
ar
X

iv
:1

80
4.

02
58

4v
3

 [
cs

.D
S]

 2
6

N
ov

 2
01

8

Random Order Contention Resolution Schemes
∗

Marek Adamczyk†

University of Warsaw

Michał Włodarczyk‡

University of Warsaw

Abstract

Contention resolution schemes have proven to be an incredibly powerful concept which allows to
tackle a broad class of problems. The framework has been initially designed to handle submodular
optimization under various types of constraints, that is, intersections of exchange systems (including
matroids), knapsacks, and unsplittable flows on trees. Later on, it turned out that this framework
perfectly extends to optimization under uncertainty, like stochastic probing and online selection problems,
which further can be applied to mechanism design.

We add to this line of work by showing how to create contention resolution schemes for intersection
of matroids and knapsacks when we work in the random order setting. More precisely, we do know the
whole universe of elements in advance, but they appear in an order given by a random permutation. Upon
arrival we need to irrevocably decide whether to take an element or not. We bring a novel technique for
analyzing procedures in the random order setting that is based on the martingale theory. This unified
approach makes it easier to combine constraints, and we do not need to rely on the monotonicity of
contention resolution schemes.

Our paper fills the gaps, extends, and creates connections between many previous results and tech-
niques. The main application of our framework is a k + 4 + ε approximation ratio for the Bayesian
multi-parameter unit-demand mechanism design under the constraint of k matroids intersection, which
improves upon the previous bounds of 4k − 2 and e(k + 1). Other results include improved approxima-
tion ratios for stochastic k-set packing and submodular stochastic probing over arbitrary non-negative
submodular objective function, whereas previous results required the objective to be monotone.

∗This is an extended version of a paper whose preliminary version appeared in Proceedings of 2018 IEEE 59th Annual

Symposium on Foundations of Computer Science
†m.adamczyk@mimuw.edu.pl (The author’s work is part of a project TOTAL that has received funding from the European

Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No
677651)

‡m.wlodarczyk@mimuw.edu.pl (The author has been supported by the National Science Centre of Poland Grant UMO-
2016/21/N/ST6/00968.)

http://arxiv.org/abs/1804.02584v3

Contents

1 Introduction 2

1.1 Problems overview, known results, and our contributions . 2
1.2 Our techniques . 4
1.3 Organization of the paper . 5

2 Preliminaries 5

2.1 Submodular functions . 5
2.2 Matroids . 5
2.3 Martingales . 6

3 Random-order contention resolution scheme for a matroid 6

4 The controller mechanism 8

4.1 Characteristic sequences . 8
4.2 Combining constraints . 10

5 Multi-parameter mechanism design 11

5.1 Bounding by auction with copies . 11
5.2 Single client routine . 11
5.3 The algorithm . 12

6 Submodular optimization 13

7 Stochastic k-set packing 14

8 Submodular stochastic probing 16

8.1 Sampling scheme . 16
8.2 Relaxation for a non-negative submodular objective . 17
8.3 Stronger bound for the measured continuous greedy algorithm 19

9 Single client routine for BMUMD 20

9.1 First attempt . 20
9.2 Almost perfect menu . 20

10 Combining matroid and knapsack constraints 22

10.1 A controller mechanism for the bounded knapsack constraint 22
10.2 Reduction to the bounded case . 23
10.3 Results for knapsack and matroid constraints . 24

1

1 Introduction

Uncertainty in input data is a common feature of most practical problems and research in finding good
solutions (both experimental and theoretical) for such problems has a long history. In recent years one
technique in particular has turned out to be very effective in tackling such problems, namely the Contention
Resolution Schemes (CR schemes). They have been introduced by Chekuri et al. [17] in order to maximize
submodular functions under various constraints. Submodular functions have proven important in modeling
various optimization problems that share the property of diminishing returns.

This framework has been initially designed for problems in deterministic setup, where all information is
known at the beginning. However, its randomized approach has turned out to be perfect to tackle problems
where the uncertainty was the part of the model, like stochastic probing and mechanism design [11].

This fact was elegantly leveraged by Feldman et al. [10], who adapted the framework of CR schemes to
an online setting, and resolved a long-standing open question by Chawla et al. [8], by devising a so called
Oblivious Posted Price Mechanism for matroids. This implied a constant factor approximations for the
Bayesian multi-parameter unit-demand mechanism design problem.

Inspired by this line of work we have asked ourselves a question:

What can contention resolution schemes do, if we shall consider them in the random order model?

While trying to answer this question we drew from, extended, bridged some gaps between, and improved
some of the results on CR schemes [17, 10], sequential posted price and multi-parameter mechanism design [8,
11, 12, 10], and stochastic probing [11, 1]. We describe these results precisely below.

1.1 Problems overview, known results, and our contributions

Contention resolution schemes Let us start with an illustrative problem. Consider a matroid M =
(E, I) and a fractional solution x from its polytope. Suppose we are given a weight vector w : E 7→ R+, and
we look for an algorithm that returns an independent set S ∈ I such that

∑

e∈S we ≥ c ·∑e∈E wexe for some
constant c < 1. The idea is to settle for a randomized algorithm and demand that every element is taken
into S with probability at least c · xe. Such a property would immediately entail the desired guarantee.

How to design an algorithm returning S such that P [e ∈ S] ≥ c ·xe? Chekuri et al. [17] presented a frame-
work of contention resolution schemes (CR schemes) which address this problem, among other applications.
The idea is to first draw a random set R (x) such that P [e ∈ R (x)] = xe for each e ∈ E independently, and
afterwards – since R (x) is most likely not an independent set in I – to drop some elements from R (x) to
meet the feasibility constraint, that is, to resolve the contention between the elements.

Our contribution: Simply speaking, we show that the above problem can be solved also if we work in a
random order model, i.e., when elements of E appear to us according to a uniformly random permutation,
and upon arrival we need to make an irrevocable decision of whether to take an element or not.

In its full generality Chekuri et al. were dealing not only with matroids but arbitrary intersections of
matroids, knapsacks, exchange systems, and unsplittable flow on trees. They were also maximizing not only
linear functions, but non-negative submodular functions as well. We do so as well, restricted to intersections
of matroid and knapsack constraints. For a single matroid and a linear objective, Chekuri et al. obtained an
approximation (the constant c) of 1 − 1

e , while we get 1
2 . However, for intersection of k matroids, starting

with k ≥ 2, we obtain a better bound of 1
k+1 , improving upon theirs 1

e·k+o(k) , even though we work in a more

restrictive model.

Theorem 1.1. There exists a random-order CR scheme for intersection of k matroids with c = 1
k+1 .

A possible explanation for this – for a moment we assume that the Reader is familiar with the previ-
ous work – is that, unlike the previous CR schemes, we do not require the monotonicity of the scheme.
Monotonicity appeared to be an important feature because it allowed to combine the schemes via the FKG
inequality [2]. We manage to combine the schemes for matroids, sparse column packings, and knapsacks
without the monotonicity requirement, and we believe it is an interesting fact on its own.

For submodular objective we also improve the bounds starting with k ≥ 2.

Theorem 1.2. Maximization of a non-negative submodular function with respect to k matroid constraints
admits a (k + 1 + ε) · e approximation algorithm in the random-order model.

2

These results are not absolutely best when compared to more general techniques, since one can get ratio
(k−1) for linear objectives when k ≥ 2 using iterative rounding [13], and (k+2) for non-negative submodular
functions via a combinatorial argument [14]. However, to the best of our knowledge, our results yield the
best ratio in the random order model.

Mechanism Design Consider the following mechanism design problem. There are n agents and a single
seller providing a set of services. The agent i is interested in buying the i-th service and values its as vi, which
is drawn independently from a distribution Di. Such a setting is called single-parameter. The valuation vi
is private, but the distribution Di is known in advance. The seller can provide only a subset of services,
that belongs to a system I ∈ 2[n], which is specified by feasibility constraints. A mechanism accepts bids
of agents, decides on subset of agents to serve, and sets individual prices for the service. A mechanism is
called truthful if agents are motivated to bid their true valuations. Myerson’s theory of virtual valuations
yields truthful mechanisms that maximize the expected revenue of a seller [15], although they sometimes
might be impractical [3]. On the other hand, practical mechanisms are often non-truthful [3]. The Sequential
Posted Pricing Mechanism (SPM) introduced by Chawla et al. [8] gives a nice trade-off – it is truthful, simple
to implement, and gives near-optimal revenue. An SPM offers each agent a ’take-it-or-leave-it’ price for a
service. After refusal the service shall not be provided, so it is easy to see that an SPM is indeed a truthful
mechanism.

The paragraph above concerns only the single-parameter setup. In the Bayesian multi-parameter unit-
demand mechanism design (BMUMD for short), we have n buyers and one seller. The seller offers a number
of different services indexed by set J . The set J is partitioned into groups Ji, with the services in Ji
being targeted by agent i. Each agent i is interested in getting any one of the services in Ji, i.e., agents are
unit-demand. Agent i has value vj for service j ∈ Ji. Value vj is independent of all other values and is drawn
from distribution Dj . Once again the seller faces a feasibility constraint specified by a set system I ⊆ 2J .

Unlike single-parameter setup, this problem is not solvable efficiently by the well-established Myerson’s
approach. The paper of Chawla et al. [8] launched a line of work in obtaining approximate results for the
multi-parameter setup, by suggesting a possible avenue of a solution via the so-called Oblivious Posted Price
mechanisms. One would have to first embed the multi-parameter problem into a single-parameter one, and
later to ensure that the algorithm would work if the items are presented in an adversary order. Kleinberg
and Weinberg [12] solved the BMUMD problem for matroid environments with approximation of 4k − 2 for
intersection of k matroids (with 2-approximation for a single matroid), but they have not used the Oblivious
Posted Price mechanisms. Feldman et al. [10] devised the first Oblivious Posted Price mechanisms and
obtained an ek + o(k) approximation for the intersection of k matroids.

Our contribution: We observe that the Oblivious Posted Price is an overly demanding notion, and we
need to handle the oblivious order only when looking at the items of a given client, but there is no need to
restrict the order of clients. In our algorithm we randomly shuffle clients, but cannot make assumption on
the client’s choice. This hybrid approach is what allows us to obtain improved bounds. For k = 2 we match
up to ε the 6-approximation of Kleinberg and Weinberg [12], but starting from k ≥ 3 our ratios are better;
for k = 3 we get 7 + ε improving over 9.48 of Feldman et al. [10].

Theorem 1.3. Bayesian multi-parameter unit-demand mechanism design over k matroid constraints admits
a (k + 4 + ε) approximation for any ε > 0.

Non-negative submodular stochastic probing We are given a universe E, where each element e ∈ E
is active with probability pe independently. The only way to find out if an element is active is to probe it.
We call a probe successful if an element turns out to be active. We execute an algorithm that probes the
elements one-by-one. If an element is active, the algorithm is forced to add it to the current solution. In this
way, the algorithm gradually constructs a solution consisting of active elements.

We consider the case in which we are given constraints on both the set of probed elements and the set
of elements included in the solution. Formally, we are given two downward-closed independence systems: an
outer system (E, Iout) restricting the set of elements probed by the algorithm, and an inner system

(

E, Iin
)

,
restricting the set of elements taken by the algorithm. The goal is to maximize the expected value E [f (S)],
where f is a given non-negative submodular function and S is the set of all successfully probed elements.

