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Abstract

In this paper, we present a framework used to construct and analyze algorithms for online opti-
mization problems with deadlines or with delay over a metric space. Using this framework, we present
algorithms for several di�erent problems. We present an O(D2)-competitive deterministic algorithm
for online multilevel aggregation with delay on a tree of depth D, an exponential improvement over
the O(D42D)-competitive algorithm of Bienkowski et al. (ESA ’16). We also present an O(log2 n)-
competitive randomized algorithm for online service with delay over any general metric space of n
points, improving upon the O(log4 n)-competitive algorithm by Azar et al. (STOC ’17).

In addition, we present the problem of online facility location with deadlines. In this problem,
requests arrive over time in a metric space, and need to be served until their deadlines by facilities that
are opened momentarily for some cost. We also consider the problem of facility location with delay,
in which the deadlines are replaced with arbitrary delay functions. For those problems, we present
O(log2 n)-competitive algorithms, with n the number of points in the metric space.

The algorithmic framework we present includes techniques for the design of algorithms as well as
techniques for their analysis.
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1 Introduction

Recently in the �eld of online algorithms, there has been an increasing interest in online problems involv-
ing deadlines or delay. In such problems, requests of some form arrive over time, requiring service. In
problems with deadlines, each request is equipped with a deadline, by which the request must be served.
In problems with delay, this hard constraint is replaced with a more general constraint. In those problems,
each request is equipped with a delay function, such that an algorithm accumulates delay cost while the
request remains pending. This provides an incentive for the algorithm to serve the request as soon as
possible. Deadlines are a special case of delay, as deadlines can be approximated arbitrarily well by delay
functions.
The mechanism of adding delay or deadlines can be used to convert a problem over a sequence into a
problem over time. For example, a problem in which an arriving request must immediately be served by
the algorithm can be converted into a problem with deadlines, providing more �exibility to a possible
solution. This conversion often creates interesting problems over time from problems that are trivial over
a sequence, as well as enables much better solutions (i.e. lower cost).
A case of special interest is the case of such problems over a metric space. A notable example, which
we consider in this paper, is the online multilevel aggregation problem. In this problem, the requests
arrive on the leaves of a tree. At any time, the algorithm may choose to transmit any subtree that includes
the root of the tree, at a cost which is the sum of the weights of the subtree’s edges. Pending requests on
any leaves contained in the transmitted subtree are served by the transmission. The general delay case of
this problem was �rst considered by Bienkowski et al. [7], who gave a O(D42D)-competitive algorithm
for the problem, with D the depth of the tree. Buchbinder et al. [13] then showed a O(D)-competitive
deterministic algorithm for the deadline case. In this paper, we improve the result of [7] for general delay
exponentially.
Another notable example is the online service with delay problem, presented in [5]. In this problem,
requests arrive on points in a metric space, accumulating delay while pending. There is a single server in
the metric space, which can be moved from one point to another at a cost which is the distance between the
two points. Moving a server to a point at which there exists a pending request serves that request. In [5],
anO(log4 n)-competitive randomized algorithm is given for the problem, where n is the number of points
in the metric space. This algorithm encompasses a random embedding to an hierarchical well-separated
tree (HST) of depth h = O(log n), and an O(h3)-competitive deterministic algorithm for online service
with delay on HSTs. In this paper, we also improve this result to O(log2 n) competitiveness.
In addition, we also present the problem of online facility location with deadlines. In this problem,
requests arrive over time on points of a metric space, each equipped with a deadline. The algorithm can
open a facility at any point of the metric space, at some �xed cost. Immediately upon opening a facility, the
algorithm may connect any number of pending requests to that facility, serving these requests. Connecting
a request to a facility incurs a connection cost which is the distance between the location of the request
and the location of the facility. In contrast to previous considerations of online facility location, in our
problem the facility is only opened momentarily, disappearing immediately after connecting the requests.
We also consider the problem of online facility locationwith delay, in which the deadlines are replaced
with arbitrary delay functions. For those problems we present O(log2 n)-competitive algorithms, with n
the number of points in the metric space.
The problem of facility location is a widely researched classic problem. The modi�cation of ephemeral
facilities is highly motivated, as it describes an option of renting facilities instead of buying them. As
renting shared resources is a growing trend (e.g. in cloud computing), this problem captures many practical
scenarios.
Our paper presents algorithms for online facility location with deadlines, online facility location with
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delay, online multilevel aggregation with delay and online service with delay. These algorithms all share
a common framework that we develop. The framework includes techniques for both the design of the
algorithms and their analysis. We believe the �exibility and generality of this framework would enable
designing and analyzing algorithms for additional problems with deadlines or with delay.

Our Results

In this paper, we present a framework used to construct and analyze online optimization problems with
deadlines or with delay over a metric space. Using this framework, we present the following algorithms.

1. An O(D2)-competitive deterministic algorithm for online multilevel aggregation with delay on a
tree of depth D. This is an exponential improvement over the O(D42D)-competitive algorithm in
[7].

2. An O(log2 n)-competitive randomized algorithm for online service with delay over a metric space
with n points. This improves upon the O(log4 n)-competitive randomized algorithm in [5].

3. An O(log2 n)-competitive randomized algorithm for online facility location with deadlines over a
metric space with n points.

4. AnO(log2 n)-competitive randomized algorithm for online facility location with delay over a metric
space with n points.

Our algorithms all share a common framework, which we present. The framework provides general struc-
ture to both the algorithm and its analysis.
Such an improvement for the online multilevel aggregation problem is only known for the special case of
deadlines, as given in [13].
The algorithms for online facility location with deadlines and with delay can be easily extended to the
case in which the cost of opening a facility is di�erent for each point in the metric space. This changes the
competitiveness of the algorithms to O(log2 ∆ + log ∆ log n), where ∆ is the aspect ratio of the metric
space.

Our Techniques

All of our algorithms are based on corresponding competitive algorithms for HSTs. The randomized
algorithms for general metric spaces are obtained through randomized HST embedding. The O(D2)-
competitive deterministic algorithm for online multilevel aggregation with delay on a tree is based on
decomposing the tree into a forest of HSTs. This decomposition is similar to that used in [13] for the case
of deadlines.
The framework – algorithm design. In designing algorithms for the problems over HSTs, we use a
certain framework. In an algorithm designed using the framework, there is a counter for every node (in
the case of facility location) or every edge (in the case of online multilevel aggregation and service with
delay). The sizes of the counters vary between the problems considered. When the counter for a tree
element (either node or edge) is full, the algorithm resets the counter and explores the subtree rooted at
that element.
The process of exploration serves some of the pending requests at that subtree, while simultaneously
charging counters of descendant tree elements. The exploration takes place in a DFS fashion – if at any time
during the exploration of an element the counter of a descendant element is full, the algorithm immediately
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suspends the exploration of the current element in favor of its descendant. The exploration of the original
element resumes only when the exploration of the descendant is complete.
The exploration of speci�c element has a certain budget, used to charge counters of descendants. This
budget is equal to the size of the counter of the element being explored. The algorithm adheres to the
budget very strictly, spending exactly the amount speci�ed. This is a crucial part of the framework, as
exceeding the budget (or falling below budget) by even a constant factor would yield a competitiveness
which is exponential in the depth of the tree.
This DFS exploration method is very di�erent from previous algorithms, and enables us to get our improved
results. The counter-based structure of our algorithms enables this DFS exploration while controlling the
budget. Using the counter-based structure is, in turn, enabled by the techniques that we present in our
framework’s analysis.
The framework – analysis. The analysis of the algorithms of this framework require constructing a
pre�ow - a weighted directed graph which is similar to a �ow network, but in which we allow nonnegative
excesses at nodes (i.e. more incoming than outgoing). We refer to nodes of the pre�ow as charging nodes.
We construct a source charging node, from which the output is proportional to the cost of the optimum,
and then use the pre�ow to propagate this output throughout the pre�ow graph. Since the excesses are
nonnegative, the sum of the excesses of any subset of charging nodes is a lower bound of the total output
from the source charging node, and thus also some lower bound on the cost of the optimum. We construct
the pre�ow in a manner that allows us to locate such a subset of high-excess charging nodes, thus providing
the required lower bound.
In the pre�ows we construct, each tree element (node or edge) is converted to multiple charging nodes,
each corresponding to an exploration of that tree element. The possible edges between charging nodes
in the pre�ow depend on the structure of the tree and the operation of our algorithm. Of those possible
edges, we describe a procedure that chooses the actual edges of the pre�ow. This procedure depends on
the optimal solution. Though the original metric space is a tree, the multiple copies of each tree element
cause the resulting pre�ow to be a general directed graph.
The goal of the pre�ow creation procedure is to propagate the optimum’s costs to some “top layer” of
charging nodes. This top layer usually consists of nodes corresponding to explorations of the root tree
element, though in the case of online service with delay the de�nition is di�erent. The charging nodes of
that top layer are then chosen to lower bound the optimum, as described.
The pre�ow creation procedure involves creating colors at the “top” layer of the charging nodes. These
colors are then propagated, through some set of propagation rules, to nodes in lower layers. Each color
corresponds to the charging node in which it originated, with the exception of two colors – the empty
color, and an additional “special” color. As nodes are colored, the possible edges that contain them become
actual edges of the pre�ow.
We now discuss the techniques used in each of the problems in this paper.
Online facility location with deadlines. We use our framework in constructing an algorithm for this
problem over an HST. The algorithm maintains a counter on each node (other than the root node), such
that each counter is of size f , where f is the cost of opening a facility. Whenever a counter is full, it
resets and triggers an exploration of that node. Whenever the deadline of a pending request expires, the
algorithm starts an exploration of the root node.
In the exploration of a node u, the algorithm opens a facility at u, and considers pending requests in the
node’s subtree according to increasing deadline. For each request considered, it raises the counter of the
child node on the path to the request by the cost of connecting that request to u. If the counter of the child
is full, an exploration of that child is called recursively, which would surely serve the considered request.
Otherwise, the algorithm connects that request to u. As per the framework, the budget of u’s exploration
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for raising these counters is exactly f .
Online facility location with delay. The algorithm for this problem is an extension of the deadline
case. An exploration of the root node is now triggered upon a set of requests which is critical, i.e. has
accumulated large delay.
The signi�cant di�erence between the delay case and the deadline case is in the exploration itself. In the
deadline case, the exploration of a node u spends its budget attempting to “push back” the next occurrence
of a single event (i.e. the earliest deadline of a pending request in the subtree rooted at u). In the delay case,
there are two events to consider. The �rst event is a single request with a delay large enough to justify
connection to u. The second event is a “coalition” of many tightly-grouped requests with small individual
delay, but large overall delay. This coalition does not justify connection to u, but does merit opening a
facility near the coalition.
Online multilevel aggregation with delay. In our algorithm for this problem over HSTs, each edge has
a counter. The size of the counter is the weight of edge. This is in contrast to our algorithms for the facility
location problems, in which all counters were of the same size. We assume, without loss of generality, that
there exists a single edge exiting the root node, called the root edge. As in the facility location case, an
exploration of the root edge is triggered when the delay of a set of requests becomes high.
In our algorithm, exploring an edge means adding descendant edges to the transmitted subtree. The ex-
plored edge again has a budget equal to its weight. The exploration repeatedly chooses the earliest point
in time in which the delay of a set of requests exceeds the cost of expanding the transmission to include
these requests. It then raises the counter of the descendant edge in the direction of that request set. Note
the contrast with the algorithms for facility location – the explored edge is allowed to raise the counters
of its descendant edges, and not just of its immediate children.
While the analysis for our facility location problems required constructing a single pre�ow to get a lower
bound on the cost of the optimum, the analysis for online multilevel aggregation with delay requires
constructing an additional pre�ow to get an upper bound on the cost of the algorithm.
Online service with delay. Our algorithm for this problem uses the exploration method of the algorithm
for online multilevel aggregation with delay. However, the tree to be explored is not the entire tree, but
rather some subtree according to the location of the server. The concepts of relative trees and major edges
are de�ned in a similar way to [5]. We also use a potential function based on the distance of the algorithm’s
server from the optimum’s server. As the algorithm consists (mainly) of making calls to the multilevel
aggregation exploration, the analysis divides these explorations to those for which the optimum can be
charged (using similar arguments to the analysis of the multilevel aggregation algorithm), and explorations
for which the costs are covered by the potential function.

Related Work

The online multilevel aggregation problem generalizes a range of studied problems, such as the TCP ac-
knowledgment problem [14, 17, 22] and the joint replenishment problem [8, 12, 15]. For both the deadline
and delay variants of online multilevel aggregation, the best known lower bounds are only constant [8].
Bienkowski et al. [7] were the �rst to present an algorithm for the online multilevel aggregation prob-
lem with arbitrary delay functions, which is O(D42D)-competitive. Buchbinder et al. [13] presented an
O(D)-competitive algorithm for the special case of deadlines.
The problem of online service with delay was presented in [5], along with the O(log4 n)-competitive
randomized algorithm for a general metric space of n points. The problem has also been studied over
speci�c metric spaces, such as uniform metric and line metric, in which improved results can be achieved
[5, 11].
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Another metric optimization problem with delay is the problem of matching with delay [2, 19, 18, 4, 9, 10].
For this problem, arbitrary delay functions are intractable, and thus the main line of work focuses on linear
delay functions.
Additional problems with delay exist other than those over a metric space. The set aggregation problem,
presented in [16], is a variant of set cover with delay. The problem of bin packing with delay is presented
in [3].
The classic online facility location problem, suggested by Meyerson [23], has also been studied [21, 1]. In
this problem, requests arrive one after the other, and the algorithm must either connect a request to an
existing facility immediately upon the request’s arrival, or open a facility at the request’s location. This
problem is di�erent from the problems of facility location with deadlines and facility location with delay
presented in this paper. The main di�erence is that in our problems, a facility is only opened momentarily,
which only allows immediate connection of pending requests. In contrast, an opened facility in the online
facility location of [23] is permanent, allowing the connection of any future request to that facility.

Paper Organization Section 2 presents the problem of online facility location with deadlines, and an
O(log2 n)-competitive randomized algorithm for the problem, as well as its analysis. Section 3 discusses
the more general problem of online facility location with delay, and extending the algorithm for the dead-
line case in section 2 to an O(log2 n)-competitive algorithm for the case of delay.
Section 4 presents the O(D2)-competitive deterministic algorithm for online multilevel aggregation with
delay. Section 5 presents the O(log2 n)-competitive randomized algorithm for online service with delay,
which relies on the algorithm for online multilevel aggregation with delay given in Section 4.

2 Online Facility Location with Deadlines

2.1 Problem and Notation

In the online facility location with deadlines problem, requests arrive on points of a metric space over time.
Each request is associated with a deadline, by which it must be served. An algorithm for the problem can
choose, in any point in time, to open a facility at any point in the metric space momentarily, at a cost of
f . Immediately upon opening the facility, the algorithm must choose the subset of pending requests (i.e.
requests that have arrived but have not been served) to connect to the facility. The cost of connecting each
request to the facility is the distance between the request’s location and the facility’s location. Connecting
a request to a facility serves that request. Immediately after connecting the requests, the facility disappears.
We allow opening a facility at the same point more than once, at di�erent times.
Formally, we are given a metric spaceA = (A, δA) such that |A| = n. A request is a tuple q = (vq, rq, dq)
such that vq is a point in A, the arrival time of the request is rq and the deadline of the request is dq . We
assume, without loss of generality, that all deadlines are distinct. For any instance of the problem, the
algorithm’s solution has two costs. The �rst is the buying cost (or opening cost) ALGB = mf , where m
is the number of facilities opened by the algorithm. Denoting by Q the set of requests in the instance,
and denoting by βq the location of the facility to which the algorithm connects request q, the second cost
of the algorithm is the connection cost ALGC =

∑
q∈Q δA(vq, βq). Wherever a single metric space A is

considered, we write δ = δA.
The goal of the algorithm is to minimize the total cost, which is

ALG = ALGB + ALGC
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For the special case in which A is a tree T , and δ is the distance between nodes in T , we denote the root
of T by r and the weight function on the edges of the tree by w. We assume, without loss of generality,
that the requests only arrive on leaves of the tree.
The following de�nitions regarding trees are used throughout the paper.

