ

2
(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, c1 > 0

is a constant (potentially depending on C), and the polynomial bound for N also hides a
dependence on C.

The bound above is the strongest when m = Õ(n) and σ = Õ(1), in which case we get
guarantees for k = Õ(

√
n), where Õ also hides dependencies on τ, µ. However, notice that

we can also handle m = O(n1+ε0), σ = O(nε0), for a sufficiently small constant ε0 at the
expense of smaller sparsity requirement – in this case we handle k = Õ(n1/2−O(ε0)) (we
do not optimize the polynomial dependence on σ in the above guarantees). The above
theorem gives a polynomial time algorithm that recovers the dictionary (up to any inverse
polynomial accuracy) as long as β, the fraction of random samples is inverse polynomial.
In particular, the sparsity assumptions and the recovery error do not depend on β. In
other words, the algorithm succeeds as long we are given a few “random” samples (say N0

of them), even where there is a potentially a much larger polynomial number N ≫ N0 of
samples with arbitrary supports. We remark that the above algorithm is also robust to
inverse polynomial error in each sample; however we omit the details for sake of exposition.

Our algorithm is iterative in nature and crucially relies on the subroutine Recov-

erColumns described in Figure 3. Given data from a semi-random model Recover-

Columns helps us efficiently find columns that appear frequently in the supports of the
samples. More formally, if qmax is the probability of the most frequently appearing column
in the support of the semi-random data, then the subroutine will help us recover good
approximations to each column Ai such that qi ≥ qmax/ logm.

Our algorithm for recovering large frequency columns is particularly simple as it just
computes an appropriately weighted mean of the data samples. It is loosely inspired by
the initialization procedure in [AGMM15]. The intuition comes from the fact that if the
data were generated from a completely random model and if u(1), u(2) and u(3) are three
samples that contain Ai (with the same sign) then E[〈u(1), y〉〈u(2), y〉〈u(3), y〉y] is very close
to Ai (provided k ≤ n1/3). Using this one can recover good approximations to each column
Ai if the model is truly random. However, in the case of semi-random data one cannot
hope to recover all the columns using this since the adversary can add additional data in
such a way that a particular column’s frequency becomes negligible or that the support
patterns of two or more columns become highly correlated. Nonetheless, we show that by
computing a weighted mean of the samples where the weights are computed by looking
at higher order statistics, one can hope to recover columns with large frequencies. The
guarantee of the subroutine (see Figure 3) is formalized in Theorem 5.2 below. In order
to do this we will look at the statistic

E
y
[〈u(1), y〉〈u(2), y〉〈u(3), y〉 . . . 〈u(2L−1), y〉 y] (35)

for a constant L ≥ 8. Here u(1), u(2), . . . , u(2L−1) are samples that all have a particular
column, say A1, in their support such that A1 appears with the same sign in each sample.
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We will show that if A1 is a high frequency column, i.e., q1 ≥ qmax

logm , then one can indeed
recover a good approximation to A1. Notice that while the adversarial samples added
might not have u(1), u(2), . . . , u(2L−1) with certain desired properties (that are needed for
procedure to work), the random portion of the data will contain such samples with high
probability.

Theorem 5.2. There exist constant c1 > 0 (potentially depending on C) such that the fol-
lowing holds for any ε > 0 and constants c > 0, L ≥ 8. Given poly(k,m, n, 1/ε, 1/β) sam-

ples from the semi-random model Mβ(D(s)
R , D̃(s),D(v)), Algorithm RecoverColumns,

with probability at least 1− 1
mc , outputs a set W such that

• For each i such that qi ≥ q1/ logm, W contains a vector Âi, and there exists b ∈
{±1 } such that ‖Ai − bÂi‖ ≤ ε.

• For each vector ẑ ∈W , there exists Ai and b ∈ {±1 } such that ‖ẑ − bAi‖ ≤ ε,

provided k ≤ √n/(ν( 1
m , 2L)τµ2). Here ν(η, d) := c1

(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, and the

polynomial bound also hides a dependence on C and L.

Our overall iterative approach outlined in the DictLearn procedure in Figure 4 iden-
tifies frequently occurring columns and then re-weighs the data in order to uncover more
new columns. We will show that such a re-weighting can be done by solving a simple linear
program. While our recovery algorithm is quite simple to implement and simply outputs
an appropriately weighted mean of the samples, its analysis turns out to be challenging. In
particular, to argue that with high probability over the choice of samples u(1), . . . , u(2L−1),
the statistic in (35) is close to one of the frequently occurring columns of A, we need to
prove new concentration bounds (discussed next) on polynomials of random variables that
involve rarely occurring events.

Next we provide a roadmap for the remainder of this section. In Section 5.1 we develop
and prove new concentration bounds for polynomials of rarely occurring random variables.
The main proposition here is Proposition 5.4 which provides these concentration bounds
in terms of the ‖‖2,∞ norm of various “flattenings” of the tensor of the coefficients. In
Section 5.2 we use Proposition 5.4 to derive various implications specific to the case of
semi-random model for dictionary learning. This will help us argue about concentration
of various terms that appear when analyzing (35). Building on the new concentration
bounds, in Section 5.3 we provide the proof of Theorem 5.2. Finally, in Section 5.5 we
prove Theorem 5.1.

5.1 Concentration Bounds for Polynomials of Rarely Occurring Random

Variables

In this section we state and prove new concentration bounds involving polynomials of
rarely occurring random variables. We first prove the general statement and then present
its implications that will be useful for dictionary learning. We recall the distributional
assumptions about the vectors. Consider the following distribution Z over sample space
[−C,C]m: a sample ζ = (ζ1, ζ2, . . . , ζm) ∼ Z is sparsely supported with ‖ζ‖0 = pm.
The support S ⊂

([m]
pm

)
is picked according to a support distribution that is τ -negatively

correlated as defined in Section 2 (τ = 1 when it is uniformly at random)15, and con-
ditioned on the support S ⊂ [m], the random variables (ζi : i ∈ S) are i.i.d. symmetric
mean-zero random variables picked according to some distribution D(v) which is supported
on [−C,−1] ∪ [1, C]. We emphasize that while the proposition will also handle these τ -
negatively correlated support distributions (where τ = ω(1)), the following statements are

15Here, the each entry can also be chosen to be non-zero independently with probability at most p.
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interesting even when τ = 1, or when each entry is non-zero with independent probability
of k/m.

Definition 5.3. Given any tensor T ∈ R
n×d

, and any subset Γ ⊆ [d] of modes, we denote
the (Γ,∞) flattened norm by

‖T‖Γ,∞ = ‖T (Γ,Γc)‖2,∞ = max
J1⊂[m]Γ

‖T (Γ,Γc)
J1

‖2,

where T (Γ,Γc) is the flattened matrix of dimensions [m]Γ × [m][d]\Γ. Recall that for M ∈
R
n1×n2 , ‖M‖2,∞ = maxi∈[n1]‖(MT )i‖2 is the maximum ℓ2 norm of any row of M .

Note that when Γ = ∅ this corresponds to the Frobenius norm of T , while Γ = [d]
corresponds to the maximum entry of the T . Our concentration bound will depend on the
‖·‖2,∞ matrix operator norms of different “flattenings” of the tensor T into matrices 16

Proposition 5.4. Let random variables ζ(1), ζ(2), . . . , ζ(d) be i.i.d. draws from Z (sparsity
k ≤ pm), and let f be a degree d multilinear polynomial in ζ(1), . . . , ζ(d) ∈ R

m given by

f(ζ(1), . . . , ζ(d)) :=
∑

(j1,j2...,jd)∈[m]d

Tj1,...,jd

d∏

ℓ=1

ζ
(ℓ)
jℓ
,

with an upper bound B > 0 on the frobenius norm ‖T‖F ≤ B, and let

ρ =
∑

Γ⊂[d]

‖T‖2Γ,∞
B2

· (τp)−|Γ| =
∑

Γ

(‖T‖2Γ,∞
md−|Γ|

)(B2

md

)−1
· 1

(τpm)|Γ|
(36)

Then, for any η > 0we have

P

[
|f(ζ(1), . . . , ζ(d))| ≥ (C2 log(2/η))d/2 min {√ρ log(2/η)d/2, 1/

√
η } · (τp)d/2‖T‖F

]
≤ η.
(37)

Note that in the above proposition p = k/m, η will typically be chosen to be O(1/n)
and τ = O(1).The factor ρ measures how uniformly the mass is spread across the tensor.
In particular, when all the entries of the entries are within a constant factor of each other,
then we have ρ = maxΓO(1)/(pm)|Γ| = O(1). In most of our specific applications, we will
see that ρ = O(1) as long as pm >

√
m (see Lemma 5.8); however when k = pm is small,

we can tolerate more slack in the bounds required in sparse coding. Finally, we remark
that such bounds for multilinear polynomials can often to be used to prove similar bounds
for general polynomials using decoupling inequalities [dlPMS95].

Concentration bounds for (multilinear) polynomials of hypercontractive random vari-
ables are known giving bounds of the form P[g(x) > t‖g‖2] ≤ exp

(
− Ω(t2/d)

)
[O’D14].

More recently, sharper bounds that do not necessarily incur d factor in the exponent and
get bounds of the form exp(−Ω(t2)) have also been obtained by Latala and Adamczak-
Wolff [HW71, Lat06, AW15] for sub-gaussian random variables and random variables of
bounded Orlicz ψ2 norm. However, our random variables are rarely supported and are
non-zero with tiny probability p = k/m. Hence, our random variables are not very hy-
percontractive (the hypercontractive constant is roughly

√
1/p). Applying these bounds

directly seems suboptimal and does not give us the extra pd/2 term in (37) that seems
crucial for us. On the other hand, bounds that apply in the rarely-supported regime

16 This is reminiscent of how the bounds of [Lat06, AW15] depend on spectral norms of different flat-
tenings. However, in our case we get the ‖·‖2,∞ norms of the flattenings because of our focus on rarely

occuring random variables .
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[KV00, SS12] typically apply to polynomials with non-negative coefficients and do not
seem directly applicable.

We deal with these two considerations by first reducing to the case of “fully-supported
random variables” (i.e., random variables that are mostly non-zero), and then applying the
existing bounds from hypercontractivity. The following lemma shows how we can reduce
to the case of “fully supported” random variables.

Lemma 5.5. In the notation of Proposition 5.4, let T ′ = TS1×···×Sd
represent the tensor

T (with ‖T‖F ≤ B) restricted to the block given by the random supports of ζ(1), . . . , ζ(d).
Then any η > 0, we have with probability at least 1− η

‖T ′‖2F ≤ min { ρ log(1/η)d, 1/η } · (τp)dB2. (38)

We note that the concentration bounds due to Kim and Vu [KV00] can be used to
obtain similar bounds on the Frobenius norm of the random sub-tensor in terms of ρ
(particularly when every r.v. is non-zero independently with probability p). These in-
equalities [KV00] for non-negative polynomials of non-negative random variables have a
dependence on the “derivatives” of the polynomial. However we give a self-contained proof

below, to get the bounds of the above form and also generalize to the case when D(s)
R is

τ -negatively correlated support distributions.

Proof. For any ℓ ∈ [d] and j ∈ [m], let Z
(ℓ)
j ∈ { 0, 1 } represent the random variable that

indicates if j ∈ Sℓ i.e., if j is in the support of ζ
(ℓ)
j . Let

S =
∑

J=(j1,...,jd)∈[m]d

(Tj1,...,jd)2Z
(1)
j1
Z

(2)
j2
. . . Z

(d)
jd
.

We have E[S] ≤ B2(τp)d. We will show the following claim on the tth moment of S.

Claim 5.6. E[St] ≤ (td · ρ)t−1((τp)dB2)t.

We now prove the claim inductively. The base case is true for t = 1. Assume the
statement is true for t− 1.

E[St] =
∑

J(1)∈[m]d

∑

J(2)∈[m]d

· · ·
∑

J(t)∈[m]d

T 2
J(1) · T 2

J(2) . . . T
2
J(t)

∏

ℓ∈[d]
E

[ ∏

r∈[t]
Z

(ℓ)

j
(r)
ℓ

]

=
∑

J(1)

· · ·
∑

J(t−1)

T 2
J(1) . . . T

2
J(t−1)

∏

ℓ∈[d]
E

[ ∏

r∈[t−1]
Z

(ℓ)

j
(r)
ℓ

] ∑

J(t)∈[m]d

T 2
J(t)

∏

ℓ∈[d]

E

[∏
r∈[t]Z

(ℓ)

j
(r)
ℓ

]

E

[∏
r∈[t−1] Z

(ℓ)

j
(r)
ℓ

]

Let Γ ⊆ [d] denote the set of indices ℓ ∈ [d] that are not already present in { j(1)ℓ , j
(2)
ℓ , . . . , j

(t−1)
ℓ }

i.e., Γ = { ℓ ∈ [d] : j
(t)
ℓ 6= j

(1)
ℓ , j

(t)
ℓ 6= j

(2)
ℓ , . . . , j

(t)
ℓ 6= j

(t−1)
ℓ }. Hence,

E

[∏
r∈[t] Z

(ℓ)

j
(r)
ℓ

]

E

[∏
r∈[t−1] Z

(ℓ)

j
(r)
ℓ

] =

{
pτ if ℓ ∈ Γ

1 otherwise.

Further, for each of the indices ℓ ∈ [d] \ Γ, j
(t)
ℓ can take one of (at most) t indices

{ j(1)ℓ , j
(2)
ℓ , . . . , j

(t−1)
ℓ }. Since each of the terms is non-negative, we have by summing
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over all possible Γ ⊂ [d],

∑

J(t)∈[m]d

T 2
J(t)

∏

ℓ∈[d]

E

[∏
r∈[t] Z

(ℓ)

j
(r)
ℓ

]

E

[∏
r∈[t−1] Z

(ℓ)

j
(r)
ℓ

] ≤
∑

Γ⊆[d]
t(d−|Γ|) max

JΓc∈[m]d−|Γ|

∑

JΓ∈[m]Γ

T 2
J (τp)|Γ|

≤ (τp)dB2
∑

Γ⊆[d]
t(d−|Γ|)(τp)|Γ|−d max

JΓc∈[m]d−|Γ|

∑
JΓ∈[m]Γ T

2
J

B2

≤ td · ρ(τp)dB2.

Hence E[St] ≤
∑

J(1)

· · ·
∑

J(t−1)

T 2
J(1) . . . T

2
J(t−1)

∏

ℓ∈[d]
E

[ ∏

r∈[t−1]
Z

(ℓ)

j
(r)
ℓ

]
× tdρ(τp)dB2

≤ (tdρ)t−2 E[S]t−1 · ρtd(τp)dB2 ≤ (tdρ)t−1
(
(τp)dB2

)t
,

hence proving the claim. Applying Markov’s inequality with λ = tdρ1−1/tη−1/t,

P

[
S ≥ λ(τp)dB2

]
≤

E

[
St
]

λt
(
(τp)dB2

)t ≤
ttdρt−1

λt
≤ η

Hence, P

[
S ≥ tdρ1−1/t

η1/t
· (τp)d‖T‖2F

]
≤ η.

Picking the better of t = log(1/η) and t = 1 gives the two bounds.

We now prove Proposition 5.4 using Lemma 5.5 along with concentration bounds from
hypercontractivity of polynomials of random variables.

