
Improved Online Algorithm for Weighted Flow Time

Yossi Azar
azar@tau.ac.il

Tel Aviv University∗

Noam Touitou
noamtouitou@mail.tau.ac.il

Tel Aviv University

Abstract

We discuss one of the most fundamental scheduling problem of processing jobs on a single
machine to minimize the weighted flow time (weighted response time). Our main result is a
O(logP)-competitive algorithm, where P is the maximum-to-minimum processing time ratio,
improving upon theO(log2 P)-competitive algorithm of Chekuri, Khanna and Zhu (STOC 2001).
We also design a O(logD)-competitive algorithm, where D is the maximum-to-minimum density
ratio of jobs. Finally, we show how to combine these results with the result of Bansal and
Dhamdhere (SODA 2003) to achieve a O(log(min(P,D,W)))-competitive algorithm (where W
is the maximum-to-minimum weight ratio), without knowing P,D,W in advance. As shown
by Bansal and Chan (SODA 2009), no constant-competitive algorithm is achievable for this
problem.

∗Partially supported by the ISF grant no. 1506/16 and by the ICRC Blavatnik Fund.

1

ar
X

iv
:1

71
2.

10
27

3v
3

 [
cs

.D
S]

 1
6

A
ug

 2
01

8

1 Introduction
We discuss the fundamental problem of online scheduling of jobs on a single machine. In this
problem, a machine receives jobs over time, and the online algorithm decides which job to process
at any point in time, allowing preemption as needed. Each of the jobs has a processing time (or
volume) and a weight. We consider the weighted flow time cost function for this problem, in which
the algorithm has to minimize the weighted sum over the jobs of the time between their arrival and
their completion.
Define P as the maximal ratio between the processing times of any two jobs, andW as the maximal
ratio between the weights of any two jobs. The first non-trivial algorithm for this problem was
shown by Chekuri et al. [11], and is O(log2 P)-competitive. Bansal and Dhamdhere [6] showed a
O(logW)-competitive algorithm for this problem. A lower bound on competitiveness of
Ω(min((logW/ log logW)

1
2 , (log logP/ log log logP)

1
2)) was then shown by Bansal and Chan [5].

An additional parameter of interest is D, which is the maximal ratio between the densities of any
two jobs. This parameter has not been explored in any previous work, though the algorithm in [11]
can be modified quite easily to yield a O(log2D)-competitive algorithm.

Our Results
Our main results are as follows:
• O(logP)-competitive algorithm for weighted flow time on a single machine, improving upon

the previous result of O(log2 P) in [11].
• O(logD)-competitive algorithm. This algorithm is different from the O(logP)-competitive

algorithm.
• A combined algorithm which is O(log(min(P,D,W))) competitive, without knowing P,D,W

in advance. This builds on the previous two algorithms and the algorithm of [6].

Related Work
As mentioned above, for minimizing weighted flow time on a single machine, Chekuri et al. [11]
presented a O(log2 P)-competitive algorithm. The algorithm arranges all jobs in a table by their
weight and density. The algorithm only processes jobs the weight of which is larger than the sum of
the weights in the rectangle of lower density and lower weight jobs. In [6], a O(logW)-competitive
algorithm is presented for this problem. This algorithm is based on the division of jobs into bins ac-
cording to the logarithmic class of their weight, and then balancing the weights of those bins. A lower
bound on algorithm competitiveness of Ω(min((logW/ log logW)

1
2 , (log logP/ log log logP)

1
2)) was

shown in [5]. Typically, one assumes that P andW are bounded and that the number of jobs may be
arbitrarily large (unbounded). In the case that the number of jobs is small, it is shown in [6] how to
use the O(logW) competitive algorithm to construct a O(logP +log n)-competitive algorithm, with
n being the number of jobs released. Note that the competitive ratio of this algorithm is unbounded
as a function of P . For the offline problem, Chekuri and Khanna [10] showed a quasi-polynomial
time approximation scheme. Bansal [4] later extended this result to a constant number of machines.
For a single machine in the unweighted case, a classic result from [16] states that the shortest
remaining processing time algorithm is optimal. For the case of m identical machines, and a set of
n jobs, Leonardi and Raz [15] showed that SRPT is O(log(min(P, nm)))-competitive, and that this is
optimal. Awerbuch et al. [3] presented a O(log(min(P, n)))-competitive algorithm in which jobs do
not migrate machines. An algorithm with immediate dispatching (and no migration) with similar
guarantees was presented in [2]. In contrast to those positive results, for the case of weighted flow
time on multiple machines, Chekuri et al. [11] showed a Ω(min(

√
P ,
√
W, (nm)

1
4)) lower bound on

competitiveness for m > 1 machines, making the problem intractable.

2

Competitive algorithms also exist for unweighted flow time on related machines [12, 13]. For the
case of unweighted flow time for machines with restricted assignment, no online algorithm with a
bounded competitive ratio exists [14].
In the resource augmentation problem, the single machine weighted flow time problem becomes
significally easier. In [7], a (1 + 1

ε)-competitive algorithm is given for a (1 + ε)-speed model. An
algorithm with a similar guarantee was given in [6] for the non-clairvoyant setting. A competitive
algorithm is also known for weighted flow time in unrelated machines [8]. Additional work has been
done on weighted flow time for unrelated machines with resource augmentation in the offline model
(see e.g. [9, 1]).

