
Efficiently Learning Mixtures of Mallows Models

Allen Liu
MIT

Ankur Moitra∗

MIT

Abstract

Mixtures of Mallows models are a popular generative model for ranking data coming from
a heterogeneous population. They have a variety of applications including social choice, rec-
ommendation systems and natural language processing. Here we give the first polynomial time
algorithm for provably learning the parameters of a mixture of Mallows models with any con-
stant number of components. Prior to our work, only the two component case had been settled.
Our analysis revolves around a determinantal identity of Zagier [27] which was proven in the
context of mathematical physics, which we use to show polynomial identifiability and ultimately
to construct test functions to peel off one component at a time.

To complement our upper bounds, we show information-theoretic lower bounds on the sample
complexity as well as lower bounds against restricted families of algorithms that make only local
queries. Together, these results demonstrate various impediments to improving the dependence
on the number of components. They also motivate the study of learning mixtures of Mallows
models from the perspective of beyond worst-case analysis. In this direction, we show that when
the scaling parameters of the Mallows models have separation, there are much faster learning
algorithms.

∗This work was supported in part by NSF CAREER Award CCF-1453261, NSF Large CCF-1565235, a David and
Lucile Packard Fellowship, and an Alfred P. Sloan Fellowship.

ar
X

iv
:1

80
8.

05
73

1v
1

 [
cs

.D
S]

 1
7

A
ug

 2
01

8

1 Introduction

1.1 Background

User preferences — in a wide variety of settings ranging from voting [26] to information retrieval
[8] — are often modeled as a distribution on permutations. Here we study the problem of learning
a mixture of Mallows models from random samples. First, a Mallows model M(φ, π∗) is described
by a center π∗ and a scaling parameter φ. The probability of generating a permutation π is

Pr
M(φ,π∗)

[π] =
φdKT (π,π

∗)

Z

where dKT is the Kendall-Tau distance [17] and Z is a normalizing constant that only depends on
φ and the number of elements being permuted which we denote by n. C. L. Mallows introduced
this model in 1957 and gave an inefficient procedure for sampling from them: Rank every pair of
elements randomly and independently so that they agree with π∗ with probability 1

1+φ and output
the ranking if it is a total ordering. Doignon et al. [11] discovered a repeated insertion-based model
that they proved is equivalent to the Mallows model and more directly lends itself to an efficient
sampling procedure.

The Mallows model is a natural way to represent noisy data when there is one true ranking
that correlates well with everyone’s own individual ranking. However in many settings (e.g. vot-
ing [15], recommendation systems) the population is heterogenous and composed of two or more
subpopulations. In this case, it is more appropriate to model the data as a mixture of simpler
models. Along these lines, there has been considerable interest in fitting the parameters of a mix-
ture of Mallows models to ranking data [18, 22, 20]. However most of the existing approaches
(e.g. Expectation-Maximization [18]) are heuristic and only recently were the first algorithms with
provable guarantees given. For a single Mallows model, Braverman and Mossel [7] showed how to
learn it by quantifying how close the empirical average of the ordering of elements is to the ordering
given by π∗ as the number of samples increases.

Awasthi et al. [3] gave the first polynomial time algorithm for learning mixtures of two Mallows
models. Their algorithm learns the centers π1 and π2 exactly and the mixing weights and scaling
parameters up to an additive θ with running time and sample complexity

poly(n,
1

wmin
,

1

φ1(1− φ1)
,

1

φ2(1− φ2)
,
1

θ
)

Here φ1 and φ2 are the scaling parameters and wmin is the smallest mixing weight. Their algorithm
works based on recasting the parameter learning problem in the language of tensor decompositions,
similarly to other algorithms for learning latent variable models [2]. However there is a serious
complication in that most of the entries in the tensor are exponentially small. So even though we
can compute unbiased estimates of the entries of a tensor whose low rank decomposition would
reveal the parameters of the Mallows model, most of the entries cannot be meaningfully estimated
from few samples. Instead, Awasthi et al. [3] show how the entries that can be accurately estimated
can be used to learn the prefixes of the permutations, which can be bootstrapped to learn the rest
of the parameters. In fact before their work, it was not even known whether a mixture of two
Mallows models was identifiable — i.e. whether its parameters can be uniquely determined from
an infinite number of samples.

The natural open question was to give provable algorithms for learning mixtures of any constant
number of Mallows models. For other learning problems like mixtures of product distributions [14,
12] and mixtures of Gaussians [16, 21, 4], algorithms for learning mixtures of two components under

1

minimal conditions were eventually extended to any constant number of components. Chierichetti
et al. [9] showed that when the number of components is exponential in n, identifiability fails. On
the other hand, when all the scaling parameters are the same and known, Chierichetti et al. [9]
showed that it is possible to learn the parameters when given an arbitrary (and at least exponential
in
(
n
2

)
) number of samples. Their approach was based on the Hadamard matrix exponential. They

also gave a clustering-based algorithm that runs in polynomial time and works whenever the centers
are well-separated according to the Kendall-Tau distance, by utilizing recent concentration bounds
for Mallows models that quantify how close a sample π is likely to be to the center π∗ [5].

1.2 Our Results and Techniques

Our main result is a polynomial time algorithm for learning mixtures of Mallows models for any
constant number of components. Let dTV be the total variation distance, let wmin be the smallest
mixing weight, and let U denote the uniform distribution over the n! possible permutations. We
prove:

Theorem 1.1. For any constant k, given samples from a mixture of k Mallows models

M = w1M(φ1, π1) + · · ·+ wkM(φk, πk)

where dTV (M(φi, πi),M(φj , πj)) ≥ µ for all i 6= j, dTV (M(φi, πi), U) ≥ µ for all i and n ≥ 10k2,
there is an algorithm whose running time and sample complexity are

poly(n,
1

wmin
,

1

µ
,
1

θ
, log

1

δ
)

for learning each center πi exactly and the mixing weights and scaling parameters to within an
additive θ. Moreover the algorithm succeeds with probability at least 1− δ.

A main challenge in learning mixtures of Mallows models is in establishing polynomial identifia-
bility — i.e. that the parameters of the model can be approximately determined from a polynomial
number of samples. When addressing this question, there is a natural special matrix A to consider:
Let A be an n!× n! matrix whose rows and columns are indexed by permutations with

Aπ,σ = φdKT (π,σ)

Zagier [27] used tools from representation theory to find a simple expression for the determinant
of A. Interestingly his motivation for studying this problem came from interpolating between Bose
and Fermi statistics in mathematical physics. We can translate his result into our context by
observing that the columns of A, after normalizing so that they sum to one, correspond to Mallows
models with the same fixed scaling parameter φ. Thus Zagier’s result implies that any two distinct
mixtures M and M ′ of Mallows models, where all the components have the same scaling parameter,
produce different distributions1.

However the quantitative lower bounds that follow from Zagier’s expression for the determinant
are too weak for our purposes, and are not adapted to the number of components in the mixture.
We exploit symmetry properties to show lower bounds on the length of any column of A projected
onto the orthogonal complement of any other k− 1 columns, which allows us to show that not only
does A have full rank, any small number of its columns are robustly linearly independent [1]. More
precisely we prove:

1This result was rediscovered by Chierichetti et al. [9] using different tools, but without a quantitative lower
bound on the smallest singular value.

2

Theorem 1.2. Let φ < 1− ε. Let c1, c2, · · · , ck be any k distinct columns of A, normalized so that
they each sum to one. Then

‖z1c1 + · · ·+ zkck‖1 ≥
maxi(|zi|)ε2k

2

2n4k(k + 1)2k2+4k

where zi are arbitrary real coefficients.

Even though this result nominally applies to mixtures of Mallows models where all the scaling
parameters are the same, we are able to use it as a black box to solve the more general learning
problem. We reformulate our lower bound on how close any k columns can be to being linearly
dependent in the langugage of test functions, which we use to show that when the scaling parameters
are different, we can isolate one component at a time and subtract it off from the rest of the mixture.
Combining these tools, we obtain our main algorithm. We note that the separation conditions we
impose between pairs of components are information-theoretically necessary for our learning task.

It is natural to ask whether the dependence on k can be improved. First, we show lower bounds
on the sample complexity. We construct two mixtures M and M ′ whose components are far apart
— every pair of components has total variation distance at least µ — but M and M ′ have total
variation distance about µ2k−1. As a corollary we have:

Corollary 1. Any algorithm for learning the components of a mixture of k Mallows models within
µ in total variation distance must take at least (1/µ)2k−1 samples.

Second, we consider a restricted model where the learner can only make local queries of the
form: Given elements x1, · · · , xc and locations i1, · · · , ic and a tolerance τ , what is the probability
that the mixture assigns xj to location ij for all j from 1 to c, up to an additive τ? We show that
our algorithms can be implemented in the local model. Moreover, in this model, we can prove lower
bounds on the dependence on n and k. We show:

Theorem 1.3 (Informal). Any algorithm for learning a mixture of k Mallows models through local

queries must make at least nlog k queries or make a query with τ ≤ n−
1
2
log k.

This is reminiscent of statistical query lower bounds for other unsupervised learning problems,
most notably learning mixtures of Gaussians [10]. However it is not clear how to prove lower bounds
on the statistical query dimension [13], because of the complicated ways that the locations that
each element is mapped to affect one another in a Mallows model, which makes it challenging to
embed small hard instances into larger ones.

Finally we turn to beyond-worst case analysis and ask whether there are natural conditions on
the mixture that allow us to get algorithms whose dependence on n is a fixed polynomial rather
than one whose degree depends on k. Rather than requiring the centers to be far apart, we merely
require their scaling parameters to be separated from one-another. We show:

Theorem 1.4. Given samples from a mixture of k Mallows models

M = w1M(φ1, π1) + · · ·+ wkM(φk, πk)

where |φi − φj | ≥ γ for all i 6= j, φi ≤ 1 − γ for all i and n ≥ 10k, there is an algorithm whose
running time and sample complexity are

f(γ, θ, wmin, k)poly(n, log
1

δ
)

for learning each center πi exactly and the mixing weights and scaling parameters to within an
additive θ, where f(γ, θ, wmin, k) = poly(1/γk

2
, 1/θk

2
, 1/wk

2

min). Moreover the algorithm succeeds
with probability at least 1− δ.

3

Our algorithm leverages many of the lower bounds on the total variation distance between
mixtures of Mallows models and test functions for separating one component from the others that
we have established along the way.

Further Related Work

There are other natural models for distributions on permutations such as the Bradley-Terry model
[6] and the Plackett-Luce model [23, 19]. Zhao et al. [28] showed that a mixture of k Plackett-
Luce models is generically identifiable provided that k ≤ bn−22 c! and gave a generalized method of
moments algorithm that they proved is consistent — meaning that as the number of samples goes
to infinity, the algorithm recovers the true parameters. More generally, Teicher [24, 25] obtained
sufficient conditions for the identifiability of finite mixtures but these conditions do not apply in
our setting.

2 Preliminaries

2.1 Basic Notation

Let [n] = {1, 2, · · · , n}. Given two permutations π and π′ on [n], let dKT (π, π′) denote the Kendall-
Tau distance, which counts the number of pairs (i, j) for which the two rankings disagree.

Definition 1. A Mallows model M(φ, π∗, n) defines a distribution on permutations of the set [n]
where the probability of generating a permutation π is equal to

φdKT (π
∗,π)

Zn(φ)

and Zn(φ) =
∑

π φ
dKT (π

∗,π) be the normalizing constant, which is easy to see is independent of π∗.
When the number of elements is clear from context, we will omit n and write M(φ, π∗).

The following is a well-known (see e.g. [11]) iterative process for generating a ranking from
M(φ, π∗): Consider the elements in rank decreasing order, according to π. When we reach the
(i+ 1)st ranked element, it is inserted into each of the i+ 1 possible positions with probabilities

φi

1 + φ+ · · ·+ φi
, · · · , φ

1 + φ+ · · ·+ φi
,

1

1 + φ+ · · ·+ φi

respectively, where the order of the probabilities go from the highest rank position it could be
inserted to the lowest. When the last element is inserted, the result is a random permutation
drawn from M(φ, π∗).

A mixture of k Mallows models is defined in the usual way: We write

M = w1M(φ1, π
∗
1) + · · ·+ wkM(φk, π

∗
k)

where the mixing weights w1, w2, · · · , wk are nonnegative and sum to one. A permutation is gen-
erated by first choosing an index (each i is chosen with probability wi) and then drawing a sample
from the corresponding Mallows model M(φi, π

∗
i).

We will often work with the natural vectorizations of probability distributions:

Definition 2. If P is a distribution over permutations on [n] we let v(P) denote the length n!
vector whose entries are the probabilities of generating each possible permutation. We will abuse
notation and write v(M) for the vectorization of a Mallows model M .