De�nition 2.1. For every tree node u ∈ T , we use the following notations:

• For u 6= r, we denote by p(u) the parent of u in the tree.

• We denote by Tu the subtree rooted at u.

• For a set of requests Q ⊆ Tu, we denote by TQu ⊆ Tu the subtree spanned by u and the leaves of Q.

• We de�ne the height of u to be the depth of Tu.

The following de�nition is similar to the usual de�nition of a β-HST, except that we allow a child edge to
be strictly smaller than 1

β times its parent edge.

De�nition 2.2 ((≥ β)-HST). A rooted tree T is a (≥ β)-HST if for any two edges e, e′ ∈ T such that e is
a parent edge of e′, we have that w(e) ≥ βw(e′).

When considering the problem over a tree T , we assume, without loss of generality, thatw(e) ≤ f for any
edge e ∈ T . Indeed, if this is not the case, no request would be connected over e, e�ectively yielding two
disjoint instances of the problem.
In this section, we prove the following theorem.

Theorem 2.3. There exists an O(log2 n)-competitive randomized algorithm for online facility location with
deadlines for any metric space of n points.

2.2 Algorithm for HSTs

We present an algorithm for facility location with deadlines on a (≥ 2)-HST T of depth D. We denote the
root of the tree by r.
We make the assumption that the total weight of any path from the root to a leaf is at most f . In a (≥ 2)-
HST, the total weight of such a path is at most twice the weight of the top edge, which is at most f . Thus,
this assumption only costs us a constant factor of 2 in competitiveness.
Without loss of generality, we allow the algorithm to open facilities on internal nodes of the tree. Indeed,
any algorithm that opens facilities on internal nodes can be converted to an algorithm that only opens
facilities on leaves in the following manner. Consider a facility opened by the original algorithm on the
internal node u, and denote by Q the set of requests connected to that facility. The modi�ed algorithm
would open the facility at vq∗ instead, where q∗ = arg minq∈Q δ(u, vq), and connect the original requests.
Through triangle inequality, the connection cost of the modi�ed algorithm is at most twice larger.
Algorithm’s description. The algorithm for facility location with deadlines on a (≥ 2)-HST is given
in Algorithm 1. The algorithm waits until the deadline of a pending request. It then begins exploring
the root node. An exploration of a node u consists of considering the pending requests in Tu by order
of increasing deadline. The exploration has a budget of exactly f to spend on raising counters of child
nodes – it maintains that budget in the variable bu. When considering a request q, the algorithm raises the
counter of the child node v, denoted cv in the algorithm, for the child node v in the request’s direction.
The counter is raised by the smallest of δ(vq, u), the amount required to �ll cv , and the remaining budget
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Algorithm 1: Facility Location with Deadlines
1 Initialization.
2 Initialize cu ← 0 for any node u ∈ T\{r}.
3 Declare bu for any node u ∈ T .
4

5 Event Function UponDeadline() // Upon expired deadline of pending request at time t
6 Explore(r)

7

8 Function Explore(u)
9 Open(u)

// Spend a budget of f on charging child node counters
10 set bu ← f
11 while bu 6= 0 and there remain pending requests in Tu do

// Consider pending requests by increasing deadline
12 let q be the pending request with earliest deadline in Tu
13 let v be the child of u on the path to vq
14 call Invest(u,v,δ(u, vq))
15 if cv = f then set cv ← 0 ; call Explore(v).
16 if q is still pending then connect q to facility at u

bu. If this �lls the counter of v, the exploration of u is paused, and a new exploration of v is started, in a
DFS manner. We claim, in the analysis, that this exploration of v connects q. Otherwise, the request q is
connected to u.
The operation of the algorithm is visualized in Figure 6 of Appendix A.

2.3 Analysis

Fix any instance of online facility location with deadlines on a (≥ 2)-HST. Let OPT be any solution to the
instance. We denote by OPTB the total buying cost of OPT, and by OPTC the total connection cost of
OPT. Denote by ALG the total cost of the solution of Algorithm 1 for this problem. In this subsection,
we prove the following theorem.

Algorithm 1: Facility Location with Deadlines (cont.)
1 Function Open(u)
2 open facility at u.
3 if u is a leaf node then connect to facility all pending requests on u
4

5 Function Invest(u,v,x) // Invests in v’s counter either x, or until v’s counter
is full, or until u is out of budget.

6 let y ← min(x, bu, f − cv)
7 increase cv by y
8 decrease bu by y
9 return y
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Theorem 2.4. ALG ≤ O(D2) ·OPTB +O(D) ·OPTC .

To prove Theorem 2.4, we show validity of the algorithm, an upper bound for ALG and a lower bound for
OPT.
Throughout the analysis, we denote by k the number of calls to UponDeadline made by the algorithm.
We also denote by t1, ..., tk the times of these k calls, by increasing order.

2.3.1 Validity of the Algorithm

The following proposition and its corollary show that the algorithm is valid.

Proposition 2.5. Let q be a request considered in a call toExplore(u). Then q is servedwhenExplore(u)
returns.

Proof. This is guaranteed by the condition check at the end of the main loop in Explore.

Corollary 2.6. Every request is served by its deadline. That is, the algorithm is valid.

Proof. Observe that upon the deadline of a request q, Explore(r) is called, and immediately considers
q. Proposition 2.5 concludes the proof.

2.3.2 Upper Bounding ALG

We now proceed to bound ALG by proving the following lemma.

Lemma 2.7. ALG ≤ 3 · (D + 1) · kf .

The proof of Lemma 2.7 is through providing an upper bound for the cumulative amount by which counters
are raised in the algorithm, then bounding the cost of the algorithm by that cumulative amount.

Observation 2.8. Observe any node u, and consider a call to Explore(u). Denote by x the total amount
by which Explore(u) increases the counters of its children nodes through calls to Invest. Then we have
that x ≤ f . Moreover, if there exists a pending request in Tu after the return of Explore(u), then x = f .

From the previous observation, the following observation follows.

Observation 2.9. For any u, Explore(u) is called at most once at any time t.

Using the last observation, we refer to a call to Explore(u) at time t by Exploret(u).
Observe the state of each counter in the algorithm over time. The counter undergoes phases, such that in
the start of each phase its value is 0. The counter increases in value during the phase until it reaches f ,
and is then reset to 0, triggering a service and the end of the phase.
We de�ne a virtual counter c̄u which contains the cumulative value of cu. That is, whenever cu increases,
c̄u increases by the same amount, but c̄u is never reset when cu is reset. For the sake of analysis, we also
consider a virtual counter c̄r , which is raised by f whenever Explore(r) is called.
We de�ne C̄j =

∑
node u at depth j c̄u. Observe that C̄0 = c̄r .

Proposition 2.10. For every j ∈ [D], C̄j ≤ C̄j−1.

9



Proof. Observe that the counters at depth j are raised only upon a call to Explore(u) for a node u at
depth j − 1. Explore(u) is only called after c̄u is raised by f , and every such call raises counters at
depth j by at most f (using Observation 2.8).

Corollary 2.11.
∑

u∈T c̄u ≤ (D + 1)kf .

Proof. Observe that C̄0 = c̄r = kf . Using Proposition 2.10, we have that

∑
u∈T

c̄u =
D∑
j=0

C̄j ≤
D∑
j=0

C̄0 = (D + 1)kf

Proposition 2.12. Suppose the function Explore(u) calls Invest(u, v, x) when considering request q.
Then at least one of the following holds:

1. Invest(u, v, x) returns x.

2. bu = 0 after the return of Invest.

3. The condition check in Explore of whether q is still pending fails.

Proof. If Invest(u, v, x) does not return x, and bu 6= 0 after its return, then it must be that cv = f .
In this case, Explore(u) calls Explore(v) when checking the condition after the return of Invest.
Request q is the pending request with earliest deadline under Tu, and thus also under Tv . Hence, q is
immediately considered by Explore(v), and is thus served by the end of Explore(v) by Proposition
2.5.

Proposition 2.13. ALG ≤ 3 ·
∑

u∈T c̄u

Proof. The costs of the algorithm (both opening and connection) are contained in calls to the function
Explore (where we associate the opening costs in Open to the Explore call that invoked it). In each
call to Explore(u), the algorithm has a cost of f in opening a facility at u.
In addition, the algorithm incurs connection costs, as Explore(u) connects any considered request if
it is still pending at the end of the loop’s iteration. From Proposition 2.12, if Explore(u) connects a
request q, then either the preceding Invest(u, v, δ(u, vq)) returned δ(u, vq), or bu = 0 after the return
of that call to Invest.
Observe the calls to Invest(u, v, δ(u, vq)) that return δ(u, vq). For those requests, the connection cost
of q is exactly the return value of Invest. But the return values of Invest sum to at most the initial
value of bu, which is f . Thus, connection costs for those requests sum to at most f .
As for calls to Invest after which we have that bu = 0, observe that there is at most one such call,
after which the loop in Explore ends. The connection cost for the request considered in this iteration
is δ(u, vq) ≤ f .
Overall, the connection costs in Explore(u) sum to at most 2f.

Thus, in each call to Explore(u), the total cost of the algorithm (buying and connection) is at most 3f .
Observing that Explore(u) is called only upon raising c̄u by f concludes the proof.

Proof of Lemma 2.7. The lemma results directly from Proposition 2.13 and Corollary 2.11.
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(a) Charging Nodes for Single Tree Node (b) Charging Nodes for a Branch

Sub-�gure 1a is a visualization of the charging nodes corresponding to a single tree node, displayed over
a timeline. Each rectangle is a charging node. Note the charging node from −∞ and the charging node to
∞.
Sub-�gure 1b shows the charging nodes corresponding to a branch in the tree. Observe the containment
of charging node intervals for a certain tree node in the intervals of descendant tree nodes.

Figure 1: Visualization of Charging Nodes

2.3.3 Lower Bounding OPT

We now lower bound the cost of OPT.

Charging nodes and incurred costs. We de�ne a charging node to be a tuple (u, [τ1, τ2]) such that
u ∈ T , and τ1, τ2 are two subsequent times in which Explore(u) is called. We allow the charging
nodes of the form (u, [τ1, τ2]) in which τ1 = −∞ and τ2 is the �rst time in which Explore(u) is called.
Similarly, we allow the charging nodes (u, [τ1, τ2]) in which τ1 is the last time Explore(u) is called, and
τ2 =∞. We denote by M the set of charging nodes.
For a charging node µ = (u, [τ1, τ2]), we de�ne the following.

1. Let cb(µ) be the buying cost incurred by OPT in µ, de�ned to be the total cost at which OPT opened
facilities in Tu during [τ1, τ2].

2. Let cc(µ) be the connection cost incurred by OPT in µ, de�ned to be
∑

q∈Q δ(p(u), vq), where Q is
the set of requests q such that vq ∈ Tu, rq ∈ [τ1, τ2] and OPT connected q to a facility outside Tu.

Let c(µ) = cb(µ) + cc(µ) be the total cost OPT incurred in µ.

Lemma 2.14.
∑

µ c(µ) ≤ 2(D + 1) ·OPTB + 4 ·OPTC .

Proof. We consider each action of OPT and how it a�ects the incurred cost at various charging nodes.
For a facility that is opened by OPT at node u at time t to participate in cb((u′, [τ1, τ2])), we must have
that u ∈ Tu′ . Hence, u′ is on the branch from the root to u, and thus u′ is one of at most D + 1 possible
nodes. We also have that t ∈ [τ1, τ2]. Using Observation 2.9, we have that τ2 > τ1, and therefore t can
belong to at most two such intervals, for every choice of u′. This yields that the cost of each facility opened
by OPT is counted in

∑
µ cb(µ) at most 2(D + 1) times.
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As for connection costs, consider a request q that OPT connects to a facility at node v. Denote by u the
least common ancestor of v and vq . If OPT incurs connection cost due to q in charging node (u′, [τ1, τ2]),
then vq ∈ Tu′ and v /∈ Tu′ . Therefore, u′ must be on the path from vq to u (including vq , and not including
u). Let u = u(0), u(1), u(2), ..., u(m) = vq be the path from u to vq . As with the buying cost, for every
l ∈ [m], OPT may incur connection cost due to q in at most 2 charging nodes of the form (u(l), [τ1, τ2])
for some τ1, τ2. Therefore, denoting the total connection cost of OPT due to connecting q by X , we have
that

X ≤ 2 ·
m∑
l=1

δ(u(l−1), vq)

Now observe that since the tree is a (≥ 2)-HST, we have that the total weight of any path from a node to
a descendant leaf is at most the weight of the node’s ancestor edge. Therefore, for every l ∈ [m]:

δ(u(l−1), vq) = w((u(l−1), u(l))) + δ(u(l), vq)

≥ 2δ(u(l), vq)

Therefore, we have that δ(u(l), vq) ≤ 1
2l
· δ(u, vq). Hence:

X ≤ 2 ·
m∑
l=1

1

2l−1
· δ(u, vq) ≤ 4δ(u, vq)

Since u is on the path from v to vq , we have that δ(u, vq) ≤ δ(v, vq). Hence X is at most 4 times the
connection cost of OPT for q. This concludes the lemma.

De�nition 2.15 (excess). LetG = (V ′, E) be a directed multigraph, with a non-negative weight function
α : E → R+ de�ned on its edges. We denote byE+

v ⊆ E the set of edges entering node v, and byE−v ⊆ E
the set of edges leaving v. We de�ne the excess at a node v ∈ V ′ to be χv =

∑
σ∈E+

v
α(σ)−

∑
σ∈E−v α(σ).

Note that every edge σ ∈ E from u to v is counted in χu and χv with opposite signs. The following
observation follows.

Observation 2.16. For any G = (V ′, E) and weights α : E → R+, we have
∑

v∈V ′ χv = 0.

De�nition 2.17. For a graph G = (V ′ = V ∪ {s}, E) and non-negative weights α : E → R+, We say
that Z = (G, s, α) is a pre�ow if for every node v 6= s we have that χv ≥ 0. We call s the source node of
the pre�ow.
Observation 2.16 yields that χs ≤ 0 for every pre�ow Z = (G, s, α). We write ωZ = −χs.

Proposition 2.18. ForG = (V ∪{s}, E) a directed graph, for weights α : E → R+ such thatZ = (G, s, α)
is a pre�ow, and for every S ⊆ V , we have

∑
v∈S χv ≤ ωZ .

Proof. Observation 2.16 and the de�nition of a pre�ow, we get
∑

v∈S χv ≤
∑

v∈V χv = −χs = ωZ .

We now construct a pre�ow to lower bound OPT. The graph G underlying the pre�ow has the set of
nodes M ∪ {s}, where M is the set of charging nodes and s is a source node.
Consider a charging node µ = (u, [τ1, τ2]). We have that [τ1, τ2] corresponds to a phase of the counter cu,
since cu was empty at τ1 and was �lled and emptied again until time τ2.

De�nition 2.19 (Investing). Observe two charging nodes µ = (u, [τ1, τ2]) and µ′ = (u′ = p(u), [τ ′1, τ
′
2]).

We say that µ′ invested x in µ if the function call Exploreτ ′1(u′) increased cu by x, through calls to
Invest, during the phase of cu between τ1 and τ2.

12



Procedure 2: Pre�owBuilder - Facility Location with Deadlines
1 Initialization.
2 Let the set of vertices of G be M ∪ {s}, and initialize G’s edge set to be E = ∅.
3 Initialize dictionary Color[µ] = None for every µ ∈M .
4 foreach µ = (u, [τ1, τ2]) ∈M such that OPT opened a facility in Tu during [τ1, τ2] do
5 set Color[µ]← Special

6 foreach µ ∈M such that c(µ) > 0 do
7 add a new edge σ = (s, µ) to E, and set α(σ) = c(µ)

8

9 Function PreflowBuilder()
// Create new colors for root charging nodes

10 for i from 1 to k do
11 let µ← (r, [tri−1, t

r
i ])

12 SetColor(µ,µ)

// Propagate colors to other charging nodes
13 for j from 1 to D do
14 foreach µ = (u, [τ1, τ2]) ∈M such that u is of depth j do
15 foreach edge σ ∈ E−µ incoming to a node µ′ do
16 if SetColor(µ,Color[µ′]) 6= None then break

Procedure 2: Pre�owBuilder - Facility Location with Deadlines (cont.)
1 Function SetColor(µ, µ?) // If Color[µ] = None, tries to set it to µ?

