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Abstract

The (combinatorial) diameter of a polytope P ⊆ Rd is the maximum value of a shortest
path between a pair of vertices on the 1-skeleton of P , that is the graph where the nodes are
given by the 0-dimensional faces of P , and the edges are given the 1-dimensional faces of P .
The diameter of a polytope has been studied from many different perspectives, including a
computational complexity point of view. In particular, [Frieze and Teng, 1994] showed that
computing the diameter of a polytope is (weakly) NP-hard.

In this paper, we show that the problem of computing the diameter is strongly NP-hard
even for a polytope with a very simple structure: namely, the fractional matching polytope.
We also show that computing a pair of vertices at maximum shortest path distance on the
1-skeleton of this polytope is an APX-hard problem. We prove these results by giving an exact
characterization of the diameter of the fractional matching polytope, that is of independent
interest.

1 Introduction

The (combinatorial) diameter of a polytope P ⊆ Rd is the maximum value of a shortest path
between a pair of vertices on the 1-skeleton of P , which is the graph where the vertices correspond to
the 0-dimensional faces of P , and the edges are given by the 1-dimensional faces of P . Giving bounds
on the diameter of a polytope is a central question in discrete mathematics and computational
geometry. Despite decades of studies, it is still not known whether the diameter of a d-dimensional
polytope with n facets can be bounded by a polynomial function of n and d – this is currently
referred to as the polynomial Hirsch Conjecture [22]. Besides being a fundamental open question
in polyhedral theory, the importance of the conjecture is also due to the fact that any polynomial
pivot rule for the Simplex algorithm for Linear Programming requires the conjecture to hold. The
existence of such rule would have significant consequences on the existence of a strongly-polynomial
time algorithm for Linear Programming. The latter is a main open problem, mentioned in the list
of the “mathematical problems for the next century” given by S. Smale [24].

The study of diameters of polytopes has a rich history, and we refer e.g. to [23] for a survey.
The polynomial Hirsch conjecture is a generalization of a conjecture proposed by Hirsch in 1957,
which states that the combinatorial diameter of any d-dimensional polytope with n facets is at most
n−d. This conjecture has been disproved first for unbounded polyhedra [16] and then for bounded
polytopes [22], though it is known to hold for many classes of polytopes, such as for 0/1 polytopes
[17]. For the currently best known upper bound on the diameter we refer to [21]. Besides providing
general bounds, many researchers in the past 50 years have given bounds and/or characterizations
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of the diameter of polytopes that correspond to the set of feasible solutions of classical combinatorial
optimization problems. Just to mention a few, such problems include matching [3, 8], TSP [19, 20],
edge cover [13], fractional stable set [18], network flow and transportation problems [2, 5, 6, 7],
stable marriage [12], and many more.

The diameter of a polytope has been studied from many different perspectives, including a
computational complexity point of view. In particular, Frieze and Teng [9] showed that computing
the diameter of a polytope is (weakly) NP-hard. Digging more into the complexity of computing
the diameter of a polytope remains an interesting problem (see e.g. problem 10 on the list of 35
algorithmic problems in polytope theory, given in [15]).

In this paper, we show that computing the diameter of a polytope is a strongly NP-hard problem,
and finding a pair of vertices at maximum (shortest path) distance on the 1-skeleton of a polytope
is an APX-hard problem. In fact, what is probably more interesting, is that we can show hardness
already for a polytope that has a very simple structure and it is quite well-understood: namely,
the fractional matching polytope. We achieve these results by giving an exact characterization of
the diameter of such polytope, which technically constitutes the main result of this paper, and is
of independent interest. We are going to describe such characterization next.

One well-studied polytope for which a characterization of the diameter is known since the
mid 70’s, is the matching polytope, that is the polytope given by the convex combination of the
characteristic vectors of matchings of a graph. Formally, given a simple graph G = (V,E) with n
nodes and m edges, the matching polytope PM is as follows [11]:

PM := {x ∈ Rm : x(δ(v)) ≤ 1 ∀v ∈ V,
x(E(S)) ≤ |S|−1

2 ∀S ⊆ V with |S| ≥ 3, |S| odd,
x ≥ 0}.

(1)

Here δ(v) denotes the set of all edges of G incident into the node v, E(S) denotes the set of edges
with both endpoints in S, and for a set F ⊆ E, x(F ) =

∑
e∈F xe. The matching polytope is one

of the most studied polytopes in combinatorial optimization. As shown in [3, 8] the diameter of
the matching polytope is equal to the maximum cardinality of a matching in G, i.e. if we denote
by diam(P) and by vert(P) the diameter and the set of vertices of a polytope P, respectively, the
result in [3, 8] states

diam(PM ) = max
x∈vert(PM )

{1Tx}.

The fractional matching polytope PFM is the polytope associated with the LP-relaxation of
the standard IP formulation for the matching problem, and it is given by dropping the so-called
odd-set inequalities from (1):

PFM := {x ∈ Rm : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0}. (2)

As for the matching polytope, this polytope has been extensively studied in the optimization
community. It is well known to be an half-integral polytope, and many structural results about
its vertices, faces, and adjacency of the vertices are known. In particular, the support of a vertex
x of PFM is the union of a matching, denoted by Mx, given by the edges {e ∈ E : xe = 1}, and
a collection of node-disjoint odd cycles, denoted by Cx, given by the edges {e ∈ E : xe = 1

2}, as
shown in [1].

Our main result is a characterization of the diameter of this polytope, given in Theorem 1.
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Theorem 1. The diameter of the fractional matching polytope PFM is

diam(PFM ) = max
x∈vert(PFM )

{1Tx+
|Cx|
2
}.

As an observation, note that if the graph G is bipartite, then Cx = ∅ for all vertices x of
PFM , and our diameter bound for PFM reduces to the one for PM , as expected, since the odd-set
inequalities are redundant for bipartite graphs.

As already mentioned, our result has an important algorithmic consequence regarding the hard-
ness of computing the diameter of a polytope. As we will show later, combining Theorem 1 with an
easy reduction from the NP-complete problem of finding a set of triangles partitioning the vertices
of a graph, one can easily get that computing the diameter of a polytope is a strongly NP-hard
problem.

Theorem 2. Computing the diameter of a polytope is a strongly NP-hard problem.

With some extra effort, the hardness result can be strengthen to get APX-hardness for the
optimization problem of finding a pair of vertices at maximum distance on the 1-skeleton of a
polytope.

Theorem 3. Finding a pair of vertices at maximum (shortest path) distance on the 1-skeleton of
a polytope is an APX-hard problem.

We conclude this introduction with a brief description of the strategy we follow to give our
characterization. We prove our result in two steps: first, we show that the value given in Theorem
1 is an upper bound on the diameter, and then we show that it is a lower bound on the distance
between two specific vertices of PFM . Proving the first step in particular requires some effort.

The upper bound proof is based on a token argument. Specifically, given two distinct vertices
z and y of PFM , we prove that the distance between z and y is bounded by 1Tw + |Cw|

2 for some
vertex w of PFM whose support graph is in the union of the support graphs of z and y. We will
assign to each node v ∈ V with w(δ(v)) = 1 a token of value 1

2 , and to each cycle C ∈ Cw a token

of value 1
2 (note that the total sum of the token values equals 1Tw + |Cw|

2 ). We will then define a
path on the 1-skeleton of PFM from z to y, and show that each move along this path can be payed
by using two tokens from some nodes or cycles, where a move refers to the process of traversing an
edge on the 1-skeleton of PFM .

We would like to highlight that the selection of the moves to take is not straightforward. A
trivial attempt to define a z-y path could be to (i) define a path from z to a 0/1-vertex z̄ obtained
by “rounding” the half-valued coordinates of one of the cycles in Cz at each step, (ii) define a path
from y to a 0/1-vertex ȳ obtained by “rounding” the half-valued coordinates of one of the cycles in
Cy at each step, and (iii) define a path from z̄ to ȳ guided by the symmetric difference between the
matchings corresponding to z̄ and ȳ (indeed, this corresponds to a z̄-ȳ path on the 1-skeleton of the
matching polytope PM ). Unfortunately, it is not difficult to construct examples where any path of
this form has a length strictly larger than the claimed bound (see Example A in the appendix). In
order to reduce the number of moves, we will have to exploit better the adjacency properties of the
vertices, and we will have to keep track of the tokens we use to pay for our moves in a very careful
way.

2 Preliminaries

In this section, we will introduce some notations and state some known structural results regarding
the vertices of the polytope PFM .
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To avoid confusion, we will always refer to the extreme points of a given polytope as vertices, and
to the elements of V of a given graph G = (V,E) as nodes. Furthermore, for a generic (sub)graph
H, we will denote by V (H) and E(H) its set of nodes and edges, respectively. We say that a cycle
C (resp. a path P ) is odd if |E(C)| (resp. |E(P )|) is odd. Given a matching M , an M -alternating
path is a path that alternates edges in M and edges not in M . A node is M -exposed if it is not
the endpoint of an edge in M . An M -augmenting path is an M -alternating path whose endpoints
are M -exposed.

We start by stating the well-known half-integrality property of the vertices of PFM .

Theorem 4 ([1]). Every basic feasible solution to PFM has components equal to 0, 1 or 1
2 , and

the edges with half-integral components induce node-disjoint odd cycles. Furthermore, every half-
integral vector x ∈ PFM such that the half-integral components of x induce node-disjoint odd cycles,
is a vertex of PFM .

