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Abstract

Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be modeled well
by the MPC model. The MPC model captures well coarse-grained computation on large data
— data is distributed to processors, each of which has a sublinear (in the input data) amount of
memory and we alternate between rounds of computation and rounds of communication, where
each machine can communicate an amount of data as large as the size of its memory. This
model is stronger than the classical PRAM model, and it is an intriguing question to design
algorithms whose running time is smaller than in the PRAM model.

One fundamental graph problem is connectivity. On an undirected graph with n nodes and
m edges, O(log n) round connectivity algorithms have been known for over 35 years. However,
no algorithms with better complexity bounds were known. In this work, we give fully scalable,
faster algorithms for the connectivity problem, by parameterizing the time complexity
as a function of the diameter of the graph. Our main result is a O(logD log logm/n n) time
connectivity algorithm for diameter-D graphs, using Θ(m) total memory. If our algorithm can
use more memory, it can terminate in fewer rounds, and there is no lower bound on the memory
per processor.

We extend our results to related graph problems such as spanning forest, finding a DFS
sequence, exact/approximate minimum spanning forest, and bottleneck spanning forest. We
also show that achieving similar bounds for reachability in directed graphs would imply faster
boolean matrix multiplication algorithms.

We introduce several new algorithmic ideas. We describe a general technique called double
exponential speed problem size reduction which roughly means that if we can use total memory
N to reduce a problem from size n to n/k, for k = (N/n)Θ(1) in one phase, then we can solve the
problem in O(log logN/n n) phases. In order to achieve this fast reduction for graph connectivity,
we use a multistep algorithm. One key step is a carefully constructed truncated broadcasting
scheme where each node broadcasts neighbor sets to its neighbors in a way that limits the size
of the resulting neighbor sets. Another key step is random leader contraction, where we choose
a smaller set of leaders than many previous works do.
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1 Introduction

Recently, several parallel systems, including MapReduce [DG04, DG08], Hadoop [Whi12], Dryad
[IBY+07], Spark [ZCF+10], and others, have become successful in practice. This success has sparked
a renewed interest in algorithmic ideas for these parallel systems.

One important theoretical direction has been to develop good models of these modern systems
and to relate them to classic models such as PRAM. The work of [FMS+10, KSV10, GSZ11, BKS13,
ANOY14] have led to the model of Massive Parallel Computing (MPC) that balances accurate
modeling with theoretical elegance. MPC is a variant of the Bulk Synchronous Parallel (BSP)
model [Val90]. In particular, MPC allows N δ space per machine (processor), where δ ∈ (0, 1) and
N is the input size, with alternating rounds of unlimited local computation, and communication of
up to N δ data per processor. An MPC algorithm can equivalently be seen as a small circuit, with
arbitrary, N δ-fan-in gates; the depth of the circuit is the parallel time. Any PRAM algorithm can
be simulated on MPC in the same parallel time [KSV10, GSZ11]. However, MPC is in fact more
powerful than the PRAM: even computing the XOR of N bits requires near-logarithmic parallel-
time on the most powerful CRCW PRAMs [BH89], whereas it takes constant, O(1/δ), parallel time
on the MPC model.

The main algorithmic question of this area is then: for which problems can we design MPC
algorithms that are faster than the best PRAM algorithms? Indeed, this question has been the
focus of several recent papers, see, e.g., [KSV10, LMSV11, EIM11, ANOY14, AG18, AK17, IMS17,
CLM+18]. Graph problems have been particularly well studied and one fundamental problem is
connectivity in a graph. While this problem has a standard logarithmic time PRAM algorithm
[SV82], we do not know whether we can solve it faster in the MPC model.

While we would like fully scalable algorithms—which work for any value of δ > 0—there have
been graph algorithms that use space close to the number of vertices n of the graph. In particular,
the result of [LMSV11] showed a faster algorithm for the setting when the space per machine
is polynomially larger than the number of vertices, i.e., s ≥ n1+Ω(1), and hence the number of
edges is necessarily m ≥ n1+Ω(1). In fact, similar space restrictions are pervasive for all known
sub-logarithmic time graph algorithms, which require s = Ω( n

logO(1) n
) [LMSV11, AG18, AK17,

CLM+18] (the only exception is [ANOY14] who consider geometric graphs). We highlight the work
of [CLM+18], who manage to obtain slightly sublinear space of n/ logΩ(1) n in logO(1) log n parallel
time, for the approximate matching problem and [ABB+17] who obtain slightly sublinear space of
n/ logΩ(1) n in O(log log n) parallel time. We note that the space of ∼ n also coincides with the
space barrier of the semi-streaming model: essentially no graph problems are solvable in less than
n space in the streaming model, unless we have many more passes; see e.g. the survey [McG09].

It remains a major open question whether there exist fully scalable connectivity MPC algorithms
with sub-logarithmic time (e.g., for sparse graphs). There are strong indications that such algorithms
do not exist: [BKS13] show logarithmic lower bounds for restricted algorithms. Alas, showing an
unconditional lower bound may be hard to prove, as that would imply circuit lower bounds [RVW16].

In this work, we show faster, fully scalable algorithms for the connectivity problem,
by parameterizing the time complexity as a function of the diameter of the graph. The diam-
eter of the graph is the largest diameter of its connected components. Our main result is an
O(logD log logm/n n) time connectivity algorithm for diameter-D graphs with m edges. Parameter-
izing as a function of D is standard, say, in the distributed computing literature [PRS16, HHW18].
In fact, some previous MPC algorithms for connectivity in the applied communities have been con-
jectured to obtain O(logD) time [RMCS13]; alas, we show in Section I the algorithm of [RMCS13]
has a lower bound of Ω(log n) time.
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Our algorithms exhibit a tradeoff between the total amount of memory available and the number
of rounds of computation needed. For example, if the total space is Ω(n1+γ′) for some constant
γ′ > 0, then our algorithms run in O(logD) rounds only.

1.1 The MPC model

Before stating our full results, we briefly recall the MPC model [BKS13]. A detailed discussion
appears in Section E, along with some core primitives implementable in the MPC model.

Definition 1.1 ((γ, δ) −MPC model). Fix parameters γ, δ > 0, and suppose N ≥ 1 is the input
size. There are p ≥ 1 machines (processors) each with local memory size s = Θ(N δ), such that
p · s = O(N1+γ). The space size is measured by words, each of Θ(log(s · p)) bits. The input is
distributed on the local memory of Θ(N/s) input machines. The computation proceeds in rounds. In
each round, each machine performs computation on the data in its local memory, and sends messages
to other machines at the end of the round. The total size of messages sent or received by a machine
in a round is bounded by s. In the next round, each machine only holds the received messages in
its local memory. At the end of the computation, the output is distributed on the output machines.
Input/output machines and other machines are identical except that input/output machine can hold
a part of the input/output. The parallel time of an algorithm is the number of rounds needed to
finish the computation.

In this model, the space per machine is sublinear in N , and the total space is only an O(Nγ)
factor more than the input size N . In this paper, we consider the case when δ is an arbitrary
constant in (0, 1). Our results are for both the most restrictive case of γ = 0 (total space is linear
in the input size), as well as γ > 0 (for which our algorithms are a bit faster). The model from
Definition 1.1 matches the model MPC(ε) from [BKS13] with ε = γ/(1 + γ − δ) and the number of
machines p = O(N1+γ−δ).

1.2 Our Results

While our main result is a ∼ logD time connectivity MPC algorithm, our techniques extend to
related graph problems, such as spanning forest, finding a DFS sequence, and exact/approximate
minimum spanning forest. We also prove a lower bound showing that, achieving similar bounds for
reachability in directed graphs would imply faster boolean matrix multiplication algorithms.

We now state our results formally. For all results below, consider an input graph G = (V,E),
with n = |V |, N = |V | + |E|, and D being the upper bound on the diameter of any connected
component of G.
Connectivity: In the connectivity problem, the goal is to output the connected components of an
input graph G, i.e. at the end of the computation, ∀v ∈ V, there is a unique tuple (x, y) with x = v
stored on an output machine, where y is called the color of v. Any two vertices u, v have the same
color if and only if they are in the same connected component.

Theorem 1.2 (Connectivity in MPC, restatement of Theorem F.4). For any γ ∈ [0, 2] and any
constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm (see Algorithm 3) which outputs
the connected components of the graph G in O(min(logD · log logn

log(N1+γ/n)
, log n)) parallel time.The

success probability is at least 0.98. In addition, if the algorithm fails, then it returns FAIL.

Notice that in the most restrictive case of γ = 0 and m = n, we obtain O(min(logD ·
log logn, log n)) time. When the total space is slightly larger, or the graph is slightly denser—
i.e. γ > c or lognm > c, where c > 0 is an arbitrarily small constant—then we obtain O(logD)
time.
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Remark 1.3. We note the concurrent and independent work of [ASW18], who also give a con-
nectivity algorithm in the MPC model but with different guarantees. In particular, their runtime
is parameterized as a function of λ, which is a lower bound on the spectral gap1 of the connected
components of G. For a graph G with n vertices and m = Õ(n) edges, their algorithm runs in
O(log log n + log(1/λ)) parallel time and uses Õ(n/λ2) total space. In contrast, our algorithm has
a runtime of O(logD · log logN/n n), where D is the largest diameter of a connected component of
G, and N = Ω(m) is the total space available. To compare the two runtimes, we note that: 1)
D ≤ O( logn

λ ) for any undirected graph G; and 2) there exist sparse graphs G2 with n vertices and
O(n) edges such that 1

λ ≥ D · nΩ(1) and D ≤ O(log n). Thus, our results subsume [ASW18] in the
case when total space is N = n1+Ω(1), but are incomparable otherwise.

Spanning forest problem: In the spanning forest problem, the goal is to output a subset of edges
of an input graph G such that the output edges together with the vertices of G form a spanning
forest of the graph G. In the rooted spanning forest problem, in addition to the edges of the spanning
forest, we are also required to orient the edge from child to parent, so that the parent-child pairs
form a rooted spanning forest of the input graph G.

Theorem 1.4 (Spanning Forest, restatement of Theorem F.14). For any γ ∈ [0, 2] and any constant
δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm (see Algorithm 11 and Algorithm 12) which
outputs the rooted spanning forest of the graph G in O(min(logD · log logn

log(N1+γ/n)
, log n)) parallel

time. The success probability is at least 0.98. In addition, if the algorithm fails, then it returns FAIL.

Our spanning forest algorithm can also output an approximation to the diameter, as follows.

Theorem 1.5 (Diameter Estimator, restatement of Theorem F.15). For any γ ∈ [0, 2] and any
constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm which outputs a diameter estimator
D′ of the input graph G in O(min(logD · log logn

log(N1+γ/n)
, log n)) parallel time such that D ≤ D′ ≤

DO(log(1/γ′)), where γ′ = log(N1+γ/n)
logn . The success probability is at least 0.98. In addition, if the

algorithm fails, then it returns FAIL.

Depth-First-Search sequence: If the input graph G is a tree, then we are able to output a
Depth-First-Search sequence of that tree in O(logD) + T parallel time, where T is parallel time to
compute a rooted tree (see Theorem 1.4 for our upper bound of T ) for G. (See Section E.2 for a
discussion how to represent a sequence in the MPC model.)

Theorem 1.6 (DFS Sequence of a Tree, restatement of Theorem F.21). Suppose the graph G is a
tree. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC algorithm
(Algorithm 17) that outputs a Depth-First-Search sequence for the input graph G in O(min(logD ·
log(1/γ), log n)) parallel time, where β = Θ(log log n/ log n). The success probability is at least 0.98.
In addition, if the algorithm fails, then it returns FAIL.

Applications of DFS sequence of a tree include lowest common ancestor, tree distance oracle,
the size of every subtree, and others. See Section D.4 for a more detailed discussion of the DFS
sequence of a tree.
Minimum Spanning Forest: In the minimum spanning forest problem, the goal is to compute
the minimum spanning forest of a weighted graph G.

1The spectral gap of a graph G is the second smallest eigenvalue of the normalized Laplacian of G.
2We can construct G as the following: a bridge connects two 3-regular expanders where each expander has n/2

vertices.
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Theorem 1.7 (Minimum Spanning Forest, restatement of Theorem G.3). Consider a weighted
graph G with weights w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any γ ∈ [0, 2] and
any constant δ ∈ (0, 1), there is a randomized (γ, δ) −MPC algorithm which outputs a minimum
spanning forest of G in O(min(logDMSF · log( logn

1+γ logn), log n) · logn
1+γ logn) parallel time, where DMSF

is the diameter (with respect to the number of edges/hops) of a minimum spanning forest of G. The
success probability is at least 0.98. In addition, if the algorithm fails, then it returns FAIL.

We note that we require the bounded weights condition merely to ensure that each weight is
described by one word.

Theorem 1.8 (Approximate Minimum Spanning Forest, restatement of Theorem G.4). Consider
a weighted graph G with weights w : E → Z≥0 such that ∀e ∈ E, |w(e)| ≤ poly(n). For any
ε ∈ (0, 1), γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ) − MPC algorithm
which can output a (1 + ε) approximate minimum spanning forest for G in O(min(logDMSF ·
log( logn

log(N1+γ/(ε−1n logn))
), log n)) parallel time, where β = Θ(log(ε−1 log n)/ log n), and DMSF is the

diameter (with respect to the number of edges/hops) of a minimum spanning forest of G. The success
probability is at least 0.98. In addition, if the algorithm fails, then it returns FAIL.

Theorem 1.9 (Bottleneck Spanning Forest, restatement of Theorem G.5). Consider a weighted
graph G with weights w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any γ ∈ [0, 2] and any
constant δ ∈ (0, 1), there is a randomized (γ, δ) − MPC algorithm which can output a bottleneck
spanning forest for G in O(min(logDMSF · log( logn

1+γ logn), log n) · log( logn
1+γ logn)) parallel time, where

DMSF is the diameter (with respect to the number of edges/hops) of a minimum spanning forest of
G. The success probability is at least 0.98. In addition, if the algorithm fails, then it returns FAIL.

Conditional hardness for directed reachability. We also consider the reachability question in
the directed graphs, for which we show similar to the above results are unlikely. In particular, we
show that if there is a fully scalable multi-query directed reachability (0, δ)−MPC algorithm with
no(1) parallel time and polynomial local running time, then we can compute the Boolean Matrix
Multiplication in n2+ε+o(1) time for arbitrarily small constant ε > 0. We note that the equivalent
problem for undirected graphs can be solved in O(logD log logn) parallel time via Theorem 1.2.

Theorem 1.10 (Directed Reachability vs. Boolean Matrix Multiplication, restatement of Theo-
rem H.1). Consider a directed graph G = (V,E). If there is a polynomial local running time, fully
scalable (γ, δ) −MPC algorithm that can answer |V | + |E| pairs of reachability queries simultane-
ously for G in O(|V |α) parallel time, then there is a sequential algorithm which can compute the
multiplication of two n × n boolean matrices in O(n2 · n2γ+α+ε) time, where ε > 0 is a constant
which can be arbitrarily small.

Finally, in Section I we show hard instances for the algorithm [RMCS13].

1.3 Our Techniques

In this section, we give an overview of the various techniques that we use in our algorithms. More
details, as well as some of the low level details of the implementation in the MPC model, are defered
to later sections.

Before getting into our techniques, we mention two standard tools to help us build our MPC
subroutines. The first one is sorting: while in the PRAM model it takes ∼ logN parallel time,
sorting takes only constant parallel time in the MPC model [Goo99, GSZ11]. The second tool is
indexing/predecessor search [GSZ11], which also has a constant parallel time in MPC. Furthermore,
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these two tools are fully scalable, and hence all the subroutines built on these two tools are also fully
scalable. See Section E for how to use these two tools to implement the MPC operations needed
for our algorithms.

Graph Connectivity: A natural approach to the graph connectivity problem is via the classic
primitive of contracting to leaders: select a number of leader verteces, and contract every vertex (or
most vertices) to a leader from its connected component (this is usually implemented by labeling
the vertex by the corresponding leader). Indeed, many previous works (see e.g. [KSV10, RMCS13,
KLM+14]) are based on this approach. There are two general questions to address in this approach:
1) how to choose leader vertices, and 2) how to label each vertex by its leader. For example, the
algorithm in [KSV10] randomly chooses half of the vertices as leaders, and then contracts each
non-leader vertex to one of its neighbor leader vertex. Thus, in each round of their algorithm, the
number of vertices drops by a constant fraction. At the same time, half of the vertices are leaders,
and hence their algorithm still needs at least Ω(log n) rounds to contract all the vertices to one
leader. Note that a constant fraction of leaders is needed to ensure that there is a constant fraction
of non-leader vertices who are adjacent to at least one leader vertex and hence are contracted. This
leader selection method appears optimal for some graphs, e.g. path graphs.

To improve the runtime to � log n, one would have to choose a much smaller fraction of the
vertices to be leaders. Indeed, for a graph where every vertex has a large degree, say at least
d � log n, we can choose fewer leaders: namely, we can choose each vertex to be a leader with
probability p = Θ((log n)/d). Then the number of leaders will be about Õ(n/d), while each non-
leader vertex has at least one leader neighbor with high probability. After contracting non-leader
vertices to leader vertices, the number of remaining vertices is only a 1/d fraction of original number
of vertices.

By the above discussion, the goal would now be to modify our input graph G so that every
vertex has a uniformly large degree, without affecting the connectivity of the graph. An obvious
such modification is to add edges between pairs of vertices that are already in the same connected
component. In particular, if a vertex v learns of a large number of vertices which are in the same
connected component as v, then we can add edges between v and those vertices to increase the
degree of v. A naïve way to implement the latter is via broadcasting: each vertex v first initializes a
set Sv which contains all the neighbors of v, and then, in each round, every vertex v updates the set
Sv by adding the union of the sets Su over all neighbors u of v (old and new). This approach takes
log-diameter number of rounds, and each vertex learns all vertices which are in the same connected
component at the end of the procedure. However, in a single round, the total communication needed
may be as huge as Ω(n3) since each of n vertices may have Ω(n) neighbors, each with a set of size
Ω(n).

Since our goal of each vertex v is to learn only d vertices in the same component (not necessarily
the entire component), we can therefore implement a “truncated” version of the above broadcasting
procedure:

1. If Sv already had size d, then we do not need any further operation for Sv.

2. If u is in Sv, and Su already has d vertices, then we can just put all the elements from Su into
Sv and thus Sv becomes of size d.

3. If |Sv| < d, and for every u ∈ Sv, the set Su is also smaller than d, then we can implement
one step of the broadcasting — add the union of Su’s, for all neighbors u ∈ Sv, to Sv.

In the above procedure, if the number of vertices in Sv is smaller than d after the ith round, then we
expect Sv to contain all the vertices whose distance to v is at most 2i. Thus, the above procedure

7



also takes at most log-diameter rounds. Furthermore, the total communication needed is at most
O(n · d2).

Our full graph connectivity algorithm implements the above “truncated broadcasting” procedure
iteratively, for values d that follow a certain “schedule”, depending on the available space. At the
beginning of the algorithm, we have an n vertex graphG with diameterD, and a total of Ω(m) space.
The algorithm proceeds in phases, where each phase takes O(logD) rounds of communication. In
the first phase, the starting number of vertices is n1 = n. We implement a truncated broadcasting
procedure where the target degree d is d1 = (m/n1)1/2, using O(logD) rounds and O(m) total
space. Then we can randomly select Õ(n1/d1) leaders, and contract all the non-leader vertices to
leader vertices. At the end of the first phase, the total number of remaining vertices is at most
n2 = Õ(n1/d1) = Õ(n1.5

1 /m0.5). In general, suppose, at the beginning of the ith phase, the number
of remaining vertices is ni. Then we use the truncated broadcasting procedure for value d set to
di = (m/ni)

1/2, thus making each vertex have degree at least di = (m/ni)
1/2 in O(logD) number

of communication rounds and O(m) total space. Then we choose Õ(ni/di) leaders, and, after
contracting non-leaders, the number ni+1 of remaining vertices is at most Õ(n1.5

i /m0.5). Let us look
at the progress of the value di. We have that di+1 = Ω̃((m/ni+1)1/2) = Ω̃((m1.5/n1.5

i )1/2) = Ω̃(d1.5
i ).

Thus, we are making double exponential progress on di, which implies that the total number of
phases needed is at most O(log logm/n n), and the total parallel time is thus O(logD · log logm/n n).

This technique of double-exponential progress is more general and extends to other problems
beyond connectivity. In particular, for a problem, suppose its size is characterized by a parameter
n (not necessarily the input size—e.g. in connectivity problem, n is the number of vertices). When
n is a constant, the problem can be solved in O(1) parallel time. If there is a procedure that uses
total space Θ(m) to reduce the problem size to at most n/k for k = (m/n)c, c = Ω(1), then we
can repeat the procedure O(log logm/n n) times to solve the overall problem. In particular, after
repeating the procedure i times, the problem size is ni ≤ ni−1/(m/ni−1)c ≤ n · (n/m)(1+c)i−1. We
call this technique double-exponential speed problem size reduction.

Remark 1.11. For any problem characterized by a size parameter n, if we can use parallel time
T and total space Θ(m) to reduce the problem size such that the reduced problem size is n/k for
k = (m/n)Ω(1), then we can solve the problem in O(m) total space and O(T · log logm/n n) parallel
time.

Spanning Forest and Diameter Estimator: Extending a connectivity algorithm to a spanning
forest algorithm is usually straightforward. For example, in [KSV10], they only contract a non-
leader vertex to an adjacent leader vertex, thus their algorithm can also give a spanning forest,
using the contracted edges. Here however, extending our connectivity algorithm to a spanning
forest algorithm requires several new ideas. In our connectivity algorithm, because of the added
edges, we only ensure that when a vertex u is contracted to a vertex v, u and v must be in the same
connected component; but u and v may not be adjacent in the original graph. Thus, we need to
record more information to help us build a spanning forest.

We can represent a forest as a collection of parent pointers par(v), one for each vertex v ∈ V .
If v is a root in the forest, then we let par(v) = v. We use deppar(v) to denote the depth of v in the
forest, i.e. deppar(v) is the distance from v to its root. Let distG(u, v) denote the distance between
two vertices u and v in a graph G.

Our connectivity algorithm uses the “neighbor increment” procedure described above. We ob-
served that if the set Sv has fewer than d vertices after the ith round, then Sv should contain all
the vertices with distance at most 2i to v. This motivates us to maintain a shortest path tree for
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Sv, with root v. In the ith round, if we need to update Sv to be
⋃
u∈Sv Su, then we can update the

shortest path tree of Sv in the following way:

1. For each x ∈ Su for some u ∈ Sv, we can create a tuple (x, u).

2. Then, for each x ∈
(⋃

u∈Sv Su
)
\Sv, we can sort all the tuples (x, u1), (x, u2), · · · , (x, uk) such

that u1 minimizes minu∈Sv distG(v, u) + distG(u, x). Since u is in Sv, x is in Su, it is easy to
get the value of distG(v, u),distG(u, x) by the information of shortest path tree for Sv and Su.
Then we set the new parent of x in the shortest path tree for Sv to be the parent of x in the
shortest path tree for Su1 .

Since Sv before the update contains all the vertices which have distance to v at most 2i−1, the union
of the shortest path from x to u1 and the shortest path from u1 to v must be the shortest path from
x to v. Then by induction, we can show that the parent of x in the shortest path tree for Su1 is also
the parent of x in the shortest path tree for updated Sv. Thus, this modified “neighbor increment”
procedure can find n local shortest path trees where there is a tree with root v for each vertex v.
Furthermore, the procedure still takes O(logD) rounds. And we can still use O(nd2) total space to
make each shortest path tree have size at least d. Next, we show how to use these n local shortest
path trees to construct a forest with the roots in the forest being the leaders.

As discussed in the connectivity algorithm, if every local shortest path tree has size at least
d, we can choose each vertex as a leader with probability p = Θ((log n)/d) and then every tree
will contain at least one leader with high probability. Let L be the set of sampled leaders, and let
distG(v, L) be defined as minu∈L distG(v, u). Let v be a non-leader vertex, i.e. v ∈ V \L. According
to the shortest path tree for Sv 3, since L ∩ Sv 6= ∅, we can find a child u of the root v such that
distG(v, L) > distG(u, L); in this case we set par(v) = u. For vertex v ∈ L, we can set par(v) = v.
We can see now that par denotes a rooted forest where the roots are sampled leaders. Furthermore,
since ∀v 6∈ L, (v,par(v)) is from the shortest path tree for Sv, we know that v and par(v) are adjacent
in the original graph G. After doing the above for all nodes v, the forest denoted by the resulting
vector par must be a subgraph of the spanning forest of G. We then apply the standard doubling
algorithm to contract all the vertices to their leaders (roots), in O(logD) rounds. Therefore, the
problem is reduced to finding a spanning forest in the contracted graph. The number of vertices
remaining in the contracted graph is at most Õ(n/d), where d = (m/n)Θ(1). By Remark 1.11, we
can output a spanning forest in O(logD · log logm/n n) parallel time.

Although the above algorithm can output the edges of a spanning forest, it cannot output a
rooted spanning forest. To output a rooted spanning forest, we follow a top-down construction.
Suppose now we have a rooted spanning forest of the contracted graph. Since we have all the
information of how vertices were contracted, we know the contraction trees in the original graph.
To merge these contraction trees into the rooted spanning forest of the contracted graph, we only
need to change the root of each contraction tree to a proper vertex in that tree. This changing root
operation can be implemented by the doubling algorithm via a divide-and-conquer approach.

Since the spanning forest algorithm needs O(log logm/n n) phases to contract all vertices to a
single vertex, the total parallel time to compute a rooted spanning forest is O(logD · log logm/n n).

Furthermore, the depth of the rooted spanning forest will be at most O(DO(log logm/n n)). Thus, we
can use the doubling algorithm to calculate the depth of the tree, and output this depth as an
estimator of the diameter of the input graph.

3 The construction of Sv for spanning forest algorithm is slightly different from that described in the connectivity
algorithm. Sv in spanning forest algorithm has a stronger property: ∀u ∈ V \ Sv, distG(u, v) must be at least
distG(u

′, v) for any u′ ∈ Sv.

9



Depth-First-Search Sequence: Here, when the input graph G is a tree, our goal is to output a
DFS sequence for this tree. Once we have this sequence, it is easy to output a rooted tree. Thus,
computing a DFS sequence is at least as hard as computing a rooted tree, and all the previous
algorithms need Ω(log n) parallel time to do so.

First of all, we use our spanning forest algorithm to compute a rooted tree, reducing the problem
to computing a DFS sequence for a rooted tree. The idea is motivated by TeraSort [O’M08]. If the
size of the tree is small enough such that it can be handled by a single machine, then we can just use
a single machine to generate its DFS sequence. Otherwise, our algorithm can be roughly described
as follows. (Recall that δ is the parameter such that each machine has Θ(nδ) local memory.)

1. Sample nδ/2 leaves l1, l2, · · · , ls.

2. Determine the order of sampled leaves in the DFS sequence.

3. Compute the DFS sequence Ã of the tree which only consists of sampled leaves and their ancestors.

4. Compute the DFS sequence Av of every root-v subtree which does not contain any sampled leaf.

5. Merge Ã and all the Av.

The first and second steps go as follows. Since we only sample nδ/2 leaves, we can send them
to a single machine. We generate queries for every pair of sampled leaves where each query (li, lj)
queries the lowest common ancestor of (li, lj). We have nδ such queries in total. Since the input
tree is rooted, we can use a doubling algorithm to preprocess a data structure in O(logD) parallel
time and answer all the queries simultaneously in O(logD) parallel time. Thus, we know the lowest
common ancestor of any pair of sampled leaves, and we can store this all on a single machine.
Based on the information of lowest common ancestors of each pair of sampled leaves, we are able
to determine the order of the leaves.

For the third step, suppose the sampled leaves have order l1, l2, · · · , ls. Let v be the root of the
tree. Then the DFS sequence Ã should be: the path from v to l1, the path from l1 to the lowest
common ancestor of (l1, l2), the path from the lowest common ancestor of (l1, l2) to l2, the path
from l2 to the lowest common ancestor of (l2, l3), ..., the path from ls to v. We can find these paths
simultaneously by a doubling algorithm together with a divide-and-conquer algorithm in O(logD)
parallel time.

In the fourth step, we apply the procedure recursively. Suppose the total number of leaves in
the tree is q ≤ n. Since we randomly sampled nδ/2 number of leaves, with high probability, each
subtree which does not contain a sampled leaf will have at most O(q/nδ/2) number of leaves. Thus,
the depth of the recursion will be at most a constant, O(1/δ).

Minimum Spanning Forest and Bottleneck Spanning Forest. Recall that the input is a
graph G = (V,E = (e1, e2, · · · , em)) together with a weight function w on E. Without loss of
generality, we only consider the case when all the weights of edges are different, i.e. w(e1) <
w(e2) < · · · < w(em). Since the weights of edges are different, the minimum spanning forest of the
graph is unique. By Kruskal’s algorithm, the diameter of the graph induced by the first i edges for
any i ∈ [m] is at most the depth of the minimum spanning forest. Now, let us use D to denote the
depth of the minimum spanning forest.

We first discuss the minimum spanning forest algorithm. A crucial observation of Kruskal’s
algorithm is: if we want to determine which edges in ei, ei+1, · · · , ej are in the minimum spanning
forest, we can always contract the first i− 1 edges to obtain a graph G′, run a minimum spanning
forest algorithm on the contracted graph G′, and observe whether an edge is included in the spanning
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forest of G′. Thus, if the total space is Θ(m1+γ), we can have mγ copies of the graph, where the
ith copy contracts the first (i − 1) · m1−γ edges. Thus, we are able to divide the edges into mγ

groups where each group has m1−γ number of edges. We only need to solve the minimum spanning
forest problem for each group. Then in the second phase, we can divide the edges into m2γ groups
where each group has m1−2γ number of edges. Thus, the total number of phases needed is at most
O(1/γ). In each phase, we just need to run our connectivity algorithm to contract the graph.

For the approximate minimum spanning forest algorithm, we use a similar idea. If we want a
(1+ε) approximation, then we round each weight to the closest value (1+ε)i for some integer i. After
rounding, there are only O(1/ε · log n) edge groups. Since our total space is at least Ω(m log(n)/ε),
we can make O(1/ε · log n) copies of the graph. The ith copy of the graph contracts all the edges
in group 1, 2, · · · , i − 1. Then, we only need to run our spanning forest algorithm on each copy to
determine which edges should be chosen in each group.

Another application of our double exponential speed problem size reduction technique is bottle-
neck spanning forest. For the bottleneck spanning forest, suppose we have Θ(km) total space. We
can have k copies of the graph where the ith copy contracts the first (i− 1) ·m/k number of edges.
We can determine the group of O(m/k) edges which contains the bottleneck edge. Thus, we reduce
the problem to O(m/k). According to Remark 1.11, the number of phases is at most O(log logkm),
and each phase needs T parallel time, where T is the parallel time for spanning forest.

Directed Reachability vs. Boolean Matrix Multiplication If there is a fully scalable multi-
query directed reachability MPC algorithm with almost linear total space, we can simulate the
algorithm in sequential model. Thus, it will imply a good sequential multi-query directed reacha-
bility algorithm which implies a good sequential Boolean Matrix Multiplication algorithm.

1.4 Roadmap

The rest of the paper contains the technical details of our algorithms. In Section 2, we described
a simplified connectivity algorithm. In Section A, we describeed the notations. In Sections B, C,
and D, we give the details of our main algorithms for connectivity, spanning forest and depth first
search sequence. In these sections, we focus on the design of the algorithms and the analysis of the
number of rounds. In Section E, we describe the MPC model in detail and discuss some known
primitives in that model. In Section F, we discuss how to implement the details of our algorithms in
the MPC model to achieve the bounds claimed in the previous sections. In Section G, we show how
to apply our connectivity and spanning forest algorithm in minimum spanning forest and bottleneck
spanning forest problems. In Section I, we show hard instances for the algorithm [RMCS13]. In
Section J, we show an alternative approach for random leader selection.

2 A Simplified Batch Algorithm for Connectivity

In this section, we show a simplified version of our connectivity algorithm.
Firstly, let us describe the simplified version of truncated broadcasting procedure in the following.

Since G′ is obtained by adding edges between the vertices in the same component of G. G′ will
preserve the connectivity of G. The parallel time needed is at most O(logD) whereD is the diameter
of G. The procedure takes at most O(nd2 +m) total space.
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Truncated Broadcasting for Neighbor Increment:

• Input:

– A graph G = (V,E) with n = |V | vertices and m = |E| number of edges.

– A parameter d.

• Output:

– A graph G′ = (V,E′) such that ∀v ∈ V, |Γ(v)| ≥ d. . Γ(v) denotes the neighbors of v.

• While ∃x ∈ V such that |Γ(x)| < d :

– For each v ∈ V with |Γ(v)| < d :

∗ If ∃u ∈ Γ(v) which has |Γ(u)| ≥ d, then Γ(v)← Γ(v) ∪ Γ(u).

∗ Otherwise, Γ(v)← Γ(v) ∪⋃u∈Γ(v) Γ(u).

We can apply the above procedure to make each vertex have a large degree. Next, let us briefly
describe how to choose the leaders and implement the contraction operation for the graph where
each vertex has a large degree. The following procedure just needs O(n + m) total space and
O(1) parallel time. If every vertex has degree at least d, then in the following procedure we can
reduce the number of vertices to Õ(n/d) by contracting all the vertices to Õ(n/d) number of leaders.

Random Leader Contraction:

• Input:

– A graph G = (V,E) with n = |V | vertices where each vertex has degree at least d.

• Output:

– A graph G′ = (V ′, E′) with Õ(n/d) vertices.

– A mapping par : V → V ′, such that par(v) is the vertex that v contracts to.

• Leader Selection:

– Let L denote the set of leaders.

– For each v ∈ V, with probability at least Ω̃(1/d), choose v as a leader, i.e. L← L ∪ {v}.

• Contraction:

– For each v ∈ L, let par(v) = v, and put v into V ′.

– For each v ∈ V \ L, choose u ∈ Γ(v) ∩ L, and set par(u) = v.

– For each (u, v) ∈ E, if par(u) 6= par(v), put the edge (par(u), par(v)) into E′.

Finally, we describe the simplified version of our connectivity algorithm in the following.
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Connectivity:

• Input:

– A graph G = (V,E) with n = |V | vertices and m = |E| edges.
– Total space N which is Θ(m).

• Output:

– A mapping col : V → V satisfies ∀u, v ∈ V, col(u) = col(v) if and only if u and v are
connected.

• Initialization:

– Let G0 ← G,n0 ← n.

• In phase i:

– Compute G′i−1 : Increase the degree of every vertex in Gi−1 to at least di =

Θ
(
(N/ni−1)1/2

)
.

– Compute Gi : Select ni = Õ(ni−1/di) leaders in G′i−1 and contract all the vertices to the
leaders.

– If v is contracted to u, record par(v) = u.

– If Gi does not have any edges, then for every vertex v in Gi, set par(v) = v, and exit the
loop.

• Finding the root leader:

– For each v ∈ V, find the root of v in par, i.e. find u = par(par(· · · par(v))) such that
par(u) = u.

– Set col(v) = u.

After phase i, the number of vertices survived is at most Õ(ni−1/(N/ni−1)1/2). By Remark 1.11,
there will be at most O(log logN/n n) phases. For phase i, we need O(logD) parallel time to increase
the neighbors of every vertex in Gi−1. The total parallel time is thus O(logD · log logN/n n). The
total space used in phase i is at most O(m+ (N/ni−1)1/2 · ni−1) = O(N).
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A Notations

[n] denotes the set {1, 2, · · · , n}. Let G be an undirected graph with vertex set V and edge set E.
For v ∈ V, ΓG(v) denotes the set of neighbors of v in G, i.e. ΓG(v) = {u ∈ V | (v, u) ∈ E}. For
any u, v ∈ V, distG(u, v) denotes the distance between u, v in graph G. If u, v are not in the same
connected component, then distG(u, v) = ∞. If u, v are in the same connected component, then
distG(u, v) < ∞. For v ∈ V, {u ∈ V | distG(u, v) < ∞} is the set of all the vertices in the same
connected component as v. The diameter diam(G) of G is the largest diameter of its components,
i.e. diam(G) = maxu,v∈V :distG(u,v)<∞ distG(u, v).

B Graph Connectivity

B.1 Neighbor Increment Operation

In this section, we describe a procedure which can increase the number of neighbors of every vertex
and preserve the connectivity at the same time. The input of the procedure is an undirected graph
G = (V,E) and a parameter m which is larger than |V |. The output is a graph G′ = (V,E′) such
that for each vertex v, either the connected component which contains v is a clique or v has at least
d(m/|V |)1/2e− 1 neighbors. Furthermore, |E′| ≤ |E|+m. We use ΓG(v) to denote the neighbors of
v in graph G, i.e. ΓG(v) = {u ∈ V | (u, v) ∈ E}. Similarly, we let ΓG′(v) be the neighbors of v in
G′, i.e. ΓG′(v) = {u ∈ V | (u, v) ∈ E′}.