This problem has been stated by Gupta and Nagarajan [11] who gave an abstraction for couple of problems
like stochastic matching and sequential-posted price mechanisms in a single-parameter setup. They obtained

3

an O(kin + kout) approximation for linear objectives in an environment with kin inner matroids and kout
outer matroids (together with results for more general constraints) using the CR-schemes of Chekuri et
al. [17]. Later, Adamczyk et al. [1] showed how to obtain a (kin + kout)-approximation for linear objectives
and e

e−1 · (kin + kout + 1) for monotone submodular objectives.
Our contribution: We obtain the first results with respect to arbitrary non-negative submodular objective

functions.

Theorem 1.4. Non-negative submodular stochastic probing with kin inner matroid constraints and kout outer
matroid constraints admits a (kin + kout + 1 + ε) · e approximation for any ε > 0.

Stochastic k-set packing We are given n elements/columns, where each element e ∈ [n] has a random
profit ve ∈ R+, and a random d-dimensional size Le ∈ {0, 1}d. The sizes are independent for different
elements, but ve can be correlated with Le, and the coordinates of Le also might be correlated between each
other. The values of ve and Le are revealed after e is probed, but their distributions are known in advance.

Additionally, for each element e we are given a set Qe ⊆ [d] of size at most k, such that the size vector Le

takes positive values only in these coordinates, i.e., Le ⊆ Qe with probability 1. We are also given a capacity
vector b ∈ Z

d
+ into which elements must be packed, that is, the solution can consist of at most bi elements

with unit sizes in the i-th row. We say that the outcomes of Le are monotone if for any possible realizations
x, y ∈ {0, 1}d of Le, we have x ≤ y or y ≤ x coordinate-wise.

A strategy probes columns one by one, obeying the packing constraints, and the goal is to maximize the
expected outcome of taken columns. The stochastic k-set packing problem was stated by Bansal et al. [4].
They have presented a 2k-approximation algorithm for it, and a (k + 1)-approximation algorithm with an
assumption that the outcomes of size vectors Le are monotone. Recently Brubach et al. [6] improved the
approximation ratio to k + o(k) in the general case.

Our contribution: We improve upon the recent bound of Brubach et al. [6]. Our algorithm also works in
the case where we replace counting constraints on rows with arbitrary matroids.

Theorem 1.5. There exists a (k + 1) approximation algorithm for stochastic k-set packing over matroid row
constraints.

1.2 Our techniques

The main notion we use is a controller mechanism, which provides a handy abstraction, that allows us to
combine various constraints without relying on the monotonicity of the schemes. For matroids it is imple-
mented using a decomposition of a fractional solution into a convex combination of characteristic vectors of
independent sets, and for knapsacks a controller is represented as a point from the unit interval. Addition-
ally, knapsack constraints require a preprocessing procedure, that partitions the elements into big and small,
which is inspired by [5, 10].

The controller mechanism of a constraint I randomly assigns each element e ∈ E a controller Ce, which
keeps track of its suitability to become a part of the solution when we iterate through the elements in a
random order. More formally,

a) if S is the current solution and Ce has not been blocked yet, then S ∪ {e} must belong to I,
b) for each element e the probability that 1) some element f has been chosen at step t, and 2) f has been

assigned a controller Cf , that blocks Ce, is at most λ
n−t (probability taken over all such f ’s and Cf ’s),

for a constant λ depending on I.
With these properties on hand, we can associate a submartingale with each element e and a fixed con-

troller Ce. We define a stopping event of revealing the fate of e, i.e., we stop when we either take e into the
solution or we block its controller. Before the stopping event for e occurs, we know that we still can either
take it or block it. The bound on the probability of accepting the element comes then from the Doob’s stop-
ping theorem. This suffices to construct a random-order contention resolution scheme. Another martingale
argument extends this reasoning to the submodular function maximization.

In the context of the stochastic probing problems, we are aware of only one usage of the martingale
argument with the Doob’s theorem, in the analysis of an iterative randomized rounding algorithm [1]. To
the best of our knowledge, we present the first application of the martingale argument to analyze a random
permutation, and we believe this technique can be handy and worth adding to a toolbox.

4

In order to handle Bayesian multi-parameter unit-demand mechanism design, we rely on the reduction
to a single-parameter setup by Chawla et al. [8] via copies, and on the linear relaxation by Gupta and
Nagarajan [11]. The last ingredient necessary to obtain the postulated approximation ratio for k matroids
is a routine that processes a fractional solution for a single client menu, which later on allows to give very
tight upper and lower bounds on the probabilities of an item’s acceptance and rejection. We present such a
routine based on local search that reduces the discrepancy between these quantities in each step.

Arguments for stochastic probing and stochastic k-set packing exploit the same notion of the controller
mechanism. However, in order to obtain an upper bound for a submodular objective case we need a stronger
guarantee for the measured continuous greedy algorithm for optimizing the multilinear extension of a sub-
modular function [9]. This bound is due to Justin Ward [18].

1.3 Organization of the paper

We start the technical part of the paper by showing a random-order CR scheme for a matroid in Section 3.
Section 4 contains the analysis of the CR scheme and introduces the language of our framework, that is,
the controller mechanism and characteristic sequences. This allows us to present the extension to multiple
matroids in a simple way, and later to explain how to deal with submodular functions.

In Section 5 we present the more complicated algorithm for the Bayesian multi-parameter unit-demand
mechanism design. The details of the single-client routine are postponed to Section 9. This order of presenta-
tion allows us to explain both the framework and the main result relatively soon. The following Sections 6, 7,
and 8 cover the submodular optimization, stochastic k-set packing, and stochastic probing.

We deliberately avoid giving one procedure that captures all the results at once for the cleanest possible
presentation of the paper. With each result comes an abstract formulation of the algorithm and the applica-
tion in the matroid environment. Our framework also extends to knapsack constraints, and we show how to
combine them with matroids in Section 10.

2 Preliminaries

2.1 Submodular functions

A set function f : 2E 7→ R≥0 is submodular, if for any two subsets S, T ⊆ E we have f (S ∪ T) + f (S ∩ T) ≤
f (S)+f (T). The multilinear extension of f is a function F : [0, 1]E 7→ R≥0, whose value at a point y ∈ [0, 1]

E

is given by

F (y) =
∑

A⊆E

f (A) ·
∏

e∈A

ye
∏

e6∈A

(1− ye) .

Note that F (1A) = f (A) for any set A ⊆ E, so F is an extension of f from discrete domain 2E into a real

domain [0, 1]
E

. The value F (y) can be interpreted as the expected value of f on a random subset A ⊆ E
that is constructed by taking each element e ∈ E with probability ye.

2.2 Matroids

For a matroidM =
(

E, I ⊆ 2E
)

, we define its matroid polytope

P (M) =

{

x ∈ R
E
≥0

∣

∣

∣

∣

∣

∀A∈I
∑

e∈A

xe ≤ rM (A)

}

,

where rM is the rank function ofM. We know that P (M) is equivalent to the convex hull of {1A | A ∈ I },
i.e. characteristic vectors of all independent sets of M.

We shall need the following two properties. The proof of the lemma below about the existence of a convex
decomposition can be found in [16].

Lemma 2.1. We can represent any x ∈ P (M) as x =
∑m

i=1 βi · 1Bi
, where B1, . . . , Bm ∈ M and

β1, . . . , βm are non-negative weights such that
∑m

i=1 βi = 1 and m = |E|O(1). We denote S = [m] and
call (S, (Bi)i∈S , (βi)i∈S) a support of x in P (M).

5

The following lemma is a slightly generalized basis exchange lemma, proof of which again can be found
in [16].

Lemma 2.2. Let A,B ∈ I be two independent sets of matroid M = (E, I). We can find an exchange-
mapping φ [A,B] : A 7→ B ∪ {⊥} such that:

1. φ [A,B] (e) = e for every e ∈ A ∩B,

2. for each f ∈ B there exists at most one e ∈ A for which φ [A,B] (e) = f ,

3. for e ∈ A \B, if φ [A,B] (e) = ⊥, then B + e ∈ I, otherwise B − φ [A,B] (e) + e ∈ I.

2.3 Martingales

Definition 2.3. Let (Ω,F ,P) be a probability space, where Ω is a sample space, F is a σ-algebra on Ω, and
P is a probability measure on (Ω,F). Sequence {Ft : t = 1, 2, . . . } is called a filtration if it is an increasing
family of sub-σ-algebras of F : F0 ⊆ F1 ⊆ . . . ⊆ F .

Intuitively speaking, when considering a stochastic process, σ-algebra Ft represents all information avail-
able to us right after making step t. In our case σ-algebra Ft contains all information about each randomly
chosen element to probe, about outcome of each probe, and about each controller update, that happened
before or at step t.

Definition 2.4. A process (Zt)
n
t=1 is called a martingale if for every t ≥ 0 all following conditions hold:

1. random variable Zt is Ft-measurable,

2. E [|Zt|] <∞,

3. E [Zt+1 |Ft] = Zt.

If we replace the latter condition with E [Zt+1 |Ft] ≥ Zt, we obtain a submartingale.

Definition 2.5. Random variable τ : Ω 7→ {0, 1, . . .} is called a stopping time if {τ = t} ∈ Ft for every t ≥ 0.

Intuitively, τ represents a moment when a particular event happens. We have to be able to say whether it
happened at step t given only the information from steps 0, 1, 2, . . . , t. In our case we define τ as the moment
when we get to know the fate of an element, i.e., either when it was selected in a given step, or when its
blocking event occurred. It is clear that this is a stopping time according to the above definition.

Theorem 2.6 (Doob’s Optional-Stopping Theorem). Let (Zt)
n
t=1 be a submartingale. Let τ be a stopping

time such that τ has finite expectation, i.e., E[τ] <∞, and the conditional expectations of the absolute value
of the martingale increments are bounded, i.e., there exists a constant c such that E

[

|Zt+1 −Zt|
∣

∣Ft

]

≤ c for
all t ≥ 0. If so, then E [Zτ] ≥ E [Z0].

3 Random-order contention resolution scheme for a matroid

We formulate our first goal as a motivation to present the simplest variant of the mechanism.

Theorem 3.1. There exists a random-order CR scheme for a matroid with c = 1
2 .

Initialization The procedure is shown in Algorithm 1. Given a vector x ∈ P (M), we begin with decom-
posing it into a support x =

∑

j∈S βj ·1B0
j
, where each set B0

i is independent inM (Lemma 2.1), and finding

exchange-mappings φ
[

B0
i , B

0
j

]

between each pair of sets in the support (Lemma 2.2). For each element e ∈ E

we choose a controller j(e) ∈ S such that e ∈ B0
j , with probability

βj

xe
(note that

∑

j:e∈B0
j
βj = xe). The set

family given by the support is being modified after each step of the algorithm and we denote the sets in step
t as (Bt

j)j∈S . The set S and scalars βj remain the same. For the sake of legibility we refer directly to set
Bt

j(e) as Ct
e and shorten it to Ce when it does not lead to a confusion.