For a given vector x ∈ RE , we will refer to Gx as the graph induced by the support of x, i.e.
the graph induced by the set of edges {e ∈ E : xe > 0}. As already mentioned in the introduction,
if x is a vertex of PFM , then Gx is the union of a matching (denoted byMx) induced by the edges
{e ∈ E : xe = 1} and a collection of node-disjoint odd cycles (denoted by Cx) induced by the edges
{e ∈ E : xe = 1

2}. Furthermore, given two vectors x, y ∈ RE , we let Gx∆Gy be the graph induced
by the set of edges {e ∈ E : xe 6= ye}.

The following definition will be highly used later.

Definition 1. We say that an odd cycle C of G is packed by a matching M (resp. by a vertex x),

if |M ∩ E(C)| = |C|−1
2 (resp. if |Mx ∩ E(C)| = |C|−1

2 ).

The paper in [4] gives an adjacency characterization for the vertices of the fractional perfect
b-matching polytope associated to a (possibly non-simple) graph. Using this result, it is easy to
derive adjacency properties for the vertices of PFM . We here explicitly state a lemma that follows
from Theorem 25 in [4]. This lemma gives some sufficient conditions for two vertices of PFM to
be adjacent. These are all the conditions that we will use in Section 3 to prove our upper bound
(refer to Figure 1 for some examples). To make the paper self-contained, we prove this lemma in
the appendix.

Lemma 1. (follows from [4]) Let y and z be two vertices of PFM , and let Cz(y) ⊆ Cz (resp.
Cy(z) ⊆ Cy) be the set of cycles of Gz (resp. Gy) packed by My (resp. packed by Mz). Then y and
z are adjacent if Gy∆Gz contains exactly one component C with this component being

(a) one even cycle in Mz∆My, or

(b) one path in Mz∆My, or

(c) one odd cycle in Cz(y) ∪ Cy(z), or

(d) one odd cycle in Cz(y) and one odd cycle in Cy(z) intersecting in exactly one node, or

(e) two node-disjoint odd cycles in Cz(y)∪Cy(z) and a path P ⊆My∆Mz intersecting the cycles
at its endpoints, or

(f) one odd cycle in Cz(y) ∪ Cy(z) and a path P ⊆ My∆Mz intersecting the cycle at one of its
endpoints.

Recall that we refer to the process of traversing an edge of a polytope (i.e. moving from one
vertex to an adjacent one) as a move.
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Figure 1: Examples illustrating Lemma 1. Black edges represent the edges in the support of y,
and gray edges represent the edges in the support of z. Continuous lines represent edges of value
1, while dashed lines represent edges of value 1

2 .

3 A characterization of the diameter of PFM
In this section we give a characterization of the diameter of the fractional matching polytope by
providing a proof of Theorem 1. Recall that Theorem 1 states

diam(PFM ) = max
x∈vert(PFM )

{1Tx+
|Cx|
2
}.

We will prove that the right-hand side of the above formula is an upper bound on the diameter
of PFM in Sections 3.1-3.6, and then prove it is a lower bound in Section 3.7.

3.1 Upper bound: general strategy

Let us recall the strategy sketched in the introduction, regarding how we are going to prove our
upper bound. Given two distinct vertices z and y of PFM , we will prove that the distance between
z and y is bounded by 1Tw + |Cw|

2 for some vertex w of PFM that will be identified later.
We assign to each node in v in V (Gw) (i.e. with w(δ(v)) = 1) a token of value 1

2 , and to each

cycle C ∈ Cw a token of value 1
2 , so that the total sum of the token values equals 1Tw + |Cw|

2 . We
define a path on the 1-skeleton of PFM from z to y, and show that each move along this path can
be payed by using two tokens from some nodes or cycles. Specifically, our path will have the form

z → w → r → y

where r and w are (non necessarily distinct) vertices of PFM with some nice structure, and the
arrow “→” indicates a path between the corresponding vertices on the 1-skeleton of PFM . While
traversing our path, we will satisfy some invariants, which will be helpful for keeping track of the
used tokens. The first set of invariants, valid for the path from z to w, are described in the next
paragraph.

Invariants and definitions. For every pair of consecutive vertices `, ¯̀ on the path z → w (with
¯̀ coming after ` when traversing this path), the following invariant will hold:

5



V (G`) ⊆ V (G¯̀). (3)

In other words, ¯̀ is obtained by “augmenting” `. This implies that each node u with `(δ(u)) = 1
will satisfy w(δ(u)) = 1, and therefore u has been assigned a token. It follows that we can use the
tokens of the nodes of V (G¯̀) to pay for the move from ` to ¯̀.

We also anticipate here that for every pair of consecutive vertices `, ¯̀ on the path z → w (with
¯̀ coming after ` when traversing this path), the following invariant will hold:

(C` \ Cz) ⊆ C¯̀. (4)

This implies that if an odd cycle C appears for the first time in the support of a vertex ` 6= z,
then C will be part of the support of w as well. This ensures that C has been assigned a token,
and therefore we can use its token to pay for the move we performed to arrive to `.

In the following, we will denote by T (`) the subset of nodes of V (G`) that still have an available
token, i.e., a token that has not been used to pay for any of the moves performed to arrive from z
to `. Furthermore, for a given vertex `, we let M̃` ⊆ M` be the subset of edges of M` with both
endpoints not in T (`), i.e. satisfying: {u, v} ∈ M̃` ⇔ {u, v} ∈ M` and u, v /∈ T (`).

On our path from z to w, we will satisfy two additional invariants. The first one states that the
set of edges whose endpoints have no tokens are a subset of the edges of Gy:

M̃` ⊆ E(Gy) (5)

The second one states that the nodes that used their tokens either can be “paired up” using
edges of M̃`, or they belong to cycles in C` ∩ Cy:

for each v ∈ V (G`) \ V (C` ∩ Cy), we have v ∈ T (`)⇔ v is not an endpoint of an edge in M̃` (6)

3.2 Moving from z to w

The vertex w is obtained by “augmenting” z (if possible) using edges of Gy. This is done in three
main steps. To describe the first one, we need to introduce a definition (refer to Figure 2(a)).

Definition 2. Let ` be a vertex, and C be a cycle in Cy \ C`, such that |V (C) ∩ T (`)| ≥ 2. We
say that the cycle C is critical for ` if every odd path P ⊆ C with nodes {v1, . . . , vk} such that
V (P ) ∩ T (`) = {v1, vk}, satisfies

(i) |E(P )| ≥ 3, and

(ii) either {v1, vk} ∈ M`, or v1, vk ∈ V (C̄) for some C̄ ∈ C`.

Algorithm 1 describes the moves we perform to arrive to the vertex w, starting from z, and
proceeds as follows. In Step 2 we consider the current vertex ` (with ` := z at the beginning), and
we look for a critical cycle C ∈ Cy \ C`. Given such a cycle, we perform a move which increases
the number of nodes covered byM` (see Figure 2(b)). In Step 3 we look for M̃`-augmenting paths
whose edges are in E(Gy) and whose endpoints are not in V (G`). If such a path is identified, we
perform a move which again increases the number of nodes covered by M`. In Step 4 we look for
a cycle C ∈ Cy, which is packed by `, and has a node v ∈ V (C) which is not in V (G`). If such a
cycle is identified, we perform a move which increases the number of cycles in C` ∩ Cy.
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  (a) (b)

Figure 2: A critical cycle is shown in (a). Black edges represent the edges in the support of y, and
gray edges represent the edges in the support of `. Continuous lines represent edges of value 1,
while dashed lines represent edges of value 1

2 . Nodes in T (`) are colored black. The cycle contains
three odd paths whose endpoints are black, and internal nodes are white. All these three paths
satisfy conditions (i) and (ii) of Definition 2. The figure in (b) shows how the coordinates of `
change after performing one move (/).

Algorithm 1 (from z to w):
1. Set ` := z.

2. While there is a cycle C ∈ Cy \ C` that is critical for `:

2.1. Let P ⊂ C be an odd path with nodes {v1, . . . , vk}, such that V (P ) ∩ T (`) = {v1, vk},

2.2. If {v1, vk} ∈ M`, do the following move:

(.) Change the `-coordinate of the edges {v1, v2}, {v1, vk}, {vk, vk−1} by setting

`e =

{
1 if e = {v1, v2} or e = {vk, vk−1}
0 if e = {v1, vk}

and let the nodes v2 and v1 use their tokens to pay for this move;

2.3. If v1, vk ∈ V (C̄) for some C̄ ∈ C` \ Cy with V (C̄) = {u1 := v1, u2, . . . , uk̄}, do the move:

(/) Change the coordinate `e of all the edges e ∈ E(C̄) ∪ {v1, v2} by setting

`e =


1 if e = {v1, v2}
1 if e = {u2i, u2i+1} for i ∈ {1, . . . , k̄−1

2 }
0 if e = {u2i−1, u2i} for i ∈ {1, . . . , k̄−1

2 }
0 if e = {vk̄, v1}

and let the nodes v2 and v1 use their tokens to pay for this move;

3. While there is an M̃`-augmenting path P in Gy, with endpoints u, v /∈ V (G`), do the following
move:

(◦) Change the coordinate `e of all the edges of P by setting

`e =

{
1 if e ∈ E(P ) \ M̃`

0 if e ∈ E(P ) ∩ M̃`

7



and let the nodes u and v use their tokens to pay for this move;

4. While there is a cycle C ∈ Cy that (i) is packed by `, and (ii) contains a node v ∈ V (C) with
v /∈ V(G`) do the following move:

(�) Change the coordinates `e of all the edges e ∈ E(C) to 1
2 ,

and let the cycle C and the node v use their tokens to pay for this move.