Proof of Proposition 5.4. A sample ζ(1), . . . , ζ(d) is generated as follows: first, the (sparse)
supports S1, S2, . . . , Sd ⊆ [n] are picked i.i.d and uniformly at randomly and then the values
of ξ(1), ξ(d) ∈ [−C,C]pn are picked i.i.d. from D. Suppose T ′ = T|S1|×|...|×|Sd| represents
the tensor restricted to the block given by the random supports, from Lemma 5.5

P

[
‖T ′‖F > min {√ρ log(2/η)d/2, η−1/2 } · (τp)d/2‖T‖F

]
<
η

2
. (39)

The polynomial f(ζ(1), . . . , ζ(d)) is given by

f(ζ(1), . . . , ζ(d)) = g(ξ(1), . . . , ξ(d)) :=
∑

(i1,...,id)∈[pn]d
T ′i1,...,id

d∏

ℓ=1

ξ
(ℓ)
jℓ
.

Further, the above polynomial g is multi-linear (and already decoupled) with E[g] = 0,
and

‖g‖22 = E
ξ

[( ∑

(j1,...,jd)∈[pn]d
T ′j1,...,jd

d∏

ℓ=1

ξ
(ℓ)
jℓ

)2]
=

∑

(j1,...,jd)∈[pn]d
(T ′j1,...,jd)2

d∏

ℓ=1

E
[
(ξ

(ℓ)
jℓ

)2
]

Hence ‖g‖2 ≤ Cd‖T ′‖F .

Further, the univariate random variables ξjℓ are hypercontractive with ‖ξjℓ‖q ≤ C‖ξjℓ‖2.
Using hypercontractive bounds for low-degree polynomials of hypercontractive variables
(see Theorem 10.13 in [O’D14]),

‖g‖q ≤
(
C2(q − 1)

)d‖g‖2.
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We now get the required concentration by consider a large enough q, by setting q =
t2/k/(eC2) and t = log(2/η)d/2 > (eC)d,

P

[
|g(ξ(1), . . . , ξ(d))| ≥ t‖g‖2

]
≤ ‖g‖qq
tq‖g‖q2

≤
(

(C2q)k/2

t

)q

P

[
g(ξ(1), . . . , ξ(d)) ≥ tCd‖T ′‖F

]
≤ exp

(
− dt2/d

2eC2

)
≤ η

2
. (40)

By a union bound over the two events in (39), (40), we get (37).

We just state a simple application of the above proposition for d = 1. This is anal-
ogous to an application of Bernstein bounds, except that the random variables are not
independent (only the values conditioned on the non-zeros are independent) because the
support distribution can be mildly dependent.

Lemma 5.7. There is a constant c > 0 such that given α ∈ R
m and ζ ∼ Z, we have that

P

[∣∣ ∑

j∈[m]

αjζj
∣∣ ≥ c log(1/η)C

√
τ max { ‖α‖2p1/2, ‖α‖∞ }

]
≤ η.

Proof. When T = α ∈ R
m, the two flattened norms correspond to the ‖α‖2 (when Γ = ∅)

and ‖α‖∞ (when Γ = { 1 }). Applying the bounds with ρ = max { ‖α‖2, ‖α‖∞p−1/2 } gives
the required bounds.

5.2 Implications for Sparse Coding

We now focus on applying the concentration bounds in Proposition 5.4 for the specific
settings that arise in our context. Note that in this specific instance, the corresponding
tensor has a specific form given by a sum of m rank-1 components.

Lemma 5.8. Let random variables ζ(1), ζ(2), . . . , ζ(d) be i.i.d. draws from Z (sparsity
k = pm). Consider a degree d polynomial f in ζ(1), . . . , ζ(d) ∈ R

m given by a tensor
T =

∑
i∈[m]wiM

⊗d
i (with w ∈ R

m) as follows

f(ζ(1), . . . , ζ(d)) :=
∑

(j1,j2...,jd)∈[m]d

∑

i∈[m]

wi

d∏

ℓ=1

Mijℓζ
(ℓ)
jℓ
,

where Mi is the ith column of ATA where A is a matrix with spectral norm at most σ and
incoherence µ/

√
n. Then, any η ∈ (0, 1) there exists constants c1 = c1(d) ≥ 1, we have

with probability at least 1− η that

∣∣∣f(ζ(1), . . . , ζ(d))
∣∣∣ < ν(η, d)

((
min

{
1 +

‖w‖21
τ2k2‖w‖22

,
1

η

})1/2
· ‖w‖2

(τk
m

)d/2
+ ‖w‖∞

)

≤ ν(η, d)

(√
min { 1 + m

k2 , 1/η } · ‖w‖2
(τk
m

)d/2
+ ‖w‖∞

)
(41)

where ν(η, d) = c1 log(1/η)
(
C(σ2 + µ

√
m
n ) log(n/η)

)d
captures polylogarithmic factors in

1/η and polynomial factors in the constants C, σ, µ, β = m/n, and other constants d.

We remark that the multiplicative factor of (τk/m)d/2 corresponds to the improvement
(even in the specific case of d = 2) over the bounds one would obtain using an application
of Hanson-Wright and related inequalities. This is crucial in handling a sparsity of k =
Ω̃(m1/2) in the semirandom case, and k = Ω̃(m2/3) in the random case.
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Proof. In the proof that follows we will focus on the case when τ = O(1), for sake of
exposition (the corresponding bounds with τ are straightforward using the same approach).
We are analyzing the sum

f(ζ(1), . . . , ζ(d)) =
∑

i∈[m]

wi

∑

J=(j1,j2...,jd)∈[m]d

d∏

ℓ=1

Mijℓζ
(ℓ)
jℓ

We will split this sum into many parts depending on which of the indices are fixed to
be equal to i. For Γ ⊂ [d], let

fΓ =
∑

i∈[m]

wi

∑

JΓc∈([m]\{ i })Γc

∏

ℓ′∈Γ
ζ
(ℓ′)
jℓ′
·
∏

ℓ∈Γc

Mijℓζ
(ℓ)
jℓ

=
∑

i∈[m]

wi

∏

ℓ′∈Γ
ζ
(ℓ′)
jℓ′
·
∏

ℓ∈Γc

∑

jℓ∈[m]\{ i }
Mijℓζ

(ℓ)
jℓ

We have two main cases depending on whether |Γ| > 0 or Γ = ∅. In the former case,
we will apply bounds for degree 1 (from Lemma 5.7) recursively to get the required bound.
The latter case is more challenging and we will appeal to the concentration bounds we
have derived in Proposition 5.4.

Case |Γ| > 0. For each ℓ ∈ Γc, consider the sum Hℓ =
∑

jℓ∈[m]\{ i }Mijℓζ
(ℓ)
jℓ

. We have

that E[Zℓ] = 0, and ‖Mi‖2 ≤ ‖M‖ ≤ σ2 (the spectral norm of M upper bounds the length
of any row or column), and the entries |Mijℓ | ≤ µ/

√
n ≤ ‖Mi‖2

√
k/m since k > µm/(nσ2).

Applying Lemma 5.7, we have for an appropriate constant cd ≥ 1,

P

[
|Hℓ| > cd log(n/η)σ ·

√
k
m

]
≤ η

d2dn
.

Hence, ∀i ∈ [m],

∣∣∣∣∣∣

∏

ℓ∈Γc

∑

jℓ∈[m]\{ i }
Mijℓζ

(ℓ)
jℓ

∣∣∣∣∣∣
≤ c′d

( k
m

)(d−|Γ|)/2(
Cσ log(n/η)

)(d−|Γ|)
, (42)

with probability at least (1 − η2−d). Let Zi =
∏

ℓ′∈Γ ζ
(ℓ′)
i and w′i = wi

∏
ℓ∈ΓHℓ and

Ztot =
∑

iw
′
iZi. We know that E[Zi] = 0 and P[Zi 6= 0] ≤ (k/m)|Γ|. We also have for

some constants c2, c
′
d > 0

‖w′‖22 ≤ c22
(
Cσ log(n/η)

)2(d−|Γ|)‖w‖22
( k
m

)d−|Γ|

∀i ∈ [m], |w′iZi| ≤ |Cw′i| ≤ c′d
(
Cσ log(n/η)

)d−|Γ|‖w‖∞
( k
m

)(d−|Γ|)/2

due to (42). By Lemma 5.7, we have with probability at least 1− η2−d, we have

|fΓ| = |Ztot| ≤ c′ log(1/η)
(
Cσ log(n/η)

)d(‖w‖2
( k
m

)d/2
+ ‖w‖∞

( k
m

)(d−|Γ|)/2)

≤ c′ log(1/η)
(
Cσ log(n/η)

)d(‖w‖2
( k
m

)d/2
+ ‖w‖∞

)
. (43)

Case Γ = ∅. In this case, we collect together all the terms where i /∈ { j1, j2, . . . , jd }.
Here, we will use the incoherence of A and the spectral norm of A to argue that all the
flattenings have small norm. Each entry of the tensor

∀j1, . . . , jd ∈ [m], |Tj1,...,jd| =
∑

i∈[m]\{ j1,...,jd }
wiMij1Mij2 . . .Mijd ≤ ‖w‖1

( µ√
n

)d
= µd·‖w‖1n−d/2.
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In fact this also gives a bound of ‖T‖2[d],∞ ≤ µ2d‖w‖21n−d. Further, since the frobenius
norm remains the same under all flattenings into matrices, we have

‖T‖F = ‖M⊙d−1diag(w)MT ‖F ≤ ‖M⊙d−1‖op‖diag(w)‖F ‖M‖op ≤ σ2d‖w‖2,

where the bounds on the operator norms follow from Lemma B.1. We will use the bound
B = σ2d‖w‖2 in Proposition 5.4.

Consider any flattening Γ1 ⊆ [d] of the indices, and let r1 = |Γ1|. For the matrix
T (Γ1,Γc

1), we can give a simple bound based on the maximum entry of T i.e., ‖T‖2Γ1,∞ ≤
md−|Γ1|‖T‖2[d],∞. Hence, we have

(‖T‖2Γ1,∞
md−|Γ1|

)(B2

md

)−1
· 1

(pm)|Γ1| ≤
(
µ2d‖w‖21n−d

)(
‖w‖22σ4dm−d

)−1
k−r1

≤
(µ2m
σ4n

)d ‖w‖21
‖w‖22kr1

≤
(µ2m
σ4n

)d
· m
kr1

.

When r1 ≥ 2 this already gives a good bound of Õ(m/k2) which is sufficient for our
purposes. However, this bound does not suffice when |Γ1| = r1 = 1; here we use a better
bound by using the fact that the spectral norm of M is bounded (in fact, this is where we
get an advantage by considering flattenings). Since the length of any row is at most the
spectral norm of the matrix we have

‖T‖2Γ1,∞ ≤ ‖T (Γ1,Γc
1)‖2op = ‖M⊙Γ1diag(w)(M⊙Γ

c
1)T ‖2op ≤ σ4d‖w‖2∞,

using the spectral norm bounds for Khatri-Rao products from Lemma B.1. Combining
these, the factor due to flattening is

∀Γ1 s.t. |Γ1| = 1,
‖T‖2Γ′,∞p

−|Γ′|

B2
≤ ‖w‖

2
∞m

‖w‖22k
≤ 1/k.

Hence, ρ =
∑

Γ1⊂[d]

‖T‖2Γ1,∞
B2

· p−|Γ1| = 1 +
∑

Γ1
|Γ1|=1

1

k
+
(µ2m
σ4n

)d d∑

r1=2

∑

Γ1:
|Γ′|=r1

‖w‖21
kr1‖w‖22

≤ d
(µ2m
σ4n

)d(
1 +

‖w‖21
k2‖w‖22

)
≤ d
(µ2m
σ4n

)d(
1 +

m

k2

)
,

since the number of subsets Γ1 with |Γ1| ≤ dr1 and the summation is dominated by
r1 = 2, r1 = 0. Hence, using Proposition 5.4, we get that with probability at least 1− η/2,
we have for some constant c3 = c3(d, ε′)

|f[d]| ≤ c3 min

{√
1 +

‖w‖21
k2‖w‖22

,
1√
η

}(
Cµ log(2/η)

√
m/n

)d
‖w‖2

( k
m

)d/2
. (44)

Combining the bounds (43) and (44) we have with probability at least (1− η),

∣∣∣f(ζ(1), . . . , ζ(d))
∣∣∣ < ν(η, d)

((
min

{
1 +

‖w‖21
k2‖w‖22

,
1

η

})1/2
· ‖w‖2

( k
m

)d/2
+ ‖w‖∞

)
,

where ν(η, d) = c′ log(1/η)
(
C(σ2 + µ

√
m
n ) log(n/η)

)d
.

The following lemma corresponds to a term where the tensor is of rank 1 of the form
wiM

⊗d
i .
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Lemma 5.9. Let random variables ζ(1), ζ(2), . . . , ζ(d) be i.i.d. draws from Z (sparsity
k = pm). Consider a degree d polynomial f in ζ(1), . . . , ζ(d) ∈ R

m given by a tensor
T = wiM

⊗d
i as follows

f(ζ(1), . . . , ζ(d)) := wi

∑

(j1,j2...,jd)∈[m]d

d∏

ℓ=1

Mijℓζ
(ℓ)
jℓ
,

where Mi is the ith column of ATA where A is a matrix with spectral norm at most σ and
incoherence µ/

√
n, and wi ∈ R. There exists constant c1 = c1(d) ≥ 1 such that for any

η > 0, we have with probability at least 1− η that

∣∣∣f(ζ(1), . . . , ζ(d))
∣∣∣ < |wi|

∏

ℓ∈[d]
|ζ(ℓ)i |+ c1|wi|ν(η, d)

√
τk

m
, (45)

where ν(η, d) := log(1/η)
(
C(σ2 + µ

√
m
n ) log(n/η)

)d
capture the polylogarithmic factors in

log(1/η) and polynomial factors in C,µ and m/n. Furthermore, for d ≥ 3 and for any
ε > 0 if k ≤ m2/3/(τ logm), then we have that with probability at least 1− 1/(m logm),

∣∣∣f(ζ(1), . . . , ζ(d))
∣∣∣ < c1 log(m)

(
C(σ2 + µ

√
m
n ) log(nm)

)d · |wi|
(τk
m

)(d−2)/2
. (46)

Proof. We will follow the same proof strategy as in Lemma 5.8 by splitting the sum into
many parts depending on which of the indices are fixed to be equal to i. As in Lemma 5.8,
we focus on the case when τ = 1, for sake of exposition. For Γ ⊂ [d], let

fΓ = wi

∑

JΓc∈([m]\{ i })Γc

∏

ℓ′∈Γ
ζ
(ℓ′)
jℓ′
·
∏

ℓ∈Γc

Mijℓζ
(ℓ)
jℓ

= wi

∏

ℓ′∈Γ
ζ
(ℓ′)
jℓ′
·
∏

ℓ∈Γc

∑

jℓ∈[m]\{ i }
Mijℓζ

(ℓ)
jℓ

We have three cases depending on whether |Γ| = [d] or Γ = ∅ or otherwise.

Case 0 < |Γ| < d. For each ℓ ∈ Γc, consider the sum Hℓ =
∑

jℓ∈[m]\{ i }Mijℓζ
(ℓ)
jℓ

. Recall

that ‖Mi‖2 ≤ ‖M‖ ≤ σ2. We have that E[Zℓ] = 0, and the entries |Mijℓ | ≤ µ/
√
n. As we

had in the case |Γ| > 0 in Lemma 5.8, we have for an appropriate constant cd ≥ 1,

P

[
|Hℓ| > cd log(1/η)σ ·

√
k
m

]
≤ η

d2d
.