6

Blocking events We scan elements from E in a random order. If the element e chosen in step t happens
to belong to R(x) and its controller has not been blocked yet (to be explained shortly), we take it into the
solution. Then we modify the set family family (Bt

j)j∈S by inserting e to each of them. This operation is
performed according to the exchange-mappings. It may result in some other element f being removed from
the set Ct

f = Bt
j(f). When this happens, we say that (f, Cf) gets blocked.

We emphasize that at the moment of doing so, in some circumstances, it would be still possible to
take element f into the solution. However, we require a clean condition to know when an element is not
considered any longer. This simplifies the analysis significantly. In the pseudocode shown below, we check
for the blocking event of e in line 8.

Algorithm 1 Random-order contention resolution scheme for a matroid

1: decompose x into its support in M, that is, x =
∑

i∈S βi · 1B0
i

2: find exchange-mappings φ
[

B0
i , B

0
j

]

between all pairs i, j ∈ S
3: for each element e choose a controller j(e) ∈ S such that e ∈ B0

j with probability βi

xe
, denote B0

j(e) by C0
e

4: S ← ∅, t← 0
5: for each element e in E in σ order do

6: if e /∈ R(x) then

7: continue
8: if e ∈ Ct

e then

9: S ← S ∪ {e}
10: for each i ∈ S : e /∈ Bt

i do

11: if φ [Ct
e, B

t
i] (e) =⊥ then Bt+1

i ← Bt
i + e

12: if φ [Ct
e, B

t
i] (e) = f then Bt+1

i ← Bt
i − f + e

13: for each i ∈ S : e ∈ Bt
i do

14: Bt+1
i ← Bt

i

15: find new exchange-mappings φ
[

Bt+1
i , Bt+1

j

]

between all pairs i, j ∈ S
16: t← t+ 1;
17: return S

Correctness Let St stand for the solution constructed up to step t. We need to show that the output is
indeed an independent set of the matroid. This follows from the two facts below.

Fact 3.2. For every t and i ∈ S it holds St ⊆ Bt
i .

Proof. If we add an element e to St on line 9, then we add e to each Bt
i .

Fact 3.3. For every t and i ∈ S the set Bt
i is independent in the matroid M.

Proof. All changes of the sets Bt
i are due do the exchange-mapping φ whose property (3) ensures that after

each exchange sets Bt
i remain independent in M. See Lemma 2.2 for details.

Approximation guarantee In our setting we cannot assume we know the whole set R (x) in advance,
but rather we learn if e ∈ R(x) after probing e in line 6. In the following arguments we fix an element e and
condition all the probabilities on the fact that e ∈ R (x), and on the controller Ce chosen in line 3. Since
the choice of other controllers is irrelevant to e until an element f with a controller blocking Ce is revealed
to exist in line 6, we can assume in the analysis that the assignment of Cf happens after the latest family of
exchange-mappings has been established.

The next two lemmas encapsulate the properties of the controller mechanism for a matroid. The main
proof is postponed to Lemma 4.5.

Lemma 3.4. Suppose that
∑

j∈S βj ≤ 1 and (Bj)j∈S is a family of independent sets from M with fixed

exchange-mappings between each Bj and set C ∈ M. Let us denote by Γ (e, C) =
{

(f, j)
∣

∣ φ[Bj ,C] (f) = e
}

the set of all pairs (f, j) that makes e get removed from C. Then
∑

f∈E

∑

j:(f,j)∈Γ(e,C)

βj ≤ 1.

7

Proof. For every set Bj there can be at most one element f such that (f, j) ∈ Γ (e, C) because φ [Bj , C]
cannot map two elements onto e (Lemma 2.2). Therefore for fixed j ∈ S we have

∑

f :(f,j)∈Γi(e,C) βj ≤ βj .
We change the summation order to obtain

∑

f∈E

∑

j:(f,j)∈Γ(e),C

βj =
∑

j∈S

∑

f :(f,j)∈Γ(e,C)

βj ≤
∑

j∈S
βj ≤ 1.

Lemma 3.5. The probability of a blocking event for (e, Ce) in step t is at most 1
n−t .

Proof. We enumerate steps starting with 0. A blocking event occurs when we remove e from Ct
e. This happens

if we choose f 6= e in step t, that 1) turns out to belong to R (x) in line 6, and 2) we choose a controller Cf

such that φCt
f
,Ct

e
(f) = e in line 3 (recall that in our analysis we can treat this event as happening after the

existence f has been revealed). Let Γt (e, Ce) be as in Lemma 3.4 with respect to the set family (Bt
j)j∈S .

Since there are n− t elements to choose in step t, the probability that e gets removed from Ct
e is at most

1

n− t

∑

f

∑

j:(f,j)∈Γt(e,Ce)

P [f ∈ R (x)] · P [f chooses controller j] .

We have P [f ∈ R (x)] = xf . If f belongs to R (x), then f is assigned Cf = Bt
j with probability

βj

xf
. Therefore

the above expression simplifies to

1

n− t

∑

(f,j)∈Γt(e,Ce)

xf ·
βj

xf
=

1

n− t

∑

(f,j)∈Γt(e,Ce)

βj .

The claim follows from Lemma 3.4.

4 The controller mechanism

Before we are ready to finish the proof of Theorem 3.1, we need to introduce our toolbox. In this section we
abstract from the structure of the constraint and present the general framework for obtaining approximation
ratios with the controller mechanism.

Algorithm 2 Abstract view of the random-order contention resolution scheme

1: assign each element e ∈ E a controller Ce

2: S ← ∅
3: foreach element e in E in σ order do

4: if e /∈ R(x) then

5: continue
6: if (e, Ce) has not been blocked then

7: S ← S ∪ {e}
8: update controllers
9: return S

4.1 Characteristic sequences

In order to analyze the approximation guarantee we fix an element e and condition all the probabilities on
the fact that e ∈ R (x), and on the choice of controller Ce (using notation P [event |Ce]). The element e is
oblivious to the choice of other controllers until an element f with a controller blocking Ce is taken into the
solution. Hence, we can assume in the analysis that for f 6= e the assignment of Cf happens after the last
controller update and the disclosure of f .

8

Initially we know that e is available to take, i.e., there is still a possibility of accepting e via Ct
e for some

t. As the process is being executed, at some point we get to know the fate of e: there comes a step in which
we either 1) pick e in line 3, or 2) pick f 6= e and choose a controller Cf which blocks (e, Ce) (in the matroid
example: e gets removed from Ce).

Definition 4.1 (Characteristic sequences). Consider an abstract routine, where in every turn each unseen
element might be picked with equal probability and, if its controller has not been blocked, it gets accepted
and might block other controllers. We shall associate three binary processes with (e, Ce):

St
e : indicates whether e was taken into the solution before step t; initially S0

e = 0;
Zt
e : indicates whether the controller of e has been blocked before step t; initially Z0

e = 0;
Y t
e : we still didn’t get to know the fate of e before step t; initially Y 0

e = 1.
The sequences are bound with a following relationship

Y t
e = 1− St

e − Zt
e.

We call the characteristic sequences λ-bounded if

E
[

Zt+1
e − Zt

e

∣

∣F t
]

≤ λ · Y t
e

n− t
.

Corollary 4.2. For the matroid constraint the characteristic sequences are 1-bounded.

Proof. First let us note that if Y t
e = 0, then we already got to know the fate of e before step t, and so the

status of blocking e cannot change, i.e., Zt
e = Zt+1

e . If Y t
e = 1, then the claim reduces to Lemma 3.5.

Lemma 4.3. If the characteristic sequences of e are λ-bounded, then they satisfy

E
[

Zt+1
e − Zt

e

∣

∣F t
]

≤ λ · E
[

St+1
e − St

e

∣

∣F t
]

.

Proof. Consider step t+ 1 of the process. We claim the following relationship

E
[

St+1
e − St

e

∣

∣F t
]

=
Y t
e

n− t
.

We check this relation by a case-work. If Y t
e,i = 0, then we already know the fate of e. In this case we either

have St
e,i = St+1

e,i = 0 if e has been blocked, or we have St
e,i = St+1

e,i = 1, if we have taken e before step t. In

both cases left-hand side and right-hand side are equal 0. Now if Y t
e = 1, then we know that 1) we have not

chosen e in line 3 before, and 2) (e, Ce) has not been blocked. Then we can pick e in step t with probability
1

n−t , what means exactly that St
e = 0 but St+1

e = 1. The claim follows.

Lemma 4.4. Suppose characteristic sequences of e are λ-bounded. Then process ((1 + λ) · St
e + Y t

e)
n
t=0 is a

submartingale.

Proof. Recall that Y t
e = 1− St

e − Zt
e. From Lemma 4.3 we have

E
[

Y t
e − Y t+1

e

∣

∣F t
]

= E
[

St+1
e + Zt+1

e − St
e − Zt

e

∣

∣F t
]

=

= E
[

St+1
e − St

e + Zt+1
e − Zt

e

∣

∣F t
]

≤
≤ (1 + λ) · E

[

St+1
e − St

e

∣

∣F t
]

,

E
[(

(1 + λ) · St+1
e + Y t+1

e

)

−
(

(1 + λ) · St
e + Y t

e

) ∣

∣F t
]

=

= E
[

(1 + λ) ·
(

St+1
e − St

e

)

−
(

Y t
e − Y t+1

e

) ∣

∣F t
]

≥ 0,

which means that the process ((1 + λ) · St
e + Y t

e)
n
t=0 is indeed a submartingale.

Lemma 4.5. Suppose a random-order CR scheme yields a controller mechanism with λ-bounded character-
istic sequences. Then the probability that e does not get blocked before it is picked is at least 1

1+λ .

9

Proof. Lemma 4.4 guarantees that process ((1 + λ) · St
e + Y t

e)
n
t=0 is a submartingale. Let τ = min {t | Y t

e = 0}
denote the first moment when we get to know what happens with e. Since τ is a bounded (always τ ≤ n)
stopping time, we can take advantage of the Doob’s stopping theorem to get

E
[

(1 + λ) · S0
e + Y 0

e

]

≤ E [(1 + λ) · Sτ
e + Y τ

e] .

Since S0
e = 0 = Y τ

e and Y 0
e = 1, we have

1 = E
[

(1 + λ) · S0
e + Y 0

e

]

≤ E [(1 + λ) · Sτ
e + Y τ

e] = (1 + λ) · E [Sτ
e] ,

and so E [Sτ
e] ≥ 1

1+λ . Now one just has to note that P [e is available to take when picked | Ce] is exactly
equal to E [Sτ

e] (conditioning on Ce comes from the fact that the derivation is performed this particular
controller). Since this holds for any choice of the controller Ce, we get the same bound unconditionally.

Thus the probability that element e will be taken into the solution under condition e ∈ R(x) is at least
1

1+λ . By combining Corollary 4.2 and Lemma 4.5 we finish the proof of Theorem 3.1.

4.2 Combining constraints

Suppose now that we are given k constraints I1, I2, . . . , Ik. The combination of the mechanisms is simple.
We assign each element k controllers independently with respect to each constraint. We scan elements in
a random order and when an element gets accepted we independently update each controller mechanism.
An element gets blocked if it is blocked in at least one constraint.