5. Output w := `.

Lemma 2. All steps of Algorithm 1 can be correctly performed, and invariants (3), (4), (5), and
(6) are maintained.

Proof. We first prove that Step 2 of algorithm 1 can be correctly performed and maintains all the
invariants, by induction on the number of moves executed.

Let C be a critical cycle for the vertex `, and P be the corresponding path identified in Step
2.1. First, suppose that {v1, vk} ∈ M` and let us focus on the move (.). We claim that the edges
{v1, v2}, {v1, vk}, {vk, vk−1} form anM`-augmenting path, and therefore the move is a valid move,
according to Lemma 1(b). To see this, note first that vk−1 6= v2, since by definition P has at least
3 edges, and so k ≥ 4. Second, we claim that both v2 and vk−1 are not in V (G`). Assume for a
contradiction that v2 ∈ V (G`) (the other case is similar). Since C is critical, we know that v2 /∈ T (`),
and therefore by invariants (5) and (6) (which hold by the inductive hypothesis), {v2, v3} ∈ M̃`.
Let `′ be the iteration where {v2, v3} appears for the first time in the support of a vertex, and
¯̀ be the vertex visited by the algorithm immediately before `′. Then, necessarily C was critical
for ¯̀ and one of the two nodes v2, v3 was in T (¯̀). However, if v2 ∈ T (¯̀), then the path with one
single edge {v1, v2} would contradict the fact that C was critical for ¯̀. It follows that v3 ∈ T (¯̀).
However, the path P̄ identified at Step 2.1 of the algorithm has to contain the edge {v2, v3}, and
its endpoints are v3 and another node in T (¯̀). Necessarily, the other endpoint of P̄ is then v1.
However, this contradicts the fact that P̄ is odd. It follows that {v1, v2}, {v1, vk}, {vk, vk−1} form an
M`-augmenting path, and it is easy to see then that the move (.) maintains the claimed invariants.

Now, suppose that {v1, vk} ∈ V (C̄) for some C̄ ∈ C` \ Cy and let us focus on the move (/). We
claim that v2 /∈ V (G`), and therefore the edge {v1, v2} and the cycle C̄ have the structure described
in Lemma 1(f), which allows us to perform a valid move. The argument to see this is identical to
the one used in the previous point. Assume for a contradiction that v2 ∈ V (G`). Since C is critical,
we know that v2 /∈ T (`), and therefore by invariants (5) and (6) (which hold by the inductive
hypothesis), {v2, v3} ∈ M̃`. Let `′ be the iteration where {v2, v3} appears for the first time in
the support of a vertex, and ¯̀ the vertex visited by the algorithm immediately before `′. Then,
necessarily C was critical for ¯̀ and one of the two nodes v2, v3 was in T (¯̀). However, if v2 ∈ T (¯̀),
then the path with one single edge {v1, v2} would contradict the fact that C was critical for ¯̀. It
follows that v3 ∈ T (¯̀). However, the path P̄ identified at Step 2.1 of the algorithm has then v3 and
v1 as its endpoints, but this contradicts the fact that P̄ is odd. Once again, it is immediate to see
that the move (.) maintains the claimed invariants.

We now argue that the other steps of algorithm 1 can be correctly performed and maintain all
the invariants. Each move in (◦) and (�) is indeed a valid move, according to Lemma 1(b) and
Lemma 1(c), respectively. It is easy to see that the all invariants are maintained in these steps.
Furthermore, by invariants (3) and (4), each node v and each cycle C that used a token during
the execution of Algorithm 1, satisfy v ∈ V (Gw) and C ∈ Cw, and therefore had indeed a token to
use.

We state a trivial observation which will be used later.
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Observation 1. Let C be a cycle in Cw \ Cy. Then C did not use its token during the execution of
Algorithm 1.

Before describing the subsequent moves on our path from w to y, we need to introduce an
important notion: namely, the notion of witnesses of a cycle C ∈ Cy \ Cw. This notion will be
crucial to identify the nodes that will pay for the move in which the cycle C appears for the first
time in the support of a vertex on our path from w to y.

3.3 Witnesses

Definition 3. Let u be a node of a cycle C ∈ (Cy \ Cw). We say that u is a single witness of C if
u ∈ T (w), u is (Mw ∩ E(C))-exposed, and C is packed by w.

Definition 4. Let (u, v) be a pair of nodes of a cycle C ∈ (Cy \ Cw). We say that (u, v) is a pair
of witnesses of C if u, v ∈ T (w) and there is an M̃w-augmenting path Q(u, v) with endpoints u and
v in E(C).

Note that for a given pair of witnesses (u, v), the path Q(u, v) is uniquely defined (since exactly
one u-v path in E(C) has odd length).

As already mentioned, we would like that the witnesses of a cycle C pay for the move in which
the cycle C appears for the first time in the support of a vertex on our path from the vertex w to
the vertex y. Unfortunately, it might be possible that if we do not select our witnesses carefully, we
do not have enough tokens to perform our moves properly. We therefore impose some restrictions
on our choice.

Definition 5. We say that W ⊆ V × V is a good set of witnesses if it satisfies

(i) for all C ∈ (Cy \ Cw), the following holds: W contains either exactly one pair of witnesses
(u, v) of C, or exactly one single witness of C (indicated as (u, u) ∈ W);

(ii) for every (u, v) ∈ W with u 6= v, the following holds: if |E(Q(u, v))| > 1, then u and v belong
to two distinct components of Gw.

In other words, condition (ii) of the above definition states that if Q(u, v) has more than one
edge, then {u, v} /∈Mw, and there is no cycle C̄ ∈ Cw such that V (C̄) contains both u and v. Next
lemma shows that there exists a good set of witnesses.

Lemma 3. There exists a good set of witnesses W.

Proof. It is enough to show that for every C ∈ (Cy \ Cw), we can find either a single witness, or a
pair of witnesses which satisfies the condition in (ii).

Let C be any cycle in Cy \ Cw. By definition, each edge e ∈ M̃w has its endpoints not in T (w).
Therefore, if there is an edge {u, v} ∈ E(C) such that u, v ∈ T (w) then the edge {u, v} is clearly
an M̃w-augmenting path from u to v, and (u, v) are a pair of witnesses for C which satisfies the
condition in (ii).

Let us assume there is no edge {u, v} ∈ E(C) such that u, v ∈ T (w). Consider the set H :=
{v ∈ V (C) : v ∈ T (w)}. First, we are going to show that H 6= ∅. Suppose otherwise. Then, by
invariant (6), every node in v ∈ V (C) satisfies either w(δ(v)) = 0, or w(δ(v)) = 1 and v is an
endpoint of an edge in M̃w. Note that, by invariant (5), if v is an endpoint of an edge {v, v̄} in M̃w,
then v̄ is also a node of C. Since |V (C)| is odd but M̃w is a matching, it follows that C contains
either an M̃w-augmenting path whose endpoints are not in V (Gw), or C is packed by Mw and one
node of C is not in V (Gw). In both cases, Algorithm 1 would not have stopped, a contradiction.
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It follows that H 6= ∅. Consider the connected components C1, . . . , Ck in the graph C \ H.
Since the nodes in H are pairwise not adjacent in E(C), and C is a cycle, we have that |V (C)| =
|H|+

∑k
i=1 |V (Ci)| = k+

∑k
i=1 |V (Ci)|. Since |V (C)| is odd, at least one component Ci has |V (Ci)|

equal to an even number. It follows that Ci is a path with an odd number of edges. By Step 3 of
Algorithm 1, M̃w has to contain a maximum matching of this component. It follows that Ci is an
M̃w-alternating path with the first and the last edge belonging to M̃w. Let u (resp. v) be the node
in H adjacent to the first (resp. last) edge of the path Ci in the graph C. If u = v (i.e. k = 1),
then C is packed by w, and u is a single witness for C. If instead u 6= v, then u,Ci, v yield an
M̃w-augmenting path from u to v in the subgraph induced by M̃w ∪ E(C).

The above argument shows that for every cycle C ∈ Cw \ Cy there exists either a single witness,
or (at least) one pair of witnesses. It remains to show that, if C is not packed by w, then among
all possible pairs of nodes which satisfy the definition of pair of witnesses, at least one satisfies
the condition described in (ii). For the sake of a contradiction, assume that no pairs of witnesses
satisfies the condition described in (ii). Then, this means that C is critical for the vertex w. Let
¯̀ be the last vertex visited by Algorithm 1 during the execution of Step 2. Clearly, C cannot be
critical for ¯̀, otherwise the algorithm would have performed another iteration of Step 2. However,
note that for all vertices `′ visited after ¯̀ in Step 3 and Step 4, we have T (¯̀) = T (`′), and therefore
C cannot be critical for any `′. Since w is also visited after ¯̀, C cannot be critical for w, a
contradiction.

From now on, we fix W to be a good set of witnesses (one such set exists because of last
lemma), and based on that, we introduce the last two ingredients needed to describe our future
moves, namely, target matchings, and the target graph.