Our Technique
Processing-time ratio algorithm. Our O(logP) algorithm rounds the weights of incoming jobs
to a power of 2, and assigns them into power-of-2 bins according to their processing time. That
is, bin i contains jobs whose initial processing time is in the range [2i, 2i+1). Note that jobs never
move between bins.
To describe the algorithm, we utilize a visualization of the algorithms state, as shown in figure 4.1.
We view each job as a rectangular container, such that the height of the rectangle is the weight of
the job, and its area is 2i+1. The volume of the job can be viewed as liquid within that container.
When a job is being processed, the amount of liquid is reduced from the top. A horizontal dotted
line runs through the middle of the container. This line helps to observe the volume covered by a
bar, a concept used in the algorithm’s analysis.
Inside each bin, jobs of higher weight have a higher priority for processing. For jobs of the same
weight, the jobs are ordered according to their density, such that lower density jobs get priority.
This priority is illustrated by the rectangular containers of the jobs being stacked on top of one
another, such that a higher job in the stack has higher priority.
At any point in time, the algorithm chooses a bin from which to process the uppermost job. At each
point in time, each bin is assigned a score, such that the bin with the highest score is processed.
In [6], the score assigned to each bin is the total weight of the jobs in that bin. In our algorithm,
the score is more complex. All jobs except the top job add their weight to the total score of the
bin. The top job adds to the score of the bin either its complete weight, if it has high remaining
processing time, or half of it, if it has low remaining processing time. While this modification seems
odd, it is crucial for the proof. This can lead to some interesting behavior: for example, a job
can be preempted during processing because its processing time has decreased below the threshold,
lowering the score of its bin. This preemption is not due to any external event; no job has been
released to trigger it.
The outline of our proof is inspired by [6]. In our proof, we use the concept of volume covered by a
bar. We place a horizontal bar at some height x, as shown in figure 4.1. If the bar lies over the top
of a job, we say that it covers the entire volume of the job. If the bar lies between the half of the
job (the dotted lines in figure 4.1) and the top of the job, it only covers the volume underneath the
half of the job. Otherwise, the bar covers none of the job’s volume.
The proof consists of showing that at any time, a bar at a height that is constant times the remaining
weight of the optimum, every job in the algorithm covers the entire volume in the algorithm. We
then show that such a bar can be raised by a multiplicative factor of 2 to yield a second bar, which
covers all weight in all bins (and therefore, its height is larger than the total weight in that bin).
This gives us the O(logP) competitiveness.
Density ratio algorithm. A different algorithm, though similar in the method of its proof, is
used for O(logD) competitiveness. We assign the jobs into power-of-2 bins according to density. In

3

this algorithm, the weights of the algorithm are not rounded to a power of 2. Instead, the densities
of the jobs are rounded to a power of 2 (this is also through changing the weights). This gives us
that bin i contains jobs whose initial density is 2i. In this algorithm, as in the previous algorithm,
jobs never move between bins.
A visualization of a possible state of the algorithm at a time t is shown in figure 6.1. We again
have a rectangular container for each job, the height of which is the weight of the job. In this case,
the container arrives full–its width is 2i, and thus its area is exactly the volume of the job upon its
arrival. As in the O(logP) algorithm, when a job is processed its container depletes from the top.
Inside each bin, one job takes priority over another if its weight is of a higher power of 2 (higher
weight class). For jobs of the same weight class, a partially processed job takes priority.
In this algorithm, each bin has a single dummy job of each weight class. To calculate the score of
a bin, we observe its top (non-dummy) job. The jobs below that top job–dummy or not–add their
weight to the score. The top job, however, adds to the score only a fraction of its weight, which
is the fraction of its volume that has not yet been processed. Thus, the score of a bin depends
continuously on the processing state of the top job, as opposed to the two discrete options in the
O(logP) algorithm.
This score again stems from a definition for the volume covered by a bar. In this case, the definition
is continuous–the volume covered by the bar is exactly the volume that appears under the bar in a
visualization such as figure 6.1.
Combined algorithm. Finally, we use the fact that the O(logW) algorithm of [6] and the
O(logP) and O(logD) algorithms have some common properties, and show how to combine them
into a O(log(min(P,D,W))) competitive algorithm without knowledge of P,D,W in advance. This
relies on bins of three types coexisting, and being assigned jobs in a manner that prefers bins that
have already been in use. We note that this method works by using the specific common properties
of the different algorithms, and cannot be applied to general algorithms for these three parameters.

2 Preliminaries

2.1 The Model
We are given a single machine, and jobs arrive over time. The machine can choose which job to
process at any given time, with the option to preempt a previous job if necessary.
An instance in the model is a set of jobs J , so that every job J ∈ J of index I(J) ∈ N has the
following attributes:
• A processing time p(J) > 0 (also called the volume of J).
• A weight w(J) > 0, which represents the significance of the job.
• A time of release r(J) ≥ 0. The job J cannot be processed prior to this time.

Let the density of a job J be d(J) = p(J)
w(J) . We consider the online clairvoyant model, in which

an algorithm is not aware of the existence of a job J of index I(J) at time t < r(J), but knows
p(J), w(J) once t ≥ r(J).
For a given algorithm and an instance J , denote by c(J) the completion time of a job J ∈ J in the
algorithm. The goal of the algorithm is to minimize weighted flow time, defined as:

C (J) =
∑
J∈J

w(J) · (c(J)− r(J))

Note that when all w(J) = 1 this reduces to the flow time of the algorithm, which is the term∑
J∈J (c(J)− r(J)).

4

For a specific instance J , we define the parameters P = maxJ1,J2∈J
p(J1)
p(J2)

,W = maxJ1,J2∈J
w(J1)
w(J2)

and

D = maxJ1,J2∈J
d(J1)
d(J2)

. Our algorithms do not require knowledge of these parameters in advance.

2.2 Common Definitions
All algorithms we propose consist of two parts. The first part assigns every job to a bin upon
release. The second part decides which job to process at any given time, based on the contents of
those bins.
Denoting by A the set of bins used by our algorithm, we use the following definitions.

Definition 2.1. Define the following:
• For every bin A ∈ A and a point in time t, define A(t) as the set of jobs alive in the algorithm

in A at t (i.e. jobs that have arrived but have not yet been completed).
• Denote by Q(t) =

⋃
A∈AA(t) the set of all jobs alive at time t in the algorithm.

• For a set of jobs S, define w(S) =
∑

J∈S w(J). Define W (t) = w(Q(t))
• Define pt(J) to be the remaining processing time of J (also called the remaining volume of J)

at time t.
• For a set of jobs S alive at time t, define pt(S) =

∑
J∈S pt(J). Define V (t) = pt(Q(t)).

When considering an optimal algorithm, we refer to its attributes by adding an asterisk to the
aforementioned notation. For example, W ∗(t) is the living weight in the optimal algorithm at time
t, and p∗t (J) is the remaining processing time of job J in the optimal algorithm at time t.
Our proofs use the following observation to show competitiveness.

Observation 2.2. If W (t) ≤ c ·W ∗(t) for all t then the algorithm is c-competitive. This is due to
the fact that the weighted flow time of the algorithm can be expressed as

∫∞
0 W (t)dt.

3 The O(logP)-Competitive Algorithm

In this section, we present a O(logP)-competitive algorithm for weighted flow time. The algorithm
consists of two parts. The first part, assigns incoming jobs immediately to a bin from the set
A = {Ai | i ∈ Z}. The second part processes jobs from the bins.
The algorithm assumes wlog that every job J arrives with a weight that is an integral power of
2. The algorithm can enforce this by rounding the weight of every job J to 2lg(w(J))+1, which adds
a factor of 2 to its competitive ratio.
Within each bin, we have an ordering between jobs that determines their priority.