4

Our algorithms and their analyses will frequently make use of the notion of restricting a per-
mutation to a set of elements:

Definition 3. Given a permutation π on [n] and a subset S ⊆ [n], let π|S be the permutation on
the elements of S induced by π.

2.2 Block and Orders

Our algorithms will be built on various structures we impose on permutations. The way to think
about these structures is that each one gives us a statistic that we can measure: What is the
probability that a permutation sampled from an unknown Mallows model has the desired structure?
These act like natural moments of the distribution, that we will manipulate and use in conjunction
with tensor methods to design our algorithms.

Definition 4. A block structure B = S1, S2, · · · , Sj is an ordered collection of disjoint subsets of
[n]. We say that a permutation π satisfies B as a block structure if for each i, the elements of Si
occur consecutively (i.e. in positions ai, ai + 1, . . . , ai + |Si| − 1 for some ai) in π and moreover the
blocks occur in the order S1, S2, · · · , Sj . Finally we let SB denote the set of permutations satisfying
B as a block structure.

Definition 5. An order structure O = S1, S2, · · · , Sj is a collection of ordered subsets of [n]. We
say a permutation π satisfies O as an order structure if for each i, the elements of Si occur in π in
the same relative order as they do in Si.

Definition 6. An ordered block structure A = S1, S2, · · · , Sj is an ordered collection of ordered
disjoint subsets of [n]. We say a permutation π satisfies A as an ordered block structure if it satisfies
S1, S2, · · · , Sj both as a block structure and as an order structure — i.e. we forget the order within
each Si when we treat it as a block structure and we forget the order among the Si’s when we treat
it as an order structure.

To help parse these definitions, we include the following example:

Example 1. Let n = 7 and consider A = (1, 2), (4, 5, 6). The permutation (1, 2, 3, 7, 6, 5, 4) satisfies
A as a block structure. The permutation (1, 3, 4, 2, 5, 6, 7) satisfies A as an order structure and the
permutation (1, 2, 3, 4, 5, 6, 7) satisfies A as an ordered block structure.

3 Basic Facts

Here we collect some basic facts about Mallows models, in particular a lower bound on the probabil-
ity that they satisfy a given block structure if their base permutation does, relationships between the
total variation distance and parameter distance, and determinantal identities for special matrices.

3.1 What Block Structures are Likely to be Satisfied?

In this subsection, our main result is a lower bound on the probability that a permutation drawn
from a Mallows model satisfies a block structure that the underlying base permutation does. Along
the way, we will also establish some useful ways to think about conditioning and projecting Mallows
models in terms of tensors.

Fact 1. The conditional distribution of a Mallows model M(φ, π∗) when restricted to rankings
where the elements in the set S (of size j) are ranked in positions a, a + 1, · · · , a + j − 1 and the
ranking of elements in [n] \ S is fixed is precisely M(φ, π|∗S).

5

Proof. It is easy to see that for any two permutations τ and τ ′ on [n] where the elements of S are
ranked in positions a, a+ 1, · · · , a+ j − 1 and agree on the rankings of elements in [n] \ S satisfy

dKT (π∗, τ)− dKT (π∗, τ ′) = dKT (π|∗S , τ |S)− dKT (π|∗S , τ ′|S)

Thus the ratio of their probabilities is the same as the ratio of probabilities of τ |S and τ ′|S in
M(φ, π|∗S), which completes the proof.

Next we will describe a natural way to think about the conditional distribution on permutations
that satisfy a given block structure as a tensor. Recall that the subsets of [n] in a block structure
are required to be disjoint.

Definition 7. Given a Mallows model M(φ, π∗) and a block structure B = S1, S2, · · · , Sj , we define
a |S1|!× |S2|!× · · · × |Sj |! dimensional tensor TM,B as follows: Each entry corresponds to orderings
π1, π2, · · · , πj of S1, S2, · · · , Sj respectively and in it, we put the probability that a ranking drawn
from M satisfies B and for each i, the elements in Si occur in the order specified by πi.

It is easy to see that TM,B has rank one. Technically this requires the obvious generalization of
Fact 1 where we condition on the elements in each Si occurring in specified consecutive locations,
and then note that these events are all disjoint.

Corollary 2. TM,B = PrM [π ∈ SB] · v(M(φ, π|S1))⊗ · · · ⊗ v(M(φ, π|Sj))

Our next result gives a convenient lower bound for the probability that a sample satisfies a
given block structure B provided that the base permutation satisfies B:

Lemma 1. For any Mallows model M(φ, π∗) and block structure B = S1, S2, · · · , Sj where π∗

satisfies B and ` = |S1|+ · · ·+ |Sj |, we have

Pr
M

[π ∈ SB] ≥ 1

n2`

Proof. Without loss of generality let π = (1, 2, . . . , n) and Si = [ai, ai + bi − 1]. We will first
consider the set of permutations TB with the following property: For each 1 ≤ i ≤ j, the elements
ai, ai + 1, · · · ai + bi − 1 occur in their natural order and each of them occurs after all of the
elements 1, 2, · · · ai − 1. Using the iterative procedure for sampling from a Mallows model defined
in Section 2.1 and the fact that 1

1+φ+···+φi ≥
1
n , we have that

Pr
M

[π ∈ TB] ≥ 1

n`

since we just need that when each element in each Si is inserted, it is inserted in the lowest ranked
position available.

Next we build a correspondence between permutations in TB and permutations in SB. Consider
τ ∈ TB. For each block ai, ai + 1, · · · , ai + bi − 1, say that in τ , they are placed in positions

xi1 < xi2 < · · · < xibi

Note that these are not necessarily consecutive. We will map τ to a permutation in SB by making
them consecutive while preserving their order by doing the following for each block: Place ai, ai +
1, · · · , ai + bi − 1 in positions xi1, · · · , xi1 + bi − 1 and all other elements displaced from their
position are placed afterwards while preserving their ordering. Crucially this process only reduces
the number of inversions in τ due to the way that TB was defined. In particular, the permutation

6

τ ′ we get from this process has the property that it is at least as likely as τ to be generated from
M . Also note the intervals [x11, x1b1], · · · , [xj1, xjbj] must be disjoint and occur in that order. Now
in this correspondence, the order of all elements outside S1 ∪ · · · ∪ Sj is preserved. Thus, there are
at most n` different permutations in TB that can be mapped to the same element in SB. Putting
this all together implies that

Pr
M

[π ∈ SB] ≥ PrM [π ∈ TB]

n`
≥ 1

n2`

which completes the proof.

3.2 Total Variation Distance Bounds

In this subsection, we give some useful relationships between the total variation distance and the
parameter distance between two Mallows models (in special cases) in terms of the distance between
their base permutations and scaling parameters. We will defer the proofs to Appendix A. First we
prove that if two Mallows models have different base permutations and their scaling parameters
are bounded away from one, then the distributions that they generate cannot be too close.

Claim 1. Consider two Mallows models M1 = M(φ1, π1) and M2 = M(φ2, π2) where π1 6= π2 and
φ1, φ2 ≤ 1− ε. Then dTV (M1,M2) ≥ ε

2 .

Second, we give a condition under which we can conclude that two Mallows models are close in
total variation distance. An analogous result is proved in [3] (see Lemma 2.6) except that here we
remove the dependence on φmin.

Lemma 2. Consider two Mallows models M1 = M(φ1, π) and M2 = M(φ2, π) with the same base

permutation on n ≥ 2 elements. If |φ1 − φ2| ≤ µ2

10n3 then dTV (M1,M2) ≤ µ.

3.3 Special Matrix Results

Here we present a determinantal identity from mathematical physics that will play a central role
in our learning algorithms. Note dKT (π, σ) = I(πσ−1) where I counts the number of inversions in
a permutation. We make the following definition.

Definition 8. Let An(φ) be the n!×n! matrix whose rows and columns are indexed by permutations
π, σ on [n] and whose entries Aπσ are φI(πσ

−1).

Zagier [27] gives us an explicit form for the determinant of this matrix, which we quote here:

Theorem 3.1. [27] det(An(φ)) =
∏n−1
i=1 (1− φi2+i)

n!(n−i)
i2+i

This expression for the determinant gives us weak lower bounds on the total variation distance
between mixtures of Mallows models where all the scaling parameters are the same. We will
bootstrap this identity to prove a stronger result about how far a column of A is from the span of
any set of k − 1 other columns.

4 Identifiability

In this section we show that any two mixtures of k Mallows models whose components are far from
each other (and the uniform distribution) in total variation distance are far from each other as
mixtures too, provided that n > 10k2.

7

4.1 Robust Kruskal Rank

Our first step is to show that any k columns of An(φ) are not too close to being linearly dependent
— i.e. the projection of any column onto the orthogonal complement of the span of any k − 1
other columns cannot be too small. The Kruskal rank of a collection of vectors is the largest ` so
that every ` vectors are linearly independent. The property we establish here is sometimes called
a robust Kruskal rank [1].

Lemma 3. Suppose φ < 1 − ε and consider k columns of An(φ). The projection of one column
onto the orthogonal complement of the other k − 1 has euclidean length at least (εn√

n!
)k.

Proof. Assume for the sake of contradiction that there is a set of k columns that violates the
statement of the lemma. In particular suppose that the projection of ck onto the orthogonal
complement of c1, c2, · · · , ck−1 has euclidean length N for some N < (εn√

n!
)k. We will use this

assumption to prove an upper bound on the determinant of An(φ) that violates Theorem 3.1. Our
approach is to find an ordering of the columns so that as we scan through, at least once every k
columns the euclidean length of its projection onto the orthogonal complement of the columns seen
so far is at most N . Then using the naive upper bound of

√
n! on the euclidean length of any

column of An(φ) we have

det(An(φ)) ≤ N
n!
k (
√
n!)n!

However from Theorem 3.1 we have

det(An(φ)) =
n−1∏
i=1

(1− φi2+i)
n!(n−i)
i2+i ≥ (1− φ)

n!n(
∑n−1
i=1

1
i(i+1)

) ≥ (1− φ)n!n ≥ εn!n

which yields the desired contradiction.
Now we complete the argument by constructing the desired ordering of the columns as follows:

We start with c1, c2, · · · , ck. And then we choose any column c not yet selected. Let π be the
permutation that maps ck to c. Now π maps c1, c2, · · · , ck−1 to k − 1 columns, and suppose j of
them have not been selected yet. Call these c′1, c

′
2, · · · , c′j . We continue the ordering of the columns

by appending c′1, c
′
2, · · · , c′j , c. It is easy to see that the euclidean length of the projection of c onto

the orthogonal complement of the columns seen so far is also at most N , which now finishes the
proof.

The above lemma is not directly useful for two reasons: First, the lower bound is exponentially
small in n. Second, it is tantamount to a lower bound on the `2-norm of any sparse linear com-
bination of the columns of An(φ). What we really want in the context of identifiability is a lower
bound on the `1-norm (of a matrix whose columns represent the components).

Definition 9. Let Bn(φ) be obtained from An(φ) by normalizing its columns to sum to one.

Lemma 4. Suppose φ < 1− ε and consider any k columns c1, c2, . . . , ck of Bn(φ). Then

‖z1c1 + · · ·+ zkck‖1 ≥
1

n4k
ε2k

2

(k + 1)k2+2k

provided that max(|z1|, |z2|, . . . , |zk|) ≥ 1.

Proof. Let π1, π2, · · · , πk be the permutations corresponding to the columns c1, c2, . . . , ck. Also
without loss of generality suppose z1 ≥ 1 and that π1 = (1, 2, · · · , n). First we build a block

8

structure that π1 satisfies but no other πi does: For each i, pick two consecutive elements in π1,
say xi and xi + 1 that are inverted in πi. Such a pair exists because π1 6= πi. Now we can take the
union of these pairs over all i to form a block structure B = {S1, S2, · · · , Sj} so that, for all i, xi
and xi + 1 are in the same block and π1 satisfies B. Note that j can be less than k, if for example
two of the pairs contain the same element. In any case, we have |S1|+ · · ·+ |Sj | ≤ 2k.

Now for each i, set Mi = M(φ, πi) and Ti = TMi,B. From Corollary 2 we have that

Ti = Pr
Mi

[π ∈ SB] · v(M(φ, πi|S1))⊗ · · · ⊗ v(M(φ, πi|Sj))

Next we show that we can find unit vectors v1, · · · , vj so that

(1) 〈vb, v(M(φ, πi|Sb))〉 = 0 whenever πi|Sb 6= π1|Sb and

(2) 〈vb, v(M(φ, π1|Sb))〉 ≥ 1
|Sb|!(

ε|Sb|√
|Sb|!