2 let [τ1, τ2] be the interval of µ and let [τ?1 , τ
?
2 ] be the interval of µ?.

3 if ( Color[µ] = None and τ1 6= −∞ and λµ ≤ τ?2 ) then
4 add the edges in Ē incoming to µ to E.
5 set Color[µ]← µ?

6 return Color[µ]

De�nition 2.20 (λtu and λµ). For every function call Exploret(u) for some u ∈ T and time t, we denote
by λtu the earliest deadline of a pending request in Tu immediately after the return of Exploret(u) (if
there are no pending requests in Tu, we write λtu =∞).
In addition, for a charging node µ = (u, [τ1, τ2]) with τ1 6= −∞, we write λµ = λτ1u .

Possible edges. We describe the set of possible edges in G from nodes in M to other nodes in M ,
denoted by Ē, and the weight function α : Ē → R+. The �nal set of edges added to G by Procedure 2
from the nodes ofM to themselves is a subset of Ē. The set Ē contains an edge σ from any charging node
µ1 = (u1, [τ

1
1 , τ

1
2 ]) to any charging node µ2 = (u2, [τ

2
1 , τ

2
2 ]) if µ1 invested in µ2. We set the weight α(σ)

to be the amount that µ1 invested in µ2.
In the analysis of the pre�ow Z = (G, s, α) resulting from this procedure, we refer to the values of the

variables used in the procedure in their �nal state.

Proposition 2.21. For every charging node µ = (u, [τ1, τ2]) ∈M , we have that
∑

σ∈E−µ α(σ) ≤ f .
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(a) Initial state before coloring (b) After assigning colors to root charging nodes

(c) After propagating color to depth 1 (d) Final state after pre�ow construction

In this �gure, we see the stages of the pre�ow construction in Procedure 2, visualized on a set of charging
nodes corresponding to a branch in the tree. Sub-Figure 2a shows the state after the initialization, where
the Special color has been assigned. The node with the Special color appears as striped. The gray
edges are the edges of Ē, not yet added to the edge set E.
Sub-Figure 2b shows the state after the creation of the colors at the root charging nodes. Note that when a
node is colored, the edges of Ē incoming to that node are added to E. In the �gure, nodes with the None
color for which the procedure will not call SetColor again (i.e. None is their �nal color) are colored
gray. Note that the procedure does not call SetColor for the �nal root node (the interval of which ends
at∞), and thus its color remains None.
Sub-Figure 2c shows the state after the propagation of colors to the nodes at depth 1. Sub-Figure 2d shows
the �nal state of the pre�ow, after coloring the nodes at the maximum depth. Note that the color of a node
µ at the maximum depth is either Special or None, as λµ =∞.

Figure 2: Visualization of pre�ow construction

Proof. Observe that E−µ is a subset of Ē. In Ē, the sum of α(σ) over edges σ outgoing from µ is exactly
the amount µ invested in other charging nodes, which is at most f .

Corollary 2.22. For a charging node µ ∈M in which
∑

σ∈E+
µ
α(σ) ≥ f we have χµ ≥ 0.

Proposition 2.23. Let µ = (u, [τ1, τ2]) be such that Color[µ] = µ? for some charging node µ? =
(r, [τ?1 , τ

?
2 ]). Then OPT did not open a facility in Tu during [τ1, τ

?
2 ].

Proof. Since Color[µ] 6= Special, we have that OPT did not open a facility in Tu during [τ1, τ2].
The proof is by induction on the depth of u. If u = r, then it must be that µ = µ?, completing the
proof. Otherwise, observe the node µ′ = (p(u), [τ ′1, τ

′
2]) from which µ inherited its color. By the induction

hypothesis, OPT did not open a facility in Tp(u) during [τ ′1, τ
?
2 ]. Since there exists an edge from µ to µ′,

we must have that τ ′1 ∈ [τ1, τ2], which completes the proof.

Lemma 2.24. Z = (G, s, α) is a pre�ow. That is, for every charging node µ = (u, [τ1, τ2]) ∈ M we have
χµ ≥ 0.
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Proof. We observe the following cases according to the �nal values of the variables in the graph construc-
tion procedure.
Case 1: Color[µ] = Special. In this case, OPT opened a facility in Tu during [τ1, τ2], implying that
c(µ) ≥ f . In the initialization of Procedure 2, an edge σ from s to µ with α(σ) = c(µ) ≥ f is created, and
thus Corollary 2.22 implies that χµ ≥ 0.
Case 2: Color[µ] = µ? for some charging node µ?. In this case, incoming edges to µ were added, with a
total weight which is the total amount invested by µ. Since Color[µ] = µ? was set by SetColor, we
must have that τ1 6= −∞ and that λµ < ∞. Using Observation 2.8, we have that Exploreτ1(u) raised
counters by a total of exactly f . Corollary 2.22 therefore proves the lemma for this case.
Case 3: Color[µ] = None. Observe any edge σ ∈ E−µ , incoming to some node µ′ = (u′, [τ ′1, τ

′
2]). It

must be that Color[µ′] = µ?, for some charging node µ? = (r, [τ?1 , τ
?
2 ]). Note that µ′ invested in µ, and

thus τ ′1 ∈ [τ1, τ2]. Combining Proposition 2.23 for µ′ and the fact that Color[µ] 6= Special, we have
that OPT did not open a facility in Tu during [τ1, τ

?
2 ].

We therefore have that for every request q such that vq ∈ Tu and [rq, dq] ⊆ [τ1, τ
?
2 ], OPT must connect

q to some facility at a node v /∈ Tu. If it also holds that rq ≤ τ2, then OPT incurs a connection cost of
δ(vq, u

′) in µ on connecting q. We proceed to �nd such requests q.
Now observe that µ′ invested α(σ) in µ. Thus, there exists a set of requests Lσ that are considered in
Exploreτ ′1(u′) such that α(σ) ≤

∑
q∈Lσ δ(aq, u

′) and aq ∈ Tu for every q ∈ Lσ . Since the requests of
Lσ are considered in Exploreτ ′1(u′), we have that λµ′ ≥ dq for every q ∈ Lσ . Since Color[µ′] = µ?,
we have that λµ′ ≤ τ?2 , and thus dq ≤ τ?2 .
Observe any q ∈ Lσ . It holds that rq ≤ τ ′1 ≤ τ2, since q is considered in Exploreτ ′1(u′). Now, observe
that Color[µ] = None even though Color[µ′] = µ?. Hence, either τ1 = −∞ or λµ > τ?2 . If τ1 = −∞,
then rq ≥ τ1. Otherwise, τ1 6= −∞ and λµ > τ?2 . Since dq ≤ τ?2 , it must be that q was not pending
immediately after the return of Exploreτ1(u). However, Exploreτ ′1(u′) considered q when raising cu
toward Exploreτ2(u). Thus, q was released after τ1.
Overall, for every q ∈ Lσ we have that rq ∈ [τ1, τ2] and dq ≤ τ?2 . Thus, OPT incurs a connection cost of
at least

∑
q∈Lσ δ(vq, u

(1)) in the charging node µ due to Lσ , which is at least α(σ).
Now, if for every distinct σ1, σ2 ∈ E−µ we have that Lσ1 ∩ Lσ2 = ∅, then the connection cost OPT
incurs in µ is at least

∑
σ∈E−µ α(σ). Indeed, observe that σ1 and σ2 enter two distinct charging nodes

µ(1) = (p(u), [τ
(1)
1 , τ

(1)
2 ]) and µ(2) = (p(u), [τ

(2)
1 , τ

(2)
2 ]). Lemma 2.9 implies that τ (1)

1 6= τ
(2)
1 . It is enough

to observe that for b ∈ {1, 2}, each request q ∈ Lσb is pending before τ (b)
1 and is served after τ (b)

1 .
Overall, we have that c(µ) ≥

∑
σ∈E−µ α(σ). In the initialization of Procedure 2, an edge σ from s to µwith

α(σ) = c(µ) is created, and thus χµ ≥ 0 as required. This concludes the proof of the current case, and the
lemma.

Lemma 2.25. For each i ∈ [k] and charging node µ = (r, [ti−1, ti]), we have χµ ≥ f .

Proof. Observe that E−µ = ∅. It remains to see that
∑

σ∈E+
µ
α(σ) ≥ f .

If Color[µ] 6= None, it holds that
∑

σ∈E+
µ
α(σ) ≥ f identically to Cases 1 and 2 in Lemma 2.24.

Otherwise, we must have that SetColor(µ, µ) returned None. Thus, it must be that either ti−1 = −∞
or λµ > ti. We claim that either of these cases contradicts Color[µ] 6= Special. Indeed, observe that
Exploreti(r) is called upon a deadline of a request q. If ti−1 = −∞, it holds that rq ≥ ti−1. If λµ > ti,
it must be that rq ≥ ti−1 as well. Overall, [rq, dq] ∈ [ti−1, ti], and thus OPT must open a facility in that
interval, in contradiction.
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(a) Case 1: Color = Special (b) Case 2: Color = µ? (c) Case 3: Color = None

Figure 3: Cases of Lemma 2.24

Lemma 2.26. kf ≤ 2(D + 1) ·OPTB + 4 ·OPTC

Proof. Lemma 2.24 yields that Z is a valid pre�ow. For i ∈ [k], let µi = (r, [ti−1, ti]). Using Lemma 2.25
and Proposition 2.18, we have that

kf ≤
k∑
i=1

χµi ≤ ωZ

Now observe that E+
s = ∅, and that

∑
σ∈E−s α(σ) =

∑
µ∈M c(µ). Using Lemma 2.14, we obtain

kf ≤ ωZ =
∑
σ∈E−s

α(σ) =
∑
µ∈M

c(µ) ≤ 2(D + 1) ·OPTB + 4 ·OPTC

as required.

Proof of Theorem 2.4. Combining Lemmas 2.7 and 2.26, we have that

ALG ≤ Dkf ≤ O(D2) ·OPTB +O(D) ·OPTC

Remark 2.27. Our algorithm and its analysis also work in the case that the cost of opening a facility is
di�erent between nodes in the tree, as long as the cost of opening a facility at a node is at least the cost of
opening a facility at its parent node. If this is not the case, observe that the analysis of Case 1 of Lemma
2.24 would no longer hold.
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2.4 From HST to General Metric Space

In this subsection, we show how the deterministic Algorithm 1 for (≥ 2)-HSTs yields a randomizedO(log2 n)-
competitive algorithm for facility location with deadlines on a general metric space with n points, thus
proving Theorem 2.3. To do this, we consider a standard probabilistic embedding of a metric space to an
HST.

Theorem 2.28. For any metric space X = (X, δX ) such that |X | = n, there exists a distribution D over
(≥ 2)-HSTs of depth O(log n) such that X are the leaves of the HST, such that the expected distortion is
O(log n). That is, for every x1, x2 ∈ X we have that

δX (x1, x2) ≤ ET ∼D [δT (x1, x2)] ≤ O(log n)

where δT is the distance in the tree T .

Theorem 2.28 is a direct result of composing the embeddings of Fakcharoenphol et al. [20] and Bansal et
al. [6].
We observe the following randomized algorithm for facility location with delay on a general metric space:

1. Embed the metric space to a (≥ 2)-HST according to the distribution in Theorem 2.28.

2. Run Algorithm 1 on the resulting (≥ 2)-HST.

Proof of Theorem 2.3. We show that the randomized algorithm described above is indeedO(log2 n)-competitive.
Fix any instance of facility location with deadlines. We denote by ALGT the cost of the algorithm on the
instance with regard to distances on the chosen (≥ 2)-HST T . Since δT (x1, x2) ≥ δX (x1, x2), we have
that ALGX ≤ ALGT , where ALGX is the actual cost incurred by the algorithm on this instance.
From Theorem 2.4, we know that for any solution OPTT for the instance on T , it holds that ALGT ≤
O(D2) ·OPTT ,B +O(D) ·OPTT ,C , where D is the depth of T (and thus D = O(log n)).
Now, denote by OPTX the optimal solution for the instance over X . Observe that for every T in the
support of D, OPT yields a solution OPTT by opening facilities at the same locations, at the same times,
and connecting the same requests. It holds that OPTT ,B = OPTX ,B , and that ET ∼D

[
OPTT ,C

]
≤

O(log n) ·OPTX ,C .
Combining the above facts, we have that

E
[
ALGX

]
≤ ET ∼D

[
ALGT

]
≤ ET ∼D

[
O(log2 n) ·OPTT ,B +O(log n) ·OPTT ,C

]
≤ O(log2 n) ·OPTX ,B +O(log2 n) ·OPTX ,C = O(log2 n) ·OPTX

proving the theorem.

The reasoning behind the main theorem of this subsection is that the connection cost is distorted upon
HST embedding, while the buying cost is not. Thus, the HST algorithm is allowed to lose a larger factor
over OPTB (Θ(log2 n)) compared to the factor it loses over OPTC (Θ(log n)). This property is used to
analyze the other problems considered in this paper in a similar manner.
Remark 2.29. For the case of di�erent costs for opening facilities at di�erent points in the metric space, we
obtain aO(log2 ∆+log ∆ log n)-competitive randomized algorithm, with ∆ the aspect ratio of the metric
space, in the following manner. We use the embedding of Fakcharoenphol et al. [20] without composing it
with the embedidng of [6]. This yields a 2-HST (rather than a (≥ 2)-HST), which has a depth ofO(log ∆),
with ∆ the aspect ratio of the original metric space. This tree has an distortion of O(log n).
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In this 2-HST, for each node u, the distances between u and the leaves in Tu are equal. Thus, we can allow
the algorithm to open a facility at u, at a cost which is the minimal cost of opening a facility at a leaf in
Tu, at a loss of a factor of 2 in connection cost. The resulting tree has non-decreasing opening costs from
the root to any leaf, and is (in particular) a (≥ 2)-HST of depth D = O(log ∆). Thus, using the algorithm
for (≥ 2)-HSTs and Remark 2.27, and applying the distortion of O(log n) to the connection cost as in the
proof of Theorem 3.1, we obtain the O(log2 ∆ + log ∆ log n)-competitive algorithm.

3 Facility Location with Delay

3.1 Problem and Notation

We now describe the facility location with delay problem. The problem is an extension of the facility
location with deadlines problem, in which the deadline for each request q is replaced with an arbitrary
delay function dq(t) associated with that request. Each delay function is required to be continuous and
monotonically non-decreasing. This is indeed an extension of the deadline problem, as a deadline can be
described as a step function, which goes from 0 to in�nity at the time of the deadline. Such a step function
can be approximated arbitrarily well by a continuous delay function.
A feasible solution for a facility location with delay instance consists of opening facilities and connecting
each request to some facility, as in the deadline case. In addition to the opening costs and connection costs
incurred, the solution also pays dq(t) for each request q connected at time t. Overall, for an instance of
the problem with requests Q, the algorithm incurs the delay cost ALGD =

∑
q∈Q dq(tq), where tq is the

time in which q is served by the algorithm. Thus, the algorithm’s goal is to minimize the total cost

ALG = ALGB + ALGC + ALGD

Without loss of generality, we assume that dq(rq) = 0. Indeed, if this is not the case, observe that any
solution (including the optimal one) must pay this initial amount of dq(rq) in delay for that request, which
only reduces the competitive ratio of any online algorithm.
In this section, we prove the following theorem.

Theorem 3.1. There exists an O(log2 n)-competitive randomized algorithm for facility location with delay
for a general metric space of size n.

3.2 Algorithm for HSTs

In this subsection, we present a deterministic algorithm for facility location with delay on a (≥ 2)-HST.
This algorithm yields a randomizedO(log2 n)-competitive algorithm for general metric spaces, in a similar
way to the deadline case.
We require the following de�nitions.