Definition 3.1. At a time t and bin A:
• For J1, J2 in A(t), we write J1 ≺t J2 when w(J2) > w(J1) or when w(J2) = w(J1) and
pt(J1) > pt(J2). If w(J2) = w(J1) and pt(J1) = pt(J2), we break ties according to the indices
of the jobs, I(J1) and I(J2) (i.e. arbitrarily).
• We denote by topA(t) the maximal job with respect to ≺t.

Definition 3.2. For a bin Ai ∈ A and a time t:
• For a job J assigned to Ai, we say that J is well-processed if pt(J) ≤ 2i. Denote by δ(J) the

indicator variable for being well-processed.
• Define the score of bin Ai to be WAi(t) = w(Ai(t))− δ(topAi

(t)) · w(topAi
(t))

2 .

Algorithm 1 as described below is O(logP) competitive.

5

1 Whenever a new job J arrives:
2 assign J to Ai such that 2i < p(J) ≤ 2i+1.
3 At any time t:
4 For A = arg maxA(WA(t)), process topA(t).

Algorithm 1: O(logP) Competitive

4 Analysis of O(logP)-Competitive Algorithm
Consider a visualization such as figure 4.1, of the state of the algorithm at a time t. The base
of a job J ∈ Ai(t) (denoted β(J, t)) is the height of its bottom in the visualization. Formally,
β(J, t) = w({J ′ ∈ Ai(t) | J ′ ≺t J}).
Consider a horizontal bar at height x. We now define the volume covered by x, or the volume under
x. This is:
• All the volume of jobs completely under x.
• None of the volume of jobs completely over x.
• Some of the volume of jobs that intersect x.

Formally:

Definition 4.1. At any time t, and a bin Ai ∈ A:
• For any job J ∈ Ai(t) and a non-negative x, the volume of J under x is:

γJ(x, t) =


pt(J) x ≥ β(J, t) + w(J)

0 x < β(J, t) + w(J)
2

min(pt(J), 2i) β(J, t) + w(J)
2 ≤ x < β(J, t) + w(J)

• The volume of bin Ai under x is:

BAi(x, t) =
∑

J∈Ai(t)

γJ(x, t)

• The total volume under x is:
B(x, t) =

∑
Ai∈A

BAi(x, t)

The previous definition yields the following observation.

Observation 4.2. WAi(t) as defined before is the minimal bar that covers the entire volume of a
bin Ai.

In this section, we prove the following theorem.

Theorem 4.3. The algorithm described in Section 3 is O(logP)-competitive.

To prove Theorem 4.3, we first prove Lemmas 4.5 and 4.8. We then show that those lemmas,
together with Proposition 4.9, imply the competitiveness of the algorithm.
Lemma 4.5 states that the volume of a bin that is covered by a bar does not decrease upon the
arrival of a new job at that bin. Lemma 4.8 states that when a job arrives at a bin, raising the bar
by three times the weight of that new job is enough in order to gain its volume. A visualization of
lemma 4.5 is given in figure 4.2.

6

The following image is a possible state of two bins in the algorithm at some time t.

In this figure, each job is described by a rectangular container. The height of the container is the
weight of the job, and its area is 2j+1 for bin Aj . The area of the gray rectangles inside each
container represent the volume of the job. The container is separated into two halves by a dotted
line.
The jobs are arranged in the bins according to ≺, with J4 ≺ J3 ≺ J2 ≺ J1 and J6 ≺ J5. β(J, t) is
the height of J in this figure - for example, β(J2, t) = w(J3) + w(J4).
The volume under x is illustrated by a darker gray. For example:
• For J3 we have β(J3, t) + w(J3) = w(J4) + w(J3) ≤ x and therefore γJ3(x, t) = pt(J3).
• For J2 we have that β(J2, t) + w(J2)

2 ≤ x < β(J2, t) +w(J2) giving that γJ2(x, t) is the area of
J2 under the dotted line. In other words, it is min(2i, pt(J2)) = 2i.
• For J5 we have that β(J5, t) + w(J5)

2 > x, which yields γJ5(x, t) = 0.
As for processing, note that the algorithm will process bin Ai+1 and not Ai, though their weights
are equal. This is since J1 adds only w(J1)

2 to WAi(t), because J1’s volume is under its dotted line.
Since the volume of J5 is above J5’s dotted line, it adds its full weight, w(J5), to WAi+1(t).

Figure 4.1: Processing Time Bins

Observation 4.4. If at some point in time t we have that J1 ≺t J2, then J1 ≺t′ J2 at any time t′

in which both J1 and J2 are alive. This is since processing a job can only increase its priority, and
the algorithm always processes a job of maximum priority. We can therefore write J1 ≺ J2.

Lemma 4.5. If a job J0 is released at time t and assigned to Ai, and defining t− to be the time t
prior to the event of J0’s release, then for every non-negative x we have that

BAi(x, t) ≥ BAi(x, t
−)

Proof. Denote by L ⊆ Ai(t) the set of jobs J ′ such that γJ ′(x, t−) > γJ ′(x, t). Note that for every
J ′ ∈ L we have J0 ≺ J ′, and thus w(J ′) ≥ w(J0).

7

J0 B
C

A

(a)

x

B
C

A

J0

(b)

x

The two images above, image (a) and image (b), show a bin before and after the arrival of J0. In
both (a) and (b) we have a bar at height x, with the volume covered by the bar colored in dark
gray. Lemma 4.5 states that there is at least as much dark gray volume in image (b) as in image
(a).

Figure 4.2: Visualization of Lemma 4.5

For every J ′ ∈ L, we define ∆J ′ = γJ ′(x, t)− γJ ′(x, t−) (note that from the definition of L, we have
that ∆J ′ < 0). It is enough to show

γJ0(x, t) +
∑
J ′∈L

∆J ′ ≥ 0 (4.1)

Define Jmax the maximal job in L at time t with respect to ≺t. We seperate into two cases.
Case 1: If w(Jmax) > w(J0), then due to the weights being powers of 2 we must have w(Jmax) ≥
2w(J0). In this case, the arrival of J0 either:
• Changed Jmax from being completely covered by x at time t, to having x at least half the

height of Jmax, but below the top of Jmax.
• Changed Jmax from having x at least half the height of Jmax, to being below half the height

of Jmax but at least Jmax’s base.
In either case, Jmax has at most 2i less volume covered by x at time t than at t−. In addition,
since x intersects Jmax at time t, all volume of jobs below Jmax is covered by Jmax. This yields
L = {Jmax}, as well as γJ0(x, t) = p(J0). This completes case 1.
Case 2:
Assume that w(Jmax) = w(J0). Since J0 ≺ Jmax, we have that pt(Jmax) ≤ pt(J0) = p(J0). We
separate into the following subcases:
• Suppose x is at least Jmax’s top at time t−. It must be at least Jmax’s bottom, and below Jmax’s

top, at time t. Since x intersects Jmax at time t, we have L = {Jmax} and γJ0(x, t) = p(J).
This gives us that ∆J ≥ −pt(Jmax) ≥ p(J), completing this subcase.
• Suppose x is at least β(Jmax, t

−) + w(Jmax)
2 and below Jmax’s top at time t−. Then at time t,

β(Jmax, t) − w(J0)
2 ≤ x < β(Jmax, t). Denoting by J ′ ∈ Ai(t) the job directly below Jmax at

time t, we have that x intersects J ′ at time t.
– If J ′ = J0, then L = {Jmax}. Jmax lost its lower half, which is at most 2i volume.