3.4 Target matchings and target graph

Definition 6. Let C ∈ Cy \ Cw. The target matching of C, denoted by MC , is a matching which
satisfies the following properties:

(i) MC is a maximum cardinality matching of C;

(ii) If (u, v) ∈ W is a pair of witnesses for C with u 6= v, then MC ∩ E(Q(u, v)) is a perfect
matching of Q(u, v);

(iii) among all matchings satisfying (i) and (ii), MC maximizes the quantity |MC ∩Mw|.

We refer to Figure 3 for an example.

Definition 7. Let ` be a vertex. The target graph T ` is the graph induced by the edges

M`∆(My ∪ {
⋃

C∈Cy\C`

MC})

Note that the target graph is the symmetric difference of two matchings, namely M`, and My ∪
{
⋃
C∈Cy\C` MC}, and therefore it is the disjoint union of paths and even cycles. We call a component

K of T ` a path-component if K is a path, and a cycle-component if K is a cycle.
Roughly speaking, our goal is to move from w to a vertex whose support graph does not contain

any cycle in Cw \Cy, by performing a sequence of moves, each involving one component of the target
graph. However, we would like not to use tokens belonging to witness nodes to pay for the moves,
since as already mentioned, we would like to keep these tokens to pay for the moves where cycles
in Cy \ Cw show up. For this reason we introduce the following definition.
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  (a) (b)

Figure 3: A cycle C in Cy \ Cw is shown in (a). Black edges represent the edges in the support of y,
and gray edges represent the edges in the support of w. Continuous lines represent edges of value
1, while dashed lines represent edges of value 1

2 . Black nodes represent the witnesses of C. The
figure in (b) shows the witness matching (dark green edges).

Definition 8. Let ` be a vertex. A component K of a target graph T ` is called dangerous if all the
nodes of V (K) ∩ T (`) are witnesses of some cycles in Cy \ C`.

Next lemmas give a few properties that will be crucial for our analysis.

Lemma 4. Let K be a component of the target graph T w. Then

(i) V (K) ∩ T (w) 6= ∅;

(ii) If K is a dangerous cycle-component, then there exist at least two distinct cycles in Cw \ Cy
whose witnesses are in V (K);

(iii) If K is a dangerous path-component, then each endpoint v of K is either a single witness in
W, or v ∈ V (C) for some cycle C ∈ Cw \ Cy.

Proof. Let K be a component of the target graph T w. We first prove (i). Assume V (K)∩T (w) = ∅.
Then E(K) ∩Mw ⊆ M̃w, by invariant (6). Since M̃w ⊆ E(Gy) by invariant (5), it follows that
K ⊆ Gy, and therefore K is a path. If K has even length, then K ⊂ C for some C ∈ Cy, and it is an
MC-alternating path. By switching along the edges of this path we could get another matching M ′C
which would contradict our choice of the witness matching for C, since M ′C would satisfy (i) and
(ii), but |M ′C ∩ M̃w| > |MC ∩ M̃w|. It follows that K has odd length, and since My ∪ {∪C∈CyMC}
is a maximum matching in Gy, K has to be M̃w-augmenting. Then, if both endpoints c′, c of K
are not in T (w), then w(δ(c′)) = w(δ(c)) = 0 (since otherwise they would still have their token
available, being non-endpoints of edges in M̃w, by invariant (6)). However, this contradicts the
termination of Step 3 of Algorithm 1. It follows that at least one of the endpoints has to be in
T (w).

Now we prove (ii). Let K be a dangerous cycle-component, and v be a node in V (K) ∩ T (w)
(such node exists because of (i)). Since K is dangerous, v is a witness of a cycle C ∈ Cy. Since
K is a cycle, v cannot be a single witness (such nodes have degree at most 1 in the target graph).
It follows that there is another node u such that (u, v) is a pair of witnesses for C. Let v′ (resp.
u′) be the node such that {v, v′} ∈ Mw (resp. {u, u′} ∈ Mw). Note that v′ 6= u (resp. u′ 6= v),
since otherwiseW would not be a good set of witnesses (the pair (u, v) would contradict the second
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condition of Definition 5). By invariant (5) both u′, v′ ∈ T (w), and therefore, since K is dangerous,
they are (in a pair of) witnesses for at least another cycle in Cy.

Finally we prove (iii). Let K be a dangerous path-component, with V (K) := {v1, . . . , vk}. Let i
be the smallest index such that vi ∈ T (w) (such index exists because of (i)). Since K is dangerous,
vi is a witness (either a single one, or a paired one) of a cycle C ∈ Cy. If vi is a single witness,
then it is necessarily the endpoint of K, i.e. i = 1, since single witnesses have degree at most one
in the target graph. Assume now that vi is in a pair of witnesses. In this case, vi cannot be an
endpoint of an edge inMw: using invariant (6), we can see that if {vi, vi+1} ∈ Mw, then necessarily
vi+1 is the other witness of C, i.e. Q(vi, vi+1) = {vi, vi+1} contradicting that this edge is in the
target graph, and if {vi, vi−1} ∈ Mw, our choice of i is contradicted. It follows that vi ∈ V (C̄) for
some C̄ ∈ Cw \ Cy. This implies that vi have degree one in the target graph, and therefore it is
the endpoint of K (i.e. i = 1). We can apply the same argument to the biggest index such that
vi ∈ T (w), and get the same conclusion for the other endpoint of K.

3.5 Moving from w to r

We move from w to a vertex r with the property that Cr ⊆ Cy, by eliminating up to two cycles in
Cw \ Cy at each move.

The algorithm maintains six invariants for every vertex ` visited during its execution. The first
three invariants guarantee that the conditions of Lemma 4 hold for every vertex visited by the
algorithm, i.e.

For every component K of T `, V (K) ∩ T (`) 6= ∅ (7)

If K is a dangerous cycle-component of T `, then V (K) contains the witnesses
of at least two cycles in C` \ Cy

(8)

If K is a dangerous path-component of T `, then each endpoint v of K is
either a single witness in W, or v ∈ V (C) for some cycle C ∈ C` \ Cy

(9)

The fourth and fifth invariants will be useful to keep track of which nodes in T ` still have their
tokens. The fourth invariant states that for every edge ofM` which is present in the target graph,
either both the endpoints have the token, or both the endpoints used their tokens.

∀{u, v} ∈ M` ∩ E(T `), if u ∈ T (`) then v ∈ T (`) (and vice versa) (10)

Note that (10) holds for w, because of invariant (6) maintained by Algorithm 1.
The fifth invariant states that every edge of M̃` that is present in the target graph, is an edge

of E(Cy).

∀{u, v} ∈ M̃` ∩ E(T `), {u, v} ∈ E(Cy) (11)

Invariant (11) holds for w, because of invariant (5) maintained by Algorithm 1, together with the
fact that if e ∈ M̃` ∩My, then e /∈ E(T `).
Finally, the last invariant establishes that the witnesses of cycles in Cy\C` have their token available.

∀C ∈ Cy \ C`, if v ∈ V (C) is a witness of C, then v ∈ T (`). (12)

Clearly invariant (12) holds for w, because of the definition of witnesses.
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The algorithm selects one cycle in C ∈ C` \ Cy at the time, and performs a move which involves
at most one path-component of the target graph. Note that C intersects each component of T ` in
at most two nodes. To see this, recall that each component K of T ` is either an M`-alternating
path, or an M`-alternating cycle. Therefore, C can only intersect K at the endpoints of an M`-
alternating path. Since C has an odd number of nodes, it follows that there exists either one node
v in V (C) which is not a node of T `, or one component K of T ` such that |V (C) ∩ V (K)| = 1.
Based on this observation, we have the following definition.

Definition 9. Let C ∈ (C` \ Cy). The least-intersecting component for C is a component H of the
graph (V (T ` ∪ C), E(T `)) that minimizes |V (H) ∩ V (C)|.

Note that the graph (V (T ` ∪ C), E(T `)) is simply the graph T ` with (possibly) additional
singleton nodes that belong to V (C). By the above reasoning, a least-intersecting component H
for C will always have |V (H) ∩ V (C)| = 1. In particular, either H will be path-component of T `
with exactly one endpoint in V (C), or H will be a singleton node v for some v ∈ V (C) (this can
happen if there exists a node v ∈ V (C) with v /∈ V (T `)). Algorithm 2 formally describes the moves
we perform to go from w to r.

Algorithm 2 (from w to r):
1. Set ` := w.

2. While there exists a cycle C ∈ C` \ Cy do:

2.1 Let H be the least-intersecting component for C, and V (H) := {v1, . . . , vk} with v1 ∈ V (C)

2.2 If vk is a single witness for some C̄ ∈ Cy \ C`, let N be the perfect matching of C exposing v1

and do the following move:

(4) Change the coordinate `e of all the edges of H ∪ C ∪ C̄ by setting

`e =



1 if e ∈ E(H) \M`

0 if e ∈ E(H) ∩M`

1 if e ∈ N
0 if e ∈ E(C) \N
1
2 if e ∈ E(C̄)

and let the node vk and the cycle C use their tokens to pay for this move;

2.3 Else if vk ∈ V (C̄) for some C̄ ∈ C` \Cy, C̄ 6= C, let N be the perfect matching of C exposing
v1, let N̄ be the perfect matching of C̄ exposing vk, and do the following move:

(O) Change the coordinate `e of all the edges of H ∪ C ∪ C̄ by setting

`e =



1 if e ∈ E(H) \M`

0 if e ∈ E(H) ∩M`

1 if e ∈ N
0 if e ∈ E(C) \N
1 if e ∈ N̄
0 if e ∈ E(C̄) \ N̄

and let the cycles C and C̄ use their tokens to pay for this move;
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2.4 Else, let j be any index such that vj ∈ V (H) ∩ T (`) and vj is not a witness in W, let N be
the perfect matching of C exposing v1, and do the following move:

(�) Change the coordinate `e of all the edges of H ∪ C by setting

`e =


1 if e ∈ E(H) \M`

0 if e ∈ E(H) ∩M`

1 if e ∈ N
0 if e ∈ E(C) \N

and let the node vj and the cycle C use their tokens to pay for this move;

3. Output r := `.

Lemma 5. All steps of Algorithm 2 can be correctly performed, and invariants (7), (8), (9), (10),
(11) and (12) are maintained.