Hence,

∣∣∣∣∣∣

∏

ℓ∈Γc

∑

jℓ∈[m]\{ i }
Mijℓζ

(ℓ)
jℓ

∣∣∣∣∣∣
≤ c′d

( k
m

)(d−|Γ|)/2(
Cσ log(n/η)

)(d−|Γ|)
, (47)

with probability at least (1 − η2−(d+1)). Summing over all Γ 6= [d], ∅, we have with
probability at least (1− η/2)

∑

Γ:0<|Γ|<d

fΓ ≤ c1wi log(1/η)
(
C(σ2 + µ

√
m
n ) log(n/η)

)d
√
k

m
, (48)

Case Γ = ∅. In this case, we collect together all the terms where i /∈ { j1, j2, . . . , jd }.
Here, we will use the incoherence of A and the spectral norm of A to argue that all the
flattenings have small norm. Each entry of the tensor

∀j1, . . . , jd ∈ [m], |Tj1,...,jd | = wiMij1Mij2 . . .Mijd ≤ wi

( µ√
n

)d
= µd · win

−d/2.
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Hence, ‖T‖2[d],∞ ≤ w2
i µ

2dn−d. Further, suppose we denote by w ∈ R
m, the vector with all

entries except the ith being 0 and ith co-ordinate being wi,

‖T‖F = ‖M⊙d−1diag(w)MT ‖F ≤ ‖M⊙d−1‖op‖diag(w)‖F ‖M‖op ≤ wiσ
2d,

where the bounds on the operator norms follow from Lemma B.1. As before, we will use
the bound B = wiσ

2d in Proposition 5.4.
Consider any flattening Γ1 ⊆ [d] of the indices, and let r1 = |Γ1|. For the matrix

T (Γ1,Γc
1), we can give a simple bound based on the maximum entry of T i.e., ‖T‖2Γ1,∞ ≤

md−|Γ1|‖T‖2[d],∞. Hence, we have

(‖T‖2Γ1,∞
md−|Γ1|

)(B2

md

)−1
· 1

(pm)|Γ1| ≤
(
µ2dw2

i n
−d)(w2

i σ
4dm−d

)−1
k−r1

≤
(µ2m
σ4n

)d
· 1

kr1
.

Since the number of subsets Γ1 with |Γ1| ≤ dr1 and the summation is dominated by r1 = 0.
Hence, using Proposition 5.4, we get that with probability at least 1 − η/2, we have for
some constant c3 = c3(d, ε′)

|f[d]| ≤ c3
(
Cµ log(2/η)

√
m/n

)d
· wi

( k
m

)d/2
. (49)

Finally, where Γ = [d], we have that fΓ = wi(Mii)
d
∏

ℓ∈Γ ζ
(ℓ)
i . Hence, combining the

bounds (48) and (49) we get with probability at least 1− η that (45) holds.
For d = 1, we have as in (47) that

f(ζ(1)) = wi

∑

j∈[m]

Mijζ
(1)
j = wiMiiζ

(1)
i + wi

∑

j 6=i

Mijζ
(1)
j

∣∣∣f(ζ(1))−wiζ
(1)
i

∣∣∣ ≤ c′wi log(1/η)Cσ
√
k/m

for some constant c′ from Lemma 5.7.
For the furthermore part, we observe that for d ≥ 3 and k = m2/3/ log2m, (k/m)3 ≤

1/(m log3m) ≤ (2dm logm)−1. Hence, all the terms with |Γ| ≥ 3 term are 0 with prob-
ability at least 1 − 1/(m logm) (i.e., η = 1/(m logm)). Hence, with probability at least
1− 1/(m logm), we have from (47) and (49)

∑

Γ⊆[d]
fΓ =

∑

Γ:|Γ|≤2
fΓ ≤ c1wi log(m)

(
C(σ2 + µ

√
m
n ) log(nm)

)d( k
m

)(d−2)/2
.

Lemma 5.10. Consider the multivariate polynomial in random variables ζ(1), ζ(2), . . . , ζ(2L)

fi
(
ζ(1), . . . , ζ(2L−1)

)
=

∑

J∈[m]2L−1

T
(i)
j1,...,j2L

∏

t∈[2L−1]
ζ
(t)
jt
,

where T (i) =
∑

i1,...,i2L−1∈[m]

E
x

[
xi1xi2 . . . xi2L−1

xi
]
Mi1 ⊗Mi2 ⊗ · · · ⊗Mi.

Then we have that ∀i ∈ [m], ‖T (i)‖F ≤ (4CL)2Lσ4L · k(L−1)/2. Further, for any η > 0

P
ζ

[∣∣fi
(
ζ(1), . . . , ζ(2L−1)

)∣∣ ≥ qi · ν(η, 2L) · 1

k1/4
√
η

((τk)3/2

m

)(2L−1)/2]
≤ η,
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where ν(η, d) := (2C)d(C2 log(2/η))d/2σ2d.
Moreover, in the “random” case when the non-zero xis satisfy (8) we get that ∀i ∈

[m], ‖T (i)‖F ≤ (4CL)2Lσ4L · ( kτ√
m

)L−1. In this case we have that for any η > 0

P
ζ

[∣∣fi
(
ζ(1), . . . , ζ(2L−1)

)∣∣ ≥ qi · ν(η, 2L) · 1

(kτ)1/6
√
η

( (τk)4/3

m

)(3L−2)/2]
≤ η. (50)

Since E[xi′ ] = 0 for each i′ ∈ [m] we only get a contribution from terms such that
the indices i1, i2, . . . , i2L−1, i2L = i are paired up an even number of times. Let S =
(S0, S1, . . . , SR) be a partition of indices { 1, 2, . . . , 2L− 1 } ∪ { 2L } such that each of the
sets |S0|, |S1|, . . . , |SR| are even and the index i i.e., 2L ∈ S0. Hence, R ≤ L− 1. All the
indices in a set Sr will take the same value i∗r i.e., for each r ∈ [R], there exists i∗r ∈ [m]
such that all indices ℓ ∈ Sr satisfy iℓ = i∗r (for r = 0, this will also be equal to i). Finally,
for a fixed partition S = (S0, S1, . . . , SR), let sr = |Sr| for each r ∈ [R]. We now upper
bound the Frobenius norm given by each partition S.

Lemma 5.11. In the above notation, for any partition S = (S0, S1, S2, . . . , SR) such that
|S1|, |S2|, . . . , |SR| are even, we have

‖TS‖F ≤ qi · C2Lσ4LkR/2 ≤ qiC2Lσ4Lk(L−1)/2, (51)

where σ is the maximum singular value of A.

Proof. Let i∗r ∈ [m] denote the common index for all the the indices in Sr i.e., ∀ℓ ∈ Sr
satisfy iℓ = i∗r . Without loss of generality we can assume that S = (S0, S1, . . . , SR) where
S0 = { 2L, 1, 2, . . . , s0 − 1 } , S1 = { s0, . . . , s0 + s1 − 1 } , . . . , SR = { 2L − sR, . . . , 2L− 1 }.
Then

TS = M⊗s0i

m∑

i∗1=1

m∑

i∗2=1

· · ·
m∑

i∗R=1

qi,i∗1,...,i∗R(s0, . . . , sR)M⊗s1i∗1
⊗M⊗s2i∗2

⊗ · · · ⊗M⊗sRi∗R

‖TS‖F ≤ C2L
∥∥∥

m∑

i∗1=1

m∑

i∗2=1

· · ·
m∑

i∗R=1

qi,i∗1,...,i∗RM
⊗s1
i∗1
⊗M⊗s2i∗2

⊗ · · · ⊗M⊗sRi∗R

∥∥∥
F
, (52)

since each group Sr in the partition is of even size, and from Lemma B.2.
We will now prove the following statement inductively on r ∈ [R] (or rather R− r).

Claim 5.12. For any fixed prefix of indices i, i∗1, . . . , i
∗
r ∈ [m], suppose we denote by

Bi,i∗1,...,i
∗
r

=
∑

i∗r+1,...,i
∗
R∈[m]

(qi,i∗1,...,i∗r ,...,i∗R
qi,i∗1,...,i∗r

)
M
⊗sr+1

i∗r+1
⊗M⊗sr+2

i∗r+2
⊗ · · · ⊗M⊗sRi∗R

,

then Bi,i∗1,...,i
∗
r
is PSD and ‖Bi,i∗1,...,i

∗
r
‖F ≤ (

√
k)R−rσ2(sr+1+···+sR).

We now prove this claim by induction on (R−r). Assume it is true for Bi,i∗1,...,i
∗
r
, we will

now prove it for Bi,i∗1,...,i
∗
r−1

. For convenience let w ∈ R
m with wi∗r = qi,i∗1,...,i∗r−1,i

∗
r
/qi,i∗1,...,i∗r−1

for each i∗r ∈ [m]. Then

Bi,i∗1,i
∗
2,...,i

∗
r−1

=

m∑

i∗r=1

wi∗rM
⊗sr
i∗r
⊗Bi,i∗1,...,i

∗
r−1,i

∗
r

∥∥∥Bi,i∗1,i
∗
2,...,i

∗
r−1

∥∥∥
F
≤
∥∥∥

m∑

i∗r=1

wi∗r‖Bi,i∗1,...,i
∗
r−1,i

∗
r
‖FM⊗sri∗r

∥∥∥
F
≤ (
√
k)R−r

∥∥∥
m∑

i∗r=1

wi∗rM
⊗sr
i∗r

∥∥∥
F
,
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where the second line follows from Lemma B.2 and the last line uses the induction hy-
pothesis. Now note that sr is even – so Bi∗1,...,i

∗
r−1

is PSD, for an appropriate flattening

into a matrix of dimension n(sr−1+···+sR)/2×(sr−1+···+sR)/2. Further, by flattening into the
corresponding symmetric matrix of dimension n(sr−1+···+sR)/2×(sr−1+···+sR)/2), we see that

Bi,i∗1,i
∗
2,...,i

∗
r−1
≤ (
√
k)R−rσsr+1+···+sR

∥∥∥
m∑

i∗r=1

wi∗rM
⊗sr/2
i∗r

(M
⊗sr/2
i∗r

)T
∥∥∥
F

= (
√
k)R−rσ2(sr+1+···+sR)

∥∥∥M⊗sr/2i∗r
diag(w)(M

⊗sr/2
i∗r

)T
∥∥∥
F

≤ (
√
k)R−rσ2(sr+1+···+sR)‖w‖2σ2sr

≤ (
√
k)R−r+1σ2(sr+sr+1+···+sR),

where the second inequality followed from Lemma B.1 and last inequality used the fact
that

∑
i wi ≤ k. Further, the base case (r = R − 1) also follows from Lemma B.1 in an

identical manner. This establishes the claim.
To conclude the lemma, we use the claim with r = 0 and observe that from (52) that

‖TS‖F ≤ C2L
∥∥∥qiM⊗s0i Bi

∥∥∥
F
≤ qi‖Mi‖s0

√
k
R
σs1+···+sR ≤ qikR/2σ2L.

Proof of Lemma 5.10. We first upper bound ‖T‖F . As described earlier, T can be written
(after reordering the modes of the tensor) as a sum of corresponding tensors TS over all
valid partitions S = (S0, S1, . . . , SR) as

T =
∑

S

TS =
∑

S

M⊗s0i

m∑

i∗1=1

m∑

i∗2=1

· · ·
m∑

i∗R=1

E
x

[
xs0i x

s1
i∗1
. . . xsRi∗R

] 2L⊗

ℓ=1

Mi∗ℓ

=
∑

S

TS =
∑

S

M⊗s0i

m∑

i∗1=1

m∑

i∗2=1

· · ·
m∑

i∗R=1

qi,i∗1,...,i∗R(s0, s1, . . . , sR)

2L⊗

ℓ=1

Mi∗ℓ

There are at most (4L)2L such partitions, and ‖TS‖F is upper bounded by Lemma 5.11.
Hence, by triangle inequality, ‖T‖F ≤ (4LC)2Lσ4Lk(L−1)/2. Finally, using Proposition 5.4
(choosing the 1/

√
η option of the two bounds), and reorganized the terms, the concentra-

tion bound follows.
Finally, the bound for the random case in (50) is obtained by the same argument in

Lemma 5.11 and using the fact that qS,i ≤ qS · τk/m for all i, S s.t. i /∈ S.

In what follows for J = (j1, . . . , jd) and H ⊂ [d], we will denote by JH = (jℓ : ℓ ∈ H)
to the subset of indices restricted to H.

Lemma 5.13. Let L be a constant and let S = (S1, S2, . . . , SR) be a fixed partition of
[2L − 1] with |Sr| ≥ 2 for all r ∈ { 2, 3, . . . , R }. Furthermore, let H1,H2, . . . HR be such
that Hr ⊆ Sr for each r ∈ [R]. For any fixed prefix of indices i∗1, . . . , i

∗
r ∈ [m], consider the

random sum

Fi∗1,i
∗
2,...,i

∗
r

=
∑

i∗r+1,...,i
∗
R∈[m]

(qi∗1,...,i∗R(d1, . . . , dR)

qi∗1,...,i∗r (d1, . . . , dr)

) R∏

p=r+1

∑

JSp\Hp∈
[m]Sp\Hp

M
|Hp|
i∗p,1

∏

t∈Hp

ζ
(t)
1

∏

t∈Sp\Hp

Mi∗p,jtζ
(t)
jt

then with probability at least 1 − η (over the randomness in ζs), for every r ≥ 1 we have
that ∣∣Fi∗1 ,i

∗
2,...,i

∗
r

∣∣ ≤ ν(η, dr) := c1 log(1/η)
(
2C2(σ2 + µ

√
m
n ) log(n/η)

)dr (53)
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where dr =
∑R

i=r+1 |Si|, and ν(η, d) captures poly-logarithmic factors in 1/η and polyno-
mial factors in the constants C, σ, µ, β = m/n, and other constants d.

Proof. We will prove this through induction on (R − r). Assume it is true for Fi∗1,...,i
∗
r
,

we will now prove it for Fi∗1,...,i
∗
r−1

. Let q′i∗1,...,i∗r = qi∗1,...,i∗r(d1, . . . , dr). For convenience let

w ∈ R
m with wi∗r = q′i∗1,...,i∗r−1,i

∗
r
/q′i∗1,...,i∗r−1

for each i∗r ∈ [m]. Then

Fi∗1,i
∗
2,...,i

∗
r−1

=
∑

i∗r ,i
∗
r+1,...,i

∗
R∈[m]

(q′i∗1,...,i∗r−1,i
∗
r ,...,i

∗
R

q′i∗1,...,i∗r−1

) R∏

p=r

( ∑

JSp\Hp

∈[m]Sp\Hp

∏

t∈Hp

ζ
(t)
1

∏

t∈Sp\Hp

ζ
(t)
jt
Mi∗p,jtM

|Hp|
i∗p,1

)

=
∑

i∗r∈[m]

wi∗r

( ∏

t∈Sr\Hr

∑

jt∈[m]

ζ
(t)
jt
Mi∗r ,jtM

|Hr|
i∗r ,1

)
·
∏

t∈Hr

ζ
(t)
1 · Fi∗1,...,i

∗
r
. (54)

To bound the sum over i∗r i.e., the contribution from block Sr, we will use Lemma 5.8. Let

w′ ∈ R
m be defined by w′i∗r = wi∗rFi∗i ,...,i

∗
r

∏
t∈Hr

ζ
(t)
1 . Note ‖w′‖∞ ≤ C |Hr|+|Sr||Fi∗i ,...,i

∗
r
| and

‖w′‖22 =
∏

t∈Hr

|ζ(t)1 |2 · |Fi∗i ,...,i
∗
r
|2
∑

i∗r∈[m]

w2
i∗r
≤ C2|Hr|+|Sr||Fi∗i ,...,i

∗
r
|2
∑

i∗r∈[m]

wi∗r

≤ |Fi∗i ,...,i
∗
r
|2
∑

i∗r∈[m]

q′i∗1,...,i∗r−1,i
∗
r

q′i∗1,...,i∗r−1

≤ kC2|Hr|+2|Sr||Fi∗i ,...,i
∗
r
|2,

since each sample has at most k non-zero entries.