The correctness of the mechanism, i.e., the fact that we return a set that is independent in all constraints,
is clear. We need to argue for the approximation ratio to be proper. Let us refer to the characteristic
sequences of the i-th constraint as (iSt

e), (
iZt

e), (
iY t

e). In order to construct the characteristic sequences
describing the joint mechanism, observe that an element gets blocked if at least one of its controllers gets
blocked, it gets accepted if it is accepted in all constraints, and we get to know its fate if it is revealed in at
least one constraint. Recall that Y t

e = 1 stands for fate of e not being revealed before step t+ 1. This can
be summarized as

Zt
e = max

(

1Zt
e,

2Zt
e, ...,

kZt
e

)

,

St
e = min

(

1St
e,

2St
e, ...,

kSt
e

)

,

Y t
e = min

(

1Y t
e ,

2Y t
e , ...,

kY t
e

)

.

We call these the joint characteristic sequences of e. The relationship between Zt
e, S

t
e and Y t

e becomes again
Y t
e = 1− St

e − Zt
e.

Lemma 4.6. Suppose the characteristic sequences for the i-th constraint are λi-bounded. Then the joint
characteristic sequences are (

∑

i λi)-bounded.

Proof. If Y t
e = 0, then for some i we have iY t

e = 0, i.e., the fate of e has been revealed in the the i-th
constraint. There are two cases: either iZt

e = 1 or iSt
e = 1. In the first case we have Zt

e = Zt+1
e = 1. If

iSt
e = 1, then the element e has been picked before step t and either it got accepted in all constraints or it

had been blocked before in some other constraint. In both cases be have Zt
e = Zt+1

e .
If Y t

e = 1, then it holds iY t
e = 1 for all i. We estimate the probability of any event

(

Zt+1
e > Zt

e

)

by the
union bound, obtaining

E
[

Zt+1
e − Zt

e

∣

∣F t
]

= E
[

max
(

1Zt+1
e , 2Zt+1

e , ..., kZt+1
e

)

−max
(

1Zt
e,

2Zt
e, ...,

kZt
e

) ∣

∣F t
]

≤
≤ E

[

max
(

1Zt+1
e − 1Zt

e,
2Zt+1

e − 2Zt
e, ...,

kZt+1
e − kZt

e

) ∣

∣F t
]

≤

≤ E

[

∑

i

iZt+1
e − iZt

e

∣

∣F t

]

=
∑

i

E
[

iZt+1
e − iZt

e

∣

∣F t
]

≤

≤
∑

i

λi ·i Y t
e

n− t
=

∑

i λi · Y t
e

n− t
.

10

Theorem 1.1. There exists a random-order CR scheme for intersection of k matroids with c = 1
k+1 .

Proof. The claims follows from Corollary 4.2 and Lemmas 4.5 and 4.6.

5 Multi-parameter mechanism design

Recall that each client i ∈ I is interested in purchasing one service from Ji and their valuation of an item
c ∈ Ji is modeled by a random variable vc, independent of other valuations, with a known distribution Dc.
Following [11] we assume that the distribution Dc is always discrete and takes values over B = {0, 1, . . . , B}.

5.1 Bounding by auction with copies

Imagine a setting where for each item c ∈ Ji we create an independent copy-client c interested solely in this
item. The new instance has the same constraint system as the original one plus additional partition matroid.
We rely on the crucial lemma by Chawla et al. [8], saying that the optimal revenue in the new instance can
be only greater because the competition increases.

This observation allows us to obtain an LP upperbound for the true OPT. The linear program Bmumd-
LP [11] models the auction with copy-clients, which is single-parameter. C denotes the set of copy-clients,
which is equivalent to the set of items, and P is the polytope of the constraint system.

max
∑

c∈C

∑

p xc,p · p · P [vc ≥ p] (Bmumd-LP)

s.t.
(

∑

p xc,p · P [vc ≥ p]
)

c
∈ P

∑

p xc,p ≤ 1 ∀c ∈ C
∑

c∈Ji

∑

p xc,p · P [vc ≥ p] ≤ 1 ∀i ∈ I

Lemma 5.1 ([8, 11]). The optimal value of Bmumd-LP is an upper bound for the maximal revenue in the
multi-parameter auction.

5.2 Single client routine

The algorithm scans clients in random order, and presents a price menu to each client, from which the client
picks one item which gives him the highest utility, or resigns from choosing if all utilities are negative. Such
a procedure clearly yields a truthful mechanism. Let xc,p be the probability that we place item c ∈ Ji with
price p in the menu of client i. The vector x = (xc,p) describing randomized menu for client i must satisfy
following constraints. We will call it a menu-vector.

∑

p xc,p ≤ 1 ∀c ∈ Ji
∑

c∈Ji

∑

p xc,p · P [vc ≥ p] ≤ 1

Given menu-vector x, we construct the menu as follows. Independently for each item c we choose price p
with probability xc,p and discard the item with probability 1−∑

p x
t
c,p. Then the client reveals their utilities

for each item. We define Xc,p to be the event of the item c with price p being at the top of the menu. To
ensure that it is well-defined we need to fix a mechanism to break the ties between items of equal utility
to the client, e.g., lexicographically or by random choice. However we do not need to know the mechanism
explicitly for the analysis sake.

The following lemma describes how to construct a menu-vector with almost tight guarantees on proba-
bilities of item acceptance and rejection. The proof, based on O(1/ε2) rounds of a local search procedure, is
located in Section 9.

Lemma 5.2. Suppose we can compute values P
[

Xc,p

]

in a polynomial time for a known menu-vector. Then
for any ε > 0 there is a polynomial-time procedure that, given menu-vector x, finds another menu-vector y,
such that for each c, p:

1

4
xc,p · P [vc ≥ p] ≤ P [Yc,p] ≤

(1

4
+ ε

)

· xc,p · P [vc ≥ p] .

11

5.3 The algorithm

With the subroutine to handle a single client, we are ready to prove the main result of this paper.

Theorem 1.3. Bayesian multi-parameter unit-demand mechanism design over k matroid constraints admits
a (k + 4 + ε) approximation for any ε > 0.

Algorithm 3 Auction mechanism

1: assign each item c a controller Cc

2: for each client i ∈ I in random order do

3: perform SingleClientSubroutine (Lemma 5.2) on the non-blocked items in Ji
4: offer the chosen item c to client i
5: if client i accepts c then

6: update controllers

We begin with a relaxation to Bmumd-LP and obtain vector (xc,p)c,p that supplies the auction mechanism,
that is based on the random-order contention resolution scheme. The abstract view of the auction mechanism
is presented in Algorithm 3.

Matroid implementation The controller mechanism for matroids is analogous to the one from Theo-

rem 3.1. We decompose vector
(

∑

p x
p
c · P [vc ≥ p]

)

c∈C
into a support in matroid M, that is

∑

i∈S βi · B0
i

(Lemma 2.1). We find exchange-mappings φ
[

B0
i , B

0
j

]

between each pair i, j ∈ S as in Lemma 2.2. Then for

each element c we choose j(c) ∈ S such that c ∈ Bj , with probability
βj∑

p
xp
c ·P[vc≥p]

, call it the controller of c,

and denote Ct
c = Bt

j(c).
When an item c ∈ Ji gets accepted by client i, we update the controllers, as presented in Algorithm 4.

A pair (c, Cc) gets blocked when c is removed from Cc.
The correctness follows again from the invariant, that the set of served items is a subset of Bt

j , which is
an independent set, for all j ∈ S.

Algorithm 4 Controller mechanism update for a matroid, restated

1: for each i ∈ S : c /∈ Bt
i do

2: if φ [Ct
c, B

t
i] (c) =⊥ then Bt+1

i ← Bt
i + c

3: if φ [Ct
c, B

t
i] (c) = d then Bt+1

i ← Bt
i − d+ c

4: for each i ∈ S : c ∈ Bt
i do

5: Bt+1
i ← Bt

i

6: find new exchange-mappings φ
[

Bt+1
i , Bt+1

j

]

between each pair i, j ∈ S

Approximation guarantee We are interested in estimating the probability that a fixed item c ∈ Ji will
be served to a client i at price p . In this paragraph we condition all the events on the critical set Cc and we
argue that it will not get blocked until the turn of client i with high probability. We retrace the reasoning
from Section 4.1 and assign each pair (c, Cc) the characteristic sequences (St

c, Z
t
c, Y

t
c). This time St

c = 1
carries semantics of c having ended up in the menu of client i before step t+ 1.

Lemma 5.3. The characteristic sequences of the auction mechanism for a matroid are
(

1
4 + ε

)

-bounded.

Proof. We proceed as in Lemma 3.5. We need to show that probability that (c, Cc) gets blocked in turn t in
a single matroid is at most

(

1

4
+ ε

)

· 1

n− t
.

A blocking event happens when an item d of a different agent j gets chosen, that makes c removed from its
controller set. The agent j is chosen with probability 1

n−t . Then the agent has to pick item d from the menu.

12

The properties of the single-agent subroutine (Lemma 5.2) guarantees that this happens with probability at
most

(

1
4 + ε

)
∑

p x
p
d · P [vd ≥ p]. Then d must be assigned a controller j ∈ S which makes c removed from Cc

– this occurs with probability
βj∑

p
xp

d
·P[vd≥p]

. The total probability of any of these events is

1

n− t

∑

d

(

1

4
+ ε

)

∑

p

xp
d · P [vd ≥ p] ·

∑

j:φ[Bt
j
,Ct

c](d)=c

βj
∑

p x
p
d · P [vd ≥ p]

=

=

(

1

4
+ ε

)

1

n− t

∑

d

∑

j:φ[Bt
j
,Ct

c](d)=c

βj ≤

≤
(

1

4
+ ε

)

1

n− t
,

where the last inequality follows from Lemma 3.4.

Proof of Theorem 1.3. The joint mechanism for the intersection of k matroids is given by assigning each item
k controllers and blocking the item if at least one of its controllers has been blocked. After an item is picked,
it gets placed in the menu as long as it has not been blocked before. This leads to a construction analogous
to the one from Section 4.2.

In Lemma 5.3 we have analyzed a blocking event in a single turn and for a single matroid. We use
Lemma 4.6 to extend this result to k matroids. Then we apply Lemma 4.5 to get the global probability of
not being blocked in any turn and in any matroid.

P [c does not get blocked until the turn of client i | Cc] ≥
1

k ·
(

1
4 + ε

)

+ 1

Lemma 5.2 guarantees that once c gets into the menu of client i, it will be served at price p with probability
at least 1

4 · xc,p · P [vc ≥ p]. By multiplying these quantities and setting the final value of ε to ε
4k we obtain

P [c gets served client i at price p | Cc] ≥
1
4 · xc,p · P [vc ≥ p]

k ·
(

1
4 + ε

4k

)

+ 1
=

xc,p · P [vc ≥ p]

k + 4 + ε
.

Since this holds for every choice of Cc we get the same bound unconditionally. It means that the expected
revenue of the mechanism is at least 1

k+4+ε times the optimal value of the linear program Bmumd-LP, what
finishes the proof.