Lemma B.1. Let G = (V,E) be an undirected graph, m ∈ Z≥0 which has m ≥ 4|V |. Let n = |V |.
Let r be the value at the end of the procedure NeighborIncrement(m,G) (Algorithm 1.) Then
∀i ∈ {0, 1, · · · , r}, v ∈ V, S(i)

v satisfies the following properties:

1. v ∈ S(i)
v .

2. ∀u ∈ S(i)
v , distG(u, v) <∞.

3. |S(i)
v | < d(m/n)1/2e ⇒ S

(i)
v = {u ∈ V | distG(u, v) ≤ 2i}.

4. |S(i)
v | ≤ m/n.

Proof. For property 1, we can prove it by induction. When i = 0, due to line 3, we know v ∈ S(0)
v .

Suppose property 1 holds for S(i−1)
v for all v ∈ V. If S(i)

v is updated by line 17, there are two cases:
1. if u = v, then v ∈ S(i−1)

u , and the condition of line 17 does not hold, thus v ∈ S(i)
v ; 2. if u 6= v,

then after implementing line 17, v will not be removed, thus v ∈ S(i)
v . If S(i)

v is updated by line 20,
then since v ∈ S(i−1)

v , v is also in the set S(i)
v . Thus, property 1 holds for every S(i)

v .

For property 2, we can prove it by induction. When i = 0, it is easy to see S(0)
v ⊆ ΓG(v) ∪ {v},

thus property 2 holds for it. Suppose property 2 holds for S(i−1)
v for all v ∈ V. If S(i)

v is updated
by line 17, then since u ∈ S(i−1)

v and S(i)
v ⊆ S

(i−1)
u ∪ {v}, all the vertices from S

(i)
v are in the same

connected component as u and u is in the same connected component as v. Thus, property 2 holds
in this case. If S(i)

v is updated by the line 20, then ∀p ∈ S
(i)
v , there exists u ∈ S

(i−1)
v such that

p ∈ S(i−1)
u . We have p is in the same connected component as u, and u is in the same connected

component as v. Thus, property 2 also holds in this case.
For property 3, we can prove it by induction. When i = 0, due to line 7, we have |S(0)

v | <
d(m/n)1/2e → S

(0)
v = ΓG(v) ∪ {v} = {u ∈ V | distG(u, v) ≤ 1}. Suppose property 3 holds for
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Algorithm 1 Neighbor Increment Operation
1: procedure NeighborIncrement(m,G = (V,E)) . Lemma B.1, Lemma B.3
2: . Output: G′ = (V,E′)

3: Initially, n = |V |, E′ = ∅ and let S(0)
v = {v} for all v ∈ V .

4: for v ∈ V do . Initially, let S(0)
v be the set (or subset) of direct neighbors

5: for u ∈ ΓG(v) do
6: if |S(0)

v | < d(m/n)1/2e then
7: S

(0)
v ← S

(0)
v ∪ {u}.

8: end if
9: end for

10: end for
11: r ← 1.
12: for true do
13: for v ∈ V do
14: if ∃u ∈ S(r−1)

v , |S(r−1)
u | ≥ d(m/n)1/2e then . neighbor u has many neighbors

15: S
(r)
v = S

(r−1)
u ∪ {v}.

16: if |S(r)
v | > |S(r−1)

u | then
17: S

(r)
v ← S

(r)
v \ {u}.

18: end if
19: else
20: S

(r)
v =

⋃
u∈S(r−1)

v
S

(r−1)
u . . neighbors of v’s neighbors are v’s new neighbors.

21: end if
22: end for
23: . S

(r)
v is large or is a component

24: if ∀v ∈ V, either |S(r)
v | ≥ d(m/n)1/2e or |S(r)

v | = |S(r−1)
v | then

25: Let E′ = E ∪⋃v∈V {(v, u) | v ∈ S(r)
u or u ∈ S(r)

v , u 6= v}.
26: return G′ = (V,E′)
27: else
28: r ← r + 1.
29: end if
30: end for
31: end procedure

S
(i−1)
v for all v ∈ V. Since if |S(i)

v | < d(m/n)1/2e, then S
(i)
v can only be updated by line 20, and

∀u ∈ S(i−1)
v , it has |S(i−1)

u | < d(m/n)1/2e. Thus, S(i)
v =

⋃
u∈S(i−1)

v
S

(i−1)
u =

⋃
u∈V,distG(u,v)≤2i−1{p ∈

V | distG(p, u) ≤ 2i−1} = {u ∈ V | distG(u, v) ≤ 2i}. Thus, property 3 holds.
For property 4, we can prove it by induction. When i = 0, due to line 7, ∀v ∈ V, we have |S(0)

v | ≤
d(m/n)1/2e ≤ m/n, where the last inequality follows by m/n ≥ 4. Now suppose property 4 holds
for S(i−1)

v for all v ∈ V. If S(i)
v is updated by line 17, then |S(i)

v | = |S(i−1)
u | ≤ m/n. If S(i)

v is updated
by line 20, we know ∀u ∈ S(i−1)

v , |S(i−1)
u | < d(m/n)1/2e. Notice that by property 1, v ∈ S(i−1)

v , so
|S(i−1)
v | < d(m/n)1/2e. Thus, |S(i)

v | = |
⋃
u∈S(i−1)

v
S

(i−1)
u | ≤ (m/n)1/2 · (m/n)1/2 ≤ m/n.

The following definition defines the number of iterations of Algorithm 1.

Definition B.2. Given an undirected graph G = (V,E) and a parameter m ∈ Z≥0,m ≥ 4|V |, the
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number of iterations of NeighborIncrement(m,G) (Algorithm 1) is the value of r at the end of
the procedure.

In the following lemma, we characterize the properties of Algorithm 1.

Lemma B.3. Let G = (V,E) be an undirected graph, m ∈ Z≥0 which hasm ≥ 4|V |. Let G′ = (V,E′)
be the output of NeighborIncrement(m,G). We have:

1. The number of iterations (Definition B.2), r ≤ min(dlog(diam(G))e, dlog(m/n)e) + 1.

2. For all u, v ∈ V, distG(u, v) <∞⇔ distG′(u, v) <∞.
3. ∀v ∈ V, if |ΓG′(v)| < d(m/n)1/2e − 1, then the connected component in G′ which contains

v is a clique. It also implies that ∀u, v ∈ V, if |ΓG′(v)| < d(m/n)1/2e − 1 and |ΓG′(u)| ≥
d(m/n)1/2e − 1, then distG′(u, v) =∞.

4. E ⊆ E′, |E′| ≤ |E|+m.

Proof. For property 1, if r > dlog(diam(G))e + 1, then let i = dlog(diam(G))e + 1. Let v ∈ V. By
property 3 of Lemma B.1, if |S(i)

v | < d(m/n)1/2e, then S(i)
v = {u ∈ V | distG(u, v) ≤ 2i} = {u ∈ V |

distG(u, v) ≤ 2 · 2dlog(diam(G))e} = {u ∈ V | distG(u, v) < ∞}. Furthermore, if |S(i)
v | < d(m/n)1/2e,

then |S(i−1)
v | < d(m/n)1/2e, which means that S(i−1)

v = {u ∈ V | distG(u, v) ≤ 2i−1} = {u ∈ V |
distG(u, v) ≤ 2dlog(diam(G))e} = {u ∈ V | distG(u, v) < ∞} = S

(i)
v . Then due to the condition in

line 24, it will end the procedure in this round, which contradicts to r > dlog(diam(G))e + 1 = i.

Similarly, if r > dlog(m/n)e+ 1, then let i = dlog(m/n)e+ 1. Furthermore, if |S(i)
v | < d(m/n)1/2e,

then |S(i−1)
v | < d(m/n)1/2e, which means that S(i−1)

v = {u ∈ V | distG(u, v) ≤ 2i−1} 6= {u ∈ V |
distG(u, v) ≤ 2i} = S

(i)
v . Thus, there exists u ∈ S(i)

v such that |S(i)
v | > distG(u, v) > 2i−1 > m/n ≥

d(m/n)1/2e which leads to a contradiction.
For property 2, if u, v are in the same connected component in G, then since E ⊆ E′, u, v are

in the same connected component in G′. If u, v are in the same connected component in G′, then
there should be a path u = u1 → u2 → · · · → up = v in G′, i.e. ∀j ∈ [p − 1], (uj , uj+1) ∈ E′.

(uj , uj+1) ∈ E′ implies that either (uj , uj+1) ∈ E or uj ∈ S(r)
uj+1 or uj+1 ∈ S(r)

uj . By property 2 of
Lemma B.1, we know that ∀j ∈ [p − 1], uj and uj+1 are in the same connected component in G.
Thus, u and v are in the same connected component in G.

For property 3, due to line 25, if |ΓG′(v)| < d(m/n)1/2e − 1, then we have |S(r)
v | < d(m/n)1/2e.

By property 3 of Lemma B.1, and the condition in line 24, we know {u ∈ V | distG(u, v) ≤ 2r} =

S
(r)
v = S

(r−1)
v = {u ∈ V | distG(u, v) ≤ 2r−1}. Thus, S(r)

v = {u ∈ V | distG(u, v) < ∞}. Due to
property 2, we have ΓG′(v) ∪ {v} ⊆ {u ∈ V | distG(u, v) < ∞}. Notice that S(r)

v ⊆ ΓG′(v) ∪ {v},
thus, we have ΓG′(v) ∪ {v} = {u ∈ V | distG(u, v) <∞}. Let v′ ∈ {u ∈ V | distG(u, v) <∞}, then
due to property 2, ΓG′(v

′) ∪ {v′} ⊆ {u ∈ V | distG(u, v′) < ∞} = {u ∈ V | distG(u, v) < ∞}, then
we have |ΓG′(v′) ∪ {v′}| < d(m/n)1/2e. Thus, |S(r)

v′ | < d(m/n)1/2e. By property 3 of Lemma B.1,
and the condition in line 24, we know {u ∈ V | distG(u, v′) ≤ 2r} = S

(r)
v′ = S

(r−1)
v′ = {u ∈ V |

distG(u, v′) ≤ 2r−1}. Thus, S(r)
v′ = {u ∈ V | distG(u, v′) < ∞}. Thus, ΓG′(v

′) ∪ {v′} = {u ∈ V |
distG(u, v′) < ∞} = {u ∈ V | distG(u, v) < ∞}. Thus, ∀p, q ∈ {u ∈ V | distG(u, v) < ∞}, we have
(p, q) ∈ E′, which means that {u ∈ V | distG(u, v) <∞} is a clique in G′.

Now consider two vertices u, v ∈ V. Suppose |ΓG′(v)| < d(m/n)1/2e − 1, then we have that
{p ∈ V | distG(p, v) < ∞} is a clique in G′. Thus, ∀q ∈ {p ∈ V | distG(p, v) < ∞}, we have
|ΓG′(q)| = |ΓG′(v)| < d(m/n)1/2e − 1. If |ΓG′(u)| ≥ d(m/n)1/2e − 1, then distG′(u, v) =∞.

For property 4, by line 25, we have E ⊆ E′ and |E′| ≤ |E|+∑v∈V |S
(r)
v | ≤ |E|+n·m/n = |E|+m

where the last inequality follows by the property 4 of Lemma B.1.
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B.2 Random Leader Selection

Given an undirected graph G = (V,E), to design a connected component algorithm, a natural way
is constantly contracting the vertices in the same component. One way to do the contraction is
that we randomly choose some vertices as leaders, then contract non-leader vertices to the neighbor
leader vertices.

In this section, we show that if ∀v ∈ V, the number of neighbors of v is large enough, then we
can just sample a small number of leaders such that for each non-leader vertex v ∈ V, there is at
least one neighbor of v which is chosen as a leader. A more generalized statement is stated in the
following lemma.

Lemma B.4. Let V be a vertex set with n vertices. Let 0 < γ ≤ n, δ ∈ (0, 1). For each v ∈ V, let
Sv be a subset of V \ {v} with size at least γ− 1. Let l : V → {0, 1} be a random hash function such
that ∀v ∈ V, l(v) are i.i.d. Bernoulli random variables, i.e.

l(v) =

{
1 with probability p;

0 otherwise.

If p ≥ min((10 log(2n/δ))/γ, 1), then, with probability at least 1− δ,

1.
∑

v∈V l(v) ≤ 3
2pn;

2. ∀v ∈ V,∃u ∈ Sv ∪ {v} such that l(u) = 1.

Proof. For a fixed vertex v ∈ V, we have

Pr

 ∑
u∈Sv∪{v}

(E(l(u))− l(u)) >
1

2

∑
u∈Sv∪{v}

E(l(u))


≤ exp

− 1
2

(
1
2

∑
u∈Sv∪{v}E(l(u))

)2

∑
u∈Sv∪{v}Var(l(u)) + 1

3 · 1 · 1
2

∑
u∈Sv∪{v}E(l(u))


≤ exp

− 1
2

(
1
2

∑
u∈Sv∪{v}E(l(u))

)2

∑
u∈Sv∪{v}E(l(u)) + 1

3 · 1 · 1
2

∑
u∈Sv∪{v}E(l(u))


= exp

− 3

28
·

∑
u∈Sv∪{v}

E(l(u))

 = exp

(
− 3

28
· p · |Sv ∪ {v}|

)
≤ δ

2n
,

where the first inequality follows by Bernstein inequality and |l(u) − E(l(u))| ≤ 1, the second
inequality follows by Var(l(u)) ≤ E(l2(u)) = E(l(u)). The last inequality follows by |Sv ∪ {v}| ≥
γ, and p ≥ min((10 log(2n/δ))/γ, 1). Since 1

2

∑
u∈Sv∪{v}E(l(u)) ≥ 1, with probability at least

1 − δ/(2n),
∑

u∈Sv∪{v} l(v) ≥ 1. By taking union bound over all Sv, with probability at least
1− δ/2, ∀v ∈ V,∃u ∈ Sv ∪ {v}, l(u) = 1.

17



Similarly, we have

Pr

(∑
u∈V

(l(u)−E(l(u))) >
1

2

∑
u∈V

E(l(u))

)

≤ exp

(
−

1
2

(
1
2

∑
u∈V E(l(u))

)2∑
u∈V Var(l(u)) + 1

3 · 1 · 1
2

∑
u∈V E(l(u))

)

≤ exp

(
−

1
2

(
1
2

∑
u∈V E(l(u))

)2∑
u∈V E(l(u)) + 1

3 · 1 · 1
2

∑
u∈V E(l(u))

)

= exp

(
− 3

28
·
∑
u∈V

E(l(u))

)

= exp

(
− 3

28
· p · |V |

)
≤ δ

2n
≤ δ

2
.

Since
∑

u∈V E(l(u)) = p · n, with probability at least 1− δ/2, ∑u∈V l(u) ≤ 1.5pn.
By taking union bound, with probability at least 1 − δ,∑u∈V l(u) ≤ 1.5pn and ∀v ∈ V,∃u ∈

Sv ∪ {v}, l(u) = 1.

If the number of neighbors of each vertex is not large, then we can still have a constant fraction
of vertices which can contract to a leader.

Lemma B.5. Let V be a vertex set with n vertices. Let Sv be a subset of V \ {v} with size at least
1. Let l : V → {0, 1} be a random hash function such that ∀v ∈ V, l(v) are i.i.d. Bernoulli random
variables, i.e.

l(v) =

{
1 with probability 1

2 ;

0 otherwise.

Let L = {v ∈ V | l(v) = 1} ∪ {v ∈ V | ∀u ∈ Sv ∪ {v}, l(u) = 0}. E(L) ≤ 0.75n.

Proof. For v ∈ V, Pr(l(v) = 1) = 1
2 . Let u ∈ Sv. Then Pr(∀x ∈ Sv ∪ {v}, l(x) = 0) ≤ Pr(l(v) =

0, l(u) = 0) = 0.25. E(|L|) =
∑

v∈V Pr(v ∈ L) ≤ 0.75n.

B.3 Tree Contraction Operation

In this section, we introduce the contraction operation. Firstly, let us introduce the concept of the
parent pointers which can define a rooted forest.

Definition B.6. Given a set of vertices V, let par : V → V satisfy that ∀v ∈ V,∃i > 0 such
that par(i)(v) = par(i+1)(v), where ∀v ∈ V, j > 0,par(j)(v) is defined as par(par(j−1)(v)), and
par(0)(v) = v. Then, we call such par a set of parent pointers on V . For v ∈ V, if par(v) = v,
then we say v is a root of par . par can have more than one root. The depth of v ∈ V, deppar(v) is
the smallest i ∈ Z≥0 such that par(i)(v) = par(i+1)(v). The root of v ∈ V, par(∞)(v) is defined as
par(deppar(v))(v). The depth of par, dep(par) is defined as maxv∈V deppar(v).

It is easy to see that a set of parent pointers par on V formed a rooted forest on V . For a vertex
v ∈ V, if par(v) = v, then v is a root in the forest. Otherwise par(v) is the parent of v in the forest.

In the following, we define the union operation of several sets of parent pointers.
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Algorithm 2 Tree Contraction Operation
1: procedure TreeContraction(G = (V,E), par : V → V ) . Lemma B.10, Corollary B.13
2: . Output: G′ = (V ′, E′), par(∞)(v) for all v ∈ V
3: Initially, for each v ∈ V let g(0)(v)← par(v). Let V ′ = ∅, E′ = ∅.
4: l← 0.
5: for ∃v ∈ V,par(g(l)(v)) 6= g(l)(v) do
6: l← l + 1.
7: For each v ∈ V, compute g(l)(v) = g(l−1)(g(l−1)(v)). . g(l) is par(2l)

8: end for
9: r ← l. . r is the number of iterations, and is used in the analysis.

10: For v ∈ V, if par(v) = v, let V ′ ← V ′ ∪ {v}.
11: For (u, v) ∈ E, if g(r)(u) 6= g(r)(v), let E′ ← E′ ∪ {(g(r)(u), g(r)(v))}.

. ∀v ∈ V, contract v to par(∞)(v)
12: return g(r)(v) as par(∞)(v) for all v ∈ V, and G′ = (V ′, E′)
13: end procedure

Definition B.7. Let par1 : V1 → V1,par2 : V2 → V2, · · · , park : Vk → Vk be k sets of parent
pointers on vertex sets V1, V2, · · · , Vk respectively, where ∀i 6= j ∈ [k], Vi ∩ Vj = ∅. Then par =
par1 ∪par2 ∪ · · · ∪ park is a set of parent pointers on the vertex set V1 ∪ V2 ∪ · · · ∪ Vk such that
∀i ∈ [k], v ∈ Vk,par(v) = pari(v).

Now we focus on the parent pointers which can preserve the connectivity of the graph.

Definition B.8. Given a graph G = (V,E) and a set of parent pointers par on V, if ∀v ∈ V, we
have distG(v,par(v)) <∞, then par is compatible with G.

It is easy to show the following fact:

Fact B.9. Given a graph G = (V,E) and a set of parent pointers par which is compatible with G,
then ∀u, v ∈ V with par(∞)(u) = par(∞)(v), we have distG(u, v) <∞.

Proof. By the definition of compatible, ∀v ∈ V,distG(v,par(v)) <∞. By induction, ∀l ∈ Z>0, v ∈ V,
we have distG(v,par(l)(v)) ≤ distG(v,par(l−1)(v)) + distG(par(l−1)(v), par(l)(v)) < ∞. Thus, for
any pair of vertices u, v ∈ V, if par(∞)(u) = par(∞)(v), then distG(u, v) ≤ distG(u,par(∞)(u)) +
distG(par(∞)(v), v) <∞.

In this section, we describe a procedure which can be used to reduce the number of vertices. The
input of the procedure is an undirected graph G = (V,E) and a set of parent pointers par : V → V ,
where par is compatible with G. The output of the procedure will be the root of each vertex in V
and an undirected graph G′ = (V ′, E′) which satisfies V ′ = {v ∈ V | par(v) = v}, E′ = {(u, v) ∈
V ′ × V ′ | u 6= v,∃(p, q) ∈ E,par(∞)(p) = u,par(∞)(q) = v}. Notice that V ′ only contains all the
roots in the forest induced by par, and |E′| ≤ |E|.

Lemma B.10. Let G = (V,E) be an undirected graph, par : V → V be a set of parent pointers (See
Definition B.6). Then TreeContraction(G,par) (See Algorithm 2) will output output (G′, g(r))
with r ≤ dlog dep(par)e satisfies the following properties:

1. ∀v ∈ V, g(r)(v) = par(∞)(v).

2. V ′ = {v ∈ V | par(v) = v}.
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3. E′ = {(u, v) ∈ V ′ × V ′ | u 6= v,∃(p, q) ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

Proof. One crucial observation is the following claim.

Claim B.11. ∀l ∈ {0, 1, · · · , r}, v ∈ V, we have g(l)(v) = par(2l)(v).

Proof. The proof is by induction. When l = 0, ∀v ∈ V, g(0)(v) = par(v) = par(1)(v), the claim
is true. Suppose for l − 1, we have ∀v ∈ V, g(l−1)(v) = par(2l−1)(v), then ∀v ∈ V, g(l)(v) =

g(l−1)(g(l−1)(v)) = par(2l−1)(par(2l−1)(v)) = par(2l)(v). So the claim is true.

If r > dlog dep(par)e, then r−1 ≥ dlog dep(par)e. Due to claim B.11, we have ∀v ∈ V, g(r−1)(v) =
par(2r−1)(v) = par(∞)(v). Due to the condition in line 5, the loop will stop when l ≤ r−1 which leads
to a contradiction to line 9. Thus, at the end of the algorithm, r should be at most dlog dep(par)e.

Since we have ∀v ∈ V,par(g(r)(v)) = g(r)(v) at the end of the Algorithm 2, ∀v ∈ V, g(r)(v) must
be par(∞)(v). Then due to line 10 and line 11, we have V ′ = {v ∈ V | par(v) = v}, E′ = {(u, v) ∈
V ′ × V ′ | u 6= v,∃(p, q) ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

Definition B.12. Let G = (V,E) be an undirected graph, par : V → V be a set of parent pointers
(See Definition B.6). Then the number of iteration of TreeContraction(G,par) is defined as
the value of r at the end of the procedure.

Corollary B.13 (Preserved connectivity and diameter). Let G = (V,E) be an undirected graph,
par : V → V be a set of parent pointers (See Definition B.6) which is compatible (See Definition B.8)
with G. Then at the end of the Algorithm 2, r ≤ dlog dep(par)e and the output (G′, g(r)) will satisfy
the following properties:

1. diam(G′) ≤ diam(G).

2. ∀u, v ∈ V,distG(u, v) <∞⇒ distG′(par(∞)(u), par(∞)(v)) <∞.

3. ∀u, v ∈ V,distG(u, v) <∞⇐ distG′(par(∞)(u), par(∞)(v)) <∞.

Proof. By Lemma B.10, we have r ≤ dlog dep(par)e, V ′ = {v ∈ V | par(v) = v} and E′ = {(u, v) ∈
V ′ × V ′ | u 6= v,∃(p, q) ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

For any two vertices u, v ∈ V which are in the same connected component in G, then there
should be a path u = u1 → u2 → · · · → up = v in graph G. So ∀i ∈ [p − 1], (ui, ui+1) ∈
E which means that either par(∞)(ui) = par(∞)(ui+1) or (par(∞)(ui), par(∞)(ui+1)) ∈ E′. Thus,
par(∞)(u1) → par(∞)(u2) → · · · → par(∞)(up) is a valid path in G′, and the length of this path in
G′ is at most p. Thus, the properties 1 and 2 are true.

For any two vertices u, v ∈ V which are not in the same connected component in G, but there is
a path par(∞)(u) = u′1 → u′2 → · · · → u′p = par(∞)(v) in G′, then it means that there exists vertices
u1,1, u1,2, u2,1, u2,2, · · · , up,1, up,2 ∈ V which satisfies

(a) ∀i ∈ [p− 1], (ui,2, ui+1,1) ∈ E,par(∞)(ui,2) = u′i,par(∞)(ui+1,1) = u′i+1.

(b) u1,1 = u, up,2 = v.

(c) ∀i ∈ [p], par(∞)(ui,1) = par(∞)(ui,2). By Fact B.9, we have distG(ui,1, ui,2) <∞.

Thus, there exists a path from u to v. This contradicts to that u, v are not in the same connected
component. Therefore, property 3 is also true.
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B.4 Connectivity Algorithm

In this section, we described a batch algorithm for graph connectivity/connected components prob-
lem. The input is an undirected graph G = (V,E), a space/rounds trade-off parameter m, and the
rounds parameter r ≤ |V |. The output is a function col : V → V such that ∀u, v ∈ V,distG(u, v) <
∞⇔ col(u) = col(v).

The algorithm is described in Algorithm 3. The following theorem shows the correctness of
Algorithm 3.

Algorithm 3 Graph Connectivity
1: procedure Connectivity(G = (V,E),m, r) . Theorem B.14, Theorem B.21
2: Output: FAIL or col : V → V.
3: n← |V |
4: ∀v ∈ V, h0(v)← null.
5: G0 = (V0, E0) = G, i.e. V0 = V,E0 = E.
6: n0 = n.
7: for i = 1→ r do
8: ∀v ∈ V, hi(v)← null. . hi(v) is the vertex that v contracts to
9: G′i = (V ′i , E

′
i) = NeighborIncrement(m,Gi−1). . Algorithm 1

10: Compute V ′′i = {v ∈ V ′i | |ΓG′i(v)| ≥ d(m/ni−1)1/2e − 1}.
11: Compute E′′i = {(u, v) ∈ Ei−1 | u ∈ V ′′i , v ∈ V ′′i }.
12: G′′i = (V ′′i , E

′′
i ). . G′′i is obtained by removing all the small components of Gi

13: Let γi = d(m/ni−1)1/2e, pi = min((30 log(n) + 100)/γi, 1/2).
14: Let li : V ′′i → {0, 1} be a random hash function such that ∀v ∈ V ′′i , li(v) are i.i.d. Bernoulli

random variables, and Pr(li(v) = 1) = pi.
15: Let Li = {v ∈ V ′′i | li(v) = 1} ∪ {v ∈ V ′′i | ∀u ∈ ΓG′i(v) ∪ {v}, li(u) = 0}. . Li are leaders
16: ∀v ∈ V ′′i with v ∈ Li, let pari(v) = v.
17: ∀v ∈ V ′′i with v 6∈ Li, let pari(v) = minu∈Li∩(ΓG′

i
(v)∪{v}) u. . Non-leader finds a leader.

18: Let ((Vi, Ei), g
(r′i)
i ) = TreeContraction(G′′i ,pari). . Algorithm 2

19: Gi = (Vi, Ei).
20: ni = |Vi|.
21: For each v ∈ V ′i \ V ′′i , let hi(v)← minu∈ΓG′

i
(v)∪{v} u. . Contract small component to one vertex

22: For each v ∈ V ′′i \ Vi, let hi(v)← g
(r′i)
i (v). . Contract non-leader to leader

23: For each v ∈ V, if hi−1(v) 6= null, then let hi(v) = hi−1(v).
24: end for
25: If nr 6= 0, return FAIL.
26: ((V̂ , Ê), col) = TreeContraction(G, hr). . Algorithm 2
27: return col .
28: end procedure

Theorem B.14 (Correctness of Algorithm 3). Let G = (V,E) be an undirected graph, m ≥ 4|V |,
and r ≤ |V | be the rounds parameter. If Connectivity(G,m, r) (Algorithm 3) does not output
FAIL, then ∀u, v ∈ V, we have distG(u, v) <∞⇔ col(u) = col(v).

Proof. Firstly, we show that the input of line 18 is valid.

Claim B.15. ∀i ∈ [r], pari is a set of parent pointers on V ′′i , (See Definition B.6) and is compatible
(See Definition B.8) with G′′i .

Proof. ∀v ∈ V ′′i , if v ∈ Li, then pari(v) = v. For v ∈ V ′′i \ Li, due to property 3 of Lemma B.3, we
have pari(v) ∈ V ′′i . Since pari(v) ∈ Li, we have pari(pari(v)) = pari(v). Thus, pari : V ′′i → V ′′i is a
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set of parent pointers on V ′′i . Due to property 2 of Lemma B.3 and distG′i(pari(v), v) <∞, we know
that distGi−1(pari(v), v) <∞. Thus, distG′′i (pari(v), v) <∞. It implies that pari is compatible with
G′′i .

The following claim shows that the number of the remaining vertices cannot increase after each
round.

Claim B.16. If Connectivity(G,m, r) does not output FAIL, then ∀i ∈ [r], Vi ⊆ V ′′i ⊆ V ′i = Vi−1.

Proof. Let i ∈ [r]. Due to Claim B.15, the input of line 18 is valid. Then, we can apply property 2
of Lemma B.10 to get Vi ⊆ V ′′i . By the construction of V ′′i we have V ′′i ⊆ V ′i . Since the procedure
NeighborIncrement(m,Gi−1) (Algorithm 1) does not change the vertex set, we have V ′i = Vi−1.

Now, we show that ∀u, v ∈ Vi,distGi(u, v) <∞⇔ distG(u, v) <∞.

Claim B.17. If Connectivity(G,m, r) does not output FAIL, then ∀i ∈ [r],∀u, v ∈ Vi, we have
distGi(u, v) <∞⇔ distG(u, v) <∞.

Proof. The proof is by induction. Suppose ∀u, v ∈ Vi−1,distGi−1(u, v) < ∞ ⇔ distG(u, v) < ∞.
∀w, z ∈ Vi, according to Claim B.16, w, z ∈ V ′′i . By property 2,3 of Lemma B.13, and property 2 of
Lemma B.10, distGi(w, z) <∞⇔ distG′′i (w, z) <∞. Due to property 2,3 of Lemma B.3, there is no
edge in Ei−1 between V ′′i and V ′i \ V ′′i . According to Claim B.16, w, z ∈ Vi−1. Thus, distG′′i (w, z) <
∞ ⇔ distGi−1(w, z) < ∞. By induction hypothesis, we have ∀w, z ∈ Vi,distGi(w, z) < ∞ ⇔
distG(w, z).

The following claim states that once a vertex v ∈ V is contracted to an another vertex, it will
never be operated.

Claim B.18. Suppose Connectivity(G,m, r) does not output FAIL. ∀i ∈ {0, 1, · · · , r}, v ∈ V,
we have hi(v) = null ⇔ v ∈ Vi. Furthermore, ∀v ∈ V,∃j ∈ [r] such that h0(v) = h1(v) = · · · =
hj−1(v) = null and hj(v) = hj+1(v) = · · · = hr(v) 6= null,distG(v, hr(v)) <∞.

Proof. When i = 0, ∀v ∈ V, h0(v) = null, v ∈ V0 = V. Suppose it is true that ∀v ∈ V, hi−1(v) =
null ⇔ v ∈ Vi−1. If v 6∈ Vi, according to Claim B.16, there are three cases: v ∈ V ′′i \ Vi, v ∈
V ′i \ V ′′i , v 6∈ Vi−1. In the first case, due to line 22, hi(v) 6= null. In the second case, due to line 21,
hi(v) 6= null, In the third case, due to line 23, hi(v) 6= null. If hi(v) = null, then hi(v) cannot be
updated by line 21, line 22 or line 23 which implies that v ∈ Vi−1, v 6∈ V ′i \ V ′′i , v 6∈ V ′′i \ Vi. Thus,
v ∈ Vi.

Since the procedure does not FAIL, we have nr = 0 which means that ∀v ∈ V, hr(v) 6= null.
Notice that by line 23, if hi−1(v) 6= null, then hi(v) = hi−1(v). Thus, ∀v ∈ V,∃j ∈ [r] such that
h0(v) = h1(v) = · · · = hj−1(v) = null and hj(v) = hj+1(v) = · · · = hr(v) 6= null.

For v ∈ V, if hj(v) 6= null and hj−1(v) = null, then hj(v) can only be updated by 21 or line 22.
In both cases, distGj−1(v, hj(v)) <∞. By Claim B.17, we have that distG(v, hj(v)) <∞.

In the following, we show that hr is a rooted tree such that distG(u, v) < ∞ ⇔ u, v have the
same root. Due to Claim B.18, if Connectivity(G,m, r) does not output FAIL, then nr = 0

which implies that ∀v ∈ V, hr(v) 6= null. Thus, we can define h(k)
r (v) for k ∈ Z>0 as applying hr on

v k times. ∀v ∈ V, by Claim B.18, let j ∈ [r] satisfy that hj(v) 6= null and hj−1(v) = null. If hj(v)
is updated by line 22, then hj(hj(v)) = null. If hj(v) is updated by line 21, then hj(hj(v)) = hj(v).
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In both cases, hj cannot create a cycle. Thus, we can define h(∞)
r (v) = h

(k)
r (v) for some k which

satisfies hr(h
(k)
r (v)) = h

(k)
r (v).

Claim B.19. Suppose Connectivity(G,m, r) does not output FAIL. Then ∀u, v ∈ V, we have
distG(u, v) <∞⇔ h

(∞)
r (u) = h

(∞)
r (v).

Proof. Let u, v ∈ V. By Claim B.18, if h∞r (u) = h∞r (v) we have distG(u, v) <∞.
If distG(u, v) < ∞, then let u′ = h

(∞)
r (u), v′ = h

(∞)
r (v). By Claim B.18, distG(u′, v′) ≤

distG(u, u′)+distG(u, v)+distG(v, v′) <∞, and we can find j ∈ [r] such that hj(u′) 6= null, hj−1(u′) =
null. Without loss of generality, we can assume hj−1(v′) = null (otherwise we can swap u′ and v′).
Due to Claim B.18, u′, v′ ∈ Vi−1. Since hj(u′) = hr(u

′) = u′, hj(u
′) can be only updated by line 21,

and u′ ∈ V ′j \ V ′′j . Then due to property 3 of Lemma B.10, v′ should be in ΓG′i(u) ∪ {u}. Since
hj(v

′) = hr(v
′) = v′, we can conclude that u′ = v′.

If Connectivity(G,m, r) does not output FAIL, then in line 26, col is exactly h
(∞)
r . By

Claim B.19, we have ∀u, v ∈ V,distG(u, v) <∞⇔ col(u) = col(v).

Now let us consider the number of iterations of Algorithm 3 and the success probability.

Definition B.20 (Total iterations). Let G = (V,E) be an undirected graph, poly(n) ≥ m > 4n, and
r ≤ n be the rounds parameter where n is the number of vertices in G. The total number of iterations
of Connectivity(G,m, r) (Algorithm 3) is defined as

∑r
i=1(ki + r′i), where ki denotes the number

of iterations (See Definition B.2) of NeighborIncrement(m,Gi−1) (see line 9), and r′i denotes
the number of iterations (See Definition B.12) of TreeContraction(G′′i ,pari) (see line 18).

Theorem B.21 (Success probability and total iterations). Let G = (V,E) be an undirected graph,
poly(n) ≥ m > 4n, and r ≤ n be the rounds parameter where n = |V |. Let c > 0 be a sufficiently
large constant. If r ≥ c log logm/n(n), then with probability at least 0.98, Connectivity(G,m, r)
(Algorithm 3) will not return FAIL. If Connectivity(G,m, r) succeeds, let ki denote the number
of iterations (See Definition B.2) of NeighborIncrement(m,Gi−1) (see line 9), and let r′i denote
the number of iterations of (See Definition B.12) of TreeContraction(G′′i , pari) (see line 18),
then

1. ∀i ∈ [r], r′i = 0.

2. ∀i ∈ [r], ki is at most dlog(diam(G))e+ 1.

3. The number of iterations of line 26 is at most dlog re.

4.
∑r

i=1 ki ≤ O(r log(diam(G))).

Let c1 > 0 be a sufficiently large constant. If m ≥ c1n log4 n, then with probability at least 0.99,∑r
i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n)). If m < c1n log4 n, then with probability at least 0.98,∑r
i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

Proof. Suppose Connectivity(G,m, r) succeeds. Property 1 follows by ∀v ∈ V ′′i ,pari(pari(v)) =
pari(v) and Lemma B.10. Property 2 follows by diam(Gr) ≤ diam(G′′r) ≤ diam(G′r) ≤ diam(Gr−1) ≤
diam(G′′r−1) ≤ diam(G′r−1) ≤ · · · ≤ diam(G0) = diam(G) and property 1 of Lemma B.3. Property 3
follows by the depth of hr is at most r and Lemma B.10. Property 4 follows by property 2.

Now let us prove the success probability. Let i ∈ [r]. If pi < 0.5, then we can apply Lemma B.4
on vertex set V ′′i , parameter γi, and hash function li. Notice that the set Sv in the statement of
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Lemma B.4 is ΓG′i(v) in the algorithm. Notice that |V ′′i | ≤ n. Then in the ith round, if pi < 0.5,

then with probability at most 1/(100n2), Li will be {v ∈ V ′′i | li(v) = 1}, and ni = |Li| ≤ 1.5pini−1.
By taking union bound over all i ∈ [r], we have that with probability at least 0.99, event E happens:
for all i ∈ [r], if pi < 0.5, then ni ≤ 1.5pini−1 ≤ 0.75ni−1. Suppose E happens. For i ∈ [r], pi = 0.5,
if we apply Lemma B.5, then condition on ni−1, we have E(ni) ≤ 0.75ni−1. Thus, we know ∀i ∈
[r],E(ni) ≤ 0.75E(ni−1) ≤ 0.75in.