)k for all b

This fact essentially follows from Lemma 3. First observe that the v(M(φ, πi|Sb)) and the column
of A|Sb|(φ) corresponding to πi|Sb differ only by a normalization, since the former sums to one. Now
for each b we can take vb to be the unit vector in the direction of the projection of v(M(φ, π1|Sb))
onto the orthogonal complement of all the v(M(φ, πi|Sb))’s for i 6= 1. Note that the additional 1

|Sb|!
factor arises because Lemma 3 deals with A|Sb|(φ) and to normalize any column of it we need to
divide by at most |Sb|!.

With this construction, we have that 〈v1⊗v2⊗· · ·⊗vj , Ti〉 = 0 for all i 6= 1 since each πi differs
from π1 when restricted to at least one of the blocks S1, S2, · · · , Sj . Moreover using property (2)
above and Lemma 1 we have

〈v1 ⊗ v2 ⊗ · · · ⊗ vj , T1〉 ≥
1

n4k

∏
b

1

|Sb|!
(
ε|Sb|√
|Sb|!

)k ≥ 1

n4k
1

(2k)!
(

ε2k√
(2k)!

)k ≥ 1

n4k
ε2k

2

(k + 1)k2+2k

where the last inequality follows from the bound (2k)! ≤ (k + 1)2k. Finally note that

‖z1c1 + · · ·+ zkck‖1 ≥
∑
i

〈v1 ⊗ v2 ⊗ · · · ⊗ vj , Ti〉

since the entries of v1 ⊗ v2 ⊗ · · · ⊗ vj are at most one in absolute value, and each Ti can be formed
from ci by zeroing out entries (corresponding to permutations that do not satisfy SB) and summing
subsets of the remaining ones together (that correspond to permutations with the same ordering
for each Si).

The above lemma readily implies that any two mixtures of k Mallows models whose components
all have the same scaling parameter and whose mixing weights are different are far from each other
in total variation distance. In the sequel we will be interested in proving identifiability even when
the scaling parameters are allowed to be different. As a step towards that goal, first we give a
simple extension that allows the scaling parameters to be slightly different:

Lemma 5. Consider any k distinct permutations π1, π2, · · · , πk and scaling parameters φ1, φ2, · · · , φk.
Let ci = v(M(φi, πi)) and suppose that for each i, φi ≤ 1− ε and for each i 6= j,

|φi − φj | ≤
1

160n8k+3

ε4k
2

(k + 1)2k2+4k+2

Then for any coefficients zi with max(|z1|, |z2|, . . . , |zk|) ≥ 1 we have

‖z1c1 + · · ·+ zkck‖1 ≥
1

2n4k
ε2k

2

(k + 1)k2+2k

9

Proof. We can assume max(|z1|, |z2|, . . . , |zk|) = 1 since otherwise we can just scale the zi. Set
φ = φ1, and for each i set c′i = v(M(φ, πi)). Using Lemma 2 we have

‖ci − c′i‖1 = 2dTV (M(φi, πi),M(φ, πi)) ≤
1

2n4k
ε2k

2

(k + 1)k2+2k+1

And finally invoking Lemma 4 we have that

‖z1c1 + · · ·+ zkck‖1 ≥ ‖z1c′1 + · · ·+ zkc
′
k‖1 −

∑
i

‖ci − c′i‖1 ≥
1

2n4k
ε2k

2

(k + 1)k2+2k

which completes the proof.

4.2 Polynomial Identifiability

Now we are ready to prove our main identifiability result. First we define a notion of non-degeneracy,
which is information-theoretically necessary when our goal is to identify all the components in the
mixture.

Definition 10. We say a mixture of Mallows models M = w1M(φ1, π1) + · · ·+wkM(φk, πk) is µ-
non degenerate if the total variation distance between any pair of components is at least µ and the
total variation distance between any component and the uniform distribution over all permutations
is also at least µ. Furthermore we say that the mixture is (µ, α)-non degenerate if in addition each
mixing weight is at least α.

We will not need the following definition until later (when we state the guarantees of various
intermediary algorithms), but let us also define a natural notion for two mixtures to be component-
wise close:

Definition 11. We say that two mixtures of Mallows models M = w1M(φ1, π1)+· · ·+wkM(φk, πk)
and M ′ = w′1M(φ′1, π

′
1) + · · ·+w′kM(φ′k, π

′
k) with the same number of components are component-

wise θ-close if there is a relabelling of components in one of the mixtures after which |wi−w′i|, |φi−φ′i|
and dTV (M(φi, πi),M(φ′i, π

′
i)) ≤ θ for all i.

Most of these conditions are standard, because in order to be able to identify M from a polyno-
mial number of samples we need to get at least one sample from each component and at least one
sample from the difference between any two components. In our context, we additionally require
no component to be too close to the uniform distribution because the distribution M(1, π) is the
same regardless of the choice of π.

Below, we state and prove our main lemma in this section. The technical argument is quite
involved, but many of the antecedents (in particular finding block structures that capture the
disagreements between permutations, representing the distribution on a subset of permutations as
a tensor and constructing test functions as the tensor product of simple vectors) were used already
in the proof of Lemma 4.

Lemma 6. Consider any k (not necessarily distinct) permutations π1, π2, · · · , πk and scaling pa-
rameters φ1, φ2, · · · , φk. Set Mi = M(φi, πi) and suppose that the collection of Mallows models is
µ-non degenerate. Then for any coefficients zi with max(|z1|, |z2|, . . . , |zk|) ≥ 1 we have

‖z1v(M1) + · · ·+ zkv(Mk)‖1 ≥
(µ2

10n4k

)20k3
10

Again, it suffices to consider max(|z1|, |z2|, . . . , |zk|) = 1. Set ε = µ2

10n3 . We will break up the
proof of this lemma into two cases. First consider the case where φ1 ≥ ε

2nk and |z1| > 1
k . We will

use the following intricate construction: Consider the set of φi such that

|φi − φ1| >
1

160n8k+5

ε4k
2

(k + 1)2k2+4k

and suppose without loss of generality these are φj+1, · · · , φk. Now by Lemma 2 and the assumption
of µ-non degeneracy we conclude that the permutations π1, π2, · · · , πj are all distinct and that
φ1, . . . , φj are all at most 1 − ε. For each of these j permutations, we will build an ordered block
structure Ai where the total size of the sets in it is at most 2j, with the property that πi satisfies Ai
but π1, · · · , πi−1, πi+1, · · · , πj do not. We will do this as follows: For each choice π` of a permutation
in the list π1, · · · , πi−1, πi+1, · · · , πj we add to Ai two consecutive elements of πi whose order is
reversed in π`. This completes the construction.

Now we will pick an additional 2(k − j) elements x1, y1, x2, y2, · · · , xk−j , yk−j in the following
manner. First none of these elements should occur in any of the ordered block structures Ai. Second
we want that each pair (xi, yi) is consecutive in π1. Third, we want the pairs to be as early as
possible in π1. What is the largest rank that we will need to use to select these additional elements?
There are at most 2j2 elements among the j ordered block structures and at worst the gap between
these elements in π1 is one so that we need to use at most rank 2j2 + 2j2 + 2(k − j) ≤ 4k2.

Proof of First Case. Now consider the set S of permutations where the first 2(k − j) elements are
x1, y1, · · · , xk−j , yk−j in that order except up to possibly reversing the order of some pairs xi and
yi. There are 2k−j(n − 2(k − j))! such permutations and we will let vi denote the vector v(Mi)
restricted to the indices corresponding to S. Set Y = {x1, y1, · · · , xk−j , yk−j} and X = [n]\Y . As
in Definition 7 we can form a 2× 2× · · · × 2× (n− 2(k− j))! dimensional rank one tensor of order
k− j + 1 whose entries represent the probability of any permutation in S, which using Corollary 2
can be written as PrMi [π ∈ S]Ti ⊗ v(Mi(πi|X)) where

Ti = v(Mi(πi|{x1,y1}))⊗ v(Mi(πi|{x2,y2}))⊗ · · · ⊗ v(Mi(πi|{xk−j ,yk−j}))

Furthermore PrM1 [π ∈ S] ≥ φ8k
3

1

n2k since the probability that the elements x1, y1, · · · , xk−j , yk−j are

the first 2(k − j) elements in that order is at least
φ
4k2(2(k−j))
1

n2(k−j) ≥ φ8k
3

1

n2k .
Now for any 1 ≤ i ≤ k and any 1 ≤ a ≤ k−j define the vector vi,a as follows: If xa occurs before

ya in πi then set vi,a = (φi
1+φi

, −11+φi
). Otherwise set vi,a = (1

1+φi
, −φi1+φi

). Note that by construction
we have that v(M(πi|{xa,ya})) and vi,a are orthogonal. Now define the tensor

T = vj+1,1 ⊗ vj+2,2 ⊗ · · · ⊗ vk,k−j

which has the key property that 〈T, Ti〉 = 0 for j + 1 ≤ i ≤ k. Next we lower bound 〈T, T1〉. First

we note for any 1 ≤ ` ≤ k − j we have |〈v(M(π1|{x1,y1})), vj+`,`〉| ≥
|φ1−φj+`|

4 ≥ 1
640n8k+5

ε4k
2

(k+1)2k2+4k
.

Thus we conclude |〈T, T1〉| ≥
(

1
640n8k+5

ε4k
2

(k+1)2k2+4k

)k
. Now putting it all together we have

‖z1v(M1) + · · ·+ zkv(Mk)‖1 ≥ ‖
j∑
i=1

zi Pr
Mi

[π ∈ S]〈T, Ti〉v(Mi(πi|X))‖1

We claim that the permutations π1|X , · · · , πj |X must all be distinct because we chose the ele-
ments in Y to avoid each ordered block structure Ai. Moreover the scaling parameters are all

11

1
160n8k+5

ε4k
2

(k+1)2k2+4k
close to each other. We can apply Lemma 5 to lower bound the right hand side

to complete the proof.

We remark that everything in the first case works as is if φi ≥ ε
2nk and |zi| > 1

k for any i. Thus
in the remaining case we can assume that for every i either φi <

ε
2nk or |zi| ≤ 1

k .

Proof of Second Case. Assume without loss of generality that z1 = 1. Then as shown in the proof
of Lemma 2 we have PrM1 [π1] ≥ 1− ε

2k . For each j with φj <
ε

2nk , from Lemma 2 and our choice
of µ we have that πi 6= πj and thus we can find a pair of elements, say (xj , yj), that are consecutive
in πi and xj is ranked higher, but in πj they occur in the opposite order. Let S be the set of
permutations where for each such pair xj is ranked higher than yj . Thus we have that for any j,
either PrMj [π ∈ S] ≤ ε

2nk or |zj | < 1
k . Putting this all together we have

‖z1v(M1) + · · ·+ zkv(Mk)‖1 ≥ 1− ε

2k
− (k − 1) max

(1

k
,
ε

2nk

)
≥ 1

2k

which completes the proof.

Now we are ready to prove our main identifiability result:

Theorem 4.1. Consider two mixtures of Mallows models

M = w1M(φ1, π1) + · · ·+ wiM(φi, πi) and M ′ = w′1M(φ′1, π
′
1) + · · ·+ w′i′M(φ′i′ , πi′)

where i, i′ ≤ k. Suppose that both mixtures are (µ, α)-non degenerate and set ε = µ2

10n3 . If for some
parameter θ we have

‖
∑
i

wiv(M(φi, πi))−
∑
i′

w′i′v(M(φi′ , πi′))‖1 ≤
(εθα
nk

)(10k)6k
Then i = i′ and there is a matching between the components in the two mixtures so that across the
matching the components are θ-close in total variation distance and the mixing weights are also
θ-close.

Proof. We apply Lemma 6 to conclude that there is a pair of components that is (εθαnk)(10k)
6k−4

-close
in total variation distance. From the non-degeneracy assumption, these two components cannot
be from the same mixture. Without loss of generality suppose they are M1 = M(φ1, π1) and
M ′1 = M(φ′1, π

′
1). Now if we replace the terms w1v(M1)−w′1v(M ′1) in the sum by (w1−w′1)v(M1),

we increase the `1 norm by at most 2
(
εθα
nk

)(10k)6k−4

. We can then repeat the above argument and
combine two more terms of the mixture. Neither of these components can involve M1 since M1

cannot be closer than µ
2 in total variation distance to any of the other remaining components.

Thus we will combine two new components, which we can assume without loss of generality are
M2,M

′
2. Also from the non-degeneracy assumption, any component that has not been combined

with another must have a mixing weight of at least α. Thus i = i′ and when all components have
been combined we have

‖(w1 − w′1)v(M1) + · · ·+ (wk − w′k)v(Mk)‖1 ≤
(εθα
nk

)(10k)4
Since we assumed the Mi are all µ-far from each other in total-variation distance, applying Lemma
6 in the contrapositive ensure that max(|wi − w′i|) ≤ θ which completes the proof.