6 Submodular optimization

As another elegant application of our toolbox, as well as a building block for submodular stochastic probing,
we show a framework for non-negative submodular function maximization. We are given the following
optimization task over (possibly) a sequence of constraints (Ii)ki=1.

max f (X)

s.t. X ∈ I1 ∩ I2 ∩ · · · ∩ Ik

We first need to solve the multilinear relaxation for this problem.

max F (x)

s.t. x ∈ P (I1) ∩ P (I2) ∩ · · · ∩ P (Ik)

We can approximately solve such a optimization problem with the measured continuous greedy algo-
rithm [9], that provides a vector x such that F (x) ≥ (1e − ε) · f (XOPT). We are going to sample elements
with respect to x and execute the random-order contention resolution scheme on the sampled set with a
following postprocessing: we add an accepted element e to X only if f(X ∪ {e}) > f(X). We claim that this
procedure returns a solution X such that E [f (X)] ≥ 1

λ+1F (x).

13

Lemma 6.1. Consider a sampling scheme with λ-bounded characteristic sequences, in which the chosen
element e materializes with probability xe. Suppose we are given a non-negative submodular function f and
we accept the chosen element if it materializes and taking it increases the value of f . Such a procedure
generates a random set X such that E [f(X)] ≥ 1

λ+1F (x).

Proof. This time we need to track globally the solution that we create, and not just a particular element. Let
Xt be the solution created up to step t and St = {St

e = 1 | e ∈ E } ∩ R(x). For all t it holds Xt ⊆ St. Also
let Zt be the set of all present elements that have been blocked up to step t, that is, Zt = {Zt

e = 1 | e ∈ E } ∩
R(x). We are going to show that the following sequence

(

(λ+ 1) · f
(

Xt
)

− f
(

St ∪ Zt
))n

t=0

is a submartingale. Let us consider the deltas

E
[

f
(

Xt+1
)

− f
(

Xt
) ∣

∣F t
]

=
∑

e∈E

xe · E
[

St+1
e − St

e

∣

∣F t
]

·max
(

f
(

Xt + e
)

− f
(

Xt
)

, 0
)

,

E
[

f
(

St+1 ∪ Zt+1
)

− f
(

St ∪ Zt
) ∣

∣F t
]

=
∑

e∈E

xe · E
[

St+1
e − St

e + Zt+1
e − Zt

e

∣

∣F t
]

·
(

f
(

St ∪ Zt + e
)

− f
(

St ∪ Zt
))

.

From Lemma 4.3 we have E
[

Zt+1
e − Zt

e |F t
]

≤ λ · E
[

St+1
e − St

e |F t
]

, and from submodularity we know that
f (St ∪ Zt + e)− f (St ∪ Zt) ≤ f (St + e)− f (St) ≤ f (Xt + e)− f (Xt) . Therefore

E
[

f
(

St+1 ∪ Zt+1
)

− f
(

St ∪ Zt
) ∣

∣F t
]

=

=
∑

e∈E

xe · E
[

St+1
e − St

e + Zt+1
e − Zt

e

∣

∣F t
]

·
(

f
(

St ∪ Zt + e
)

− f
(

St ∪ Zt
))

≤

≤
∑

e∈E

xe · E
[

St+1
e − St

e + Zt+1
e − Zt

e

∣

∣F t
]

·max
(

f
(

Xt + e
)

− f
(

Xt
)

, 0
)

≤

≤ (λ+ 1) ·
∑

e∈E

xe · E
[

St+1
e − St

e

∣

∣F t
]

·max
(

f
(

Xt + e
)

− f
(

Xt
)

, 0
)

=

= (λ+ 1) · E
[

f
(

Xt+1
)

− f
(

Xt
) ∣

∣F t
]

,

and we conclude that the sequence ((λ+ 1) · f (Xt)− f (St ∪ Zt))
n
t=0 is indeed a submartingale. Since Sn ∪

Zn = R(x) and f(∅) ≥ 0, we have

0 ≤ λ · f(∅) = (λ+ 1) · f
(

X0
)

− f
(

S0 ∪ Z0
)

≤
≤ (λ+ 1) · E [f (Xn)]− E [f (Sn ∪ Zn)] = (λ+ 1) · E [f (Xn)]− E [f (R (x))] ,

and further, by the definition of the multilinear extension F,

(λ+ 1) · E [f (Xn)] ≥ E [f (R (x))] = F (x) .

Theorem 1.2. Maximization of a non-negative submodular function with respect to k matroid constraints
admits a (k + 1 + ε) · e approximation algorithm in the random-order model.

Proof. Corollary 4.2 and Lemma 4.6 implies that the characteristic sequences of the CR scheme for the
intersection of k matroids are k-bounded. We find vector x, such that F (x) ≥ (1e − ε) · f (XOPT), with the
measured continuous greedy algorithm [9], sample elements accordingly to x, and apply Lemma 6.1. In the
end we adjust ε to appropriately depend on k.

7 Stochastic k-set packing

In the basic stochastic k-set packing problem, we are given n elements/columns, where each item e ∈ E = [n]
has a profit ve ∈ R+, and a random d-dimensional size Le ∈ {0, 1}d. The sizes are independent for different

14

items. Additionally, for each item e, there is a set Qe of at most k coordinates such that each size vector
Le takes positive values only in these coordinates, i.e., Le ⊆ Qe with probability 1. We are also given
a capacity vector b ∈ Z

d
+ into which items must be packed. We assume that ve is a random variable that may

be correlated with Le. The coordinates of Le also might be correlated between each other. After probing
element e, its size Le is revealed and the reward ve is drawn.

Equivalently, one can consider d copies of each item: e1, e2, . . . , ed, so that if e is probed then its i-th copy
materializes with probability pie and pie = 0 for i 6∈ Qe. In this view the capacity vector b induces a constraint
family Ubi over the ground set Ei of i-th copies of each item. We can easily generalize this setting to consider
arbitrary matroid constraintMi over Ei. Let Ri ⊆ Ei denote the random set of materialized i-th copies of
elements.

The following linear program (used first in [4] in the case of uniform matroids) provides a relaxation for
the problem.

max
∑

e∈E

E [ve] · xe (SetPacking-LP)

s.t. pi · x ∈ P (Mi) ∀i ∈ [d]

xe ∈ [0, 1] ∀e ∈ [n] ,

where, as usual, xe is interpreted as P [optimal solution probes e]. We are going to present a probing strategy
in which for every element e the probability of being probed is at least xe

k+1 . Having this property, a (k+1)-
approximation guarantee will follow.

Theorem 1.5. There exists a (k + 1) approximation algorithm for stochastic k-set packing over matroid row
constraints.

Proof. We present the abstract view of the mechanism in Algorithm 5.

Algorithm 5 Controller mechanism for stochastic k-set packing

1: solve SetPacking-LP; let (xe) be the solution
2: for each element e do

3: for each constraint i ∈ Qe do

4: assign e a controller Ci
e with respect to vector pi · x

5: for each element e in random order do

6: if (ei, Ci
e) has been blocked for any i ∈ Qe then

7: continue
8: take e into the solution with probability xe

9: for each constraint i ∈ Qe do

10: if ei ∈ Ri then

11: update controllers with respect to the i-th constraint

Matroid implementation The controller mechanism is analogous to those in Sections 3 and 5. We
decompose vector pi · x into a support in matroid Mi, that is pi · x =

∑

j∈Si
βj · B0

j (Lemma 2.1), and find
exchange-mappings between each pair of sets (Lemma 2.2). Then for each element e we choose j(e, i) ∈ Si
such that e ∈ Bj , with probability

βj

pi
e·xe

, call it the i-th controller of c, and denote1 it by Ci
e.

When an element e gets accepted, we update the controllers in Qe, as presented previously in Algorithm 4.
A pair (e, Ci

e) gets blocked when e is removed from Ci
e.

Correctness Let St denote the set of accepted elements up to step t. The controller mechanism ensures
that if e has not been blocked, then

{

ei | e ∈ St
}

∩ Ri together with e belong to Ci
e, which is an independent

set in Mi for all i ∈ Qe. Therefore taking e into the solution would not break any constraint from Qe and
other constraints are oblivious to e.

1 There is a notation conflict in the superscript of Ci
e as in previous sections we used that to refer to the set Ce in step t.

This time we reserve it to denote the constraint index.

15

Approximation guarantee Consider the event that (e, Ci
e) gets blocked in step t in the i-th constraint.

For this to happen, an element f 6= e must be chosen with probability 1
n−t , it must be taken into the solution

with probability xf and it must exist in Ri with probability pif . A choice of particular controller j(f, i)

happens with probability
βj

pi
e·xe

. Let Γi,t (e, C) denote the set of pairs (f, j) that would block (e, C) in step t

in i-th constraint, as in Lemma 3.4. Combining all of these, we get a bound on the probability of a blocking
event

1

n− t

∑

f 6=e

P [f gets accepted in line 8] · P
[

f ∈ Ri
]

∑

j:(f,j)∈Γi,t(e,Ci
e)

P [f chooses controller j] =

=
1

n− t

∑

f 6=e

xf · pif
∑

j:(f,j)∈Γi,t(e,Ci
e)

βj

pif · xf
=

=
1

n− t

∑

(f,j)∈Γi,t(e,Ci
e)

βj ≤
1

n− t
,

where the last inequality follows from Lemma 3.4.
As in previous sections, we use characteristic sequences to keep track of status of e in the i-th constraint.

From the derivation above we know that they are 1-bounded. Since e could be blocked only by constraints
from Qe, the joint characteristic sequences are given by a combination of at most k sequences, as described
in Section 4.2. Lemma 4.6 says that these sequences are k-bounded and Lemma 4.5 guarantees that e will
reach line 8 with probability at least 1

k+1 . This finishes the proof.

8 Submodular stochastic probing

Recall that each element e of the universe E might be active with probability pe and the only way to learn
whether e is active or not is to probe it. If an element is active, the algorithm is forced to add it to the
current solution. In this way, the algorithm gradually constructs a solution consisting of active elements.

We are given two independence systems of downward-closed sets: an outer independence system (E, Iout)
restricting the set of elements probed by the algorithm, and an inner independence system

(

E, Iin
)

, restrict-
ing the set of elements taken by the algorithm. We denote by Qt the set of elements probed in the first t
steps of the algorithm, and by St the subset of active elements from Qt. Then, St is the partial solution
constructed by the first t steps of the algorithm. We require that at each time t, Qt ∈ Iout and St ∈ Iin.
Thus, at each time t, the element e that we probe must satisfy both Qt−1 ∪ {e} ∈ Iout and St−1 ∪{e} ∈ Iin.
The goal is to maximize expected value E [f (Sn)] where f is a given non-negative submodular function. We
denote such a stochastic probing problem by

(

E, p, Iin, Iout
)

with function f stated on the side (if needed).
In the first presentation of the mechanism we neglect function f and focus on ensuring that each element

will be probed with sufficiently high probability, i.e., we maximize linear objectives. Later we introduce a re-
laxation for the non-negative submodular case and combine the algorithm with an argument from Section 6.

8.1 Sampling scheme

Lemma 8.1. Given a vector x = (xe)e∈E , we can construct a stochastic probing procedure with (kin + kout)-
bounded characteristic sequences, in which each chosen element is taken into solution with probability pe · xe.