Next, we discuss the case for p0 = 0.5 and the case for p0 < 0.5 separately.
If p0 = 0.5, then m ≤ n · (600 log n)4. By Markov’s inequality, when i∗ ≥ 4 log4/3(6000 log n),

with probability at least 0.99, ni∗ ≤ n/(600 log n)4 and thus pi∗ < 0.5. Condition on this event and
E , we have

nr ≤

(
n1.5
i∗

m0.5 (45 logn+150)

)1.5

m0.5 (45 log n+ 150)

···
· · · (Apply r′ = r − i∗ times)

=
n1.5r′

i∗

m1.5r′−1
(45 log n+ 150)2·(1.5r′−1)

= ni∗/(m/ni∗)
1.5r′−1 · (45 log n+ 150)2·(1.5r′−1)

≤ n/
(
m/
(
ni∗(45 log n+ 150)2

))1.5r′−1

≤ n/
(
m/
(
ni∗(45 log n+ 150)2

))1.5r′/2

≤ n/ (m/n)
1.5r′/2

≤ 1

2
,

where the second inequality follows by ni∗ ≤ n, the third inequality follows by r′ ≥ 5, the forth in-
equality follows by ni∗ ≤ n/(600 log n)4, and the last inequality follows by r′ ≥ 2

log 1.5 log logm/n(2n).

Since 4n ≤ m ≤ n · (600 log n)4, log logm/n n = Θ(log log n). Let c > 0 be a sufficiently large con-
stant. Thus, when r ≥ c log logm/n n ≥ i∗ + r′ = 4 log(6000 log n)/ log(4/3) + 2

log 1.5 log logm/n(2n),
with probability at least 0.98, Connectivity(G,m, r) will not fail.

Since property 1 of Lemma B.3, we have ki ≤ O(log(min(m/ni−1,diam(G)))). Thus,

r∑
i=1

ki =

i∗∑
i=1

ki +

r∑
i=i∗+1

ki ≤ O
(
(log log n)2

)
+

r∑
i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑
i:i≥i∗+1,m/ni−1≤diam(G)

ki +
∑

i:i≤r,m/ni−1>diam(G)

ki

≤ O
(
(log log n)2

)
+O

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i

)

+O

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))


≤ O

(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows by i∗ = O(log log n) and ∀i ≤ [i∗],m/ni−1 ≤ poly(log n), the third
inequality follows by m/ni+1 ≥ (m/ni)

1.5/(45 log n+ 150) ≥ (m/ni)
1.25.
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If m > n · (600 log n)4, then ∀i ∈ {0} ∪ [r − 1], we have pi < 0.5. Since E happens. We have:

nr ≤

((
n1.5

m0.5 (45 logn+150)
)1.5

m0.5 (45 log n+ 150)

)···
· · · (Apply r times)

=
n1.5r

m1.5r−1
(45 log n+ 150)2·(1.5r−1)

= n/(m/n)1.5r−1 · (45 log n+ 150)2·(1.5r−1)

= n/
(
m/
(
n(45 log n+ 150)2

))1.5r−1

≤ n/
(
m/
(
n(45 log n+ 150)2

))1.5r/2

≤ n/
(
m/
(
n(200 log n)2

))1.5r/2

≤ 1

2
,

where the second inequality follows by r ≥ 5, the third inequality follows by 45 log n + 150 ≤
200 log n, and the last inequality follows by

r ≥ c log logm/n n ≥ 2 log1.5 log(m/n)1/2 2n ≥ 2 log1.5 logm/(n(200 logn)2) 2n

for a sufficiently large constant c > 0.
By property 1 of Lemma B.3, we have ki ≤ O(log(min(m/ni−1,diam(G)))). Thus,

r∑
i=1

ki ≤
∑

m/ni−1≤diam(G)

ki +
∑

m/ni−1>diam(G)

ki

≤ O

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i

)

+O

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))


≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),

where the first inequality follows by m/ni+1 ≥ (m/ni)
1.5/(45 log n+ 150) ≥ (m/ni)

1.25.
Since nr is an integer, nr must be 0 when nr ≤ 1/2. Let c > 0 be a sufficiently large constant.

For all m ≥ 4n, if r ≥ c log logm/n n then Connectivity(G,m, r) will succeed with probability at
least 0.98.

C Spanning Forest

C.1 Local Shortest Path Tree

In this section, we introduce an important procedure which will be used in the spanning tree
algorithm. Roughly speaking, our procedure can merge several local shortest path trees into a
larger local shortest path tree. Before we describe the details of the procedure, let us look at some
concepts.

Definition C.1 (Local shortest path tree (LSPT)). Let V ′ be a set of vertices, v be a vertex in
V ′, and par : V ′ → V ′ be a set of parent pointers (See Definition B.6) on V ′ which satisfies that v
is the only root of par . Let T = (V ′, par). Given an undirected graph G = (V,E), if V ′ ⊆ V and
∀u ∈ V ′ \ {v}, (u,par(u)) ∈ E,deppar(u) = distG(u, v), then we say T is a local shortest path tree
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(LSPT) in G, and T has root v. The vertex set (V ′ in the above) in T is denoted as VT . The set of
parent pointers (par in the above) in T is denoted as parT . For short, depparT

is denoted as depT ,
and dep(par(T )) is denoted as dep(T ).

Definition C.2. Given an undirected graph G = (V,E), a vertex v ∈ V, and s ∈ Z≥0, we define
the ball centered at v with radius s as the set BG,s(v) = {u ∈ V | distG(u, v) ≤ s}.

If in the context graph G is clear, then we use Bs(v) to denote BG,s(v).

Definition C.3 (Local complete shortest path tree (LCSPT)). Given an undirected graph G =
(V,E), s ∈ Z≥0 and a local shortest path tree T = (VT ,parT ) in G where T has root v ∈ V . If
VT = BG,s(v), then we call T a local complete shortest path tree (LCSPT) in G. The root of T is v.
The radius of T is s.

Let T̃ = (V
T̃
,par

T̃
) with radius s1 ∈ Z≥0 and root v be a local complete shortest path tree in

some graph G = (V,E). For s2 ∈ Z≥0, if for every u ∈ VT̃ , we have a local complete shortest path
tree T (u) = (VT (u), parT (u)) with root u and radius s2, then we can compute a larger local complete
shortest path tree T̂ with root v and radius s1 + s2. The procedure is described in Algorithm 4.

Algorithm 4 Local Complete Shortest Path Tree Expansion

1: procedure TreeExpansion(T̃ ,depT̃ , {T (u) | u ∈ VT̃ }, {depT (u) | u ∈ VT̃ }) . Lemma C.4
. T̃ = (VT̃ ,parT̃ ) with root v and radius s1 is a LCSPT in graph G = (V,E).

. depT̃ : VT̃ → Z≥0 records the depth of every vertex in T̃ .
. ∀u ∈ VT̃ , T (u) = (VT (u),parT (u)) with root u and radius s2 is a LCSPT in G.
. ∀u ∈ VT̃ ,depT (u) : VT (u) → Z≥0 records the depth of every vertex in T (u).

2: Output: T̂ = (VT̂ ,parT̂ ),depT̂ .
3: Let VT̂ =

⋃
u∈T̃ VT (u).

4: ∀x ∈ VT̃ ,parT̂ (x)← parT̃ (x).
5: ∀x ∈ VT̃ , h(x)← depT̃ (x).
6: ∀x ∈ VT̂ \ VT̃ , ux ← arg min

u:u∈VT̃ ,x∈VT (u)

depT̃ (u) + depT (u)(x),parT̂ (x)← parT (ux)(x).

. ux is on the shortest path from x to v.
7: ∀x ∈ VT̂ \ VT̃ , h(x)← depT̃ (ux) + depT (ux)(x).

8: return T̂ = (VT̂ ,parT̂ ), and return h : VT̂ :→ Z≥0 as depT̂ .
9: end procedure

Lemma C.4. Let G = (V,E) be an undirected graph, s1, s2 ∈ Z≥0, and v ∈ V. Let T̃ = (V
T̃
,par

T̃
)

with root v and radius s1 be a local complete shortest path tree in G, and dep
T̃

: V
T̃
→ Z≥0 be

the depth of every vertex in T̃ . ∀u ∈ V
T̃
, let T (u) with root u and radius s2 be a local complete

shortest path tree in G, and depT (u) : VT (u) → Z≥0 be the depth of every vertex in T (u). Let (T̂ =

(V
T̂
, par

T̂
),dep

T̂
) = TreeExpansion(T̃ ,dep

T̃
, {T (u) | u ∈ V

T̃
}, {depT (u) | u ∈ VT̃ }) (Algorithm 4),

then T̂ is a local complete shortest path tree with root v and radius s1 + s2 in G. In addition, dep
T̂

records the depth of every vertex in T̂ .

Proof. If x ∈ Bs1+s2(v), then there must exist u ∈ V such that distG(v, u) ≤ s1 and distG(u, x) ≤ s2.
Thus, V

T̂
=
⋃
u∈T̃ VT (u) =

⋃
u∈Bs1 (v)Bs2(u) = Bs1+s2(v).

Now we want to prove that par
T̂

: V
T̂
→ V

T̂
also satisfies the condition that T̂ is a local shortest

path tree. We can prove it by induction. If distG(u, v) = 0, then it means u = v. In this case,
par

T̂
(u) = par

T̃
(u) = v, and h(u) = dep

T̃
(u) = 0. Let s ∈ [s1 + s2]. Suppose ∀x ∈ Bs−1(v), we have
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Algorithm 5 Doubling Algorithm for Local Complete Shortest Path Trees
1: procedure MultiRadiusLCSPT(G = (V,E),m) . Lemma C.6
2: Output: r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}
3: Initialization:
4: ∀v ∈ V, if |{v} ∪ ΓG(v)| < d(m/n)1/4e, then let T0(v)← ({v} ∪ ΓG(v),parT0(v)),
5: where parT0(v) : {v} ∪ ΓG(v)→ {v} ∪ ΓG(v), and ∀u ∈ {v} ∪ ΓG(v),parT0(v)(u) = v.

6: ∀v ∈ V, if |{v} ∪ ΓG(v)| ≥ d(m/n)1/4e, then let T0(v)← null.
7: ∀v ∈ V, if T0(v) 6= null, let depT0(v) : VT0(v) → Z≥0 s.t. depT0(v)(v) = 0, ∀u ∈ ΓG(v),depT0(v)(u) = 1.
8: r = 1.
9: Main Loop:
10: for true do
11: for v ∈ V do . If Tr(v) 6= null, Tr(v) is a local complete shortest path tree with radius 2r.
12: if Tr−1(v) is null then Tr(v)← null.
13: else if ∃u ∈ VTr−1(v), Tr−1(u) is null then Tr(v)← null.
14: else
15:

(
Tr(v), depTr(v)

)
= TreeExpansion

Tr−1(v), depTr−1(v),
⋃

u∈VTr−1(v)

{
Tr−1(u)

}
,

⋃
u∈VTr−1(v)

{
depTr−1(u)

} .
. Algorithm 4

16: If |VTr(v)| ≥ d(m/n)1/4e, let Tr(v)← null.
17: end if
18: end for
19: if ∀v ∈ V either Tr(v) = null or |VTr(v)| = |VTr−1(v)| then
20: return r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}
21: end if
22: r ← r + 1.
23: end for
24: end procedure

h(x) = dep
T̂

(x) = distG(x, v). If Bs(v) = Bs−1(v), then we are already done. Otherwise, let x be
the vertex which has distG(x, v) = s. If x ∈ Bs1(v), then h(x) = dep

T̃
(x) = distG(x, v). Addition-

ally, we have par
T̂

(x) = par
T̃

(x). Therefore, dep
T̂

(x) = dep
T̂

(par
T̃

(x)) + 1 = distG(v,par
T̃

(x)) +
1 = distG(v, x). If x ∈ Bs2(v) \ Bs1(v), then h(x) = minu:distG(v,u)≤s1,distG(u,x)≤s2 dep

T̃
(u) +

depT (u)(x) = minu:distG(v,u)≤s1,distG(u,x)≤s2 distG(v, u) + distG(u, x) = distG(v, x) = s. And we
have distG(v, x) = distG(v, ux) + distG(ux, x). Notice that distG(v,parT (ux)(x)) = distG(v, ux) +
distG(ux, parT (ux)(x)) = distG(v, x)− 1 = s− 1. Thus,

dep
T̂

(x) = dep
T̂

(par
T̂

(x)) + 1 = dep
T̂

(parT (ux)(x)) + 1 = s.

To conclude, T̂ is a local complete shortest path tree with root v and radius s1 + s2 in G. In
addition, dep

T̂
records the depth of every vertex in T̂ .

C.2 Multiple Local Shortest Path Trees

In this section, we show a procedure which is a generalization of neighbor increment procedure shown
in Section B.1. The input of the procedure is an undirected graph G = (V,E) and a parameter m
which is larger than |V | = n. The output will be n local shortest path trees (See Definition C.1) such
that ∀v ∈ V, there is a shortest path tree with root v. Furthermore, the size of each shortest path tree
is at least

⌈
(m/|V |)1/4

⌉
and at most

⌈
(m/|V |)1/2

⌉
. The algorithm is described in Algorithm 6. The

high level idea is that we firstly use doubling technique and the algorithm described in Section C.1
to get local complete shortest path trees rooted at every vertex with multiple radius, and then use
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these LCSPTs to find large enough local shortest path trees rooted at every vertex. The doubling
algorithm is described in Algorithm 5.

Definition C.5. Given a graph G = (V,E) and a parameter m ∈ Z≥0,m ≥ |V |, the number of
iterations of MultiRadiusLCSPT(G,m) (Algorithm 5) is the value of r at the end of the procedure.

Lemma C.6. Let G = (V,E) be an undirected graph, and m be a parameter which is at least
|V |. Let (r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}) =
MultiRadiusLCSPT(G,m) (Algorithm 5).We have following properties.

1. ∀i ∈ {0} ∪ [r], v ∈ V, if Ti(v) 6= null, then Ti(v) is a LCSPT (See Definition C.3) with root v
and radius 2i in G. Furthermore, depTi(v) records the depth of every vertex in Ti(v).

2. ∀i ∈ {0} ∪ [r], v ∈ V, |BG,2i(v)| ≥ d(m/n)1/4e ⇔ Ti(v) = null.

3. For v ∈ V, if Tr(v) 6= null, then VTr(v) = {u ∈ V | distG(u, v) <∞}.

4. The number of iterations (see Definition C.5) r ≤ min(dlog(diam(G))e, dlog(m/n)e) + 1.

Proof. For property 1, we can prove it by induction. If i = 0, the property holds by line 4, line 5
and line 7. Now suppose ∀v ∈ V, if Ti−1(v) is not null, then Ti−1(v) is a LCSPT with root v and
radius 2i−1 in G, and depTi(v) records the depth of every vertex in Ti(v). For v ∈ V, notice that the
only place that will make Ti(v) not null is line 15, and if the procedure run line 15, any of Ti−1(v)
and Ti−1(u) with u ∈ VTi−1(v) cannot be null. By Lemma C.4, since the radius of Ti−1(v) is 2i−1,
and ∀u ∈ VTi−1(v), Ti−1(u) has radius 2i−1, Ti(v) is a LCSPT with root v and radius 2i. Furthermore
depTi(v) records the depth of every vertex in Ti(v).

For property 2, if i = 0, then this property holds by line 4 to line 7. For i ∈ [r], our proof is
by induction. Suppose the property holds for i − 1. Now consider Ti(v) for v ∈ V . The only way
to make Ti(v) not null is line 15. If the procedure invokes line 15, then any of Ti−1(v) and Ti−1(u)
with u ∈ VTi−1(v) cannot be null. By property 1 and Lemma C.4, Ti(v) will be a LCSPT with
root v and radius 2i in line 15. If |BG,2i(v)| ≥ d(m/n)1/4e, then Ti(v) is set to be null in line 16.
Thus, we already got |BG,2i(v)| ≥ d(m/n)1/4e ⇒ Ti(v) = null. Now we want to show |BG,2i(v)| ≥
d(m/n)1/4e ⇐ Ti(v) = null. If Ti(v) = null, then there are three cases. The first case is that
Ti(v) is set at line 12. In this case, Ti−1(v) = null implies |BG,2i(v)| ≥ |BG,2i−1(v)| ≥ d(m/n)1/4e.
The second case is that Ti(v) is set at line 13. In this case, ∃u ∈ VTi−1(v) = BG,2i−1(v) such that
|BG,2i−1(u)| ≥ d(m/n)1/4e which implies |BG,2i(v)| ≥ d(m/n)1/4e. In the final case, Ti(v) is set at
line 16, and thus, |BG,2i(v)| ≥ d(m/n)1/4e.

For property 3, if Tr(v) 6= null, then by property 1, we know VTr(v) = BG,2r(v). By the condition
in line 19, we know VTr(v) = VTr−1(v) which implies BG,2r(v) = BG,2r−1(v). Thus, VTr(v) = {u ∈ V |
distG(u, v) <∞}.

For property 4, we can prove it by contradiction. If r > dlog(diam(G))e + 1, then let i =
dlog(diam(G))e + 1. By the condition in line 19, we know there is a vertex v ∈ V such that
Ti(v) 6= null and VTi(v) 6= VTi−1(v). It means that BG,2i(v) 6= BG,2i−1(v), i.e. ∃u ∈ V,distG(v, u) >
2i−1. But this contradicts to i = dlog(diam(G))e + 1. Similarly, if r > dlog(m/n)e + 1, then let
i = dlog(m/n)e + 1. By the condition in line 19, we know there is a vertex v ∈ V such that
Ti(v) 6= null and VTi(v) 6= VTi−1(v). If 2i−1 ≤ diam(G), then we have VTi(v) 6= VTi−1(v) which leads
to a contradiction. If 2i−1 ≥ diam(G), then |BG,2i−1(v)| ≥ 2i−1 ≥ m/n ≥ d(m/n)1/4e which
contradicts to property 2.

28



Next, we show how to use Algorithm 5 to design an algorithm which can output |V | number of
local shortest path trees rooted at every vertex in V . The details of the algorithm is described in
Algorithm 6, and the guarantees of the algorithm is stated in the following lemma.

Algorithm 6 Large Local Shortest Path Trees
1: procedure MultipleLargeTrees(G = (V,E),m) . Lemma C.7, Lemma C.11
2: Output: {T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }.
3:

(
r, {Ti(v) | i ∈ {0} ∪ [r], v ∈ V }, {depTi(v) | i ∈ {0} ∪ [r], v ∈ V, Ti(v) 6= null}

)
= MultiRadiusLCSPT(G,m). . Algorithm 5

4: ∀v ∈ V with Tr(v) 6= null let T̃ (v) = Tr(v) and depT̃ (v) ← depTr(v) .

5: ∀v ∈ V with Tr(v) = null, let T̃0(v) = ({v},parT̃0(v)), s0(v) = 0, and depT̃0(v) : {v} → Z≥0,

6: where parT̃0(v) : {v} → {v} satisfies parT̃0(v)(v) = v, and depT̃0(v)(v) = 0.

7: for i = 1→ r do
8: for v ∈ {u ∈ V | Tr(u) = null} do
9: if ∀u ∈ VT̃i−1(v), Tr−i(u) 6= null then

10:
(
T̃i(v), depT̃i(v)

)
= TreeExpansion

T̃i−1(v), depT̃i−1(v)
,

⋃
u∈V

T̃i−1(v)

{
Tr−i(u)

}
,

⋃
u∈V

T̃i−1(v)

{
depTr−i(u)

} .
. Algorithm 4

11: If |VT̃i(v)| < d(m/n)1/4e, then let si(v) = si−1(v) + 2r−i.

12: Otherwise, let si(v) = si−1(v), T̃i(v)← T̃i−1(v),depT̃i(v) ← depT̃i−1(v) .

13: else
14: Let si(v) = si−1(v), T̃i(v) = T̃i−1(v),depT̃i(v) ← depT̃i−1(v) .

15: end if
16: end for
17: end for . T̃r(v) is a LCSPT with root v and the largest radius s.t. |VT̃r(v)| < d(m/n)1/4e.
18: ∀v ∈ V, if |ΓG(v) ∪ {v}| ≤ d(m/n)1/4e, then let N(v) = ΓG(v) ∪ {v}.
19: Otherwise arbitrarily choose N(v) ⊆ ΓG(v) ∪ {v} with |N(v)| = d(m/n)1/4e.
20: for v ∈ {u ∈ V | Tr(u) = null} do . Expand T̃r(v) a little bit to get large enough T̃ .
21: if ∀u ∈ VT̃r(v), T0(u) 6= null then

22:
(
T̃ (v), dep

T̃ (v)

)
= TreeExpansion

T̃r(v), depT̃r(v)
,

⋃
u∈V

T̃r(v)

{T0(u)} ,
⋃

u∈V
T̃r(v)

{
depT0(u)

} . . Algorithm 4

23: else
24: Select an arbitrary uv ∈ VT̃r(v) with T0(uv) = null.

25: Let VT̃ (v) = N(uv) ∪ VT̃r(v).

26: ∀x ∈ VT̃r(v), let parT̃ (v)(x) = parT̃r(v)(x),depT̃ (v)(x) = depT̃r(v)(x).

27: ∀x ∈ N(uv), x 6∈ VT̃r(v), let parT̃ (v)(x) = uv,depT̃ (v)(x) = depT̃r(v)(uv) + 1.

28: Let T̃ (v) = (VT̃ (v),parT̃ (v)).

29: end if
30: end for
31: return {T̃ (v) | v ∈ V }, {depT̃ (v) | v ∈ V }.
32: end procedure

Lemma C.7. Let G = (V,E) be an undirected graph, and m be a parameter which is at least 16|V |.
Let

(
{T̃ (v) | v ∈ V }, {dep

T̃ (v)
| v ∈ V }

)
= MultipleLargeTrees(G,m). (Algorithm 6) Then, the

output satisfies the following properties.

1. ∀v ∈ V, T̃ (v) is a LSPT (See Definition C.1) with root v, and dep
T̃ (v)

records the depth of

every vertex in T̃ (v).

2. ∀v ∈ V, u ∈ V
T̃ (v)

, w ∈ V \ V
T̃ (v)

, it satisfies distG(v, u) ≤ distG(v, w).
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3. ∀v ∈ V, either |V
T̃ (v)
| ≥ d(m/n)1/4e or V

T̃ (v)
= {u ∈ V | distG(u, v) <∞}.

4. ∀v ∈ V, |V
T̃ (v)
| ≤ b(m/n)1/2c.

Proof. Before we prove above properties, we first show some crucial observations.

Claim C.8. ∀v ∈ V, i ∈ {0} ∪ [r], if Ti(v) 6= null, then Ti(v) is a LCSPT with root v and radius
2i in graph G. Furthermore, depTi(v) : VTi(v) → Z≥0 records the depth of every vertex in Ti(v). If
Ti(v) = null, then |BG,2i(v)| ≥ d(m/n)1/4e.

Proof. Follows by property 1 and property 2 of Lemma C.6 directly.

Claim C.9. Let v ∈ V be a vertex with Tr(v) = null. Then, ∀i ∈ {0} ∪ [r], T̃i(v) is a LCSPT (See
Definition C.3) with root v and radius si(v) in G, and dep

T̃i(v)
records the depth of every vertex in

T̃i(v). Furthermore, we have |BG,si(v)(v)| < d(m/n)1/4e, |BG,si(v)+2r−i(v)| ≥ d(m/n)1/4e.

Proof. Let v ∈ V be a vertex with Tr(v) = null. When i = 0, then due to line 5 and line 6, T̃0(v) is
a LCSPT (See Definition C.3) with root v and radius 0 = s0(v) in G. According to property 2 of
Lemma C.6, since Tr(v) = null, we know |BG,0+2r(v)| ≥ d(m/n)1/4e.

For i ∈ [r], we prove it by induction. Suppose the claim is true for i − 1. By Claim C.8,
Lemma C.4 and the condition in line 9, if the procedure executes line 10, then we know T̃i(v) is a
LCSPT with root v and radius si−1(v)+2r−i in G at the end of the execution of line 10, and dep

T̃i(v)

records the depth of every vertex in T̃i(v). If |V
T̃i(v)
| < d(m/n)1/4e, then |BG,si−1(v)+2r−i(v)| <

d(m/n)1/4e. The procedure will execute line 11, and thus si(v) is the radius of T̃i(v). In addition,
since si(v) = si−1(v) + 2r−i and |BG,si−1(v)+2r−i+1(v)| ≥ d(m/n)1/4e, we have |BG,si(v)+2r−i(v)| ≥
d(m/n)1/4e. If at the end of line 10, |V

T̃i(v)
| ≥ d(m/n)1/4e, then we know |BG,si−1(v)+2r−i(v)| ≥

d(m/n)1/4e. In this case, T̃i(v), si(v) and dep
T̃i(v)

will be set to be T̃i−1(v), si−1(v) and dep
T̃i(v)

respectively, and thus |BG,si(v)(v)| < d(m/n)1/4e. If the condition in line 9 does not hold, then we
know |BG,si−1(v)+2r−i(v)| ≥ d(m/n)1/4e by claim C.8. In this case, T̃i(v), si(v) and dep

T̃i(v)
will also

be set to be T̃i−1(v), si−1(v) and dep
T̃i(v)

respectively, and thus |BG,si(v)(v)| < d(m/n)1/4e.

Claim C.9 shows that for each vertex v ∈ V , we know T̃r(v) is a LCSPT with root v and radius
sr(v) in G such that |BG,sr(v)(v)| < d(m/n)1/4e and |BG,sr(v)+1(v)| ≥ d(m/n)1/4e.

Now, let us prove property 1 and property 2. For v ∈ V, if Tr(v) 6= null, then T̃ (v),dep
T̃ (v)

will
be set to be Tr(v),depTr(v) respectively. By Claim C.8, the properties holds. Let v be a vertex in
V with Tr(v) = null. If T̃ (v) is assigned at line 22, then by Lemma C.4, we know T̃ (v) is a LCSPT
with root v, and dep

T̃ (v)
records the depth of every vertex in T̃ (v). Thus, both properties hold. If

T̃ (v) is assigned at line 28, then there are two cases for the vertices in V
T̃ (v)

:

1. If x is in V
T̃r(v)

, then since Claim C.9 shows T̃r(v) is a LCSPT with root v, it is easy to show
dep

T̃ (v)
(x) = dep

T̃r(v)
(x) = distG(v, x), and par

T̃ (v)
(x) = par

T̃r(v)
(x) ∈ E.

2. if x is in N(uv) but not in V
T̃r(v)

, then since T̃r(v) is a LCSPT with root v and radius sr(v),
distG(v, x) ≥ sr(v) + 1. Also notice that distG(v, x) ≤ distG(v, uv) + distG(uv, x) ≤ sr(v) + 1.
Therefore, distG(v, x) = sr(v) + 1,dep

T̃ (v)
(x) = dep

T̃ (v)
(uv) + 1 = distG(v, x) = sr(v) + 1.

Since x ∈ N(uv), (par
T̃ (v)

(x), x) = (uv, x) ∈ E.
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Thus, T̃ is a LSPT with root v, and it proves property 1. Due to above both cases, we know
BG,sr(v)(v) ⊆ V

T̃
, and ∀x ∈ V

T̃ (v)
, distG(v, x) ≤ sr(v) + 1. Thus, property 2 holds.

For property 3 and property 4, we have two cases. The first case is when v satisfies Tr(v) 6=
null. In this case T̃ (v) = Tr(v), due to property 3, 4 of Lemma C.6, we have V

T̃ (v)
= {u ∈ V |

distG(v, u) < ∞}, and |V
T̃ (v)
| < d(m/n)1/4e ≤ b(m/n)1/2c. The second case is Tr(v) = null. In

this case, if T̃ (v) is assigned at line 22, then V
T̃ (v)

= BG,sr(v)+1(v). Then by Claim C.9, we can
get |V

T̃ (v)
| ≥ d(m/n)1/4e. Because |V

T̃r(v)
| < d(m/n)1/4e and ∀u ∈ V

T̃r(v)
, |VT0(u)| < d(m/n)1/4e, we

know |V
T̃ (v)
| ≤ b(m/n)1/2c. If T̃ (v) is assigned at line 28, then |V

T̃ (v)
| ≥ |N(uv)| ≥ d(m/n)1/4e, and

|V
T̃ (v)
| ≤ |V

T̃r(v)
|+ |N(uv)| < 2 · d(m/n)1/4e ≤ b(m/n)1/2c.

Definition C.10. Let graph G = (V,E), and let m be a parameter which is at least 16|V |. The
number of iterations of

(
{T̃ (v) | v ∈ V }, {dep

T̃ (v)
| v ∈ V }

)
= MultipleLargeTrees(G,m) (Al-

gorithm 6) is defined as the value of r in the procedure.

Lemma C.11 (Number of iterations of Algorithm 6). Let G = (V,E) be an undirected graph,
and let m be a parameter which is at least 16|V |. The number of iterations (see Definition C.10)
of
(
{T̃ (v) | v ∈ V }, {dep

T̃ (v)
| v ∈ V }

)
= MultipleLargeTrees(G,m) (Algorithm 6) is at most

min(dlog(diam(G))e, dlog(m/n)e) + 1.

Proof. It follows by property 4 of Lemma C.6 directly.

C.3 Path Generation and Root Changing

In this section, we show a procedure which can output a path from a certain vertex to the root
in a rooted tree. Then we show how to use the procedure to change the root of a rooted tree
to a certain vertex in the tree. To output the vertex-root path, we have two stages. The first
stage is using doubling method to compute the depth and the 2ith (for all i ∈ {0, 1, · · · , log(dep)})
ancestor of each vertex. The second stage is using divide-and-conquer technique to split the path
into segments, and recursively find the path for each segment. Once we have the procedure to find
the vertex-root path, then we can use it to implement root-changing. The idea is very simple, if we
want to change the root to a certain vertex, we just need to find the path from that vertex to the
root, and reverse the parent pointers of every vertex on the path. The path finding procedure is
described in Algorithm 8. The root changing procedure is described in Algorithm 9.

Definition C.12. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V. The number of iterations of FindAncestors(par) is defined as the value of r at the end of the
procedure.

Lemma C.13. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V. Let (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par) (Algorithm 7). Then the number of
iterations (see Definition C.12) r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records
the depth of every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).

Proof. hl and gl will satisfies the properties in the following claim.

Claim C.14. ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v), and if deppar(v) ≤ 2i − 1 then hi(v) =
deppar(v). Otherwise deppar(v) = null.
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Algorithm 7 Depth and Ancestors of Every Vertex
1: procedure FindAncestors (par : V → V ) . Lemma C.13
2: For v ∈ V let g0(v) = par(v). If par(v) = v, let h0(v) = 0. Otherwise, let h0(v) = null.
3: Let l = 0.
4: for ∃v ∈ V, hl(v) = null do
5: l← l + 1.
6: for v ∈ V do
7: Let gl(v) = gl−1(gl−1(v)). . gl is par(2l) .
8: if hl−1(v) 6= null then hl(v) = hl−1(v).
9: else if hl−1(gl−1(v)) 6= null then hl(v) = hl−1(gl−1(v)) + 2l−1.

10: else hl(v) = null.
11: end if
12: end for
13: end for
14: Let r = l,deppar ← hr.
15: return r, deppar, {gi : V → V | i ∈ {0} ∪ [r]}. . deppar : V → Z≥0

16: end procedure

Proof. The proof is by induction. The claim is obviously true when i = 0. Suppose the claim is
true for i − 1. We have gi(v) = gi−1(gi−1(v)) = par(2i−1)(par(2i−1)(v)) = par(2i)(v). If hi(v) 6= null,
then there are two cases. In the first case, we have hi(v) = hi−1(v). By induction we know hi(v) =
deppar(v). In the second case, we have hi(v) = hi−1(gi−1(v))+2i−1 = deppar(par(2i−1)(v))+2i−1. No-
tice that in this case hi−1(v) = null, thus by the induction, deppar(v) ≥ 2i−1. Therefore, deppar(v) =

deppar(par(2i−1)(v)) + 2i−1 = hi(v). If hi(v) = null, then it means that hi−1(par(2i−1)(v)) = null
which implies that deppar(v) ≥ 2i.

Due to the above claim, we know that if i ≥ dlog(deppar(v) + 1)e then hi(v) 6= null. Thus,
we have r ≤ dlog(dep(par) + 1)e. Since the procedure returns hr as deppar, the returned deppar is
correct.

Lemma C.15. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V.
Let q be a vertex in V . Let (deppar, P, w) = FindPath(par, q) (Algorithm 8). Then deppar : V →
Z≥0 records the depth of every vertex in V and P ⊆ V is the set of all vertices on the path from q to
the root of q, i.e. P = {v ∈ V | ∃k ≥ 0, v = par(k)(q)}. If deppar(q) ≥ 1, then w = par(deppar(q)−1)(q).
Furthermore, k should be at most dlog(dep(par))e.

Proof. By Lemma C.13, since (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par), we know r
should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of every vertex in V,
and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v). Thus k = dlog(deppar(q))e ≤ dlog(dep(par) + 1)e

Now let us prove that P is the vertex set of all the vertices on the path from q to the root of q.
We use divide-and-conquer to get P . The following claim shows that Si is a set of segments which
is a partition of the path, and each segment has length at most 2k−i.

Claim C.16. ∀i ∈ {0} ∪ [k], Si satisfies the following properties:

1. ∃(x, y) ∈ Si such that x = q.

2. ∃(x, y) ∈ Si such that y = gr(q).
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Algorithm 8 Path in a Tree
1: procedure FindPath (par : V → V, q ∈ V ) . Lemma C.15
2: Output: deppar : V → Z≥0, P ⊆ V,w ∈ V ∪ {null}.
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par) . Algorithm 7
4: Let S0 = {(q, gr(q))}, k = dlog(deppar(q))e. . S0 contains (q, the root of q)
5: for i = 1→ k do . Si is a set of segments partitioned the path from q to the root of q
6: Let Si ← ∅.
7: for (x, y) ∈ Si−1 do
8: if deppar(x)− deppar(y) > 2k−i then Si ← Si ∪ {(x, gk−i(x)), (gk−i(x), y)}.
9: else Si ← Si ∪ {(x, y)}.

10: end if
11: end for
12: end for . Sk only contains segments with length at most 1
13: Let P ← {q}
14: for (x, y) ∈ Sk do
15: Let P ← P ∪ {y}
16: end for
17: Find w ∈ P with deppar(w) = 1. If w does not exist, let w ← null.
18: return (deppar, P, w)
19: end procedure

3. ∀(x, y) ∈ Si, deppar(y)− deppar(x) ≤ 2k−i.

4. ∀(x, y) ∈ Si, if y 6= gr(q), then ∃(x′, y′) ∈ Si, x′ = y.

5. ∀(x, y) ∈ Si, ∃j ∈ Z≥0, par(j)(x) = y.

Proof. Our proof is by induction. According to line 4, all the properties hold when i = 0. Suppose
all the properties hold for i−1. For property 1, by induction we know there exists (x, y) ∈ Si−1 such
that x = q. Then by line 8 and line 9, there must be an (x, y′) in Si. For property 2, by induction
we know there exists (x, y) ∈ Si−1 such that y = gr(q). Thus, there must be an (x′, y) in Si. For
property 3, if (x, y) is added into Si by line 9, then deppar(x)−deppar(y) ≤ 2k−i. Otherwise, in line 8,
we have deppar(x) − deppar(gk−i(x)) ≤ 2k−i, deppar(gk−i(x)) − deppar(y) ≤ 2k−i+1 − 2k−i = 2k−i.
For property 4, if (x, y) is added into Si by line 9, then by induction there is (y, y′) ∈ Si−1,
and thus by line 9 and line 8, there must be (y, y′′) ∈ Si. Otherwise, in line 8 will generate two
pairs (x, gk−i(x)), (gk−i(x), y). For (x, gk−i(x)), the property holds. For (gk−i(x), y), there must be
(y, y′) ∈ Si−1 and thus there should be (y, y′′) ∈ Si. For property 5, since gk−i(x) = par(k−i)(x), for
all pairs generated by line 8 and line 9, the property holds.

By Claim C.16, we know

Sk = {(q,par(q)), (par(q),par(2)(q)), (par(2)(q),par(3)(q)), · · · , (par(deppar(q)−1)(q),par(deppar(q))(q))}.

Thus, P is the set of all the vertices on the path from q to the root of q. And w = par(deppar(q)−1)(q)
when deppar(q) ≥ 1.

Lemma C.17. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V. Let q be a vertex in V . Let p̂ar = RootChange(par, q) (Algorithm 9). Then p̂ar : V → V
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Algorithm 9 Root Changing
1: procedure RootChange(par : V → V, q ∈ V ) . Lemma C.17
2: Output: p̂ar : V → V.
3: (deppar, P, w) = FindPath(par, q). . Algorithm 8
4: ∀v ∈ V \ P, let p̂ar(v) = par(v).
5: Let p̂ar(q) = q.
6: Let h : {0} ∪ [deppar(q)]→ P such that ∀i ∈ {0} ∪ [deppar(q)], h(i) = x where deppar(x) = i.
7: for v ∈ P \ {q} do . Reverse par of all the vertices on the path from q to the root of q.
8: Let p̂ar(v) = h(deppar(v) + 1).
9: end for

10: return p̂ar.
11: end procedure

is still a set of parent pointers (See Definition B.6) on V. ∀v ∈ V, if par(∞)(v) = par(∞)(q) then
p̂ar(∞)(v) = q. Otherwise p̂ar(∞)(v) = par(∞)(v). ∀u 6= v ∈ V,par(v) = u ⇔ either p̂ar(v) = u or
p̂ar(u) = v. Furthermore, dep(p̂ar) ≤ 2 dep(par).