De�nition 3.2 (Solution). Let Q be a set of requests. For S ⊆ X , and a function φ : Q → S we say that
(S, φ) is a solution for Q, with a cost |S| · f +

∑
q∈Q δ(vq, φ(q)). If S ⊆ Tu for some node u, we write that

(S, φ) is a solution for Q under u.

De�nition 3.3 (Ancestor-closed solution). Let Q be a set of requests, and let (S, φ) be a solution for Q
under a node u. We say that (S, φ) is an ancestor-closed solution for Q under u if for every s ∈ S such that
s 6= u we have that p(s) ∈ S.
If u = r, we simply write that (S, φ) is an ancestor-closed solution for Q.
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De�nition 3.4 (ψ(Q) and ψu(Q)). We de�ne ψ(Q) to be the cost of the minimal-cost ancestor-closed
solution for Q. Similarly, we de�ne ψu(Q) to be the cost of the minimal-cost ancestor-closed solution for
Q under u.

De�nition 3.5 (Critical request set). We say that a set of pending requestsQ at time t is critical if dQ(t) ≥
ψ(Q).

Algorithm’s description. Our algorithm is given in Algorithm 3. The algorithm calls UponCritical
whenever a set of pending requests Q becomes critical. It uses the Open and Invest functions from
Algorithm 1, but rede�nes the Explore function. The function call Explore(u) now forwards time
until the �rst occurrence of one of two events.
The �rst event is a pending request q in Tu, the delay of which exceeds the cost of connecting it to u.
Handling this event is similar to handling the event considered in Algorithm 1 – we attempt to raise
the counter of the child node v in q’s direction by δ(u, vq). If this �lls the counter of v, this triggers an
immediate call to Explore(v). However, in contrast to the deadline case, calling Explore(v) is not
guaranteed to connect the request q. For this reason, Explore(u) must invest the remainder of δ(u, vq)
(or until bu = 0) in v’s counter before connecting q to u.
The second event is not analogous to the deadline case. In this event, for a child v of u and a “coalition” of
pending requests Q in Tv , we have that the delay of Q exceeds ψv(Q). In this case, the algorithm invests
in v until either it is out of budget (bu = 0) or v’s counter is full (cv = f ). It is important to note that in
contrast to the �rst event, the fact that Explore(u) considered Q does not provide any guarantees for
connecting the requests of Q.
Algorithm 3 changes Explore(u) so that time is forwarded until one of two events happens, rather than
the single event in Algorithm 1 (i.e. expired deadline). These two events are shown in Figure 4.

3.3 Analysis

Fix any instance of facility location with delay on a (≥ 2)-HST.

Theorem 3.6. ALG ≤ O(D2) ·OPTB +O(D) ·OPTC +O(D2) ·OPTD .

Observe that the connection cost is distorted by the embedding, while the buying and delay costs are
not. Thus, using an identical argument to the proof of Theorem 2.3 of the deadline problem, Theorem 3.6
implies Theorem 3.1.
We devote this subsection to prove Theorem 3.6.

3.3.1 Upper Bounding ALG

To upper bound the cost of the algorithm, we show the following Lemma.

Lemma 3.7. ALG ≤ 6 · (D + 1) · kf

Proposition 3.8. ALGD ≤ ALGB + ALGC

Proof. The algorithm explicitly maintains that for every set of pending requests Q at any time t we have
that ψ(Q) ≥ dQ(t). Now, consider that since the delay of a pending request goes to in�nity, the algorithm
ultimately serves every request. Consider a speci�c service made by the algorithm, described by a solution
(S, φ) to some set of requests Q, and note that (S, φ) is an ancestor-closed solution to Q. Thus, its total
cost is at least ψ(Q), completing the proof.
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Algorithm 3: Facility Location with Delay
1 Initialization.
2 Initialize cu ← 0 for any node u ∈ T\{r}.
3 Declare bu for any node u ∈ T .
4

5 Event Function UponCritical() // Upon request set becoming critical as per De�nition 3.5
6 Explore(r)

7

8 Function Explore(u)
9 Open(u)

10 set bu ← f
11 while bu 6= 0 and there remain pending requests in Tu do
12 let Q be the set of pending requests in Tu.
13 let t′1 ≥ t be the earliest time in which a request q ∈ Q satis�es dq(t′1) ≥ δ(vq, u).
14 let t′2 ≥ t be the earliest time in which there exists v such that p(v) = u, and a set of

requests Q′ ⊆ Q ∩ Tv such that dQ′(t′2) ≥ ψv(Q′).
15 if t′1 ≤ t′2 then
16 let q ∈ Q be the request in the de�nition of t′1. let v be the child of u on the path to vq .
17 call Invest(u,v,δ(u, vq)), and let y be the return value.
18 if cv = f then set cv ← 0 ; call Explore(v).
19 if q is still pending then
20 call Invest(u,v,δ(u, vq)− y)
21 connect q to facility at u
22 else
23 let v be as in the de�nition of t′2.
24 call Invest(u,v,∞).
25 if cv = f then set cv ← 0 ; call Explore(v).

26

27 Function Open(u) // As in Algorithm 1
28 Function Invest(u,v,x) // As in Algorithm 1

Lemma 3.9. ALGB + ALGC ≤ 3 · (D + 1) · kf .

Proving Lemma 3.9 is very similar to proving Lemma 2.7 of the deadline case. De�ning cumulative counters
as in the deadline case, we can prove Corollary 2.11 holds in the delay case using an identical proof. It
remains to show and prove analogues to Propositions 2.12 and 2.13.
Note that the connection costs in Explore(u) only occur during iterations of the main loop in which
the main if condition is entered.

Proposition 3.10 (analogue of Proposition 2.12 ). Suppose the function Explore(u) enters the main if
condition in an iteration, and let q be the pending request under consideration. Then at least one of the following
holds:

1. The sum of return values of calls to Invest in that iteration is δ(u, vq).

2. bu = 0 at the end of the iteration.
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(a) Event 1: single request’s delay exceeds con-
nection

(b) Event 2: coalition of low-delay requests exceeds

This �gure shows the two events considered in the time-forwarding stage of Explore(u). The �rst event
is a request whose delay exceeds the cost of connecting it to u. This event is very similar to the single event
in the deadline case.
The second event is a “coalition”Q of low-delay requests under some child node of u, denoted u1. Though
the delay of no single request in the coalition exceeds the cost of its connection to u, the total delay of the
coalition exceeds ψu1(Q) – the cost of an optimal ancestor-closed solution under u1 for that coalition (the
optimal solution is shown in the dash-dotted rectangle).

Figure 4: Time forwarding conditions of Algorithm 3

3. q is no longer pending after the �rst call to Invest.

Proof. Consider the state after the return of the �rst call to Invest. Either Invest returned δ(u, vq),
or bu = 0, or cv = f . In the �rst two cases, we are done. In the third case, Explore(u) then calls
Explore(v). If q is connected during Explore(v), we are done. Otherwise, Explore(u) enters the
nested if condition upon observing that q is still pending.
Denote by y the return value of the �rst call to Invest, and consider the return value of the second call
to Invest made in the nested if. If the return value is δ(u, vq) − y, we are done. Otherwise, consider
that cv = 0 before the call to Invest, and since δ(u, vq) − y ≤ f it must thus be that bu = 0 after the
return of the second call to Invest. This concludes the proof.

Proposition 3.11 (analogue of Proposition 2.13). ALGB + ALGC ≤ 3 ·
∑

u∈T c̄u

Proof. The costs of the algorithm (both opening and connection) are again contained in calls to Explore,
as in the proof of Proposition 2.13. Each call to Explore(u) has an opening cost of f .
As for connection costs, note that they only occur in iterations of the main loop in Explore(u) in which
the main if condition is entered, and not in the else condition. In each iteration in which the main if
condition is entered, a request q is considered, which may be connected to u at cost δ(u, vq). Through
Proposition 3.10, in each such iteration either the return values of calls to Invest sum to δ(u, vq) (and
thus bu decreases by δ(u, vq)), bu = 0 at the end of the iteration (in which case this is the last iteration),
or Explore(u) does not connect q.
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Since bu can decrease by at most f , the connection cost of the algorithm is bounded by f + δ(u, vq) for q
the last request considered, which is at most 2f .
Noting that the total cost ofExplore(u) is at most 3f , and that c̄u is raised by f before callingExplore(u)
yields the proposition.

Proof of Lemma 3.9. Results directly from Proposition 3.11 and Corollary 2.11 (which holds for the delay
case as well).

Proof of Lemma 3.7. The lemma results directly from Proposition 3.8 and Lemma 3.9.

3.3.2 Lower Bounding OPT

To lower bound the cost of the optimum, we prove the following lemma, which is analogous to Lemma
2.26 of the deadline case.

Lemma 3.12. kf ≤ (D + 1) ·OPTB + 2 ·OPTC + (D + 1) ·OPTD .

Charging nodes and incurred costs. We again use charging nodes, de�ned as in the deadline case.
However, the charging nodes for the delay case use half-closed intervals instead of the closed intervals
of the deadline case. The reason for this is that we do not have the guarantee that only one call to
UponCritical is made at a given time, so that using closed intervals would break the analogue of
Lemma 2.14 for our case.
Let M be the set of charging nodes. The de�nitions of cb(µ) (buying costs) and cc(µ) (connection costs)
are identical to the de�nition in the deadline case. For the delay case, we also de�ne incurring delay costs,

De�nition 3.13 (cd(µ)). Let µ = (u, [τ1, τ2)) be a charging node. Let cd(µ) be the delay cost incurred by
OPT on µ, de�ned to be the total delay cost incurred by OPT on requests in Tu released in [τ1, τ2).

We write c(µ) = cb(µ) + cc(µ) + cd(µ).
We use Procedure 2 to create the pre�ow. However, we give a di�erent de�nition to λ than in the deadline
case. The de�nition follows.

De�nition 3.14 (λtu and λµ). For every function call Exploret(u) for some u ∈ T and time t, let Q be
the set of requests pending in Tu immediately after the return of Explore(u). We de�ne λtu to be the
�rst time t′ ≥ t in which one of the following conditions occurs:

1. There is a request q ∈ Q such that dq(t′) ≥ δ(vq, u).

2. There exists a set of requestsQ′ ⊆ Q such thatQ′ ⊆ Tu′ , for some u′ a child of u, and also dQ′(t′) ≥
ψu′(Q

′).

Like in the deadline case, we write λµ = λτ1u where µ = (u, [τ1, τ2)).

Lemma 3.15.
∑

µ c(µ) ≤ (D + 1) ·OPTB + 2 ·OPTC + (D + 1) ·OPTD .

Proof.
∑

µ cb(µ) can be charged to (D+1) ·OPTB and
∑

µ cc(µ) can be charged to 2 ·OPTC as in Lemma
2.14 (since the intervals are not closed, this improves by a factor of 2). It remains to charge

∑
µ cd(µ) to

(D+ 1) ·OPTD . To do so, observe that the delay incurred by OPT on a request q can only be counted in
charging nodes with intervals containing rq , and de�ned by a node which is an ancestor of vq . There are
at most D + 1 such nodes.

22



Observation 3.16. Let (S, φ) be a minimal-cost ancestor-closed solution for Q under u. Then it holds for
every q ∈ Q that φ(q) the least ancestor of vq in S.

Observation 3.17. Let (S, φ) be a minimal-cost ancestor-closed solution for Q under u. Let u′ ∈ S be a
descendant of u. Observing the set Q′ = Q ∩ Tu′ , we have that (S ∩ Tu′ , φ �Q′) is a minimal-cost ancestor-
closed solution for Q′ under u′.

Proposition 3.18 (Decomposition of minimum-cost ancestor-closed solutions). Let (S, φ) be a minimum-
cost ancestor-closed solution for Q ⊆ Tu under u, and let S̄ ⊆ S be the children of u in S. De�ne Qu

′
1 =

Q ∩ Tu′ , and de�ne Q2 = Q\
(⋃

u′∈S̄ Q
u′
1

)
. Then

ψu(Q) =

∑
u′∈S̄

ψu′(Q
u′
1 )

+ f +
∑
q∈Q2

δ(u, vq)

Proof. For every u′ ∈ S̄, Observation 3.16 implies that the requests of Qu′1 only connect to facilities in
S ∩ Tu′ . The opening costs of S ∩ Tu′ , plus the connection costs of Qu′1 , are exactly ψu′(Qu

′
1 ) according to

Observation 3.17, for a total of
∑

u′∈S̄ ψu′(Q
u′
1 ).

In addition, opening the facility at u costs f . Observation 3.16 implies that the requests ofQ2 are connected
to the facility at u, at a total cost of

∑
q∈Q2

δ(u, vq). This �nishes the proof of the proposition.

Lemma 3.19. χµ ≥ 0 for every µ = (u, [τ1, τ2)) ∈ M . That is, the pre�ow Z = (G, s, α) de�ned in
Procedure 2 is valid.

Proof. We observe the following cases for µ.
Case 1: Color[µ] = Special. This case is identical to Case 1 in Lemma 2.24.
Case 2: Color[µ] = µ? for a charging node µ?. Again, this case is similar to Case 2 in Lemma 2.24.
From now on, assume we are not in the previous two cases, and thus Color[µ] = None. Every outgoing
edge from µ to some charging node µ′ = (u′, [τ ′1, τ

′
2)) is created from µ′ investing in µ, which means that

Exploreτ ′1(u′) raised the counter cu towards Exploreτ2(u).
Case 3: For every such µ′, we have that Exploreτ ′1(u′) raised cu towards Exploreτ2(u) only through
calls to Invest inside the main if condition of Explore, and not through the main else condition.
In this case, we show that cc(µ) + cd(µ) ≥

∑
σ∈E−µ α(σ), proving the lemma for this case. The proof

is almost identical to the proof of Case 3 of Lemma 2.24, in which we showed for the deadline case that
cc(µ) ≥

∑
σ∈E−µ α(σ). The argument for the deadline case consisted of �nding a set of requests which the

optimum had to connect, all released in [τ1, τ2). The di�erence between our delay case and the deadline
case is that OPT might choose not to connect some of those requests, in which case it must incur a delay
cost which is at least its connection cost.
Case 4: There exists an outgoing edge fromµ to a charging nodeµ′ = (u′, [τ ′1, τ

′
2)), such thatExploreτ ′1(u′)

raised cu towards Exploreτ2(u) through calls to Invest inside the main else condition of Explore.
Let Color[µ′] = µ? = (r, [τ?1 , τ

?
2 )). Observing that Proposition 2.23 holds for the delay problem as well,

and using Color[µ] 6= Special, we have that OPT did not open a facility in Tu during [τ1, τ
?
2 ).

Since Exploreτ ′1(u′) raised cu towards Exploreτ2(u) inside the main else condition, there was a set
Q of requests pending at τ ′1 such that there exists a time t̂ ≤ λµ′ ≤ ti in which dQ(t̂) ≥ ψu(Q). In
addition, the main else condition is only reached if t′1 > t′2 = t̂. Thus, for every request q ∈ Q we have
that dq(t̂) < δ(u′, vq).
Observe that every q ∈ Q is pending at τ ′1 ≤ τ2, and thus released prior to τ2. Showing that rq ≥ τ1,
together with the fact that OPT did not open a server in Tu during [τ1, τ

?
2 ), would yield that OPT either:

23



• connected q to a facility outside Tu at a cost of at least δ(vq, p(u) = u′), which is at least dq(t̂), or

• did not connect q until time τ?2 , in which case it paid a delay cost of dq(τ?2 ) ≥ dq(t̂).