However, J0’s lower half is covered, and p(J0) ≥ 2i. Therefore, γJ0(x, t) = 2i as required.

8

– If J ′ 6= J0, then L ⊆ {Jmax, J
′}. x lost Jmax’s lower half, at most 2i volume. Since

p(J0) ≥ 2i, this is at most the volume of J0’s lower half. It also lost J ′’s upper half,
which has less volume than J0’s upper half (recall that p(J0) ≥ pt(J

′)). However, since
x intersects J ′ at time t, γJ0(x, t) = p(J0), as required.

This completes case 2, and the lemma.

Proposition 4.6. At every time t and bin Ai, there exists at most one well-processed job J ∈ Ai(t)
of each weight.

Proof. Since no job arrives well-processed, every job must become well-processed through processing.
For any possible weight 2j , once a job J of that weight becomes well-processed the algorithm does
not process any non-well-processed job of the same weight in Ai until J is complete. This implies
the lemma.

Corollary 4.7. At every time t, bin Ai and j ∈ Z, let S ⊆ Ai(t) be the subset of well-processed jobs
of weight at most 2j. Then w(S) < 2j+1.

Proof. Let jmin the minimal index such that S has a job of weight 2jmin . Using Proposition 4.6:

w(S) ≤
j∑

k=jmin

2k < 2j+1

Lemma 4.8. If a job J0 is released at time t and assigned to Ai, and defining t− to be the time t
prior to the event of J0’s release, then for every non-negative x we have that

BAi(x+ 3 · w(J0), t) ≥ BAi(x, t
−) + p(J0)

Proof. Note that for every job J ′ ∈ Ai(t
−), the base of J ′ can increase by at most w(J0) upon

the arrival of J0. Thus, since the bar x is also raised by 3 · w(J0) (more than w(J0)), we have
γJ ′(x + 3 · w(J0), t) ≥ γJ ′(x, t

−). Therefore, it is enough to find a subset S ⊆ Ai(t) such that the
volume of S covered by x+ 3 ·w(J0) at t is at least p(J0) more than the volume of S covered by x
at t−.
We observe the position of J0 at time t. If J0 is covered by x+3w(J0), that is β(J0, t) ≤ x+2w(J0),
then γJ0(x + 3w(J0), t) = p(J0). Noting that J0 did not exist at t−, we choose S = {J0} and the
proof is complete.
Otherwise, assume β(J0, t) > x + 2w(J0). We consider the set of jobs that begin and end in the
interval [x, x+ 3w(J0)] – that is, jobs J ′ such that β(J ′, t) ≥ x and β(J ′, t) + w(J ′) ≤ x+ 3w(J0).
Each job J ′ ∈ S has the property that γJ ′(x, t−) = 0 and γJ ′(x+ 3w(J0), t) = pt(J

′). To complete
the proof, it only remains to be seen that pt(S) ≥ p(J0).
Observe that the interval [x, x + 3w(J0)] can only contain jobs from the set S, and possibly some
part of the job immediately below S (denoted J⊥) and the job immediately above S (denoted J>).
Therefore, we must have that w(S) ≥ 3w(J0)− w(J⊥)− w(J>).
Since S lies wholly below J0, we must have that J⊥, J> have weight at most w(J0) – thus, S is
non-empty. We observe two cases, based on the maximal weight of a job in S.
Case 1: maxJ∈S w(J) = w(J0)

9

Algorithm

dlogP e+ 1 bins

. . .

Optimum

3 ·W ∗(t)

6 ·W ∗(t)

Figure 4.3: Visualization of Competitiveness Argument

S contains a job J ′ of weight w(J0), but J ′ is below J0, yielding pt(J
′) ≥ pt(J0) = p(J0) and

completing the case.
Case 2: maxJ∈S w(J) ≤ w(J0)

2

In this case, we show that S contains two jobs that are not well-processed, yielding pt(S) ≥ 2i+1 ≥
p(J0) and completing the proof. J⊥ is below S, and thus w(J⊥) ≤ w(J0)

2 , yielding w(S) ≥ 3w(J0)
2 .

However, due to Lemma 4.7, the total weight of well-processed jobs of weight at most w(J0)
2 is less

than w(J0)
2 . Thus, the total weight of the jobs of S that are not well-processed is more than w(J0)

2 ,
which means at least two jobs.

We now show that Lemmas 4.5 and 4.8 imply the competitiveness of the algorithm. The outline
of the proof is shown in figure 4.3, which shows the state of the algorithm (on the left) and the
optimum (on the right) at any time t. First, Lemma 4.11 shows that the bar 3 ·W ∗(t) covers the
entire volume in the algorithm. Lemma 4.12 then uses that fact to show that the bar 6 ·W ∗(t)
covers the entire weight in the algorithm (in the figure, it covers the top of each bin). The fact that
there are O(logP) bins then implies competitiveness.
The following proposition makes use of the choice of bin made by the algorithm.

Proposition 4.9. At a time t and a non-negative x, if B(x, t) decreases as a result of the algorithm’s
processing, then B(x, t) = V (t).

Proof. Note that WAi(t) as defined before is exactly the minimal bar that covers all volume in Ai
(or equivalently, all volume of the top job in Ai). Also note that a bar can only lose volume from
the processing of a job if it covers the entire volume of that job.
Let x be such that B(x, t) decreases through processing. Since the job being processed is the top
job of some bin Ai, this implies x ≥ WAi(t). From the algorithm’s definition, WAi(t) ≥ WAi′ (t) for
all Ai′ ∈ A, yielding that x covers all volume in Ai′ . Summing, we have B(x, t) = V (t).

10

Definition 4.10. For any two points in time t, t′ such that t′ ∈ [0, t], let Qt(t′) be the subset of
Q(t) that was alive at time t′. Formally, Qt(t′) = Q(t) ∩Q(t′).