Proof. For a vertex v ∈ V, if {u | i ∈ Z≥0, u = par(i)(v)}∩P = ∅, then we have ∀i ∈ Z≥0,par(i)(v) =

p̂ar(i)(v). According to Lemma C.15, P = {u ∈ V | i ∈ Z≥0,par(i)(q) = u}. Then for all v ∈ P \{q},
if par(u) = v then p̂ar(v) = u. Thus, ∀u ∈ P, p̂ar(∞)(u) = q. Let i∗ be the smallest number such
that par(i∗)(v) ∈ P. Then p̂ar(i∗)(v) ∈ P. Thus, p̂ar(∞)(v) = p̂ar(∞)(p̂ar(i∗)(v)) = q. Furthermore,
we have ∀v ∈ V,dep(p̂ar) ≤ dep(par) + deppar(q) ≤ 2 dep(par).

C.4 Spanning Forest Expansion

In this section, we give the definition of spanning forest. If we are given a spanning forest of a
contracted graph and spanning trees of each contracted component, then we show a procedure
which can merge them to get a spanning forest of the original graph. Before go to the details, let
us formally define the spanning forest.

Definition C.18 (Rooted Spanning Forest). Let G = (V,E) be an undirected graph. Let par : V →
V be a set of parent pointers which is compatible (Definition B.8) with G. If ∀u, v ∈ V,distG(u, v) <
∞ ⇒ par(∞)(u) = par(∞)(v), and ∀v ∈ V,par(v) 6= v ⇒ (v,par(v)) ∈ E, then we call par a rooted
spanning forest of G.

The Algorithm 10 shows how to combine the spanning forest in the contracted graph with local
spanning trees to get a spanning forest in the graph before contraction. Figure 1 shows an example.

Lemma C.19. Let G2 = (V2, E2) be an undirected graph. Let p̃ar : V2 → V2 be a set of parent
pointers (See Definition B.6) which satisfies that ∀v ∈ V2 with p̃ar(v) 6= v, (v, p̃ar(v)) must be
in E2. Let G1 = (V1, E1) be an undirected graph satisfies V1 = {v ∈ V2 | p̃ar(v) = v}, E1 =

{(u, v) ∈ V1 × V1 | u 6= v,∃(x, y) ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}. Let par : V1 → V1

be a rooted spanning forest (See Definition C.18) of G1. Let f : V1 × V1 → {null} ∪ (V2 × V2)
satisfy the following property: for u 6= v ∈ V1, if par(u) = v, then f(u, v) ∈ {(x, y) ∈ E2 |
p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}, and f(v, u) ∈ {(x, y) ∈ E2 | p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let
p̂ar = ForestExpansion(par, p̃ar, f). Then p̂ar : V2 → V2 is a rooted spanning forest of G2. In
addition, dep(p̂ar) ≤ (2 · dep(p̃ar) + 1)(dep(par) + 1).
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Figure 1: Each tree with green edges on the top-left is a rooted tree of each contracted component.
For example, there are five components {1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11, 12}, {13, 14, 15}, {16, 17}.
The dashed edges in the bottom-left figure is a root spanning tree of five components. The red edges
in the top-right figure correspond to the dashed edges in the bottom-left figure before contraction.
In bottom-right figure, by changing (see blue edges) the root of each contracted tree, we get a rooted
spanning tree in the original graph
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Algorithm 10 Spanning Forest Expansion
1: procedure ForestExpansion(par : V1 → V1, p̃ar : V2 → V2, f : V1 × V1 → {null} ∪ (V2 × V2))

. Lemma C.19
2: Output: p̂ar : V2 → V2.

3: ((V ′2 , ∅), p̃ar
(∞)

) = TreeContraction((V2, ∅), p̃ar). . Algorithm 2
4: for v ∈ V1 do
5: Let V2(v) = {u ∈ V2 | p̃ar

(∞)
(u) = v}.

6: Let p̃arv : V2(v)→ V2(v) such that ∀u ∈ V2(v), p̃arv(u) = p̃ar(u).
7: if par(v) 6= v then
8: Let (xv, yv) = f(v,par(v)).
9: p̂arv = RootChange(p̃arv, xv). . Algorithm 9

10: Let p̂ar(xv) = yv, and ∀u ∈ V2(v) \ {xv}, p̂ar(u) = p̂arv(u).
11: else ∀u ∈ V2(v) let p̂ar(u) = p̃arv(u).
12: end if
13: end for
14: return p̂ar.
15: end procedure

Proof. Let x, y ∈ V2, u = p̃ar(∞)(x), v = p̃ar(∞)(y) ∈ V1 if distG2(x, y) < ∞, then since E1 =

{(u′, v′) ∈ V1 × V1 | u′ 6= v′, ∃(x′, y′) ∈ E2, p̃ar(∞)(x′) = u′, p̃ar(∞)(y′) = v′}, it must be true that
distG1(u, v) < ∞. Since par is a spanning forest of G1, we have par(∞)(u) = par(∞)(v). It suffices
to say ∀x ∈ V2, p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)). We can prove it by induction on deppar(p̃ar(∞)(x)).

Let u = p̃ar(∞)(x). If deppar(u) = 0, then par(∞)(u) = u. In this case, we have p̂ar(∞)(x) =

p̃ar(∞)(x) = u = par(∞)(u) = par(∞)(p̃ar(∞)(x)), and also we have depp̂ar(x) = depp̃ar(x). Now
suppose for all x ∈ V2 with deppar(p̃ar(∞)(x)) ≤ i − 1, it has p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)) and
depp̂ar(x) ≤ i · (2 dep(p̃ar) + 1). Let y ∈ V2 satisfy deppar(p̃ar(∞)(y)) = i. Let v = p̃ar(∞)(y). By
line 8 and the properties of f , we know p̃ar(∞)(xv) = v, and p̃ar(∞)(yv) = par(v). By line 9, line 10
and Lemma C.17, we have p̂ar(∞)

v (y) = xv, p̂ar(xv) = yv. Thus, there must be k ≤ 2 depp̃ar(y) such
that p̂ar(k)(y) = xv. Since p̂ar(∞)(yv) = par(∞)(v) and depp̂ar(yv) ≤ i · (2 dep(p̃ar) + 1), we have
p̂ar(∞)(y) = par(∞)(v) = par(∞)(p̃ar(∞)(y)) and depp̂ar(y) ≤ (i+ 1) · (2 dep(p̃ar) + 1).

In addition, by the properties of f and Lemma C.17, ∀v ∈ V2 with p̂ar(v) 6= v, we have
(v, p̂ar(v)) ∈ E2. To conclude, p̂ar : V2 → V2 is a spanning forest of G2, and dep(p̂ar) ≤ (dep(par)+
1)(2 dep(p̃ar) + 1).

C.5 Spanning Forest Algorithm

In this section, we show how to apply the ideas shown in connectivity algorithm to get an spanning
forest algorithm. Algorithm 11 can output a spanning forest of a graph G, but the edges are not
orientated. Then in the Algorithm 12, we assign each forest edge an direction thus it is a rooted
spanning forest.

Before we prove the correctness of the algorithms, let us briefly introduce the meaning of each
variables appeared in the algorithms.

In Algorithm 11, G0 is the original input graph, for i ∈ {0} ∪ [r− 1], G′i is obtained by deleting
all the small size connected components in Gi, and Gi+1 is obtained by contracting some vertices of
G′i. For a vertex v in graph Gi, if hi(v) = null, then it means that the connected component which
contains v is deleted when obtaining G′i. If hi(v) 6= null, it means that the vertex v is contracted
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Algorithm 11 Undirected Graph Spanning Forest
1: procedure SpanningForest(G = (V,E),m, r) . Corollary C.24, Theorem C.29
2: Output: FAIL or {Vi ⊆ V | i ∈ {0}∪ [r]}, {pari : Vi → Vi | i ∈ {0}∪ [r−1]}, {hi : Vi → Vi+1∪{null} |
i ∈ {0} ∪ [r − 1]}, F ⊆ E.

3: n0 = n = |V |, G0 = (V0, E0) = (V,E).
4: Let g0 : E0 → E be an identity map.
5: Let n′0 = n0.
6: for i = 0→ r − 1 do
7: Di ← ∅.
8:

(
{T̃i(v) | v ∈ Vi}, {depT̃i(v) | v ∈ Vi}

)
= MultipleLargeTrees(Gi,m). . Algorithm 6

9: Let V ′i = {v ∈ Vi | |VT̃i(v)| ≥ d(m/ni)1/4e}, E′i = {(u, v) ∈ Ei | u, v ∈ V ′i }, G′i = (V ′i , E
′
i).

10: ∀v ∈ Vi \ V ′i , let hi(v) = null, uv = minu∈VT̃i(v)
u. Let pari(v) = parT̃i(uv)(v).

11: ∀v ∈ Vi \ V ′i , if pari(v) 6= v, then Di ← Di ∪ {gi(pari(v), v), gi(v,pari(v))}.
12: Let γi = d(m/ni)1/4e, pi = min((30 log(n) + 100)/γi, 1/2).
13: Let li : V ′i → {0, 1} be chosen randomly s.t. ∀v ∈ V ′i , li(v) are i.i.d. Bernoulli random variables

with Pr(li(v) = 1) = pi.
14: Let Li = {v ∈ V ′i | li(v) = 1} ∪ {v ∈ V ′i | ∀u ∈ VT̃i(v), li(u) = 0}.
15: For v ∈ V ′i , let zi(v) = arg minu∈Li∩VT̃i(v)

depT̃i(v)(u). If zi(v) = v, let pari(v) = v.

16: Otherwise, (depT̃i(v), Pi(v), wi(v)) = FindPath(parT̃i(v), zi(v)), and let pari(v) = wi(v).

. Algorithm 8
17: Let ((Vi+1, Ei+1),par

(∞)
i ) = TreeContraction(G′i,pari : V ′i → V ′i ). . Algorithm 2

18: Gi+1 = (Vi+1, Ei+1), ni+1 = |Vi+1|.
19: ∀v ∈ V ′i , hi(v) = par

(∞)
i (v). If pari(v) 6= v, then Di ← Di ∪ {gi(pari(v), v), gi(v,pari(v))}.

20: Let gi+1 : Ei+1 → E satisfy gi+1(u, v) = min(x,y)∈Ei,hi(x)=u,hi(y)=v gi(x, y).
21: Let n′i+1 = n′i + ni+1. If n′i+1 > 40n, then return FAIL.
22: end for
23: If nr 6= 0, return FAIL.
24: Let F =

⋃
i∈{0}∪[r−1]Di.

25: return {Vi | i ∈ {0} ∪ [r]}, {pari | i ∈ {0} ∪ [r − 1]}, {hi | i ∈ {0} ∪ [r − 1]}, F.
26: end procedure

to the vertex hi(v) when obtaining Gi+1. pari is a rooted forest (may not be spanning) in graph
Gi, if a tree from the forest is spanning in Gi, then all the vertex in that tree will be deleted when
obtaining G′i. Otherwise all the vertices in that tree will be contracted to the root, and the root will
be one of the vertex in Gi+1. Since each connected component in Gi+1 is obtained by contraction
of some vertices in a connected component in Gi, each edge in Gi+1 must correspond to an edge in
Gi where the end vertices of the edge are contracted to different vertices. Thus, each edge in Gi
should correspond to an edge in G, and gi : Ei → E records the such correspondence. Di records
the edges added to the spanning forest F in the ith round. For each vertex v in graph Gi, T̃i(v) is
a local shortest path tree (See definition C.1) which is either with a large size or is a spanning tree
in the component of v. Li is a set of random leaders in G′i such that in each local shortest path
tree T̃i(v), there is at least one leader shown in the tree. The following lemmas formally state the
properties of the algorithm.

Lemma C.20. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return FAIL,
then diam(G) = diam(G0) ≥ diam(G′0) ≥ diam(G1) ≥ diam(G′1) ≥ · · · ≥ diam(Gr).

Proof. By property 3 of Lemma C.7, ∀[i] ∈ {0} ∪ [r − 1], there is no edge between Vi \ V ′i and V ′i .
Thus, diam(G′i) ≤ diam(Gi). Then due to property 1 of Corollary B.13, we have diam(Gi+1) ≤
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diam(G′i).

Lemma C.21. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return FAIL,
then ∀i ∈ {0} ∪ [r − 1], dep(pari) ≤ min(diam(G), b(m/ni)1/2c).

Proof. Let v ∈ Vi. If v ∈ Vi\V ′i , then due to property 3 of Lemma C.7, we have V
T̃i(v)

= V
T̃i(uv)

. Due

to Lemma C.20 and Lemma C.7, we have deppari
(v) ≤ dep(T̃i(uv)) ≤ min(diam(G), b(m/ni)1/2c).

For v ∈ Vi, we define distGi(v, Li) = minu∈Li distGi(v, u). By Lemma C.7, we know distGi(v, Li) =
distGi(v, zi(v)). Since T̃i(v) is a LSPT (See Definition C.1), by applying Lemma C.15, we know
distGi(v, Li) = distGi(wi(v), Li) + 1, and (v, wi(v)) ∈ Ei. Thus, by induction on distGi(v, Li), we
can get deppari

(v) ≤ distGi(v, Li). By Lemma C.20 and Lemma C.7, we can conclude dep(pari)(v) ≤
min(diam(G), b(m/ni)1/2c).

Lemma C.22. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return FAIL,
then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =


v i = −1;

hi(h
(i−1)(v)) h(i−1)(v) 6= null;

null otherwise .

Then we have following properties:

1. If h(i)(v) 6= null, then h(i)(v) ∈ Vi+1.

2. ∀u, v ∈ V, h(i)(u) 6= h(i)(v), (u, v) ∈ E, we have (h(i)(u), h(i)(v)) ∈ Ei+1.

3. ∀(x, y) ∈ Ei+1, (u, v) = gi+1(x, y), we have (u, v) ∈ E, h(i)(u) = x, h(i)(v) = y.

Proof. For property 1, we can prove it by induction. It is true for i = −1. If h0(v) 6= null, we
know h0(v) must be assigned at line 19. Due to property 2 of Lemma B.10, h0(v) ∈ V1. Suppose
∀v ∈ V, h(i−1)(v) 6= null, we have h(i−1)(v) ∈ Vi. For a vertex v with h(i)(v) 6= null, according to the
definition of h(i)(v), we know h(i−1)(v) 6= null. Let u = h(i−1)(v). u must be a vertex in Gi by the
induction hypothesis. Since h(i)(v) 6= null, we know hi(u) 6= null. Thus, hi(u) must be assigned at
line 19. Due to property 2 of Lemma B.10, hi(u) must be in Gi+1, which implies h(i)(v) ∈ Vi+1.

For property 2, we can also prove it by induction. It is true for i = −1. If (u, v) ∈ E, then due to
property 3 of Lemma C.7, either both u, v are in V ′0 or both u, v are in V0\V ′0 . If both u, v are in V0\V ′0 ,
then h0(u) = h0(v) = null. Otherwise, if h0(u) 6= h0(v), then due to property 3 of Lemma B.10,
(h0(u), h0(v)) ∈ E1. Now suppose we have ∀u, v ∈ V, if h(i−1)(u) 6= h(i−1)(v), (u, v) ∈ E, then
(h(i−1)(u), h(i−1)(v)) ∈ Ei. Let (u, v) ∈ E, h(i)(u) 6= h(i)(v). Let x = h(i−1)(u), y = h(i−1)(v). Due to
property 3 of Lemma C.7, either both x, y are in V ′i or both are in Vi \ V ′i . If x, y ∈ Vi \ V ′i , then
hi(x) = hi(y) = null which contradicts to h(i)(u) 6= h(i)(v). Thus, both of x, y ∈ V ′i . Then due to
property 3 of Lemma B.10, (hi(x), hi(v)) ∈ Ei+1. Thus, (h(i)(u), h(i)(v)) ∈ Ei+1.

For property 3, we can prove it by induction. It is true for i = −1. Let us consider the case
when i = 0. Due to property 3 of Lemma B.10 and the definition of g0, g1, we have ∀(x, y) ∈ E1,
(u, v) = g1(x, y), h0(u) = x, h0(v) = y, (u, v) ∈ E. Now suppose the property holds for i − 1.
Let (x, y) ∈ Ei+1. Then gi+1(x, y) = gi(x

′, y′) for some (x′, y′) ∈ Ei, hi(x
′) = x, hi(y

′) = y. Let
(u, v) = gi(x

′, y′). By the induction hypothesis (u, v) ∈ E, h(i−1)(u) = x′, h(i−1)(v) = y′. Thus,
h(i)(u) = x, h(i)(v) = y.
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Lemma C.23. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return FAIL,
then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =


v i = −1

hi(h
(i−1)(v)) h(i−1)(v) 6= null

null otherwise.

Let ∀i ∈ {0}∪ [r], Ĝi = (Vi, Êi = {(x, y) | (u, v) ∈ ⋃r−1
j=i Dj , h

(j−1)(u) = x, h(j−1)(v) = y}). Then Ĝi
is a spanning forest of Gi.

Proof. The proof is by induction. When i = r, since Vr = ∅, Ĝr = (∅, ∅) is a spanning forest of Gr.
Now suppose Ĝi+1 is a spanning forest of Gi+1. Let u, v ∈ Vi. By property 2, 3 of Lemma C.22,
we have Êi ⊆ Ei. Thus, if distGi(u, v) = ∞, then dist

Ĝi
(u, v) = ∞. If distGi(u, v) < ∞, there are

several cases:

1. If hi(u) = hi(v) = null, then due to line 10, we know uu = uv, and T̃i(uv) is a spanning tree
of the component which contains u, v. Thus, Ĝi has a spanning tree of the component which
contains u, v.

2. If hi(u) = hi(v) 6= null, then pari : {x ∈ Vi | hi(x) = hi(v)} → {x ∈ Vi | hi(x) = hi(v)} is a
tree, and ∀y ∈ {x ∈ Vi | hi(x) = hi(v)}, if pari(y) 6= y, then (y,pari(y)) ∈ Êi. Since Ĝi+1 does
not have any cycle, there is a unique path from u to v in Ĝi.

3. If hi(u) 6= hi(v), then neither of them can be null. Since Ĝi+1 is a spanning forest on Gi+1,
there must be a unique path from hi(u) to hi(v) in Ĝi+1. Suppose the path in Ĝi+1 is
hi(u) = p1 − p2 − · · · − pt = hi(v). Then there must be a sequence of vertices in Gi, u =
p1,1, p1,2, p2,1, p2,2, · · · , pt,1, pt,2 = v such that hi(pj,1) = hi(pj,2) = pj and (pj−1,2, pj,1) ∈ Êi.
Thus, there is a unique path from u to v.

Thus, Ĝi is a spanning forest of Gi.

Corollary C.24 (Correctness of Algorithm 11). Let G = (V,E) be an undirected graph, m be
a parameter which is at least 16|V |, and r be a rounds parameter. If SpanningForest(G,m, r)
(Algorithm 11) does not return FAIL, then Ĝ0 = (V, F ) is a spanning forest of G.

Proof. Just apply Lemma C.23 for i = 0 case.

Lemma C.25. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r be a rounds parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return FAIL,
then ∀i ∈ {−1, 0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =


v i = −1

hi(h
(i−1)(v)) h(i−1)(v) 6= null

null otherwise.

∀i ∈ {0}∪ [r−1], v ∈ Vi with pari(v) 6= v, there exists (x, y) ∈ F such that h(i−1)(x) = v, h(i−1)(y) =
pari(v).
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Algorithm 12 Rooted Spanning Forest
1: procedure Orientate({Vi | i ∈ {0} ∪ [r]}, {pari | i ∈ {0} ∪ [r− 1]}, {hi | i ∈ {0} ∪ [r− 1]}, F )

. Takes the output of Algorithm 11 as input.
. Theorem C.26

2: Output: par : V0 → V0.
3: Let F0 = F.
4: for i = 0→ r − 1 do
5: Initialize Fi+1 ← ∅, fi+1 : Vi+1 × Vi+1 → {null}.
6: ∀(u, v) ∈ Fi, hi(u) 6= hi(v), let Fi+1 ← Fi+1∪{(hi(u), hi(v))}, fi+1(hi(u), hi(v))← (u, v).
7: end for
8: p̂arr : ∅ → ∅.
9: for i = r → 1 do . p̂ari is the spanning forest of Gi.

10: Let Ṽi = Vi ∪ {v ∈ Vi−1 | hi−1(v) = null,pari−1(v) = v}.
11: Let p̃ari : Ṽi → Ṽi satisfy ∀v ∈ Vi, p̃ari(v) = p̂ari(v), and ∀v ∈ Ṽi \ Vi, p̃ari(v) = v.
12: Let p̂ari−1 = ForestExpansion(p̃ari,pari−1, fi). . Algorithm 10
13: end for
14: Return p̂ar0 as par .
15: end procedure

Proof. By line 11, line 19, ∀i ∈ {0}∪[r−1], v ∈ Vi, pari(v) 6= v, we have gi(v,pari(v)), gi(pari(v), v) ∈
Di ⊆ F. Since (pari(v), v) ∈ Ei, by property 3 of Lemma C.22, (x, y) = gi(v,pari(v)) satisfies
h(i−1)(x) = v, h(i−1)(y) = pari(v).

Theorem C.26 (Correctness of Algorithm 12). Let G = (V,E) be an undirected graph, m be a
parameter which is at least 16|V |, and r be a rounds parameter. If SpanningForest(G,m, r) (Al-
gorithm 11) does not return FAIL, then let the output be the input of Orientate(·), (Algorithm 12)
and the output par : V → V of Orientate(·) will be a rooted spanning forest (See Definition C.18)
of G. Furthermore, dep(par) ≤ O(diam(G))r.

Proof. The proof is by induction. We want to show p̂ari is a rooted spanning forest of Gi. When
i = r, since Vr = ∅, the claim is true. Now suppose we have p̂ari+1 is a spanning forest of Gi+1.

Let G̃i+1 = (Ṽi+1, Ei+1). It is easy to see p̃ari+1 : Ṽi+1 → Ṽi+1 is a spanning forest of G̃i+1.

An observation is Ṽi+1 = {v ∈ Vi | pari(v) = v}. Thus, p̃ari+1,pari satisfies the condition in
Lemma C.19 when invoking ForestExpansion(p̃ari+1,pari, fi+1). By Lemma C.25, we know fi+1

also satisfies the condition in Lemma C.19 when we invoke ForestExpansion(p̃ari+1, pari, fi+1).
Thus, p̂ari is a rooted spanning forest of Gi due to Lemma C.19.

By Lemma C.19, we have dep(p̂ari) ≤ 16 dep(p̂ari+1) diam(G). By induction, we have dep(par) ≤
O(diam(G))r.

Lemma C.27. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,
and r ≤ n be a round parameter. If SpanningForest(G,m, r) (Algorithm 11) does not return
FAIL, then with probability at least 0.89,

∑r
i=0 ni ≤ 40n.

Proof. Since Vr ⊆ Vr−1 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n. Due to line 14, line 15
and line 17, we know ∀i ∈ {0}∪[r−1], Vi+1 = Li. If pi < 1/2, we know pi = (30 log(n)+100)/γi. Since
|V
T̃i

(v)| ≥ γi, we can apply Lemma B.4 to get Pr(|Li| ≤ 1.5pini) ≥ Pr(|Li| ≤ 0.75ni) ≥ 1−1/(100n).
By taking union bound over all i ∈ {0} ∪ [r − 1], with probability at least 0.99, if pi < 0.5, then
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ni+1 ≤ 0.75ni. By applying Lemma B.5, condition on ni and pi = 1
2 , we have E(ni+1) ≤ 0.75ni. By

Markov’s inequality, with probability at 0.89, we have
∑r

i=0 ni ≤ 40n.

Now let us define the total iterations of Algorithm 11 as the following:

Definition C.28 (Total iterations). Let graph G = (V,E), m ≤ poly(|V |) be a parameter which is at
least 16|V |, and r be a rounds parameter. The total number of iterations of SpanningForest(G,m, r)
(Algorithm 11) is defined as

∑r−1
i=0 (ki + k′i), where ∀i ∈ {0} ∪ [r − 1], ki denotes the number of it-

erations (See Definition C.10) of MultipleLargeTrees(Gi,m) (see line 8), and k′i denotes the
number of iterations (See Definition B.12) of TreeContraction(G′i,pari) (see line 17).

Theorem C.29 (Success probability of Algorithm 11). Let G = (V,E) be an undirected graph.
Let m ≤ poly(n) and m ≥ 16|V |. Let r be a rounds parameter. Let c > 0 be a sufficiently
large constant. If r ≥ c log logm/n n, then with probability at least 0.79, SpanningForest(G,m, r)
(Algorithm 11) does not return FAIL. Furthermore, let ∀i ∈ {0} ∪ [r − 1], ki be the number of
iterations (See Definition C.10) of MultipleLargeTrees(Gi,m) and k′i be the number of iter-
ations (See Definition B.12) of TreeContraction(G′i,pari : V ′i → V ′i ). Let c1 > 0 be a suf-
ficiently large constant. If m ≥ c1n log8 n, then with probability at least 0.99,

∑r−1
i=0 ki + k′i ≤

O(min(log(diam(G)) log logdiam(G)(n), r log(diam(G)))). If m < c1n log8 n, then with probability at
least 0.98,

∑r−1
i=0 k

′
i + ki ≤ O(min(log(diam(G)) log logdiam(G)(n) + (log log n)2, r log(diam(G)))).

Proof. Due to Lemma C.27, with probability at last 0.89, we have ∀i ∈ [r], n′i ≤ 40n. Thus, we can
condition on that SpanningForest(G,m, r) will not fail on line 21.

Due to Lemma C.11, ki ≤ O(log(diam(Gi))) ≤ O(log(diam(G))). Due to Corollary B.13 and
Lemma C.21, k′i ≤ O(log(diam(G))). Thus,

∑
i∈{0}∪[r−1] k

′
i + ki ≤ O(r log(diam(G))).

Since Vr ⊆ Vr−1 ⊆ Vr−2 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n. Due
to line 14, line 15 and line 17, we know ∀i ∈ {0} ∪ [r − 1], Vi+1 = Li. If pi < 1/2, we know
pi = (30 log(n) + 100)/γi. Since |VT̃i(v)| ≥ γi, we can apply Lemma B.4 to get Pr(|Li| ≤ 1.5pini) ≥
1 − 1/(100n). By taking union bound over all i ∈ {0} ∪ [r − 1], with probability at least 0.99, if
pi < 0.5, then ni+1 ≤ 1.5pini ≤ 0.75ni. Let E be the event that ∀i ∈ {0} ∪ [r − 1], if pi < 0.5, then
ni+1 ≤ 1.5pini. Now, we suppose E happens.

If p0 = 0.5, thenm ≤ n·(600 log n)8. By applying Lemma B.5, E(ni+1) = E(|Li|) ≤ 0.75E(ni) ≤
· · · ≤ 0.75i+1n. By Markov’s inequality, when i∗ ≥ 8 log(6000 log n)/ log(4/3), with probability at
least 0.99, ni∗ ≤ n/(600 log n)8 and thus pi∗ < 0.5. Condition on this event and E , we have

nr ≤

(
n1.25
i∗

m0.25 (45 logn+150)

)1.25

m0.25 (45 log n+ 150)

···
· · · (Apply r′ = r − i∗ times)

= ni∗/(m/ni∗)
1.25r′−1 · (45 log n+ 150)4·(1.25r′−1)

≤ n/
(
m/
(
ni∗(45 log n+ 150)4

))1.25r′−1

≤ n/
(
m/
(
ni∗(45 log n+ 150)4

))1.25r′/2

≤ n/ (m/n)
1.25r′/2

≤ 1/2,

where the second inequality follows by ni∗ ≤ n, the third inequality follows by r′ ≥ 5, the forth in-
equality follows by ni∗ ≤ n/(600 log n)8, and the last inequality follows by r′ ≥ 2

log 1.25 log logm/n(2n).

Since 16n ≤ m ≤ n · (600 log n)8, log logm/n n = Θ(log log n). Let c > 0 be a sufficiently large con-
stant. Thus, when r ≥ c log logm/n n ≥ i∗ + r′ = 8 log(6000 log n)/ log(4/3) + 2

log 1.25 log logm/n(2n),
with probability at least 0.98, nr = 0 implies that SpanningForest(G,m, r) will not fail. Due to
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Lemma C.11, we have ki ≤ O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑
i=0

ki

=
i∗∑
i=0

ki +
r−1∑

i=i∗+1

ki

≤ O
(
(log log n)2

)
+

r−1∑
i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑
i:i≥i∗+1,m/ni≤diam(G)

ki +
∑

i:i≤r,m/ni>diam(G)

ki

≤ O
(
(log log n)2

)
+O

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i)

+O

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))


≤ O

(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows by i∗ = O(log log n) and ∀i ≤ [i∗],m/ni ≤ poly(log n), the third
inequality follows bym/ni+1 ≥ (m/ni)

1.25/(45 log n+100) ≥ (m/ni)
1.125. Due to Corollary B.13 and

Lemma C.21, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))). Then, by the same argument,
we have

∑r−1
i=0 k

′
i = O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

If m > n · (600 log n)8, then ∀i ∈ {0} ∪ [r − 1], we have pi < 0.5. Since E happens. We have:

nr ≤

((
n1.25

m0.25 (45 logn+150)
)1.25

m0.25 (45 log n+ 150)

)···
· · · (Apply r times)

=
n1.25r

m1.25r−1
(45 log n+ 150)4·(1.25r−1)

= n/(m/n)1.25r−1 · (45 log n+ 150)4·(1.25r−1)

= n/
(
m/
(
n(45 log n+ 150)4

))1.25r−1

≤ n/
(
m/
(
n(45 log n+ 150)4

))1.25r/2

≤ n/
(
m/
(
n(200 log n)4

))1.25r/2

≤ 1

2
,

where the second inequality follows by r ≥ 5, the third inequality follows by 45 log n + 150 ≤
200 log n, and the last inequality follows by

r ≥ c log logm/n n ≥ 2 log1.25 log(m/n)1/2 2n ≥ 2 log1.25 logm/(n(200 logn)4) 2n,

for a sufficiently large constant c > 0. Since nr is an integer, nr must be 0 when nr ≤ 1/2.
SpanningForest(G,m, r) will succeed with probability at least 0.99. Due to Lemma C.11, we
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have ki ≤ O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑
i=0

ki ≤
∑

m/ni≤diam(G)

ki +
∑

m/ni>diam(G)

ki

≤ O

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i)

+O

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))


≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),

where the second inequality follows by m/ni+1 ≥ (m/ni)
1.25/(45 log n + 100) ≥ (m/ni)

1.125. Due
to Corollary B.13 and Lemma C.21, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))). Then, by
the same argument, we have

∑r−1
i=0 k

′
i = O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)).

D Depth-First-Search Sequence for Tree and Applications

D.1 Lowest Common Ancestor and Multi-Paths Generation

Given a rooted forest induced by par : V → V which is a set of parent pointers (See Definition B.6)
on V, and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq) | ui, vi ∈ V }, we show an algorithm
which can return a mapping lca : Q → (V ∪ {null}) × (V ∪ {null}) × (V ∪ {null}) such that
∀(ui, vi) ∈ Q, (p, pui , pvi) = lca(ui, vi) satisfies the following properties:

1. If par(∞)(ui) = par(∞)(vi), then p is the lowest ancestor of ui and vi. Otherwise p = pui =
pvi = null.

2. Suppose p 6= null. If p 6= ui, then pui is an ancestor of ui and par(pui) = p. Otherwise,
pui = null.

3. Suppose p 6= null. If p 6= vi, then pvi is an ancestor of vi and par(pvi) = p. Otherwise,
pvi = null.

Before we describe the algorithms, let us formally define ancestor and the lowest common ancestor.

Definition D.1 (Ancestor). Let par : V → V be a set of parent pointers (See Definition B.6) on a
vertex set V . For u, v ∈ V, if ∃k ∈ Z≥0 such that u = par(k)(v), then u is an ancestor of v.

Definition D.2 (Common ancestor and the lowest common ancestor). par : V → V be a set of
parent pointers (See Definition B.6) on a vertex set V . For u, v ∈ V, if w is an ancestor of u and
is also an ancestor of v, then w is a common ancestor of (u, v). If a common ancestor w of (u, v)
satisfies deppar(w) ≥ deppar(x) for any common ancestor x of (u, v), then w is the lowest common
ancestor (LCA) of (u, v).

Definition D.3 (Path between two vertices). par : V → V be a set of parent pointers (See Defini-
tion B.6) on a vertex set V . For u, v ∈ V, if par(∞)(u) = par(∞)(v), then the path from u to v is a
sequence (x1, x2, · · · , xj , xj+1, · · ·xk) such that ∀i 6= i′ ∈ [k], xi 6= xi′ , x1 = u, xk = v, xj is the lowest
common ancestor of (u, v), ∀i ∈ [j−1],par(xi) = xi+1, and ∀i ∈ {j+1, j+2, · · · , k},par(xi) = xi−1.

The algorithm which can compute the lowest common ancestor is described in Algorithm 13.
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Algorithm 13 Lowest Common Ancestor
1: procedure LCA(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) . Lemma D.4
2: Output: lca : Q→ (V ∪ {null})× (V ∪ {null})× (V ∪ {null})
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par). . Algorithm 7
4: ∀(u, v) ∈ Q, if u = v then let lca(u, v) = (u,null,null), Q← Q \ {(u, v)}.
5: ∀(u, v) ∈ Q, gr(u) 6= gr(v), let lca(u, v) = (null,null,null).
6: Let Q′ = ∅.
7: ∀(u, v) ∈ Q, gr(u) = gr(v), if deppar(u) ≥ deppar(v), then let Q′ ← Q′ ∪ {(u, v)}; Otherwise let
Q′ ← Q′ ∪ {(v, u)}.

8: Let hr : Q′ → Q′ be an identity mapping.
9: for i = r − 1→ 0 do . Move u to the almost same depth as v.

10: For each (u, v) ∈ Q′, let (x, v) = hi+1(u, v). If deppar(x) − 2i > deppar(y), then let hi(u, v) =
(gi(x), v); Otherwise let hi(u, v) = (x, v).

11: end for
12: For each (u, v) ∈ Q′ with par(h0(u)) = v, if (u, v) ∈ Q, then let lca(u, v) = (v, h0(u),null); Otherwise

lca(v, u) = (v,null, h0(u)).
13: Let Q′′ = ∅.
14: For each (u, v) ∈ Q′ with par(h0(u)) 6= v,deppar(h0(u)) > deppar(v) let Q′′ ← Q′′ ∪ {(u, v)},

h′r(u, v)← (par(h0(u)), v).
15: For each (u, v) ∈ Q′ with deppar(u) = deppar(v) let Q′′ ← Q′′ ∪ {(u, v)}, h′r(u, v)← (u, v).
16: for i = r − 1→ 0 do . Move u, v to the lowest common ancestor.
17: For each (u, v) ∈ Q′′, let (x, y) = h′i+1(u, v). If gi(x) 6= gi(y), then let h′i(u, v) = (gi(x), gi(y));

Otherwise let h′i(u, v) = (x, y).
18: end for
19: For each (u, v) ∈ Q′′, if (u, v) ∈ Q, then let lca(u, v) = (par(h′0(u)), h′0(u), h′0(v)); Otherwise

lca(v, u) = (par(h′0(v)), h′0(v), h′0(u)).
20: return lca .
21: end procedure

Lemma D.4. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V .
Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices, and ∀i ∈ [q], ui 6= vi. Let
lca = LCA(par, Q) (Algorithm 13). Then for any (u, v) ∈ Q, (p, pu, pv) = lca(u, v) satisfies the
following properties:

1. If par(∞)(u) 6= par(∞)(v), then p = pu = pv = null.

2. If u (or v) is the lowest common ancestor of (u, v), then p = u, pu = null, pv 6= u is an
ancestor of v such that par(pv) = u (or p = v, pv = null, pu 6= v is an ancestor of u such that
par(pu) = v.)

3. If neither u nor v is the lowest common ancestor of (u, v) and par(∞)(u) = par(∞)(v), then p
is the lowest common ancestor of (u, v), pu 6= p is an ancestor of u, pv 6= p is an ancestor of
v, and par(pu) = par(pv) = p.

Proof. According to Lemma C.13, r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0

records the depth of every vertex in V, and ∀i ∈ {0}∪ [r], v ∈ V gi(v) = par(2i)(v). Then property 1
follows by line 5 directly.

