
Random k-out subgraph leaves only O(n/k) inter-component edges ∗

Jacob Holm† Valerie King‡ Mikkel Thorup∗ Or Zamir§ Uri Zwick‡

Abstract

Each vertex of an arbitrary simple graph on n vertices chooses k random incident edges. What is
the expected number of edges in the original graph that connect different connected components
of the sampled subgraph? We prove that the answer is O(n/k), when k ≥ c log n, for some large
enough c. We conjecture that the same holds for smaller values of k, possibly for any k ≥ 2.
Such a result is best possible for any k ≥ 2. As an application, we use this sampling result to
obtain a one-way communication protocol with private randomness for finding a spanning forest
of a graph in which each vertex sends only O(

√
n log n) bits to a referee.

1 Introduction

Sampling edges is a natural way of trying to infer properties of a graph when accessing the whole
graph is either not possible or too expensive. We consider a scenario in which each vertex is resource
constrained and can only sample k of its incident edges, or all edges if its degree is at most k. This
corresponds to the k-out model that was mainly studied in the context of the complete graph. (See
references and discussion in Section 1.2.) Here we are interested in properties of this sampling
model when applied to arbitrary simple graphs.

Let G = (V,E) be an arbitrary simple graph on n vertices. Each vertex v independently picks
min{deg(v), k} random adjacent edges. Let G′ = (V,E′) be the resulting subgraph. How many
edges of G connect different connected components of G′? (These edges are referred to as inter-
component edges.) We prove that for k ≥ c log n, for a sufficiently large constant c, the expected
number of such edges is O(n/k). We conjecture that the same result also holds for much smaller
values of k, possibly even for every k ≥ 2. The statement is false for k = 1. No such result was
obtained or conjectured before, for any value of k. Simple examples show that this result is best
possible for any k ≥ 2. The proof we provide is fairly intricate. Our result also sheds light on other
sampling models.

Given its generality, we hope that our new sampling theorem would find many applications. As a
first such application, we show how the sampling theorem, together with other ideas, can be used
to obtain a one-way communication protocol with private randomness for finding a spanning forest
of an input graph in which each vertex sends only Õ(

√
n) bits to a referee. No private randomness

protocol in which each vertex sends only o(n) bits was known before.

∗In connection with this work, all authors had some degree of support from Thorup’s Investigator Grant 16582,
Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation. All were at BARC when the work
was started, Valerie King as a short term visitor, Uri Zwick and Or Zamir as long term visitors, and Jacob Holm and
Mikkel Thorup were there the whole time.
†BARC, Department of Computer Science, University of Copenhagen, Denmark, jaho@di.ku.dk,

mikkel2thorup@gmail.com
‡Department of Computer Science, University of Victoria, Canada. E-mail: val@uvic.ca. Research supported by

Natural Science and Engineering Research Council of Canada (NSERC) Discovery Grant.
§Blavatnik School of Computer Science, Tel Aviv University, Israel. E-mail: orzamir@mail.tau.ac.il,

zwick@tau.ac.il. Research supported by a grant from The Blavatnik Computer Science Research Fund.

1

ar
X

iv
:1

90
9.

11
14

7v
1

 [
cs

.D
M

]
 2

4
Se

p
20

19

1.1 Our results

We begin with a formal definition of the k-out model.

Definition 1.1 (Random k-out subgraphs) Let G = (V,E) be a simple undirected graph. Sam-
ple a subset S ⊆ E of the edges by the following process: Each vertex independently chooses
min{k, deg(v)} of its incident edges, each subset of this size is equally likely. An edge is included
in S if and only if it was chosen by at least one of its endpoints. The subgraph G′ = (V, S) is said
to be a random k-out subgraph of G.

In the above definition, we treat each undirected edge {u, v} ∈ E as two directed edges (u, v) and
(v, u). Each one of these directed edges is sampled independently. At the end, the direction of the
sampled edges is ignored and duplicate edges are removed.

Although each vertex chooses only k adjacent edges, the resulting subgraph is not necessarily of
maximum degree k, as an edge may be chosen by either of its endpoints. In particular, if G is a
star and k ≥ 1, then G′ is always the original graph, as each leaf must choose the edge connecting
it to the center. The choices made by the center are irrelevant. However, for any graph G, the
resulting subgraph G′ is always k-degenerate, i.e., it can be oriented so that the outdegree of each
vertex is at most k. We just keep the orientation of the sampled directed edges.) As a consequence
the arboricity of G′ is also at most k.