Proof. The mechanism is described in Algorithm 6, where Kin and Kout represent families of respectively
inner and outer constraints.

Matroid implementation The implementation is again analogous to the one from Section 3, however
there are minor details in handling inner and outer constraints. First, observe that for inner constraints we
use decomposition p · x =

∑

j∈Si
βj · B0

j , and for outer constraints it is, as usual, x =
∑

j∈Si
βj · B0

j . Then

the choice of a controller is performed according to respectively
βj

pe·xe
and

βj

xe
.

When an element e is selected according to the random permutation, we first check if it belongs to the
sampled set R(x). Since we are going to probe it, we update controllers for the outer constraints, possibly

16

Algorithm 6 Controller mechanism for submodular stochastic probing

1: solve Probing-MP; let x = (xe)e∈E be the solution and R(x) be a set sampled with respect to x
2: for each element e do

3: for each constraint i ∈ Kout do

4: assign e a controller Ci
e with respect to vector x

5: for each constraint i ∈ Kin do

6: assign e a controller Ci
e with respect to vector p · x

7: for each element e in random order do

8: if e 6∈ R(x) then

9: continue
10: if (e, Ci

e) has been blocked for any constraint i then

11: continue
12: for each constraint i ∈ Kout do

13: update controllers with respect to the i-th constraint
14: probe e with probability of success pe
15: if probe has been successful then

16: for each constraint i ∈ Kin do

17: update controllers with respect to the i-th constraint

blocking other elements from being probed. Then, if the probe turned out successful, we update controllers
for the inner constraints.

Correctness The controller mechanism ensures that Qt is a subset of all controller sets, which are indepen-
dent, in the outer constraints and likewise for St. As long as element e belongs to Ci

e for all i ∈ Kin ∪Kout,
adding e to both St and Qt would not break any constraint.

Approximation guarantee We claim that the probability of a blocking event for e in step t in any single
constraint is at most 1

n−t . For outer constraints, the derivation is analogous as in Section 3. For inner
constraints we bound the probability by

1

n− t

∑

f 6=e

P [f ∈ R(x)] · P [f gets probed successfully]
∑

j:(f,j)∈Γi,t(e,Ci
e)

P [f chooses controller j] =

=
1

n− t

∑

f 6=e

xf · pf
∑

j:(f,j)∈Γi,t(e,Ci
e)

βj

pf · xf
=

=
1

n− t

∑

(f,j)∈Γi,t(e,Ci
e)

βj ≤
1

n− t
,

where the last inequality follows from Lemma 3.4. We conclude that for each constraint the characteristic
sequences of e are 1-bounded. Lemma 4.6 guarantees that the joint characteristic sequences are (kin + kout)-
bounded.

8.2 Relaxation for a non-negative submodular objective

So far we were using only the multilinear relaxation F of a submodular function f . It was mainly due to the
convenient fact that F (x) is exactly equal to E [f(R (x))], i.e., it corresponds to sampling each point e ∈ E
independently with probability xe. Here it will also be used to guide the algorithm, however we shall need
another relaxation of a submodular function to get an appropriate benchmark.

Another extension of f studied in [7] is given by:

f+(y) = max

∑

A⊆E

αAf(A)

∣

∣

∣

∣

∣

∣

∑

A⊆E

αA ≤ 1, ∀j∈E

∑

A:j∈A

αA ≤ yj , ∀A⊆E αA ≥ 0

.

17

Intuitively, the solution (αA)A⊆E above represents the distribution over 2E that maximizes the value E [f(A)]
subject to a constraint that its marginal values satisfy P [i ∈ A] ≤ yi. The value f+ (y) is then the expected
value of E [f (A)] under this distribution, while the value of F (y) is the value of E [f (A)] under the particular
distribution that places each element i in A independently. This relaxation is important for our applications
because the following mathematical programming relaxation gives an upper bound on the expected value of
the optimal feasible strategy for the submodular stochastic probing problem:

maximize
{

f+ (x · p)
∣

∣ x ∈ P
(

Iin, Iout
)}

, (Probing-MP)

where P
(

Iin, Iout
)

=
{

x
∣

∣

∣
x ∈ P

(

Iout
)

, p · x ∈ P
(

Iin
)

, x ∈ [0, 1]
E
}

.

Lemma 8.2. Let S be the (random) solution generated by the optimal strategy for the stochastic probing prob-
lem with non-negative submodular objective function f over

(

E, p, Iin, Iout
)

. Then E [f (S)] ≤ f+ (x+ · p),
where x+ = argmaxy∈P(Iin,Iout)f

+ (y · p).

Proof. Denote the optimal probing strategy by S. We construct a feasible solution x to Probing-MP by
setting xe = P [S probes e]. First, we show that this is indeed a feasible solution. The set of elements Q
probed by any execution of S is always an independent set of each outer matroid Mout

j =
(

E, Ioutj

)

, i.e.

Q ∈ ⋂kout

j=1 Ioutj . Thus the vector E [1Q] = x may be represented as a convex combination of vectors from
{

1A

∣

∣

∣
A ∈ ⋂kout

j=1 Ioutj

}

, and so x ∈ P
(

Mout
j

)

for any j ∈ Kout. Analogously, the set of elements S that were

successfully probed by S satisfy S ∈ ⋂kin

j=1 Iinj for every possible execution of S. Hence, the vector E [1S] = x·p
may be represented as a convex combination of vectors from

{

1A

∣

∣

∣
A ∈ ⋂kin

j=1 Iinj
}

and so x·p ∈ P
(

Min
j

)

for

any j ∈ Kin. The value f+(x · p) gives the maximum value of ES∼D [f(S)] over all distributions D satisfying
PS∼D [e ∈ S] ≤ xe · pe. The solution S returned by S satisfies P [e ∈ S] = P [S probes e] · pe = xe · pe. Thus,
S defines one such distribution, and so we have E [f(S)] ≤ f+(x · p) ≤ f+(x+ · p).

We have obtained a relaxation, but it relies on f+, evaluation of which is already NP-hard. Optimization
over F alone is not enough, since from the above discussion we know that for any point x we have f+(x) ≥
F (x). Hence, we need another tool to use F for optimization, but with provable guarantees over the solution
of Probing-MP. The following lemma states a stronger lower bound for the measured greedy algorithm of
Feldman et al. [9]. The proof is postponed to Section 8.3.

Lemma 8.3. Let b ∈ [0, 1], let f be a non-negative submodular function with multilinear extension F , and let

P be any downward closed polytope. Then, the solution x ∈ [0, 1]E produced by the measured greedy algorithm
satisfies 1) x ∈ b · P, 2) F (x) ≥

(

b · e−b − ε
)

·maxx∈P f+ (x).

Corollary 8.4. We can find a vector x = (xe)e∈E ∈ P
(

Iin, Iout
)

, such that F (p · x) is no less than 1
e − ε

times the optimum of Probing-MP. The procedure runs in polynomial time for any ε > 0.

Proof. First observe we can neglect elements with pe = 0. We substitute y = x · p and the polytope

P
(

Iin, Iout
)

becomes
{

y
∣

∣

∣
y/p ∈ P (Iout) , y ∈ P

(

Iin
)

, y/p ∈ [0, 1]
E
}

. We optimize f+(y) over such poly-

tope using Lemma 8.3 with b = 1.

Theorem 1.4. Non-negative submodular stochastic probing with kin inner matroid constraints and kout outer
matroid constraints admits a (kin + kout + 1 + ε) · e approximation for any ε > 0.

Proof. First we find a vector x = (xe)e∈E ∈ P
(

Iin, Iout
)

, so that F (p · x) is no less than (1e − ε) times
the optimum of Probing-MP, which is no less than the optimal revenue of the optimal probing mechanism
(Lemma 8.2 and Corollary 8.4). We run Algorithm 6 on vector x with a minor modification: in line 8
we check whether f(St ∪ {e}) > f(St), since the function f does not have to be monotone. Lemma 8.1
combined with Lemma 6.1 guarantee that the (random) set Sn of successfully probed elements satisfies
E [f(Sn)] ≥ 1

kin+kout+1F (p · x). In the end we adjust ε to appropriately depend on kin + kout.

We remark that the same machinery works for stochastic k-set packing and we also can replace its linear
objective wit a non-negative submodular function.

18

8.3 Stronger bound for the measured continuous greedy algorithm

The results of this section are due to Justin Ward [18].
We now briefly review the measured continuous greedy algorithm of Feldman et al. [9]. The algorithm

runs in 1/δ discrete time steps within time interval [0, T], where T ≤ 1 and δ is a suitably chosen parameter
depending on n = |E|. Denote

∂eF (x) =
F (x ∨ 1e)− F (x)

1− xe
,

where ∨ stands for element-wise maximum.
Let y (t) be the current fractional solution at time t. In each step the algorithm selects vector I (t) ∈ P

given by argmaxx∈P
∑

e∈E xe ·(F (y (t) ∨ 1e)− F (y (t))). Then, it sets ye (t+ δ) = ye (t)+δ ·Ie(t) ·(1−ye(t))
and moves on to time t+ δ.

The analysis of Feldman et al. shows that if, at every time step

F (y(t+ δ))− F (y(t)) ≥ δ ·
[

e−t · f (OPT)− F (y(t))
]

−O
(

n3δ2f (OPT)
)

, (1)

then for appropriate choice of δ we have F (y(T)) ≥
[

Te−T − ε
]

·f(OPT). We note that, in fact, this portion
of their analysis works even if f(OPT) is replaced by any constant value. Thus, in order to prove our claim, it
suffices to derive an analogue of (1) in which f(OPT) is replaced by f+(x+), where x+ = argmaxy∈Pf

+ (y).
The remainder of the proof then follows as in [9].

Lemma 8.5 below contains the required analogue of (1). Hence it implies Lemma 8.3.

Lemma 8.5. For every time 0 ≤ t ≤ T
F (y(t+ δ))− F (y(t)) ≥ δ · [e−t · f+(x+)− F (y(t))]−O(n3δ2) · f+ (x+) .

We shall require the following additional facts from the analysis of [9].

Lemma 8.6 (Lemma 3.3 in [9]). Consider two vectors x, x′ ∈ [0, 1]E, such that for every e ∈ E, |xe − x′
e| ≤ δ.

Then, F (x′)− F (x) ≥∑

e∈E(x
′
e − xe) · ∂eF (x)−O

(

n3δ2
)

· f (OPT).

Lemma 8.7 (Lemma 3.5 in [9]). Consider a vector x ∈ [0, 1]E. Assuming xe ≤ a for every e ∈ E, for every
set S ⊆ E it holds F (x ∨ 1S) ≥ (1 − a)f (S).

Lemma 8.8 (Lemma 3.6 in [9]). For every time 0 ≤ t ≤ T and element e ∈ E, ye (t) ≤ 1 − (1− δ) t/δ ≤
1− e−t +O (δ).