Proof. First we argue that the moves are indeed valid moves. The move (4) is a valid move
according to either Lemma 1(d) (if vk = v1) or Lemma 1(e) (if vk 6= v1). The move (O) is a valid
move according to Lemma 1(e). Furthermore, the move (�) is a valid move according to either
Lemma 1(c) (if vk = v1), or Lemma 1(f) (if vk 6= v1).

Second, we argue that the invariants hold, by induction on the number of iterations of Step 2
performed by the algorithm. Let C be a cycle in C` \Cy considered at a Step 2 of the algorithm, and
H the component in Step 2.1, with nodes {v1, . . . , vk} (with possibly, vk = v1). Let ¯̀ be the vertex
visited by the algorithm right after `. Invariants (7), (10) and (11) follow by two things: (i) the
nodes paying for the moves are in V (H), but V (H) and E(H) will not be present in T ¯̀

, (ii) if K
is a component of T ¯̀

but not a component of T `, then K contains at least one edge e ∈M¯̀\M`.
Necessarily, the endpoints of e are in V (C) \ {v1, vk}, i.e. e /∈ M̃`, and therefore still have their
token available.

Let K be a dangerous cycle-component of T ¯̀
. If K is also a dangerous cycle-component of

T `, then the condition of invariant (8) clearly still hold. Otherwise, K contains at least one edge
e = {u, ū} in M¯̀ \ M`. By the same reasoning as above, u and ū are in T (¯̀), and since K is
dangerous, they must be witnesses in W. However, u and ū cannot be a pair of witnesses for the
same cycle C̄ ∈ Cy, since otherwise this would contradict condition (ii) of Definition 5. It follows
that invariant (8) holds.

The argument for invariant (9) is identical to the one used in Lemma 4. We repeat it here for
the sake of completeness. Let K be a dangerous path-component, with V (K) := {u1, . . . , uk}. Let
i be the smallest index such that ui ∈ T (¯̀) (such index exists because of invariant (7)). Since K
is dangerous, ui is a witness (either a single one, or a paired one) of a cycle C̄ ∈ Cy. If ui is a
single witness, then it is necessarily the endpoint of K, i.e. i = 1, since single witnesses have degree
at most one in the target graph. Assume now that ui is in a pair of witnesses. In this case, ui
cannot be an endpoint of an edge in M¯̀: using invariant (10), we can see that if {ui, ui+1} ∈ M¯̀,
then necessarily ui+1 is the other witness of C̄, i.e. {ui, ui+1} = Q(ui, ui+1) contradicting that this
edge is in the target graph, and if {ui, ui−1} ∈ M¯̀, our choice of i is contradicted. It follows that
ui ∈ V (C̃) for some C̃ ∈ C¯̀ \ Cy. This implies that ui has degree one in the target graph, and
therefore it is the endpoint of K (i.e. i = 1). We can apply the same argument to the biggest index
such that ui ∈ T (¯̀), and get the same conclusion for the other endpoint of K.
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Invariant (12) holds trivially, since if we use a token of a witness node vk to pay for moving
from ` to ¯̀, then vk was a single witness and the cycle witnessed by vk is in C¯̀∩ Cy.

Finally, we argue that there are enough tokens to pay for the moves. In Step 2.2, the cycle C
has a token by Observation 1, and vk has a token by invariant (11). In Step 2.3, the cycles C and
C̄ have their tokens by Observation 1. In Step 2.4, the cycle C has a token by Observation 1, and
vj exists: invariant (7) guarantees that V (H) ∩ T (`) is not empty, and H cannot be dangerous,
otherwise by invariant (9) we would perform the operation in Step 2.3 or 2.2.

We conclude this section with a lemma that lists some useful properties satisfied by vertex r.

Lemma 6. The vertex r satisfies the following properties:

(a) Each component of the target graph T r contains at least two nodes that are in T (r).

(b) Let C ∈ Cy \ Cr be a cycle with a single witness (u, u) ∈ W. Then C is packed by r, and u is
the endpoint of some path-component of T r.

(c) Let C ∈ Cy \ Cr be a cycle with a pair of witnesses (u, v) ∈ W, u 6= v. If u ∈ V (K) for some
component K of T r, then Q(u, v) ⊆ K. Furthermore, u (resp. v) is incident into at least two
edges of K.

(d) Let C ∈ Cy \ Cr, and K be a dangerous cycle-component of T r such that |V (C) ∩ V (K)| 6= ∅.
Then K contains the witnesses of C.

Proof. (a) follows since each component of the target graph has at least one node in T (r) by
invariant (7). This node is the endpoint of some edge e in Mr, and the other endpoint of e also is
in T (r) by invariant (10).

Let us now argue about (b). Let C ∈ Cy \ Cr be a cycle with a single witness (u, u) ∈ W. Then
C was packed by w. This implies that all the edges of Mw ∩ E(C) were not present in any target
graph T `, for any ` visited by Algorithm 2, and thereforeMw ∩E(C) =Mr ∩E(C), implying that
C is packed by r. Since u is in T (r) by invariant (12), u is an endpoint of an edge in Mr, i.e. u
belongs to a component of T r.

To see (c), let C ∈ Cy \ Cr be a cycle with a pair of witnesses (u, v) ∈ W, u 6= v, and let u be a
node of a component K of T r. By the definition of target matching, u is incident into an edge e of
the target matching MC . By invariant (12), u is in T (r) and so u is an endpoint of an edge inMr,
implying that u is incident into two edges of K. Furthermore, by definition of target matching, e is
an edge of Q(u, v), and Q(u, v) is an M̃w-augmenting path. This implies that Q(u, v) is contained
in a component of T w, and that we never performed a move involving e during the execution of
Algorithm 2 (otherwise, one can see that e would be in MC ∩Mr, implying e /∈ E(T r)). It follows
that Q(u, v) is contained a component of T ` for all vertices ` visited by Algorithm 2 up to r, and
in particular, Q(u, v) is contained the component K of T r. By the same argument we used for u,
v is incident into two edges of K.

Finally, we prove (d). Assume that K does not contain any witness of C. Let e ∈ E(K) be an
edge with (at least) one endpoint u in V (C), such that e /∈ E(C). Note that such edge must exist,
since C is an odd cycle, and K is an even cycle. Necessarily e ∈ Mr. However, u is not a witness
of C, and since K is dangerous, u /∈ T (r). By invariant (10), both endpoints of e are not in T (r),
i.e. e ∈ M̃r. However, this contradicts invariant (11).
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3.6 Moving from r to y

Given r from the previous procedure, we move to y using Algorithm 3. In Step 2, we perform
moves involving path-components of the target graph, and in Step 3, we perform moves involving
non-dangerous cycle-components of the target graph. In both cases, each component has (at least)
two nodes with an available token to pay for the move. In particular, for a path-component, if
any of these nodes is a single witness of some cycle C ∈ Cy \ C`, then the cycle will appear in the
support of next vertex.

Dangerous cycle-components are considered last, in Step 4, and for each such component K, we
perform two moves. Roughly speaking, a move which switches the coordinate values along the edges
of E(K) would require two tokens which are witnesses of some cycle C ∈ Cy \ C`, but differently
from dangerous path-components, here such move will not make C appearing in the support of
next vertex. Therefore, we first make a move which guarantees that two distinct cycles C and C̄
becomes packed, and then perform a second move which guarantees that both C and C̄ appear in
the support of our vertex. We use the tokens of the two witnesses of C to pay for the first move,
and the tokens of the two witnesses of C̄ to pay for the second move.

To describe our moves formally, we introduce one definition (see Figure 4 for an illustration).

Definition 10. Let K be a dangerous cycle-component of T `, and let C, C̄ ∈ Cy \C` be two distinct
cycles with V (C)∩V (K) 6= ∅ and V (C̄)∩V (K) 6= ∅. Let (u, v) (resp. (ū, v̄)) be the pair of witnesses
of C (resp. C̄). We call a path P a K-linking path between C and C̄ if:

(i) P is an M`-augmenting path;

(ii) E(P ) ∩ E(K) = {v, v̄},

(iii) for all e′ ∈ E(P ) with e′ 6= {v, v̄}, we have e′ ∈ E(C \Q(u, v)) ∪ E(C̄ \Q(ū, v̄)).

  

(a) (b) (c)

V U

V U

P

Figure 4: Two cycles in Cy \ C` intersecting a dangerous component are shown in (a). Black edges
represent the edges in the support of y, and gray edges represent the edges in the support of `.
Continuous lines represent edges of value 1, while dashed lines represent edges of value 1

2 . Black
nodes represent nodes in T (`). The dangerous component is the even cycle given by the edges
{v, v̄}, {u, ū}, the odd u-v path (Q(u, v)) contained in the top dashed black cycle, and the odd ū-v̄
path (Q(ū, v̄)) contained in the bottom dashed black cycle. The dark green line indicates the path
P as in Definition 10. The figure in (b) shows how the coordinates of ` change after performing
the move (⊗), while the figure in (c) shows how the coordinates of ` change after performing the
move (�).
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In Step 5, we perform our last set of moves, which make all remaining cycles in Cy \ C` appear, one
by one, in the support of next vertex.