Lemma 4.11. At every time t, a bar at three times the weight of the optimum covers at least the
volume of the optimum. Formally:

V ∗(t) ≤ B(3 · w(Q∗(t)), t)

Proof. To show the lemma, we show that for every t′ ∈ [0, t] we have:

p∗t′(Q
∗
t (t
′)) ≤ B(3 · w(Q∗t (t

′)), t′) (*)

When t′ = t, Inequality (*) yields the lemma. We show (*) by induction, as t′ advances from 0 to t.
We can see that for t′ = 0, before the release of any jobs, (*) is trivially true.
Now consider all k jobs that arrive in the interval [0, t], and denote their release times by t1, ..., tk,
so that in time ti the i’th job has already been released. For a job i, let t−i be the time ti before
the event of the release of the i’th job. For convenience, denote t0 = 0 and t−k+1 = t. We show the
following claims:
Claim 1: If (*) holds for t′ = ti such that 0 ≤ i ≤ k, then (*) holds for every t′ ∈ [ti, t

−
i+1].

Since no job arrives in that interval, we have that p∗t′(Q
∗
t (t
′)) is non-increasing as t′ increases. It

remains to consider all cases in which B(3 · w(Q∗t (t
′)), t′) decreases as a result of the algorithm’s

processing. Let t′ be such that B(3 · w(Q∗t (t
′)), t′) decreases as a result of execution. Then using

Proposition 4.9, we have that B(3 · w(Q∗t (t
′)), t′) = V (t′) = V ∗(t′) ≥ p∗t′(Q∗t (t′)) as required.

Claim 2: If (*) holds for t′ = t−i such that 1 ≤ i ≤ k, then (*) holds for t′ = ti.
We’ll observe the following cases.
Case 1: The i’th job, denoted J , is such that J /∈ Q∗t (ti). we have that Q∗t (ti) = Q∗t (t

−
i), and thus

B(3 · w(Q∗t (ti)), t
−
i) = B(3 · w(Q∗t (t

−
i)), t−i) ≥ p∗

t−i
(Q∗t (t

−
i)) = p∗ti(Q

∗
t (ti))

Denoting by A ∈ A the bin to which J has been assigned, and using Lemma 4.5, we have that
BA(3 ·w(Q∗t (ti)), ti) ≥ BA(3 ·w(Q∗t (ti)), t

−
i). As for any other bin A′ ∈ A, since A′ has not changed

upon the release of J we must have that BA′(3 · w(Q∗t (ti)), t
−
i) = BA′(3 · w(Q∗t (ti)), ti). This gives

us that B(3 · w(Q∗t (ti)), ti) ≥ B(3 · w(Q∗t (ti)), t
−
i), and thus the claim for this case.

Case 2: The i’th job, denoted J , is such that J ∈ Q∗t (ti). we have that Q∗t (ti) = Q∗t (t
−
i) ∪ {J},

and thus
B(3 · w(Q∗t (t

−
i)), t−i) ≥ p∗

t−i
(Q∗t (t

−
i)) = p∗ti(Q

∗
t (ti))− p(J)

Denoting by A ∈ A the bin to which J has been assigned, using Lemma 4.8, we have that BA(3 ·
w(Q∗t (ti)), ti) = BA(3 ·w(Q∗t (t

−
i))+3 ·w(J), ti) ≥ BA(3 ·w(Qt(t

−
i)), t−i)+p(J). As for any other bin

A′ ∈ A, as in the previous case we must have that BA′(3 ·w(Q∗t (t
−
i)), t−i) = BA′(3 ·w(Q∗t (t

−
i)), ti) ≤

BA′(3 · w(Q∗t (ti)), ti). Summing over the bins gives us the claim for this case.
Claims 1 and 2 show (*) for every t′ ∈ [0, t], completing the proof.

Lemma 4.12. Denoting by A′ ⊂ A the set of non-empty bins at a time t, we have:

W (t) ≤ 6 · |A′| ·W ∗(t)

11

Proof. For every time t, using Lemma 4.11, we have that B(3 · w(Q∗(t)), t) ≥ V ∗(t)
Now, we can assume without loss of generality that that the optimal algorithm is never idle when
a job remains uncompleted. This implies V (t) = V ∗(t), and thus B(3 · w(Q∗(t)), t) = V (t).
Denoting x = 3·w(Q∗(t)), for every bin A ∈ A, observe J = topA(t). Since x covers all of J ’s volume,
and thus x ≥ β(J, t)+ w(J)

2 = w(A(t)\{J})+ w(J)
2 . Thus, we have that 2x ≥ 2w(A(t)\{J})+w(J) ≥

w(A(t)). Therefore, w(A(t)) ≤ 6 · w(Q∗(t)), and summing over all A′, W (t) ≤ 6 · |A′| ·W ∗(t).

We can now prove the main theorem.

Proof. (of Theorem 4.3) The algorithm assigns jobs to at most dlogP e+1 bins. Using Lemma 4.12,
we therefore have that:

W (t) ≤ 6(dlogP e+ 1) ·W ∗(t)

This gives us that the algorithm is O(logP)-competitive.

5 The O(logD)-Competitive Algorithm

We now describe an O(logD)-competitive algorithm. As in Section 3, this algorithm has an assign-
ment part and a processing part. The bins themselves are the set A = {Ai | i ∈ Z}.
This algorithm makes the assumption that every job J arrives so that for some integer i we have
d(J) = 2i. This assumption can be enforced by rounding the weight of each incoming job up by a
factor of at most 2 to give the desired density. This only adds a factor of 2 to the competitive ratio
of the algorithm, similarly to Section 3.

Definition 5.1. For some positive x, define lg x = blog2 xc.

We now redefine the ordering ≺t within a bin.

Definition 5.2. For every bin A at time t, and for distinct J1, J2 ∈ A(t), we write J1 ≺t J2 if
lg(w(J1)) < lg(w(J2)), or if lg(w(J1)) = lg(w(J2)) and J2 is partially processed. If lg(w(J1)) =
lg(w(J2)) and both J1, J2 are not partially processed, we break ties according to the indices of the
jobs, I(J1) and I(J2) (i.e. arbitrarily).

Note that the previous definition did not address the case of lg(w(J1)) = lg(w(J2)) and J1, J2 are
both partially processed. Proposition 6.7 shows that this case never happens, and thus the ordering
is well defined.
We recall the definition topA(t) as the maximal job in bin A at time t with respect to ≺t.

Definition 5.3. For a bin A = Ai ∈ A and a time t, define

W ′
A(t) = w(A(t)\{topA(t)}) + 2lg(w(topA(t))) +

pt(topA(t))

2i

Algorithm 2 as described below is O(logD) competitive.