In either case, OPT paid at least dq(t̂) in delay and connection costs on q. Since we have that rq ∈ [τ1, τ2),
we have that OPT incurred a cost of dq(t̂) in u due to q. It remains to �nd a set of such requests Q′ ⊆ Q
such that rq ≥ τ1 for every q ∈ Q′, and such that dQ′(t̂) ≥ f .
Claim: there exists a set of requestsQ′ ⊆ Q such that rq ≥ τ1 for every q ∈ Q′, and such that dQ′(t̂) ≥ f .
Now, since Color[u] = None, we have that either τ1 = −∞ or λµ > τ?2 . If τ1 = −∞, then rq ≥ τ1 for
every q ∈ Q. Since dQ(t̂) ≥ ψu(Q) ≥ f , choosing Q′ = Q completes the proof of the claim.
Otherwise, τ1 6= −∞ and λµ > ti. Let (S, φ) be the minimal-cost ancestor-closed solution for Q under u.
De�ning S̄, Q2, and Qu′1 for every u′ ∈ S̄ as in Proposition 3.18, we have that

dQ(t̂) ≥ ψu(Q) =

∑
u′∈S̄

ψu′(Q
u′
1 )

+ f +
∑
q∈Q2

δ(u, vq)

Now, denote by Q̂ ⊆ Q the subset of Q that was pending immediately after Exploreτ1(u). We make
the following observations.

1. For every q ∈ Q2, we have that dq(t̂) ≥ δ(vq, u). Otherwise, Q\{q} would become critical before t̂.
But since λµ > τ?2 ≥ t̂, we must have that q /∈ Q̂. Thus, Q2 ∩ Q̂ = ∅.

2. Writing Q̂u′1 = Q̂∩Qu′1 , we observe that since λµ > t̂, we have that d
Q̂u
′

1
(t̂) ≤ ψu′(Q̂u

′
1 ) ≤ ψu′(Qu

′
1 )

Overall, we get that
dQ̂(t̂) =

∑
u′∈S̄

d
Q̂u
′

1
(t̂) ≤

∑
u′∈S̄

ψu′(Q
u′
1 )

Thus, we have that
dQ\Q̂(t̂) = dQ(t̂)− dQ̂(t̂) ≥ f +

∑
q∈Q2

δ(u, vq) ≥ f

Observing that rq ≥ τ1 for each q ∈ Q\Q̂ yields the claim, and thus the lemma.

Lemma 3.20. For every i ∈ [k], the charging node µ = (r, [ti−1, ti)) has χµ ≥ f .

Proof. Observe that E−µ = ∅. It remains to see that
∑

σ∈E+
µ
α(σ) = f .

If Color[µ] 6= None, this holds similarly to Lemma 2.25.
Otherwise, assume that Color[µ] = None. Since Color[µ] 6= Special, OPT did not open a facility
in [ti−1, ti). We �nd a set of requests Q′ released in [ti−1, ti) on which OPT incurs at least f delay. The
argument that follows is similar to that of Case 4 of Lemma 3.19, the structure of which we repeat for
clarity.
We must have that either ti−1 = −∞ or λµ > ti. Denote byQ the set of requests that triggered the service
at ti. We have that dQ(ti) ≥ ψ(Q). Observe that rq < ti for every q ∈ Q. If ti−1 = −∞, then rq ≥ ti−1

for every q ∈ Q, and since ψ(Q) ≥ f the proof is complete.
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Otherwise, λµ > ti. Denoting by (S, φ) the minimum-cost ancestor-closed solution for Q, we de�ne S̄,
Q2 and Qu′1 for every u′ ∈ S as in Proposition 3.18. Proposition 3.18 yields

dQ(ti) ≥

∑
u′∈S̄

ψu′(Q
u′
1 )

+ f +
∑
q∈Q2

δ(u, vq)

De�ne Q̂ ⊆ Q to be the subset ofQ alive immediately after the return of Exploreti−1
(r). Using λµ > ti,

and choosing t̂ = ti, we use an identical argument to Case 4 of Lemma 3.19 to show that

dQ̂(ti) ≤

∑
u′∈S̄

ψu′(Q
u′
1 )


Choosing Q′ = Q\Q̂ completes the proof of lemma, identically to Case 4 of Lemma 3.19.

We can now prove Lemma 3.12.

of Lemma 3.12. Lemma 3.19 yields that Z is a valid pre�ow. For i ∈ [k], let µi = (r, [ti−1, ti)). Using
Lemma 3.20 and Proposition 2.18, we have that

kf ≤
k∑
i=1

χµi ≤ ωZ

Now observe that E+
s = ∅, and that

∑
σ∈E−s α(σ) =

∑
µ∈M c(µ). Using Lemma 3.15, we obtain

kf ≤ ωZ =
∑
σ∈E−s

α(σ) =
∑
µ∈M

c(µ) ≤ (D + 1) ·OPTB + 2 ·OPTC + (D + 1) ·OPTD

as required.

Proof of Theorem 3.6. Using Lemmas 3.7 and 3.12 completes the proof.

4 Online Multilevel Aggregation with Delay

4.1 Problem and Notation

In the online multilevel aggregation with delay problem, requests arrive on the leaves of a rooted tree
over time. Each such request accumulates delay until served. At any point in time, an algorithm for this
problem may choose to transmit a subtree which contains the root, at a cost which is the weight of that
subtree. Any pending requests on a leaf in the transmitted subtree are served by the transmission.
Formally, as in the facility location with delay problem, a request is a tuple (vq, rq, dq(t)) where the leaf of
the request is vq , the arrival time of the request is rq and dq(t) is the request’s delay function. The function
dq(t) is again required to be non-decreasing and continuous.
We observe online multilevel aggregation with delay on a (≥ 2)-HST. We assume, without loss of gener-
ality, that only a single edge exits the root node, called the root edge. Otherwise, we operate on each edge
that exits the root node separately, as there is no interaction between the subtrees rooted at those edges.
We denote the tree by T , and its root edge by r.
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For a request q, and a set of edges E we write that q ∈ E if the leaf edge on which q is released is in E.
In accordance, we write Q ⊆ E if q ∈ E for every q ∈ Q. For a set of pending requests Q at time t, we
denote by dQ(t) the total delay incurred by the requests of Q until time t. We denote by w(e) the weight
of an edge, and by w(E) =

∑
e∈E w(e) the total weight of a set of edges.

We assume that each request would gather in�nite delay if it remains pending forever.
The following notations are similar to those for facility location, but refer to edges instead of nodes.
De�nition 4.1 (Similar to De�nition 2.1). For every tree edge e ∈ T , we use the following notations:

• For e 6= r, we denote by p(e) the parent edge of e in the tree.

• We denote by Te the subtree rooted at e.

• For a set of requests Q ⊆ Te, we denote by TQe ⊆ Te the subtree spanned by e and the leaves of Q.
We denote TQ = TQr .

• We de�ne the height of e, denoted he, to be the depth of Te.

In this section, we prove the following theorem.
Theorem 4.2. There exists a O(D2)-competitive deterministic algorithm for online multilevel aggregation
with delay on any tree of depth D.

4.2 Algorithm for HSTs

We now present an algorithm for the online multilevel aggregation with delay problem over a (≥ 2)-HST
of depth D.
De�nition 4.3 (saturation and critical sets). For any edge e, we say that a set of pending requestsQ ⊆ Te
saturates Te if dQ(t) ≥ w(TQe ). We say that a set of pending requests Q is critical at time t if Q saturates
the root edge r.

Upon a set of critical requests, the algorithm starts a service. In every service, the algorithm maintains a
tree T , which it expands and ultimately transmits.
De�nition 4.4 (live cut). At any time during the construction of T , we de�ne the live cut under e ∈ T to
be the set of edges E = {e′|e′ ∈ Te\T ∧ p(e′) ∈ T }.

Algorithm’s description. The algorithm is given in Algorithm 4. When a set of requests is critical, a call
is made to UponCritical, which resets the tree to transmit T , calls Explore(r) to expand T , then
transmits T .
The exploration of an edge e adds e to T . It then considers the live cut underneath e, which is the set
of potential candidates for expanding T . The exploration forwards time until a set of pending requests
saturates Te′ for an edge e′ in the the live cut. It then invests in raising the counter of e′, until either the
counter is full (which triggers Explore(e′) immediately) or Explore(e) is out of budget. The counter
of e, as well as the budget of Explore(e), is equal to w(e).
Note that the live cut under e can change signi�cantly after every iteration of the loop in Explore(e),
as making a recursive call to Explore(e′) can add many additional edges to T .
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Algorithm 4: Online Multilevel Aggregation with Delay
1 Initialization.
2 Initialize ce ← 0 for any edge e ∈ T\{r}
3 Declare be for every edge e ∈ T .
4 Declare T .
5

6 Event Function UponCritical() // Upon request set becoming critical as per De�nition 4.3
7 set T ← ∅
8 Explore(r)
9 transmit T

10

11 Function Explore(e)
12 Add(e)
13 set be ← w(e)
14 while be 6= 0 and there remain pending requests in Te do
15 let H be the live cut under e.
16 let Q be the set of pending requests in Te.
17 let t′ be the earliest time such that there exists a set of requests Q′ ⊆ Q that saturates Te′ for

some e′ ∈ H .
18 call Invest(e,e′)
19 if ce′ = w(e′) then set ce′ = 0 ; call Explore(e′).

4.3 Analysis

Fix any instance of online multilevel aggregation with delay, and observe the behavior of Algorithm 4 for
that instance. We denote by ALG the algorithm’s total cost. We also de�ne ALGB to be the algorithm’s
buying cost, and ALGD to be the algorithm’s delay cost, such that ALG = ALGB + ALGD . We similarly
de�ne OPT,OPTB and OPTD for the optimal solution for the instance.
In this subsection, we prove the following theorem.

Theorem 4.5. ALG ≤ O(D) ·OPTB +O(D2) ·OPTD

In the following analysis, we denote by k the number of times that the algorithm transmits a tree. We also
denote the times of the k transmissions by t1, ..., tk in increasing order.

4.3.1 Upper Bounding ALG

We upper bound the cost of the algorithm by proving the following lemma.

Lemma 4.6. ALG ≤ 2kDw(r)

The main technique used in proving Lemma 4.6 is constructing a pre�ow to provide an upper bound for
ALGB . Bounding ALGD by ALGB then yields the lemma.

Observation 4.7. Every call to Explore(r) serves at least one pending request.

Proposition 4.8. Every request is eventually served.
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Algorithm 4: Online Multilevel Aggregation with Delay (cont.)
1 Function Add(e)
2 T ← T ∪ {e}
3 if e is a leaf edge then mark all pending requests on e as served
4

5 Function Invest(e,e′)
6 let y ← min(be, w(e′)− ce′)
7 increase ce′ by y
8 decrease be by y
9 return y.

Proof. Consider a request q. As assumed in the model, the delay of q goes to in�nity as q remains pend-
ing. But at some point, the delay of q would exceed T {q}r , making {q} critical, and triggering calls to
Explore(r) until q is served. Each such call serves at least one pending request due to Observation 4.7,
and thus q will eventually be served.

The following observation follows from the fact that a tree is transmitted whenever a set of requests
becomes critical.

Observation 4.9. At any time t during the algorithm, and for any set of requests Q pending at t, it holds
that dQ(t) ≤ w(TQ).

Lemma 4.10. ALGD ≤ ALGB .

Proof. Denote by Q the set of all requests released in the instance. Through Proposition 4.8, we can par-
tition Q into the sets of requests Qi, for i ∈ k, such that Qi is served in the i’th service. Denote by Ti
the tree bought by the algorithm in the i’th service, and denote by d(Qi) the total delay incurred by the
algorithm on the requests of Qi. To prove the lemma, it is enough to show that d(Qi) ≤ w(Ti) for every
i ∈ [k].
Now, observe that since all ofQi are served in ti. Therefore, d(Qi) = dQi(ti). Since transmitting Ti serves
Qi, we have that TQi ⊆ Ti. Using Observation 4.9, we have that d(Qi) ≤ w(Ti) as required.

It remains to bound ALGB .
Let V be the set of calls to Explore made by the algorithm. Observe that in the algorithm, whenever
an edge e is bought, a call to Explore(e) is made immediately afterwards. Therefore, we have that
ALGB =

∑
Exploreτ (e)∈V w(e).

In addition, immediately prior to callingExplore(e) the counter ce is zeroed. We say thatExploreτ1(e1)
invested x in Exploreτ2(e2) if Exploreτ1(e1) raised ce2 by x, such that the next zeroing of ce2 triggers
Exploreτ2(e2).
We now construct a graphG = (V ∪{s}, E) and a weight function α : E → R+, such that Z = (G, s, α)
is a pre�ow. We construct E and α in the following way:

1. For every j ∈ [k], and for every root function call Exploreτ (r), add to E an edge σ from s to
Exploreτ (r), and set α(σ) = D · w(r).
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2. For every function call Exploreτ (e) ∈ V , and for each function call Exploreτ ′(e′) ∈ V
that invested some amount x in Exploreτ (e), we add to E an edge σ from Exploreτ ′(e

′) to
Exploreτ (e), and set α(σ) = he · x.

Lemma 4.11. For every v = Exploreτ (e) ∈ V we have that χv ≥ w(e), implying that Z is a valid
pre�ow.

Proof. We �rst claim that
∑

σ∈E+
v
α(σ) ≥ he ·w(e). If e = r, this is true since there exists an edge σ from

s to Exploreτ (e) such that α(σ) = Dw(r) ≥ he · w(e).
Otherwise, observe that the total amount invested inExploreτ (e) is exactlyw(e), and thus

∑
σ∈E+

v
α(σ) ≥

he · w(e).
Now, observe that Exploreτ (e) invests at most w(e) in counters for edges of height at most he − 1,
and thus

∑
σ∈E−v α(σ) ≤ (he − 1) · w(e). Combining this with the previous claim, we get χv ≥ w(e) as

required.

We can now prove Lemma 4.6.

of Lemma 4.6. Observe the pre�ow Z . Note that

ωZ =
∑
σ∈E−s

α(σ) = kDw(r)

Using Lemmas 4.11 and 2.18, we have

ALGB =
∑

Exploreτ (e)∈V

w(e) ≤
∑
v∈V

χv ≤ ωZ = kDw(r)

Using Lemma 4.10, we get that ALG ≤ 2kDw(r) as required.

4.3.2 Lower Bounding OPT

The following lemma provides a lower bound on the cost of the optimum.

Lemma 4.12. kw(r) ≤ OPTB +D ·OPTD .

Charging nodes and incurred costs. We now de�ne charging nodes for the analysis of our algorithm.
The charging nodes are tuples of the form (e, [τ1, τ2)), such that τ1 and τ2 are two subsequent times in
which the edge e is bought. As in the facility location case, we allow τ1 = −∞ and τ2 =∞.
For a charging node µ = (e, [τ1, τ2)) we say that:

• OPT incurs a buying cost of w(e) in µ if OPT bought the edge e during [τ1, τ2). We denote the
buying cost that OPT incurs in µ by cb(µ).

• OPT incurs a delay cost in µ equal to the delay incurred by OPT on the set of requests Q = {q ∈
Te|rq ∈ [τ1, τ2)}. We denote the delay cost that OPT incurs in µ by cd(µ).

We denote the total cost that OPT incurs in µ by c(µ) = cb(µ) + cd(µ).
Denote byM the set of all charging nodes. To prove Lemma 4.12, we show a pre�ow on the set of vertices
M ∪ {s}, where s is the source node.
The following de�nition of charging node investment is very similar to the de�nition for the facility loca-
tion case.
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Procedure 5: Pre�owBuilder - Online Multilevel Aggregation with Delay
1 Initialization.
2 Let the set of vertices be M ∪ {s}, and initialize the edge set to be E = ∅.
3 Initialize dictionary Color[w] = None for every µ ∈M .
4 foreach µ = (e, [τ1, τ2)) ∈M such that OPT transmitted edge e during [τ1, τ2) do
5 set Color[µ]← Special

6 foreach µ ∈M such that c(µ) > 0 do
7 add a new edge σ = (s, µ) to E, and set α(σ) = c(µ)

8

9 Function PreflowBuilder()
10 for i from 1 to k do
11 let µ← (r, [ti−1, ti))
12 SetColor(µ,µ)

13 for j from 2 to D do
14 foreach µ = (e, [τ1, τ2)) ∈M such that e is of depth j do
15 foreach edge σ ∈ E−µ incoming to a node µ′ do
16 if SetColor(µ,Color[µ′]) 6= None then break

17 Function SetColor(µ,µ?) // As in Procedure 2

De�nition 4.13 (Investing). For two charging nodes µ1 = (e1, [τ
1
1 , τ

1
2 )) and µ2 = (e2, [τ

2
1 , τ

2
2 )), such that

e1 is an ancestor of e2, we say that µ1 invested x in µ2 if Exploreτ11 (e1) raised the counter ce2 by x,
through calls to Invest, during the counter phase of ce2 between τ2

1 and τ2
2 .