Then for all (u, v) ∈ Q with par(∞)(u) = par(∞)(v), either (u, v) ∈ Q′ or (v, u) ∈ Q′. For each
(u, v) ∈ Q′, we have deppar(u) ≥ deppar(v). For all (u, v) ∈ Q′, with deppar(u) > deppar(v), by
induction we can prove that ∀i ∈ {0} ∪ [r − 1], (x, y) = hi(u, v) satisfies that x is an ancestor of u,
y = v, deppar(x) > deppar(v) and par(2i)(x) is an ancestor of v. Thus, for (p, pu, pv) = lca(u, v), if v
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Algorithm 14 Multiple Paths
1: procedure MultiPath(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) . Lemma D.5
2: Output: deppar : V → Z≥0, {Pi ⊆ V | i ∈ [q]}.
3: (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par). . Algorithm 7
4: ∀j ∈ [q], let S(0)

j = {(uj , vj) | (uj , vj) ∈ Q}.
5: for i = 1→ r do
6: for j = 1→ q do . S

(i)
j is a set of segments partitioned the path from uj to vj .

7: Let S(i)
j ← ∅.

8: for (x, y) ∈ S(i−1)
j do

9: if deppar(x)− deppar(y) > 2r−i then S
(i)
j ← S

(i)
j ∪ {(x, gr−i(x)), (gr−i(x), y)}.

10: else S(i)
j ← S

(i)
j ∪ {(x, y)}.

11: end if
12: end for
13: end for
14: end for . S

(r)
j only contains segments with length 1

15: Let ∀j ∈ [q], Pj ← {uj}.
16: for j = 1→ q do
17: for (x, y) ∈ S(r)

j do
18: Let Pj ← Pj ∪ {y}.
19: end for
20: end for
21: end procedure

is the lowest common ancestor of u, then we have p = v, pu = h0(u), pv = null. In this case, h0(u)
is an ancestor of u, and deppar(u) = deppar(v) + 1,par(h0(u)) = v. Thus, property 2 holds.

For all (u, v) ∈ Q with par(∞)(u) = par(∞)(v), if neither u nor v is the lowest common ancestor
of (u, v), then we know either (u, v) or (v, u) is in Q′′. Now let (u, v) ∈ Q′′.We have deppar(h

′
r(u)) =

deppar(h
′
r(v)), h′r(u) 6= h′r(v), and h′r(u), h′r(v) are ancestors of u, v respectively. We can prove by

induction to get ∀i ∈ {0} ∪ [r], h′i(u) 6= h′i(v) and par(2i)(h′i(u)) = par(2i)(h′i(v)) is a common
ancestor of (u, v). Thus, p = par(h′0(u)) = par(h′0(v)) is the lowest common ancestor of (u, v), and
deppar(h

′
0(u)) = deppar(h

′
0(v)) = deppar(p) + 1. Since pu = h′0(u), pv = h′0(v), property 3 holds.

In Algorithm 14, we show a generalization of Algorithm 8 such that we can find multiple vertex-
to-ancestor paths simultaneously.

The following lemma claims the properties of the outputs of Algorithm 14. And the proof is
similar to the proof of Lemma C.15.

Lemma D.5. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex
set V. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V satisfy ∀j ∈ [q], vj is an ancestor (See
Definition D.1) of uj in par. Let (deppar, {Pj | j ∈ [q]}) = MultiPath(par, Q) (Algorithm 14).
Then deppar : V → Z≥0 records the depth of every vertex in V and ∀j ∈ [q], Pj ⊆ V is the set of all
vertices on the path from uj to vj, i.e. Pj = {v ∈ V | ∃k1, k2 ∈ Z≥0, v = par(k1)(uj), vj = par(k2)(v)}.
Furthermore, r should be at most dlog(dep(par) + 1)e.

Proof. By Lemma C.13, since (r, deppar, {gi | i ∈ {0} ∪ [r]}) = FindAncestors(par), we know r
should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of every vertex in V,
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and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).
For j ∈ [q], let us prove that Pj is the vertex set of all the vertices on the path from uj to its

ancestor vj . We use divide-and-conquer to get Pj . The following claim shows that S(i)
j is a set of

segments which is a partition of the path from uj to vj , and each segment has length at most 2r−i.

Claim D.6. ∀i ∈ {0} ∪ [r], j ∈ [q] S
(i)
j satisfies the following properties:

1. ∃(x, y) ∈ S(i)
j such that x = uj .

2. ∃(x, y) ∈ S(i)
j such that y = vj .

3. ∀(x, y) ∈ S(i)
j , deppar(y)− deppar(x) ≤ 2r−i.

4. ∀(x, y) ∈ S(i)
j , if y 6= vj , then ∃(x′, y′) ∈ S(i)

j , x′ = y.

5. ∀(x, y) ∈ S(i)
j , ∃k ∈ Z≥0, par(k)(x) = y.

Proof. We fix a j ∈ [q]. Our proof is by induction. According to line 4, all the properties hold
when i = 0. Suppose all the properties hold for i − 1. For property 1, by induction we know
there exists (x, y) ∈ S

(i−1)
j such that x = uj . Then by line 9 and line 10, there must be an

(x, y′) in S(i)
j . For property 2, by induction we know there exists (x, y) ∈ S(i−1)

j such that y = vj .

Thus, there must be an (x′, y) in S
(i)
j . For property 3, if (x, y) is added into S

(i)
j by line 10,

then deppar(x) − deppar(y) ≤ 2r−i. Otherwise, in line 9, we have deppar(x) − deppar(gr−i(x)) ≤
2r−i,deppar(gr−i(x)) − deppar(y) ≤ 2r−i+1 − 2r−i = 2r−i. For property 4, if (x, y) is added into
S

(i)
j by line 10, then by induction there is (y, y′) ∈ S

(i−1)
j , and thus by line 10 and line 9, there

must be (y, y′′) ∈ S
(i)
j . Otherwise, in line 9 will generate two pairs (x, gr−i(x)), (gr−i(x), y). For

(x, gr−i(x)), the property holds. For (gr−i(x), y), there must be (y, y′) ∈ Si−1 and thus there should
be (y, y′′) ∈ S(i). For property 5, since gr−i(x) = par(r−i)(x), for all pairs generated by line 9 and
line 10, the property holds.

By Claim D.6, we know

S
(r)
j = {

(uj ,par(uj)),(
par(uj),par(2)(uj)

)
,(

par(2)(uj), par(3)(uj)
)
,

· · · ,(
par(deppar(uj)−deppar(vj)−1)(uj), par(deppar(uj)−deppar(vj))(uj)

)
} .

Thus, Pj is the set of all the vertices on the path from uj to an ancestor vj .
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D.2 Depth-First-Search Sequence for a Tree

Since we can use our spanning tree algorithm to get a rooted tree, in this section, we only consider
how to get a Depth-First-Search (DFS) sequence for a rooted tree. Before we go to the details, let
us firstly give formal definitions of some useful concepts.

Definition D.7 (Children in the forest). Given a set of parent pointers (See Definition B.6) par :
V → V on a vertex set V . ∀u, v ∈ V, u 6= v if par(u) = v, then we say u is a child of v. ∀v ∈ V, we
can define childpar(v) as the set of all children of v, i.e. childpar(v) = {u ∈ V | u 6= v,par(u) = v}.
Furthermore, if u is the kth smallest vertex in the children set childpar(v), then we say rankpar(u) = k,
or u is the kth child of v. If par(v) = v, then rankpar(v) = 1. We use childpar(v, k) to denote the kth

child of v.

For simplicity of the notation, if par : V → V is clear in the context, we just use child(v), rank(v)
and child(v, k) to denote childpar(v), rankpar(v) and childpar(v, k) respectively.

Definition D.8 (Leaves in the forest). Given a set of parent pointers (See Definition B.6) par :
V → V on a vertex set V . If childpar(v) = ∅, then v is called a leaf. The set of all the leaves of par
is defined as leaves(par) = {v | childpar(v) = ∅}.

Definition D.9 (Subtree). Let par : V → V be a set of parent pointers (See Definition B.6) on a
vertex set V. Let v ∈ V, V ′ = {u ∈ V | v is an ancestor (Definition D.1) of u}. Let par′ : V ′ → V ′

be a set of parent pointers on V ′. If ∀u ∈ V ′ \ {v},par′(u) = par(u), and par′(v) = v, then we say
par′ is the subtree of v in par. For u ∈ V ′, we say u is in the subtree of v.

Definition D.10 (Depth-First-Search (DFS) sequence). Let par : V → V be a set of parent pointers
(See Definition B.6) on a vertex set V. Let v be a vertex in V . If v is a leaf (See Definition D.8)
in par, then the DFS sequence of the subtree (See Definition D.9) of v is (v). Otherwise the DFS
sequence of the subtree of v in par is recursively defined as

(v, a1,1, a1,2, · · · , a1,n1 , v, a2,1, a2,2, · · · , a2,n2 , v, · · · , ak,1, ak,2, · · · , ak,nk , v),

where k = | child(v)| is the number of children (See Definition D.7) of v, and ∀i ∈ [k], (ai,1, · · · , ai,ni)
is the DFS sequence of the subtree of child(v, i), i.e. the ith child of v.

If ∀u ∈ V,par(∞)(u) = v, then the subtree of v is exactly par, and thus the DFS sequence of the
subtree of v is also called the DFS sequence of par .

Here are some useful facts of the above defined DFS sequence.

Fact D.11. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V ,
and par has a unique root. Let A = (a1, a2, · · · , am) be the DFS sequence (See Definition D.10) of
par . Then, A satisfies the following properties:

1. ∀v ∈ V, v appears exactly | child(v)|+ 1 times in A.

2. If ai is the kth time that v appears, and aj is the (k + 1)th time that v appears. Then
(ai+1, ai+2, · · · , aj−1) is the DFS sequence of the subtree of child(v, k) (See Definition D.7),
the kth child of v. Furthermore, ai+1 is the first time that child(v, k) appears, and aj−1 is the
last time of child(v, k) appears.

3. If ai is the first time that v appears, and aj is the last time that v appears. Then (ai, ai+1, · · · , aj)
is the DFS sequence of the subtree of v.
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4. m = 2|V | − 1.

Proof. The property 1, 2, 3 directly follows by Definition D.10.
For property 4, notice that ∀u ∈ V,par(u) 6= u, u can only be a child of par(u). Thus,∑
v∈V (| child(v)|+ 1) = |V | − 1 + |V | = 2|V | − 1.

Due to the above fact, if v is a leaf in par, then it will only once in the DFS sequence. Thus, we
are able to determine the order of all the leaves.

Definition D.12 (The order of the leaves). Let par : V → V be a set of parent pointers (See
Definition B.6) on a vertex set V , and par has a unique root. Let A = (a1, a2, · · · , am) be the
DFS sequence (See Definition D.10) of par . Let u, v be two leaves (See definition D.8) of par . If u
appears before v in A, then we say u <par v.

D.2.1 Leaf Sampling

Given a set of rooted trees, our goal is to sample a set of leaves for each tree, and to give an order
of those sampled leaves. The algorithm is shown in Algorithm 15.

Algorithm 15 Leaf Sampling
1: procedure LeafSampling(par : V → V,m, δ) . Lemma D.13
2: Output: A = (a1, a2, · · · , as).
3: Let t = dm1/3e.
4: Compute L = leaves(par).
5: Compute rank : V → Z≥0 such that ∀v ∈ V, rank(v) = rankpar(v). . Definition D.7
6: If |V | ≤ m, let {a1, a2, · · · , as} = L, and return A = (a1, a2, · · · , as) which satisfies a1 <par

a2 <par · · · <par as. . <par follows Definition D.12
7: If |L| ≤ 8t, let S = L.
8: Let p = min(1, 640(1 + log(m)/δ)t/|L|).
9: If |L| > t, sample each v ∈ L with probability p independently. let S be the set of samples.

10: Compute par′ : V → V such that ∀v ∈ V, if childpar(v) 6= ∅, then par′(v) = childpar(v, 1);
Otherwise let par′(v) = v. . par′(v) points to v’s first child in par.

11: (r′, deppar′ : V → Z≥0, {g′i : V → V | i ∈ {0} ∪ [r′]}) = FindAncestors(par′).
12: Find w ∈ V with par(w) = w. . Find the root.
13: Let a1 = g′r′(w), S ← S ∪ {a1}. . Find the first leaf.
14: Let Q = {(u, v) | (u, v) ∈ S × S, u 6= v}.
15: Let lca = LCA(par, Q). . Algorithm 13
16: Let s = |S|.
17: (r, deppar : V → Z≥0, {gi : V → V | i ∈ {0} ∪ [r]}) = FindAncestors(par).
18: for i = 2→ s do . Determine the order of sampled leaves.
19: For all x, y ∈ S \ {a1, a2, · · · , ai−1}, let (px,y, pxy,x, pxy,y) = lca(x, y).
20: Find x∗ ∈ S \ {a1, a2, · · · , ai−1} s.t. ∀y ∈ S \ {a1, a2, · · · , ai−1, x

∗}, rank(px∗y,x∗) <
rank(px∗y,y).

21: Let ai = x∗.
22: end for
23: return A = (a1, a2, · · · , as).
24: end procedure
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Lemma D.13. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex
set V , and par has a unique root. Let m > 0, δ ∈ (0, 1) be parameters, and let |V | ≤ m1/δ. Let
(a1, a2, · · · , as) = LeafSampling(par,m, δ) (Algorithm 15). Then it has following properties:

1. a1 <par a2 <par · · · <par as.

2. If |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then {a1, a2, · · · , as} = leaves(par). Otherwise,
with probability at least 1 − 1/(100m5/δ), ∀v ∈ leaves(par) \ {a1}, there is a vertex w ∈
{a1, a2, · · · , as} such that w <par v and the number of leaves between w and v is at most
| leaves(par)|/dm1/3e, i.e. |{u ∈ leaves(par) | w <par u <par v}| ≤ | leaves(par)|/dm1/3e.

3. If |V | > m and | leaves(par)| > 8dm1/3e, then with probability at least 1 − 1/(100m5/δ),
s = |S| = |{a1, a2, · · · , as}| ≤ 960dm1/3e(1 + log(m)/δ).

Proof. Firstly, let us focus on property 1. According to line 11 to line 13 and Lemma C.13, we
know ∀k ∈ Z≥0 rankpar(par(k)(a1)) = 1, and par′(a1) = a1 which implies that a1 is a leaf. Due to
the definition of D.10, we know that a1 must be the first leaf appeared in the DFS sequence of par .
We can prove the property by induction. Suppose we already have a1 <par a2 <par · · · <par ai−1.
According to line 19 and Lemma D.4, pai−1,ai is the LCA of (ai−1, ai). pai−1ai,ai−1 is a child of
pai−1,ai and is an ancestor of ai−1. pai−1ai,ai is a child of pai−1,ai and is an ancestor of ai. By
Fact D.11, since rank(pai−1ai,ai−1) < rank(pai−1ai,ai), we have ai−1 <par ai. To conclude, we have
a1 <par a2 <par · · · <par as.

For property 2, if |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then by line 6 and line 7, we know
{a1, a2, · · · , as} = leaves(par).

Now consider the case when |V | > m and | leaves(par)| > 8dm1/3e. Let t = dm1/3e. Let
leaves(par) = {u1, u2, · · · , uq}, and let u1 <par u2 <par · · · <par uq. Let us partition u1, · · · , uq
into 4 · t groups G1 = {u1, u2, · · · , ubq/(4t)c}, G2 = {ubq/(4t)c+1, ubq/(4t)c+2, · · · , u2·bq/(4t)c}, · · · , G4t =
{u(4t−1)bq/(4t)c+1, u(4t−1)bq/(4t)c+2, · · · , uq}. Then each group has size at least q/(8t) and at most
q/(2t). For a certain Gi, by Chernoff bound, we have

Pr

(
|Gi ∩ S| ≤

1

2
· q

8t
· p
)

≤ exp

(
−1

8
· q

8t
· p
)

≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/q). Notice that q ≤ |V | ≤
m1/δ. We can take union bound over all Gi. Then with probability at least 1 − 1/(100m5/δ),
∀i ∈ [4t], Gi ∩ S 6= ∅. Thus, ∀v ∈ leaves(par), there is a vertex w ∈ {a1, a2, · · · , as} such that
w <par v and the number of leaves between w and v is at most | leaves(par)|/dm1/3e, i.e. |{u ∈
leaves(par) | w <par u <par v}| ≤ | leaves(par)|/dm1/3e.

For property 3, by applying Chernoff bound, we have

Pr

(
|S ∩ leaves(par)| ≥ 3

2
| leaves(par)| · p

)
≤ exp

(
− 1

12
· | leaves(par)| · p

)
≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/| leaves(par)|).
Since 3

2 | leaves(par)| · p ≤ 960dm1/3e(1 + log(m)/δ), we complete the proof.
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D.2.2 DFS Subsequence

Let par : V → V be a set of parent pointers on a vertex set V , and par has a unique root v. Let
{u1, u2, · · · , uq} = leaves(par), and u1 <par u2 <par · · · <par uq. One observation is that the DFS
sequence of par can be generated in the following way:

1. The first part of the DFS sequence is the path from v to u1.

2. Then it follows by the path from par(u1) to the LCA of (u1, u2), the path from one of the
child of the LCA of (u1, u2) to u2, the path from par(u2) to the LCA of (u2, u3), the path
from one of the child of the LCA of (u2, u3) to u3, · · · , the path from one of the child of the
LCA of (uq−1, uq) to uq.

3. The last part of the DFS sequence is a path from par(uq) to v.

Fact D.14. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V , and par has a unique root v. Let {u1, u2, · · · , uq} = leaves(par) (See Definition D.8), and
u1 <par u2 <par · · · <par uq. Let A = (a1, a2, · · · , am) be the DFS sequence (See Definition D.10) of
par. Then,

1. If u1 appears at ai, then (a1, a2, · · · , ai) is the path from v to u1.

2. ∀i ∈ [q−1], if ui appears at aj , and ui+1 appears at ak, then ∃j < t < k such that at is the LCA
of (ui, ui+1). In addition, (aj , aj+1, · · · , at) is the path from aj to at, and (at, at+1, · · · , ak) is
the path from at to ak.

3. If uq appears at ai, then (ai, ai+1, · · · , am) is the path from uq to v.

Proof. Property 1, 3 follows by the definition of DFS sequence (See Definition D.10) and a simple
induction.

Now consider property 2. Since A is a DFS sequence, ∀l ∈ {j, j+ 1, · · · , k− 1}, either par(al) =
al+1 or par(al+1) = al. Thus, the path between ui and ui+1 is a subsequence of (aj , aj+1, · · · , ak).
If par(al+1) = al but al+1 is not on the path between ui and ui+1, then there must be a leaf x
in the subtree of al+1 which implies ui <par x <par ui+1, and thus leads to a contradiction. If
par(al) = al+1 but al+1 is not on the path between ui and ui+1, then both ui and ui+1 should be in
the subtree of al, and both of ui and ui+1 should be in the DFS sequence of the subtree of al. But
we know al+1 cannot be in the DFS sequence of the subtree of al. This leads to a contradiction.

Lemma D.15. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V ,
with a unique root. Let v ∈ V . Let V ′ = V \ {u ∈ V | v is an ancestor (See Definition D.1) of u}.
Let par′ : V ′ → V ′ satisfy ∀u ∈ V ′,par′(u) = par(u). Then the DFS sequence (See Definition D.10)
of par′ is a subsequence of the DFS sequence of par .

Proof. The proof follows by the property 3 of Fact D.11 directly.

Corollary D.16. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex
set V , and par has a unique root. Let v1, v2, · · · , vt be t vertices in V . Let V ′ = V \ {u ∈ V |
∃v ∈ {v1, · · · , vt}, v is an ancestor (See Definition D.1) of u}. Let par′ : V ′ → V ′ satisfy ∀u ∈
V ′,par′(u) = par(u). Then the DFS sequence (See Definition D.10) of par′ is a subsequence of the
DFS sequence of par .
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Algorithm 16 DFS subsequence
1: procedure SubDFS(par : V → V,m, δ) . Lemma D.17, Lemma D.18
2: Output: V ′ ⊆ V,A = (a1, a2, · · · , as).
3: If V = {v}, return V ′ = V,A = (v).
4: Let v be the root in par, i.e. par(v) = v.
5: L = (l1, l2, · · · , lt) = LeafSampling(par,m, δ). . Algorithm 15
6: Q = {(li, li+1) | i ∈ [t− 1]}.
7: lca = LCA(par, Q). . Algorithm 13
8: ∀i ∈ [t− 1], (pli,li+1

, pi,li , pi,li+1
) = lca(li, li+1).

9: Q′ = {(l1, v), (par(l1), pl1,l2), (l2, p1,l2), (par(l2), pl2,l3), (l3, p2,l3), · · · , (lt, pt−1,lt), (par(lt), v)}.
10: (deppar, {Pi | i ∈ [2t]}) = MultiPath(par, Q′). . Algorithm 14
11: V ′ =

⋃2t
i=1 Pi.

12: Let par′ : V ′ → V ′ satisfy ∀v ∈ V ′,par′(v) = par(v).
13: for i ∈ {1, 3, 5, · · · , 2t− 1} do
14: Compute A′i = (u1, u2, · · · , u|Pi|) such that {u1, u2, · · · , u|Pi|} = Pi and deppar(u1) <

deppar(u2) < · · · < deppar(u|Pi|)
15: end for
16: for i ∈ {2, 4, 6, · · · , 2t} do
17: Compute A′i = (u1, u2, · · · , u|Pi|) such that {u1, u2, · · · , u|Pi|} = Pi and deppar(u1) >

deppar(u2) > · · · > deppar(u|Pi|)
18: end for
19: Let A′ = A′1A

′
2 · · ·A′2t. . A′ is the concatenation of A′1, A′2, · · · , A′2t.

20: ∀u ∈ V ′, compute rankpar(u) and rankpar′(u).
21: ∀u ∈ V ′, i ∈ [| childpar′ |+ 1] compute pos(u, i) = j such that the jth element in A′ is the ith

time that u appears.
22: Let b be the length of A′.
23: Initialize c : [b]→ Z≥0. . c determine the number of copies needed for each element in A′

24: for u ∈ V ′ \ {v} do
25: If u ∈ leaves(par′), let c(pos(u, 1)) = 1. . A leaf should only have one copy.
26: If rankpar′(u) = 1, let c(pos(par′(u), 1)) = rankpar(u).
27: If rankpar′(u) = | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) =
| childpar(par(u))|+ 1− rankpar(u).

28: If 1 ≤ rankpar′(u) < | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) =
rankpar(childpar′(par′(u), rankpar′(u) + 1))− rankpar(u).

29: end for
30: For each j ∈ [b], duplicate the jth element of A′ c(j) times. Let A be the obtained sequence.
31: return V ′, A.
32: end procedure

Proof. The proof is by induction on t. When t = 1, then the statement is true by Lemma D.15. Sup-
pose the statement is true for t−1. Let V ′′ = V \{u ∈ V | ∃v ∈ {v1, · · · , vt−1}, v is an ancestor of u},
and let par′′ : V ′′ → V ′′ satisfy ∀v ∈ V ′′,par′′(v) = par(v). By induction hypothesis, the DFS se-
quence of par′′ is a subsequence of the DFS sequence of par. If one of the v1, · · · , vt−1 is an ancestor
of vt, then par′ = par′′, thus, the DFS sequence of par′ is a subsequence of the DFS sequence of
par. Otherwise, we have V ′ = V ′′ \ {u ∈ V ′′ | vt is an ancestor of u}. By Lemma D.15, the DFS
sequence of par′ is a subsequence of the DFS sequence of par′′ . Thus, the DFS sequence of par′ is
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a subsequence of the DFS sequence of par.

Lemma D.17 (Removing several subtrees). Let par : V → V be a set of parent pointers (See
Definition B.6) on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0, 1) be parameters,
and let |V | ≤ m1/δ. Let (V ′, A) = SubDFS(par,m, δ) (Algorithm 16). Then ∀u ∈ V ′, we have
par(u) ∈ V ′. Furthermore, with probability at least 1 − 1/(100m5/δ), ∀u ∈ V \ V ′, the number of
leaves (See Definition D.8) in the subtree (See Definition D.9) of u is at most b| leaves(par)|/dm1/3ec.

Proof. By Lemma D.13, we know L ⊆ leaves(par), and l1 <par l2 <par · · · <par lt.
We first prove ∀u ∈ V ′, par(u) ∈ V ′. Our proof is by induction on the leaf li. By Lemma D.4,

we have that ∀i ∈ [t − 1], pli,li+1
is the LCA of (li, li+1), pi,li+1

is an ancestor of li+1, and pi,li+1
6=

pli,li+1
,par(pi,li+1

) = pli,li+1
. By Lemma 14, P1 contains all the vertices on the path from l1 to the root

v. P1 is the set of all the ancestors of l1. Thus, every ancestor u of l1 is in P1 and satisfies par(u) ∈ V ′.
P2 contains all the vertices on the path from l1 to an ancestor of l1. Thus, P2 ⊆ P1. Suppose now
P1∪P2∪· · ·∪P2i−2 = {u ∈ V | ∃j ∈ [i−1], u is an ancestor of lj}. Notice that P2i−1 contains all the
vertices on the path from li to the ancestor pi−1,li . Since par(pi−1,li) = pli−1,li is also an ancestor of
li−1, we have P1∪P2∪· · ·∪P2i−2∪P2i−1 = {u ∈ V | ∃j ∈ [i], u is an ancestor of lj}. Since P2i contains
all the vertices on the path from li to an ancestor of li, we have P2i ⊆ P1 ∪P2 ∪ · · · ∪P2i−2 ∪P2i−1.
To conclude, we have V ′ = P1 ∪ P2 ∪ · · · ∪ P2t = {u ∈ V | ∃j ∈ [t], u is an ancestor of lj}. Thus,
∀u ∈ V ′, we have par(u) ∈ V ′.

By Lemma D.13, with probability at least 1 − 1/(100m5/δ), ∀u ∈ leaves(par) \ L, there exists
w ∈ L,w <par u such that |{x ∈ leaves(par) | w <par x <par u}| ≤ b| leaves(par)|/dm1/3ec. In the
following, we condition on the above event happens. Let u ∈ V \ V ′. Due to Fact D.11, the DFS
sequence of the subtree of u in par must be a consecutive subsequence of the DFS sequence of par .
Thus, ∃x, y ∈ leaves(par), the leaves in the subtree of u in par is the set {z ∈ leaves(par) | x <par

z <par y}∪{x}∪{y}. If the number of leaves in the subtree of u is more than b| leaves(par)|/dm1/3ec,
then ∃li ∈ L, u is an ancestor of leaf li. But li ∈ V ′ contradicts to u 6∈ V ′. Thus, the number of
leaves in the subtree of u is at most b| leaves(par)|/dm1/3ec.

Lemma D.18 (A is a subsequence). Let par : V → V be a set of parent pointers (See Definition B.6)
on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0, 1) be parameters, and let |V | ≤ m1/δ.
Let (V ′, A) = SubDFS(par,m, δ) (Algorithm 16). Then A is a subsequence of the DFS sequence of
par . Furthermore, ∀u ∈ V ′, u appears in A exactly | childpar(u) + 1| times, and ∀u 6∈ V ′, u does not
appear in A.

Proof. We first show that A′ is the DFS sequence of par′ .

Claim D.19. A′ is the DFS sequence of par′ : V ′ → V ′.

Proof. By Lemma D.13, we know {l1, l2, · · · , lt} = L ⊆ leaves(par), and l1 <par l2 <par · · · <par lt.
By Lemma D.4, we have that ∀i ∈ [t−1], pli,li+1

is the LCA of (li, li+1), pi,li+1
is an ancestor of li+1,

and pi,li+1
6= pli,li+1

,par(pi,li+1
) = pli,li+1

. By Lemma 14, ∀i ∈ [t], P2i−1 and P2i only contains some
ancestors of li. Thus, leaves(par′) = L.

According to Lemma D.17 and Corollary D.16, the DFS sequence of par′ is a subsequence of the
DFS sequence of par . Thus, we still have l1 <par′ l2 <par′<par′ · · · <par′ lt. Due to Lemma 14, P1

contains all the vertices on the path from l1 to the root v, P2t contains all the vertices on the path
from lt to the root v, ∀i ∈ [t− 1], P2i contains all the vertices on the path from par′(li) to the LCA
of (li, li+1), and P2i+1 contains all the vertices on the path from li+1 to pi,li+1

. Thus, A′1 is the path
from the root v to leaf l1, A′2t is the path from lt to the root v, ∀i ∈ [t − 1], A′2iA

′
2i+1 is the path

from par′(li) to li+1. Due to Fact D.14, A′ = A′1A
′
2 · · ·A′2t is the DFS sequence of par′ .
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Let us define some notations. Let Ã = {ã1, ã2, · · · , ãs̃} be the DFS sequence of par . ∀u ∈
V, let st

Ã
(u) = j such that ãj is the first time that u appears in Ã. We define ed

Ã
(u) be the

position such that ãed
Ã

(u) is the last time that u appears in Ã. Similarly, ∀u ∈ V ′, we can define
stA′(u), stA(u), edA′(u), edA(u) to be the positions of the first time u appears in A′, the first time u
appears in A, the last time u appears in A′, and the last time u appears in A respectively.

Since v is the root (in both par and par′), it suffices to prove that (astA(v), astA(v)+1, · · · , aedA(v))
is a subsequence of (ãst

Ã
(v), ãst

Ã
(v)+1, · · · , ãed

Ã
(v)). Our proof is by induction on deppar(u) for u ∈

V ′. If deppar(u) = dep(par), then u must be a leaf in par′ (or par, since par′ and par are the
same on V ′). In this case, stA(u) = edA(u), st

Ã
(u) = ed

Ã
(u), and (astA(u)) = (ãst

Ã
(u)) = (u).

Suppose for all u ∈ V ′ with deppar(u) > d, we have that (astA(u), · · · , aedA(u)) is a subsequence of
(ãst

Ã
(u), · · · , ãed

Ã
(u)). Let u be a vertex in V ′ with deppar(u) = d. If u is a leaf, then it is the same as

the previous argument. Now let us consider the case when u is not a leaf. According to Claim D.19,
A′ is the DFS sequence of par′ . Due to line 30, A is obtained by duplicating each element of A′

several times. Let w1, w2, · · · , wk be the children of u in par′, and rankpar′(w1) = 1, rankpar′(w2) =
2, · · · , rankpar′(wk) = | childpar′(u)|. Then, according to Fact D.11, (astA(u), · · · , aedA(u)) should look
like:

(u, · · · , u, astA(w1), · · · , aedA(w1), u, · · · , u, astA(w2), · · · , aedA(w2), · · · , astA(wk), · · · , aedA(wk), u, · · · , u)

where the number of u before astA(w1) is rankpar(w1) (see line 26), the number of u before astA(wi)

for i ∈ [k] \ {1} is rankpar(wi) − rankpar(wi−1) (see line 28), and the number of u after aedA(wk)

is | childpar(u)| − rankpar(wk) + 1 (see line 27). Since Ã is the DFS sequence of par, according
to Fact D.11, the number of u in Ã before ãst

Ã
(w1) is rankpar(w1). By our induction hypothesis,

(astA(w1), · · · , aedA(w1)) is a subsequence of (ãst
Ã

(w1), · · · , ãed
Ã

(w1)). Thus, (astA(u), · · · , aedA(w1)) is
a subsequence of (ãst

Ã
(u), · · · , ãed

Ã(w1)
). According to Fact D.11, ∀i ∈ [k] \ {1}, the number of u

in Ã between ãed
Ã

(wi−1) and ãst
Ã

(wi) is rankpar(wi) − rankpar(wi−1). By our induction hypothe-
sis, for all i ∈ [k] \ {1}, (astA(wi), · · · , aedA(wi)) is a subsequence of (ãst

Ã
(wi), · · · , ãed

Ã
(wi)). Thus,

(astA(u), · · · , aedA(wk)) is a subsequence of (ãst
Ã

(u), · · · , ãed
Ã(wk)

). According to Fact D.11, the num-

ber of u in Ã after ãed
Ã

(wk) is | childpar(u)| − rankpar(wk) + 1. Thus, (astA(u), · · · , aedA(u)) is a
subsequence of (ãst

Ã
(u), · · · , ãed

Ã(u)
). Furthermore, the number of u appears in A is | childpar(u)| −

rankpar(wk) + 1 + rankpar(w1) +
∑k

i=2 rankpar(wi)− rankpar(wi−1) = | childpar(u)|+ 1.
Since A′ is the DFS sequence of par′, ∀u 6∈ V ′, u does not appear in A′. Thus, ∀u 6∈ V ′, u does

not appear in A.

D.2.3 DFS Sequence

In this section, we show how to use Algorithm 16 as a subroutine to output a DFS sequence. The
high level idea is that we use Algorithm 16 to generate subsequences of the DFS sequence in each
iteration, and we ensure that the miss part of the DFS sequence must be the DFS sequences of
many subtrees. After the ith iteration, we should ensure that the number of leaves of each subtree
which has missing DFS sequence is at most n/mi, where m is some parameter depends on some
computational resources (e.g. memory size of a machine). The description of the algorithm is shown
in Algorithm 17. Figure 2 shows one step in our algorithm.

Theorem D.20 (Correctness of DFS sequence). Let par : V → V be a set of parent pointers (See
Definition B.6) on a vertex set V , and par has a unique root. Let n = |V |,m = nδ for some constant
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Figure 2: Given a tree that has 42 vertices (top-left), we label all the vertices from 1 to 42. Firstly,
we sample some leaves (red vertices, i.e. {5, 13, 24, 30, 32, 34, 36, 37, 40, 42}) in the tree (top-right
tree). Then we find a DFS sequence of the tree (the tree formed by all the blue and red vertices
in the bottom-left tree) which only contains all the sampled leaves and their ancestors. Finally, we
recursively find the DFS sequences of remaining subtrees(bottom-right).

δ ∈ (0, 1). If A = DFS(par,m) (Algorithm 17) does not output FAIL, then A is the DFS sequence
of par .

Proof. It suffices to prove the following claim.

Claim D.21. Let i ∈ {0}∪[r]. Ai is a subsequence of the DFS sequence of par . ∀v ∈ Vi, par(v) ∈ Vi.
Furthermore, ∀v ∈ Vi, v appears in Ai exactly | childpar(v)|+1 times, and ∀v 6∈ Vi, v does not appear
in Ai.

Proof. Our proof is by induction on i. If i = 0, then by Lemma D.18, A0 is a subsequence of the
DFS sequence of par, ∀v ∈ V0, v appears in A0 exactly | childpar(v)|+ 1 times, and ∀v 6∈ V0, v does
not appear in A0. By Lemma D.17, we have ∀v ∈ V0,par(v) ∈ V0.

Suppose the claim is true for i− 1. Let u ∈ Vi.
If u ∈ Vi−1, then since Vi−1 ⊆ Vi, par(u) ∈ Vi. Otherwise u ∈ Vi,v for some v with pari(v) = v.

If u = v, then par(v) ∈ Vi−1 ⊆ Vi. Otherwise, by Lemma D.17, par(u) ∈ Vi,v ⊆ Vi.
Now consider the property of Ai. If u ∈ Vi−1, then since Ai−1 is a subsequence of Ai, and

by Lemma D.18 u cannot appear in any Ai,v, u must appear in Ai exactly | childpar(u)| + 1
times. Otherwise u ∈ Vi,v for some v with pari(v) = v. By Lemma D.18, u must appear in
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Algorithm 17 DFS sequence
1: procedure DFS(par : V → V,m) . Theorem D.20, Theorem D.22
2: Output: FAIL or A = (a1, a2, · · · , a2|V |−1).
3: n = |V |, δ = 1/ logm n.
4: Let par0 = par .
5: (V0, A0) = SubDFS(par0,m, δ). . Algorithm 16
6: Let r = d3/δe+ 2.
7: for i = 1→ r do . v ∈ Vi ⇔ v appears in Ai

. If v ∈ Vi, then v appears | childpar(v)|+ 1 times in Ai
8: Let V ′i = V \ Vi−1.
9: Initialize pari : V ′i → V ′i .

10: For v ∈ V ′i , if par(v) ∈ Vi−1, let pari(v) = v; Otherwise, let pari(v) = par(v).

11: ((V ′′i , ∅),par
(∞)
i ) = TreeContraction((V ′i , ∅), pari). . Algorithm 2

12: Vi ← Vi−1.
13: Ai ← Ai−1.
14: for v ∈ V ′i ,pari(v) = v do . The DFS sequence of the subtree of v in par is missing.
15: Let V ′i (v) = {u ∈ V ′i | par

(∞)
i (u) = v}.

16: Let pari,v : V ′i (v)→ V ′i (v) satisfy ∀u ∈ V ′i (v), pari,v(u) = pari(u).
17: Let (Vi,v, Ai,v) = SubDFS(pari,v,m, δ). . Algorithm 16
18: Vi ← Vi ∪ Vi,v.
19: Insert Ai,v after the rankpar(v)th time appearance of v in Ai.
20: end for
21: end for
22: If Vr = V, return Ar as A. Otherwise, return FAIL.
23: end procedure

Ai,v | childpari,v(u)| + 1 = | childpar(u)| + 1 times. Since u cannot appear in Ai−1, u must appear
in Ai exactly | childpar(u)| + 1 times. For v ∈ V ′i with pari(v) = v, according to Fact D.11 and
∀w ∈ {x ∈ V | v is an ancestor of x}, w cannot be in Vi−1, the rankpar(v)th time appearance of v
and the (rankpar(v) + 1)th time appearance of v should be adjacent in Ai−1. Due to Lemma D.18,
Ai,v is a subsequence of the DFS sequence of the subtree of v in par . Due to Fact D.11, Ai is still
a subsequence of the DFS sequence of par after insertion of the sequence Ai,v.