Fi∗1,i
∗
2,...,i

∗
r−1

=
∑

i∗r∈[m]

w′i∗rM
|Hr |
i∗r ,1

∏

t∈Hp

ζ
(t)
1

∏

t∈Sr\Hr

∑

jt∈[m]

ζ
(t)
jt
Mi∗r ,jt.

We have two cases depending on whether Hr = Sr or not. If Hr = Sr, then

Fi∗1 ,i
∗
2,...,i

∗
r−1

=
∑

i∗r∈[m]

w′i∗rM
|Sr|
i∗r ,1
≤
∑

i∗r∈[m]

|w′i∗r |〈Ai∗r , A1〉2

≤ ‖Adiag(w′′)AT ‖op ≤ σ2|Fi∗i ,...,i
∗
r
| · ‖w′‖∞,

where w′′ in the intermediate step is the vector with w′′i = |w′i|. Otherwise, Hr 6= Sr.
Applying Lemma 5.8 (here d ≥ 1), we have

∣∣∣Fi∗1,i
∗
2,...,i

∗
r−1

∣∣∣ ≤ ν(η, |Sr|)
(√m
k
· ‖w′‖2 ·

τk

m
+ ‖w′‖∞

)

≤ ν(η, |Sr|)
(√τ2k

m
+ 1
)
|Fi∗i ,...,i

∗
r
| · C |Sr| ≤ 2ν1(η, |Sr|)|Fi∗i ,...,i

∗
r
| · C |Sr|,

where ν1(η, |Sr|) captures the Õ(1) terms in (41). By using induction hypothesis and (54),

∣∣∣Fi∗1,i
∗
2,...,i

∗
r−1

∣∣∣ ≤ ν(η, dr) · 2ν1(η, |Sr |) · C |Sr| ≤ ν(η, dr−1),

since dr−1 = dr + |Sr| and from our choice of ν(η, d). Further, the base case (r = R − 1)
also follows from Lemma 5.8 in an identical manner. This establishes the claim and hence
the lemma.

The following simple lemma follows from the bound on the spectral norm, and is useful
in the analysis.
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Lemma 5.14. Consider fixed indices i, j ∈ [m] and let

Ti =
∑

i∗2,...i
∗
r∈[m]r

qi,i∗2,...,i∗r (d1 + 1, . . . , dr)(Mi,j)
d1 · (Mi∗1,j)

d2 . . . (Mi∗r ,j)
dr ,

where d2, . . . dr ≥ 2. Then for some constant c′ > 0 that |Ti| ≤ c′qi · |Mi,j|d1σ2(r−1) ·
Cd1+···+dr+1.

Proof. For convenience, let q′i∗1,...,i∗ℓ
= qi∗1,...,i∗ℓ (d1 + 1, . . . , dℓ) for each ℓ ∈ [r]. We will prove

this by induction on r, by establishing the following claim for every ℓ ∈ { 2, 3, . . . , r }:
∣∣∣∣∣∣

∑

i∗ℓ ,...,i
∗
r∈[m]

( q′i,i∗2,...,i∗r
qi′,i∗2,...,i∗ℓ−1

)
Md1

i,j ·
r∏

t=ℓ

Mdt
i∗t ,j

∣∣∣∣∣∣
≤ σ2(r−ℓ+1) · Cdℓ+···+dr . (55)

To see this, set wi∗ℓ
= q′i,i∗2,...,i∗ℓ

/q′i,i∗2,...,i∗ℓ−1
and observe that

∣∣∣∣∣∣

∑

i∗ℓ ,...,i
∗
r∈[m]

( q′i,i∗2,...,i∗r
q′i,i∗2,...,i∗ℓ−1

)
Md1

i,j ·
r∏

t=ℓ

Mdt
i∗t ,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i∗ℓ∈[m]

wi∗ℓ
Mdℓ

i∗ℓ ,j

∑

i∗ℓ+1,...,i
∗
r∈[m]

(qi,i∗2,...,i∗r
qi,i∗2,...,i∗ℓ

) r∏

t=ℓ

Mdt
i∗t ,j

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

i∗ℓ∈[m]

wi∗ℓ
Mdℓ

i∗ℓ ,j

∣∣∣∣∣∣
· σ2(r−ℓ) · Cdℓ+1+···+dr ≤ σ2(r−ℓ) · Cdℓ+1+···+dr

∑

i∗ℓ∈[m]

wi∗ℓ
M2

i∗ℓ ,j

≤ σ2(r−ℓ)Cdℓ+1+···+dr · ‖Adiag(w)AT ‖op ≤ σ2(r−ℓ+1) · Cdℓ+···+dr ,

where the second line follows from the inductive hypothesis. The base case is when ℓ = r
and follows an identical argument involving the spectral norm. Hence, the lemma follows
by applying the claim to ℓ = 2.

5.3 Proof of Theorem 5.2

In this section we show how to use data generated from a semi-random modelMβ(D(s)
R , D̃(s),D(v))

and recover columns of A that appear most frequently. The recovery algorithm is sketched
in Figure 3.

In the algorithm the set T1 will be drawn from a semi-random modelMβ(D(s)
R , D̃(s),D(v))

that is appropriately re-weighted. See Section 5.5 for how the above procedure is used in
the final algorithm. For the rest of the section we will assume that the set T1 is generated
from D̂(s)⊙D(v), where D̂(s) is an arbitrary distribution over k-sparse {0, 1}n vectors. Next
we re-state Theorem 5.2 in terms of RecoverColumns to remind the reader of our goal for
the section.

Theorem 5.15 (Restatement of Theorem 5.2). There exist constant c1 > 0 (potentially
depending on C) such that the following holds for any ε > 0 and constants c > 0, L ≥ 8.
Suppose the procedure RecoverColumns is given as input poly(k,m, n, 1/ε, 1/β) samples

from the semi-random model Mβ(D(s)
R , D̃(s),D(v)), and a set T1 of poly(k,m, n, 1/ε, 1/β)

samples from D̂(s) ⊙ D(v), where D̂(s) is any arbitrary distribution over {0, 1}m vectors
with at most k non-zeros and having marginals (qi : i ∈ [m]). Then Algorithm Recover-

Columns, with probability at least 1− 1
mc , outputs a set W such that

• For each i such that qi ≥ q1/ logm, W contains a vector Âi, and there exists b ∈
{±1 } such that ‖Ai − bÂi‖ ≤ ε.

• For each vector ẑ ∈W , there exists Ai and b ∈ {±1 } such that ‖ẑ − bAi‖ ≤ ε,
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Algorithm RecoverColumns(Mβ(D(s)
R , D̃(s),D(v)), T1, L, ε)

1. Initialize W = ∅. Set η′0 = exp(−mO(L) log(1/ε)).

2. Draw set T0 of samples from Mβ(D(s)
R , D̃(s),D(v)) where |T0| ≥ 4(2L −

1)m log(m/η′0)/(βk).

3. For each 2L− 1 tuple (u(1), u(2), . . . , u(2L−1)) in T0, let

v =
1

|T1|
∑

y∈T1

〈u(1), y〉〈u(2), y〉〈u(3), y〉 . . . 〈u(2L−1), y〉y (56)

4. Let v̂ = v
‖v‖ . Draw a set Tv of samples from Mβ(D(s)

R , D̃(s),D(v)) where |Tv | ≥
c2ε
−3knc2m log(1/η′0).

5. If TestColumn(v̂, Tv ,
η′0

βnc2
,

βkη′0
mnc2 log2c m

, 1
log2c m

) return a vector ẑ then W ← W ∪
{ẑ}.

6. Return W .

Figure 3:

provided k ≤ √n/(ν( 1
m , 2L)τµ2). Here ν(η, d) := c1

(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, and the

polynomial bound also hides a dependence on C and L.

Before we prove the theorem we need two useful lemmas stated below that follow from
standard concentration bounds. The first lemma states that given samples from a semi-
random model and a column Ai, there exist many disjoint 2L−1 tuples (u(1), u(2), . . . , u(2L−1))
with supports that intersect in A1 and with the same sign.

Lemma 5.16. For a fixed i ∈ [m], a fixed constant L ≥ 8 and any η0 > 0, let T0 be

samples drawn from Mβ(D(s)
R , D̃(s),D(v)) where |T0| ≥ 4(2L− 1)m log(m/η0)/(βk). Then

with probability at least 1 − (η0/m)(2L−1)/4, there exist at least log(m/η0) disjoint tuples
(u(1), u(2), . . . , u(2L−1)) in T1 such that for each j ∈ [2L − 1] support of u(j) contains Ai

with a positive sign.

Proof. From the definition of the the semi-random model we have that at least β|T0|
samples will be drawn from the standard random model D(s)

R ⊙D(v). Hence in expectation,

Ai will appear in at least βk
m |T0| samples. Furthermore, since D(v) is a symmetric mean

zero distribution, we have that in expectation Ai will appear with positive sign in at least
βk
2m |T0| ≥ 2(2L − 1) log(m/η0) samples. Hence by Chernoff bound, the probability that
in T0, Ai appears in less than (2L − 1) log(m/η0) samples with a positive sign is at most
exp

(
− 1

4(2L − 1) log(m/η0)
)
. Hence, we get at least log(m/η0) disjoint tuples with the

required failure probability.

The next lemma states that with high probability the statistic of interest used in the
algorithm (56) will be close to its expected value.

Lemma 5.17. Let L > 0 be a constant and fix vectors u(1), u(1), . . . , u(2L−1) ∈ R
n of

length at most Cσ
√
k. Let T1 be a set of samples drawn from D̃(s) ⊙ D(v) where D̃(s) is

an arbitrary distribution over at most k-sparse vectors in {0, 1}m. For any ε0 > 0, and
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η0 > 0, if |T1| ≥ 2(C2σ
√
k)4Lε−20 m log(1/η0), then with probability at least 1 − 2mη0, we

have that
∥∥∥ 1

|T1|
∑

y∈T1

〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y − E[〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y]
∥∥∥ ≤ ε0

Proof. Using the fact that u(j)s and samples y ∈ T1 are weighted sum of at most k columns
of A and the fact that D(v) is in [−C,−1]∪ [1, C] we have that ‖u(j)‖, ‖y‖ ≤ Cσ

√
k, where

σ = ‖A‖. Fix a coordinate i ∈ [m]. Then 1
|T1|
∑

y∈T1
〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉yi

is a sum of independent random variables bounded in magnitude by (C2σ
√
k)2L. By

Hoeffding’s inequality we have that the probability that the sum deviates from its ex-

pectation by more than ε0√
m

is at most 2e
−|T1|ε20

2m(C2σ
√
k)4L . By union bound we get that the

probability that any coordinate deviates from its expectation by more than ε0√
m

is at most

2m exp
(
− |T1|ε20

2m(C2σ
√
k)4L

)
≤ 2mη0.

We are now ready to prove the main theorem of this section. The key technical
ingredient that we will use is the fact that for the right choice of u(1), u(2), . . . , u(2L−1), the
expected value of the statistic in (56) will indeed be close to one of the columns of A. This
is formalized in Theorem 5.18.

Theorem 5.18. The following holds for any constant c ≥ 2 and L ≥ 8. Let An×m be a µ-
incoherent matrix with spectral norm at most σ, and let D̃(s) be an arbitrary fixed support
distribution over k sparse vectors in { 0, 1 }m,17 and further assume that q1 ≥ qmax/ logm.

Let u(1) = Aζ(1), u(2) = Aζ(2), . . . , u(2L−1) = Aζ(2L−1) be samples drawn from D(s)
R ⊙ D(v)

conditioned on ζ(t)(1) > 0 for t ∈ [2L − 1]. With probability at least 1 − 1
log2 m

over the

random choices of ζ(1), . . . , ζ(2L−1),

E
y=Ax

x∼D̃(s)⊙D(v)

[
〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y

]
= q1A1 + e1

where ‖e1‖ = O
(

q1
logc m

)
, provided k ≤ √n/(ν( 1

m , 2L)τµ2). Here we have that ν(η, d) :=

c1
(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, and c1 is an absolute constant.

Setting L = 8, if m = Õ(n) and σ = Õ(1), the above bound on k will be satisfied when
k = Õ(

√
n). Before we proceed, we will first prove Theorem 5.2 assuming the proof of

the above theorem.

Proof of Theorem 5.2. Consider a fixed support distribution D̂(s); hence this specifies its
marginals (qi : i ∈ [m]) and its first 2L moments specified by the values for qi1,...,it(d1, . . . , dt),

where t ≤ 2L, i1, . . . , it ∈ [m], d1, . . . , dt ∈ [2L]. We will first prove that for a fixed D̂(s),
the procedure RecoverColumns will succeed with probability at least 1 − η0 where
η0 ≤ exp

(
−mO(L)

)
, and perform a union bound over an appropriate net of D̂(s) i.e., a

net of values for qi1,...,it(d1, . . . , dt) (where t ≤ 2L, i1, . . . , it ∈ [m], d1, . . . , dt ∈ [2L]).
Let c∗ > 0 be an absolute constant (that will chosen later appropriately according

to Theorem 3.1). Let T0 be the set of samples drawn in step 2 of the procedure where
|T0| ≥ 4(2L−1)m log(m/η′0)/(βk), where η′0 = η0/ exp(mO(L) log(1/ε)). From Lemma 5.17
we can assume that for each 2L − 1 tuple in T0, the statistic in (56) is qmax

log4c∗ m
-close

to its expectation except with probability at most 2m|T0|2L−1η′0, provided that |T1| ≥
2m(C2σ

√
k)4L logc3 m log(1/η′0). Let Ai be a column such that in D̂(s) ⊙ D(v) we have

17This fixes the q values which specifies the moments up to order 2L of the support distribution D̃(s).