For any vertex ` visited by Algorithm 3, we will maintain invariant (12) as well as the following
invariant:

If K is a component of T `, then K is a component of T r and V (K) ∩ T (`) = V (K) ∩ T (r) (13)

Algorithm 3 (from r to y):
1. Set ` := r.

2. While there exists a path-component K of T `:

2.1 Let V (K) := {v1, . . . , vk}, let E(K) :=
{
{v1, v2} . . . , {vk−1, vk}

}
and let vi (resp. vj) be the

node in V (K) ∈ T (`) with the smallest (resp. biggest) index.

2.2 Do the following move:

(⊕) Change the coordinates of ` by setting

`e =


1 if e ∈ E(H) \M`

0 if e ∈ E(H) ∩M`

1
2 if vi is a single witness for some C ∈ C` \ Cy and e ∈ E(C)
1
2 if vj is a single witness for some C̄ ∈ C` \ Cy and e ∈ E(C̄)

and let the nodes vi and vj use their tokens to pay for this move;

3. While there exists a non-dangerous cycle-component K of T `:

3.1 Let v and u be two nodes in V (K) ∈ T (`), such that v, u are not witnesses in W, and do the
following move:

(	) Change the coordinate `e of all the edges of E(K) by setting

`e =

{
1 if e ∈ E(H) \M`

0 if e ∈ E(H) ∩M`

and let the node v and u use their tokens to pay for this move;

4. While there exists a dangerous cycle-component K of T `:

4.1 Let P be a K-linking path between two distinct cycles C and C̄ in Cy \ C`. Let (u, v) be the
pair of witnesses for C and let (ū, v̄) be the pair of witnesses for C̄.

4.2 Do the following moves:

(⊗) Change the coordinate `e of all the edges of P by setting

`e =

{
1 if e ∈ E(P ) \M`

0 if e ∈ E(P ) ∩M`

and let the nodes u and v use their tokens to pay for this move;
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(�) Change the coordinate `e of all the edges in E(C)∪E(C̄)∪ (E(K) \ {v, v̄}) by setting

`e =


1 if e ∈ (E(K) \ (E(P ∪ C ∪ C̄))) \M`

0 if e ∈ (E(K) \ (E(C ∪ C̄))) ∩M`

1
2 if e ∈ E(C) ∪ E(C̄)

and let the nodes ū and v̄ use their tokens to pay for this move;

5. While there exists a cycle C ∈ Cy \ C`, do the following move:

(�) Change the coordinate `e of all the edges in E(C) by setting

`e =
1

2
if e ∈ E(C)

and let the witnesses of C use their tokens to pay for this move;

6. Output `.

Lemma 7. All steps of Algorithm 3 can be correctly performed, invariant (12) and (13) are main-
tained, and the vertex output in Step 6 satisfies ` = y.

Proof. First, we argue that each step of Algorithm 3 can be correctly performed and that the claimed
invariants are maintained, by induction on the number of moves performed by the algorithm.

In Step 2, we consider a path-component K of T `. Invariant (13), which holds by the inductive
hypothesis, guarantees that K is a component of T r, and that if any of the endpoints is a single
witness of a cycle, then this cycle is packed by `. Therefore, the move (⊕) is a valid move,
according to either Lemma 1(b), or Lemma 1(e), or Lemma 1(f). Furthermore, since V (K)∩T (`) =
V (K) ∩ T (r), property (a) of Lemma 6 guarantees that there are at least two nodes in V (K) with
an available token which can pay for the move.

We now show that the invariants are maintained. Let vi be the node chosen in Step 2.1. We
claim that if vi is a witness, then it can only be a single witness. Assume for a contradiction
that vi is in a pair of witnesses (vi, vi′) ∈ W, with i 6= i′ for some cycle C ∈ Cy \ C`. Note that,
Q(vi, vi′) ⊆ K by property (c) of Lemma 6. Since vi′ ∈ T (`) by invariant (12), it follows i′ > i.
Then, by definition of target matching, {vi, vi+1} ∈MC , and since vi has degree 2 in K by property
(c) of Lemma 6, it follows that {vi−1, vi} ∈ M`. However, this also implies that vi−1 ∈ T (`) (using
invariant (13) together with (10) which holds for r). We get a contradiction with our choice of i. We
can apply a similar argument to vj . This yields that invariant (12) is maintained. Finally, after the
move is performed, the component K is no longer a component of the target graph, while all other
components of the target graph remain the same. This shows that invariant (13) is maintained.

In Step 3, we consider a non dangerous cycle-component K of T `. The move (	) is a valid move,
according to Lemma 1(a). Since K is not dangerous, there is at least one node in V (K) ∩ T (`) =
V (K) ∩ T (r) that is not the witness of any cycle. However, using invariant (10), which holds
for r, we know that |V (K) ∩ T (`)| is even. Furthermore, since K is a cycle, K also contains an
even number of nodes that are witnesses in W. It follows that K contains at least two nodes in
V (K) ∩ T (`) that are not witnesses of any cycle, and therefore can pay for the move. This shows
that invariant (12) is maintained. After the move is performed, the component K is no longer a
component of the target graph, while all other components of the target graph remain the same.
This shows that invariant (13) is maintained.

18



In Step 4, we consider a dangerous cycle-component K of T `. Let us argue that Step 4.1 can
be performed, i.e. that there exists a K-linking path P . Let e = {v, v̄} be any edge in M` with
both endpoints in T (`). Such an edge exists, because invariant (13), which holds by the inductive
hypothesis, guarantees that K is a component of T r and V (K)∩T (`) = V (K)∩T (r), therefore we
can rely on property (a) of Lemma 6, and on invariant (10) which holds for r. Since the component
is dangerous, v and v̄ are both witness nodes. Let C ∈ Cy \ C` be the cycle which has v as one
of its witnesses. Note that v̄ cannot be a witness for the same cycle C: if this was the case, then
either (i) {v, v̄} = Q(v, v̄), implying that {v, v̄} ⊆MC , contradicting that the edge is in the target
graph, or (ii) K = Q(v, v̄) ∪ {v, v̄}, contradicting that K contains the witnesses of at least two
distinct cycles. Let C̄ be the cycle which has v̄ as one of its witnesses. Neither v or v̄ can be a
single witness, since such nodes appear only in path-components, by property (b) of Lemma 6. Let
u and ū be such that (u, v) ∈ W, and (ū, v̄) ∈ W. By invariant (13), we know all the components
of T ` are dangerous cycle-components. By property (d) of Lemma 6, V (C) ∩ V (K ′) = ∅ for all
other components K ′ 6= K in T `. It follows that (MC∆M`) ∩ E(C) = Q(u, v), where MC is the
target matching of C. This implies that there exists aM`-alternating path P1 from v to the unique
MC-exposed node in V (C), which does not use edges in Q(u, v) (refer again to Figure 4). The same
argument shows that there exists aM`-alternating path P2 from v̄ to the unique MC̄-exposed node
in V (C̄), which does not use edges in Q(ū, v̄). Combining P1, {vv̄}, and P2, yields a K-linking path
P . The move (⊗) is then a valid move, according to Lemma 1(b), and u and v have their token
available by invariant (12).

After the move (⊗) is performed, C becomes packed, with u being its unique (M` ∩ E(C))-
exposed node, and C̄ becomes packed, with ū being its unique (M` ∩ E(C̄))-exposed node. The
move (�) is a then valid move, according to Lemma 1(f). The nodes ū and v̄ have their token
available by invariant (12). After the move (�) is performed, the component K is no longer a
component of the target graph, while all other components of the target graph remain the same.
This shows that invariant (13) is maintained. Since both C and C̄ are now in the support of the
current vertex, invariant (12) is maintained.

Let ` be the vertex after Step 4 terminates. Note that all cycles in Cy \ C` are packed by M`,
andM` ∩My =My. All cycles in Cy \ Cw which had a unique witness in W, have appeared in the
support of the current vertex during some iteration of Step 2, because of invariant (13) together
with property (b) of Lemma 6. Therefore, all cycles in Cy \ C` have two distinct witnesses, which
have their token available at the beginning of Step 5 because of invariant (12). It follows that every
move (�), which is a valid move by Lemma 1(c), can be paid. It is easy to see then that the output
vertex is y.

3.7 Lower bound

We here argue that the quantity maxx∈vert(PFM ){1Tx+ |Cx|
2 } is a lower bound on the value of the

diameter of PFM .
Let w be the vertex at which the above maximum value is achieved. We will show that the dis-

tance between the vertex w and the 0-vertex (i.e. the vertex corresponding to an empty matching),

is at least 1Tw + |Cw|
2 .