For any x 6∈ Vi, by Lemma D.18, x cannot be in any Ai,v. By our induction hypothesis, x cannot
be in Ai−1. Thus, x cannot be in Ai.

If the procedure does not output FAIL, then according to the above Claim D.21, ∀v ∈ Vr = V, v
appears in Ar = A exactly | childpar(v)|+1 times, and Ar = A is a subsequence of the DFS sequence
of par. Due to Fact D.11, A = Ar is the DFS sequence of par.

The following lemma claims the success probability of Algorithm 17.

Theorem D.22 (Success probability). Let par : V → V be a set of parent pointers (See Defini-
tion B.6) on a vertex set V , and par has a unique root. Let n = |V |,m = nδ for some constant
δ ∈ (0, 1). With probability at least 1−1/(100n4), A = DFS(par,m) (Algorithm 17) does not output
FAIL.

Proof. ∀i ∈ [r], v ∈ V ′i with pari(v) = v, let Ei,v be the event that ∀u ∈ V ′i (v) \ Vi,v, the number of
leaves in the subtree of u in par is at most | leaves(pari,v)|/nδ/3. Notice that due to Lemma D.17,
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if pari(v) = v, then v will be in Vi. Thus, we use Ev to denote the event Ei,v. By Lemma D.17, Ev
happens with probability at least 1− 1/(100n5). By taking union bound over all v, with probability
at least 1− 1/(100n4), all the events Ev will happen.

Claim D.23. Condition on all the events Ev happen. ∀i ∈ [r], v ∈ V ′i with pari(v) = v, we have
| leaves(pari,v)| ≤ n/n(i−1)δ/3.

Proof. When i = 1, the claim is obviously true, since | leaves(pari,v)| ≤ n. Suppose the claim
holds for i − 1. Let v ∈ V ′i with pari(v) = v. There must be v′ ∈ V ′i−1 with pari−1(v′) = v′, and
v ∈ V ′i−1(v′) \ Vi−1,v′ . Since Ev′ happens, the number of leaves in the subtree of v in par is at most
| leaves(pari−1,v′)|/nδ/3 ≤ n/n(i−1)δ/3.

If V ′r 6= ∅, then ∃v ∈ V ′r with pari(v) = v and | leaves(pari,v)| ≥ 1. If all the events Ev happens,
it will contradict to Claim D.23. Thus, if all the events Ev happens, V ′r must be ∅, and thus Vr = V
which implies that the procedure will not fail.

D.3 Range Minimum Query

Range Minimum Query (RMQ) problem is defined as following: given a sequence of n numbers
a1, a2, · · · , an, the goal is to preprocess the sequence a to get a data structure such that for any
query (p, q), (p < q) we can efficiently find the element which is the minimum in ap, ap+1, · · · , aq.
A classic method is to preprocess a sparse table f in log(n) number of iterations such that ∀i ∈
[n], j ∈ [dlog ne] ∪ {0}, fi,j = arg mini≤i′≤min(n,i+2j−1) ai. To answer query for (p, q), it just needs
to return arg mini∈{fp,j∗ ,fq−2j

∗
+1,j∗}

ai for j∗ = blog(q − p + 1)c. In this section, we firstly show a

modified data structure. We will compute f̂i,j = arg mini≤i′≤min(n,i+dnδej−1) ai′ The Algorithm is
shown in Algorithm 18. Then we show how to use f̂ to compute f in Algorithm 19.

Algorithm 18 A Sparser Table for RMQ

1: procedure SparseTable+(a1, a2, · · · , an, δ) . Lemma D.24
2: . Output: f̂i,j for i ∈ [n], j ∈ {0} ∪ [d1/δe]
3: Initially, for all i ∈ [n] let f̂i,0 = i. ∀i > n, j ∈ Z, let f̂i,j = 0, and let a0 =∞. Let m = dnδe.
4: For t ∈ [d1/δe], let St = {x | ∃y ∈ [m− 1], x = y ·mt}.
5: for l = 1→ d1/δe do
6: for j = 0→ dn/me do
7: i← j ·m+ 1.
8: z∗j,l ← arg min

z:t∈[l−1],x∈St,z=f̂j·m+1+x,t
az.

9: for i′ = 0→ min(m− 1, n− i) do
10: T ← {x ∈ Z | i+ i′ ≤ x ≤ i+m−1}∪{x ∈ Z | i+ml ≤ x ≤ i+ml+ i′−1}∪{z∗j,l}
11: f̂i+i′,l = arg minz∈T az.
12: end for
13: end for
14: l← l + 1.
15: end for
16: return f̂i,j for i ∈ [n], j ∈ {0} ∪ [d1/δe].
17: end procedure
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Algorithm 19 A Sparse Table for RMQ
1: procedure SparseTable(a1, a2, · · · , an, δ) . Lemma D.25
2: . Output: fi,j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
3: Initially, for all i ∈ [n] let fi,0 = i. ∀i > n, j ∈ Z, let fi,j = 0, and let a0 =∞. Let m = dnδe.
4: Let {f̂p,q | p ∈ [n], q ∈ {0} ∪ d1/δe} = SparseTable+(a1, a2, · · · , an, δ). . Algorithm 18
5: Let all undefined f̂p,q be 0.
6: for t ∈ [dlog ne] do
7: if 2t ≤ m then
8: kt ← −1
9: St ← ∅

10: else
11: kt ← blogm(2t −m)c
12: St ← {x | x ∈ [2t −m−mkt + 1] s.t. x ≡ 1 (mod mkt) or (2t −m− x) ≡ −1 (mod mkt)}
13: end if
14: end for
15: for j = 0→ dn/me do
16: for t = 0→ dlog ne do
17: i← j ·m+ 1.
18: z∗j,t ← arg min

z:x∈St,z=f̂j·m+m+x,kt
az.

19: for i′ = 0→ min(m− 1, n− i) do
20: T1 ← {x ∈ Z | i+ i′ ≤ x ≤ min(i+m− 1, i+ i′ + 2t − 1)}
21: T2 ← {x ∈ Z | max(i+ 2t, i+ i′) ≤ x ≤ i+ 2t + i′ − 1}
22: T ← T1 ∪ T2 ∪ {z∗j,t}
23: fi+i′,t = arg minz∈T az.
24: end for
25: end for
26: end for
27: return fi,j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
28: end procedure

Lemma D.24. Let a1, a2, · · · , an be a sequence of numbers, and δ ∈ (0, 1). Let {f̂p,q} be the output
of SparseTable+(a1, a2, · · · , an, δ) (Algorithm 18). Then ∀p ∈ [n], q ∈ {0} ∪ [d1/δe], f̂p,q =
arg minp≤p′≤min(n,i+dnδeq−1) ap′ .

Proof. The proof is by induction on q. When q = 0, the statement obviously holds for all f̂p,0.
Suppose all p ∈ [n], f̂p,0, f̂p,1, · · · , f̂p,q−1 satisfy the property. The first observation is that the value
of f̂p,q will be assigned in the procedure when l = q, j = b(p − 1)/mc, i′ = (p − 1) mod m. Then
by line 8, z∗j,l will be the position of the minimum value in aj·m+m, aj·m+m+2, · · · , aj·m+ml−1 by
our induction hypothesis. Then by line 11, f̂i+i′,l will be the position of the minimum value in
aj·m+i′+1, aj·m+i′+2, · · · , aj·m+i′+ml . Thus, Since j ·m+ i′ + 1 = p, f̂p,q satisfies the property.

Lemma D.25. Let a1, a2, · · · , an be a sequence of numbers, and δ ∈ (0, 1). Let {fp,q} be the output
of SparseTable(a1, a2, · · · , an, δ) (Algorithm 19). Then ∀p ∈ [n], q ∈ {0} ∪ [dlog ne], fp,q =
arg minp≤p′≤min(n,i+2q−1) ap′ .

Proof. Letm = dnδe. By Lemma D.24, ∀x ∈ [n], y ∈ {0}∪[d1/δe], f̂x,y = arg minx≤x′≤min(n,i+my−1) ax′ .
Thus, by the definition of St, we know z∗j,t = arg minj·m+m+1≤z≤j·m+2t az. An observation is that

57



the value of fp,q will be assigned in the procedure when t = q, j = b(p−1)/mc, i′ = (p−1) mod m.
By line 23, we know

fp,q = fi+i′,t = arg min
z:i+i′+1≤z≤i+i′+2t

az = arg min
p≤p′≤min(n,i+2q−1)

ap′ .

D.4 Applications of DFS Sequence

In this section, we briefly discuss some applications of the DFS sequence of a tree.
Since the DFS sequence of a subtree should be a continuous subsequence of the DFS sequence

of the tree, one direct application of the DFS sequence is to compute the size of each subtree, i.e.
for each subtree with root v, we can find the first place v appeared and the last place v appeared,
and then calculate the vertices between those two appearances.

Another application of the DFS sequence and the range minimum query is to output a data
structure which can answer any LCA query in O(1) time (for both sequential and parallel). This
is better than the data structure provided by Section D.1 which needs O(logD) time (for both
sequential and parallel) to answer the query.

Since it is easy to output a data structure which can answer the depth of each vertex in O(1)
time (in both sequential and parallel), together with the lowest common ancestor data structure, we
can answer the query of the tree distance between any two vertices in O(1) time (for both sequential
and parallel).

E The MPC Model

In this section, let us introduce the computational model studied in this paper. Suppose we have
p machines indexed from 1 to p each with memory size s words, where n is the number of words
of the input and p · s = O(n1+γ), s = Θ(nδ). Here δ ∈ (0, 1) is a constant, γ ∈ R≥0, and a word
has Θ(log(s · p)) bits. Thus, the total space in the system is only O(nγ) factor more than the input
size n, and each machine has local memory size sublinear in n. When 0 ≤ γ ≤ O(1/ log n), the
total space is just linear in the input size. The computation proceeds in rounds. At the beginning
of the computation, the input is distributed on the local memory of Θ(n/s) input machines. Input
machines and other machines are identical except that input machine can hold a part of the input
in its local memory at the beginning of the computation while each of other machines initially holds
nothing. In each round, each machine performs computation on the data in its local memory, and
sends messages to other machines (including the sender itself when it wants to keep the data) at the
end of the round. Although any two machines can communicate directly in any round, the total size
of messages (including the self-sent messages) sent or received of a machine in a round is bounded
by s, its local memory size. In the next round, each machine only holds the received messages in its
local memory. At the end of the computation, the output is distributed on the output machines.
Output machines and other machines are identical except that output machine can hold a part of
the output in its local memory at the end of the computation while each of other machines holds
nothing. We call the above model (γ, δ)−MPC model. The model is exactly the same as the model
MPC(ε) defined by [BKS13] with ε = γ/(1 + γ − δ) and the number of machines p = O(n1+γ−δ).
Since we care more about the total space used by the algorithm, we use (γ, δ) to characterize the
model, while in [BKS13] they use parameter ε to characterize the repetition of the data. The main
complexity measure is the number of rounds R required to solve the problem.
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E.1 Basic MPC Algorithms

Sorting One of the most important algorithms in MPC model is sorting. The following theorem
shows that there is an efficient sorting algorithm.

Theorem E.1 ([GSZ11, Goo99]). Sorting can be solved in c/δ rounds in (0, δ) −MPC model for
any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant. Precisely, there is an algorithm A in
(0, δ) −MPC model such that for any set S of n comparable items stored O(nδ) per machine on
input machines, A can run in c/δ rounds and leave the n items sorted on the output machines, i.e.
the ouput machine with smaller index holds a smaller part of O(nδ) items.

Notice that for any δ′ ≥ δ, O(1) number of machines with Θ(nδ
′
) memory can always simulate

the computation of O(nδ
′−δ) number of machines with Θ(nδ) memory. Thus, if an algorithm A can

solve a problem in (γ, δ)−MPC model in R(n) rounds, then A can be simulated in (γ′, δ′)−MPC
model still in R(n) rounds with all γ′ ≥ γ, δ′ ≥ δ.

Indexing In the indexing problem, a set S = {x1, x2, · · · , xn} of n items are stored O(nδ) per
machine on input machines. The output is

S′ = {(x, y) | x ∈ S, y − 1 is the number of items before x}

of n pairs stored O(nδ) per machine on output machines. Here, “an item x′ ∈ S is before x ∈ S”
means that x′ is held by a input machine with a smaller index, or x′, x are stored in the same input
machine but x′ has a smaller local memory address.

Prefix sum In the prefix sum problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n (item,
number) pairs are stored O(nδ) per machine on input machines. The output is

S′ =

(x, y′)

∣∣∣∣ (x, y) ∈ S, y′ − y =
∑

(x̃,ỹ) is before (x,y)

ỹ


of n pairs stored O(nδ) per machine on output machines. Here, “an pair (x̃, ỹ) ∈ S is before
(x, y) ∈ S” means that (x̃, ỹ) is held by a input machine with a smaller index, or (x̃, ỹ), (x, y)
are stored in the same input machine but (x̃, ỹ) has a smaller local memory address. Notice that
indexing problem is a special case of prefix sum problem.

Theorem E.2 ([GSZ11]). Indexing/prefix sum problem can be solved in c/δ rounds in (0, δ)−MPC
model for any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant.

Once each item has an index, it is able to reallocate them onto the machines.

Load balance Sometimes, local computations of a machine may generate new data. When some
machines are not able to keep the new data generated, we need to do loading balance. Fortunately,
this operation can be done in constant number of rounds of computations.

For arbitrary constant δ ∈ (0, 1), we are able to spend constant number of rounds to reallocate
the data in (0, δ)−MPC model such that if a machine is not empty, the size of its local data is at
least nδ/k and is at most 2nδ/k where k > 1 is an arbitrary constant. The method is very simple,
we can use the algorithm mentioned in Theorem E.2 to index each data item, and then send them
to the corresponding machine.
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Predecessor In the predecessor problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n (item,
0/1) pairs are stored O(nδ) per machine on input machines. The output machines are all input
machines. If an input (also output) machine holds a tuple (xi, yi) ∈ S at the beginning of the
computation, then at the end of the computation, that machine should still hold the tuple (xi, yi).
In addition, if an input (also output) machine holds a tuple (x, 0) ∈ S at the beginning of the
computation, then at the end of the computation, that machine should hold a tuple (x, x′) such
that (x′, 1) ∈ S, and (x′, 1) is the last tuple occurred before (x, 0). Here, “(x′, 1) is before (x, 0)”
means that (x′, 1) is held by a input machine with a smaller index, or (x′, 1), (x, 0) are stored in the
same input machine but (x′, 1) has a smaller local memory address.

Theorem E.3 ([GSZ11]). Predecessor problem can be solved in c/δ rounds in (0, δ)−MPC model
for any constant δ ∈ (0, 1), where c ≥ 0 is a universal constant.

Roughly speaking the algorithm is as the following: firstly, build a Θ(nδ) branching tree on the
machines, then follows by bottom-up stages to collect the last (xl, 1) tuple in each large interval
and then follows by top-down stages to compute the predecessors of every prefix. For completeness,
we describe the algorithm for predecessor problem in the following:
Predecessor Algorithm:

• Setups:

– There are 2p = Θ(nδ) machines indexed from 1 to 2p each with local memory size s = Θ(nδ).
The machine with index from p+ 1 to 2p are input/output machines.

– (x1, y1), · · · (xn, yn) are stored on input/output machine p+ 1 to 2p, where ∀i ∈ [n], yi ∈ {0, 1}.
– The goal: If an input machine holds a tuple (x, y) with y = 0, then it will create a tuple (x, x′)

at the end of the computation, where (x′, y′) is the last tuple with y′ = 1 stored before (x, y).

• Bottom-up stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bp/di−1c + 1 to b(2p − 1)/di−1c + 1 sends
the last (xl, yl) tuple with yl = 1 in its local memory to machine b(j − 1)/dc + 1. If machine j
does not have any tuple with yl = 1, it just sends an arbitrary tuple to machine b(j − 1)/dc+ 1.

– Until the end of the computation, machine j sends itself messages to keep the data. The stage
ends when machine 1 receives messages.

• Top-down stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bdi−2c + 1 to min(di−1, p) sends to each
machine h in the range (j − 1)d+ 1 to min(j · d, 2p) a tuple (xl, yl) which is the last tuple with
yl = 1 appeared before machine h.

– The stage ends when machine 2p receives messages.

• The last round:

– Machine i ∈ {p + 1, · · · , 2p} scans its local memory, for each tuple (x, y) with y = 0, create a
tuple (x, x′) where (x′, y′) is the last tuple stored before (x, y) with y′ = 1.

E.2 Data Organization

In this section, we introduce the method to organize the data in the system.
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Set Let S = {x1, x2, · · · , xm} be a set of m items, and each item xi can be described by O(1)
number of words. If x ∈ S is equivalent to that there is a unique machine which holds a pair (“S”, x)
in its local memory, then we say that S is stored in the system. Here “S” is the name of the set S
and can be described by O(1) number of words.

Let S = {S1, S2, · · · , Sm} be a set of m sets, where ∀i ∈ [m], Si is stored in the system, and
the name “Si” of each set Si can be described by O(1) number of words. If S ∈ S is equivalent to
that there is a unique machine which holds a pair (“S”, “S”) in its local memory, then we say S is
stored in the system. Here “S” is the name of S and can be described by O(1) number of words.

Let S be a set stored in the system. If machine i has a pair (“S”, x), then we say that the
element x of S is held by the machine i. If every element of S is held by a machine with index in
{i, i+ 1, · · · , j}, then we say S is stored on the machine i to the machine j.

The total space needed to store S is Θ(m).

Mapping Let f : U → H be a mapping from a finite set U to a set H. In the following, we show
how to use a set to represent a mapping.

Definition E.4 (Set representation of a mapping). Let f : U → H be a mapping from a finite set
U to a set H. Let S = {(x, y) | x ∈ U, y = f(x)}. then the set S is a set representation of the
mapping f.

Let U be a finite set where each element of U can be described by O(1) number of words. Let
S be a set representation of the mapping f : U → H. If S is stored in the system, then we say f
is stored in the system. If S is stored on the machine i to the machine j, then f is stored on the
machine i to the machine j. At any time of the system, there can be at most one set representation
S of f stored in the system. Furthermore, the name of S is “f” which is the same as the name of
mapping f , and can be described by O(1) number of words.

The total space needed to store f is the total space needed to store S, and thus is Θ(|U |).

Sequence Let A = (a1, a2, · · · , am) be a sequence of m elements. In the following, we show how
to use a set to represent a sequence.

Definition E.5 (Set representation of a sequence). Let A = (a1, a2, · · · , am) be a sequence of n
elements. If a set S = {(x1, y1), (x2, y2), · · · , (xm, ym)} ⊆ R× {a1, a2, · · · , am} satisfies x1 < x2 <
· · · < xm, y1 = a1, y2 = a2, · · · , ym = am, then the set S is a set representation of the sequence A.
Furthermore, if x1 = 1, x2 = 2, · · · , xm = m, then S is a standard set representation of A.

Let A be a sequence of elements where each element can be described by O(1) number of words.
Let S be a set representation of the sequence A. If S is stored in the system, then we say A is stored
in the system. If S is stored on the machine i to the machine j, then A is stored on the machine i
to the machine j. At any time of the system, there can be at most one set representation S of A
stored in the system. Furthermore, the name of S is “A” which is the same as the name of sequence
A, and can be described by O(1) number of words.

The total space needed to store A is the total space needed to store S, and thus is Θ(m).

E.3 Set Operations

In this section, we introduce some MPC model operations for sets.
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Duplicates removing There are n tuples stored in the machines. But there are some duplicates
of them. The goal is to remove all the duplicates. To achieve this, we can just sort all the tuples.
After sorting, if a tuple is different from its previous tuple, then we keep it. Otherwise, we remove
the tuple.

Sizes of sets Suppose we have k sets S1, S2, · · · , Sk stored in the system. Our goal is to get the
sizes of all the sets. We can firstly sort all the tuples such that the tuples from the same set are
consecutive. Then we can calculate the index of each tuple. Every machine can scan all the tuples
in its local memory, if x is an element of set Si and has the smallest/largest index y, then create a
pair (“boundary of ‘Si’ ”, y). Then we sort all the created pairs, then for each set Si, there are two
pairs (“boundary of ‘Si’ ”, y1), (“boundary of ‘Si’ ”, y2) stored on the same machine. Each machine
can store its local memory. For each pair of tuples (“boundary of ‘Si’ ”, y1), (“boundary of ‘Si’ ”, y2)
with y1 < y2, the machine can generate a new tuple (“f”, (“Si”, y2 − y1 + 1)). Finally, there will
be a mapping f stored in the system, where f(Si) = |Si|. Thus, the total number of rounds is a
constant.

Copies of sets Suppose we have k sets S1, S2, · · · , Sk stored in the system. Let s1, s2, · · · , sk ∈
Z≥1. If a machine holds an element x ∈ Si, then the machine knows the value of si. Our goal is to
create sets S1,1, S1,2, · · · , S1,s1 , S2,1, S2,2, · · · , S2,s2 , · · · , Sk,sk and make them stored in the system,
where Si,j is a copy of Si.

The idea is very simple: for an element x ∈ Si, we need to make si copies (“Si,1”, x), (“Si,2”, x),
· · · , (“Si,si”, x) of tuple (“Si”, x). But the issue is that si may be very large such that it is not able
to generate all the copies of a tuple on a single machine. For the above reason, we implement it
in three steps: firstly we compute the new “position” of each original tuple among all the copies,
then send the original tuples to their new “positions”, and finally filling the gap by generating copies
between any two adjacent original tuples. Precisely, each machine can scan its local memory, and
assign each tuple (“Si”, x) a weight si. Then we can use prefix sum algorithm (See Theorem E.2)
to compute the prefix sum of each tuple (“Si”, x). The prefix sum pos(“Si”, x) of a tuple (“Si”, x)
denotes the new “position” of the last copy of this tuple when all the copies are generated. Let
n =

∑k
i=1 si · |Si|. Let machine 1 to t be t empty machines each maintains s/10 “positions”, i.e.

machine 1 has “positions” 1 to s/10, machine 2 has “positions” s/10 + 1 to 2s/10, and so on. Let
t · s/10 = Θ(n). The machine which holds tuple (“Si”, x) sends the tuple (“Si”, x) to the “position”
pos(“Si”, x) − si + 1, and sends the tuple (“Si,si”, x) to the “position” pos(“Si”, x). Then each
machine i ∈ [t] scans its “positions”. If a “position” received a tuple, the machine marks that
“position” as “1”. Otherwise, the machine marks that position as “0”. Now we can apply the
predecessor algorithm (See Theorem E.3) such that each empty “position” learns its predecessor
tuple. If the predecessor tuple of an empty “position” l is (“Si”, x), and the predecessor tuple is at
“position” l′, then create a tuple (“Si,l−l′”, x) at this empty position. Thus, at the end of all the
computations, S1,1, S1,2, · · · , S1,s1 , S2,1, S2,2, · · · , S2,s2 , · · · , Sk,sk are stored on the system.

Indexing elements in sets Suppose we have k sets S1, S2, · · · , Sk stored in the system. The
goal is to compute a mapping f such that ∀i ∈ [k], x ∈ Si, x is the f(Si, x)th element of Si.

To achieve this goal, we can sort (See Theorem E.1) all the tuples such that the elements from
the same set are stored consecutively on several machines. Then we can run indexing algorithm
(See Theorem E.2) to compute the global index of each tuple. In the next, each machine scans its
local data. If (“Si”, x) is in the local memory, and x is the first element of Si, then the machine
marks this tuple as “1”. For other tuples in the local memory, the machine marks them as “0”.
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Then we can invoke predecessor algorithm (See Theorem E.3) on all the tuples. At the end of
the computation, each machine scans its all tuples. For a tuple (“Si”, x) with global index l, the
machine determine the index of x in Si based on the global index l′ of its predecessor (“Si”, x).
Precisely, the machine creates a tuple (“f”, ((“Si”, x), l − l′ + 1)) stored in the memory. Thus at
the end of the computation, the desired mapping f is stored in the system.

Set merging Suppose we need to merge several sets S1, S2, · · · , Sk stored on the system, i.e.
create a new set S =

⋃k
i=1 Si. To implement this operation, each machine scans its local memory.

If there is a tuple (“Si”, x) in its memory, then it creates a tuple (“S”, x). Finally, we just need to
remove all the duplicates.

Set membership Suppose we have k sets S1, S2, · · · , Sk stored in the system. There is an another
set Q = {(x1, y1), · · · , (xq, yq)} also stored in the system where xi is the name of a set S, and yi is
an item. The goal is to answer whether yi is in S.

To achieve this, we can firstly sort all the tuples. For tuple with form (“Si”, x), the first key is
Si, the second key is x, and the third key is −∞ which has the highest priority. For tuple with form
(“Q”, (x, y)), the first key is x, the second key is y, and the third key is ∞ which has the lowest
priority. The comparison in the sorting procedure firstly compare the first key, then the second key,
and finally the third key. After sorting, for each tuple with form (“Si”, x), we mark it as “1”. For
each tuple with form (“Q”, (x, y)), we mark it as “0”. Now we can apply the predecessor algorithm
(See Theorem E.3). For each tuple (“Q”, (x, y)), if its predecessor is (“S”, y) where x is the name of
“S”, then we create a tuple (“f”, ((x, y), 1)); Otherwise, we create a tuple (“f”, ((x, y), 0)). Thus, at
the end of the computation, there is a mapping f stored on the system such that for each (x, y) ∈ Q,
if x is the name of some set Si, and y ∈ Si, then f(x, y) = 1; Otherwise f(x, y) = 0.

E.4 Mapping Operations

In this section, we introduce some MPC model operations for mapping. The most important
operation is called Multiple queries.

Multiple queries We have k sets S1, S2, · · · , Sk stored in the system. Without loss of generality,
S1, S2, · · · , St (t ≤ k) are sets representations of mappings (See Definition E.4) f1 : U1 → H1, f2 :
U2 → H2, · · · , ft : Ut → Ht respectively. When a machine does local computation, it may need to
query some values which are in the form fi(u) for some u ∈ Ui. The following lemma shows that
we can answer all the such queries simultaneously in constant number of rounds in (0, δ) −MPC
model for all constant δ ∈ (0, 1). It means that we can use constant number of rounds to simulate
concurrent read operations on a shared memory where S1, · · · , Sk are stored in the shared memory.

Lemma E.6 (Multiple queries). Let δ ∈ (0, 1) be an arbitrary constant. There is a constant number
of rounds algorithm A in (0, δ) −MPC model which satisfies the following properties. The input
of A contains two parts. The first part are k sets S1, S2, · · · , Sk stored (See Section E.2 for data
organization of sets) on the input machines, where S1, S2, · · · , St (t ≤ k) are sets representations
of mappings (See Definition E.4) f1 : U1 → H1, f2 : U2 → H2, · · · , ft : Ut → Ht respectively.
The second part is a set Q = {(x1, y1, z1), (x2, y2, z2), · · · , (xq, yq, zq)} stored on the input machines,
where ∀(x, y, z) ∈ Q, x is the name “fi” of the mapping fi for some i ∈ [t], y is an element in
Ui, and z is the index of the input machine which holds the element (x, y, z) of Q. The total input
size n = |Q| +∑k

i=1 |Si|. The output machines are all the input machines. ∀i ∈ [k], x ∈ Si, if the
element x of Si is held by the input (also output) machine j, then at the end of the computation,
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the element x of Si should still be held by the output (also input) machine j. Let Q′ be the set
{(x, y, z, w) | ∃(x, y, z) ∈ Q,w = fi(y),where x is the name of fi}. At the end of the computation,
Q′ is stored on the output (also input) machines such that ∀(x, y, z, w) ∈ Q′, the element (x, y, z, w)
of Q′ is held by the machine z.

Proof. The idea is that we can firstly use sorting (See Theorem E.1) to make queries and the
corresponding values be stored consecutively in several machines. The issue remaining is that there
may be many queries queried the same position such that some queries may not be stored in the
machine which holds the corresponding value. In this case, we need to find the predecessor by
invoking the algorithm shown in Theorem E.3.

The Multiple queries algorithm is shown as the following:
Multiple Queries Algorithm:

• Setups:

– There are 3p = Θ(nδ) machines indexed from 1 to 3p each with local memory size s = Θ(nδ).

– The machine with index from 2p+ 1 to 3p are input/output machines.

– Sets S1, S2, · · · , Sk, Q are stored on machine 2p+ 1 to 3p. . Corresponding to Lemma E.6

• The first round:

– Machine i ∈ {2p + 1, · · · , 3p} scans its local memory, and send all the tuples with form
(“fj”, (x, y)) or (“Q”, (x, y, z)) to machine i − p, where “fj” is the name of fj (also Sj) for
j ∈ [t]. Until the end of the computation, machine i sends itself messages to keep its local data.

• Using constant number (O(1/δ)) of rounds to sort:

– Use machine 1 to 2p to sort all the tuples stored on machine p + 1 to 2p, and thus at the end
of this stage, machine p + 1 to 2p holds sorted tuples. For tuple with the form (“fj”, (x, y)),
the first key value is “fj”, the second key value is x and the third key value is −∞ which is the
highest priority. For tuple with form (“Q”, (x, y, z)), the first key value is x, the second key value
is y, and the third key value is ∞ which is the lowest priority. The comparison in the sorting
is: Firstly compare the first key. If they are the same, then compare the second key. If they are
still the same, compare the third key.

• Using constant number (O(1/δ)) of rounds to find predecessors:

– Machine p + 1 to 2p scans its local memory. For a tuple in the form (“fj”, (x, y)), the machine
marked it as “1”. For a tuple in the form (“Q”, (x, y, z)), the machine marked it as “0”.

– Machine 1 to 2p together invoke the Predecessor algorithm (Theorem E.3), where the input is
on machine p+ 1 to machine 2p.

• The last round:

– Machine p + 1 to 2p scans its local memory. For each tuple with form (“Q”, (x, y, z)), it sends
machine z a tuple (“Q′”, (x, y, z, w)), where x is the name of fj , and w = fj(y).

E.5 Sequence Operations

In this section, we introduce some MPC model operations for sequence.

Sequence standardizing Suppose there is a sequence A, and one of its set representation (see
Definition E.5) S is stored in the system. The goal is to modify the set S such that S is a standard
set representation of A.
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We can compute the index (see Indexing elements in sets in Section E.3) of elements in S.
Then for each element (x, y) ∈ S, we can query (see Multiple queries in Section E.4) the index of
(x, y) in S. Suppose the index is i, we modify the tuple (“S”, (x, y)) to (“S”, (i, y)).

Sequence duplicating Suppose there is a sequence A = (a1, a2, · · · , as), and one of its set
representation (see Definition E.5) S is stored in the system. Furthermore, there is a mapping
f : [s] → Z≥0 which is also stored in the system. The goal is to get a set S′ stored in the system
such that S′ is a set representation of the sequence:

(a1, a1, · · · , a1︸ ︷︷ ︸
f(1) times

, a2, a2, · · · , a2︸ ︷︷ ︸
f(2) times

, · · · , as, as, · · · , as︸ ︷︷ ︸
f(s) times

).

Firstly, we can standardize (see the above paragraph Sequence standardizing) the set S.
Then for each tuple (“S”, (i, ai)), we create a tuple (“Si”, ai), and we can query (see Multiple
queries in Section E.4) the value of f(i). Then we can copy (see Copies of sets in Section E.3) set
Si f(i) times. For each tuple (“Si,j”, ai), we create a tuple (“S′”, ((i, j), ai)). Then we can compute
the index (see Indexing elements in sets in Section E.3) of each element in S′. For each tuple
(“S′”, ((i, j), ai)), we can query (see Multiple queries in Section E.4) the index i′ of it, and then
modify the tuple as (“S′”, (i′, ai)).

Sequence insertion Suppose there are k + 1 sequences A = (a1, a2, · · · , as), A1, · · · , Ak which
have sets representations (see Definition E.5) S, S1, · · · , Sk respectively and stored on the system.
There is also a mapping f : [k] → {0} ∪ [s] stored on the system where ∀i 6= j ∈ [k], f(i) 6= f(j).
The goal is to insert each sequence Ai into the sequence A, and Ai should be between the element
af(i) and af(i)+1.

Firstly, we can standardize (see Sequence standardizing in Section E.3) S. Then we can
compute the total size (see Sizes of sets in Section E.3) N = |S|+ |S1|+ · · ·+ |Sk|+ 1. For each
tuple (“S”, (i, ai)), we can modify it as (“S”, (i ·N, ai)). For each tuple (“Si”, (j, aij)), we query (see
Multiple queries in Section E.4) the value of f(i), then create a tuple (“S”, (f(i) ·N + j, aij)).

E.6 Multiple Tasks

In this section, we show that if the entire computational tasks consist of some independent small
computational tasks, then we are able to schedule the machines such that the small computational
tasks can be computed simultaneously.

Task and multiple tasks problem A computational task here is running a specific algorithm
on specific input data.

There are k sets S1, S2, · · · , Sk stored in the system. Let n =
∑k

i=1 |Si| be the total input
size. There are h independent computational tasks T1, T2, · · · , Th. Each task Ti needs to take some
sets Si ⊆ {S1, S2, · · · , Sk} as its input, and is running a (γi, δi) − MPC algorithm in ri rounds
where γi ∈ R≥0, constant δi ∈ (0, 1). ∀i ∈ [h], let ni =

∑
S∈Si |S| be the input size of task Ti.

Without loss of generality, we can assume that the input of different tasks are disjoint. Otherwise
we can use sets copying technique (See Section E.3) to generate different copies of input sets for
the tasks shared the same input set. The goal here is to use the small number of rounds to finish
all the tasks. Since we can always use sorting and indexing to extract the desired input data. The
most naive way is to compute the tasks one-by-one. This can be trivially done in r = O(

∑h
i=1 ri)

rounds in (γ, δ) − MPC model for γ = logn(h) + maxi∈[h] γi, δ = maxi∈[h] δi. Here we show how
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to compute all the tasks simultaneously in r = O(maxi∈[h] ri) rounds in (γ, δ) −MPC model for
γ = logn(m)− 1, δ = maxi∈[h] δi, where m = Θ(n+

∑h
i=1 n

1+γi
i ).

Each machine scans its local memory. If the machine holds a tuple (“Si”, x), and Si is a part of
input of task Tj , then it creates a tuple (“Wj”, (“Si”, x)). Thus, at the end of this step, there are
additional h setsW1,W2, · · · ,Wh stored in the system. HereWi, i ∈ [h] contains all the information
of input data of task Ti. Then we can compute a mapping f such that ∀i ∈ [h], f(Wi) = |Wi|
(see Section E.3). Thus, we know the input size of each task. Then each machine scans its local
memory. If the machine holds a tuple (“f”, (“Wi”, |Wi|)), then it creates a tuple (“Hi”, |Wi|),
i.e. a set Hi = {|Wi|}. Then for each set Hi = {|Wi|}, i ∈ [h], we can copy (see Section E.3) it
si = c · |Wi|1+γi times for a sufficiently large c to get sets Hi,1 = Hi,2 = · · · = Hi,si = |Wi|. Each
set Hi,j is just a placeholder of one unit working space of the task Ti. Thus, the number of copies
of the set Hi is the total space needed for the task Ti. We can sort all the tuples (“Hi,j”, |Wi|) on
machines with index in I = {2, 5, 8, 11, · · · , 3p− 1}, where local memory s = Θ(nδ), total required
memory m = Θ(n +

∑h
i=1 n

1+γi
i ), and p = Θ(m/s) For each machine with index q ∈ I, the tuples

on that machine must be in the following form

(“Hi,j”, |Wi|), (“Hi,j+1”, |Wi|), · · · , (“Hi,si”, |Wi|), (“Hi+1,1”, |Wi+1|), · · · , (“Hi+1,si+1”, |Wi+1|),
(“Hi+2,1”, |Wi+2|), · · · , (“Hi+2,si+2”, |Wi+2|), · · · , (“Hi′,1”, |Wi′ |), · · · (“Hi′,j′”, |Wi′ |).

Then machine q just sends all the tuples (“Hi,j”, |Wi|), (“Hi,j+1”, |Wi|), · · · , (“Hi,si”, |Wi|) to ma-
chine q − 1, and sends all the tuples (“Hi′,1”, |Wi′ |), (“Hi′,2”, |Wi′ |), · · · (“Hi′,j′”, |Wi′ |) to machine
q + 1. Thus, ∀i ∈ [h],

1. either all the Hi,1, Hi,2, · · · , Hi,si are stored on consecutive machines, machine q to machine
q′, and any of machine q to machine q′ does not hold other tuples,

2. or there is a unique machine q which holds all the sets Hi,1, Hi,2, · · · , Hi,si .