50



that qi ≥ q1/ logm. From Lemma 5.16 we have that, except with probability at most
m exp

(
− 1

4(2L − 1) log(m/η′0)
)
, there exist at least log(m/η′0) disjoint (2L − 1)-tuples

in T0 that intersect in Ai with a positive sign. Hence we get from Theorem 5.18 that
there is at least 1− ( 1

log2 m
)log(m/η′0) probability that the vector v̂ computed in step 4 of the

algorithm will be 1
log2c∗ m

-close to Ai. Further, from Lemma 2.10, A is (k,O(1/ log4c∗+1m))-

RIP, and c∗ > 0 is an appropriate absolute constant. Then we get from Theorem 3.1
(with γ = η′0/|T0|4L, and η = 1/ log2c∗ m) that a vector that is ε-close to Ai will be

added to W except with probability at most
η′0
|T0|4L . Furthermore no spurious vector that

is 1
logc∗ m far from all Ai will be added, except with probability at most

η′0
|T0|2L . Hence

the total probability of failure of the algorithm is at most m(2|T0|(2L−1)e− log2(m/η′0) +

exp(− (2L−1) log(m/η′0)
4 ) + 1

(logm)2 log(m/η′0)
+

η′0
|T0|2L ) ≤ η0.

Finally, it is easy to see that it suffices to consider a ε1-net over the values of qi1,...,it(d1, . . . , dt)
for each t ≤ 2L, i1, . . . , it ∈ [m], d1, . . . , dt ∈ [2L], where ε1 = εm−O(L). Hence, it suffices
to consider a net of size N ′ = exp

(
(2Lm)2L log(1/ε1)

)
= exp

(
mO(L) log(1/ε)

)
. Since our

failure probability η0 < 1/(N ′m2), we can perform an union bound over the net of support
distributions D̂(s) and conclude the statement of the theorem.

5.4 Proof of Theorem 5.18: Recovering Frequently Occurring Columns

Let y =
∑

i∈[m] xiAi. Then we have that

E
x,v

[〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y] =
∑

i∈[m]

γiAi, where

γi =
∑

j1,...,j2L−1∈[m]

ζ
(1)
j1
. . . ζ

(2L−1)
j2L−1

∑

i1,...i2L−1∈[m]

E[xi1 . . . xi2L−1
xi]Mi1,j1 . . .Mi2L−1,j2L−1

(57)

We will show that with high probability (over the ζs), γ1 = q1(1 ± 1
logc m ) and that

‖∑i 6=1 γiAi‖ = o
(

q1
logc m

)
for our choice of k. Notice that for a given i, any term in

the expression for γi as in (57) will survive only if the indices i1, i2, . . . , i2L−1 form a parti-
tion S = (S1, S2, . . . SR) such that |S1| is odd and |Sp| is even for p ≥ 2. S1 is the special
partition that must correspond to indices that equal i. Hence, (S1, S2, . . . SR) must satisfy
it = i for t ∈ S1 and it = i∗r for t ∈ Sr for r ≥ 2, for indices i∗2, . . . i

∗
R ∈ [m]. We call

such a partition a valid partition and denote |S| = R as the size of the partition. Let
d1, d2, . . . dR denote the sizes of the corresponding sets in the partition, i.e., dj = |Sj|.
Notice that d1 ≥ 1 must be odd and any other dj must be an even integer. Using the
notation from Section 2.1 we have that

E
[
xi1 . . . xi2L−1

xi
]

=

{
qi,i∗2,i∗3,...,i∗R(d1 + 1, d2, . . . , dR), S is valid

0, otherwise

Recall that by choice, ζ
(ℓ)
1 ≥ 1 for each ℓ ∈ [2L − 1]. Hence, the value of the inner

summation in (57) will depend on how many of the indices j1, j2, . . . , j2L−1 are equal to
1. This is because we have that ζℓ1 is a constant in [1, C] for all ℓ ∈ [2L − 1]. Hence, let
H = (H1,H2, . . . HR) be such that Hr ⊆ Sr and for each r we have that jt = 1 for t ∈ Hr.
Let h denote the total number of fixed variables, i.e. h =

∑
r∈[R] |Hr|. Notice that h

ranges from 0 to 2L − 1 and there are 22L−1 possible partitions H. The total number of
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valid (S,H) partitionings is at most (4L)2L. Hence

γi =
∑

(S,H)

γi(S,H), where γi(S,H) :=

=
∑

(i∗2,...,i
∗
R)

∈[m]R−1

qi,i∗2,...,i∗R(d1 + 1, d2, . . . , dR)
∏

r∈[R]

∑

JSr\Hr∈
([m]\{ 1 })Sr\Hr

(Mi∗r ,1)
|Hr|

∏

t∈Hr

ζ
(t)
1 ·

∏

t∈Sr\Hr

Mi∗r ,jtζ
(t)
jt

Note that by triangle inequality, ‖∑i 6=1 γiAi‖2 ≤
∑

(S,H)‖
∑

i 6=1 γi(S,H)Ai‖2. Hence, we
will obtain bounds on γi(S,H) depending on the type of partition (S,H), and upper bound
‖∑i 6=1 γi(S,H)Ai‖2 for each (S,H). We have three cases depending on the number of fixed
indices h.
Case 1: h = 0. In this case none of the random variables are fixed to 1. Here we use
Lemmas 5.10 to claim that with probability at least 1− η over the randomness in ζjs,

|γi(S,H = ∅)| ≤ qiη−1/2 · ν(η, 2L)
(τ3/2k3/2

m

)L−1
2

(58)

In the final analysis we will set η =
(
m log2m(4L)2L

)−1
. In this case we get that

|γi(S,H = ∅)| ≤ qi
√
m logm(4L)L · ν(η, 2L)

(τ3/2k3/2
m

)L−1
2
.

We will set L large enough in the above equation such that we get

|γi(S,H = ∅)| ≤ qiC2L · ν2(η, 2L)
µ2k

n
.

L ≥ 8 suffice for this purpose for our choice of k.
Case 2: h = 2L−1. In this case all the random variables are fixed and γi deterministically
equals

γi(S,H) = ζ
(1)
1 ζ

(2)
1 . . . ζ

(2L−1)
1

∑

i∗2,i
∗
3,...,i

∗
R∈[m]

qi,i∗2,i∗3,...,i∗R(d1 + 1, d2, . . . , dR)Md1
i,1M

d2
i∗2,1

. . .MdR
i∗R,1

=

{
ζ
(1)
1 ζ

(2)
1 . . . ζ

(2L−1)
1 · qiMd1

i,1, R = 1

±O
(
C4L−1σ2(R−1) · qiMd1

i,1

)
, otherwise ,

(59)

where the case when R 6= 1 follows from Lemma 5.14.
Case 3: 1 ≤ h < 2L − 1. For improved readability, for the rest of the analysis we will
use the following notation. For a set of indices J = (j1, . . . , jd), for S ⊂ [d], we will use
JS = (jt : t ∈ S), and

∑
JS

to denote the sum over indices JS ∈ ([m] \ { 1 })|S|. In this
case we can write

γi(S,H) = qi(d1 + 1)
∏

t′∈H1

ζ
(t′)
1

∑

JS1\H1

M
|H1|
i,1

∏

t∈S1\H1

ζ
(t)
jt
Mi,jtFi, where

Fi =
∑

i∗2,...,i
∗
R∈[m]

(qi,...,i∗r ,...,i∗R(d1 + 1, d2, . . . , dR)

qi(d1 + 1)

) R∏

r=2

( ∑

JSr\Hr

M
|Hp|
i∗p,1

∏

t∈Sp\Jp
Mi∗p,jtζ

(t)
jt

)
.

When |H1| ≥ 1, we can apply Lemma 5.13 with r = 1 we get with probability at least
1− η over the randomness in ζjs that |Fi| ≤ ν(η, 2L). Hence, we get that with probability
at least 1− η over the randomness in ζjs,

γi(S,H) = wiqi(d1 + 1)
∏

t′∈H1

ζ
(t′)
1

∑

JS1\H1

∏

t∈S1\H1

ζ(t)Mi,jtM
|H1|
i,1 (60)
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where |wi| ≤ ν(η, 2L). Next we use Lemma 5.9 to get that with probability at least 1−2η,
the above sum is bounded as

|γi(S,H)| ≤





qiwiµ√
n

(
Zi + ν(η, 2L)

√
k
m

)
, i 6= 1

qiwiµ√
n
· ν(η, 2L)

√
k
m , i = 1

(61)

Here Zi =
∏

t∈S1\H1
|ζ(t)i | are non-negative random variables bounded by C |S1\H1|. Further

Zi are each non-zero with probability at most p · (τp)|S1\H1|−1 and they are τ -negatively
correlated(with the values conditioned on non-zeros being drawn independently).

If |H1| = 0 then there must exist r ≥ 2 such that |Hr| ≥ 1. Without loss of generality
assume that |H2| ≥ 1. Then we can write γi(S,H) as

γi(S,H) =
∑

i∗2

qi,i∗2(d1 + 1, d2)
∑

JS1

∏

t∈S1

Mi,jtζ
(t)
jt
·
∏

t′∈H2

ζ
(t′)
1

∑

JS2\H2

M
|H2|
i∗2 ,1

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jtF

′
i,i∗2
,

where F ′i,i∗2 =
∑

i∗3,...,i
∗
R∈[m]

(qi,...,i∗r ,...,i∗R(d1 + 1, d2, . . . , dR)

qi,i∗2(d1 + 1, d2)

) R∏

r=3



∑

JSr\Hr

M
|Hr|
i∗r ,1

∏

t∈Sr\Jr
Mi∗r ,jtζ

(t)
jt


 .

We can again apply Lemma 5.13 with r = 2 to get that with probability at least 1 − η
over the randomness in ζjs,

|F ′i,i∗2 | ≤ ν(η, 2L− d1 − d2 − 1).

Hence, we can rearrange and write γi(S,H) as

γi(S,H) = qi(d1 + 1)
∏

t′∈H2

ζ
(t′)
1

∑

JS1

∏

t∈S1

ζ
(t)
jt
Mi,jtF

′′
i , where

F ′′i =
∑

i∗2∈[m]

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2M

|H2|
i∗2,1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jt (62)

We split this sum into two, depending on whether i∗2 = 1 or not. Here we have that

F ′′i,a :=
qi,1(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2=1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
M1,jt (63)

and

F ′′i,b :=
∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2M

|H2|
i∗2,1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jt (64)

Here when |H2| < |S2| we will use Lemma 5.9 and the fact that jt 6= 1 for t ∈ |S2 \H2| to
get that with probability at least 1− η over the randomness in ζjs, we can bound F ′′i,a as

|F ′′i,a| ≤ ν(η, 2L− d1 − 1− |H2|) ·
qi,1(d1 + 1, d2)

qi(d1 + 1)

√
kτ

m

Combining this with the simple bound when S2 = H2 we get

|F ′′i,a| =




ν(η, 2L− d1 − d2 − 1) · qi,1(d1+1,d2)

qi(d1+1) , |H2| = |S2|
ν(η, 2L− d1 − 1− |H2|) · qi,1(d1+1,d2)

qi(d1+1)

√
kτ
m , otherwise

(65)
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Next we bound F ′′i,b. When |H2| < |S2| we will use the concentration bound from

Lemma 5.8. However, when applying Lemma 5.8 we will use the fact that |wi| = |F ′i,i∗2M
|H2|
i∗2,1
| ≤

ν(η, 2L − d1 − d2 − 1)µ/
√
n. This is because we are summing over i∗2 6= 1 and we have

|H2| ≥ 1. Hence, by incoherence we have that |M |H2|
i∗2,1
| ≤ µ/

√
n. Hence we get that with

probability at least 1− η over the randomness in { ζj } to get that

|F ′′i,b| ≤ ν(η, 2L− d1 − 1− |H2|)
µ√
n

When |H2| = |S2| we get

|F ′′i,b| ≤
∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
·
∣∣F ′i,i∗2M

|H2|
i∗2,1

∣∣.

Using the fact that |H2| ≥ 2, i∗2 6= 1 and that the columns are incoherent we get,

|F ′′i,b| ≤ ν(η, 2L− d1 − d2 − 1) · µ
2

n
·

∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)

≤ ν(η, 2L− d1 − d2 − 1) · C
d2µ2k

n

where in the last inequality we use Lemma 11. Combining the above bounds we get that
with probability least 1− η over the randomness in ζjs,

F ′′i,b =

{
ν(η, 2L− d1 − d2 − 1)C

d2µ2k
n , |H2| = |S2|

ν(η, 2L− d1 − 1− |H2|) µ√
n
, otherwise

(66)

We Combine the above bounds on F ′′i,a and F ′′i,b and to get the following bound on F ′′i that
holds with probability 1− 2η over the randomness in ζs

|F ′′i | ≤





ν(η, 2L− d1 − d2 − 1)
(
qi,1(d1+1,d2)

qi(d1+1) + Cd2µ2k
n

)
, |H2| = |S2|

ν(η, 2L− d1 − 1− |H2|)
(

qi,1(d1+1,d2)
qi(d1+1)

√
kτ
m + µ√

n

)
, otherwise

(67)

Finally, we get a bound on γi(S,H) by using Lemma 5.9 with wi in the Lemma set to qi(d1+

1)
∏

t′∈H2
ζ
(t′)
1 F ′′i . Notice that the absolute value of wi is bounded by qiC

d1+1C |H2||F ′′i |.
Hence we get that

|γi(S,H)| ≤




q1C

2Lν(η, 2L)
√

τk
m , i = 1

qiC
2Lν(η, 2L)

(
Zi +

√
kτ
m

)(
qi,1
qi

+ µ2k
n

)
, otherwise

(68)

Here Zi =
∏

t∈S1
|ζ(t)i | are non-negative random variables bounded by C |S1|. Further

Zi are each non-zero with probability at most p · (τp)|S1|−1 and they are τ -negatively
correlated(with the values conditioned on non-zeros being drawn independently).

Putting it Together. We will set η =
(
m log2m(4L)2L

)−1
so that all the above bounds

hold simultaneously for each i ∈ [m] and each partitioning S,H. We first gather the
coefficient of A1, i.e., γ1. For the case of h = 2L− 1 we get that γ1(S,H) ≥ q1 from (59).

Here we have used the fact that ζ
(t)
1 ≥ 1 for all t ∈ [2L − 1]. For any other partition we

get from (61), (68) and (58) that

γ1 ≤ q1C2Lν(η, 2L) ·
√
τk

m
= O

( q1
(4L)2L logcm

)
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for our choice of k. Hence, summing over all partitions we get that term corresponding to
A1 in (57) equals a1A1 + e1 where a1 ≥ q1 and ‖e1‖ = O( q1

logc m ).

Next we bound ‖∑i 6=1 γiAi‖. In order to show that ‖∑i 6=1 γiAi‖ ≤ q1
logc m it is enough

to show that for any (S,H),

∥∥∑

i 6=1

γi(S,H)Ai

∥∥
2
≤ q1

(4L)2L logcm

Using the fact that ‖A‖2 ≤ σ, we have that ‖∑i 6=1 γi(S,H)Ai‖2 ≤ σ
√∑

i 6=1 γ
2
i (S,H).

Hence, it will suffice to show that for any

∀(S,H),
∑

i 6=1

γ2i (S,H) ≤ q21
(4L)4Lσ2 log2cm

(69)

.
From (59), (61), (68) and (58) we get that We notice that across all partitions

|γi(S,H)| ≤ qiC2Lν(η, 2L)
(
Zi +

√
τk

m

)(qi,1
qi

+
µ2k

n

)

= γ
(1)
i (S,H) + γ

(2)
i (S,H) + γ

(3)
i (S,H) + γ

(4)
i (S,H), where

γ
(1)
i (S,H) = qi,1C

2Lν(η, 2L)Zi, γ
(2)
i (S,H) = qiC

2Lν(η, 2L)
µ2k

n
Zi,

γ
(3)
i (S,H) = qi,1C

2Lν(η, 2L)

√
τk

m
, γ

(4)
i (S,H) = qiC

2Lν(η, 2L)
µ2k
√
τk

n
√
m

.