12

1 Whenever a new job J arrives:
2 assign J to Alog2(d(J))

3 At any time t:
4 For A = arg maxA(W ′

A(t)), process topA(t).
Algorithm 2: O(logD) Competitive

6 Analysis of O(logD)-Competitive Algorithm
In this section, we prove the following theorem.

Theorem 6.1. Algorithm 2 is O(logD)-competitive.

For the purpose of viewing the volume covered by a bar, we add a dummy job of each weight class to
each bin. That is, a dummy job of weight 2i is added for any integer i. Each dummy job has higher
priority than (i.e. lies above) any other job of its weight class. Note that for each real (non-dummy)
job J , the total weight of dummy jobs below J sums to 2lg(w(J)). The dummy jobs have no volume,
are never processed and are only for the purpose of modifying the base of real jobs.
As in the processing time algorithm, we define the base of a job J at time t to be β(J, t) = w({J ′ ∈
Ai(t) | J ′ ≺t J}).
We also redefine the volume under a bar. Informally, a bar x covers exactly the volume that appears
underneath x in the visualization. Formally:

Definition 6.2. The volume of job J under bar x is:

γJ(x, t) =


pt(J) x ≥ β(J, t) + pt(J)

2i

2i(x− β(J, t)) β(J, t) ≤ x < β(J, t) + pt(J)
2i

0 otherwise

Observation 6.3. W ′
A(t) as defined before is the minimal bar that covers the entire volume of a bin

A.

Consider any bin Ai. Every job J assigned to Ai has d(J) = 2i. We prove the following lemma.

Definition 6.4. Define the following:

• The length of an interval [a, b], denoted by τ([a, b]) =

{
b− a b ≥ a
0 otherwise

.

• For any job J and any time t, define λ(J, t) to be the interval of height in which J “has
volume”. Formally:

λ(J, t) = [β(J, t), β(J, t) +
pt(J)

2i
]

Observation 6.5. For any point in time t, for any job J ∈ Ai(t), and for any non-negative number
x,

γJ(x, t) = 2i · τ([0, x] ∩ λ(J, t))

Lemma 6.6. If a job J0 is released at time t and assigned to a bin Ai, and defining t− to be the
time t prior to the event of J0’s release, then for every non-negative x:

BA(x, t) ≥ BA(x, t−)

13

The following image is a possible state of a bin in the algorithm at some time t.

:

J4

J3

J2

J1

lg(w(J)) = 2j+1

lg(w(J)) = 2j

x

In this figure, the dummy jobs are dashed with gray lines. In the base of the bin is the infinite
base of dummy jobs, the height of which sums to 2j . The 4 real jobs, J1 through J4, are stacked in
the bin according to ≺, such that J4 ≺ J3 ≺ J2 ≺ J1. Each real job is again represented as a
container, in which the gray area is the remaining processing time of the job. Its height is the
weight of the job, and its width is 2i for the bin Ai. Since in Ai all jobs have density 2i, the area
of the container is exactly the initial volume of the job - that is, all containers arrive full.
A bar x is shown in the figure. The dark gray area in the figure is the volume covered by the bar
x, which changes continuously with x (compare this with covered volume in Section 4, which has
discrete “thresholds”).

Figure 6.1: Density Bins

Proof. For jobs J ′ ∈ A(t−) such that J ′ ≺ J0, β(J ′, t−) = β(J ′, t), and thus γJ ′(x, t) = γJ ′(x, t
−).

Now, consider S the set of jobs so that ∀J ′ ∈ S : J0 ≺ J ′. We have that β(J ′, t) = β(J ′, t−)+w(J0)
for all J ′ ∈ S. Observe the following cases:
Case 1: x < β(J0, t).
For any job J ′ ∈ S, we have that

β(J ′, t−) ≥ β(J0, t) > x

and thus γJ ′(x, t−) = 0, hence x cannot cover less volume of J ′ at time t. This completes the proof
for this case.
Case 2: x ≥ β(J0, t).
Considering any job J ′ ∈ S, we have that β(J ′, t−) + w(J0) = β(J ′, t). Using Observation 6.5 we

14

express the volume of J ′ covered at time t− using the state at time t:

γJ ′(x, t
−) = γJ ′(x+ w(J0), t) = 2i · τ([0, x+ w(J0)] ∩ λ(J ′, t))

This allows us to express ∆J ′ , the loss of volume under x from t− to t:

∆J ′ = γJ ′(x, t
−)− γJ ′(x, t) = 2i · τ([0, x+ w(J0)] ∩ λ(J ′, t))−

2i · τ([0, x] ∩ λ(J ′, t)) =

2i · τ([x, x+ w(J0)] ∩ λ(J ′, t))

The ∆J ′ for each J ′ ∈ S get disjoint “portions” of the interval [x, x+w(J0)], since the λ-intervals of
different jobs do not overlap. They also can’t get any portion of the interval [x, x+w(J0)]∩λ(J0, t),
which is occupied by J0. Therefore:
Therefore, we have:∑
J ′∈S

(γJ ′(x, t
−)− γJ ′(x, t)) ≤ 2i · (τ([x, x+ w(J0)])− τ([x, x+ w(J0)] ∩ λ(J0, t)))

= 2i · w(J0)− 2i · τ([0, x+ w(J0)] ∩ λ(J0, t)) + 2i · τ([0, x] ∩ λ(J0, t))

= p(J0)− γJ0(x+ w(J0), t) + γJ0(x, t)

=︸︷︷︸
(∗)

p(J0)− p(J0) + γJ0(x, t) = γJ0(x, t) (6.1)

Equality (∗) is due to x ≥ β(J0, t). Using this, we have that

BA(x, t) = BA(x, t−) + γJ0(x, t) +
∑

J ′∈A(t−)

(γJ ′(x, t)− γJ ′(x, t−))

= BA(x, t−) + γJ0(x, t) +
∑
J ′∈S

(γJ ′(x, t)− γJ ′(x, t−))

≥ BA(x, t−) + γJ0(x, t)− γJ0(x, t) = BA(x, t−)

Where the inequality uses equation 6.1.

Proposition 6.7. At every time t, for every i, j, there exists at most one partially processed job
J ∈ A(t) such that lg(w(J)) = j.

Proof. Once there is a single partially processed job J in a specific weight class, the algorithm will
not work on another job of that class until J is complete. Thus there cannot be more than one
partially processed job in a weight class.

Corollary 6.8. At any point in time t and for j ∈ Z, let S ⊆ A(t) be the set of partially-processed
jobs J such that lg(w(J)) ≤ j. Then w(S) < 4 · 2j.