For each machine q ∈ [3p], if Hi,1 is held by machine q, then it creates a tuple (“ st ”, (“Ti”, q)). If
Hi,si is held by machine q, then it creates a tuple (“ ed ”, (“Ti”, q)). The mapping st, ed then are
stored in the system, where st(Ti) is the index of the first machine assigned to task Ti, and ed(Ti)
is the index of the last machine assigned to task Ti. Recall that Wi contains all the information of
the input data to task Ti. The remaining task is to move the input data of task Ti to the machines
with index from st(Ti) to ed(Ti). According to Section E.3, we can compute a mapping f ′, such that
f ′(Wi, x) records the index of x ∈ Wi in set Wi. Now, each machine scans its local memory. For
each tuple (“Wj”, (“Si”, x)), the machine needs to query the value of f ′(Wj , (“Si”, x)), the value
of st(Tj) and the value of ed(Tj). By Lemma E.6, these queries can be handled simultaneously in
constant number of rounds. Then the machine can send the tuple (“Si”, x) to the corresponding
machine based on the value of f ′(Wj , (“Si”, x)), st(Tj), and ed(Tj). Finally, ∀i ∈ [h], since δ ≥ δi
and (ed(Ti)− st(Ti) + 1) · s = Θ(n1+γi

i ), the machines with index from st(Ti) to ed(Ti) can simulate
task Ti in ri number of rounds.

F Implementations in MPC Model

In this section, we show how to implement all the previous batch algorithms in MPC model.

F.1 Neighbor Increment Operation

Lemma F.1. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some arbitrary
γ ∈ [0, 2]. NeighborIncrement(m,G) (Algorithm 1) can be implemented in (γ, δ)−MPC model
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for any constant δ ∈ (0, 1). Furthermore, the parallel running time is O(r), where r is the number
of iterations (see Definition B.2) of NeighborIncrement(m,G).

Proof. To implement line 7, we can create a tuple (“S
(0)
v ”, u) for each tuple (“E”, (v, u)). Then

for each (“S
(0)
v ”, u) we can compute the index (see Indexing elements in sets and Multiple

queries) of u in set S(0)
v . If the index of u in set S(0)

v is at least d(m/n)1/2e, then delete u from S
(0)
v ,

i.e. delete the tuple (“S
(0)
v ”, u).

Now let us discuss how to implement line 14 and line 17 in the ith iteration. Firstly, we
can compute the size of every set stored in the system (see Sizes of sets). Then for each tu-
ple (“S

(i−1)
v ”, u), the corresponding machine queries (see Multiple queries) the size of S(i−1)

u . If
|S(i−1)
u | ≥ d(m/n)1/2e, then create a tuple (“tempiv”, u). We can index (see Indexing elements in

sets) all the elements in set tempiv, and only keep the element with index 1. Thus, tempiv has a
only element u, and we need to create a set S(i)

v = S
(i−1)
u . Notice that there may be many v ∈ V

which needs need to implement S(i)
v = S

(i−1)
u . Thus, for each tuple (“tempiv”, u), we create a tuple

(“targetiu”, v). v ∈ targetiu means that S(i)
v needs a copy of S(i−1)

u . Thus, |targetiu| means that S(i−1)
u

needs to copy |targetiu| times. For each tuple (“S
(i−1)
u ”, x), the machine queries (see Multiple

queries) the size of targetiu. Then each set S(i−1)
u can be copied (see Copies of sets) |targetiu|

times. For each tuple (“targetiu”, v), we query (see Multiple queries) the index (see Indexing
elements in sets) of v in set targetiu, and then create a tuple (“f i”, ((“targetiu”, x), v)), where x is
the index of v in targetiu. Thus f i is a mapping such that f i(targetiu, x) is the xth element in targetiu.
For each tuple (“S

(i−1)
u,j ”, x), we query (seeMultiple queries) the value v = f i(targetiu, j), and then

create a tuple (“S
(i)
v ”, x), and a tuple (“S

(i)
v ”, v). We then remove the duplicates (see Duplicates

removing) of elements of for every set S(i)
v . For each tuple (“tempiv”, u), query (see Multiple

queries) the size (see Sizes of sets) of S(i)
v and S(i−1)

u . If |S(i)
v | > |S(i−1)

u |, then we create a tuple
(“gi”, (v, (u, “delete”))); Otherwise, create a tuple (“gi”, (v, (u, “keep”))). Finally, for each tuple
(S

(i)
v , x), we query (see Multiple queries) (u, o) = gi(v), if u = x and o = “delete", the machine

deletes the tuple (S
(i)
v , x).

Next, let us discuss how to implement line 20. Similar as before, we can compute the size of every
set stored in the system (see Sizes of sets). Then for each tuple (“S

(i−1)
v ”, u), the corresponding

machine queries (see Multiple queries) the size of S(i−1)
u . If |S(i−1)

u | ≥ d(m/n)1/2e, then create
a tuple (“tempiv”, u). For each tuple (“V ”, v), we can create a tuple (“tempiv”,null). Then for
each tuple (“V ”, v) we can query (see Multiple queries) the size (see Sizes of sets) of tempiv.
If |tempiv| = 1, then we create a tuple (“f ′i”, 1); Otherwise, we create a tuple (“f ′i”, 0). Thus,
mapping f ′i is stored in the system, and f ′i(v) = 1 if and only if ∀u ∈ S(i−1)

v , |S(i−1)
u | < d(m/n)1/2e.

For each tuple (“S
(i−1)
v ”, u), we query (see Multiple queries) the value f ′i(v). If f ′i(v) = 1,

we create a tuple (“targetiu”, v). Thus, v ∈ targetiu means that S(i−1)
u should be a part of S(i)

v .

|targetiu| means that S(i−1)
u needs to copy |targetiu| times. For each tuple (“S

(i−1)
u ”, v), we query

(see Multiple queries) the size (see Sizes of sets) of targetiu. Then we can copy (see Copies of
sets) each set S(i−1)

u |targetiu| times. Then for each tuple (“targetiu”, v), we can query (seeMultiple
queries) the index x (see Indexing elements in sets) of v in set targetiu, and then create a tuple
(“f i”, ((“targetiu”, x), v)) which means that the xth element of targetiu is f i(targetiu, x) = v. For
each tuple (“S

(i−1)
u,j ”, x), we query (see Multiple queries) the value v = f i(targetiu, j), and then

create a tuple (“S
(i)
v ”, x). We then remove the duplicates (see Duplicates removing) of elements

of for every set S(i)
v .
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Finally, let us consider how to implement line 24. It is very simple, we only need to query the
sizes of sets. For each tuple (“V ”, v), query (see Multiple queries) the size (see Sizes of sets) of
S

(i)
v and S(i−1)

v , if v satisfies the condition, create a tuple (“Done”, v). Every machine queries (see
Multiple queries) the size (see Sizes of sets) of Done. If it is |V |, then all the machines know that
they finish the loop. In the end, for each tuple (S

(r)
v , u) we create tuples (“E′”, (u, v)), (“E′”, (v, u)),

and for each tuple (“E”, (u, v)) we create tuple (“E′”, (u, v)). Then we then remove the duplicates
(see Duplicates removing) of elements of E.

In the ith iteration, we only need to maintain sets V,E, S(i−1)
v . Since all the copy operation will

create at most n · (m/n)1/2 · (m/n)1/2 = m tuples, the total space needed is Θ(m) plus the space
needed to maintain V,E, S(i)

v . By Property 4 of Lemma B.1, |S(i)
v | ≤ m/n. Thus, the total space is

Θ(m) + |V |+ |E|+∑v∈V |S
(i)
v | = Θ(m) +N = Θ(m).

The above implementation shows that the parallel time is O(r), where r is the number of
iterations (see Definition B.2).

F.2 Tree Contraction Operation

In this section, we show how to implement Algorithm 2 in MPC model.

Lemma F.2. Let graph G = (V,E) and par : V → V be a set of parent points (see Definition B.6)
on the vertex set V . TreeContraction(G,par) (Algorithm 2) can be implemented in (0, δ)−MPC
model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is O(r), where r is the
number of iterations (see Definition B.12) of TreeContraction(G,par).

Proof. Let N = |V |+ |E|. Then the total space is Θ(N).
Initially, each machine scans its local memory. If there is a tuple (“V ”, v), then it queries

the value of par(v). It needs O(1) parallel time to answer all the queries (see Multiple queries in
Lemma E.6). Then the machine creates a tuple (“g(0)”, (v,par(v))). Thus, in the initialization stage,
mapping g(0),par, set V,E are stored in the system.

In the lth iteration, Each machine scans its local memory. If there is a tuple (“V ”, v), then it
queries the value of g(l−1)(v). This can be done by Multiple queries. Then it queries the value of
par(g(l−1)(v)). This can also be done by Multiple queries. If par(g(l−1)(v)) = g(l−1)(v), it creates a
tuple (“Done”, v). Then the machines can compute the sizes (see Section E.3) of V and Done. Each
machine queries the size of V and Done. This can be done by Multiple queries. Then if |V | = |Done|,
every machine knows that the iterations are finished. Otherwise, the machine which holds (“V ”, v)
queries the value of g(l−1)(g(l−1))(v). This can be done by Multiple queries. And then it creates a
tuple (“g(l)”, (v, g(l−1)(g(l−1))(v))).

At the end, if a machine holds a tuple (“V ”, v), then the queries par(v). If v = par(v), it creates
a tuple (“V ′”, v). If a machine holds a tuple (“E”, (u, v)), then it queries g(r)(u), g(r)(v), and creates
a tuple (“E′”, (g(r)(u), g(r)(v))).

Since at the end of each iteration l, the system only stores mappings par : V → V, g(r) : V → V,
and sets V,E, the total space used is at most O(N). Thus, we can implement the algorithm in
(0, δ)−MPC model.

The total parallel time is O(r). By Corollary B.13, r = O(dep(par)). Thus, the total parallel
time is O(dep(par)).

F.3 Graph Connectivity

Theorem F.3. Let graph G = (V,E), n = |V |, N = |V |+|E| andm = Θ(Nγ) for some arbitrary γ ∈
[0, 2]. Let r > 0 be a round parameter. Connectivity(G,m, r) (Algorithm 3) can be implemented
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in (γ, δ)−MPC model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is O(R),
where R is the total number of iterations (see Definition B.20) of Connectivity(G,m, r).

Proof. Initially, we store sets V0, E0, V, E and mapping h0 in the system. Now consider the ith

round. Due to Lemma F.1, line 9 can be implemented in total space Θ(m) and with O(ki) parallel
time, where ki is the number of iterations (See Definition B.2) of NeighborIncrement(m,Gi−1).
To store V ′i and E′i, we need total space Θ(m). Line 10 can be implemented by operations described
in Sizes of sets and Multiple queries (see Section E). Line 11 can be implemented by the
operations described in Set membership and Multiple queries. To implement line 14, for each
tuple (“V ′′i ”, v), we can create a tuple (“li”, (v, x)) where x = 1 with probability pi, x = 0 with
probability 1 − pi. To calculate pi, the machine only needs to know ni−1. This can be done by
the operations described in Sizes of sets and Multiple queries. Line 15 and line 16 can be
implemented by operations described in Set membership and Multiple queries. For line 17, set
Li ∩ (ΓG′i(v) ∪ {v}) can be computed by operations described in Set membership and Multiple
queries. Then, by operations in Indexing elements in sets and Multiple queries, we can get
minu∈Li∩(ΓG′

i
(v)∪{v}) u. Finally, by operation described in Multiple queries, ∀v ∈ V ′′i with v 6∈ Li,

the tuple (“ pari ”, (v, x)) can be created, where x = minu∈Li∩(ΓG′
i
(v)∪{v}) u. Due to Lemma F.2,

line 18 can be implemented in total Θ(m) space and O(r′i) parallel running time, where r′i is the
number of iterations (see Definition B.12) of TreeContraction(G′′i , pari). Line 21 can be implemented
by operations in Set membership, Indexing elements in sets and Multiple queries. Line 22
can be implemented by operations in Set membership and Multiple queries. Line 23 can be
implemented by Multiple queries. For other v ∈ V with hi(v) = null assigned by line 8, we can
use the operations in Set membership and Multiple queries to find those v, and create a tuple
(“hi”, v,null).

Thus, in the ith round, the parallel time needed is O(ki + r′i). At the end of the ith round, we
only need to keep sets Vi, Ei, V, E and mapping hi in the system. It will take total space at most
O(m).

Due to Lemma F.2, line 26 can be implemented in at most O(m) total space and O(log r) parallel
time.

Thus, the total parallel time is O(log r+
∑r

i=1(ki+ r′i)) = O(
∑r

i=1(ki+ r′i)). By definition B.20,
the total parallel time is O(R), where R is the total number of iterations of Connectivity(G,m, r).
The total space in the computation is always at most Θ(m).

Here, we are able to conclude the following theorem for graph connectivity problem.

Theorem F.4. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm (see Algorithm 3) which can output the connected components for any graph G = (V,E) in
O(min(logD · log(1/γ′), log n)) parallel time, where D is the diameter of G, n = |V |, N = |V |+ |E|
and γ′ = (1 + γ) logn

2N
n1/(1+γ) . The success probability is at least 0.98. In addition, if the algorithm

fails, then it will return FAIL.

Proof. The implementation of Algorithm 3 in MPC model is shown by Theorem F.3. The correctness
of Algorithm 3 is proved by Theorem B.14. The total parallel time of Algorithm 3 is proved by
Theorem B.21.

F.4 Algorithms for Local Shortest Path Trees

In this section, we mainly explained how to implement local shortest path tree algorithms described
in Section C.1 and Section C.2.
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Lemma F.5. Let G = (V,E) be an undirected graph, s1, s2 ∈ Z≥0, and v ∈ V. Let T̃ = (V
T̃
,par

T̃
)

with root v and radius s1 be a local complete shortest path tree (see Definition C.3) in G, and
dep

T̃
: V

T̃
→ Z≥0 be the depth of every vertex in T̃ . ∀u ∈ V

T̃
, let T (u) with root u and radius s2 be

a local complete shortest path tree in G, and depT (u) : VT (u) → Z≥0 be the depth of every vertex in
T (u). Then TreeExpansion(T̃ ,dep

T̃
, {T (u) | u ∈ V

T̃
}, {depT (u) | u ∈ VT̃ }) (Algorithm 4) can be

implemented in (0, δ)−MPC model for any constant δ ∈ (0, 1) in O(1) parallel time.

Proof. For line 3, we apply operation shown in Copies of sets to copy each VT (u), then we can
merge (see Set merging) all the copies to get V

T̂
. To implement line 4 and line 5, we only need to

apply the operation shown in Multiple queries. To implement line 6, for each tuple (“VT (u)”, x),
we can firstly check whether x ∈ V

T̂
\V

T̃
by operations described in Set membership andMultiple

queries. If x ∈ V
T̂
\ V

T̃
, then we can query the values of dep

T̃
(u) and depT (u)(x) by operations

shown in Multiple queries. Then we create a tuple (“tempx”, (dep
T̃

(u) + depT (u)(x), u)). By
Indexing elements in sets and Multiple queries, we can find the element with the smallest
index in set tempx, and thus that element is (dep

T̃
(ux) + depT (ux)(x), ux). Finally, the remaining

things in line 6 and line 7 can be done by the operations described by Multiple queries.
For all the operations, the total space is always linear. The parallel time needed for the above

operations is also a constant.

Lemma F.6. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some arbitrary
γ ∈ [0, 2]. MultiRadiusLCSPT(G,m) (Algorithm 5) can be implemented in (γ, δ) −MPC model
for any constant δ ∈ (0, 1). Furthermore, the parallel running time is O(r), where r is the number
of iterations (see Definition C.5) of MultiRadiusLCSPT(G,m).

Proof. To implement line 4 to line 6, we can scan all the tuples (“E”, (u, v)), then query the size of
{v}∪ΓG(v) and the size of {u}∪ΓG(u), where these operations are described in Sizes of sets and
Multiple queries. Then based on the sizes, we decide whether we need to create the corresponding
tuples for VT0(v), VT0(u),parT0(u), par(T0(v)).

Now consider the main loop. We focus on the ith round. Line 12 can be implemented by the
operation described in Multiple queries. To implement line 13, for each tuple (“VTi−1(v)”, u),
we can query (see Multiple queries) whether Ti−1(u) is null. If Ti−1(u) is null, then we create
a tuple (“tempv”, u). Then for each tuple (“V ”, v), we can query the size of tempv by operations
described in Sizes of sets and Multiple queries. If the size is not 0, then Ti(v) must be null.
Line 15 can be implemented by coping input for different tasks and running tasks in parallel, where
it only needs operations shown in Copies of sets, Multiple queries and Multiple Tasks (see
Section E.6). According to Lemma F.5, it only needs O(1) parallel time. Line 16 and line 19 only
need the operation shown in Multiple queries.

Thus, the total parallel time is O(r) where r is the number of iterations (see Definition C.5) of
MultiRadiusLCSPT(G,m). For the total space, we stored the sets VTi(v) for all i ∈ [r], v ∈ V and
mappings parTi(v), depTi(v) for all i ∈ [r], v ∈ V . By Lemma C.6, the total space to store all of them
is at most O(r ·n · (m/n)1/4) = O(m). In the ith round of the main loop, line 15 may make copies of
the set. By Lemma C.6, the input size of each task will be at most O((m/n)1/4 · (m/n)1/4). Since
the there are at most n tasks, the total space needed is at most O(m).

Lemma F.7. Let graph G = (V,E), n = |V |, N = |V | + |E| and m = Θ(Nγ) for some arbitrary
γ ∈ [0, 2]. MultipleLargeTrees(G,m) (Algorithm 6) can be implemented in (γ, δ)−MPC model
for any constant δ ∈ (0, 1). Furthermore, the parallel running time is O(r), where r is the number
of iterations (see Definition C.10) of MultipleLargeTrees(G,m).
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Proof. By Lemma F.6, line 3 can be implemented in total space m and O(r) parallel time where r
is the number of iterations (see Definition C.5) of MultiRadiusLCSPT(G,m). Line 4 to line 6 can
be implemented by the operation described by Multiple queries. The implementation of line 7 to
line 17 is similar as the implementation of the main loop of Algorithm 5 (See Lemma F.6 for details of
the implementation). The implementation of line 18 and line 19 only needs the operation described
in Indexing elements in sets and Multiple queries. Line 22 can be implemented by copying
input sets for different tasks and running multiple tasks in parallel, where the operations needed are
described in Copies of sets, Multiple queries and Multiple Tasks (see Section E.6). Line 24
to line 28 can be implemented by the operations described in Copies of sets, Set membership,
Indexing elements in sets, and Multiple queries.

The total parallel time of the first loop is O(r) since it has r rounds. The second loop can be
done in one round. Thus the parallel time of the second loop is O(1). Then the total parallel time
is O(r). Due to Lemma F.6 and Lemma C.11, r is the number of iterations (see Definition C.10) of
MultipleLargeTrees(G,m).

We stored all the VTi(v), VT̃i(v)
, parTi(v), par

T̃i(v)
,depTi(v), dep

T̃i(v)
in the system. By Lemma C.7

and Lemma C.6, the total space needed to store them is at most O(m). Furthermore, at any round,
the size of all the input copies for multiple tasks is at most n · (m/n)1/4 · (m/n)1/4 = O(m). Thus,
the total space needed is O(m).

F.5 Path Generation and Root Changing

Lemma F.8. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V. Let n = |V |. FindAncestors(par) (Algorithm 7) can be implemented in (γ, δ) −MPC model
for any γ ≥ logn

log logn and any constant δ ∈ (0, 1). The parallel running time is O(r), where r is the
number of iterations (see Definition C.12) of FindAncestors(par).

Proof. The structure of the whole algorithm is the same as the Algorithm 2 (see Lemma F.2). All
the steps can be done by operation described in Multiple queries.

Since the number of rounds needed is r, the parallel time is O(r). For the total space, we need
to store all the mappings g1, · · · , gr. At the end of the ith round, we need to store mapping hi.
According to Lemma C.13, r = O(log n) Thus, the total space is O(rn) = O(n log n).

Lemma F.9. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V. Let q be a vertex in V , and n = |V |. FindPath(par, q) (Algorithm 8) can be implemented
in (γ, δ) − MPC model for any γ ≥ logn

log logn and any constant δ ∈ (0, 1). The parallel running
time is O(r), where r is the number of iterations (see Definition C.12) of FindAncestors(par)
(Algorithm 7).

Proof. By Lemma F.8, FindAncestors(par) can be implemented in (γ, δ)−MPC model for γ ≥
logn

log logn and any constant δ ∈ (0, 1). All the other other steps in the algorithm can be done by
operation described in Multiple queries. Notice that, after each round, we need to do load
balancing which can be done by operation described in Load balance.

The number of rounds must be smaller than O(r), where r should be the number of iterations
of FindAncestors(par) according to Lemma F.8.

We store all the mappings gi, deppar in the system. They need O(n log n) total space. In the ith

round, we only need to additionally store set Si which has size at most O(n). Thus, the total space
needed is at most O(n log n).

Lemma F.10. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V.
Let q be a vertex in V . RootChange(par, q) (Algorithm 9) can be implemented in (γ, δ) −MPC
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model for any γ ≥ logn
log logn and any constant δ ∈ (0, 1). The parallel running time is O(r), where r

is the number of iterations (see Definition C.12) of FindAncestors(par) (Algorithm 7).

Proof. By Lemma F.9, FindPath(par, q) can be implemented in (γ, δ)−MPC model. The remaining
steps in the procedure can be implemented by the operation described by Multiple queries, and
has O(1) parallel running time.

The total space needed is the total space needed for FindPath(par, q) plus the space needed to
store mapping h, p̂ar. Thus the total space needed is O(n log n) +O(n) = O(n log n).

The parallel running time is linear in the parallel running time of FindPath(par, q). Then, by
Lemma F.9, the parallel running time isO(r) where r is the number of iterations (see Definition C.12)
of FindAncestors(par).

F.6 Spanning Forest Algorithm

Lemma F.11. Let G2 = (V2, E2) be an undirected graph. Let p̃ar : V2 → V2 be a set of parent
pointers (See Definition B.6) which satisfies that ∀v ∈ V2 with p̃ar(v) 6= v, (v, p̃ar(v)) must be
in E2. Let G1 = (V1, E1) be an undirected graph satisfies V1 = {v ∈ V2 | p̃ar(v) = v}, E1 =

{(u, v) ∈ V1 × V1 | u 6= v,∃(x, y) ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}. Let par : V1 → V1 be a
rooted spanning forest (See Definition C.18) of G1. Let f : V1 × V1 → {null} ∪ (V2 × V2) satisfy
the following property: for u 6= v ∈ V1, if par(u) = v, then f(u, v) ∈ {(x, y) ∈ E2 | p̃ar(∞)(x) =

u, p̃ar(∞)(y) = v}, and f(v, u) ∈ {(x, y) ∈ E2 | p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let n = |V2|.
Then ForestExpansion(par, p̃ar, f) (Algorithm 10) can be implemented in (γ, δ) −MPC model
for any γ ≥ log n/ log log n and any constant δ ∈ (0, 1) in parallel running time O(R), where
R = log(dep(p̃ar)).

Proof. Due to Lemma F.2, line 3 can be done in O(R) parallel time for R = log(dep(p̃ar)). Line 9
corresponds to multiple tasks, we can implement them parallelly by operations described in Mul-
tiple queries, and Multiple Tasks (see Section E.6). By Lemma F.10, the total space needed is
at most O(n log n) and the parallel running time is at most O(R) where R = log(dep(p̃ar)).

Theorem F.12. Let graph G = (V,E), n = |V |, N = |V |+ |E| and m = Θ(Nγ) for some arbitrary
γ ∈ [0, 2]. Let r > 0 be a round parameter. SpanningForest(G,m, r) (Algorithm 11) can be imple-
mented in (γ, δ)−MPC model for any constant δ ∈ (0, 1). Furthermore, the parallel running time is
O(R), where R is the total number of iterations (see Definition C.28) of SpanningForest(G,m, r).

Proof. At the beginning of the algorithm, we just store sets V,E, V0, E0 and mapping g0 in the
system.

Consider the ith round of the loop. By Lemma F.7, line 8 can be implemented in total space
Θ(m) and in parallel running time O(ki) where ki is the number of iterations (see Definition C.10)
of MultipleLargeTrees(Gi,m). Line 9 can be implemented by operations described in Sizes
of sets, Set membership, and Multiple queries. Line 10 can be implemented by operations
described in Indexing elements in sets, Set membership, and Multiple queries. In line 12,
to calculate γi, we need to query ni, this can be done by operations described in Sizes of sets
and Multiple queries. In line 14, to compute Li, we only need operations described in Set
membership and Multiple queries. Line 15 can be implemented by operations shown in Set
membership, Indexing elements in sets and Multiple queries. By Lemma F.9, for line 16,
there are multiple tasks each can be implemented in O(|V

T̃i(v)
| log |V

T̃i(v)
|) total space, and O(ki)

parallel time. We can schedule these multiple tasks (see Section E.6) such that we can finish them
in parallel in O(ki) parallel time. According to Lemma F.2, for line 17, we can implement it in
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O(ni) = O(n) total space, and in O(k′i) parallel time, where k′i is the number of iterations (see
Definition B.12) of TreeContraction(G′i, pari). Line 19 can be done by the operation described
in Multiple queries. Line 20 can be done by the operation described in Indexing elements in
sets and Multiple queries.

Thus, the parallel time is O(R), where R =
∑r−1

i=0 (ki + k′i). By definition of the total number of
iterations (see Definition C.28) of SpanningForest(G,m, r). R is the total number of iterations
of SpanningForest(G,m, r).

For the space, we store all the sets V,E, Vi, Di and mappings pari, hi in all the rounds. Notice
that

∑r
i=0 |Vi| ≤ 40|V |. Thus this part takes only O(N) space. In the ith round, we additionally

store all the sets V
T̃i(v)

, V ′i , E
′
i, Li and all the mappings par

T̃i(v)
, dep

T̃i(v)
, li, zi. The total space for

this part is at most O(m). For line 16, it creates multiple tasks. The input of each task is at most
|V
T̃i(v)
| ≤ (m/ni)

1/2. There are at most ni tasks, and by Lemma F.9, each task will need space at
most O(|V

T̃i(v)
| log |V

T̃i(v)
|). Thus, the space for this part is at most O(m). To conclude, the total

space needed is at most O(m).

Theorem F.13. Let graph G = (V,E), n = |V |, N = |V |+ |E| and m = Θ(Nγ) for some arbitrary
γ ∈ [0, 2]. Let r > 0 be a round parameter. If SpanningForest(G,m, r) (Algorithm 11) does not
return FAIL, then let the output be the input of Orientate(·) (Algorithm 12), and Orientate(·)
can be implemented in (γ, δ) − MPC model for any constant δ ∈ (0, 1). Furthermore, the par-
allel running time is O(R), where R is the total number of iterations (see Definition C.28) of
SpanningForest(G,m, r).

Proof. Line 4 to line 7 can be implemented by operations described in Multiple queries. Notice
that there is a trick here, if fi(u, v) = null, we do not need to store the tuple (“fi”, ((u, v), null)) in
the system. The total space needed to store all the mappings fi and all the sets Fi for i ∈ {0} ∪ [r]
is at most

∑r
i=0 |Vi| = O(m).

Line 10 and line 11 can be implemented by operations described in Set membership and
Multiple queries.

We now look at the second loop, and focus on round i. Line 12 can be implemented by
Lemma F.11. The total space needed is at most O(|Vi| · (m/|Vi|)1/2 · log(m/|Vi|)) = O(m). The
parallel running time needed is at most O(ki), where ki is the number of iterations (see Def-
inition C.10) of MultipleLargeTrees(Gi,m), Gi is the intermediate graph in the procedure
SpanningForest(G,m, r).

Thus, the parallel running time is O(R), where R is the total number of iterations (see Defini-
tion C.28) of SpanningForest(G,m, r). The total space needed is O(m).

Now, we are able to conclude the following theorem for spanning forest problem.

Theorem F.14. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm (see Algorithm 11 and Algorithm 12) which can output the rooted spanning forest for
any graph G = (V,E) in O(min(logD · log 1

γ′ , log n)) parallel time, where D is the diameter of G,
n = |V |, N = |V | + |E| and γ′ = (1 + γ) logn

2N
n1/(1+γ) . The success probability is at least 0.98. In

addition, if the algorithm fails, then it will return FAIL.

Proof. Algorithm 11 outputs all the edges in the spanning forest and all the contraction information.
Algorithm 12 takes the output of Algorithm 11 as its input, and outputs a rooted spanning forest.
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The implementation of Algorithm 11 and Algorithm 12 in MPC model is shown by Theorem F.12
and Theorem F.13 respectively. The correctness of Algorithm 11 and Algorithm 12 is proved by
Corollary C.24 and Theorem C.26 respectively. The parallel time of Algorithm 11 and Algorithm 12
is proved by Theorem C.29.

A byproduct of our spanning forest algorithm is an estimator of the diameter of the graph.

Theorem F.15. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm which can output an diameter estimator D′ for any graph G = (V,E) in O(min(logD ·
log(1/γ′), log n)) parallel time such that D ≤ D′ ≤ DO(log(1/γ′)), where D is the diameter of G,
n = |V |, N = |V | + |E| and γ′ = (1 + γ) logn

2N
n1/(1+γ) . The success probability is at least 0.98. In

addition, if the algorithm fails, then it will return FAIL.

Proof. By Theorem F.14, we can find a rooted spanning forest. By Theorem C.26, the depth of
that rooted spanning forest is at most DO(log(1/γ′)). Then we can implement a doubling algorithm
(e.g. Modified Lemma F.8, Algorithm 7 without maintaining useless gl) with log in depth parallel
time to output the depth of that spanning forest.

F.7 Lowest Common Ancestor and Multi-Paths Generation

Lemma F.16. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set
V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices, and ∀i ∈ [q], ui 6= vi. Let
n = |V |, N = n + q. LCA(par, Q) (Algorithm 13) can be implemented in (γ, δ) −MPC model for
any γ ≥ log logN/ logN and any constant δ ∈ (0, 1) in O(log(dep(par))) parallel running time.

Proof. By Lemma F.8, line 3 can be implemented in space O(N logN) and O(log(dep(par))) parallel
running time. It is easy to see that all the other steps in the procedure can be done by the operations
shown in Multiple queries.

Thus, the total space needed is O(N logN) and the parallel running time is O(log(dep(par))).

Lemma F.17. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V. Let
Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V ×V satisfy ∀j ∈ [q], vj is an ancestor (See Definition D.1)
of uj in par. Let n = |V |, N = n + q. MultiPath(par, Q) (Algorithm 14) can be implemented in
(γ, δ)−MPC model for any γ with N logN +

∑q
i=1(deppar(ui)− deppar(vi) + 1) = O(Nγ) and any

constant δ ∈ (0, 1) in O(dep(par)) parallel running time.

Proof. By Lemma F.8, line 3 can be implemented in space O(N logN) and O(log(dep(par))) parallel
running time. It is easy to see that all the other steps in the procedure can be done by the operations
shown in Multiple queries. Notice that after each round, we need to do load balancing (see Load
balance) to make each machine have large enough available local memory. The total space needed is
to store all the pathes and the output of line 3. Notice that in round i, we do not need to keep S(i′)

j for

i′ < i−1, thus, the space to keep S(i)
j for all j ∈ [q] only needs O(

∑q
j=1(deppar(uj)−deppar(vj)+1))

space.
Thus, the total space needed is at most O(N logN+

∑q
i=1(deppar(ui)−deppar(vi)+1)) = O(Nγ).

The parallel running time is then O(dep(par)).
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F.8 Leaf Sampling

Lemma F.18. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex set V ,
and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0, 1), and let m = dnδe.
Then LeafSampling(par,m, δ) (Algorithm 15) can be implemented in (γ, δ)−MPC model for any
γ ≥ log logn/ log n. Furthermore, with probability at least 1 − 1/(100m5/δ), the parallel running
time is at most O(log dep(par)).

Proof. To implement line 4, for each v ∈ V, we can add par(v) to a temporary set X. Then each v
can check whether v is a leaf by checking whether v is in X, and this can be done by the operations
shown in Set membership and Multiple queries.

To implement line 5, for each v ∈ V, we can add v to the set childpar(par(v)). Then rank can
be computed by the operations shown in Indexing elements in sets and Multiple queries. For
line 6, we can implement it on a single machine, since a single machine has local memory Θ(m). For
line 7 to line 9, for each x ∈ L, we add x into S with probability p, where p can be computed by
querying the size of L (see Sizes of sets and Multiple queries). Line 10 can be implemented by
operation described in Indexing elements in sets, Set membership, and Multiple queries.
By Lemma F.2, line 11 can be implemented in total space O(N logN) and O(log dep(par)) parallel
time. By Property 3 of Lemma D.13, with probability at least 1−1/(100m5/δ), |S|2 = O(m). Thus,
Q can be stored on a single machine. By Lemma F.16, line 15 can be implemented in total space
O(n log n+ |Q|) = O(n log n) and in O(log dep(par)) parallel time. By Lemma F.8, line 17 can be
implemented in total space O(n log n) and in O(log dep(par)) parallel time. Then line 18 to line 22
can be implemented on a single machine.

Thus, the total space needed is at most O(n log n). The parallel time is at most O(log dep(par))

F.9 DFS Sequence

Lemma F.19. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex
set V , and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0, 1), and let
m = dnδe. SubDFS(par,m, δ) (Algorithm 16) can be implemented in (γ, δ) −MPC model for any
γ ≥ log logn/ log n. Furthermore, with probability at least 1 − 1/(100m5/δ), the parallel running
time is at most O(log dep(par)).

Proof. By Lemma F.18, line 5 can be implemented in total space O(n log n) and with probability
at least 1− 1/(100m5/δ) has parallel running time O(log dep(par)). By Lemma F.16, line 7 can be
implemented in total space O(n log n) and in parallel running time O(log dep(par)). Line 9 can be
implemented by operation shown in Multiple queries. By Lemma F.17, since all the pathes are
disjoint (except the first path and the last path intersecting on the root) and V has n vertices,
line 10 can be implemented in O(n log n) total space and in O(log dep(par)) parallel running time.
Loop in line 13 and Loop in line 16 can be implemented in parallel, and can be implemented
by operations shown in Indexing elements in sets and Multiple queries. Line 20 can be
implemented by operations shown in Indexing elements in sets and Multiple queries. Now we
describe the implementation of line 21. Firstly, we can standardize (see Sequence standardizing)
the sequence A′. For each tuple (“A′”, (j, u)), create a tuple (“tempu”, j). Thus, “tempu” is a
set which contains all the positions that u appeared. For each tuple (“tempu”, j), we query (see
Multiple queries) the index i (see Indexing elements in sets) of j in set (“tempu”, j), and
create a tuple (“ pos ”, ((u, i), j)). Thus, the desired mapping pos is stored in the system. The loop
in line 24 is implemented in parallel. Line 25 can be implemented by the operations shown in Set
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membership and Multiple queries. Line 26 to line 28 can be implemented by the operation
shown in Multiple queries. Finally, line 30 can be implemented by Multiple queries and
Sequence duplicating.

The total space used in the procedure is at most O(n log n). The parallel running time is
O(log dep(par)).

Theorem F.20. Let par : V → V be a set of parent pointers (See Definition B.6) on a vertex
set V , and par has a unique root. Let n = |V |,m = nδ for some arbitrary constant δ ∈ (0, 1).
DFS(par,m) (Algorithm 17) can be implemented in (γ, δ)−MPC model for any γ ≥ log log n/ log n.
With probability at least 0.99, the parallel running time is O(log(dep(par))).

Proof. By Lemma F.19, line 5 can be implemented in total space O(n log n). With probability
at least 1 − 1/(100n5), the parallel running time is O(log(dep(par))). Line 8 to line 10 can be
implemented by operations shown in Set membership and Multiple queries. By Lemma F.2,
line 11 can be implemented in O(n) total space, and O(log dep(par)) parallel running time. The loop
in line 14 contains multiple tasks (see Section E.6 Multiple Tasks), thus we can implement those
tasks in parallel. By Lemma F.19, line 17 can be implemented in total space O(|V ′i (v)| log |V ′i (v)|).
Furthermore, with probability at least 1−1/(100n5), the parallel running time is O(log(dep(par))).
Thus, the total space needed for those tasks is at most O(n log n). Line 19 can be implemented by
operations shown in Indexing elements in sets, Sequence insertion and Multiple queries.

Thus, the total space needed is O(n log n). By taking union bound over all the task SubDFS,
with probability at least 0.99, the parallel running time is O(log dep(par)).

Now we are able to conclude the following theorem.

Theorem F.21. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm (Algorithm 17) which can output a Depth-First-Search sequence for any tree graph G =
(V,E) in O(min(logD · log(1/γ′), log n)) parallel time, where n = |V |, β = Θ(log log n/ log n), D is
the diameter of G, and γ′ = γ + Θ(1/ log n). The success probability is at least 0.98. In addition, if
the algorithm fails, then it will return FAIL.

Proof. Firstly, by Theorem F.14, we can find a rooted tree. Algorithm 17 can output the DFS
sequence for a rooted tree.