Proof of Lemma 8.5. Applying Lemma 8.6 to vectors y(t+ δ) and y(t), we have

F (y(t+ δ)) − F (y(t)) ≥
≥
∑

e∈E

δ · Ie (t) (1− ye(t)) · ∂eF (y(t)) −O
(

n3δ2
)

) · f(OPT) =

=
∑

e∈E

δ · Ie (t) (1− ye(t)) ·
F (y(t) ∨ 1j)− F (y(t))

1− ye(t)
−O(n3δ2) · f(OPT) =

=
∑

e∈E

δ · Ie (t) · [F (y(t) ∨ 1e)− F (y(t))]−O(n3δ2) · f(OPT) ≥

≥
∑

e∈E

δ · x+
e [F (y(t) ∨ 1e)− F (y(t))]−O(n3δ2) · f(OPT), (2)

where the last inequality follows from our choice of I(t). Further, we have f+(x+) =
∑

A⊆E αAf(A) for some

set of values αA satisfying
∑

A⊆E αA = 1 and
∑

A⊆E:e∈A αA ≤ x+
e . Thus,

∑

e∈E

x+
e [F (y(t) ∨ 1e)− F (y(t))] ≥

∑

A⊆E

αA

∑

e∈A

[F (y(t) ∨ 1e)− F (y(t))] ≥

≥
∑

A⊆E

αA [F (y(t) ∨ 1A)− F (y(t))] ≥
∑

A⊆E

αA

[

(e−t −O(δ)) · f(A)− F (y(t))
]

=

= (e−t −O(δ)) · f+(x+)− F (y(t)),

19

where the second inequality follows from the fact that F is concave in all positive directions, and the third
from Lemmas 8.7 and 8.8. Combining this with (2), and noting that f+ (x+) ≥ f+ (OPT) = f (OPT), we
finally obtain F (y(t+ δ))− F (y(t)) ≥ δ · [e−t · f+(x+)− F (y(t))] −O(n3δ2) · f+(x+).

9 Single client routine for BMUMD

Consider the moment when we have decided to serve agent i. Note that some items from Ji might have
already been blocked. We are supplied with the vector (xc,p)c∈Ji, p∈B and we assume that the variables for
blocked items are set to 0.

9.1 First attempt

Imagine that with probability 1
2 we discard item c and it does not go to the menu. Then we set its price to

p with probability xc,p and add it to the menu of client i. Note that
∑

p xc,p ≤ 1, so it is possible that we
assign no price to the item, and in this case we discard it. Let us emphasize that this happens independently
to the initial coin toss.

Lemma 9.1. With probability at least
1

4

∑

p

xc,p · P [vc ≥ p]

c will be the item chosen from the menu by the client i.

Proof. Consider another item d. With probability 1
2 it goes into the menu and with probability xd,p we set

its price to p. This price is acceptable by the agent (gives non-negative utility) with probability P [vd ≥ p].
From union-bound we can say that the probability of any such event over all items d 6= c it is at most

∑

d 6=c

1

2

∑

p

xc,p · P [vc ≥ p] ≤ 1

2
,

therefore with probability at least 1
2 no item d 6= c is offered with a non-negative utility price.

With probability 1
2

∑

p xc,p ·P [vc ≥ p] item c ends up in the menu with a non-negative utility price. Since

this is independent from the event above, we see that with probability at least 1
4

∑

p xc,p ·P [vc ≥ p] item c is
the only reasonable choice for the client, so we are sure c will be chosen.

9.2 Almost perfect menu

In the previous section we have guaranteed that the probability of an item c with price p being at the top
of the menu is proportional to xc,p · P [vc ≥ p] with the ratio within [14 ,

1
2]. Now we are going to compress

this interval to [14 ,
1
4 + ε]. Note that we cannot simply scale down the variables (xc,p) because decreasing the

value of xc,p may increase chances of winning for another item.
Recall that the vector x = (xc,p) describing randomized menu for client i must satisfy following constraints

and we call it a menu-vector.

∑

p xc,p ≤ 1 ∀c ∈ Ji
∑

c∈Ji

∑

p xc,p · P [vc ≥ p] ≤ 1

Given menu-vector x, we construct the menu as follows. Independently for each item c we choose price p
with probability xc,p and discard the item with probability 1−∑

p x
t
c,p. Then the client reveals their utilities

for each item. We define Xc,p to be the event of the item c with price p being at the top of the menu.

Lemma 5.2. Suppose we can compute values P
[

Xc,p

]

in a polynomial time for a known menu-vector. Then
for any ε > 0 there is a polynomial-time procedure that, given menu-vector x, finds another menu-vector y,
such that for each c, p:

1

4
xc,p · P [vc ≥ p] ≤ P [Yc,p] ≤

(1

4
+ ε

)

· xc,p · P [vc ≥ p] .

20

Proof. We begin with x0 = 1
2x as the first approximation. We are going to construct a series o menu-vectors

xt, each time decreasing the discrepancy, that converges to y in O(1/ε2) steps.
Let us define q(c, p) = 1

4xc,p · P [vc ≥ p]. In order to construct xt+1 we compute set Dt = {(c, p) :
P
[

Xt
c,p

]

> (1 + 2ε) · q(c, p)} and scale down the variables according to the formula

xt+1
c,p =

{

xt
c,p if (c, p) 6∈ Dt,

(1− ε) · xt
c,p if (c, p) ∈ Dt.

We will take advantage of the coupling technique to analyze deltas between P
[

Xt
c,p

]

and P
[

Xt+1
c,p

]

. The
idea is to construct a common probabilistic space where events (Xt

c,p) and (Xt+1
c,p) are correlated. We decide

on each item c independently by setting its price to p with probability xt
c,p and discarding c with probability

1−∑

p x
t
c,p. When the price gets fixed we check whether (c, p) ∈ Dt and, if yes, we discard c with probability

ε independently to the previous choices. This procedure is equivalent to choosing prices with respect to
(xt+1

c,p).
Let Et(c1, p1, c2, p2) be an event indicating that in step t the pair (c1, p1) was at the top of the menu, then

c1 got discarded in the second phase, and (c2, p2) is at the top of the menu in step t + 1. One can think of
this as of transferring the victory from (c1, p1) to (c2, p2). Note that events Et(c1, p1, c2, p2) make sense only
in the coupled probabilistic space but nevertheless we can use them to estimate the probabilities. Namely,
we have

P
[

Xt+1
c,p

]

=

P
[

Xt
c,p

]

+
∑

p1
c1 6=c

P [Et(c1, p1, c, p)] if (c, p) 6∈ Dt,

(1− ε) · P
[

Xt
c,p

]

+
∑

p1
c1 6=c

P [Et(c1, p1, c, p)] if (c, p) ∈ Dt.
(3)

If Et(c1, p1, c2, p2) has occurred, then both (c1, p1), (c2, p2) must have been included in the menu with
non-negative utilities and (c1, p1) must have been discarded in the second phase with probability ε. Since we
can only decrease xt

c,p, we have xt
c,p ≤ x0

c,p = 1
2xc,p and

P [Et(c1, p1, c2, p2)] ≤ ε · xt
c1,p1

· P [vc1 ≥ p1] · xt
c2,p2

· P [vc2 ≥ p2] ≤
≤ ε

4
· xc1,p1 · P [vc1 ≥ p1] · xc2,p2 · P [vc2 ≥ p2] ,

∑

p1
c1 6=c

P [Et(c1, p1, c, p)] ≤
ε

4
· xc,p · P [vc ≥ p] ·

∑

p1
c1 6=c

xc1,p1 · P [vc1 ≥ p1] ≤

≤ ε

4
· xc,p · P [vc ≥ p] = ε · q(c, p). (4)

We are ready to formulate sufficiently tight bounds on deltas.

(a) P
[

Xt
c,p

]

≤ P
[

Xt+1
c,p

]

≤ P
[

Xt
c,p

]

+ ε · q(c, p) for (c, p) 6∈ Dt,

(b) P
[

Xt
c,p

]

− 2ε · q(c, p) ≤ P
[

Xt+1
c,p

]

≤ P
[

Xt
c,p

]

− 2ε2 · q(c, p) for (c, p) ∈ Dt,

(c) the invariant q(c, p) ≤ P
[

Xt
c,p

]

is being maintained.

Combining the formulas (3) and (4) entails the property (a) directly. The left side of property (b) follows
from

P
[

Xt+1
c,p

]

≥ P
[

Xt
c,p

]

− ε · P
[

Xt
c,p

]

≥ P
[

Xt
c,p

]

− ε · xt
c,p · P [vc ≥ p] ≥

≥ P
[

Xt
c,p

]

− ε · x0
c,p · P [vc ≥ p] = P

[

Xt
c,p

]

− ε

2
· xc,p · P [vc ≥ p] =

= P
[

Xt
c,p

]

− 2ε · q(c, p).

To handle the right side, recall that P
[

Xt
c,p

]

> (1 + 2ε) · q(c, p) for (c, p) ∈ Dt, so

P
[

Xt+1
c,p

]

≤ P
[

Xt
c,p

]

− ε · P
[

Xt
c,p

]

+ ε · q(c, t) ≤ P
[

Xt
c,p

]

− (ε+ 2ε2 − ε) · q(c, p).

21

Finally we prove the invariant. By Lemma 9.1 we know that the property (c) is satisfied for x0, so we
can proceed by induction. The value of P

[

Xt+1
c,p

]

is smaller than P
[

Xt
c,p

]

only for (c, p) ∈ Dt. Combining

definition of Dt with property (b) ensures that P
[

Xt+1
c,p

]

≥ q(c, p).

To finish the whole argument, observe that the probability can only increase when P
[

Xt
c,p

]

≤ (1 + 2ε) ·
q(c, p) and the delta is bounded by ε ·q(c, p). Therefore, as soon as the value of P

[

Xt
c,p

]

drops below (1+3ε) ·
q(c, p) it remains there until the end of the procedure. The values above this threshold are being truncated by
2ε2 · q(c, p) in each step, so after O(1/ε2) steps all values P

[

Xt
c,p

]

lie respectively in [q(c, p), (1 + 3ε) · q(c, p)],
which is contained within

[

1
4xc,p · P [vc ≥ p] , (14 + ε) · xc,p · P [vc ≥ p]

]

.

10 Combining matroid and knapsack constraints

We consider optimization over the knapsack constraint, where each element e is assigned size se ∈ [0, 1]
and a set X ⊆ E is considered independent as long as

∑

e∈X sexe ≤ 1. The knapsack polytope is given by

P (I) =
{

x ∈ R
E
≥0

∣

∣

∑

e∈E sexe ≤ 1
}

.

We shall call such a constraint system a bounded knapsack, if we additionally have se ∈
[

0, 1
2

]

. As for
matroids, we illustrate the controller mechanism with a contention resolution scheme.

10.1 A controller mechanism for the bounded knapsack constraint

Theorem 10.1. There exists a random-order CR scheme for a bounded knapsack with c = 1
3 .

Algorithm 7 Random order contention resolution scheme for a knapsack

1: S ← ∅
2: for each element e ∈ E choose randomly a point from interval I = [0, 1]; call it the controller of e, and

denote it by Ce

3: for each e ∈ E in random order do

4: if e /∈ R (x) then

5: continue
6: if (e, Ce) has not been blocked then

7: S ← S ∪ {e}
8: randomly choose 2 · se mass from available points of interval I, and block it
9: return S

Implementation The controller Ce is given by a random point from I = [0, 1]. When element e is taken
into the solution, it blocks 2 · se random mass from the non-blocked subset of I, or blocks everything if the
remaining mass is less then 2 · se.