Suppose to introduce a non-negative slack variable for each inequality of the form x(δ(v)) ≤ 1
of PFM . We get a polytope that naturally corresponds to the set of feasible solutions of a fractional
perfect matching problem on a modified graph Ḡ, defined as follows. Let Ḡ = (V, Ē) be the graph
obtained from G by adding a loop edge on each node v ∈ V . We let Ē := E ∪ L, with L being
the set of loop edges introduced. We can interpret the slack variable associated to a node v as the
variable associated to its loop edge ev, and define δḠ(v) := δ(v) ∪ ev (note that the loop edge is
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counted once in this set). We get

P̄FM := {x̄ ∈ RĒ :
∑

e∈δḠ(v)

x̄e = 1, ∀v ∈ V, x̄ ≥ 0}

There is a one-to-one correspondence between vertices of P̄FM and PFM . For a vertex x of
PFM we let x̄ denote the correspondent vertex of P̄FM , and vice versa. Note that two vertices x
and y are adjacent vertices of PFM if and only if x̄ and ȳ are adjacent vertices of P̄FM .

Let x̄ be the vertex of P̄FM corresponding to x = 0, i.e. the empty matching in G, and w̄ be the
vertex of P̄FM corresponding to w. The support graph of x̄, denoted by Ḡx̄ contains |V | odd cycles,
all of unit length, given by the |V | loop edges. The support graph of w̄, denoted by Ḡw̄ contains
|Cw|+ |V \ V (Gw)| odd cycles: there are |Cw| odd cycles of length at least 3, and |V \ V (Gw)| odd
cycles of unit length, given by loop edges associated to nodes that are not in the support graph Gw
of w.

The following claim will be used to give a lower bound on the distance of two vertices of P̄FM ,
which depends on the number of odd cycles that are not in common in the support graphs of the
vertices.

Claim. Let ȳ and z̄ be two adjacent vertices of P̄FM . Let C̄ȳ be the set of odd cycles in the support
graph of ȳ, and C̄z̄ be the set of odd cycles in the support graph of z̄. Then |C̄ȳ∆C̄z̄| ≤ 2.

Proof of claim. A proof of the above lemma can be derived from the results given in [4]. We report
the details for completeness.

First we claim that there is at most one component of Ḡȳ ∪ Ḡz̄ that contains an edge f with
ȳf 6= z̄f . Suppose for a contradiction that there exist two such components, namely K1 and K2.
Let z̃ be the point defined as z̃e = z̄e for all e ∈ Ē \E(K1), and z̃e = ȳe for all e ∈ E(K1). Similarly,
let ỹ be the point defined as ỹe = z̄e for all e ∈ Ē \ E(K2), and ỹe = ȳe for all e ∈ E(K2). It is
not difficult to see that z̃ and ỹ are both vertices of P̄FM . However, 1

2 z̄ + 1
2 ȳ = 1

2 z̃ + 1
2 ỹ. This is

a contradiction, since if two vertices of a polytope are adjacent, there is a unique way to express
their midpoint as a convex combination of vertices.

Let K be the component of Gȳ ∪ Gz̄ which contains an edge f with ȳf 6= z̄f , and let k be the
number of nodes of this component. If K has at most k+ 1 edges, then K can be seen to be a tree
spanning its k nodes, plus two additional (possibly loop) edges: it is easy to realize then that K
can have at most 2 odd cycles. We are left to show that K contains at most k + 1 edges.

Let Ḡ[V (K)] be the subgraph of Ḡ induced by the nodes in V (K). Consider the fractional
perfect matching polytope associated to the graph Ḡ[V (K)]. Now one can see that z̄|E(Ḡ[V (K)]) ∈
RE(Ḡ[V (K)]), obtained from the vector z̄ by taking only the coordinates in E(Ḡ[V (K)]), is a vertex
of this polytope, and the same holds for ȳ|E(Ḡ[V (K)]) (defined similarly). Furthermore, these vertices
must be adjacent if z̄ and ȳ are adjacent.

Let A be the incidence matrix of the graph Ḡ[V (K)], where we have a row for every node of
V (K), and a column for every edge of Ḡ[V (K)]. Note that the column associated to a loop edge
has only one non-zero entry. Clearly, the rank of A is |V (K)| = k. Furthermore, the constraint

matrix of the polytope P̄FM for the graph Ḡ[V (K)] is

(
A
I

)
, with I being the identity matrix of

order E(Ḡ[V (K)]). Let M be the submatrix of

(
A
I

)
corresponding to the constraints that are tight

for both ȳ|E(Ḡ[V (K)]) and z̄|E(Ḡ[V (K)]). Since ȳ|E(Ḡ[V (K)]) and z̄|E(Ḡ[V (K)]) are adjacent vertices, the

rank of M is equal to |E(Ḡ[V (K)])| − 1. Note that M contains A as a submatrix, and since the
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rank of A is k, it follows that at least |E(Ḡ[V (K)])| − 1− k variables are zero in both z̄|E(Ḡ[V (K)])

and ȳ|E(Ḡ[V (K)]), and therefore the union of their support graphs contains at most k + 1 edges. �

Now let us discuss how the claim implies our desired lower bound. By the above claim, if ȳ and

z̄ are two (non necessarily adjacent) vertices of P̄FM , then the quantity
|C̄ȳ∆C̄z̄ |

2 is a lower bound on
the distance between ȳ and z̄ on the 1-skeleton of P̄FM , since the size of the symmetric difference
of the sets of odd cycles can be reduced by at most 2 at each move.

We can use this to bound the number of moves needed on a path from x to w. The distance
between x and w on the 1-skeleton of PFM is equal to the distance between x̄ and w̄ on the
1-skeleton of P̄FM . The distance between x̄ and w̄ is at least the cardinality of the symmetric
difference of the odd cycles in their support graphs divided by 2, i.e., (|Cw|+ |V (Gw)|)/2. Note that
|V (Gw)|

2 =
∑

v∈V (Gw)
1
2 = 1Tw. It follows that the distance between x and w is at least 1Tw + |Cw|

2 ,
as desired.

4 Hardness of computing the diameter of PFM
With Theorem 1 at hands, one can easily prove that computing the diameter of a polytope is
strongly NP-hard.

Proof. (Proof of Theorem 2) We give an easy reduction from the Partition Into Triangles (PIT)
problem. In an instance the PIT problem, we are given a simple graph G = (V,E) with |V | = 3q for
some integer q > 0. We want to decide whether there exists a partition of V into q sets V1, . . . , Vq,
each containing 3 nodes, with the property that the subgraph of G induced by every set Vi is a
triangle. This problem is strongly NP-hard [10].

Let G = (V,E) be an instance of PIT, and PFM the fractional matching polytope associated to
G. We claim that the diam(PFM ) = 2

3 |V | if and only if there is a yes-answer to the PIT instance
described by G, i.e. the edges of G allow for a partition of V into triangles.

Suppose that the diameter of PFM is 2
3 |V |. From Theorem 1, it follows that there exists a

vertex x of PFM such that diam(PFM ) = 1Tx + |Cx|
2 . Note that for any y ∈ vert(PFM ), we have

1T y ≤ |V |2 and |Cy| ≤ |V |3 . Therefore, 1Tx+ |Cx|
2 = 2

3 |V | implies that 1Tx = |V |/2 and |Cx| = |V |/3.
Since Cx is a set of node-disjoint odd cycles of a simple graph, it follows that Cx contains a set of
|V |/3 = q triangles.

Suppose G is a yes-instance, and let T ⊆ E be the set of edges of the triangles induced by the
sets Vi, for i = 1, . . . , q. We construct a fractional matching x by letting xe = 1

2 for all e ∈ T , and

xe = 0 otherwise. By construction, 1Tx = |V |
2 and |Cx| = |V |

3 , and x is indeed a vertex of PFM
according to Theorem 4. As we mentioned before, for any y ∈ vert(PFM ), we have 1T y ≤ |V |2 and

|Cy| ≤ |V |3 . Therefore, by Theorem 1, it follows that diam(PFM ) = 1Tx+ |Cx|
2 = 2

3 |V |.

With some extra effort, we can strengthen the above result to show APX-hardness.

Proof. (Proof of Theorem 3) We will show an L-reduction from the optimization version of the
problem PIT in graphs with bounded degree, i.e. in graphs where the maximum degree δ of a
node is constant. The optimization version of the problem asks for a set of node-disjoint induced
triangles of a graph G of maximum cardinality. This problem is APX-hard [14].

Suppose to be given an instance of PIT in a graph G = (V,E) with maximum degree δ. Without
loss of generality, we will assume that each node v ∈ G is contained in at least one triangle, as
otherwise we can just remove that node and its incident edges from the graph. We construct a
graph G′ = (V ′, E′) as follows (refer to Figure 5). We start by setting V1 := ∅ and E1 := ∅. For
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Figure 5: Constructing G′ from G.

each v ∈ V , we add a corresponding node v in V1. For each induced triangle t of G with nodes

u, v, z, we add to V1 the set of nodes {t1, t2, t3, t4, t5, t6, t7, t8, t9} and to E1 the set of edges
{
{u, t1},

{u, t2}, {t1, t2}, {v, t4}, {v, t5}, {t4, t5}, {z, t7}, {z, t8}, {t7, t8}, {t3, t1}, {t3, t2}, {t4, t6}, {t5, t6},
{t7, t9}, {t8, t9}, {t3, t6}, {t6, t9}, {t3, t9}

}
. We then take a copy of the graph (V1, E1) constructed

so far, and denote by ū ∈ V2 the copy of a node u ∈ V1. Let the nodes and edges of this copy be V2

and E2, respectively. We let V ′ := V1 ∪ V2, and E′ := E1 ∪ E2 ∪
{
{v, v̄} for all v ∈ V

}
. Let PFM

be the fractional matching polytope associated to G′. Let optG be the value of an optimal solution
of the PIT instance, and optG′ be the value of the diameter of PFM .