The implementation and parallel time of Algorithm 17 is shown by Theorem F.20. The correct-
ness of Algorithm 17 is proved by Theorem D.20. The success probability of Algorithm 17 is proved
by Theorem D.22.

F.10 Range Minimum Query

Lemma F.22. Let A = (a1, a2, · · · , an) be a sequence of numbers. Let δ be an arbitrary constant in
(0, 1). SparseTable+(a1, a2, · · · , an, δ) (Algorithm 18) can be implemented in (0, δ)−MPC model
with O(1) parallel running time.

Proof. Let A be the sequence (a1, a2, · · · , an). The algorithm takes O(1/δ) rounds. m is the local
space of a machine. There are Θ(n/m) machines each holds a consecutive Θ(m) elements of sequence
A. Now consider the round l. Machine j ∈ {0} ∪ [dn/me] needs to compute f̂j·m+1,l, f̂j·m+2,l, · · · ,
f̂j·m+m−1,l. The number of queries machine j made in line 8 and line 11 is at most

∑d1/δe
t=1 |St|+2m ≤

O(m/δ) = O(m). Thus, there are total O(n) queries. These queries can be answered simultaneously
by operation shown in Multiple queries.

Thus, the total space needed is O(n), and the parallel running time is O(1).
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Lemma F.23. Let a1, a2, · · · , an be a sequence of numbers. Let δ be an arbitrary constant in (0, 1).
SparseTable(a1, a2, · · · , an, δ) (Algorithm 19) can be implemented in (γ, δ)−MPC model for any
γ ≥ log log n/ log n in O(1) parallel time.

Proof. By Lemma F.22, line 4 can be implemented in O(n) total space and O(1) parallel time. The
loop in line 15 is similar to Algorithm 18. Each machine j needs to compute fj·m+1,t, · · · , fj·m+m−1,t

for all t ∈ [dlog ne] ∪ {0}. The difference from Algorithm 18 is that, it can compute for all t at the
same time since it only depends on the value of f̂ . The number of queries made by each machine is
O(m log n). Thus, the total number of queries is at most O(n log n). These queries can be answered
simultaneously by operation shown in Multiple queries.

Thus, the total space needed is O(n log n), and the parallel running time is O(1).

G Minimum Spanning Forest

In this section, we discuss how to apply our connectivity/spanning forest algorithm to the Minimum
Spanning Forest (MSF) and Bottleneck Spanning Forest (BSF) problem.

The input of MSF/BSF problem is an undirected graph G = (V,E) together with a weight
function w : E → Z, where E contains m edges e1, e2, · · · , em with w(e1) ≤ w(e2) ≤ · · · ≤ w(em).
The goal of MSF is to output a spanning forest such that the sum of weights of the edges in the
forest is minimized. The goal of BSF is to output a spanning forest such that the maximum weight
of the edges in the forest is minimized. D is the diameter of the minimum spanning forest. If there
are multiple choices of the minimum spanning forest, then let D be the minimum diameter among
all the minimum spanning forests.

For simplicity, in all of our proofs, we only discuss the case when all the edges have different
weights, i.e. w(e1) < w(e2) < · · · < w(em). In this case, the minimum spanning forest is unique. It
is easy to extend our algorithms to the case when there are edges with the same weight. We omit
the proof for this fact.

Firstly, we show that D is an upper bound of the diameter of G′ where the vertex set of G′ is
the vertex set of G, and the edge set of G′ is {e1, e2, · · · , ei} for some arbitrary i ∈ [m].

Lemma G.1. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight function
w which satisfies w(e1) < w(e2) < · · · < w(em), then the diameter of G′ = (V,E′) is at most D,
where D is the diameter of the minimum spanning forest of G, and E′ only contains the first i edges
of E, i.e. e1, e2, · · · , ei for some arbitrary i ∈ [m].

Proof. The proof follows by Kruskal’s algorithm directly.

Our algorithms is based on the following simple but useful Lemma.

Lemma G.2. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight function w
which satisfies w(e1) ≤ w(e2) ≤ · · · ≤ w(em), ∀1 ≤ i < j ≤ m, an edge e from {ei, ei+1, · · · , ej} is in
the minimum spanning forest of G if and only if e′ from {e′i, e′i+1, · · · , e′j} is in the minimum spanning
forest of G′, where the vertices of G′ is obtained by contracting all the edges e1, e2, · · · , ei−1 of G, and
e′, e′i, e

′
i+1, · · · , e′j are the edges (or vertices) in G′ which corresponds to the edges e, ei, ei+1, · · · , ej

before contraction.

Proof. The proof follows by Kruskal’s algorithm directly.

A natural way to apply Lemma G.2 to parallel minimum spanning forest algorithm is that we
can divide the edges into several groups, and recursively solve the minimum spanning forest for

77



each group of edges. More precisely, suppose we have total space Θ(km), we can divide E into k
groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. We can compute graph
G1, G2, · · · , Gk where the vertices of Gi is obtained by contracting all the edges from e1 to e(i−1)·m/k,
the edges of Gi are corresponding to the edges in Ei. Then by Lemma G.2, we can obtain the whole
minimum spanning forest by solving these k size O(m/k) minimum spanning forest problems. For
each sub-problem, we can assign it Θ(m) working space, thus each sub-problem still has Θ(k) factor
more total space. Therefore, we can recursively apply the above argument.

Theorem G.3. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm which can output a minimum spanning forest for any weighted graph G = (V,E) with
weights w : E → Z in O(min(logD · log(1/γ′), log n) · 1/γ′) parallel time, where n = |V |, ∀e ∈
E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest of G, and γ′ = γ/2 +
Θ(1/ log n). The success probability is at least 0.98. In addition, if the algorithm fails, then it will
return FAIL.

Proof. Let n = |V |,m = |E|. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The total
space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can divide E into
k groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By Lemma G.1 and
Theorem F.4, we can use O(min(logD · log(1/γ′), log n)) parallel time and Θ(km1+γ/2) total space
to compute graph G1, G2, · · · , Gk where the vertices of Gi is obtained by contracting all the edges
from e1 to e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei after contraction.

By Lemma G.2, it suffices to recursively solve the minimum spanning forest problem for each
group Gi. Since each time, we split the edges into k groups, the recursion will have at most O(1/γ′)
levels. At the end of the recursion, we are able to determine for every edge e whether e is in the
minimum spanning forest.

Now let us consider the success probability. Although Theorem F.4 is a randomized algorithm,
the parallel time is always bounded by min(logD · log(1/γ′), log n). If we repeat the algorithm
until it succeeds, the expectation of number of trials is a constant. Furthermore, for each level of
the recursion, we can regard the graphs in all the tasks composed one large graph. Thus, in real
implementation, in each level of the recursion, we will only invoke one connectivity procedure. Thus
in expectation, the total parallel time is O(min(logD · log(1/γ′), log n) ·1/γ′). By applying Markov’s
inequality, we complete the proof.

In the following theorem, we show that Lemma G.2 can also be applied in approximate minimum
spanning forest problem.

Theorem G.4. For any γ ∈ [β, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm which can output a (1 + ε) approximate minimum spanning forest for any weighted graph
G = (V,E) with weights w : E → Z≥0 in O(min(logD · log(1/γ′), log n)) parallel time, where
n = |V |, N = |V | + |E|, β = Θ(log(ε−1 log n)/ log n), ∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter
of a minimum spanning forest of G, and γ′ = (1 + γ − β) logn

2N
n1/(1+γ−β) . The success probability is

at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. For each edge e ∈ E, we can round w(e) to w′(e) such that w′(e) = 0 when w(e) = 0, and
w′(e) = (1 + ε)i when w(e) 6= 0, and i is the smallest integer such that w(e) ≤ (1 + ε)i.

Since |w(e)| ≤ poly(n) for all e ∈ E, there are only k = O(log(n)/ε) different values of w′(e).
We can divide E into k groups, where the ith group Ei contains all edges with the ith largest weight
in w′. By Lemma G.1 and Theorem F.4, we can use O(min(logD · log(1/γ′), log n)) parallel time
and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute graph G1, G2, · · · , Gk where the vertices of
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Gi is obtained by contracting all the edges from E1 to Ei−1, the edges of Gi are corresponding to
the edges in Ei after contraction.

Then, for each Gi, since all the edges have the same w′ weight, any spanning forest of Gi is
a minimum spanning forest of Gi. By Theorem F.14, we can use O(min(logD · log(1/γ′), log n))
parallel time and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute the spanning forest for each
graph G1, G2, ·, Gk. By Lemma G.2, the union of all the minimum spanning forest with respect
to w′ must be the minimum spanning forest of G with respect to w′. Since all the weights w are
nonnegative integers, w′ is a (1 + ε) approximation to w. Therefore, our output minimum spanning
forest with respect to w′ is a (1 + ε) approximation to the minimum spanning forest with respect
to w.

For the success probability, we can apply the similar argument made in the proof of Theorem G.3
to prove that the success probability is at least 0.98.

In the following, we show that if we only need to find the largest edge in the minimum spanning
tree, then we are able to get a better parallel time. It is an another application of our

Theorem G.5. For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there is a randomized (γ, δ)−MPC
algorithm which can output a bottleneck spanning forest for any weighted graph G = (V,E) with
weights w : E → Z in O(min(logD · log(1/γ′), log n) · log(1/γ′)) parallel time, where n = |V |,
∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest of G, and γ′ = γ/2 +
Θ(1/ log n). The success probability is at least 0.98. In addition, if the algorithm fails, then it will
return FAIL.

Proof. Let n = |V |,m = |E|. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The total
space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can divide E into
k groups E1, E2, · · · , Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By Lemma G.1 and
Theorem F.4, we can use O(min(logD · log(1/γ′), log n)) parallel time and Θ(km1+γ/2) total space
to compute graph G1, G2, · · · , Gk where the vertices of Gi is obtained by contracting all the edges
from e1 to e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei after contraction.

By Lemma G.2, the edge with largest weight must be in the group Ei for some i with Gi+1 =
Gi+2. Thus, we reduce the problem size to m/k. By Remark 1.11, we can finish the recursion in
O(log(1/γ′)) phases.

Suppose the bottleneck is ei, then by Theorem F.14, we can find a spanning forest by only using
edges from {e1, · · · , ei} in O(min(logD·log(1/γ′), log n)) parallel time and in Θ(m1+γ/2) total space.
Thus, the resulting spanning forest is a bottleneck spanning forest.

For the success probability, we can apply the similar argument made in the proof of Theorem G.3
to prove that the success probability is at least 0.98.

H Directed Reachability vs. Boolean Matrix Multiplication

In this section, we discuss the directed graph reachability problem which is a directed graph problem
highly related to the undirected graph connectivity. In the all-pair directed graph reachability
problem, we are given a directed graph G = (V,E), the goal is to answer for every pair (u, v) ∈
V × V whether there is a directed path from u to v. There is a simple standard way to reduce
Boolean Matrix Multiplication to all-pair directed graph reachability problem. In the Boolean
Matrix Multiplication problem, we are given two boolean matrices A,B ∈ {0, 1}n×n, the goal is to
compute C = A · B, where ∀i, j ∈ [n], Ci,j =

∨
k∈[n]Ai,k ∧ Bk,j . The reduction is as the following.

We create 3n vertices u1, u2, · · · , un, v1, v2, · · · , vn, w1, w2, · · · , wn. For every i, j ∈ [n], if Ai,j = 1,
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then we add an edge from ui to vj , and if Bi,j = 1, then we add an edge from vi to wj . Thus,
Ci,j = 1 is equivalent to there is a path from ui to wj . Thus, if we can solve all-pair directed graph
reachability problem in O(T ) sequential time, then we can solve Boolean Matrix Multiplication in
O(T ) time. For the current status of sequential running time of Boolean Matrix Multiplication
problem, we refer readers to [LG14] and the references therein.

Now, consider the multi-query directed graph reachability problem. In this problem, we are
given a directed graph G = (V,E) together with |V | + |E| queries where each query queries the
reachability from vertex u to vertex v. The goal is to answer all these queries. A similar problem in
the undirected graph is called multi-query undirected graph connectivity problem. In this problem,
we are given an undirected graph G = (V,E) together with |V | + |E| queries where each query
queries the connectivity between vertex u and vertex v.

According to Theorem F.4 and Lemma E.6, there is a polynomial local running time fully scalable
∼ logD parallel time (0, δ)−MPC algorithm for multi-query undirected graph connectivity problem.
Here polynomial local running time means that there is a constant c > 0 (independent from δ) such
that every machine in one round can only have O((nδ)c) local computation.

For multi-query directed graph reachability problem, we show that if there is a polynomial
local running time fully scalable (γ, δ) −MPC algorithm which can solve multi-query reachability
problem in O(nα) parallel time, then we can solve all-pair directed graph reachability problem in
O(n2 · n2γ+α+ε) sequential running time for any arbitrarily small constant ε > 0. Especially, if the
algorithm is in (0, δ)−MPC model, and the parallel time is no(1), then we will have an O(n2+ε+o(1))
sequential running time algorithm for Boolean Matrix Multiplication which implies a break through
in this field.

Suppose we have a such MPC algorithm. Let the input size be Θ(m), i.e. the number of edges is
Θ(m), and the number of queries is also Θ(m). Then the total space is Θ(m1+γ). Let δ = ε/(c− 2).
Then the number of machines is Θ(m1+γ−δ). Now we just simulate this (γ, δ) −MPC algorithm
sequentially, the total running time is O(m1+γ−δ ·mcδ ·nα) = O(m ·n2γ+ε+α). To answer reachability
for all pairs, we need total O(n2 ·m · n2γ+ε+α/m) = O(n2 · n2γ+α+ε) time. Therefore, we can use
this algorithm to solve Boolean Matrix Multiplication in O(n2 · n2γ+α+ε) time.

Theorem H.1. If there is a polynomial local running time fully scalable (γ, δ) −MPC algorithm
which can answer |V | + |E| pairs of reachability queries simultaneously for any directed graph
G = (V,E) in O(|V |α) parallel time, then there is a sequential algorithm which can compute the
multiplication of two n × n boolean matrices in O(n2 · n2γ+α+ε) time, where ε > 0 is a constant
which can be arbitrarily small.

Proof. See above discussions.

I Discussion on a Previous Conjectured Fast Algorithm

In this section, we discuss the hard example for the algorithm described by [RMCS13]. In [RMCS13],
they conjectured that their Hash-to-Min connectivity algorithm can finish in O(logD) rounds. The
description of their algorithm is as the following:

1. The input graph is G = (V,E).

2. For each vertex v ∈ V, initialize a set S(0)
v = v.

3. in round i:

(a) Each vertex v find u ∈ S(i−1)
v which has the minimum label, i.e. u = min

x∈S(i−1)
v

x.
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Figure 3: A hard example for [RMCS13]. For each i ∈ {2, 3, · · · , n/D−1} and j ∈ {1, 2, · · · , D−1},
node (i− 1) ·D+ j has degree 4. For node D and n, they have degree 2. Node 0 has degree D. All
the other nodes have degree 3.

(b) v sends u the all the vertices in S(i−1)
v .

(c) v sends every x ∈ S((i−1))
v \ {u} the vertex u.

(d) Let S(i)
v be {v} union the set of all the vertices received.

(e) If for all v, S(i)
v is the same as S(i−1)

v , then finish the procedure.

The above procedure can be seen as the modification of the graph: in each round, all the vertices
together create a new graph. For each vertex v, let u be the neighbor of v with the minimum label,
and if x is a neighbor of v, then add an edge between x and u in the new graph. So in each round,
each vertex just communicates with its neighbors to update the new minimum neighbor it learned.
At the end of the algorithm, it is obvious that the minimum vertex in each component will have all
the other vertices in that component, and for each non minimum vertex, it will have the minimum
vertex in the same component.

A hard example for this algorithm is shown by Figure 3. The example is a thin and tall grid
graph with a vertex connected to all the vertices in the first column. The total number of vertices
is n. The grid graph has D = 1

2 log n columns and n/D rows. We index each column from left
to right by 1 to D. We index each row from top to down by 1 to n/D. The single large degree
vertex has label 0. The ith row has the vertices with label (i − 1) · D + 1 to i · D from the first
column to the Dth column. We claim that if vertex v is the ith row and jth column, then before
round k for 2k < i, k < j, the neighbors of v will only in column j − 1, column j and column j + 1.
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Furthermore, the minimum neighbor of v in column j−1 will be v−(2k−1−1) ·D−1. The minimum
neighbor of v in column j will be v − 2k−1 ·D. The minimum neighbor of v in column j + 1 will be
v −D · (2k−1 − 1) + 1. This claim is true when k = 1. Then by induction, we can prove the claim.
Thus, it will take at least Θ(D) rounds to finish the procedure where D = Θ(log n).

If we randomly label the vertices at the beginning, then consider the case we copy that hard
structure at least nn+2 times, then with high probability, there is a component which has the labels
with the order as the same as described above. In this case, the procedure needs Ω(log logN)
rounds, where N = nn+3 is the total number of the vertices.

Also notice that, even we give more total space to this algorithm, this algorithm will not preform
better. In our connectivity algorithm, if we have Ω(n1+ε) total space for some arbitrary constant
ε > 0, then our parallel running time is O(logD).

J Alternative Approach for Leader Selection

In this section, we show that there is a different way to select leaders (see Section B.2). The number
of leaders selected by this approach will depend on the sum of inverse degrees of all the vertices.
Let us first introduce the concept of Min Parent Forest.

J.1 Min Parent Forest

Let G = (V,E) be an undirected graph where V denotes the vertex set of G, and E denotes the
edge set of G. Each vertex v ∈ V has a weight w(v) ∈ R, and it also has a unique label from Z.
For convenience, for each vertex v ∈ V, we also use v to denote its label. Let ΓG(v) denote the
set of neighbors of v, i.e. ΓG(v) = {u ∈ V | (u, v) ∈ E}. If G is clear in the context, we just use
Γ(v) to denote ΓG(v). The size of Γ(v), |Γ(v)|, is called the degree of v. Let fG,w : V → V be the
“min-weight-parent” function defined as the following:

1. If w(v) = minu∈Γ(v)∪{v}w(u), then fG,w(v) = v.

2. Otherwise, let u∗ ∈ Γ(v) be the vertex which has the smallest weight, i.e. w(u∗) = minu∈Γ(v)w(u).
If there is more than one choice of u∗, let u∗ be the one with the smallest label. And fG,w(v)
is defined to be u∗.

We call (V, fG,w) the min-parent-forest of graph G with vertex weights w. We can then define i-step
“min-weight-parent” function. For v ∈ V, we define f (0)

G,w(v) = v. For i ∈ Z>0, we can define f (i)
G,w as

the following:

∀v ∈ V, f (i)
G,w(v) = fG,w(f

(i−1)
G,w (v)).

In the following, we define the concept of roots in the min-parent-forest.

Definition J.1 (Roots in the forest). Let v ∈ V, and let (V, fG,w) be the min-parent-forest of graph
G = (V,E) with vertex weights w. If fG,w(v) = v, then v is a root in the forest (V, fG,w).

The depth of a vertex v is defined as the distance on the tree between v and the corresponding
root in the forest.

Definition J.2 (The depth of v). Let v ∈ V, and let (V, fG,w) be the min-parent-forest of graph
G = (V,E) with vertex weights w. The depth of v in the forest (V, fG,w) is the smallest i ∈ Z≥0

such that f (i)
G,w(v) = f

(i+1)
G,w (v). We use depG,w(v) to denote the depth of v in (V, fG,w). We call
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Figure 4: An example where #roots ≈ ∑20
i=1 1/(d(vi) + 1). For each node, it has two numbers, the

first number is the ID, and the second number is weight.
∑20

i=1 1/(d(vi)+1) = 1/4+1/3+1/3+1/6+
1/5 +1/5+1/5+1/5+1/5+1/6 +1/4+1/6+1/8+1/7+1/6 +1/9+1/8+1/7+1/6+1/4 ≈ 3.89
and #roots= 4.

f
(depG,w(v))

G,w (v) the root of v. For the simplicity of the notation, we also use f (∞)
G,w (v) to denote the

root of v.

The above definition is well defined since if f (i+1)
G,w (v) 6= f

(i)
G,w(v) then w(f

(i+1)
G,w (v)) should be

strictly smaller than w(f
(i)
G,w(v)) by the definition of fG,w and f (j)

G,w for all j ∈ Z≥0. Therefore, there

must exist i such that f (i)
G,w(v) = f

(i+1)
G,w (v).

The depth of the forest is the largest depth among all the vertices.

Definition J.3 (The depth of the min-parent-forest). The depth dep(G,w) of the forest (V, fG,w)
is defined as:

dep(G,w) = max
v∈V

depG,w(v).

If the weights w of vertices of G are some i.i.d. random variables, then with high probability,
the depth of (V, fG,w) is only O(log |V |). Precisely, we have the following Lemma.

Lemma J.4 (The depth of the random min-parent-forest). Let G = (V,E) be an undirected
graph with n vertices where V = {v1, v2, · · · , vn}, and the labels satisfies v1 < v2 < · · · < vn.
Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ]. If N > n2/δ
for some δ ∈ (0, 1), then for any t ≥ 60 log n,

Pr
w∼[N ]n

(dep(G,w) ≤ t) ≥ 1− δ − e− 1
2
t.
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Proof. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ]. Let
(V, fG,w) be the min-parent-forest of (G,w). For a fixed s ∈ V, we create a set of random variables
z1, z2, · · · , zn by the following deterministic procedure:

1. Let z1 = w(s), k = 0, Sk = {s}, uk = s, i = 2, pos(s)← 1.

2. Let Sk+1 = Sk.

3. For j = 1→ n,

if vj ∈ Γ(uk) and vj 6∈ Sk then let pos(vj)← i, Sk+1 ← Sk+1 ∪{vj}, zi = w(vj), i← i+ 1.

4. If fG,w(uk) 6= uk, then let uk+1 = fG,w(uk), k ← k + 1 and go to step 2.

5. Otherwise, for j = 1→ n,

if vj 6∈ Sk+1 then let pos(vj)← i, zi = w(vj), i← i+ 1.

It is easy to observe that k is exactly depG,w(s) at the end of the above procedure. The reason
is that u0 = s = f

(0)
G,w(s), ∀j ∈ [k], uj = fG,w(uj−1) = f

(j)
G,w(s) and fG,w(uk) = uk.

Fact J.5. ∀v ∈ V , w(v) = zpos(v), where pos : [V ]→ [n] and pos−1 : [n]→ [V ].

Claim J.6. ∀j ∈ {0, 1, · · · , k + 1}, Sj = {u0} ∪
⋃j−1
p=0 Γ(up).

Proof. We can prove this by induction. The statement is obviously true for S0 since S0 = {u0}.
Now suppose the claim is true for Sj−1. Then according to the step 3 of the procedure Sj =

Sj−1 ∪ (Γ(uj−1) \ Sj−1) = Sj−1 ∪ Γ(uj−1) = {u0} ∪
⋃j−1
p=0 Γ(up).

Claim J.7. ∀j ∈ {0, 1, · · · , k}, w(uj) = minv∈Sj w(v).

Proof. Since ∀j ∈ [k], uj = fG,w(uj−1), we have w(uj) = minv∈Γ(uj−1)∪{uj−1}w(v). Then we have
w(uj) = min

v∈{u0}∪
⋃j−1
p=0 Γ(up)

w(v) = minv∈Sj w(v), where the last equality follows by Claim J.6.

We use pos−1(i) to denote vertex v which satisfies pos(v) = i. According to the step 3, it is easy
to see ∀j ∈ {0, 1, · · · , k + 1}, we have {pos−1(i) | i ∈ [|Sj |]} = Sj .

Claim J.8. ∀j ∈ {0, 1, · · · , k}, zpos(uj) = minp∈[pos(uj)] zp.

Proof. zpos(uj) = w(uj) = minv∈Sj w(v) = minv∈Sj zpos(v) = minp∈[|Sj |] zp = minp∈[pos(uj)] zp, where
the second equality follows by Claim J.7, and the last equality follows by uj ∈ Sj , so pos(uj) ≤
|Sj |.

Now we define an another set of random variables y1, y2, · · · , yn, where ∀i ∈ [n], yi ∈ {0, 1} and
yi = 1 if and only if zi = minj∈[i] zj .According to Claim J.8, we have that ∀i ∈ {0, 1, · · · , k}, ypos(ui) =
1. Thus, depG,w(s) = k ≤∑n

i=1 yi. To upper bound depG,w(s), it suffices to upper bound
∑n

i=1 yi.
Before we look at y1, · · · , yn, we firstly focus on the properties of z1, · · · , zn :

Claim J.9. z1, z2, · · · , zn are n i.i.d random variables drawn uniformly from [N ].

Proof. A key observation is that if z1, z2, · · · , zn are given, then we can recover w(v1), w(v2), · · · , w(vn)
exactly by the following deterministic procedure:

1. Let w(s) = z1, k = 0, Sk = {s}, uk = s, i = 2.

2. Let Sk+1 = Sk.
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3. For j = 1→ n,

if vj ∈ Γ(uk) and vj 6∈ Sk then let Sk+1 ← Sk+1 ∪ {vj}, w(vj) = zi, i← i+ 1.

4. If fG,w(uk) 6= uk, then let uk+1 = fG,w(uk), k ← k + 1 and go to step 2.

5. Otherwise, for j = 1→ n,

if vj 6∈ Sk+1 then let pos(vj)← i, w(vj) = zi, i← i+ 1.

Notice that after step 3, ∀v ∈ Γ(uk)∪{uk}, w(v) is already recovered, thus we can implement step 4.
Thus, the above procedure is a valid procedure. Since z1, · · · , zn are generated by w(v1), · · · , w(vn),
we can also know z1, · · · , zn by given w(v1), · · · , w(vn). This means that

H(z1, z2, · · · , zn | w(v1), w(v2), · · · , w(vn)) = H(w(v1), w(v2), · · · , w(vn) | z1, z2, · · · , zn) = 0,

where H(·) is the information entropy. Notice that

I(z1, z2, · · · , zn;w(v1), w(v2), · · · , w(vn))

= H(z1, z2, · · · , zn)−H(z1, z2, · · · , zn | w(v1), w(v2), · · · , w(vn))

= H(w(v1), w(v2), · · · , w(vn))−H(w(v1), w(v2), · · · , w(vn) | z1, z2, · · · , zn),

where I(·) is the mutual information. Thus, H(z1, z2, · · · , zn) = H(w(v1), w(v2), · · · , w(vn)) =
n logN. For i ∈ [n], since the size of the support of zi is at most N, H(zi) ≤ logN where the
equality holds if and only if zi is uniformly distributed on [N ]. Also notice that H(z1, z2, · · · , zn) ≤∑n

i=1H(zi), where the equality holds if and only if zi are independent. Since
∑n

i=1H(zi) ≤ n logN,
we have H(z1, z2, · · · , zn) =

∑n
i=1H(zi), and for each i ∈ [n], H(zi) = logN. Thus, z1, z2, · · · , zn

are i.i.d. random variables drawn uniformly from [N ].

Claim J.10. If N > n2/δ for some δ ∈ (0, 1), then with probability at least 1− δ, ∀i 6= j ∈ [n], we
have w(vi) 6= w(vj).

Proof. Recall that w(v1), w(v2), · · · , w(vn) are n i.i.d. random variables drawn uniformly from N .
For any i 6= j ∈ [n], the Pr(w(vi) 6= w(vj)) = 1/N, thus E(|{(i, j) ∈ [n] × [n] | i 6= j, w(vi) 6=
w(vj)}|) ≤ n2/N. By Markov’s inequality,

Pr(|{(i, j) ∈ [n]× [n] | i 6= j, w(vi) 6= w(vj)}| ≥ 1) ≤ n2/N ≤ δ.

Thus,

Pr(∀i 6= j ∈ [n], zi 6= zj) ≥ 1− δ.

Claim J.11. Let E be the event that ∀i 6= j ∈ [n], w(vi) 6= w(vj). Then, for any t ≥ 3
∑n

i=1
1
i , we

have

Pr
w∼[N ]n

(
n∑
i=1

yi ≥ t+
n∑
i=1

1

i

∣∣∣∣ E
)
≤ e− 3

4
t.
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Proof. Note that E happened if and only if we have ∀i 6= j ∈ [n], zi 6= zj . Due to Claim J.9,
z1, z2, · · · , zn are i.i.d. random variables drawn uniformly from [N ], then conditioned on E , y1, y2, · · · ,
yn are independent, and the probability that yi = 1 is 1/i. Thus, we have:

Pr

(
n∑
i=1

yi ≥
n∑
i=1

1

i
+ t

∣∣∣∣ E
)

= Pr

(
n∑
i=1

(yi −E (yi | E)) ≥ t
∣∣∣∣ E
)

≤ exp

(
−

1
2 t

2∑n
i=1 Var(yi | E) + 1

3 t

)

≤ exp

(
−

1
2 t

2∑n
i=1

1
i + 1

3 t

)

≤ exp

(
−

1
2 t

2

2
3 t

)

= exp

(
−3

4
t

)
,

where the first equality follows by E(yi|E) = 1/i. The first inequality follows by Berinstein inequality.
The second inequality follows by

n∑
i=1

Var(yi | E) ≤
n∑
i=1

E(y2
i | E) =

n∑
i=1

E(yi | E) =
n∑
i=1

1

i
.

The third inequality follows by
∑n

i=1
1
i ≤ 1

3 t.

For a fixed vertex s ∈ V, due to Claim J.11, for any t ≥ 3
∑n

i=1 1/i, we have

Pr

(
depG,w(s) ≥

n∑
i=1

1/i+ t

∣∣∣∣ E
)
≤ e− 3

4
t. (1)
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Thus, for any t ≥ 60 log n,

Pr
w∼[N ]n

(
∃s ∈ V s.t. depG,w(s) ≥ t

)
≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

)

= Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

∣∣∣∣ E
)

Pr(E)

+ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

∣∣∣∣ ¬E
)

Pr(¬E)

≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

∣∣∣∣ E
)

+ Pr(¬E)

≤ Pr

(
∃s ∈ V s.t. depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

∣∣∣∣ E
)

+ δ

≤
∑
s∈V

Pr

(
depG,w(s) ≥ 5t/6 +

n∑
i=1

1/i

∣∣∣∣ E
)

+ δ

≤ ne−
5
8
t + δ

≤ e−
1
2
t + δ

where the first inequality follows by 1
6 t ≥ 10 log n ≥ ∑n

i=1 1/i. The third inequality follows by
Claim J.10. The forth inequality follows by union bound. The fifth inequality follows by Equa-
tion (1). The sixth inequality follows by e−

1
8
t ≤ 1

n .

Thus, we can conclude that for any t ≥ 60 log n, we have Pr(dep(G,w) ≤ t) ≥ 1− δ− e− 1
2
t.

Lemma J.12 (The number of roots of the random min-parent-forest). Let G = (V,E) be an
undirected graph with n vertices where V = {v1, v2, · · · , vn}, and the labels satisfies v1 < v2 <
· · · < vn. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ]. Let
δ ∈ (0, 1). If N > n3, then

Pr
w∼[N ]n

(
|{v ∈ V | fG,w(v) = v}| ≥ 2

δ

∑
v∈V

1

|Γ(v)|+ 1

)
≤ δ.

Proof. Let w(v1), w(v2), · · · , w(vn) be n i.i.d. random variables drawn uniformly from [N ]. Let E be
the event that ∀i 6= j ∈ [n], w(vi) 6= w(vj). Notice that for i 6= j, the probability that w(vi) = w(vj)
is 1/N. Thus, E(|{(i, j) ∈ [n] × [n] | i 6= j, w(vi) = w(vj)}|) ≤ n2/N. Thus, if N > n2, then
Pr(¬E) = Pr (|{(i, j) ∈ [n]× [n] | i 6= j, w(vi) = w(vj)}| ≥ 1) ≤ n2/N ≤ 1

n . Now, we fix a vertex
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v ∈ V,

Pr (fG,w(v) = v)

= Pr (fG,w(v) = v | E) Pr(E) + Pr (fG,w(v) = v | ¬E) Pr(¬E)

≤ Pr (fG,w(v) = v | E) + Pr(¬E)

≤ Pr

(
w(v) = min

u∈{v}∪Γ(v)
w(u) | E

)
+

1

n

≤ 1

|Γ(v)|+ 1
+

1

n

≤ 2

|Γ(v)|+ 1

where the third inequality follows by the symmetry of all the variables w(u) for u ∈ {v} ∪ Γ(v) so
condition on all the w are different, with probability 1

1+|Γ(v)| , w(v) is the smallest one. The last
inequality follows by |Γ(v)|+ 1 ≤ |V | = n.

Thus, E(|{v ∈ V | fG,w(v) = v}|) ≤∑v∈V
2

|Γ(v)|+1 . Let δ ∈ (0, 1), then by Markov’s inequality,

Pr

(
|{v ∈ V | fG,w(v) = v}| ≥ 2

δ

∑
v∈V

1

|Γ(v)|+ 1

)
≤ δ.

J.2 Leader Selection via Min Parent Forest

Given a graph, we can randomly assign each vertex a weight, thus we have a min-parent-forest,
then we select those roots in the min-parent-forest as leaders, and try to contract all the vertices
to the leaders. If we replace line 13 to line 17 of Algorithm 3 by Algorithm 20. We can get a new
algorithm with the following guarantees.

Algorithm 20 Leader Selection via Min Parent Forest

1: Let N = 100rn10.
2: ∀v ∈ V ′i , let wi(v) be i.i.d. random variables drawn uniformly from [N ].
3: ∀v ∈ V ′′i , let pari(v) = fG′i,wi(v). . (V ′i , fG′i,wi) is a min-parent-forest of G′i with wi.

Theorem J.13. Suppose we replace line 13 to line 17 of Algorithm 3 by Algorithm 20.
Let G = (V,E) be an undirected graph, m = Ω(n), and r ≤ n be the rounds parameter

where n is the number of vertices in G. Let c > 0 be a sufficiently large constant. If r ≥
c log logm/n(n), then with probability at least 2/3, the modified Connectivity(G,m, r) (Algo-
rithm 3) will not return FAIL, and the total number of iterations (see Definition B.20) of the
modified Connectivity(G,m, r) is at most O(r · (logD + log log n)), where D = diam(G).

Proof. Let ki denote the number of iterations (see Definition B.2) of NeighborIncrement(m,Gi−1).
By Lemma B.3, we have ki ≤ O(logD). Thus,

∑r
i=1 ki = O(r · logD).

According to Lemma J.4, with probability at least 1− 2
100r , dep(G′′i , wi) ≤ O(log n). By Lemma B.10,

with probability at least 1 − 2
100r , the number of iteration of TreeContraction(G′′i ,pari) (see

Definition B.12) r′i ≤ O(log log n) By taking union bound over all i ∈ [r], then with probability at
least 1− 1

50 ,
∑r

i=1 r
′
i ≤ O(r · log log n).
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Due to the Property 3 of Lemma B.3, ∀i ∈ [r], ∀v ∈ V ′′i , u ∈ ΓG′i(v), we have u ∈ V ′′i which
means that u ∈ ΓG′′i (v). Thus, |ΓG′′i (v)| ≥ d(m/ni−1)1/2e − 1. Then due to Lemma J.12, we have

that with probability at most 1
8 , ni ≥ 16n

3/2
i−1/m

1/2. Since m/n ≥ m/ni ≥ 1024, we have that
with probability at most 1

8 , ni ≥ n
11/10
i−1 /m1/10. Let y1, y2, · · · , yr be r random variables. If ni ≥

n
11/10
i−1 /m1/10, then yi = 1, otherwise yi = 0. We have E(

∑r
i=1 yi) ≤ r

8 . By Markov’s inequality, we
have Pr(

∑r
i=1 yi ≥ r

2) ≤ 1
4 . Thus, with probability at least 3

4 ,
∑r

i=1 yi ≤ r
2 . Notice that when yi = 0,

then ni ≤ n
11/10
i−1 /m1/10, and when yi = 1, we have ni ≤ ni−1. So if there are at least r

2 number of
yis which are 0, then

nr ≤

((
n1.1

m0.1

)1.1
m0.1

)···
· · · (Apply r/2 times)

=
n1.1r/2

m1.1r/2−1

= n/(m/n)1.1r/2−1

≤ n/(m/n)1.1r/4

≤ 1

2

where the last inequality follows by r ≥ 4
log 1.1(log logm/n(2n)). Since nr is an integer, when nr ≤ 1

2 ,
nr = 0. Thus, we can conclude that if r ≥ c · log logm/n n for a sufficiently large constant c > 0,

then with probability at least 3
4 − 1

50 ≥ 2
3 , the modified Connectivity(G,m, r) will not output

FAIL.

Notice that though the theoretical guarantees of the min-parent-forest leader selection method
is worse than the random leader sampling, the merit of min-parent-forest leader selection method
is that it can have an “early start”.

Consider the case when the total space size m is Θ(n). In this case, random leader sampling
will always sample a half of the vertices as the leaders until the total space m is poly(log n) larger
than the number of vertices. However, min-parent-forest leader selection method can make a large
progress at the beginning, it will choose the number of leaders to be about the sum of inverse
degrees. Furthermore, the depth of the min-parent-forest may not always have log n depth. Thus,
it is an interesting question which leader selection approach has better performance in practice.
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