Proof. For every k ∈ Z such that k ≤ j we have through Proposition 6.7 that there exists at most
one partially processed job Jk ∈ A(t) such that lg(w(Jk)) = k. The weight of Jk is at most 2k+1.
Defining m = minJ∈S lg(w(J)), we have that

w(S) ≤
j∑

k=m

2k+1 < 2j+2 ≤ 4 · 2j

15

Lemma 6.9. If a job J0 is released at time t and assigned to bin Ai, and defining t− to be the time
t prior to the event of J0’s release, then for every non-negative x we have

BA(x+ 10 · w(J0), t) ≥ BA(x, t−) + p(J0)

Proof. Note that for any job J ′ ∈ A(t−), the base of J ′ can rise by at most w(J0) upon the arrival
of J0. Since the bar x is raised by 10 ·w(J0) (more than w(J0)), the new bar must cover at least as
much volume of J ′ at t as the old bar did at t−. To complete the proof it is thus enough to find a
subset S ⊆ A(t) such that x covers at least p(J0) more of S’s volume at t than at t−.
Now, observe the position of J0 at time t. If J0 is fully covered by x+ 10 ·w(J0), then x+ 10 ·w(J0)
covers J0’s entire volume, and choosing S = {J0} completes the proof.
Otherwise, β(J0, t)+w(J0) > x+10 ·w(J0). Choose S to be the set of jobs that start and end within
[x, x+ 10 ·w(J0)] – that is, for every J ∈ S we have β(J, t) ≥ x and β(J, t) +w(J) ≤ x+ 10 ·w(J0).
We now claim that w(S) ≥ 6 · w(J0). This is since the job immediately above S and the job
immediately below S can occupy some of the interval [x, x+ 10 ·w(J0)], but the rest is taken by S.
The jobs immediately below and above S must each have weight at most 2w(J0), otherwise they
would be above J0, in contradiction (recall that J0 is above S).
Denote by S′ ⊆ S the subset of real jobs in S. The weight of dummy jobs below J0 sums to
2lg(w(J0)) ≤ w(J0), thus w(S′) ≥ 5w(J0).
Denote by S′′ ⊆ S′ the subset of unprocessed jobs in S′. Through corollary 6.8, the total weight of
partially processed jobs in S is at most 4 · 2lg(w(J0)) ≤ 4w(J0), and thus w(S′′) ≥ w(J0).
All jobs in S′′ are real and unprocessed, giving S′′ a total volume of at least 2i · w(J0) = p(J0).
Since J0 is above all jobs of S′′, they did not move upon the arrival of J0. Since they all lie in the
interval [x, x + 10 · w(J0)], all of their volume is covered by x + 10 · w(J0) at time t, and none of
their volume is covered by x at t−. This completes the proof.

With Lemmas 6.6 and 6.9 in hand, we can now repeat the process used in Section 4 to show
competitiveness, with slight changes to the relevant constants.

Proposition 6.10. (analogue of Proposition 4.9) At a time t and a non-negative x, if B(x, t)
decreases as a result of the algorithm’s processing, then B(x, t) = V (t).

Proof. Observe that W ′
A(t) is exactly the minimal bar that covers the entire volume of the bin A at

time t. The remainder of the proof is identical to 4.9.

Lemma 6.11. (analogue of Lemma 4.11) At every time t, a bar at 10 times the weight of the
optimum covers at least the volume of the optimum. Formally:

V ∗(t) ≤ B(10 · w(Q∗(t)), t)

Proof. The proof is nearly identical to that of 4.11, using Proposition 6.10 and Lemmas 6.6 and 6.9.
The change of constant from 3 to 10 results from swapping Lemma 6.9 for Lemma 4.8.

Lemma 6.12. (analogue of Lemma 4.12) Denoting by A′ ⊂ A the set of non-empty bins at a time
t, we have:

W (t) ≤ 20 · |A′| ·W ∗(t)

16

Proof. Similar proof to Lemma 4.12, using Lemma 6.11. It is important to note that in the proof
of Lemma 4.12, we used the fact that at any time t, if a bar x covers the entire volume of a bin,
then 2x is at least the entire weight of the jobs in that bin. This holds in our case as well, when
considering the total weight of non-dummy jobs in the bin.
To observe this, consider the bin without dummy jobs, and denote by β′(J, t) the new base of a real
job J . Consider any such J . For J to have volume covered under x in the original bin, we must
have that x ≥ β(J, t). Since β(J, t) = β′(J, t) + 2lg(w(J)), we have that x ≥ β′(J, t) + 2lg(w(J)) ≥
β′(J, t) + w(J)

2 . The bar 2x therefore covers J completely.

We can now prove Theorem 6.1.

Proof. (of Theorem 6.1) Since the algorithm assigns jobs to at most dlogDe+ 1 bins, Lemma 6.12
gives us:

W (t) ≤ 20(dlogDe+ 1) ·W ∗(t)

Using Observation 2.2, we have that the algorithm is O(logD)-competitive.

7 The O(log(min(W,P,D)))-Competitive Algorithm

In this section we describe an algorithm which is O(min(log(W,P,D)))-competitive without knowing
W,P,D in advance. As in Sections 3 and 5, the algorithm is composed of a bin-assignment part
and a bin-processing part.
The main idea in the algorithm is combining bins for processing time, bins for density and bins for
weight. In this algorithm, all the bins start closed, and must be opened prior to being assigned
any jobs by the algorithm. The algorithm only opens bins as triplets with a bin of each type; this
property keeps the number of bins logarithmic in the minimal of W,P,D.
Define the disjoint sets of bins A1 = {Ai | i ∈ Z} (processing time bins), A2 = {A′i | i ∈ Z} (density
bins) and A3 = {A′′i | i ∈ Z} (weight bins). Our set of bins is A = A1 ∪ A2 ∪ A3.
Inside the processing-time bins and density bins, the jobs are ordered as in Sections 3 and 5 re-
spectively. Inside weight bins, the jobs are ordered according to remaining processing time (lower
processing time is higher).
Since the algorithm uses various ways of rounding the weights of jobs, we cannot make the assump-
tion that the weights are rounded a-priori. Therefore the rounding of the weights is a part of the
algorithm.
Let WA be defined for A ∈ A1 as in Section 3, and let W ′

A be defined for A ∈ A2 as in Section 5.

Definition 7.1. For a bin A ∈ A and a time t, we define the score of a bin A to be:

W̃A(t) =


WA(t) A ∈ A1

W ′
A(t) A ∈ A2

w(A(t)) A ∈ A3

As in previous sections, we denote by topA(t) the maximal job in A at time t with respect to the
ordering in A.
Algorithm 3 as described below is O(min(log(W,P,D))) competitive.