12

5 The General Algorithm

Here we leverage the tools and ideas that we developed in the previous section to give a polyno-
mial time algorithm for learning mixtures of Mallows models that works for any constant number
of components. We have already seen the key ingredient — test functions that isolate a single
component from the rest of the mixture. In the context of polynomial identifiability, we knew the
parameters of the mixture which we used to construct small ordered block structures that allow
us to focus on parts of the distribution that have a convenient analytic form, but still capture the
differences between the base permutations. Here we will use variants of the same type of arguments,
but where we guess the relevant portions of the ordered block structures from which we follow the
same recipe to construct test functions. If our guess is correct, we will succeed in learning the base
permutation of some component. In our setting there will be a constant number of guesses, so
we will be able to construct a list of candidate mixtures at least one of which is close to the true
mixture. We can then appeal to our identifiability results to test find a mixture that is close on a
component-wise basis.

Because we will need to handle components with small scaling parameters separately, it will be
more convenient to work with vectorizations of the low order moments of a distribution than the
distribution itself.

Definition 12. For a Mallows model M on n elements, let vc(M) denote the vectorization of the
order c moments of M . In particular vc(M) has

(
n
c

)
n(n− 1) · · · (n− c+ 1) entries and we interpret

each coordinate as a choice of a subset S ⊂ [n] of size c and a placement of its elements. The
value of the entry in vc(M) is the probability under M that the elements in S are placed in the
corresponding locations.

Note that the sum of the entries in vc(M) is larger than one, because the values of its entries
are the probabilities of events that are (usually) not disjoint. We remark that all of the proofs of
polynomial identifiability, where we prove lower bounds on the `1-norm of linear combinations of
vectorizations of Mallows models, carry over to the case when we use vc(M) instead provided that
c ≥ 10k2. This follows by observing that all of the events we used can be defined in terms of the
placement of at most c elements and the probabilities of these events can be computed by adding
up an appropriate set of the entries of vc(M) (corresponding to disjoint events themselves) instead
of v(M). Thus we have the following corollary:

Corollary 3. Consider two mixtures of Mallows models

M = w1M(φ1, π1) + · · ·+ wiM(φi, πi) and M ′ = w′1M(φ′1, π
′
1) + · · ·+ w′i′M(φ′i′ , πi′)

where i, i′ ≤ k. Suppose that both mixtures are (µ, α)-non degenerate and set ε = µ2

10n3 . If for some
parameter θ we have

‖
∑
i

wivc(M(φi, πi))−
∑
i′

w′i′vc(M(φi′ , πi′))‖1 ≤
(εθα
nk

)(10k)6k
Then i = i′ and there is a matching between the components in the two mixtures so that across the
matching the components are θ-close in total variation distance and the mixing weights are also
θ-close.

Next we give an outline of our algorithm: In Claim 2 we give an algorithm for finding and
removing components with small scaling parameter. The intuition is that such components often

13

generate their own base permutation, so if we take a small number of samples and find all the
permutations that occur somewhat frequently, we will have a superset of the base permutations
of components with small scaling parameter. We then remove their contribution to the order c
moments to generate a list of candidate vectors, at least one of which is close to the true order
c moments of the submixture of components without small scaling parameter. In Corollary 4 we
give an algorithm that mimics the proof of Lemma 4 and Lemma 6 but wherever the construction
of a test function to isolate a component uses knowledge of the mixture, we guess. The algorithm
outputs a list of candidate parameters with the property that accurate estimates of each component
in the true mixture appear on the list. We then consider all k tuples of components to form a list
of candidate mixtures. Finally in Corollary 5 we give an algorithm for testing whether a candidate
mixture is close to the true mixture. The intuition is we can generate our own samples from a
candidate mixture to compute its lower order moments and check whether these are close to the
lower order moments of the true mixture. Corollary 3 tells us that if this check passes then the
candidate mixture is indeed component-wise close to the true mixture.

5.1 Finding Components with Small Scaling Parameters

When the scaling parameter of a Mallows model is small enough, it generates its own base per-
mutation the majority of the time. Using this intuition, we show that we can take few samples
and guess the base permutations of all the components with small scaling parameter and then
essentially remove them from the mixture. First we show how to generate a list of few candidates
and make precise how small we need the scaling parameter to be:

Fact 2. Consider a mixture of Mallows models M = w1M(φ1, π1) + · · · + wiM(φi, πi) where all

mixing weights are at least α. There is an algorithm that takes m =
10k log 1

δ
α2 samples from M

and runs in polynomial time and outputs a list L of permutations of size at most 4
α so that with

probability at least 1− δ
3 all πi for which φi <

1
2n are included in the list.

Proof. Suppose φi <
1
2n . Then the probability that a draw from M(φi, πi) is πi is at least

wi(1− φi)n ≥
wi
2
≥ α

2

Now we take m samples from M and add to the list all permutations that appear at least α
4

fraction of the time. There are at most 4
α such permutations and with 1− δ

3 probability, every πi
with φi ≤ 1

2n is added to the list.

Now we show how to essentially remove these components from the mixture. More precisely,
we guess which permutations on the list are the base permutations of components with small
scaling parameter, then grid search over their mixing weights and scaling parameters. We use these
estimates to remove the contribution of the components with small scaling parameter from the
order c statistics in vc(M).

Claim 2. Consider a mixture of Mallows models M = w1M(φ1, π1) + · · ·+ wiM(φi, πi) where all
mixing weights are at least α. Suppose that φ1, . . . , φj <

1
2n and φj+1, . . . , φk ≥ 1

2n . Let c = 10k2.
There is an algorithm that takes

m =
(nk log 1

δ

εθα

)(10k)8k

14

samples and runs in polynomial time and outputs a list of vectors v′ of polynomial size so that with
probability at least 1− δ

3 at least one v′ satisfies

‖v′ −
k∑

a=j+1

wavc(Ma)‖1 ≤
1

k

(
εα

2nk

)60k4

Proof. First run the algorithm in Fact 2 to generate a candidate list of base permutations. Next
from samples from m, we can form an empirical estimate v for vc(M) which satisfies

‖v − vc(M)‖1 ≤
1

k2

(
εα

2nk

)60k4

Finally set γ =
(

εθα
nk log 1

δ

)(10k)10k
and search over the γ-grid of all possible mixing weights and scaling

parameters for each permutation on the list. For each possibility w′1M(φ′1, π
′
1), · · · , w′jM(φ′j , π

′
j) we

can estimate their contribution

v′ =

j∑
a=1

w′avc(M(φ′a, π
′
a))

The key point is if |wa−w′a| ≤ γ, |φa−φ′a| ≤ γ, π′a = πa for 1 ≤ a ≤ j then using Lemma 2 we have

‖w′avc(M(φ′a, π
′
a))− wavc(M(φa, πa))‖1 ≤

(
n

c

)(
(10n3|φa − φ′a|)1/2 + |wa − w′a|

)
≤ nc(10n3γ)1/2

and consequently

‖v′ −
k∑

a=j+1

wavc(Ma)‖1 ≤ ‖v′ −
j∑

a=1

wavc(M(φa, πa))‖1 + ‖v − vc(M)‖1 ≤
1

k

(
εα

2nk

)60k4

which completes the proof.

5.2 Finding a Single Component

In this subsection, we focus on the problem of recovering a single component from a mixture
of Mallows models. Our algorithms will closely parallel the polynomial identifiability results in
Lemma 4 and Lemma 6. More precisely, we will modify the test functions we used in those results
to turn them into algorithms for isolating a single component, first focusing on the case when all
the scaling parameters are the same and then the general setting where they can be different.

Lemma 7. Consider a collection of k Mallows models M(φ, π1), · · · ,M(φ, πk) with distinct base
permutations and where φ ≤ 1− ε. Suppose φ is known and we are given a vector v with

‖v −
∑
i

zivc(M(φ, πi))‖1 ≤
(εk
nk

)4k
and a constant c ≥ 10k2. Finally suppose z1 ≥ 1. There is a polynomial time algorithm to output
a list of at most n4k((2k)!)k permutations that contains π1.

15

Proof. In the proof of Lemma 4 we showed that if the base permutations are known, there is
a procedure for constructing an ordered block structure B = S1, · · · , Sj containing at most 2k
elements so that π1 satisfies B and any other πj does not satisfy it even as a order structure. (In
the proof of Lemma 4 we treated B as a block structure but here we will use it slightly differently.)
Here we guess such a B along with the relative orderings of each of S1, · · · , Sj in each of π2, · · · , πk.
We will give an algorithm which, if each of these guesses are correct, outputs π1.

First we choose two more elements x and y not in B. Now define the |S1|! × · · · × |Sj |! tensor
Ti,1. Each entry corresponds to an ordering of S1, · · · , Sj and in it we put the probability that a
ranking drawn from M(φ, π1) has these relative orderings, satisfies B and also x is ranked higher
than y. Similarly we define Ti,2 except that y is ranked higher than x. Note that the entries of Ti,1
and Ti,2 can be efficiently constructed from vc(M(φ, π1)) because they only depend on the joint
distribution of a set of elements of size at most c. Let pi,1 = PrMi [π ∈ SB and π(x) < π(y)]. Then
from Corollary 2 we have that

Ti,1 = pi,1v(M(φ, πi|S1))⊗ · · · ⊗ v(M(φ, πi|Sj))

and similarly for Ti,2 where pi,2 is defined analogously, but where y is higher ranked than x. From
Lemma 1, we have that p1,1 + p1,2 ≥ 1

n4k .
Because we have assumed we guessed the relative ordering of each Sa in each πi correctly, we

can repeat the construction in Lemma 4 to construct unit vectors v1, · · · , vj that satisfy

(1) 〈va, v(M(φ, πi|Sa))〉 = 0 whenever πi|Sa 6= π1|Sa and

(2) 〈va, v(M(φ, π1|Sa))〉 ≥ 1
|Sa|!(

ε|Sa|√
|Sa|!

)k for all a

Now the same way Ti,1 and Ti,2 can be efficiently constructed from vc(M(φ, π1)), we can construct
T1 and T2 from the estimate v. It follows that

‖v −
∑
i

zivc(M(φ, πi))‖1 ≥ ‖T1 −
∑
i

ziTi,1‖1 ≥ |〈v1 ⊗ · · · ⊗ vj , T1〉 − z1〈v1 ⊗ · · · ⊗ vj , T1,1〉|

and similarly for |〈v1 ⊗ · · · ⊗ vj , T2〉 − z1〈v1 ⊗ · · · ⊗ vj , T1,2〉|.
Now if x is higher ranked than y in π1, we have p1,2 ≤ φp1,1 because interchanging the positions

of x and y reduces the number of inversions relative to π1 by at least one. Thus p1,1 − p1,2 > ε
2n4k

from which we conclude

z1〈v1 ⊗ · · · ⊗ vj , T1,1〉 − z1〈v1 ⊗ · · · ⊗ vj , T1,2〉 ≥ (p1,1 − p1,2)
j∏

a=1

1

|Sa|!

(ε|Sa|√
|Sa|!

)k
>
(εk
nk

)4k
And if y is ranked higher then the inequality above holds with T1,1 and T1,2 as well as p1,1 and p1,2
interchanged. Thus we can deduce that x is ranked higher than y in π1 if

〈v1 ⊗ · · · ⊗ vj , T1〉 > 〈v1 ⊗ · · · ⊗ vj , T2〉

and if not then y is ranked higher. We can then repeat this for all pairs of elements x and y to
recover the relative ordering of all elements outside of B and then we can guess all possible positions
of the at most 2k elements in B, which completes the proof.

Next we give an algorithm for isolating a single component when the scaling parameters are
allowed to be different. In addition to the usual assumptions, we will assume that each scaling
parameter is at least 1

2n , since the algorithm in Claim 2 allows us to remove such components from
our estimates of the order c moments.

16

Lemma 8. Consider a mixture of k Mallows models M = w1M(φ1, π1) + · · ·+wkM(φk, πk) where
for each i, α ≤ wi and the total variation distance between any two components is at least µ.

Furthermore suppose that for all i, 1
2n < φi < 1 − ε where ε = µ2

10n3 . Let c = 10k2 and θ be the
target accuracy. Suppose we are given a vector v with

‖v −
∑
i

wivc(M(φi, πi))‖1 ≤
(εα

2nk

)60k4
There is a polynomial time algorithm to output a list of candidate parameters (w, φ, π) so that for
some ` there is at one entry in the list that is θ-close — i.e. it satisfies |w − w`| ≤ θ, |φ− φ`| ≤ θ
and π = π`.

Proof. Throughout this proof set β = min(θ, (εα
2nk)150k

4
). First we search over the β-grid of all

possible mixing weights and scaling parameters. We will give an algorithm that, if all our guesses
are correct in the sense that all these parameters are within β of their true values, outputs a list
of candidate parameters that contains an entry that is θ-close to at least one component. Suppose
that our guesses are φ′1, · · · , φ′k and w′1, · · ·w′k.