We will separately show that ∀j ∈ { 1, 2, 3, 4 }
∑

i 6=1

(γ
(j)
i (S,H))2 ≤ q21

4σ2(4L)4L log2cm
.

For j = 4 we have

∑

i 6=1

(γ
(4)
i (S,H))2 =

∑

i 6=1

q2iC
4Lν2(η, 2L)

µ4k3

n2m

≤ q21 log2m
∑

i 6=1

C4Lν2(η, 2L)
µ4k3

n2m
≤ q21

4σ2(4L)4L log2cm

for our choice of k and using the fact that q1 ≥ qmax/ logm. Similarly for j = 3 we get
that

∑

i 6=1

(γ
(3)
i (S,H))2 =

∑

i 6=1

q2i,1C
4Lν2(η, 2L)

τk

m
≤ q21C4Lν2(η, 2L)

∑

i 6=1

q2i,1
q21
· τk
m

≤ q21C4Lν2(η, 2L)
∑

i 6=1

qi,1
q1

τk

m
≤ q21C4Lν2(η, 2L)

τk2

m
≤ q21

4σ2(4L)4L log2cm
.

Here we have used the fact that
∑

i 6=1
qi,1
q1
≤ k, and k <

√
mτ−1/ν(η, 2L) (this is one of

the terms that requires k = o(
√
m)). Next we bound the term corresponding to j = 1,

i.e.,

∑

i 6=1

(γ
(1)
i (S,H))2 = C4Lν2(η, 2L)

∑

i 6=1

q2i,1Z
2
i ≤ q21C4Lν2(η, 2L)

∑

i 6=1

q2i,1
q21
Z2
i (70)
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Notice that Zis are non-negative random variables with support distribution that is τ -
negatively correlated. Hence, using Lemma B.3 with p = k

m and ‖a‖1 =
∑

i 6=1
qi,1
q1
≤ k,

∑

i 6=1

q2i,1
q21
Z2
i ≤

C2τ

log(c)m
, with probability at least 1− 2

m2
− 1

log2m
.

Substituting back in (70) we get for our choice of k = o(
√
m),

∑

i 6=1

(γ
(1)
i (S,H))2 ≤ q21

4σ2(4L)4L log2cm
.

Finally for j = 2 we get

∑

i 6=1

(γ
(2)
i (S,H))2 = q2iC

4Lν2(η, 2L)
∑

i 6=1

µ4k2

n2
Z2
i ≤ q21 log2mC4Lν2(η, 2L)

∑

i 6=1

µ4k2

n2
Z2
i (71)

Again using Lemma B.3 with p = k
m and ‖a‖1 =

∑
i 6=1

µ4k2

n2 ≤ 1
logc m we get that

∑

i 6=1

µ4k2

n2
Z2
i ≤

C2τ

logcm
, with probability at least 1− 1

m2
− 1

log2m
.

Substituting back in (71) we get for our choice of k,

∑

i 6=1

(γ
(2)
i (S,H))2 ≤ q21

4σ2(4L)4L log2cm

Hence this establishes (86) and we get the required bound on ‖∑i 6=1 γiAi‖2. This concludes
the proof of Theorem 5.18.

5.5 The Semirandom algorithm: Proof of Theorem 5.1.

In this section we use the subroutine developed in Section 5.3 for recovering large fre-
quency columns to show how to recover all the columns of A with high probability and
prove Theorem 5.1. Recall that the algorithm in Figure 3 searches over all 2L− 1 tuples
(u(1), u(2), . . . , u(2L−1)) and computes the statistic in (56). If the data were generated from
the standard random model, one would be able to claim that for each column Ai, at least
one of the candidate tuples will lead to a vector close to Ai. However, in the case of
semi-random data, one can only hope to recover large frequency columns as the adversary
can add additional data in such a manner so as to making a particular column’s marginal
qi very small. Hence, we need an iterative approach where we recover large frequency
columns and then re-weigh the data in order to uncover more new columns. We will show
that such a re-weighting can be done by solving a simple linear program. A key step while
doing the re-weighting is to find out if a given sample y = Ax contains columns Ai for
which we already have good approximations Âi. Furthermore, we also need to make sure
that this can be done by just looking at the support of y and not the randomness in the
non-zero values of x. Lemma 5.20 shows that this can indeed be done by simply looking
at |〈y, Âi〉| if A is incoherent and k does not exceed

√
n. We will rely on this lemma in

our algorithm described in Figure 4. We now provide the proof of Theorem 5.1 restated
below to remind the reader.

Theorem 5.19 (Restatement of Theorem 5.1). Let A be a µ-incoherent n×m dictionary
with spectral norm σ. For any ε > 0, any constant L ≥ 8, given N = poly(k,m, n, 1/ε, 1/β)

samples from the semi-random modelMβ(D(s)
R , D̃(s),D(v)), Algorithm RecoverDict with

probability at least 1− 1
m , outputs a set W ∗ such that
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Algorithm RecoverDict(Mβ(D(s)
R , D̃(s),D(v)), L, ε)

1. Initialize W ∗ = ∅, λ = 1
m2 . Constants c1, c2 > 0 are appropriately chosen.

2. Repeat m times

• Draw set T of samples from Mβ(D(s)
R , D̃(s),D(v)) where |T | ≥ c1k2m4nO(1) log3 m

β2ε6
.

• For each Âi ∈ W ∗, find the set V (Âi) = {(y = Ax) ∈ T : i ∈ supp(x)} as in
Lemma 5.20.

• Find weights wj ∈ [0, 1] for j = 1 to |T | such that

∑

j

wj ≥ β|T |

∑

j:yj∈V (Âi)

wj ≤
k(1 + λ)

m
(
∑

j

wj), for all Âi ∈W ∗

• Form T1 by picking each yj ∈ T with probability
wj∑
j wj

where |T1| =

c2kn
c3m/ε3.

• W ∗ = W ∗ ∪RecoverColumns(Mβ(D(s)
R , D̃(s),D(v)), T1, L, ε).

3. Return W ∗.

Figure 4:

• For each column Ai of A, there exists Âi ∈W ∗ such that ‖Ai − bÂi‖ ≤ ε.

• For each Âi ∈W ∗, there exists a column Ai of A such that ‖Âi − bAi‖ ≤ ε,

provided k ≤ √n/ν1( 1
m , 16). Here ν1(η, d) := c1τµ

2
(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, c1 > 0

is a constant (potentially depending on C), and the polynomial bound for N also hides a
dependence on C,L.

Proof of Theorem 5.1. Since W ∗ is empty initially, from the guarantee of Theorem 5.2 we
have that in the first step of the RecoverDict an ε-close vector to at least one column
of A will be added to W ∗ except with probability at most 1

m2 . Next assume that we
have recovered m′ < m columns of A to good accuracy. If we are given |T | samples from

Mβ(D(s)
R , D̃(s),D(v)) we know that at least β|T | belong to the random portion. In this

portion the expected marginal qi of each column Ai is k
m . Hence, by Chernoff bound

the marginal of each column in the β|T | samples will be at most k
m(1 + λ) except with

probability me− log2 m. Hence the linear program involving wjs has a feasible solution that
puts a weight 1 on all the random samples and weight 0 on all the additional semi-random
samples. Let w1, w2, . . . , w|T | be the solution output by the linear program. Define the

corresponding support distribution induced as q̂, i.e., for any I ⊆ [m], q̂I =
∑

j∈V (I) wj∑
j wj

,

where V (I) = ∩r∈IV (Ar). Denote by q̂j the induced marginal on column Aj . Then we
have that

∑
j∈[m] q̂j = k. Furthermore, we also have that for the m′ columns in W ∗ the

sum of the corresponding qj is at most m′k
m (1 + λ). Hence we get that there must be an
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uncovered column j∗ such that

q̂j∗ ≥
k − m′k

m (1 + λ)

m−m′ ≥ k

m
(1 + λ)− kλ, ( since m′ ≤ m− 1)

≥ k

m
(1 + λ)

(
1− 1

log2m

)

Hence when we feed the set T1 into the RecoverColumns procedure, by Theorem 5.2
an ε-close approximation to a new column will be added to W ∗ except with probability
at most 1

m2 . Notice that for the guarantee of Theorem 5.2 to hold it is crucial that the
non-zero values of x in the samples y = Ax present in set T1 are drawn independently

from D(s)
R . However, this is true since from Lemma 5.20 we only use the support of the

samples to do the re-weighting18. Additionally since |T | ≫ |T1| no sample in T will be
repeated more than once in T1, and hence we can assume that when used in procedure

RecoverColumns, the values are picked independently from D(s)
R for each sample in T1

conditioned on the support.
To see why no sample will be repeated more than once with high probability, let

pj = P[ sample y(j) is chosen]. Then we have since
∑

j wj ≥ β|T | that pj ≤ 1/(β|T |).
Hence, we get that the probability that sample y(j) is repeated more than once in T1 is at
most

P
[
y(j) repeated more than once

]
≤
(|T1|

2

)
p2j ≤

|T1|2
β2|T |2 , and

P
[
no sample is repeated

]
≤
(|T1|

2

) ∑

j∈[T ]

p2j ≤
|T1|2
β2|T | ≤

1

m2

as required, since the number of samples |T | is chosen to be sufficiently large.

Lemma 5.20. Let A be a µ-incoherent matrix and let the set W ∗ contain unit length
vectors that are ε-close approximations to a subset of the columns of A. Given a support
set I ⊆ [m] such that |I| ≤ k and y =

∑
i∈I αiAi where |αi| ∈ [1, C], we have that

• For each Âi ∈W ∗ such that i ∈ I, |〈y, Âi〉| ≥ 1
2 .

• For each Âi ∈W ∗ such that i /∈ I, |〈y, Âi〉| < 1
2 .

provided k ≤
√
n

8Cµ and ε ≤ 1
8Ck .

We will use this lemma with samples y = Ax. Observe that this is a deterministic
statement that does not depend on the values of the non-zeros in the sample y = Ax, and
only depends on the support of x.

Proof. Notice that it is enough to show that |〈y, Âi〉 − αi| ≤ 1
4 for each i ∈ [m] since

|αi| ≥ 1 if i ∈ I and 0 otherwise. Given i ∈ [m] we have

〈y, Âi〉 = αi〈Ai, Âi〉+
∑

j∈I\{i}
αj〈Aj , Âi〉

= αi

(
〈Ai, Ai〉+ 〈Ai, Âi −Ai〉

)
+

∑

j∈I\{i}
αj

(
〈Aj , Ai〉+ 〈Aj , Âi −Ai〉

)

= αi + αi〈Ai, Âi −Ai〉+
∑

j∈I\{i}
αj

(
〈Aj , Ai〉+ 〈Aj , Âi −Ai〉

)

18When k exceeds
√
n this will not be true and we cannot deterministically determine the correct supports

for each sample.
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Using the fact that ‖Âi − Ai‖ ≤ ε we get that |αi〈Ai, Âi − Ai〉| ≤ Cε, and similarly
|αj〈Aj , Âi−Ai〉| ≤ Cε| for each j ∈ I \ { i }. Finally, using the fact that A is µ-incoherent
we have

|αj〈Ai, Aj〉| ≤
Cµ√
n
.

Hence for our choice of k and ε,

|〈y, Âi〉 − αi| ≤ kCε+
Ckµ√
n
≤ 1

4
.

6 Efficient algorithms for the random model: Beyond
√
n

sparsity

In this section we show that when the data is generated from the standard random model

D(s)
R ⊙ D(v) our approach from Section 5.3 leads to an algorithm that can handle spar-

sity up to Õ(n2/3) which improves upon the state-of-art results in certain regimes, as
described in Section 1.3. As in the semi-random case, we will look at the statistic
E[〈u(1), y〉〈u(2), y〉〈u(3), y〉 . . . 〈u(2L−1), y〉 y] for a constant L ≥ 8. Here u(1), u(2), . . . , u(2L−1)

are samples that all have a particular column, say Ai, in their support such that Ai ap-
pears with the same sign in each sample. Unlike in the semi-random case where one was
only able to recover high frequency columns, here we will show that then one can good
approximation to any columns Ai via this approach. Hence, in this case we do not need to
iteratively re-weigh the data to recover more columns. This is due to the fact that in the
random case, given a sample y = Ax, we have that P (xi 6= 0) = k

m . Hence, all columns
are large frequency columns. Furthermore, when analyzing various sums of polynomials
over the ζ random variables as in Section 5.3 we will be able to use better concentration

bounds using the fact that the support distribution D(s)
R satisfies (8) and using the corre-

sponding consequences from Lemma 2.4 and Lemma 2.5. The main theorem of this section
stated below claims that the RecoverColumns procedure in Figure 3 will output good

approximations to all columns of A when fed with data from the random model D(s)
R ⊙D(v).

Theorem 6.1. There exists constants c1 > 0 (potentially depending on C) and c2 > 0
such that the following holds for any ε > 0, any constants c > 0, L ≥ 8. Let An×m
be a µ-incoherent matrix with spectral norm at most σ that satisfies (k, δ)-RIP for δ <

1/(C2 logc2 n). Given poly(k,m, n, 1/ε) samples from the random model D(s)
R ⊙ D(v), Al-

gorithm RecoverColumns, with probability at least 1− 1
mc , outputs a set W such that

• For each i ∈ [m], W contains a vector Âi, and there exists b ∈ {±1 } such that
‖Ai − bÂi‖ ≤ ε.

• For each vector ẑ ∈W , there exists Ai and b ∈ {±1 } such that ‖ẑ − bAi‖ ≤ ε,

provided k ≤ n2/3/(ν( 1
m , 2L)τµ2). Here ν(η, d) := c1

(
C(σ2 + µ

√
m
n ) log2(n/η)

)d
, and the

polynomial bound also hides a dependence on C and L.

Here, we use D(s)
R ⊙ D(v) as the first argument to the RecoverColumns procedure

and it should be viewed as a model Mβ(D(s)
R ,D(s)

R ,D(v)) with β = 1. Again the bound

above is strongest when m = O(n), σ = O(1) in which case we get k ≤ Õ(n2/3), However,
as in the semirandom case, we can handle m = n1+ε0 for a sufficiently small constant
ε0 > 0 with a weaker dependence on the sparsity. The main technical result of this section
is the following analogue of Theorem 5.2 from Section 5.3.
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Theorem 6.2. The following holds for any constants c ≥ 2 and L ≥ 8. Let An×m be a µ-
incoherent matrix with spectral norm at most σ. Let u(1) = Aζ(1), u(2) = Aζ(2), . . . , u(2L−1) =

Aζ(2L−1) be samples drawn from D(s)
R ⊙ D(v) conditioned on ζ(t)(1) > 0 for t ∈ [2L − 1].

Let y =
∑

i∈[m] xiAi be a random vector drawn from D(s)
R ⊙D(v). With probability at least

1− 1
log2 m

over the choice of ζ(1), . . . , ζ(2L−1) we have that

E
x,v

[〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y] = q1A1 + e1

where ‖e1‖ = O
(

q1
logc m

)
, and k ≤ n2/3/ν( 1

m , 2L)τµ2. Here ν(η, d) = c1
(
C(σ2 + µ

√
m
n ) log2(n/η)

)d

for a constant c1 > 0, and the expectation is over the value distribution (non-zero values)
of the samples x.