De�nition 4.14 (λte and λµ). For every function call Exploret(e) for some edge e ∈ T and time t, let
Q be the set of requests pending in Te immediately after the return of Exploret(e). We de�ne λte to be
the �rst time t′ ≥ t such that there exists Q′ ⊆ Q such that dt(Q′) ≥ w(TQ

′
e )− w(e).

For a charging node µ = (e, [τ1, τ2)) such that τ1 6= −∞, we write λµ = λτ1e .

Possible edges. We describe the set of possible edges in G from nodes in M to other nodes in M ,
denoted by Ē, and the weight function α : Ē → R+. The �nal set of edges added to G by Procedure 5
from the nodes ofM to themselves is a subset of Ē. The set Ē contains an edge σ from any charging node
µ1 ∈M to any charging node µ2 ∈M if µ1 invested in µ2. We set the weight α(σ) to be the amount that
µ1 invested in µ2.
We can now construct the pre�ow required for the analysis using Procedure 5. This procedure is very simi-
lar to Procedure 2, used for analysis of our algorithms for facility location. It uses the function SetColor
as de�ned in Procedure 2.
The procedure for the construction is given in Procedure 5 very similar to that given in Procedure 2.

De�nition 4.15 (Cut). We say that a set of edges H ⊆ T is a cut if no edge in H is an ancestor of another
edge in H .

It is easy to verify that any live cut is a cut.
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Proposition 4.16. Let e be an edge, and let H be a cut in Te that does not include e. Let Q ⊆
⋃
h∈H Th be

a set of pending requests and t be a time such that dQ(t) ≥ w(TQe )− w(e). Then there exists an h ∈ H and
a subset Qh ⊆ Q such that Qh ⊆ Th and dQh(t) ≥ w(TQhh ).

Proof. Partition Q into |H| disjoint sets Qh for every h ∈ H , according to the subtree Th in which the
requests are. Now, observe that w(TQe ) ≥ w(e) +

∑
h∈H w(TQhh ). We thus have that∑

h∈H
dQh(t) = dQ(t) ≥ w(TQe )− w(e) ≥

∑
h∈H

w(TQhh )

and thus there exists h ∈ H such that dQh(t) ≥ w(TQhh ), as required.

Proposition 4.17. Observe the function call Exploret(e), and let P be the set of times chosen as t′ in
Exploret(e). Then for every t′ ∈ P we have that t′ ≤ λte.

Proof. Fix some point during the execution of Exploret(e). Denote by Q the set of pending requests
in Te, and let λ ≥ t be the �rst time such that there exists Q′ ⊆ Q for which dQ′(λ) ≥ w(TQ

′
e ) − w(e).

Observe the next time chosen as t′ in Exploret(e). Observe that the subtrees rooted in edges of the
current live cut contain all of Q. Thus, using Proposition 4.16, we obtain that t′ ≤ λ.
Since during Exploret(e) requests are being served but do not arrive, we have that λ only increases
during Exploret(e). Since the �nal value of λ is λte, for every t′ ∈ P we have t′ ≤ λte as required.

Proposition 4.18. For every charging node µ = (e, [τ1, τ2)) ∈M , it holds that
∑

σ∈E−µ α(σ) ≤ w(e).

Proof. Observe that an outgoing edge σ from µ only goes to a node µ′ that invested in µ, and is labeled
α(σ) = xwhere x is the amount thatµ′ invested inµ. These amount sum to at mostw(e), since the counter
ce can only reach w(e) before it is zeroed and e is bought (thus ending the counter phase [τ1, τ2)).

Corollary 4.19. Every charging node µ ∈M such that
∑

σ∈E+
µ
α(σ) ≥ w(e) has that χµ ≥ 0.

The following observation results from the condition checks in SetColor.

Observation 4.20. For any node µ = (e, [τ1, τ2)) such that Color[µ] = µ? for some charging node µ?, we
have that τ1 6= −∞, and also λµ <∞.

The following Proposition is analogous to Proposition 2.23, and its proof is identical.

Proposition 4.21. Letµ = (e, [τ1, τ2)) such thatColor[µ] = µ? for some charging nodeµ? = (r, [τ?1 , τ
?
2 )).

Then OPT did not transmit e during [τ1, τ
?
2 ).

Lemma 4.22. The pre�ow de�ned by Procedure 5 is valid.

Proof. We need to show that χµ ≥ 0 for every µ = (e, [τ1, τ2)) ∈M .
We consider the following cases:
Case 1: Color[µ] = Special. In this case, we have that c(µ) ≥ cb(µ) = w(e). Observe that an edge
σ from s to µ is created with α(σ) = c(µ), and thus from Corollary 4.19 we have that χµ ≥ 0.
Case 2: Color[µ] = µ?, for some charging node µ?. Using Observation 4.20, observe that τ1 6= −∞ and
λµ < ∞, and thus the call Exploreτ1(e) has raised counters by exactly w(e), and thus µ has invested
a total of w(e) in other charging nodes. Thus, in

∑
σ∈Ē+

µ
α(σ) = w(e). Observe that SetColor added

the edges of Ē+
µ to E, and thus

∑
σ∈E+

µ
α(σ) ≥ w(e). Using Corollary 4.19, we have that χµ ≥ 0.
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Case 3: Color[µ] = None. If there are no outgoing edges from µ, then clearly χµ ≥ 0 and we are done.
Otherwise, there exists an outgoing edge σ to some node µ′ = (e′, [τ ′1, τ

′
2)) with Color[µ′] = µ?, for

some charging node µ?. Denote µ? = (r, [τ?1 , τ
?
2 )), and observe that since µ′ invested in µ, we must have

that τ ′1 ≤ τ2. Using Proposition 4.21, and the fact that Color[µ] 6= Special, we have that OPT did
not transmit e during [τ1, τ

?
2 ).

Claim – There exists a set of requests Q′ ⊆ Te such that rq ∈ [τ1, τ2) such that dQ′(τ?2 ) ≥ w(e).

Proof of Claim. Since Color[µ′] = µ?, it must be that τ ′1 6= −∞ and λµ′ ≤ τ?2 . Since µ′ invested in µ, we
have that at some point during Exploreτ ′1(e′), e was in the live cut under e′, and the algorithm detected
a set of pending requests Q ⊆ Te such that dQ(t̂) ≥ w(TQe ) for some time t̂ ≥ τ ′1. From Proposition 4.17,
we have that t̂ ≤ λµ ≤ τ?2 . Note also that since Q is pending at τ ′1, we have that rq < τ ′1 ≤ τ2. for every
q ∈ Q.
Now observe that since Color[µ′] = µ?, Color[µ] = None, and there exists an edge from µ to µ′, we
must have that SetColor(µ, µ?) was called. Since Color[µ] = None, it must be that either τ1 = −∞
or λµ > τ?2 .
If τ1 = −∞, then rq ≥ τ1 for every q ∈ Q. Combining this with rq < τ2, we have that rq ∈ [τ1, τ2) for
every q ∈ Q. We also have that dQ(τ?2 ) ≥ dQ(t̂) ≥ w(TQe ) ≥ w(e), by Q’s de�nition. Thus choosing
Q = Q′ proves the claim for this case.
Otherwise, we have that τ1 6= −∞ and λµ > τ?2 . We denote by Q̂ ⊆ Q the subset of requests pending
immediately after the return of Exploreτ1(e). By the de�nition of λµ, and since t̂ < λµ, we have that
dQ̂(t̂) < w(T Q̂e )− w(e). Thus,

dQ\Q̂(τ?2 ) ≥ dQ\Q̂(t̂) = dQ(t̂)− dQ̂(t̂)

≥ w(T Q̂e )−
(
w(T Q̂e )− w(e)

)
= w(e)

Denote Q′ = Q\Q̂. The requests of Q′ were not pending immediately during Exploreτ1(e), and there-
fore rq ≥ τ1 for any q ∈ Q′. As seen before, for every q ∈ Qwe have that rq < τ2, and thus for any q ∈ Q′
we have rq ∈ [τ1, τ2). Q′ therefore proves the claim.

We now use the claim. As shown before, OPT did not buy e during [τ1, τ
?
2 ), and has therefore did not

serve any request from Q′ until time τ?2 . Therefore, OPT incurs a delay cost of w(e) at µ on the requests
of Q′, and thus c(µ) ≥ w(e). Observe that an edge σ from s to µ is created with α(σ) = c(µ), and thus
Corollary 4.19 implies that χµ ≥ 0. This concludes the proof of Lemma 4.22.

Lemma 4.23. For every j ∈ [k], the charging node µ = (r, [tj−1, tj)) has that χµ ≥ w(r).

Proof. We denote τ1 = tj−1, τ2 = tj . Observe that no other nodes invest in µ, and thusE−µ = ∅. It remains
to show that

∑
e∈E+

µ
α(e) ≥ w(e).

If Color[µ] 6= None, then identically to Cases 1 and 2 of Lemma 4.22, we have that
∑

e∈E+
µ
α(e) ≥ w(e).

This completes the proof for these cases.
If Color[µ] = None, then we have a very similar proof to case 3 of Lemma 4.22. Observe the pending
requestsQ that became critical at τ2, triggering the service. Clearly, rq < τ2 for every q ∈ Q. Observe that
SetColor(µ, µ) was called, yet Color[µ] = None. Thus, it must be that either τ1 = −∞ or λµ > τ2.
To complete the proof, we need the following claim.
Claim – there exists a set of requests Q′ such that rq ∈ [τ1, τ2) for every q ∈ Q′, and dQ′(τ2) ≥ w(r).
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Proof of Claim. Observe the two cases of the claim. If τ1 = −∞, then rq ∈ [τ1, τ2) for every q ∈ Q.
Together with the fact that dQ(τ2) ≥ w(TQ) ≥ w(r), choosing Q′ = Q proves the claim.
Otherwise, τ1 6= −∞ and λµ > τ2. In this case, denote by Q̂ ⊆ Q the requests of Q pending immediately
after Exploreτ1{r} and observe, as in Case 3 of Lemma 4.22, that dQ̂(τ2) ≤ w(T Q̂)−w(r) ≤ w(TQ)−
w(r). Thus, we have that dQ\Q̂(τ2) ≥ w(r). Observe that rq ≥ τ1 for every q ∈ Q\Q̂, and thus rq ∈
[τ1, τ2) for every q ∈ Q\Q̂. Thus choosing Q′ = Q\Q̂ yields the claim.

Now, observe that Color[µ] 6= Special and thus OPT did not transmit e during [τ1, τ2). Using the
claim, OPT incurred delay cost of at leastw(r) onµ due toQ′. Thus c(µ) ≥ w(r), and thus

∑
e∈E+

µ
α(e) ≥

w(r), completing the proof of the lemma.

Proposition 4.24. ωZ ≤ OPTB +D ·OPTD

Proof. Observe that E+
s = ∅, and that for every σ ∈ E−s to a node µ ∈ M we have that α(σ) = c(µ).

Therefore, ωZ =
∑

µ∈M c(µ).
Observe that for buying an edge e at time t, OPT incurs buying cost only at the unique charging node
(e, [τ1, τ2)) such that t ∈ [τ1, τ2).
In addition, when OPT incurs delay for a request q released on leaf edge e, it incurs delay cost in at most
D charging nodes, of the form (e′, [τ1, τ2)) such that rq ∈ [τ1, τ2) and e′ is an ancestor of e.
Thus,

∑
µ∈M c(µ) ≤ OPTB +D ·OPTD , proving the proposition.

We can now prove Lemma 4.12.

Proof (of Lemma 4.12). Observe the set of charging nodes N = {(r, [tj−1, tj)|j ∈ [k]}. Using Lemma 4.23,
we have that

∑
µ∈N χµ ≥ kw(r).

We now use Propositions 2.18 and 4.24 to obtain

kw(r) ≤ ωZ ≤ OPTB +D ·OPTD

proving the lemma.

We now prove the main theorem for this subsection.

Proof of Theorem 4.5. The theorem results immediately from Lemmas 4.6 and 4.12.

4.4 From HSTs to General Trees

In this subsection, we show how to extend our result for multilevel aggregation on (≥ 2)-HSTs to general
trees, thus proving Theorem 4.2. To do so, we use a similar method to that used in [13] to form a virtual
forest of (≥ 2)-HSTs, based on the edges of the original tree.

The decomposition. Let T be the tree, with general weights, rooted at root edge r. We create a forest,
the edges of which are the edges of T .

De�nition 4.25 (parenthood in virtual (≥ 2)-HST). For every edge e, we de�ne p′(e), the virtual parent
of e, to be the least ancestor e′ of e in T such that w(e) ≤ 2w(e′). If there is no such e′, then e is the root
edge of a virtual tree in the forest.
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This �gure shows an example of a forest decomposition. The original tree is on the left, and the virtual
forest of (≥ 2)-HSTs resulting from the decomposition in given in the dash-dotted box on the right.

Figure 5: Forest Decomposition

We de�ne the forest according to the function p′. Observe that each connected component is indeed a tree,
and speci�cally a (≥ 2)-HST. Denote by T 1, ...., Tm the virtual trees formed from T , and denote by ri the
root edge of T i

Let I be an instance of online multilevel aggregation with delay. We partition the requests of I to I1, ..., Im,
such that a request belongs to Ii if the leaf edge vq ∈ Ii.
We denote by OPTi the optimal solution for the multilevel aggregation instance Ii in the virtual tree Ti.
Using an identical argument to Observation 4.2 in [13], we have the following observation.

Observation 4.26. OPT ≥
∑m

i=1 OPTi

De�nition 4.27. Let e ∈ Ti. We de�neBe to be the set of edges in T on the path from e to p′(e) (including
e, not including p′(e)). If e = ri, then let Be be all the edges from e to r, including r.

De�nition 4.28. Let Ti be some transmittable subtree in Ti for any i. We de�ne T̄i =
⋃
e∈Ti Be to be the

concretization of Ti.

The algorithm. We now describe the algorithm for online multilevel aggregation with delay on a gen-
eral tree. The algorithm is:

1. Run Algorithm 4 for each of T1, ...., Tm separately.

2. Whenever the instance of Algorithm 4 for Ti transmits the virtual subtree Ti, transmit its concretiza-
tion T̄i.

Observe that any transmission made by the main algorithm indeed serves the same requests as the original,
virtual transmission. We denote by ALGi the virtual cost of the (≥ 2)-HST algorithm for Ti – that is, the
delay of the requests of Ii plus the sum of the costs of virtual transmissions triggered by the (≥ 2)-HST
algorithm for Ti.
We denote by ki for i ∈ [m] the number of transmissions caused by the algorithm for Ti. The following
lemma is a restatement of Lemma 4.12.
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Lemma 4.29. kiw(ri) ≤ OPTB
i +D ·OPTD

i ≤ D ·OPTi

It remains to bound the cost of the algorithm.

Proposition 4.30. ALGD ≤ ALGB

Proof. Observe that ALGD =
∑m

i=1 ALGD
i and that ALGB ≥

∑m
i=1 ALGB

i . Thus, we have that

ALGD =
m∑
i=1

ALGD
i ≤

m∑
i=1

ALGB
i ≤ ALGB

where the second inequality is from Lemma 4.10.

We denote by ALG
B
i =

∑ki
j=1w(T̄ ji ) where T ji is the j’th transmission made by the Ti algorithm. Observe

that ALGB =
∑m

i=1 ALG
B
i .

The following lemma bounds the cost of the algorithm, and provides the �nal component for Theorem 4.2.