Now consider all φ′i such that |φ′i−φ′1| > ((εα)
k

nk)40k
2

and suppose without loss of generality that
these are φ′j+1, · · · , φ′k. In the proof of Lemma 6 we showed that based on the guesses φ′1, · · · , φ′k
and if the base permutations are known, for each j + 1 ≤ i ≤ k it is possible to find two elements
(xi−j , yi−j) that are consecutive in π1 and occur in the opposite order in πi. Moreover all of
these elements have rank at most 4k2. Finally if we set X = [n]\{x1, y1, · · · , xk−j , yk−j}, then
π1|X , · · · , πj |X are all distinct (we accomplished this by building a collection of ordered block
structures, but here we do not explicitly need them). Here we guess all of these pairs of elements
for each j + 1 ≤ i ≤ k.

We will follow the proof of Lemma 6 to construct test functions that can isolate a single com-
ponent. Let M ′i = M(φ′i, πi). If we were given vc(M

′
i) we could construct a tensor of the form

Si = Pr
M ′i

[x ∈ S]Ti ⊗ vc−2(k−j)(M(φ′i, πi|X))

where we set Ti = v(M(φ′i, πi|{x1,y1}))⊗· · ·⊗v(M(φ′i, πi|{xk−j ,yk−j})) and S is the set of permutations
where the first 2(k − j) elements are x1, y1, · · · , xk−j , yk−j in that order except up to possibly
reversing the order of some pairs xi and yi. Now we can repeat the construction in Lemma 6 to
find vectors v′i,a (using φ′1, · · · , φ′k instead of φ1, · · · , φk e.g. so that now v(M(φ′i, πi|{xa,ya})) and
v′i,a are orthogonal). Now define the tensor

T = v′j+1,1 ⊗ v′j+2,2 ⊗ · · · ⊗ v′k,k−j

With this construction in hand, we can compute

〈T,
∑
i

w′iSi〉 =

j∑
i=1

zivc−2(k−j)(M(φ′i, πi|X)) where zi = Pr
M ′i

[x ∈ S]w′i〈T, Ti〉

The idea now is to use the algorithm in Lemma 7 since each of the remaining components have
scaling parameters that are close. To accomplish this, we need to lower bound z1 and upper bound
the error in estimating the sum above using the vector v we are given and the error introduced by
making all the scaling parameters the same. First we claim that

|z1| ≥
(εα

2nk

)50k4
17

which follows from the assumption we made that x1, y1, · · · , xk−j , yk−j have rank at most 4k2 and

the resulting bound PrM ′1 [x ∈ S] ≥ φ′8k
3

1

n2k along with the bound

|〈v′i,a, v(M(φ′1, π1|{xa,ya}〉| ≥
|φ′i − φ′1|

4
≥ 1

4

((εα)k

nk

)40k2
Second, we guess the index ` where z` is the largest. We will bound the error in replacing each φ′i
with φ′`. Using the fact that the sum of the entries in vc−2(k−j)(M(φ, π)) ≤ nc and any Mallows
model M(φ, π) along with Lemma 2 we have that

‖vc−2(k−j)(M(φ′`, πi|X))− vc−2(k−j)(M(φ′i, πi|X))‖1 ≤ 2nc
(

10n3|φ′` − φ′i|
)1/2

≤
((εα)k

nk

)8k2
Finally from the given v we can construct a tensor Tv in the same manner that we constructed Ti
from vc(M

′
i) above, which gives:

‖Tv −
j∑
i=1

zivc−2(k−j)(M(φ′`, πi|X))‖1 ≤ ‖Tv −
j∑
i=1

zivc−2(k−j)(M(φ′i, πi|X))‖1 + jz`

((εα)k

nk

)8k2
To upper bound the right hand side in the above expression, we can use the assumption about v

in the statement of the lemma. We can then invoke Lemma 2 and the assumption that |φi−φ′i| ≤ β
to replace φi with φ′i. With this upper bound, we apply the algorithm in Lemma 7 to learn the
permutation π`|X . We then output the candidate parameters w′`, φ

′
` and π′` (where we guess the

remaining positions of the remaining 2(k− j) elements in [n] \X to fill in the rest of π′`). It is easy
to see that when we replace the guesses we made with brute force search, the algorithm still runs
in polynomial time.

5.3 Finding the Rest of the Components

It is now straightforward to repeatedly use the algorithm in Lemma 8 to learn and peel off compo-
nents one by one, which is captured by the following corollary:

Corollary 4. Under the same conditions as Lemma 8, suppose we are given a vector v with

‖v −
∑
i

wivc(M(φi, πi))‖1 ≤
(εα

2nk

)60k4
There is a polynomial time algorithm to output a list of candidate parameters (w, φ, π) so that for
each ` there is at one entry in the list that is θ-close — i.e. it satisfies |w − w`| ≤ θ, |φ − φ`| ≤ θ
and π = π`.

Proof. We invoke the algorithm in Lemma 8 and set the target accuracy so that the entry (w, φ, π)
that is close to some component on the list that it returns satisfies

‖wvc(M(φ, π))− w`vc(M(φ`, π`))‖1 ≤
1

k

(εα
2nk

)60k4
More precisely, the algorithm in Lemma 8 guarantees that π = π` and the mixing weight and
scaling parameter are θ′-close. We make θ′ small enough that using the bound

‖vc(M(φ, π))− vc(M(φ`, π`))‖1 ≤ 2ncdTV (M(φ, π),M(φ`, π`))

18

along with Lemma 2 yields the desired inequality. Now for each candidate parameters (w, φ, π) on
the list, compute

u = v − wvc(M(φ, π))

and repeat in this manner k − 1 more times. It is easy to see that the `1-norm of the difference
between u and the components in the mixture that have not been found (on some list) yet will not
exceed (εα

2nk)60k
4
.

Of course, once we have a list where an accurate estimate of every component in the mixture
appears, we can try all possible k tuples of parameters on the list in order to generate a list of
candidate mixtures, at least one of which is component-wise close to the true mixture. All that
remains is to hypothesis test all of these possibilities. This is slightly more complicated in our
setting, because we want to select a candidate that is not just close in total variation distance as a
mixture, but even in a component-wise sense.

5.4 Testing Component-wise Closeness

Here we show how to test whether a pair of mixtures of Mallows models are component-wise close.
This essentially follows by invoking Corollary 3 and standard arguments.

Corollary 5. Suppose we are given sample access to a mixture of k Mallows models M = w1M(φ1, π1)+
· · ·+ wkM(φk, πk) and an estimate M ′ = w′1M(φ′1, π

′
1) + · · ·+ wkM(φ′k, π

′
k) on n ≥ 10k2 elements

where both mixtures are (µ, α)-non degenerate. Se t ε = µ2

10n3 . There is an algorithm which given

m =
(nk log 1

δ′

εθα

)(10k)8k
samples from M runs in polynomial time and succeeds in accepting when the mixtures are component-
wise γ-close for

γ =
(εθα

nk log 1
δ′

)(10k)10k
and rejects when they are component-wise θ-far and succeeds with probability at least 1− δ′.

Proof. As usual, set c = 10k2. From the choice of γ we have that if the mixtures are component-wise
γ-close then

‖
∑
i

wivc(M(φi, πi))−
∑
i

w′ivc(M(φ′i, π
′
i))‖1 ≤

(εθα
nk

)(10k)8k
And from Corollary 3 we know a weak converse that if the above bound (with, say, an extra factor
of four) holds then the mixtures must be component-wise θ-close. Now we can estimate the above
quantity using m samples from M and by generating m samples from M ′. The latter can be
done efficiently through any of the known sampling schemes for Mallows models, e.g. [11]. We
accept if the above bound holds (with an extra factor of two) and reject otherwise, and by standard
concentration argument it is easy to see that the failure probability is at most δ′.

We are now ready to prove Theorem 1.1:

Proof. First we run the algorithm from Claim 2. Then we run the algorithm in Corollary 4 to
output a list of candidate parameters, and we consider all k tuples of components to form a list of
candidate mixtures. On this list, we eliminate candidate mixtures in which (1) a pair of components

19

has the same base permutation and the scaling parameters are within ε
10 and (2) any component

has a scaling parameter more than 1− ε
2 or mixing weight less than α

2 . For

γ =
(εθα

nk log 1
δ′

)(10k)10k
the candidate mixture that is component-wise γ-close to the true mixture will not be eliminated.
We claim all the remaining candidates have components that are at least ε

40 -far in total-variation
distance. To see this, for any two components with different base permutations, we use Claim
1. Otherwise, pick two elements that are consecutive in the (shared) base permutation. Say the
scaling parameters are φi, φj . The probability that the two elements occur in order in a sample
from the first Mallows model is 1

1+φi
while for the second Mallows model the probability is 1

1+φj
.

The difference of these quantities is at least
|φi−φj |

4 giving us the lower bound on the total variation
distance.

Now for each remaining candidate we apply the algorithm in Corollary 5 and setting µ = ε
40

and δ′ sufficiently small so that the probability of failing on any candidate in our polynomially
sized list is at most δ

3 . We know that if the algorithm succeeds at deciding which mixtures are
component-wise close and far, that we will accept on at least one of the candidate mixtures (the one
that is γ-close to the true mixture) and that anything we accept will be component-wise θ-close.
Finally, the overall failure probability is at most δ and the number of samples used is at most

m = (
nk log 1

δ
εθα)(10k)

10k
which completes the proof.

6 Lower Bounds

In this section, we show various lower bounds for learning mixtures of k Mallows models. First, we
give information-theoretic lower bounds on the sample complexity that show that any algorithm for
learning the components (and not merely learning a mixture that is close as a distribution) must
take at least an exponential in k number of samples. Second, we define a local model where an
algorithm is only allowed to make statistical queries on up to c elements. This framework captures
all of our algorithms along with many other natural strategies. We show that there are mixtures
of k Mallows models that are far as distributions, but require nlog k queries to distinguish. An
interesting open question is to prove a statistical query lower bound, which necessitates finding a
much larger collection of mixtures that are hard to distinguish from each other.

6.1 Sample Complexity Lower Bounds

In this subsection, we construct two mixtures of k Mallows models that are (µ, α)-non degenerate
that are close as mixtures but not on a component-by-component basis. Recall that non-degeneracy
avoids more trivial reasons why the components are not learnable from few samples (such as not
getting a sample from each component, or not getting a sample from the difference between two
components). The following lower bound shows that any algorithm for learning the components a
(µ, α)-non degenerate mixture of k Mallows models must take at least 1

µk
samples:

Lemma 9. For any µ ≤ 1
40k2

and n ≥ 40k2 there are two mixture of at most k Mallows models M
and M ′ with the following properties:

(1) Each mixture is (µ, 1
10·22k)-non degenerate

20

(2) dTV (M,M ′) ≤ 4(8µk)2k−1

(3) M and M ′ are not component-wise µ-close

Proof. Our strategy is to find a linear combination of vectorizations of Mallows models whose
coefficients are lower bounded, but whose `1-norm can be much smaller. Then we will interpret
this linear combination as a pair of mixtures of Mallows models. Let r = 2k and let π = (1, 2, · · · , n).
Now consider M(φ1, π), · · · ,M(φr, π) where φ1 = λ, φ2 = 2λ, · · · , φr = rλ for some λ that will be
chosen later. Finally let Zn(φ) = (1+φ) · · · (1+φ+· · ·+φn−1). Now consider the linear combination

v =

r∑
i=0

(−1)i
(
r − 1

i

)
Z(φi)v(M(φi, π))

First, we will bound the `1-norm of v. Then we will interpret it as the difference of two mixtures
and prove that its components are far apart in total variation distance and that its mixing weights
are not too small.

Claim 3. ‖v‖1 ≤ (2nrλ)r−1

1−2nrλ

Proof. Consider a permutation π′ that has i inversions. Then the value of v in the entry indexed
by π′ is

λi
r−1∑
j=0

(−1)j
(
r − 1

j

)
(j + 1)i

which is zero when i ≤ r− 2 and is at most (2rλ)i when i ≥ r− 1. We claim that there are at most
ni permutations with exactly i inversions, which can easily be seen by induction by generating the
permutation from i swaps of adjacent elements. Together this implies

‖v‖1 ≤
∞∑

i=r−1
(2nrλ)i ≤ (2nrλ)r−1

1− 2nrλ

which completes the proof.

Now set λ = 2µ
n . We can compute

Pr
M(φi,π)

[π] =
1

(1 + iλ) · · · (1 + iλ+ · · ·+ (iλ)n−1)
=

(1− iλ)n−1

(1− (iλ)2) · · · (1− (iλ)n)

Using this expression, we can upper and lower bound the probability that the ith component
generates π:

Claim 4. 1− 2iµ ≤ PrM(φi,π)[π] ≤ 1− (2i− 1)µ

Proof. First, the numerator can be upper bounded as(
1− 2iµ

n

)n−1
≤ e−2iµ ≤ 1− (2i− 0.1)µ

and lower bounded as (
1− 2iµ

n

)n−1
≥ 1− 2iµ

The denominator is at most one and at least 1− (iλ)2

1−iλ , which using the lower bound on n gives us
the desired bounds.