Before we proceed, we will first prove Theorem 6.1 assuming the proof of the above

theorem. Unlike the semirandom model, in the random model D(s) = D(s)
R is fixed here; so

we do not need to perform a union bound over possible semirandom support distributions
as in Section 5.3.

Proof of Theorem 6.1. The proof is similar to the proof of Theorem 5.2. Let T0 be the
set of samples drawn in step 2 of the RecoverColumns procedure. Let c∗ > 0 be an
absolute constant (it will be chosen later based on Theorem 3.1). From Lemma 5.17
we can assume that for each 2L − 1 tuple in T0, the statistic in (56) is k

m log4c∗ m
-close

to its expectation, except with probability at most 2m|T0|2L−1 exp(− log2m). Let Ai

be a column of A. From Lemma 5.16 we have that, except with probability at most
m exp

(
− (2L − 1) logm/4

)
, there exist at least logm disjoint (2L − 1)-tuples in T0 that

intersect in Ai with a positive sign. Hence we get from Theorem 6.2 that there is at least
1 − (logm)−2 logm probability that the vector v̂ computed in step 4 of the algorithm will
be 1

log2c∗ m
-close to Ai. Then we get from Theorem 3.1 (for an appropriate c∗ > 0) that

a vector that is ε-close to Ai will be added to W except with probability at most m−4L.
Furthermore no spurious vector that is 1

logc∗ m far from all Ai will be added, except with

probability at most (|T0|/m2)2L. Hence the total probability of failure of the algorithm is

at most m(2|T0|(2L−1)elog
2 m + exp(− (2L−1) logm

4 ) + 1
(logm)2 logm + |T0|2L

m4L ) ≤ 1
mc .

6.1 Proof of Theorem 6.2

The proof will be identical to that of Theorem 5.18. However, since the support distribu-

tion D(s)
R satisfies (8), we will be able to use the additional consequences of Lemma 2.4 and

Lemma 2.5 to get much better concentration bounds for various random sums involved.
This will lead to an improved sparsity tolerance of ≈ n2/3.

Let y =
∑

i∈[m] xiAi. Then we have that

E
x,v

[〈u(1), y〉〈u(2), y〉 . . . 〈u(2L−1), y〉y] =
∑

i∈[m]

γiAi, where

γi =
∑

j1,...,j2L−1∈[m]

ζ
(1)
j1
. . . ζ

(2L−1)
j2L−1

∑

i1,...i2L−1∈[m]

E[xi1 . . . xi2L−1
xi]Mi1,j1 . . .Mi2L−1,j2L−1

(72)

We will show that with high probability (over the ζs), γ1 = q1(1 ± 1
logc m ) and that

‖∑i 6=1 γiAi‖ = O
(

q1
logc m

)
for our choice of k. Notice that for a given i, any term in

the expression for γi as in (57) will survive only if the indices i1, i2, . . . , i2L−1 form a parti-
tion S = (S1, S2, . . . SR) such that |S1| is odd and |Sp| is even for p ≥ 2. S1 is the special
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partition that must correspond to indices that equal i. Hence, (S1, S2, . . . SR) must satisfy
it = i for t ∈ S1 and it = i∗r for t ∈ Sr for r ≥ 2, for indices i∗2, . . . i

∗
R ∈ [m]. We call

such a partition a valid partition and denote |S| = R as the size of the partition. Let
d1, d2, . . . dR denote the sizes of the corresponding sets in the partition, i.e., dj = |Sj|.
Notice that d1 ≥ 1 must be odd and any other dj must be an even integer. Using the
notation from Section 2.1 we have that

E
[
xi1 . . . xi2L−1

xi
]

=

{
qi,i∗2,i∗3,...,i∗R(d1 + 1, d2, . . . , dR), S is valid

0, otherwise

Recall that by choice, ζ
(ℓ)
1 ≥ 1 for each ℓ ∈ [2L − 1]. Hence, the value of the inner

summation in (72) will depend on how many of the indices j1, j2, . . . , j2L−1 are equal to
1. This is because we have that ζℓ1 is a constant in [1, C] for all ℓ ∈ [2L − 1]. Hence, let
H = (H1,H2, . . . HR) be such that Hr ⊆ Sr and for each r we have that jt = 1 for t ∈ Hr.
Let h denote the total number of fixed variables, i.e. h =

∑
r∈[R] |Hr|. Notice that h

ranges from 0 to 2L − 1 and there are 22L−1 possible partitions H. The total number of
valid (S,H) partitionings is at most (4L)2L. Hence

γi =
∑

(S,H)

γi(S,H), where γi(S,H) :=

=
∑

(i∗2 ,...,i
∗
R)

∈[m]R−1

qi,i∗2,...,i∗R(d1 + 1, d2, . . . , dR)
∏

r∈[R]

∑

JSr\Hr

(Mi∗r ,1)
|Hr |

∏

t∈Hr

ζ
(t)
1 ·

∏

t∈Sr\Hr

Mi∗r ,jtζ
(t)
jt

Note that by triangle inequality, ‖∑i 6=1 γiAi‖2 ≤
∑

(S,H)‖
∑

i 6=1 γi(S,H)Ai‖2. Hence, we
will obtain bounds on γi(S,H) depending on the type of partition (S,H), and upper bound
‖∑i 6=1 γi(S,H)Ai‖2 for each (S,H). We have three cases depending on the number of fixed
indices h.
Case 1: h = 0. In this case none of the random variables are fixed to 1. In this case we
use the second consequence of Lemma 5.10 to get that with probability at least 1−η, over
the randomness in ζjs,

|γi(S,H = ∅)| ≤ qiη−1/2 · ν(η, 2L)σ4L ·
(τ4/3k4/3

m

)3L
2 −1

(73)

In the final analysis we will set η =
(
m log2m(4L)2L

)−1
. In this case we get that

|γi(S,H = ∅)| ≤ qi
√
m logm · (4L)2Lν(η, 2L)σ4L ·

(τ4/3k4/3
m

)3L
2 −1

.

We will set L large enough in the above equation such that we get

|γi(S,H = ∅)| ≤ qiν(η, 2L)
µ2k

m
√
m
. (74)

L ≥ 8 suffice for this purpose for our choice of k.
Case 2: h = 2L−1. In this case all the random variables are fixed and γi deterministically
equals

|γi(S,H)| = ζ
(1)
1 ζ

(2)
1 . . . ζ

(2L−1)
1

∑

i∗2,i
∗
3,...,i

∗
R∈[m]

qi,i∗2,i∗3,...,i∗R(d1 + 1, d2, . . . , dR)Md1
i,1M

d2
i∗2,1

. . .MdR
i∗R,1

=

{
ζ
(1)
1 ζ

(2)
1 . . . ζ

(2L−1)
1 · qiMd1

i,1, R = 1

O
(
C4L−1σ2(R−1) · qiMd1

i,1
kτ
m

)
, otherwise ,

(75)
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where the case when R 6= 1 follows from Lemma 5.14. As opposed to the similar case in
the semi-random scenario (59), here we get an additional factor of kτ

m for R 6= 1, since we
use the stronger fact that qi,i∗2,i∗3,...,i∗R(d1 + 1, d2, . . . , dR) satisfies the stronger conditions of
Lemma 2.4 and Lemma 2.5.
Case 3: 1 ≤ h < 2L− 1. Similar to the semi-random case, we can write

γi(S,H) = qi(d1 + 1)
∏

t′∈H1

ζ
(t′)
1

∑

JS1\H1

M
|H1|
i,1

∏

t∈S1\H1

ζ
(t)
jt
Mi,jtFi, where

Fi =
∑

i∗2,...,i
∗
R∈[m]

(qi,...,i∗r ,...,i∗R(d1 + 1, d2, . . . , dR)

qi(d1 + 1)

) R∏

r=2

( ∑

JSr\Hr

M
|Hp|
i∗p,1

∏

t∈Sp\Jp
Mi∗p,jtζ

(t)
jt

)
.

When |H1| ≥ 1, we can apply Lemma 5.13 with r = 1 we get with probability at least
1−η over the randomness in ζjs that |Fi| ≤ (kτm )R−1ν(η, 2L). Here again the extra (kτm )R−1

is due to the fact that we have a better bound of kτ
m on ‖w′‖∞ in the application of the

lemma. Hence, we get that with probability at least 1− η over the randomness in ζjs,

γi(S,H) = wiqi(d1 + 1)
∏

t′∈H1

ζ
(t′)
1

∑

JS1\H1

∏

t∈S1\H1

ζ(t)Mi,jtM
|H1|
i,1 (76)

where |wi| ≤ (kτm )R−1ν(η, 2L).
Unlike the semi-random case we will bound the expression above in two different ways

depending on the value of R. This careful analysis of the expression above will help us go
beyond the

√
n bound. When R ≥ 2, we have |wi| ≤ kτ

m ν(η, 2L) and we use Lemma 5.9
to get that with probability at least 1− 2η, the above sum is bounded as

|γi(S,H)| ≤




ν(η, 2L) qikτµ

m
√
n

(
Zi + ν(η, 2L)

√
kτ
m

)
, i 6= 1, R ≥ 2

ν(η, 2L) qikτm · ν(η, 2L)
√

kτ
m , i = 1, R ≥ 2

(77)

Here Zi =
∏

t∈S1\H1
|ζ(t)i | are non-negative random variables bounded by C |S1\H1|. Further

Zi are each non-zero with probability at most p · (τp)|S1\H1|−1 and they are τ -negatively
correlated(with the values conditioned on non-zeros being drawn independently). The
additional µ√

n
factor in the case of i 6= 1 is due to the fact that |H1| ≥ 1 and we have

M
|H1|
i,1 in the expansion.

When R = 1 we have Fi = 1 and hence wi = 1. Here we will directly use Lemma 5.9.
However the application of the Lemma will depend on whether |H1| ≥ 2L − 4 or not. If
|H1| ≥ 2L − 4 then we use the bound that holds for degree d ≤ 3 and otherwise we use
the better bound. Hence, we have

|γi(S,H)| ≤





qi(
µ√
n

)2L−4
(
Zi + ν(η, 2L)

√
kτ
m

)
, i 6= 1, |H1| ≥ 2L− 4

qiµ√
n
ν(η, 2L)

√
kτ
m , i 6= 1, |H1| ≤ 2L− 4

qi · ν(η, 2L)
√

kτ
m , i = 1

(78)

Next we look at the case when |H1| = 0. Hence, there must exist r ≥ 2 such that
|Hr| ≥ 1. Without loss of generality assume that |H2| ≥ 1. Then we can write γi(S,H) as

γi(S,H) =
∑

i∗2

qi,i∗2(d1 + 1, d2)
∑

JS1

∏

t∈S1

Mi,jtζ
(t)
jt
·
∏

t′∈H2

ζ
(t′)
1

∑

JS2\H2

M
|H2|
i∗2 ,1

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jtF

′
i,i∗2
,

where F ′i,i∗2 =
∑

i∗3,...,i
∗
R∈[m]

(qi,...,i∗r ,...,i∗R(d1 + 1, d2, . . . , dR)

qi,i∗2(d1 + 1, d2)

) R∏

r=3


 ∑

JSr\Hr

M
|Hr|
i∗r ,1

∏

t∈Sr\Jr
Mi∗r ,jtζ

(t)
jt


 .
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We can again apply Lemma 5.13 with r = 2 to get that with probability at least 1 − η
over the randomness in ζjs,

|F ′i,i∗2 | ≤ ν(η, 2L − d1 − d2 − 1)(
kτ

m
)R−2.

Hence, we can rearrange and write γi(S,H) as

γi(S,H) = qi(d1 + 1)
∏

t′∈H2

ζ
(t′)
1

∑

JS1

∏

t∈S1

ζ
(t)
jt
Mi,jtF

′′
i , where

F ′′i =
∑

i∗2∈[m]

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2M

|H2|
i∗2,1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jt (79)

We split this sum into two, depending on whether i∗2 = 1 or not. Here we have that

F ′′i,a :=
qi,1(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2=1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
M1,jt (80)

and

F ′′i,b :=
∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
· F ′i,i∗2M

|H2|
i∗2,1

∑

JS2\H2

∏

t∈S2\H2

ζ
(t)
jt
Mi∗2,jt (81)

Here when |H2| < |S2| we will use Lemma 5.9 and the fact that jt 6= 1 for t ∈ |S2 \H2| to
get that with probability at least 1− η over the randomness in ζjs, we can bound F ′′i,a as

|F ′′i,a| ≤ ν(η, 2L− d1 − 1− |H2|) ·
qi,1(d1 + 1, d2)

qi(d1 + 1)
(
kτ

m
)R−3/2

≤ ν(η, 2L− d1 − 1− |H2|) · Cd2(
kτ

m
)R−1/2

where in the last inequality we have used the stronger consequence of Lemma 2.5. Com-
bining this with the simple bound when S2 = H2 we get

|F ′′i,a| =
{
ν(η, 2L − d1 − d2 − 1) · Cd2(kτm )R−1, |H2| = |S2|
ν(η, 2L − d1 − 1− |H2|) · Cd2(kτm )R−1/2, otherwise

(82)

Next we bound F ′′i,b. When |H2| < |S2| we will use the concentration bound from
Lemma 5.8. However, when applying Lemma 5.8 we will use the fact that |wi∗2 | =

| qi,i∗2 (d1+1,d2)

qi(d1+1) Fi,i∗2M
|H2|
i∗2,1
| ≤ Cd2 · kτ/m · ν(η, 2L− d1 − d2 − 1)µ/

√
n. This is because of the

stronger consequence of Lemma 2.5 and the fact we are summing over i∗2 6= 1. Furthermore

we are in the case when |H2| ≥ 1. Hence, by incoherence we have that |M |H2|
i∗2,1
| ≤ µ/

√
n.

Hence we get that with probability at least 1− η over the randomness in { ζj } to get that

|F ′′i,b| ≤ Cd2ν(η, 2L − d1 − 1− |H2|)
kµτ

m
√
n

When |H2| = |S2| we get

|F ′′i,b| ≤
∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)
·
∣∣F ′i,i∗2M

|S2|
i∗2 ,1

∣∣.
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Using the fact that |S2| ≥ 2, i∗2 6= 1 and that the columns are incoherent we get,

|F ′′i,b| ≤ ν(η, 2L− d1 − d2 − 1) · µ
2

n
·

∑

i∗2∈[m]\{1}

qi,i∗2(d1 + 1, d2)

qi(d1 + 1)

≤ ν(η, 2L− d1 − d2 − 1) · C
d2µ2k

n

where in the last inequality we use Lemma 11. Combining the above bounds we get that
with probability least 1− η over the randomness in ζjs,

F ′′i,b =

{
ν(η, 2L− d1 − d2 − 1)C

d2µ2k
n , |H2| = |S2|

Cd2ν(η, 2L − d1 − 1− |H2|) kµτ
m
√
n
, otherwise

(83)

We combine the above bounds on F ′′i,a and F ′′i,b and to get the following bound on F ′′i that
holds with probability 1− 2η over the randomness in ζs

|F ′′i | ≤




ν(η, 2L− d1 − d2 − 1)

(
Cd2(kτm )R−1 + Cd2µ2k

n

)
, |H2| = |S2|

Cd2ν(η, 2L − d1 − 1− |H2|)
(

(kτm )R−1/2 + kµτ
m
√
n

)
, otherwise

(84)

Finally, we get a bound on γi(S,H). Here unlike the semi-random case we use Lemma 5.8

with wi in the Lemma set to qi(d1 + 1)
∏

t′∈H2
ζ
(t′)
1 F ′′i . This is because we have a good

upper bound on |wi| of qiC
d1+1C |H2||F ′′i |. Hence we get that

|γi(S,H)| ≤
{
q1C

2Lν(η, 2L)( τkm )3/2, i = 1

qiC
2Lν(η, 2L)(

√
kτ
m )(kτm )3/2, otherwise

(85)

Putting it Together. We will set η =
(
m log2m(4L)2L

)−1
so that all the above bounds

hold simultaneously for each i ∈ [m] and each partitioning S,H. We first gather the
coefficient of A1, i.e., γ1. For the case of h = 2L− 1 we get that γ1(S,H) ≥ q1 from (75).