17

1 When a new job J arrives:
2 if Ai such that 2i < p(J) ≤ 2i+1 is open then
3 assign J to Ai
4 round the weight of J up to 2lg(w(J))+1

5 else if A′lg(d(J)) is open then
6 assign J to A′lg(d(J))
7 round the weight of J up to give J the new density 2lg(d(J))

8 else if A′′lg(w(J))+1 is open then
9 assign J to A′′lg(w(J))+1

10 round the weight of J up to 2lg(w(J))+1

11 else
12 open Ai, A′lg(d(J)) and A

′′
lg(w(J))+1

13 assign J to A′′lg(w(J))+1

14 round the weight of J up to 2lg(w(J))+1

15 At any time t:
16 For A = arg maxA(W̃A(t)), process topA(t)

Algorithm 3: O(log(min(P,D,W))) Competitive

8 Analysis of O(log(min(W,P,D)))-Competitive Algorithm
We want to prove the following theorem.

Theorem 8.1. The algorithm described in Section 7 is O(log(min(W,P,D)))-competitive.

Note that since the weight rounding done by the algorithm is by a factor of at most 2, we henceforth
consider competitiveness compared to the optimum for the rounded instance.
In order to do so, we define the volume under a bar x differently for each type of bin. For a
processing-time bin, it is as defined in Section 4. For a density bin, it is as defined in Section 6. For
a weight bin, it is defined as the total volume of jobs that x covers completely (as defined in the
O(logW)-competitive algorithm of [6])
Note that from the definition of volume under bar in a weight bin A, we have that w(A(t)) is the
minimal bar which covers the entire volume of A. Also note that if x covers the entire volume in a
weight bin, it also covers the entire weight of that bin.
The proof of the following lemma is given in [6]:

Lemma 8.2. For a bar x and a job J0 that arrives at a weight bin A′′i at time t, then:
1. BA′′i (x, t) ≥ BA′′i (x, t−)

2. BA′′i (x+ w(J), t) ≥ BA′′i (x, t−) + p(J0)

We can now prove Theorem 8.1.

Proof. (of Theorem 8.1)
The proof is again analoguous to that in Section 4. The score for each bin is exactly the minimal
bar that covers all volume in that bin, enabling us to repeat Proposition 4.9.
Note that the algorithm assigns jobs to bins such that:

18

• Whenever a job J is assigned to a bin Ai ∈ A1 we have that w(J) = 2j for some j ∈ Z and
2i ≤ p(J) ≤ 2i+1.
• Whenever a job J is assigned to a bin A′i ∈ A2 we have that d(J) = 2i.
• Whenever a job J is assigned to a bin A′′i ∈ A3, we have that w(J) = 2i.

Under these conditions, we know that upon an arrival of a job J to any bin A at a time t we have:
• BA(x, t) ≥ BA(x, t−)
• BA(x+ 10w(J), t) ≥ BA(x, t−) + p(J)

Using these last two bullets, as well as the analogue for Proposition 4.9, we obtain an analogue for
Lemma 4.11 which states that V ∗(t) ≤ B(10 · w(Q∗(t)), t) at any time t.
We also know that if x covers all volume in the algorithm, 2x covers the entire weight in the
algorithm. We thus obtain an analogue of Lemma 4.12 that yields W (t) ≤ 20 · (#open bins) ·W ∗(t)
at any time t.
The algorithm can only open 3 · (dlog(min(W,P,D))e + 1) bins. This is since it only opens a
triplet of bins upon the arrival of a job which does not fit in any existing bin. For example, if
W = min(W,P,D), after opening dlogW e + 1 triplets the entire weight range is covered, and no
more triplets will be opened. The same argument holds for P and D.
Therefore we have:

W (t) ≤ 2 · 10 · 3 · (dlog(min(W,P,D))e+ 1) ·W ∗(t) = 60 · (dlog(min(W,P,D))e+ 1) ·W ∗(t)

Using Observation 2.2, we have that the algorithm is O(log(min(W,P,D)))-competitive.

References

[1] S. Anand, Naveen Garg, and Amit Kumar. Resource Augmentation for Weighted Flow-time
explained by Dual Fitting, pages 1228–1241.

[2] Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with
immediate dispatching. In Proceedings of the Fifteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’03, pages 11–18, New York, NY, USA, 2003. ACM.

[3] Baruch Awerbuch, Yossi Azar, Stefano Leonardi, and Oded Regev. Minimizing the flow time
without migration. SIAM Journal on Computing, 31(5):1370–1382, 2002.

[4] Nikhil Bansal. Minimizing flow time on a constant number of machines with preemption. Oper.
Res. Lett., 33(3):267–273, May 2005.

[5] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-competitive al-
gorithms. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 1238–1244, 2009.

[6] Nikhil Bansal and Kedar Dhamdhere. Minimizing weighted flow time. ACM Trans. Algorithms,
3(4):39, 2007. also in SODA 2003: 508-516.

[7] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Kirk Pruhs. Online
weighted flow time and deadline scheduling. Journal of Discrete Algorithms, 4(3):339 – 352,
2006. Special issue in honour of Giorgio Ausiello.

19

[8] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-
gorithm for minimizing weighted flow time on unrelatedmachines with speed augmentation.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 679–684, 2009.

[9] Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor scheduling
to minimize flow time with epsilon resource augmentation. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 363–
372, 2004.

[10] Chandra Chekuri and Sanjeev Khanna. Approximation schemes for preemptive weighted flow
time. In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
STOC ’02, pages 297–305, New York, NY, USA, 2002. ACM.

[11] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow
time. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 84–93, 2001.

[12] Naveen Garg and Amit Kumar. Better algorithms for minimizing average flow-time on related
machines. In Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, pages 181–190, 2006.

[13] Naveen Garg and Amit Kumar. Minimizing average flow time on related machines. In Proceed-
ings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May
21-23, 2006, pages 730–738, 2006.

[14] Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October
20-23, 2007, Providence, RI, USA, Proceedings, pages 603–613, 2007.

[15] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines. In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 110–119, New York, NY, USA, 1997. ACM.

[16] Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956.

20

	1 Introduction
	2 Preliminaries
	2.1 The Model
	2.2 Common Definitions

	3 The O(logP)-Competitive Algorithm
	4 Analysis of O(logP)-Competitive Algorithm
	5 The O(logD)-Competitive Algorithm
	6 Analysis of O(logD)-Competitive Algorithm
	7 The O(log(min(W,P,D)))-Competitive Algorithm
	8 Analysis of O(log(min(W,P,D)))-Competitive Algorithm