21

The upper and lower bounds on PrM(φi,π)[π] allow us to lower bound the total variation distance
between two components as

dTV (M(φi, π),M(φj , π)[π]) ≥ | Pr
M(φi,π)

[π]− Pr
M(φj ,π)

[π]| ≥ µ

and similarly for the total variation distance to the uniform distribution on permutations.
Now we will interpret v as the difference between two mixtures of at most k Mallows models.

If the sum of the entries of v is non-zero, we can increase the coefficient of either v(M(φ1, π) or
v(M(φ2, π) to make it zero. This increases the `1-norm by at most a factor of two. Now we can
take the positive terms, renormalize so that the sum of their entries is one, and interpret them as
components of a mixture of k Mallows models. We can do the same for the negative terms. It is
easy to see that after renormalization, the minimum mixing weight is at least 1

10·2r using the fact
that Z(φi) ≤ 1

(1−φi)n ≤ 10 for all 1 ≤ i ≤ r, which completes the proof.

6.2 Lower Bounds Against Local Query Algorithms

We now introduce a restricted model of learning, that is natural in the context of distributions
over permutations, for which we can prove an nlog k lower bound for learning mixtures of k Mallows
models.

Definition 13. In the local query model, the learner queries a subset of elements x1, x2, · · · , xc and
locations i1, i2, · · · , ic with a tolerance parameter τ and is answered with the probability, up to an
additive τ , that a sample from the mixture has xj in position ij for all 1 ≤ j ≤ c. The cost of the
query is 1

τ2
and the total cost of an algorithm is the sum of its query costs.

We now show the following lower bound:

Theorem 6.1. Suppose k = 2`−1 and 2` divides n. Then there is a randomized construction of a
pair of mixtures of k Mallows models M and M ′ with the following properties:

(1) M and M ′ are (1
40 ,

1
k)-non degenerate

(2) with probability 1/2, M = M ′ and otherwise M,M ′ have the property that every component
of M is at least 1

40 -far in total variation distance from every component of M ′.

Yet any algorithm in the local query model that decides whether M = M ′ with success probability

at least 2
3 must incur cost at least

(
n
2k

)log2 k.

We will construct M and M ′ whose components are far in total variation distance and yet for
any local query an algorithm makes, if it has low cost, the query can be answered the same for
both M and M ′. The theorem then follows by flipping a fair coin to decide whether to output the
pair (M,M) or the pair (M,M ′). First, we describe the construction. Set the scaling parameter
φ = 1 − (kn)1/2 for all of the components we will use. Start from the identity permutation π =
(1, 2, · · · , n) and divide the n elements into ` blocks of n` consecutive elements. In each block, create
n
2` pairs of consecutive elements. There are 2` permutations we can generate by choosing a subset
of the blocks and for each chosen block, flipping every pair inside. Now the two mixtures M and
M ′ are defined as follows:

(1) Set M =
∑2`−1

i=1
1

2`−1M(φ, πi) where πi are the 2`−1 permutations where for an even number
of blocks, the paired elements are flipped.

22

(2) Similarly set M ′ =
∑2`−1

i=1
1

2`−1M(φ, π′i) where π′i are the 2`−1 permutations where for an odd
number of blocks, the paired elements are flipped.

We will break up the proof into two parts, where we first show that the mixtures are non-degenerate.
Then we establish a lower bound on the cost in the local query model.

Proof of First Part. We want to show that the components of the mixture are separated from the
uniform distribution and from each other in total variation distance. For any of the components
in either of the mixtures, the first element of its base permutation maps to each of the positions
1, 2, . . . , n with probabilities (1− φ

1− φn
, . . . ,

(1− φ)φn−1

1− φn
)

We will denote this vector by vn. Note φ
√

n
4k > 1

2 and thus we can ensure that the first (n4k)1/2

entries of vn are all at least 1
2(kn)1/2. Let e be the vector (1

n , . . . ,
1
n). Thus

‖vn − e‖1 ≥
√

n

4k

(1

2

√
k

n
− 1

n

)
>

1

5

In particular, this implies that the total variation distance between any of the components and the
uniform distribution is at least 1

5 .
Next we bound the total variation distance between any pair of components. For every pair of

components M(π1, φ) and M(π2, φ) coming from either of the two mixtures, the permutations π1
and π2 differ in that for some block, its pairs of consecutive elements are flipped in π2. Let S be the
set of all pairs of consecutive elements that are flipped between π1 and π2. In our construction, we
ensured that |S| ≥ n

2` . Let |S| = m. To bound the total variation distance between M(π1, φ) and
M(π2, φ), we look at which of the m pairs in S occur in reverse order (not necessarily consecutive)
in a sample. Since the pairs are disjoint, the probability that a sample from M(π1, φ) has exactly

i of the pairs reversed is φi

(1+φ)m while the probability that a sample from M(π2, φ) has exactly i of

them reversed is φm−i

(1+φ)m . Thus, the total variation distance between the distributions generated by
M1,M2 is at least

dTV (M(π1, φ),M(π2, φ)) ≥ 1

2

∑m
i=0

(
m
i

)
|φi − φm−i|

(1 + φ)m

For i ≤ m−
√
m

2 we have |φi − φm−i| = φi(1 − φm−2i) ≥ φi(1 − φ
√
m) ≥ φi(1 − φ

√
n
2l) ≥ 1

4φ
i. Thus

we conclude

dTV (M(π1, φ),M(π2, φ)) ≥ 1

2

∑m
i=0

(
m
i

)
|φi − φm−i|

(1 + φ)m
≥ 1

4

∑m−
√
m

2
i=0

(
m
i

)
φi

(1 + φ)m
≥ 1

4

∑m−
√
m

2
i=0

(
m
i

)
2m

≥ 1

40

It is easy to see that the same argument works for lower bounding dTV (M(π1, φ), U) where U is
the uniform distribution on permutations. This completes the proof of the first part.

Proof of Second Part. Now we prove a lower bound on the cost to distinguish between M and M ′.
First, we observe that any local query involving strictly less than ` elements has the same answer
for both mixtures. Indeed, one of the ` blocks must have no queried elements and thus we can
pair the components in M with the components in M ′ that are the same except that all pairs of
consecutive elements in this block are flipped. For each such pair of components, the distribution
of the queried elements is the same and thus overall, the distributions of the queried elements in
the even mixture and in the odd mixture must be the same.

23

Next, we show that for both mixtures, the answer to any query involving at least ` elements
can be answered with zero unless the tolerance parameter is at least (2kn)`/2. It suffices to upper
bound the probability that some ` elements i1, . . . , il map to some ` positions x1, . . . , xl. Let p be
the probability that i1 maps to position x1. The probability that i1 maps to an adjacent position is
at least φp since for any permutation with i1 in position x1, swapping i1 with an adjacent element
creates at most 1 more inversion. Repeating this argument, the probability that i1 maps to a
position 2 away from x1 is at least φ2p and so on. Overall, we conclude that p(1+φ+· · ·+φn−1) ≤ 1
and thus p ≤ 1

1+φ+···+φn−1 .
We can repeat a similar argument for the probability that i2 maps to potion x2 conditional on i1

mapping to position x1. In this case, the denominator has one less term since i2 cannot map to x1
and we can upper bound the probability by 1

1+φ2+···+φn−1 ≤ 1
φ+φ2...φn−1 . Bounding the probabilities

for each of the ` elements ij mapping to xj , the overall probability that i1, . . . , il map to positions
x1, . . . , xl is at most

1

1 + φ+ · · ·+ φn−1
· 1

φ+ φ2 . . . φn−1
. . .

1

φl−1 + · · ·+ φn−1
=

(1− φ)l

(1− φn)(φ− φn) . . . (φl−1 − φn)

=

(√
k

n

)l 1

(1− φn)(φ− φn) . . . (φl−1 − φn)
≤
(√

2k

n

)l
which completes the proof.

7 Beyond Worst-Case Analysis

Motivated by our lower bound against local algorithms, it is natural to ask whether there is some
notion of beyond worst-case analysis whereby we can get much faster algorithms that work under
tame conditions on the input. Here we give such an algorithm in the case when all of the scaling
parameters are separated from each other (and from the value one, which causes a different sort of
degeneracy).

Definition 14. We say a mixture of Mallows models M = w1M(φ1, π1) + · · · + wkM(φk, πk) is
(γ, α)-separated if wi ≥ α and φi ≤ 1− γ for all i and additionally |φi − φj | ≥ γ.

In our main lemmas, we will also need some new notions of component-wise closeness that will
arise due to some subtleties at intermediate steps.

Definition 15. We say that two mixtures of Mallows models M = w1M(φ1, π1)+· · ·+wkM(φk, πk)
and M ′ = w′1M(φ′1, π

′
1) + · · ·+w′kM(φ′k, π

′
k) with the same number of components are component-

wise θ-close in parameters if there is a relabelling of components in one of the mixtures after which
|wi − w′i|, |φi − φ′i| ≤ θ and πi = π′i for all i. If all but the condition on the mixing weights holds,
we will say that they are component-wise θ-close in base parameters.

Theorem 7.1. Consider a mixture of k Mallows models M = w1M(φ1, π1) + · · · + wkM(φk, πk)
that is (γ, α)-separated and has n ≥ 10k. There is an algorithm that runs in time polynomial in n,
log 1/δ and (1

θγα)k
2

time and outputs a mixture M ′ that is component-wise θ-close in parameters
to M with probability at least 1− δ.

We give a brief outline of our algorithm. First we run the algorithm in Claim 5 to find candidate
prefixes for all the base permutations and estimates of their scaling parameters. Next we run the
algorithm in Lemma 10 to extend the prefixes to a list of candidate full base permutations. Then we

24

run the algorithm in Claim 6 so that for every k tuple of candidate base permutations and scaling
parameters, we can uniquely determine accurate estimates of the mixing weights. Finally we run
the algorithm in Lemma 11 to test whether a given mixture is component-wise close in parameters
to the true mixture.

7.1 Finding the Prefixes

Our first step is to determine the first 10k elements of each base permutation. More precisely, given
samples from M , we want to find a list of candidate prefixes, so that for each base permutation
its prefix appears on the list. Along the way, we will also perform a grid search over the scaling
parameters.

Claim 5. Consider a mixture of k Mallows models M = w1M(φ1, π1) + · · ·+wkM(φk, πk) that is
(γ, α)-separated. There is an algorithm that takes

m =
(1

2kαγ10k log 1
δ

)2
samples and runs in time polynomial in n, 1/(αβ)k, 1/γk

2
and log 1/δ and outputs a list of size

s = 2k
1

γ10k2
1

(αβ)k

where each entry is a candidate prefix of 10k elements and a scaling parameter. Moreover with
probability at least 1− δ, for each i, the first 10k elements of πi appear as an entry in the list along
with an estimate of φi that is close within an additive β.

Proof. The first 10k elements of a permutation πi appear as the first 10k elements of a random
sample from the mixture with probability at least

α

(1 + φ+ · · ·+ φn−1)10k
≥ (1− φ)10kα ≥ γ10kα

Given m samples, with probability 1 − δ, the prefixes of each permutation πi appears as the first
10k elements at least a 1

2γ
10kα fraction of the time. Now we can simply take all prefixes of 10k

elements that appear at least a 1
2γ

10kα fraction of the time and all choices of the scaling parameter
in a β-grid. This gives a list of size at most s and completes the proof of the claim.

This is the only step in our algorithm which is not obvious how to implement using local queries.
Nevertheless, it can be: First, query the probability that each of the n elements appears as the
first element in a draw from M . Now for each of the elements that occurs first with probability
at least 1

2γ
10kα, query the probability of all possible second elements (conditioned on the choice of

the first element). We can repeat this process to find the heavy hitters among all possible prefixes
of 10k elements, and can remove any prefix that does not occur with probability at least 1

2γ
10kα

thus ensuring that the list of queries we need to make does not ever become too large.

7.2 Finding the Full Permutations and Mixing Weights

In this subsection, we show how to find all the base permutations from their prefixes. We will also
show how to recover the mixing weights using the base permutations and scaling parameters.

25

Lemma 10. Suppose the conditions of Theorem 7.1 hold. Suppose that n ≥ 10k and the first 10k
elements of each permutation are known and we are given estimates φ′i of the scaling parameters

that, for each i, satisfy |φi − φ′i| ≤ β with β ≤ α
(γ
10

)3k
. There is an algorithm that runs in time

polynomial in n, 1/α, 1/β, log 1/δ and 1/γk , uses m =
(
2kn 1

β log 1
δ

)2
samples, and outputs a list

of 2k−1 permutations for each i so that with probability at least 1 − δ, each πi is included on the
corresponding list.