Here we have used the fact that ζ
(t)
1 ≥ 1 for all t ∈ [2L − 1]. For any other partition we

get from (77), (85) and (74) that

γ1 ≤ q1C2Lν(η, 2L) ·
√
τk

m
= O

( q1
(4L)2L logcm

)

for our choice of k. Hence, summing over all partitions we get that term corresponding to
A1 in (57) equals a1A1 + e1 where a1 ≥ q1 and ‖e1‖ = O( q1

logc m ).

Next we bound ‖∑i 6=1 γiAi‖. In order to show that ‖∑i 6=1 γiAi‖ ≤ q1
logc m it is enough

to show that for any (S,H),

∥∥∑

i 6=1

γi(S,H)Ai

∥∥
2
≤ q1

(4L)2L logcm

Using the fact that ‖A‖2 ≤ σ, we have that ‖∑i 6=1 γi(S,H)Ai‖2 ≤ σ
√∑

i 6=1 γ
2
i (S,H).

Hence, it will suffice to show that for any

∀(S,H),
∑

i 6=1

γ2i (S,H) ≤ q21
(4L)4Lσ2 log2cm

(86)

.
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From (59), (61), (68) and (58) we get that We notice that across all partitions

|γi(S,H)| ≤ qiC4Lν(η, 2L)
(kZi

m
+

√
τk

m

)
max

(
µ√
n
, (
kτ

m
)3/2

)

= γ
(1)
i (S,H) + γ

(2)
i (S,H), where for our choice of k = o(m2/3) we have ,

γ
(1)
i (S,H) = qiC

4Lν(η, 2L)
kµ

m
√
n
Zi, γ

(2)
i (S,H) = qiC

4Lν(η, 2L)

√
kτ

m

µ√
n

We will separately show that ∀j ∈ { 1, 2 }
∑

i 6=1

(γ
(j)
i (S,H))2 ≤ q21

4σ2(4L)4L log2cm
.

For j = 1 we have

∑

i 6=1

(γ
(1)
i (S,H))2 =

∑

i 6=1

q2iC
8Lν2(η, 2L)(

kτ

m
√
n

)2Z2
i

≤ q21C8Lν2(η, 2L)
∑

i 6=1

(
kτ

m
√
n

)2Z2
i

Notice that Zis are non-negative random variables with support distribution that is
τ -negatively correlated. Hence, using Lemma B.3 with p = k

m and ‖a‖1 = kτ√
n

we get,

∑

i 6=1

(γ
(1)
i (S,H))2 ≤ q2iC8Lν2(η, 2L)

C2
√
k2τ√

m
√
n log(c−1)/2m

≤ q21
4σ2(4L)4L log2cm

for our choice of k. For j = 2 we have

∑

i 6=1

(γ
(2)
i (S,H))2 =

∑

i 6=1

q2iC
8Lν2(η, 2L)(

kτµ2

mn
)

≤ q21C8Lν2(η, 2L)(
kτµ2

n
)

≤ q21
4σ2(4L)4L log2cm

for our choice of k. Combining all partitions we get that ‖∑i 6=1 γiAi‖ = O( q1
logc m). This

establishes the proof of Theorem 6.2.
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A Proofs from Section 2

Proof of Lemma 2.4. The lower bound of 1 can be easily seen by setting iR = iR−1. For
the upper bound, let Sk be the set of all k-sparse vectors in {0, 1}m. Then we have
P(∪ζ∈Skζ) = 1. Let A be the event that (ζi1 6= 0, . . . , ζiR−1

6= 0). Since each vector is
k-sparse we have that

∑

iR∈[m]

qi1,i2,...,iR =
∑

iR∈[m]

P(ζi1 6= 0, ζi2 6= 0, . . . , ζiR 6= 0)

≤ kP(A)

= kqi1,i2,...,iR−1

For the second part, let S be the set of indices i1, i2, . . . , iR−1. Then we have

qi1,i2,...,iR
qi1,i2,...,iR−1

=
P(
⋂

j∈S ζj 6= 0 and ζR 6= 0)

P(
⋂

j∈S ζj 6= 0)

=
P(
⋂

j∈S ζj 6= 0)P(ζR 6= 0|⋂j∈S ζj 6= 0)

P(
⋂

j∈S ζj 6= 0)

= P(ζR 6= 0|
⋂

j∈S
ζj 6= 0) ≤ kτ

m

where the last inequality makes use the fact that the ζs are τ -negatively correlated.

Proof of Lemma 2.5. Again the lower bound is easy to see by setting iR = iR−1. For
the upper bound Let A be the event that (ζi1 6= 0, . . . , ζiR−1

6= 0) and B be the event
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(ζi1 6= 0, . . . , ζiR 6= 0). We have

∑

iR∈[m]

qi1,i2,...,iR(d1, d2, . . . , dR)

qi1,i2,...,iR−1
(d1, d2, . . . , dR−1)

=
∑

iR∈[m]

E[xd1i1 x
d2
i2
. . . xdRiR |B]P(B)

E[xd1i1 x
d2
i2
. . . x

dR−1

iR−1
|A]P(A)

≤ CdR
∑

iR∈[m]

P(B)

P(A)
≤ τkCdR

m
.

Here we have used the fact that values are picked independently from D(v) conditioned
on support and hence E[xd1i1 x

d2
i2
. . . xdRiR |B] =

∏
tE[xdtit |ζit 6= 0]. Furthermore, we have

E[xdRiR |ζiR 6= 0] ≤ CdR and from Lemma 2.4 we have that
∑

iR∈[m]
P(B)
P(A) ≤ kτ

m . The second
part follows similarly by noting that

qi1,i2,...,iR(d1, d2, . . . , dR)

qi1,i2,...,iR(d1, d2, . . . , dR−1)
≤ CdR

qi1,i2,...,iR
qi1,i2,...,iR−1

.

and using the second consequence of Lemma 2.4.

Proof of Lemma 2.7. For the lower bound notice that since A has unit length columns we
have that ‖A‖2F = 1. Since the squared Frobenius norm is also the sum of squared singular
values and the rank of A is at most n, we must have ‖A‖2 ≥ m

n .
For the upper bound, consider a unit length vector x ∈ R

m. We have,

‖Ax‖2 =
∑

i∈[m]

x2i ‖Ai‖2 +
∑

i 6=j

xixj〈Ai, Aj〉.

= ‖x‖2 +
∑

i 6=j

xixj〈Ai, Aj〉

≤ ‖x‖2 +

√∑

i 6=j

x2ix
2
j

√∑

i 6=j

〈Ai, Aj〉2

≤ ‖x‖2 + ‖x‖2µm√
n

≤ (1 +
µm√
n

)

Proof of Lemma 2.9. Lower bound follows exactly from the same argument as above. For
the upper bound, given a vector x ∈ R

m we write it as a sum of m
k
19, k-sparse vectors,

i.e., x = y1 + y2 + · · ·+ ym
k

. Here y1 is a vector that is non-zero on coordinates 1 to k and
takes the same value as x in those coordinates. Similarly, yi is a vector that is non-zero in
coordinates (i − 1)k + 1 to ik and takes the same value as x in those coordinates. Then

we have Ax =
∑m

k
i=1Ayi and that

∑m
k
i=1 ‖yi‖2 = ‖x‖2. Hence we get by triangle inequality

that

‖Ax‖ ≤
m
k∑

i=1

‖Ayi‖

≤ (1 + δ)

m
k∑

i=1

‖yi‖ ≤ (1 + δ)

√
m

k

√√√√
m
k∑

i=1

||yi||2

= (1 + δ)

√
m

k
‖x‖

19For simplicity we assume that k is a multiple of m.
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where in the second inequality we have used the fact that A satisfies (k, δ)-RIP and yis
are k-sparse vectors.

Proof of Lemma 2.10. Let A be a µ-incoherent matrix. Given a k-sparse vector x, we
assume w.l.o.g. that the first k coordinates of x are non-zero. Then we have Ax =∑k

i=1 xiAi. Hence we get

‖Ax‖2 =

k∑

i=1

x2i ‖Ai‖2 +
∑

i 6=j

xixj〈Ai, Aj〉

= ‖x‖2 +
∑

i 6=j

xixj〈Ai, Aj〉

≤ ‖x‖2 ±
√∑

i 6=j

x2i x
2
j

√∑

i 6=j

〈Ai, Aj〉2

≤ ‖x‖2 ± ‖x‖2 µk√
n

Hence we get that

(1− δ) ≤ ‖Ax‖‖x‖ ≤ (1 + δ)

for δ = 2µk√
n

Proof of Lemma 2.12. The first part just follows from the fact that the maximum singular
value of AT is at most 1 + δ.

Suppose for contradiction Tγ = | { i ∈ [m] : | 〈z,Ai〉| > γ } | ≥ (1 + δ)/γ2 + 1. Let T be
any subset of (1 + δ)/γ2 + 1 of Tγ .

From the RIP property of A, we have for any unit vector z ∈ R
n, ‖zTAT ‖2 ≤ ‖AT ‖ ≤

(1 + δ). Suppose |T | = 1 + (1 + δ)/γ2,

|T |γ2 ≤
∑

i∈T
〈z,Ai〉2 = ‖zTAT ‖22 ≤ (1 + δ)

Hence |T | ≤ 1 + δ

γ2
,

which contradicts the assumption that |T | ≥ 1/γ2 + 1.

Proof of Lemma 2.11. Let B be the submatrix of A restricted to the columns given by
T ∪ i. From the RIP property the max singular value ‖B‖ ≤ 1 + δ. Since this is also the
maximum left singular value,

(1 + δ)2 ≥ ‖AT
i B‖22 = ‖Ai‖22 +

∑

j∈T
〈Ai, Aj〉2.

Hence
∑

j∈T
〈Ai, Aj〉2 ≤ 2δ + δ2.

B Auxiliary Lemmas for Producing Candidates

We prove two simple linear-algebraic facts, that is useful in the analysis for the initialization
procedure. The first is about the operator norms of the Khatri-Rao product (see [BCV14]
shows an analogous statement for minimum singular value) .
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Lemma B.1. Consider any two matrices A ∈ R
n1×m, B ∈ R

n1×m and let Ai (Bi) be the
ith column of A (B respectively). If M = A⊙B denotes the (n1n2)×m matrix with the
ith column Mi = Ai ⊗Bi. ‖M‖op ≤ ‖A‖op‖B‖op.

Proof. Consider the matrix M , and let u ∈ R
m be any unit vector. The length of the n1n2

dimensional vector Mu is

‖Mu‖2 = ‖
∑

i∈[m]

uiAi ⊗Bi‖2 = ‖
∑

i∈[m]

uiAiB
T
i ‖F

= ‖Adiag(u)BT ‖F ≤ ‖A‖ · ‖diag(u)‖F · ‖BT ‖ ≤ ‖u‖2‖A‖‖B‖ ≤ ‖A‖‖B‖.

The second lemma involves Frobenius norms of tensor products of PSD matrices.

Lemma B.2. Given any n ∈ N and a set of n PSD matrices A1, A2, . . . , An � 0, and n
other matrices B1, . . . , Bn, we have

∥∥∥
n∑

i=1

Ai ⊗Bi

∥∥∥
F
≤
∥∥∥

n∑

i=1

‖Bi‖FAi

∥∥∥
F
.

Proof. Let 〈Ai, Ai′〉 = tr(AiAi′) be the vector inner product of the flattened matrices
Ai, Ai′ (similarly for Bi, Bi′).

∥∥∥
n∑

i=1

Ai ⊗Bi

∥∥∥
2

F
=

〈
n∑

i=1

Ai ⊗Bi,

n∑

i′=1

Ai′ ⊗Bi′

〉
=

n∑

i=1

n∑

i′=1

〈Ai, Ai′〉〈Bi, Bi′〉

≤
n∑

i=1

n∑

i′=1

〈Ai, Ai′〉‖Bi‖F ‖Bi′‖F ≤
∥∥∥

n∑

i=1

‖Bi‖FAi

∥∥∥
2

F
,

where the first inequality on the last line also used the fact that tr(M1M2) ≥ 0 when
M1,M2 � 0.

Lemma B.3. Let Z1, Z2, . . . Zm be real valued random variables bounded in magnitude
by C > 0 such that [Z1 6= 0], [Z2 6= 0], . . . , [Zm 6= 0] are τ -negatively correlated (as in
Section 2), P(Zi 6= 0) ≤ p, and the values of the non-zeros are independent conditioned on
the support. Let Z =

∑
i a

2
iZ

2
i for real values a1, a2, . . . am such that ‖a‖1pC2 ≤ 1. Then

for any constant c ≥ 4, with probability at least 1− ‖a‖1p logcm− 1
m2 , we have that

Z =
∑

i

a2iZ
2
i ≤

C2τ

logcm
.

Proof. We first give a simple proof using Chernoff bound for the case when τ = 1 (nega-
tively correlated). Let T = {i ∈ [m] : |ai| ≥ 1

logc m}. Then we have that |T | ≤ ‖a‖1 logcm.
Define an event E = ∪i∈T (Zi 6= 0). By union bound we have that P (E) ≤ p|T | ≤
‖a‖1p logcm. Conditioned on E not occurring we have that Z =

∑
i/∈T a

2
iZ

2
i . Notice that

maxi/∈T |a2iZ2
i | ≤ C2

log2c m
. Furthermore we have that

E[
∑

i/∈T
a2iZ

2
i ] ≤

∑

i/∈T
a2iC

2p ≤ ‖a‖1C
2p

logcm
.
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Let λ = C2 log−cm ≥ C2τ
(√
‖a‖1p log−(3c−1)/2m + log−(2c−1)m

)
. Hence by using

Chernoff-Hoeffding bounds for negatively correlated random variables [DP09] we get that

P

[
Z ≥ λ | Ec

]
≤ exp

(
− λ2

maxi/∈T |a2iZ2
i | · (2E[

∑
i/∈T a

2
iZ

2
i ] + λ)

)

≤ exp
(
− λ2

C2 log−2cm · (2‖a‖1C2p log−cm+ λ)

)
≤ 1

m2
,

for our choice of λ. Noticing that P (Ec) ≥ 1− ‖a‖1p logcm we get the claim.
An alternate proof that also extends to the more general case of τ -negatively correlated

support distribution, can be obtained by using Lemma 5.5 with the vector (first-order
tensor) corresponding to terms i /∈ T with d = 1, ρ = 1 + (maxi/∈T a

2
i /E[Z]) to obtain the

conclusion of the above lemma.
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