Some explanation is necessary for this blocking procedure as we cannot implement sampling a random
subset over real numbers. However, the only property that we require is that when we have mass ℓ of available
points and we sample mass s ≤ ℓ, then the probability of hitting any particular point is s

ℓ .
We can implement such a sampling by fixing a mapping from the set of available points to a circle with

circumference ℓ, choosing a point x at the circle uniformly at random, and blocking the interval of length s
starting from x clockwise. If we use a natural mapping that glues intervals of available points, then the
number of these intervals will stay proportional to |E|.

Correctness Let It ⊆ I denote the set of available points at the beginning of step t. We argue that S is
always an independent set, i.e.,

∑

e∈S se ≤ 1. Accepting element f leads to removal of 2 · sf mass from It.
This means that as long as there are available points in I, i.e., |It| > 0, the solution satisfies

∑

e∈S se ≤ 1
2 .

And since se ≤ 1
2 , we can add e to the solution without breaking the constraint.

Lemma 10.2. The characteristic sequences for the bounded knapsack constraint are 2-bounded.

22

Proof. We choose an element f 6= e with probability 1
n−t and it turns out to exist in R (x) with probability

xf . In contrary to the matroid argument, we additionally take into account the probability that the controller
assigned to f does not get blocked. This happens with probability at most |It| because the controller Cf

has to belong to the leftover available set It. Further, element f causes removal of 2 · sf mass from It. The
probability that the point Ce gets blocked is

min

(

2 · sf
|It| , 1

)

.

Combining these arguments, we can estimate the probability of (e, Ce) getting blocked as follows:

1

n− t

∑

f 6=e

xf ·
∣

∣It
∣

∣ ·min

(

2 · sf
|It| , 1

)

≤

≤ 1

n− t

∑

f 6=e

xf ·
∣

∣It
∣

∣ · 2 · sf|It| =

=
1

n− t

∑

f 6=e

xf · 2 · sf ≤

≤ 2

n− t
,

where the last inequality follows from the definition of the knapsack polytope. Hence, the probability of a

blocking event for (e, Ce) at step t is at most
2·Y t

e

n−t .

Theorem 10.1 follows immediately from Lemmas 4.5 and 10.2.

10.2 Reduction to the bounded case

We consider now the general variant of the knapsack constraint with se ∈ [0, 1]. We divide the elements into
Ebig = {se > 1

2 | e ∈ E} and Esmall = {se ≤ 1
2 | e ∈ E}. With probability 1

2 we consider only big items and
discard all small items, and vice versa. Whereas the controller mechanism for small items (i.e. the bounded
knapsack) has been presented in Section 10.1, the case with big items reduces to the uniform matroid U1.

Lemma 10.3. Let I be a knapsack constraint with only big items. Then U1 ⊆ I and 1
2P (I) ⊆ P (U1).

Proof. The first claim is obvious as every singleton set is independent in I. The second one says that
any vector from P (I) =

{

x ∈ R
E
≥0

∣

∣

∑

e∈E sexe ≤ 1
}

sums to at most 1 after scaling by 1
2 , what is also

straightforward as
∑

e∈E

xe

2
≤

∑

e∈E

sexe ≤ 1.

When the constraint system contains q knapsacks, we toss a coin independently q times, deciding for each
knapsack whether we discard its small or big items. The probability that a given element is not discarded
in the end clearly equals 1/2q. However, we need a more careful argument to analyze expected revenue in
submodular optimization.

Lemma 10.4. Consider a non-negative submodular function f over the ground set E with q partitions
E = Ei

1 ⊎Ei
2 for i ∈ [q]. Let ρ1, ρ2, . . . ρq be independent random variables equal to 0 or 1 with probability 1

2 .
Then for every A ⊆ E it holds

E

[

f(A ∩ E1
ρ1
∩ E2

ρ2
∩ · · · ∩ Eq

ρq
)
]

≥ 1

2q
· f(A).

Proof. From submodularity and non-negativity we have

f(A ∩ E1
1) + f(A ∩ E1

2) ≥ f
(

(A ∩ E1
1) ∪ (A ∩E1

2)
)

+ f
(

(A ∩ E1
1) ∩ (A ∩ E1

2)
)

= f(A) + f(∅) ≥ f(A),

therefore E
[

f(A ∩E1
ρ1
)
]

≥ 1
2 · f(A). We iterate this argument, each time decreasing the bound by 2.

23

10.3 Results for knapsack and matroid constraints

In this section we revisit the main results and briefly explain how to extend them to work with knapsack
constraints. For the sake of simplicity we do not optimize the probability of switching between small and big
items and always set it to 1

2 . Whereas some minor improvements in the approximation ratios are possible,
the main message is that we can maintain the linear dependency on the number of matroids k if the number
of knapsack constraints is O(1), matching the results from [10].

In the theorem below note that the decision whether an element gets discarded is made in advance
depending on its sizes in knapsack constraints. We can assume to know them in advance, before discovering
the existence of the element, as this information is a part of the constraint structure.

Theorem 10.5. There exists a random-order CR scheme for intersection of k matroids and q knapsacks
with c = 1

2q+1 · 1
k+2q+1 .

Proof. We are given a vector x from the polytope of the constraint system. For each knapsack constraint we
independently choose whether we consider only big or only small elements with probability 1

2 . The knapsack
constraints in which we consider only small items become bounded knapsacks, described in Section 10.1. The
other knapsack constraints are replaced with matroid U1. For the discarded elements we set x′

e = 0 and for
the rest x′

e =
xe

2 . Lemma 10.3 guarantees that x′ belongs to the polytope of the new constraint system.
We have managed to reduce the general case to an intersection of k + q′ matroids and q − q′ bounded

knapsacks for 0 ≤ q′ ≤ q. The controller mechanism for those have been described in Sections 3, 10.1 and we
combine them with Lemma 4.6 obtaining λ-bounded characteristic sequences with λ = k + q′ + 2(q − q′) ≤
k + 2q. Lemma 4.5 says that the constructed CR-scheme accepts each element with probability at least

x′
e

k+2q+1 . Since E [x′
e] =

xe

2q+1 , this finishes the construction.

Theorem 10.6. Bayesian multi-parameter unit-demand mechanism design (BMUMD) over an intersection
of k matroids and q knapsacks admits a 2q+1 · (k + 2q + 4+ ε) approximation algorithm.

Proof. We inject reduction from Theorem 10.5 to the proof of Theorem 1.3.

Theorem 10.7. Maximization of a non-negative submodular function f over an intersection of k matroids
and q knapsacks admits a 2q+1 · (k + 2q + 1) · (√e+ ε) approximation algorithm.

Proof. Let P be the polytope induced by the constraint system. We execute the measured continuous
greedy algorithm ([9], also see Lemma 8.3) with b = 1

2 . The returned vector x satisfies 1) x ∈ 1
2P , and 2)

F (x) ≥ 1
2
√
e+ε
· f(OPT). Then we the apply the reduction from Theorem 10.5 and discard a random subset

of elements (note that this time we do not need to scale x by 1
2 because we have guaranteed that x ∈ 1

2P).
For the sake of analysis we do not reveal the set of discarded items D, and we simulate the routine from
Lemma 6.1 without any constraints on the discarded items. In this setting, the returned solution X satisfies
E [f(X)] ≥ 1

k+2q+1 ·F (x). Since the true solution is given by X \D and for all A ⊆ E with random choice of

D we have E [f(A \D)] ≥ 1
2q · f(A) (Lemma 10.4), we conclude that E [f(X \D)] ≥ 1

2q · 1
k+2q+1 · F (x).

Theorem 10.8. Non-negative submodular stochastic probing over an intersection of k matroids and q knap-
sacks admits a 2q+1 · (k + 2q + 1) · (√e + ε) approximation algorithm.

Proof. Let P be the polytope induced by the constraint system. As in Section 8 we rely on the upper
bound from Lemma 8.2, i.e., B = maxx∈P(Iin,Iout) f

+ (x). We execute the measured continuous greedy

algorithm with a stronger bound (Lemma 8.3) and b = 1
2 . The returned vector x satisfies 1) x ∈ 1

2P , and 2)
F (x) ≥ 1

2
√
e+ε
·B. We apply the reduction from Theorem 10.5 and then proceed as in the proof of Theorem 1.4.

The lower bound for the expected value of the objective function is the same as in Theorem 10.7.

References

[1] Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic probing on matroids.
Math. Oper. Res., 41(3):1022–1038, 2016.

[2] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.

24

[3] Lawrence M. Ausubel and Paul Milgrom. The lovely but lonely vickrey auction. In Combinatorial
Auctions, chapter 1. MIT Press, 2006.

[4] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri Rudra. When
LP is the cure for your matching woes: Improved bounds for stochastic matchings. Algorithmica, 63,
2012.

[5] Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. On k -column sparse pack-
ing programs. In Integer Programming and Combinatorial Optimization, 14th International Conference,
IPCO 2010, Lausanne, Switzerland, June 9-11, 2010. Proceedings, pages 369–382, 2010.

[6] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. Algorithms to ap-
proximate column-sparse packing problems. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
311–330, 2018.

[7] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Submodular Set
Function Subject to a Matroid Constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.

[8] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-parameter
mechanism design and sequential posted pricing. In STOC, 2010.

[9] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for submodular
maximization. In FOCS, 2011.

[10] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1014–1033, 2016.

[11] Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications. In Integer
Programming and Combinatorial Optimization - 16th International Conference, IPCO 2013, Valparaíso,
Chile, March 18-20, 2013. Proceedings, pages 205–216, 2013.

[12] Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In STOC, pages 123–136,
2012.

[13] Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization. Cambridge
University Press, New York, NY, USA, 1st edition, 2011.

[14] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math., 23(4):2053–2078,
2010.

[15] Roger B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58–73, February 1981.

[16] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. 2003.

[17] Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via the mul-
tilinear relaxation and contention resolution schemes. In STOC, pages 783–792, 2011.

[18] Justin Ward. Private communication, 2015.

25

	1 Introduction
	1.1 Problems overview, known results, and our contributions
	1.2 Our techniques
	1.3 Organization of the paper

	2 Preliminaries
	2.1 Submodular functions
	2.2 Matroids
	2.3 Martingales

	3 Random-order contention resolution scheme for a matroid
	4 The controller mechanism
	4.1 Characteristic sequences
	4.2 Combining constraints

	5 Multi-parameter mechanism design
	5.1 Bounding by auction with copies
	5.2 Single client routine
	5.3 The algorithm

	6 Submodular optimization
	7 Stochastic k-set packing
	8 Submodular stochastic probing
	8.1 Sampling scheme
	8.2 Relaxation for a non-negative submodular objective
	8.3 Stronger bound for the measured continuous greedy algorithm

	9 Single client routine for BMUMD
	9.1 First attempt
	9.2 Almost perfect menu

	10 Combining matroid and knapsack constraints
	10.1 A controller mechanism for the bounded knapsack constraint
	10.2 Reduction to the bounded case
	10.3 Results for knapsack and matroid constraints