Proof. To simplify the exposition, we first give an algorithm that works when the scaling parameters
φi and moments of the distribution are exactly known. We will then show that it continues to work
even when we use the estimates φ′i instead. Our algorithm will recover each base permutation πi
separately. Consider the first 2k − 2 elements of the last permutation x1, x2, · · · , x2k−2 and two
additional elements x and y that we wish to recover the relative order of, in the first permutation.
Now consider the set S of permutations where the first 2k−2 elements are x1, x2, · · · , x2k−2 in that
order except up to possibly reversing the order of some pairs x2a−1 and x2a. We can now form a
2× 2× · · · × 2 tensor Tk,x of order k − 1 where

Tk,x = pk,xv(M(φk, πk|{x1,x2}))⊗ · · · ⊗ v(M(φk, πk|{x2k−3,x2k−2}))

where pk,x = PrM(φk,πk)[π ∈ S and π(x) < π(y)]. We can analogously define Tk,y but where we
require π(y) < π(x). Finally we set

Tx =
∑
i

wiTi,x and Ty =
∑
i

wiTi,y

Now we guess, for each a from 1 to k−1, the relative ordering of x2a−1 and x2a. As usual we can
construct test functions for isolating a single component. In particular, if x2a−1 occurs before x2a
in πa set va = (φa

1+φa
, −11+φa

). Otherwise set va = (1
1+φa

, −φa1+φa
). It is easy to see that va is orthogonal

to v(M(φa, πa|{x2a−1,x2a})) and furthermore

|〈va, v(M(φb, πb|{x2b−1,x2b}))〉| ≥
|φa − φb|

4

Now set Z = v1 ⊗ v2 ⊗ · · · ⊗ vk−1 and it is easy to see that if x occurs before y in πk we have

|〈Z, Tx〉| = |〈Z, Tk,x〉| ≥
(1

φk

)
|〈Z, Ty〉| = |〈Z, Tk,y〉|

and if y occurs before x, the same inequality holds but with the roles of x and y interchanged. Thus
we can decide if x occurs before y in πk by comparing the values of 〈Z, Tx〉 and 〈Z, Ty〉. Moreover
we can repeat this procedure for every pair of elements (using the same guess) to recover the entire
base permutation πk.

Now we remove the assumption that the scaling parameters are known, and also bound the error
introduced by estimating the tensors Tx and Ty from samples. First, if we take m =

(
2kn 1

β log 1
δ

)2
samples then with probability at least 1− δ

kn2 we have that ‖Tx − T ′x‖1, ‖Ty − T ′y‖1 ≤ β where T ′x
and T ′y are the obvious empirical estimates. Next we construct Z ′ using the φ′i’s instead of the φi’s.

It is easy to see that ‖Z − Z ′‖1 ≤ k2kβ. Finally we have∣∣∣|〈Z, Tx〉| − |〈Z, Ty〉|∣∣∣ ≥ 1− φk
1 + φk

wk

(
pk,x + pk,y

)(γ
4

)k−1
and moreover

pk,x + pk,y ≥
1

(1 + φk + · · ·+ φn−1k)2k
≥ γ2k

26

which follows because pk,x+pk,y is at least the probability that the first 2k−2 elements of πk occur
in order, for a draw from M(φk, πk). Putting it all together we have∣∣∣|〈Z, Tx〉| − |〈Z, Ty〉|∣∣∣ ≥ α(γ

4

)k−1
Now since we set β ≤ α

(γ
10

)3k
, it follows that we can compare the values of 〈Z ′, T ′x〉 and 〈Z ′, T ′y〉

to recover the relative order of x and y in πk with failure probability at most δ
n2k

. Now union
bounding over the n2k steps (when our guess is correct), we conclude that our algorithm succeeds
with probability at least 1− δ.

It might seem like we can now just grid search over the mixing weights. But there is a subtle
issue: If all the base permutations and scaling parameters are correct, but the mixing weights are
not, our testing algorithm might not be able to tell. For this reason we need to make sure that
once we have a candidate set of base permutations and their scaling parameters, we do not need to
do any guessing to determine the mixing weights. The following claim shows how the ideas in the
proof of Lemma 10 can be adapted to resolve this issue.

Claim 6. Suppose the conditions of Theorem 7.1 hold. Furthermore suppose the base permutations
are known and we are given estimates φ′i of the scaling parameters that, for each i, satisfy |φi−φ′i| <
β with β ≤ α2

(γ
10

)6k
. There is an algorithm that runs in time polynomial in n, 1/β and log 1/δ

time and uses m =
(
2kn 1

β log 1
δ

)2
samples and outputs estimates of the mixing weights that satisfy

|wi − w′i| ≤
β

α

(10

γ

)4k
for each i, with probability at least 1− δ.

Proof. Recall we defined Tk,x and Tk in Lemma 10. Here we will use a variant of these constructions.
In particular, Tk has the same definition as Tk,x except that (for the same definition of S) we replace
pk,x with pk = PrM(φk,πk)[π ∈ S]. Similarly let T =

∑
iwiTi. Now we can usem samples to compute

T ′ with the property ‖T −T ′‖1 ≤ β. We can also compute Z ′ with ‖Z−Z ′‖1 ≤ k2kβ, but this time
without any guessing because we are assuming that the base permutations are all known. Finally
note that the entries of Tk only depend on πk and φk. Let T ′k be the result of replacing φk (which
we do not know) with φ′k.

Next we bound the difference between Tk and T ′k: Note that each entry of Tk is of the form

φik
(1 + φk + · · ·+ φn−1k) · · · (1 + · · ·+ φn−2k+2

k)

where i is the number of pairs x2a−1 and x2a (from the 2k−2 prefix of πk) whose order is exchanged.
In T ′k, the entries are of the same form but with φk replaced with φ′k. Suppose φk ≤ φ′k. Then if a
and a′ are two corresponding entries in Tk and T ′k respectively we have

a

a′
≤

(1 + φ′k + · · ·+ φ′n−1k) · · · (1 + · · ·+ φ′n−2k+2
k)

(1 + φk + · · ·+ φn−1k) · · · (1 + · · ·+ φn−2k+2
k)

≤ (1− φk)2k−2

(1− φ′k)2k−2
≤ (1 +

β

γ
)2k−2 ≤ 1 +

4kβ

γ

for β ≤ 1
2kγ . Thus it follows that the total difference between Tk and T ′k over entries where the

former is larger, is at most 4kβ
γ since the sum of entries of T ′k is one. Similarly the difference between

Tk and T ′k over entries where the latter is larger is at most

(1 + φ′k)
k−1 − (1 + φk)

k−1 ≤ (k − 1)(1 + φ′k)
k−2(φ′k − φk) ≤ k2kβ

27

Now we can estimate the mixing weight of the kth component as

w′k =
〈T ′, Z ′〉
〈T ′k, Z ′〉

Note that 〈T,Z〉 = wk〈Tk, Z〉. Also wk ≥ α and

|〈Tk, Z〉| ≥ pk
(γ

4

)k−1
≥
(γ

4

)3k
.

Now note that for real numbers x, y, x′, y′ with |x|, |y|, |x′|, |y′| ≤ 1

|xy − x′y′| = |x(y − y′) + (x− x′)y′| ≤ |y − y′|+ |x− x′|

Since all entries of Tk, T, Z, T
′
k, T

′, Z ′ are less than 1, we have

|〈Tk, Z〉| − |〈T ′k, Z ′〉| ≤ ‖Tk − T ′k‖1 + ‖Z − Z ′‖1 ≤ k2k
β

γ

|〈T,Z〉| − |〈T ′, Z ′〉| ≤ ‖T − T ′‖1 + ‖Z − Z ′‖1 ≤ (k2k + 1)β

Putting everything together and using our assumption about β, we have

|wk − w′k| =
∣∣∣ 〈T ′, Z ′〉〈T ′k, Z ′〉

− 〈T,Z〉
〈Tk, Z〉

∣∣∣ ≤ |(k2k + 1)β〈Tk, Z〉|+ |k2k βγ 〈T,Z〉|
|〈Tk, Z〉〈T ′k, Z ′〉|

≤
4k2k βγ
α(γ4)3k

≤ β

α

(10

γ

)4k
which completes the proof.

7.3 Testing Closeness for Separated Mixtures

The final piece of our algorithm is a method for testing if two (γ2 , α)-separated mixtures M and M ′

are component-wise close in parameters.

Lemma 11. Suppose we are given sample access to a mixture of k Mallows models M = w1M(φ1, π1)+
· · · + wkM(φk, πk) and an estimate M ′ = w′1M(φ′1, π

′
1) + · · · + wkM(φ′k, π

′
k) and both are (γ2 , α)-

separated. Finally suppose n ≥ 10k and θ ≤ γ
10 . There is an algorithm which given

m =
(nk10k log 1

δ

θαγk

)20
samples from M runs in polynomial in n, 1/γk, 1/α, 1/θ and log 1/δ time and if M and M ′ are
not component-wise θ-close in base parameters, rejects with probability at least 1 − δ. And if they
are component wise θ′-close in parameters, for

θ′ =
(θαγk

10k
)50

it accepts with probability at least 1− δ.

28

Proof. Suppose that M and M ′ are not component-wise θ-close in base parameters. From the
fact that θ ≤ γ

10 , there is a component, say M(φ′1, π
′
1) that is not θ-close (i.e. has the same base

permutation and scaling parameter within an additive θ) to any component of M . Suppose that
M(φ1, π1) is the component of M whose scaling parameter is the closest to φ′1. We will break into
two cases depending on whether |φ1 − φ′1| ≤ θ.

Proof of First Case First consider when |φ1 − φ′1| ≤ θ. Then there must be a pair of elements,
say x and y, whose order in π1 is different from their order in π′1. We will suppose without loss of
generality that x and y are not in the first 4k elements of π′1 (as otherwise they will not be in the
last 4k elements, and we can repeat the entire argument but globally flipping all the orderings).
Now suppose the first 4k − 4 elements of π′1 are x1, x2, · · · , x4k−5, x4k−4. We will use a variant of
a construction we have used many times already, e.g. in Lemma 10 where we consider the set S of
permutations where these first 4k − 4 elements appear first, except up to flipping pairs x2a−1 and
x2a. For each component M(φi, πi) we can define the tensor Ti,x to be the 2 × 2 × · · · × 2 order
2k − 2 tensor where

Ti,x = pi,xv(M(φi, πi|{x1,x2}))⊗ · · · ⊗ v(M(φi, πi|{x4k−5,x4k−4}))

And as usual pi,x = PrM(φi,πi)[π ∈ S and π(x) < π(y)]. Define Ti,y analogously but with the
roles of x and y interchanged. Also let T ′i,x and T ′i,y denote the corresponding tensors using the
components of M ′ instead. And finally let

Tx =
∑
i

wiTi,x, Ty =
∑
i

wiTi,y, T
′
x =

∑
i

w′iT
′
i,x and T ′y =

∑
i

w′iT
′
i,y

Each of these tensors can be approximated by sampling from M or M ′. Now if x2a−1 occurs before
x2a in πi set vi,a = (φi

1+φi
, −11+φi

). Otherwise set vi,a = (1
1+φi

, −φi1+φi
). Similarly we can define v′i,a.

With this definition in hand, we set

Z = v2,1 ⊗ · · · ⊗ vk,k−1 ⊗ v′2,k−2,⊗ · · · ⊗ v′k,2k−2

By construction (if, say x occurs before y in π1) we have that |〈Z, Tx〉| > |〈Z, Ty〉| and |〈Z, T ′x〉| <
|〈Z, T ′y〉|. Repeating essentially the same calculations as in Lemma 10 it is easy to see that the gap

between these two inequalities is at least α
(γ
8

)6k
. Using the largest entry in absolute value in Z is

at most one, we conclude that if we take m samples then either ‖Tx − T ′x‖1 or ‖Ty − T ′y‖1 will be

at least 1
3α
(γ
8

)6k
in which case we reject. It is easy to see that the failure probability in this case

is at most δ
10kn2 .