Claim. We have optG′ ≤ a · optG, for some constant a = O(1).

Proof of Claim. Recall that optG′ = 1Tx + |Cx|
2 for some vertex x of PFM , and that 1Tx ≤ |V ′|

2 ,

while |Cx|2 ≤
|V ′|

6 , implying optG′ = O(|V ′|). Let ktot be the total number of triangles in G. Then
|V ′| = 2|V |+18 ·ktot, and ktot = O(|V |) since each node v ∈ V can be in at most δ2 = O(1) distinct
triangles. It follows that optG′ = O(|V |). We will now argue that optG = Ω(|V |), implying the
claim.

Consider a greedy solution T to the PIT instance constructed by doing a sequence of iterations,
as follows. Start with T := ∅. We call a triangle t of G bad for T , if T contains at least one triangle
that is not node-disjoint with t. Similarly, we call a node v bad for T if all triangles containing v in
G are bad for T . Initialize B = ∅ to be the set of bad nodes for T = ∅. Note that B = ∅ because
we are assuming that each node in G is contained in at least one triangle. In each iteration, add
an arbitrary triangle t to T that is node-disjoint from all the triangles in the current solution, and
add to B all nodes that become bad in this iteration. Each time a new triangle t is added to T ,
there are at most 3δ nodes that become bad, i.e., the nodes of t plus (possibly) all their neighbors.
When the algorithm stops, the set B contains all nodes in V . For this to happen, we need that
the number i of iterations performed by the algorithm is at least i ≥ |V |3δ , implying that our greedy
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solution contains i = Ω(|V |) triangles. Since this is a feasible solution to the PIT instance, we can
conclude that optG = Ω(|V |) as well. �

Claim. Given a pair of vertices at distance k′ on the 1-skeleton of PFM , we can find in polynomial
time k node-disjoint triangles in G such that optG − k ≤ optG′ − k′.

Proof of Claim. Given a pair of vertices at distance k′ on the 1-skeleton of PFM , by applying
Algorithm 1, we can find a vertex w such that k′ ≤ 1Tw+ |Cw|2 . We will now compute in polynomial-

time a vertex x of PFM with the property that 1Tx+ |Cx|
2 = 1Tw+ |Cw|

2 , and in addition, all cycles
in Cx are triangles. We can do this by removing all non-triangle cycles in Cw, one at the time.

Let C ∈ Cw be a cycle that is not a triangle (if none exists, w = x). It is not difficult to see
that C contains at least one edge of the form {t3, t6}, {t3, t9} or {t6, t9} for some triangle t in G.
Without loss of generality, let us assume that C contains the edge {t3, t6}.

Suppose that C contains also the edge {t6, t9}. Then, let P be the (odd) path obtained by
removing from C the nodes t3, t6, t9 and their incident edges, let M be a maximum matching of P ,
and let x′ be the vertex defined as follows:

x′e =


1
2 if e ∈

{
{t3, t6}, {t3, t9}, {t9, t6}

}
1 if e ∈M
0 if e ∈ E(P ) \M
we otherwise

One can see that 1Tx′+
|Cx′ |

2 = 1Tw+ |Cw|2 , but x′ contains one less non-triangle cycle in its support.
Suppose now that C does not contain {t6, t9}, and therefore it has to contain one edge between
{t4, t6} and {t5, t6}, say {t4, t6}. If {t4, t5} ∈ E(C), then by letting P be the (odd) path obtained
by removing from C the nodes t6, t4, t5 and their incident edges, and M be a maximum matching
of P , we can define a vertex x′ as before that again has one less non-triangle cycle in its support.
Suppose then that {t4, t5} /∈ E(C), and therefore t5 /∈ V (Gw). In this case, let P be the (odd) path
obtained by removing the node t4 from C and its incident edges, let M be a maximum matching
of P , and let x′ be the vertex defined as follows:

x′e =


1 if e ∈M ∪ {t4, t5}
0 if e ∈ E(P ) \M
we otherwise

One can see that 1Tx′+
|Cx′ |

2 = 1Tw+ |Cw|2 , and x′ contains one less non-triangle cycle in its support.
By repeating the above argument, we can compute a vertex x with the property that all cycles

in Cx are triangles, and

1Tx+
|Cx|
2
≥ k′ (14)

Necessarily, each C ∈ Cx satisfies either E(C) ⊆ E1 or E(C) ⊆ E2. Let C1
x ⊆ Cx be the set

of triangles in Cx with edges in E1, and C2
x ⊆ Cx be the set of triangles in Cx with edges in E2.

Note that, for each triangle t in G with nodes u, v, z, there can be at most 4 triangles in C1
x whose

nodes are in the set {t1, . . . , t9, u, v, z}, and at most 4 triangles in C2
x whose nodes are in the set

{t̄1, . . . , t̄9, ū, v̄, z̄}. Let k1 be the number of triangles t of G that satisfy the following property: C1
x

contains 4 triangles whose nodes are in the set {t1, . . . , t9, u, v, z}. Similarly, let k2 be the number
of triangles t of G that satisfy the following property: C2

x contains 4 triangles whose nodes are in
the set {t̄1, . . . , t̄9, ū, v̄, z̄}. Without loss of generality, we can assume k1 ≥ k2.
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Given x, we construct a feasible solution for the PIT instance as follows. We add a triangle t of
G to our solution if Cx contains exactly 4 triangles whose nodes are in the set {t1, . . . , t9, u, v, z}.
Any two such triangles must necessarily be node-disjoint, and therefore the solution we construct
is indeed a feasible solution for our instance. Let k := k1 be the number of triangles of G in this
solution. Furthermore, let ktot be the total number of triangles in G. Then

|Cx| ≤ 6ktot + 2k (15)

where the inequality follows since |Cx| = |C1
x|+ |C2

x| and k = k1 ≥ k2.
The last ingredient that we need is the following. Given an optimal solution T ∗ for the PIT

instance of value optG, we can construct vertex x̃ of PFM as follows. For each triangle t of G with
nodes u, v, z such that t ∈ T ∗, we assign x̃e = 1

2 to all the edges of the 4 node-disjoint triangles
whose nodes are in the set {t1, . . . , t9, u, v, z}, and we assign x̃e = 1

2 to all the edges of the 4
node-disjoint triangles whose nodes are in the set {t̄1, . . . , t̄9, ū, v̄, z̄}. For each triangle t of G with
nodes u, v, z such that t /∈ T ∗, we assign x̃e = 1

2 to all the edges of the 3 node-disjoint triangles
whose nodes are in the set {t1, . . . , t9}, and we assign x̃e = 1

2 to all the edges of the 3 node-disjoint
triangles whose nodes are in the set {t̄1, . . . , t̄9}. For each node v ∈ V that is not a node of any
triangle in T ∗, we assign x̃e = 1 for e = {v, v̄}. We set x̃e = 0 to all remaining edges. Then

1T x̃+
|Cx̃|
2

=
|V ′|

2
+ 3ktot + optG (16)

Putting things together, we have that:

optG − k = 1T x̃+ |Cx̃|
2 −

|V ′|
2 − 3ktot − k (by (16))

≤ 1T x̃+ |Cx̃|
2 −

|V ′|
2 − 3ktot − |Cx|2 + 3ktot (by (15))

≤ 1T x̃+ |Cx̃|
2 − 1Tx− |Cx|2

≤ optG′ − k′ (by (14))

�
The above two claims yield the desired L-reduction.
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Appendix

Example A. In Figure 6, black dashed edges represent the edges in the support of a vertex y,
and gray dashed edges represent the edges in the support of a vertex z, all of value 1

2 . Here the
diameter bound is 4, but any path requiring one separate move for each of the 4 triangles, would
perform in total at least 5 moves.

  

Figure 6: Example showing that paths using only moves described in Lemma 1(a),(b),(c), might
exceed the diameter bound.

Proof of Lemma 1.

Proof. In each of the cases (a) − (f), we will provide a cost vector c ∈ RE , such that if one
considers the optimization problem max{cTx : x ∈ PFM}, then z and y are the unique optimal
basic solutions. This implies that z and y are adjacent vertices. In all cases, we are going to choose
c such that ce = 1 for all e such that e /∈ E(C) and ze > 0, and we are going to choose c such that
ce < 0 for all edges e such that e /∈ E(C) and ze = 0. The values for the coordinates of the edges
of the component C will be chosen as follows.

For (a), one can choose c such that ce = 1 for e ∈ E(C). For (b), assume without loss of
generality that |My∩E(C)| ≤ |Mz∩E(C)|. One can choose c such that ce = 1 for e ∈ E(C)∩My,

ce =
|My∩E(C)|
|Mz∩E(C)| for e ∈ E(C) ∩ Mz. For (c), assume without loss of generality that C is one

odd cycle in Cz(y). One can choose c such that ce = 1 for e ∈ E(C) ∩My, ce =
2|My∩E(C)|
|E(C)|+1 for

e ∈ E(C) \ My. For (d) and for (e), one can choose c such that ce = 1 for e ∈ E(C). For (f),
assume without loss of generality that the odd cycle in C belongs to the set Cz(y). One can choose

c such that ce = 1 for e ∈ E(C) : ze > 0, ce = |Mz∩E(P )|+0.5
|My∩E(P )| for e ∈ E(P ) ∩My. In all such

cases, one can see that z and y are the only optimal solutions that have the structure described in
Theorem 4.
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