Lemma 4.31. For every i, we have that ALG
B
i ≤ 2Dki · w(ri).

Fix i ∈ [m]. We denote by Tj for j ∈ [ki] the j’th virtual transmission made by the Ti-algorithm. For
j ∈ [ki], we denote by tj the time of Tj ’s transmission.
To prove Lemma 4.31, we construct a pre�ow, in a similar manner to the proof of Lemma 4.6. However, in
this case we also have nodes that correspond to edges that for which Explore is not called.
We now describe the construction of the graph G = (V ∪ {s}, E), and the weight function α, such that
Z = (G, s, α) is a pre�ow. Each vertex in V is of the form (e, j) where e ∈ T̄j . To describe the edge set
E, we require the following de�nition.

De�nition 4.32 (x-route). Let (e, j), (e′, j′) be two edges such that e is an ancestor of e′, and j′ ≥ j.
Denote by e = e0, e1, ..., el = e′ the path from e to e′ in T . We de�ne an x-route from (e1, j1) to (e2, j2)
to be the set of the following charging node edges.

1. An edge σ from (e, j) to (e1, j
′) with α(σ) = x · he1 .

2. For each β ∈ [l − 1], an edge σ from (eβ, j
′) to (eβ+1, j

′) with α(σ) = x · heβ+1
.

We also de�ne an x-route from s to (e′, j′) in a similar manner. Let r = e1, e2, ..., el = e′ the path from
the root of T to e′. The edges of this x-route are:

1. An edge σ from s to (r, j′) with α(σ) = x ·D.

2. For each β ∈ [l − 1], and edge σ from (eβ, j
′) to (eβ+1, j

′) with α(σ) = x · heβ+1
.

We can now describe E. The edges of E are constructed in the following way:

1. For each j ∈ [ki], add to E the edges of a w(ri)-route from s to (ri, j).

2. For two charging nodes (e1, j1), (e2, j2) such that e1, e2 ∈ Ti, e1 is an ancestor of e2 andExploretj1 (e1)

invested x in Exploretj2 (e2), add to E the edges of an x-route from (e1, j1) to (e2, j2).

Observation 4.33. For every two edges e ∈ T , e′ ∈ Ti such that e ∈ Be′ it holds that w(e) ≤ 2w(e′).
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Lemma 4.34. For every charging node µ = (e, j) it holds that χµ ≥ w(e)
2 .

Proof. Observe that x-routes do not
It must be that e ∈ T̄j . Hence, there exists an edge e′ ∈ Tj such that e ∈ Be′ . Since e′ ∈ Tj , then we are in
one of the following cases.
Case 1: e′ = e, and thus e′ ∈ Tj . It can be shown that

∑
σ∈E+

µ
α(σ) ≥ w(e) ·he, and that

∑
σ∈E−µ α(σ) ≤

w(e) · (he − 1), similarly to the proof of Lemma 4.11.
Case 2: e 6= e′ and e′ 6= ri. Thus, e /∈ Ti. Observe that since e /∈ Ti, adding any x-route cannot decrease
χµ. Indeed, adding an x-route can only create an outgoing edge from µ when creating an incoming edge
with greater α. Thus, we locate a set of x-routes that increases χµ to at least w(e′). From Observation
4.33, we get that w(e′) ≥ w(e)

2 , proving the lemma.
If e′ = ri, then a w(ri)-route is created from s to (ri, j). Since e is on the path from r to ri, it must be that
the route adds:

• An incoming edge σ to (e, j) with α(σ) ≥ he · w(ri).

• An outgoing edge σ− from (e, j) with α(σ) ≤ (he − 1) · w(ri).

showing that χµ ≥ w(ri) ≥ w(e)
2 .

Otherwise, e′ 6= ri. Observe that any x-route to (e′, j) contains µ, and increases χµ by at least x (using
the same argument as the case for e′ = ri). In this case, observe that a total of w(e′) has been invested has
been invested in (e′, j) to trigger Exploretj (e

′). This completes the proof.

Proof of Lemma 4.31. We have that ALG
B
i ≤ 2Dki · w(ri).

Observe the pre�ow Z as constructed. We have that ωZ = Dkiw(ri). From Lemma 4.34, and using
Proposition 2.18, we have

ALG
B
i ≤

ki∑
j=1

w(T̄j) =
∑

(e,j)∈V

w(e) = 2 ·
∑

µ=(e,j)∈V

χµ ≤ 2 · ωZ = 2Dkiw(ri)

Proof of Theorem 4.2. From Lemmas 4.29 and 4.31, we have that for every i ∈ [m]

ALG
B
i ≤ 2D2OPTi

From Observation 4.26, we have that

ALGB =

m∑
i=1

ALG
B
i ≤ 2D2 ·

m∑
i=1

OPTi ≤ 2D2 ·OPT

Using Lemma 4.30, we have that

ALG ≤ 2ALGB ≤ 4D2 ·OPT

as required.
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5 Online Service with Delay

5.1 Problem and Notation

In the online service with delay (OSD) problem, a single server exists on a point in a metric space. Requests
arrive on points of the metric space over time, and accumulate delay until served, where serving a request
requires moving the server to that request. The cost of moving the server from one point to another is the
distance between those two points in the metric space. The goal is to minimize the sum of the moving cost
and the delay cost.
Formally, a request is a tuple q = (vq, rq, dq(t)) such that vq is the point on which q arrives, the request
arrives at time rq , and dq(t) is an arbitrary non-decreasing continuous delay function. We also assume
that dq(t) tends in�nity as time progresses. For any instance of OSD I , denote by ALGB the total cost of
moving the algorithm’s server. We also denote by ALGD =

∑
q∈Q dq(tq), where tq is the time in which

the request q is served. Then the algorithm’s goal is to minimize the total cost

ALG = ALGB + ALGD

As in the previous problems in this paper, we also consider the special case in which the metric space is the
leaves of a (≥ 2)-HST. Without loss of generality, we allow an algorithm to move its server to the internal
nodes of the tree, even though they are not a part of the original metric space. This is implemented by
lazy moving of the server – that is, the server never really moves to those internal nodes, but its virtual
location in an internal node is kept in the algorithm’s memory for the sake of calculations.
In this section, we prove the following theorem.

Theorem 5.1. There exists a randomized O(log2 n)-competitive algorithm for online service with delay on
a general metric space of n points.

5.2 Algorithm for HSTs

In this subsection, we present an algorithm for online service with delay on (≥ 2)-HSTs. We assume that
the weight of each edge is a power of 2 – this can be enforced, at a loss factor of 2 to competitiveness. This
algorithm encapsulates our algorithm for online multilevel aggregation with delay, while using similar
mechanisms to those in [5].
For an edge e, denote C(e) = {e′|p(e′) = p(e) ∧ w(e′) < w(e)}, the set of sibling edges of e with smaller
weight. Note that for every e′ ∈ C(e) we have w(e′) ≤ 1

2w(e), since edge weights are powers of 2. We
de�ne the following.

De�nition 5.2 (Top and bottom nodes). For an edge e, we de�ne v>e to be the top node of e, and v⊥e to be
the bottom node of e.

De�nition 5.3 (Relative subtree Re). For an edge e, we de�ne the relative subtree of e to be {e} ∪⋃
e′∈C(e) Te′ .

The following de�nition is required for de�ning exactly what we mean when referring to locations of
servers and requests.

De�nition 5.4 (Locations of servers and requests). Consider the location of a server (either the algorithm’s
or the optimum’s).

• For Te, we say that the server is internal to Te if the server is in one of the nodes of Te other than v>e .
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• For Re = {e} ∪
(⋃

e′∈C(e) Te′
)

, we say that the server is internal to Re if the server in one of the
nodes of Re other than v⊥e .

The same applies for saying that a request q is internal to Te (or Re), and writing q ∈ Te (or q ∈ Re).
Let Q ⊆ Re be a set of requests, and denote by Q �Te′= {q ∈ Te′ |q ∈ Q}. Then we de�ne RQe to be ⋃

e′∈C(e)

T
Q�Te′
e′

 ∪ {e}
We sometimes write Ye to make claims that refer to either Re or Te.

De�nition 5.5 (Saturation). We say that a set of requestsQ ⊆ Ye saturates Ye at time t if dQ(t) ≥ w(Y Q
e ).

De�nition 5.6 (Major edges). We say that an edge e is major at a time t if every edge e′ on the path from
the algorithm’s server to e has that w(e′) ≤ w(e).

De�nition 5.7 (Critical set). We say that a set of requests Q is critical at time t if it saturates Ye at time t
for an edge e which is major at time t.

De�nition 5.8. Let e be an edge, and Ye be either Te or Re. We say that the algorithm’s server is on the
other side of e than Ye if:

• The server is internal to Te and Ye = Re.

• The server is not internal to Te and Ye = Te.

The following proposition allows us to assume that whenever a set of requests is critical by saturating Ye
for a major edge e, we have that the algorithm’s server is on the other side of e than Ye.

Proposition 5.9. Suppose there exists a critical set of requests Q, saturating Ye for e a major edge, at some
point in time. Then there exists another critical set of requests Q′, saturating Ye′ for another major edge e′,
such that the algorithm’s server is on the other side of e′ than Ye′ .

Proof. If the server is on the other side of e than Ye, we are done. Suppose otherwise, and let Q be the
minimal set saturating Ye.
Consider the case that Ye = Te, and the algorithm’s server is internal to Te. Note that e cannot be a leaf
edge – otherwise, the server and all requests in Q must be on v⊥e , in contradiction to the requests of Q
being pending.

1. If the server is in v⊥e , we can thus choose e′ to be any child edge of e saturated by Q �Te′ (such an
edge must exist, otherwise Q would not have saturated Te).

2. If the server is internal to Tê for some ê child edge of e, then:

(a) If there exists a sibling ẽ of ê such that w(ẽ) ≥ w(ê) such that Q �Tẽ is saturated, then ẽ is
major, and thus Q �Tẽ is critical. The server is on the other side of ẽ than Tẽ, completing the
proof.

(b) If there is no such ẽ, by the minimality ofQwe have for any ẽ sibling of ê such thatw(ẽ) ≥ w(e)
that Q �Tẽ= ∅.
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Algorithm 6: Online Service with Delay
1 Initialization.
2 Initialize ce ← 0 for any edge e ∈ T\{r}
3

4 Event Function UponCritical() // Upon request set becoming critical as per De�nition 5.7
5 Let Ye be the tree saturated by the critical requests, such that e is a major edge.

// The server is on the other side of e than Ye, by Proposition 5.9.
6 let e = (u1, u2), such that the server is on u1’s side.
7 move server to u1.
8 let T ←MultilevelAggregationExplore(Ye)
9 traverse T in DFS order, �nishing at u1.

10 traverse e to reach u2.

i. If Q �Tê does not saturate Tê, then again from minimality of Q we have Q �Tê= ∅. Thus
Q ⊆ Rê. Since w(RQê ) = w(TQe ) − w(e) + w(ê) ≤ w(TQe ), it holds that Q saturates ê,
and is thus critical.

ii. Otherwise, Q �Tê saturates Tê, and is thus critical. Since the server is internal to Tê,
induction on the height of e yields the proof.

The case that Ye = Re and the server is not internal to Te is very similar.

Algorithm’s description. The algorithm for service with delay on a (≥ 2)-HST is given in Algorithm 6.
The algorithm triggers a service whenever a set of requests becomes critical. We assume that the set of
requests considered by the algorithm is always on the other side of the major edge than the server. This
assumption uses Proposition 5.9.
Whenever a set of requests becomes critical, saturating Ye for a major edge e, the algorithm moves the
server to the closer node touching e (denoted by u1). It then calls the exploration function of the mul-
tilevel aggregation algorithm for (≥ 2)-HSTs, given in Algorithm 4. To make this well de�ned, a call to
MultilevelAggregationExplore(Ye) observes the (≥ 2)-HST Ye, in which e is the root edge.
If Ye = Re, then e is “promoted” to be the parent edge of its siblings in Re for the sake of the multilevel
aggregation exploration (note that the resulting tree is indeed a (≥ 2)-HST). The counters used by the
exploration are the same counters ce of the service with delay algorithm.
The exploration of the multilevel aggregation algorithm yields a tree to transmit T . In the case of service
with delay, instead of transmitting T , we traverse it with the server, in DFS order, returning to the node
u1. Note that the cost of this is exactly twice the weight of T . To conclude, the server crosses e, ending
the service on the other side of e than before the service. Observe that while this concludes the call to
UponCritical, it may immediately trigger new calls toUponCritical due to new edges becoming
major in the server’s new location.

5.3 Analysis

Fix any instance of online service with delay on the tree T . De�ne ALGB and ALGD to be the total moving
cost and the total delay cost of the algorithm on the instance, respectively. De�ne ALG = ALGB+ALGD .
De�ne OPTB,OPTD and OPT similarly for the optimum.
In this subsection, we prove the following theorem.
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Theorem 5.10. ALG ≤ O(D) ·OPTB +O(D2) ·OPTD .

Observe that upon embedding from a general metric space of n points to a (≥ 2)-HST, the moving cost is
distorted but the delay cost is not. Thus, using similar arguments to the proof of Theorem 2.3, we have
that Theorem 5.10 implies Theorem 5.1 for general metric spaces.

5.3.1 Upper Bounding ALG

We again denote by k the number of services made by the algorithm. That is, k is the number of calls to
UponCritical. We denote by ei for i ∈ [k] the major edge considered in the i’th service. We also
denote by ti the time of the i’th service.
We devote this part of the analysis to proving the following lemma.

Lemma 5.11. ALG ≤ O(D) ·
∑k

i=1w(ei)

Observe the operation of the algorithm. Upon a critical set of requests the algorithm callsUponCritical
a few times consecutively, until there is no critical set of requests with regard to the server’s current loca-
tion. The algorithm then enters the waiting state. We call each such instantaneous set of services a service
phase. We denote by k′ the number of these phases. We also assume that no two sets of requests become
critical at the same time, which can easily be enforced by the algorithm by breaking ties arbitrarily.

Proposition 5.12. Consider the service phase which starts from a set of requests Q becoming critical by
saturating Ye, for a major edge e. Then during the entire phase, the server only serves requests internal to Ye.

Proof. The �rst service in the phase only serves requests internal to Ye, and the server �nishes the service
in a point internal to Ye. We claim that during the rest of the phase, the server remains internal to Ye,
which proves the proposition.
Assume otherwise. Then we must have that at some point during the phase, a set of pending requests Q′
is critical (with regards to the server’s location at that point in the phase) by saturating Ye′ for an edge
e′ /∈ Ye. Consider the �rst such point during the phase. Due to our assumption that no two sets of requests
become critical at the same time, we have that e′ must not have been a major edge before the start of the
phase. But note that all edges in Ye have weight at most w(e), and thus the server only traversed edges
of weight at most w(e) since the start of the phase. Thus, we must have that w(e′) < w(e). Now, note
that the server cannot reach any edge e′ such that w(e′) < w(e) and e′ /∈ Ye from a position which is
internal to Ye without traversing an edge of weight at leastw(e). This is a contradiction to e′ being a major
edge.

Lemma 5.13. ALGD ≤ ALGB

Proof. Let Q be the set of all requests in the instance. Divide Q into Q1, ..., Qk′ such that Qi are the
requests served by the algorithm in the i’th phase.
Fix the i’th phase, let t be the time of the phase and let Q = Qi. Let Ye be the saturated tree triggering the
phase, with e a major edge. Due to Proposition 5.12, we have that Q ⊆ Ye. Since the algorithm’s server
is outside Ye, we have that w(Y Q

e ) is a lower bound for the cost of moving the server to serve Q. Since e
is a major edge immediately before the start of the phase, we have that dQ(t) ≤ w(Y Q

e ). Thus the delay
incurred by the requests of Q is bounded by the buying cost incurred by the algorithm in the phase.
Summing this conclusion over all phases yields the lemma.