Now we must show that if M and M ′ are component wise θ′-close in parameters then ‖Tx−T ′x‖1
and ‖Ty − T ′y‖1 will both be less than 1

4α
(γ
8

)6k
with failure probability at most δ

10kn2 .
We will bound each error ‖Ti,x − T ′i,x‖1 separately. WLOG φi < φ′i and x is ranked ahead of y

in πi. Let X = [n]\{x1, x2, . . . , x4k−4}. Consider an entry of Ti,x. The value can be expressed in
the form

φcii

(1 + φi + · · ·+ φn−1i) . . . (1 + φi + · · ·+ φ
n−(4k−4)
i)

Pr
M(φi,πi|X)

[π(x) < π(y)]

where ci is some integer. We will bound the error incurred by replacing φi with φ′i in each of the

29

above terms. First note that

φcii − φ
′ci
i ≤

φcii

(1 + φi + · · ·+ φn−1i) . . . (1 + φi + · · ·+ φ
n−(4k−4)
i)

−
φ′cii

(1 + φ′i + · · ·+ φ′n−1i) . . . (1 + φ′i + · · ·+ φ
′n−(4k−4)
i)

≤
(1 + φ′i + · · ·+ φ′n−1i) . . . (1 + φ′i + · · ·+ φ

′n−(4k−4)
i)

(1 + φi + · · ·+ φn−1i) . . . (1 + φi + · · ·+ φ
n−(4k−4)
i)

− 1 ≤ (1− φ′i)4k−4

(1− φi)4k−4
− 1

and |φ′cii − φ
ci
i | ≤ ciφ

′ci−1
i . The maximum of ciφ

′ci−1
i occurs when ci = 1

− log φ′i
and thus

|φ′cii − φ
ci
i | ≤

1

− log φ′i
≤ 1

1− φ′i
Now, we show an explicit method to compute PrM(φi,πi|X)[π(x) < π(y)]. We note that if x ranked
exactly d elements ahead of y in πi|X then

Pr
M(φi,πi|X)

[π(x) < π(y)] = Pr
M(φi,(1,2,...d))

[π(1) < π(d)]

The last expression can be expressed as∑
1≤r<s≤d φ

r−1+d−s

(1 + φi + · · ·+ φd−1i)(1 + φi + · · ·+ φd−2i)

since each term in the numerator represents the probability that 1 maps to position r and d maps
to position s. Note that PrM(φi,(1,2,...d))[π(1) < π(d)] ≥ PrM(φ′i,(1,2,...d))

[π(1) < π(d)]. However,

PrM(φi,(1,2,...d))[π(1) < π(d)]

PrM(φ′i,(1,2,...d))
[π(1) < π(d)]

≤
(1 + φ′i + · · ·+ φ′d−1i)(1 + φ′i + · · ·+ φ′d−2i)

(1 + φi + · · ·+ φd−1i)(1 + φi + · · ·+ φd−2i)
≤ (1− φ′i)2

(1− φi)2

and since clearly PrM(φ′i,(1,2,...d))
[π(1) < π(d)] ≤ 1,

| Pr
M(φi,(1,2,...d))

[π(1) < π(d)]− Pr
M(φi,(1,2,...d))

[π(1) < π(d)]| ≤ (1− φ′i)2

(1− φi)2
− 1

Combining all of the above inequalities, we can bound ‖Ti,x − T ′i,x‖1 entrywise. Similarly, we can
bound ‖Ti,y−T ′i,y‖1 and altogether, we can check that with our choice of θ′, if the mixtures M and

M ′ are θ′-close then ‖Ti,x − T ′i,x‖1, ‖Ti,y − T ′i,y‖1 < 1
4α
(γ
8

)6k
with failure probability at most δ

10kn2 .
This completes the proof of the first case.

Proof of Second Case The second case where |φ1 − φ′1| > θ can be handled similarly: We
construct a 2× 2× · · · × 2 order 2k − 1 tensor T based on the first 4k − 2 elements (i.e. we do not
use x and y at all, as we did above). We can then construct a Z so that 〈Z, T 〉 = 0 but

|〈Z, T ′〉| ≥ αθ
(γ

8

)6k
Again using m samples we can reject if ‖T − T ′‖1 ≥ |〈Z, T ′〉| − |〈Z, T 〉| ≥ 1

2αθ
(
γ
8

)6k
which will

fail with probability at most δ
10kn2 . Similar to the first case, it is easy to see that if M and M ′ are

component wise θ′-close in parameters then ‖T ′−T‖1 ≤ 1
4αθ

(
γ
8

)6k
with failure probability at most

δ
10kn2 , in which case |〈Z, T ′〉| − |〈Z, T 〉| ≤ 1

4αθ
(
γ
8

)6k
for all Z where the largest entry in absolute

value is at most one. This completes the proof.

30

We are now ready to complete the proof of Theorem 1.4:

Proof. First we run the algorithm from Claim 5 to generate a list of candidate prefixes. Then for
each k tuple of prefixes, we run the algorithm from Lemma 10 which in turn generates a list of
candidate base permutations. Then we consider all k tuples of candidate base permutations and

do a grid search of side length β =
(θαγk

10k

)100
over the possible scaling parameters. For k tuple

of candidate base permutations and estimates for the scaling parameters, we run the algorithm
from Claim 6 to estimate the mixing weight of each component. This generates a list of candidate

mixtures, at least one of which is component-wise θ′ =
(θαγk

10k

)50
close in parameters to the true

mixture M .
We then run the testing algorithm in Lemma 11 on each candidate mixture with the failure

probability δ′. Then the total failure probability is at most 10δ′(2k

αβγk
)10k. We can set δ′ appropri-

ately to make this quantity be at most δ. Now if the testing algorithm does not accept a mixture
that should have been rejected, or vice-versa, it outputs at least one mixture M ′ which must be
component-wise θ-close in base parameters to the true mixture. From the guarantees of Claim 6 we
know that its mixing weights must also be close to the true mixing weights, which finally completes
the proof of correctness.

References

[1] Elizabeth S Allman, Catherine Matias, and John A Rhodes. Identifiability of parameters in
latent structure models with many observed variables. The Annals of Statistics, 37(6A):3099–
3132, 2009.

[2] Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. arXiv preprint arXiv:1210.7559, 2012.

[3] Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravindan Vijayaraghavan. Learning mixtures
of ranking models. In Advances in Neural Information Processing Systems, pages 2609–2617,
2014.

[4] Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 103–112. IEEE,
2010.

[5] Nayantara Bhatnagar and Ron Peled. Lengths of monotone subsequences in a mallows per-
mutation. Probability Theory and Related Fields, 161(3-4):719–780, 2015.

[6] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[7] Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 268–276. Society
for Industrial and Applied Mathematics, 2008.

[8] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview. Learning,
11(23-581):81, 2010.

31

[9] Flavio Chierichetti, Anirban Dasgupta, Ravi Kumar, and Silvio Lattanzi. On learning mixture
models for permutations. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, pages 85–92. ACM, 2015.

[10] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for
robust estimation of high-dimensional gaussians and gaussian mixtures. In Foundations of
Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 73–84. IEEE, 2017.

[11] Jean-Paul Doignon, Aleksandar Pekeč, and Michel Regenwetter. The repeated insertion model
for rankings: Missing link between two subset choice models. Psychometrika, 69(1):33–54,
2004.

[12] Jon Feldman, Ryan ODonnell, and Rocco A. Servedio. Learning mixtures of product dis-
tributions over discrete domains. In Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’05, pages 501–510, Washington, DC, USA, 2005.
IEEE Computer Society.

[13] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 655–664. ACM, 2013.

[14] Yoav Freund and Yishay Mansour. Estimating a mixture of two product distributions. In
Proceedings of the twelfth annual conference on Computational learning theory, pages 53–62.
ACM, 1999.

[15] Isobel Claire Gormley and Thomas Brendan Murphy. Exploring voting blocs within the irish
electorate: A mixture modeling approach. Journal of the American Statistical Association,
103(483):1014–1027, 2008.

[16] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of
two gaussians. In Proceedings of the 42nd ACM symposium on Theory of computing, pages
553–562. ACM, 2010.

[17] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

[18] Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with
pairwise-preference data. Journal of Machine Learning Research, 15:3963–4009, 2014.

[19] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2005.

[20] Marina Meila and Harr Chen. Dirichlet process mixtures of generalized mallows models. In UAI
2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
Catalina Island, CA, USA, July 8-11, 2010, pages 358–367, 2010.

[21] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaus-
sians. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,
pages 93–102. IEEE, 2010.

[22] Thomas Brendan Murphy and Donal Martin. Mixtures of distance-based models for ranking
data. Computational statistics & data analysis, 41(3-4):645–655, 2003.

[23] Robin L Plackett. The analysis of permutations. Applied Statistics, pages 193–202, 1975.

32

[24] Henry Teicher. Identifiability of mixtures. The annals of Mathematical statistics, 32(1):244–
248, 1961.

[25] Henry Teicher. Identifiability of finite mixtures. The annals of Mathematical statistics, pages
1265–1269, 1963.

[26] H Peyton Young. Condorcet’s theory of voting. American Political science review, 82(4):1231–
1244, 1988.

[27] Don Zagier. Realizability of a model in infinite statistics. Comm. Math. Phys., 147(1):199–210,
1992.

[28] Zhibing Zhao, Peter Piech, and Lirong Xia. Learning mixtures of plackett-luce models. In
International Conference on Machine Learning, pages 2906–2914, 2016.

A Omitted Proofs

Here we give the proofs deferred from Section 3.2. First we prove Claim 1:

Proof. Assume without loss of generality that φ2 ≥ φ1. Now let x and y be a pair of elements
where x is ranked higher than y in π1, and x is ranked lower than y in π2. Then the total variation
distance between M(φ1, π1) and M(φ2, π2) is at least the difference between the probabilities they
rank x higher than y, which is

1

1 + φ1
− φ2

1 + φ2
≥ ε

2

which completes the proof.

Next we prove Lemma 2:

Proof. Consider each permutation π′. Let d = dKT (π′, π) and set Zi(φ) = 1 + φ+ · · ·+ φi−1. The
probability of generating π′ under M1 is

Pr
M1

[π′] =
φd1

Z1(φ1) · · ·Zn(φ1)
=

φd1(1− φ1)n−1

(1− φ21) · · · (1− φn1)

while the probability of generating it under M2 is

Pr
M2

[π′] =
φd2

Z1(φ2) · · ·Zn(φ2)
=

φd2(1− φ2)n−1

(1− φ22) · · · (1− φn2)

First if φi <
µ

2(n−1) then the probability of generating π is at least (1 − µ
2(n−1))

n−1 ≥ 1 − µ
2 so if

both φ1, φ2 <
µ

2(n−1) then the total variation distance between the distributions is at most µ.

Now it suffices to consider the case where both φi ≥ µ
2n . Without loss of generality φ1 ≥ φ2.

We will bound the ratio between the two probabilities above. Note φd1 ≥ φd2 and (1−φ1)n−1

(1−φ21)···(1−φn1)
≤

(1−φ2)n−1

(1−φ22)···(1−φn2)
. We have

PrM1 [π′]

PrM2 [π′]
≤
(φ1
φ2

)d
≤
(

1 +
µ2

10n3

φ2

)d
≤
(

1 +
µ

5n2

)d
≤
(

1 +
µ

5n2

)n2

≤ 1 +
µ

2

33

where the last inequality is true when n ≥ 1, µ < 1 (which is effectively always). Also

PrM1 [π′]

PrM2 [π′]
≥ 1 + φ2

1 + φ1
· · · 1 + φ2 + · · ·+ φn−12

1 + φ1 + · · ·+ φn−11

We now bound each term separately

1 + φ2 + · · ·+ φi−12

1 + φ1 + · · ·+ φi−11

= 1− (φ1 − φ2) + (φ21 − φ22) + · · · (φi−11 − φi−12)

1 + φ1 + · · ·+ φi−11

≥ 1−
(µ2

10n3
+ 2

µ2

10n3
+ · · ·+ (i− 1)

µ2

10n3

)
≥ 1− µ2

10n

Therefore we conclude
PrM1 [π′]

PrM2 [π′]
≥
(

1− µ2

10n

)n−1
≥ 1− µ

2

Combining both bounds on the ratio
PrM1

[π′]

PrM2
[π′] , we see that the sum of |PrM1 [π] − PrM2 [π]| over

π′ with PrM1 [π′] ≥ PrM2 [π′] is at most µ
2 and similarly for the sum over π′ with PrM1 [π′] <

PrM2 [π′]. Thus the total variation distance between the two distributions is at most µ, completing
the proof.

34

	1 Introduction
	1.1 Background
	1.2 Our Results and Techniques

	2 Preliminaries
	2.1 Basic Notation
	2.2 Block and Orders

	3 Basic Facts
	3.1 What Block Structures are Likely to be Satisfied?
	3.2 Total Variation Distance Bounds
	3.3 Special Matrix Results

	4 Identifiability
	4.1 Robust Kruskal Rank
	4.2 Polynomial Identifiability

	5 The General Algorithm
	5.1 Finding Components with Small Scaling Parameters
	5.2 Finding a Single Component
	5.3 Finding the Rest of the Components
	5.4 Testing Component-wise Closeness

	6 Lower Bounds
	6.1 Sample Complexity Lower Bounds
	6.2 Lower Bounds Against Local Query Algorithms

	7 Beyond Worst-Case Analysis
	7.1 Finding the Prefixes
	7.2 Finding the Full Permutations and Mixing Weights
	7.3 Testing Closeness for Separated Mixtures

	A Omitted Proofs