Proposition 5.14. Moving the server to touch a major edge e costs at most 2w(e).
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Proof. Since we are in a (≥ 2)-HST, the path from any node to another node consists of (at most) one
upwards path followed by one downwards path. Since e is a major edge, each edge on the path from the
server to e must have weight at most w(e). Thus, the downwards path must be of length 0 – otherwise,
it would contain e’s parent edge, which has weight larger than w(e). Consider that the weight of the
upwards path is at most 2w(e).

Lemma 5.15. ALGB ≤ (2D + 5) ·
∑k

i=1w(ei)

Proof. Each service triggered by the saturation of a major edge e causes a multilevel aggregation service
of either Te or Re, plus additional server movements required to reach and traverse e. The additional
movements are of at most 3w(e) (using Proposition 5.14), and thus 3 ·

∑k
i=1w(ei) over all services.

Using a very similar proof to the case for multilevel aggregation, we can show that the sum of the weight
of the trees to “transmit” yielded by the calls to the multilevel aggregation algorithm are at most (D +
1)
∑k

i=1w(ei). Since traversing a tree by DFS is twice the cost of transmission, the buying cost incurred
by the OSD algorithm for that step is at most 2(D + 1)

∑k
i=1w(ei).

Overall, the buying cost of the algorithm is at most (2D + 5)
∑k

i=1w(ei).

of Lemma 5.11. The lemma results directly from Lemmas 5.13 and 5.15.

5.3.2 Lower Bounding OPT

De�nition 5.16 (Ii). We de�ne the indicator variable Ii for i ∈ [k] to be 1 if the optimum’s server was on
the same side of ei at ti as the algorithm’s server (before the call to UponCritical), and 0 otherwise.

The following lemma provides a lower bound on the cost of the optimum.

Lemma 5.17.
∑k

i=1 Ii · w(ei) ≤ 3 ·OPTB + 3D ·OPTD

Charging nodes and incurred costs. We �rst de�ne the charging nodes for the analysis of this algo-
rithm. For every edge e, there exist three types of charging nodes:

1. Standard root charging nodes (SRCN), which are nodes of the form (e, [τ1, τ2)) where τ1 and τ2 are
two subsequent times in which Explore(e) is called due to e being a major edge and Te being
saturated, triggering service.

2. Relative root charging nodes (RRCN), which are nodes of the form (e, [τ1, τ2)) where τ1 and τ2 are
two subsequent times in which Explore(e) is called due to e being a major edge and Re being
saturated, triggering service.

3. Normal charging nodes (NCN), which are nodes of the form (e, [τ1, τ2)) where τ1 and τ2 are two
subsequent times in which Explore(e) is called due to the counter ce reaching w(e).

Nodes of types 1 and 2 correspond to root charging nodes in the multilevel aggregation case, while nodes
of type 3 correspond to non-root nodes.
For a charging node µ = (e, [τ1, τ2)) we say that:

• OPT incurs a buying cost of w(e) in µ if OPT traversed the edge e during [τ1, τ2). We denote the
buying cost that OPT incurs in µ by cb(µ).
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• If µ is an SRCN or an NCN, OPT incurs a delay cost in µ equal to the delay incurred by OPT on the
set of requests Q = {q ∈ Te|rq ∈ [τ1, τ2)}

• If µ is an RRCN, OPT incurs a delay cost in µ equal to the delay incurred by OPT on the set of
requests Q = {q ∈ Re|rq ∈ [τ1, τ2)} if OPT’s server remained internal to Te during [τ1, τ2).

We denote the total delay cost incurred by OPT in µ be cd(µ). We denote the total cost that OPT incurs
in µ by c(µ) = cb(µ) + cd(µ).

Lemma 5.18.
∑

µ∈M c(µ) ≥ 3 ·OPTB + 3D ·OPTD

Proof. Observe that any edge traversal by the optimum’s server can be counted in three charging nodes
relating to that edge (one SRCN, one RRCN and one NCN).
Any delay cost incurred by the optimum due to a request q can be counted in NCNs and SRCNs along the
depth of the tree, yielding 2D such charging nodes. In addition, the delay of q can be counted in at most
D RRCNs along the path from the root to the location of the optimum’s server at time rq .
These observations yield the lemma.

Denote byM the set of all charging nodes. To prove Lemma 4.12, we show a pre�ow on the set of vertices
M ∪ {s}, where s is the source node.
The following de�nition of charging node investment is nearly identical to the de�nition in the multilevel
aggregation case.

De�nition 5.19 (Investing). For a charging node µ1 = (e1, [τ
1
1 , τ

1
2 )) and an NCN µ2 = (e2, [τ

2
1 , τ

2
2 )),

we say that µ1 invested x in µ2 if Exploreτ11 (e1) raised the counter ce2 by x during the counter phase
[τ2

1 , τ
2
2 ) (not including recursive calls made by Exploreτ11 (e1)).

Procedure 7 is used to build the pre�ow. As in the previous analyses, we de�ne Ē to be the set of possible
edges between nodes of M to themselves. As before, an edge σ exists in Ē from a charging node µ to a
charging node µ′ if µ invested in µ′, and α(σ) is set to be the total invested amount.
We use the following de�nition for ease.

De�nition 5.20 (Yµ). For a charging node µ = (e, [τ1, τ2)), we de�ne Yµ to be Re if µ is a RRCN. Other-
wise, we de�ne Yµ to be Te.

Observation 5.21. If a node µ = (e, [τ1, τ2)) invested in a node µ′ = (e′, [τ1, τ2)), then Yµ′ ⊆ Yµ.

Proposition 5.22 (analogue of Proposition 4.21). Let µ = (e, [τ1, τ2)) such that Color[µ] = µ? for some
charging node µ? = (e?, [τ?1 , τ

?
2 )). Then OPT did not enter Yµ during [τ1, τ

?
2 ).

Proof. Since Color[µ] = µ?, we must have that for the RCN µ? we have that Color[µ?] = µ?. Thus,
we have that Ii = 1 for i such that τ?2 = ti, and thus the optimum’s server was on the same side of
e? as the algorithm’s server before the service at τ?2 . Since we only consider critical trees on the other
side of the major edge, we have that the optimum’s server was not internal to Yµ? at time τ?2 . Since
Color[µ?] 6= Special, the optimum’s server did not traverse e? during [τ?1 , τ

?
2 ), and thus was not

internal to Yµ? during [τ?1 , τ
?
2 ).

What follows is a similar inductive argument to that of Proposition 2.23. For the base case that µ = µ?,
we are done. We now prove the proposition by induction on the depth of the propagation of the color µ?
to µ. Observe that the color µ? was propagated to µ from another charging node µ′ = (e′, [τ ′1, τ

′
2)). By
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Procedure 7: Pre�owBuilder - Online Service with Delay
1 Initialization.
2 Let the set of vertices of G be M ∪ {s}, and initialize the edge set to be E = ∅.
3 Initialize dictionary Color[w] = None for every µ ∈M .
4 foreach µ = (e, [τ1, τ2)) ∈M such that OPT traversed edge e during [τ1, τ2) do
5 set Color[µ]← Special

6 foreach µ ∈M such that c(µ) > 0 do
7 add a new edge σ = (s, µ) to E, and set α(σ) = c(µ)

8

9 Function PreflowBuilder()
10 for i from 1 to k do
11 let µ← (ei, [ti−1, ti)) be the RCN of the i’th service.
12 if Ii = 1 then SetColor(µ,µ)

13 for j from 1 to D do
14 foreach NCN µ = (e, [τ1, τ2)) ∈M such that e is of depth j do
15 foreach edge σ ∈ E−µ incoming to a node µ′ do
16 if SetColor(µ,Color[µ′]) 6= None then break

17

18 Function SetColor(µ,µ?) // As in Procedure 2

induction, the optimum’s server was not internal to Yµ′ during [τ ′1, τ
?
2 ). From Observation 5.21, we have

that the optimum’s server was not internal to Yµ during [τ ′1, τ
?
2 ).

Since Color[µ] 6= Special, the optimum’s server did not traverse e during [τ1, τ2). Since µ′ invested
in µ, we have that τ ′1 ≤ τ2, and thus the optimum’s server was not internal to Yµ during [τ1, τ

?
2 ) as

required.

Observation 5.23. Corollary 4.19 from the multilevel aggregation case holds in this case as well. That is, if∑
σ∈E+

µ
α(σ) ≥ w(e), then χµ ≥ 0.

Lemma 5.24. The pre�ow de�ned by Procedure 7 is valid.

Proof. As in previous versions of this lemma, we need to show that χµ ≥ 0 for every µ ∈M . We separate
according to cases.
Case 1: Color[µ] = Special. In this case, OPT incurs a buying cost of w(e) at µ, completing the
case according to Observation 5.23.
Case 2: Color[µ] = µ? for some charging node µ?. In this case, observe that Observation 4.20 applies for
OSD as well. Thus, µ has invested in other nodes a total of exactly w(e), and thus

∑
σ∈E+

µ
α(σ) ≥ w(e).

Observation 5.23 completes the proof for this case.
Case 3: Color[µ] = None. If there are no outgoing edges from µ, then clearly χµ ≥ 0 and we are
done. Otherwise, µ is an NCN, and there exists an outgoing edge σ to some node µ′ = (e′, [τ ′1, τ

′
2)) with

Color[µ′] = µ? for some charging node µ? = (e?, [τ?1 , τ
?
2 )). Observe that since µ′ invested in µ, we must

have that τ ′1 ≤ τ2. Using Proposition 5.22, and the fact that Bought[µ] = False, we have that OPT was
not internal to Yµ during [τ1, τ

?
2 ). As in Case 3 of Lemma 4.22, we locate a set of requests internal to Yµ

due to which OPT incurs delay cost of w(e) in µ.
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Claim – There exists a set of requests Q′ ⊆ Yµ such that rq ∈ [τ1, τ2) such that dQ′(τ?2 ) ≥ w(e).

Proof of claim. Identical to the proof for the corresponding claim in the multilevel aggregation analysis.

Using the claim, observe that since the optimum’s server was not internal to Yµ during [τ1, τ
?
2 ), it has

incurred w(e) delay due to the requests ofQ′. Due to the de�nition of delay cost on an NCN, we have that
cd(µ) ≥ w(e). This completes the analysis of the case due to Observation 5.23.

Lemma 5.25. For every root charging node µ = (ei, [ti−1, ti)) we have that χµ ≥ Ii · w(ei).

Proof. If Color[µ] 6= None, we have that χµ ≥ w(ei) using identical arguments to Cases 1 and 2 of
Lemma 5.24.
Otherwise, Color[µ] = None. Observe that χµ ≥ 0, due to Lemma 5.24, which covers the case that
Ii = 0. Now, suppose that Ii = 1. We show that OPT incurred a delay cost of at least w(ei) in µ.
Claim – There exists a set of requests Q′ ⊆ Yµ such that rq ∈ [ti−1, ti) such that dQ′(ti) ≥ w(e).

Proof of Claim. We denote byQ the set of requests that became critical at ti, triggering the service. Observe
that dQ(ti) ≥ w(Yµ), and that rq < ti for every q ∈ Q. Since Color[µ] = None, we must have that
either ti−1 = −∞ or λµ > ti.
If ti−1 = −∞, then rq ∈ [ti−1, ti) and choosing Q′ = Q yields the claim. Otherwise, ti−1 6= −∞, and
λµ > ti. In this case, we choose Q̂ ⊆ Q to be the set of pending requests immediately after the service at
ti−1. Since λµ > ti, dQ̂(ti) ≤ w(Y Q̂

µ ) − w(ei) ≤ w(Y Q
µ ) − w(ei). Thus, we have that dQ\Q̂(ti) ≥ w(ei).

Observe that rq ≥ ti−1 for every q ∈ Q\Q̂, and thus rq ∈ [ti−1, ti) for every q ∈ Q\Q̂. Thus choosing
Q′ = Q\Q̂ yields the claim.

We now use this claim. Observe that the optimum’s server was not internal to Yµ at ti (due to Ii = 1), and
since Color[µ] 6= Special, the optimum’s server was not internal to Yµ during [ti−1, ti). Thus, the
optimum incurs a delay cost of w(ei) due to Q′. Now observe that:

• If µ is an SRCN, then cd(µ) ≥ w(ei).

• Ifµ is an RRCN, then the algorithm’s server was internal to Tei at time ti. Since Ii = 1, the optimum’s
server was internal to Tei as well at ti. Since Color[µ] 6= Special, the optimum’s server stayed
internal to Tei during [ti−1, ti). Thus, cd(µ) ≥ w(ei).

In both cases, cd(µ) ≥ w(ei), completing the proof of the case and lemma.

of Lemma 5.17. The proof of the lemma results from observing the subset N ⊆ M of all root charging
nodes. Lemma 5.25 implies that

∑
µ∈N χµ ≥

∑k
i=1 Ii · w(ei).

We now use Proposition 2.18 and Lemma 5.18 to obtain

k∑
i=1

Ii · w(ei) ≤ ωZ =
∑
µ∈M

c(µ) ≤ 3 ·OPTB + 3D ·OPTD

proving the lemma.
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5.3.3 Proof of Main Theorem

In this part of the analysis, we prove Theorem 5.10.
From Lemma 5.11, we have that ALG ≤ γD ·

∑k
i=1w(ei) for some constant γ.

De�nition 5.26 (Potential function φ(t)). We de�ne the potential function φ(t) to be γD times the dis-
tance between the algorithm’s server and the optimum’s server at time t.
Observe that φ(−∞) = 0.

For every i ∈ [k], de�ne the di�erence in potential ∆iφ = φ(t+i )−φ(t−i ), where t−i is time ti immediately
before the i’th service and t+i is time ti immediately after the i’th service.
We de�ne ALGi = γDw(ei), and OPTi = Ii ·w(ei). Observe from Lemmas 5.11 and 5.17 that

∑
i ALGi ≥

ALG and
∑

i OPTi ≤ 3 ·OPTB + 3D ·OPTD .

Lemma 5.27. For every i ∈ [k], we have that ALGi ≤ 4γD ·OPTi −∆iφ.

Proof. If Ii = 1, then OPTi = w(ei). Using Proposition 5.14, we have that ∆iφ ≤ 3γD · w(ei). Thus

ALGi = γDw(ei) = 4γD ·OPTi − 3γD · w(ei) ≤ 4γD ·OPTi −∆iφ

as required.
Otherwise, Ii = 0. Then, OPTi = 0. Since the optimum’s server is on the other side of the edge ei than
the algorithm’s server before the i’th service, and the algorithm �nishes the service on that other side of
ei, it must be that ∆iφ ≤ −γD · w(ei). Thus,

ALGi = γDw(ei) ≤ 4γD ·OPTi −∆iφ

�nishing the proof of the lemma.

Proposition 5.28. Denote the �nal value of φ by φ(∞). Then∑
i

∆iφ ≥ φ(∞)− γD ·OPTB

Proof. Consider that φ(∞) = φ(∞)−φ(−∞) can be constructed by summing the changes to the potential
function caused by moves of the algorithm’s server (which are the ∆iφ) and changes caused by moves of
the optimum’s server. Note that moving the optimum’s server by x can increase φ by at most γDx. Thus,

φ(∞) ≤
∑
i

∆iφ+ γD ·OPTB

yielding the proposition.

Corollary 5.29.
∑

i ∆iφ ≥ −γD ·OPTB

of Theorem 5.10. Due to Lemma 5.27, we have that

ALG ≤
∑
i

ALGi ≤
∑
i

4γD ·OPTi −
∑
i

∆iφ

Since
∑

i OPTi ≤ 3OPTB + 3D ·OPTD , and using Corollary 5.29, we have that

ALG ≤ 4γD ·
(
3OPTB + 3D ·OPTD

)
+ γD ·OPTB

≤ 13γD ·OPTB + 12γD2 ·OPTD

proving the theorem.
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A Additional Figures
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(a) After Open(u). (b) Time forwarding reaches t′, the earliest deadline
of a pending request in Tu.

(c) The request is connected to u. (d) The new earliest deadline t′′ is reached in time
forwarding.

(e) Investment triggers Explore(u2), serving the
earliest deadline request.

Figure 6: Visualization of Algorithm 1 – the operation of Explore(u) at time t.
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