The main result of this paper is:

Theorem 1.2 (Main Theorem for k-out) Let G be an arbitrary undirected n-vertex graph and
let k ≥ c log n, where c is a large enough constant. Let G′ be a random k-out subgraph of G. Then
the expected number of edges in G that connect different connected components of G′ is O(n/k).

It is easy to see that the theorem is best possible for any k ≥ 2 and n ≥ 3k. Let G = (V,E) be a
graph composed of two cliques of size n

2 , connected by a matching of size n
k . With probability at

least (1 − 2k
n)

2n
k ≥ (1 − 2

3)2·3 = 3−6, no edge from the matching is chosen, in which case all the n
k

edges of the matching are inter-component, i.e., connect different connected components of G′.

Another example, of a very different nature, that shows that Theorem 1.2 is best possible is the
following. Let T be an arbitrary tree on n

2k ≥ 2 vertices. Form G by connecting each vertex u of T
to 2k − 1 new leaves, making deg(u) ≥ 2k. Each original tree edge (u, v) has probability at least
1− k

deg(u) ≥
1
2 of not being chosen by u, and (independent) probability at least 1− k

deg(v) ≥
1
2 of not

being chosen by v. Thus the probability of (u, v) not being in G′ is (1 − k
deg(u)) · (1 −

k
deg(v)) ≥

1
4 .

The expected number of edges of T that connect different connected components of G′ is therefore
at least (n2k − 1) · 14 , which is Ω(nk).

It follows immediately from Theorem 1.2 that there is a constant b such that the probability that
the number of inter-component edges is greater than ` · bn/k is at most 2−`, for every ` ≥ 1, and
this tail bound is tight. (See Corollary 2.22.)

We conjecture that Theorem 1.2 holds whenever k = Ω(1), and possibly even for every k ≥ 2.

Conjecture 1.3 (Conjecture for k-out) Let G be an arbitrary undirected n-vertex graph and
let k ≥ c, where c is a large enough constant. Let G′ be a random k-out subgraph of G. Then, the
expected number of edges in G that connect different connected components of G′ is O(n/k).

A closely related sampling model, in which we do most of the work, is the following:

2

Definition 1.4 (Random expected k-out subgraphs) Let G = (V,E) be a simple undirected
graph. Sample a subset S ⊆ E of the edges by the following process: Each vertex samples each one
of its incident edges independently with probability k/max{k, deg(v)}. Thus, each vertex of degree
at least k samples an expected number of k edges. An edge is included in S if and only if it was
sampled by at least one of its endpoints. The subgraph G′ = (V, S) is said to be a random expected
k-out subgraph of G.

Let e = {u, v} ∈ E be an edge. If either u or v are of degree at most k, then e is always sampled.
Otherwise, e is sampled with probability pe = k

deg(u) + k
deg(v) −

k
deg(u) ·

k
deg(v) . Equivalently, if

we view e as two directed edges e′ = (u, v) and e′′ = (v, u), then e′ is sampled with probability
pe′ = k

deg(u) and e′′ is sampled with probability pe′′ = k
deg(v) . (Recall that the directions of the

sampled directed edges are ignored.) Choices made for different edges are completely independent.

We show below (Lemma 2.1) that when k ≥ c log n, for a sufficiently large constant c, the expected
number of inter-component edges with respect to an expected k-out subgraph is essentially sand-
wiched between the corresponding expectations for (exact) k/2-out and (exact) 2k-out subgraphs.

To prove Theorem 1.2 for k ≥ c log n, for a sufficiently large c, it is thus sufficient to prove the
following theorem, which we do in Section 2.

Theorem 1.5 (Main Theorem for expected k-out) Let G be an arbitrary undirected n-vertex
graph and let k ≥ c log n, where c is a large enough constant. Let G′ be a random expected k-out
subgraph of G. Then, the expected number of edges in G that connect different connected components
of G′ is O(n/k).

The requirement k ≥ c log n in Theorem 1.5 is essential, and thus the bound in the theorem is
best possible for the expected k-out model. Let G = Kn be the complete graph on n vertices
and let k = c lnn. The expected k-out model is then equivalent to the classical G(n, p) model
with p ∼ 2c lnn

n . The probability that a given vertex is isolated is then (1 − 2c lnn
n)n−1 ≈ n−2c and

the expected number of edges connecting different connected components is Ω(n2(1−c)). Thus, the
claim of the theorem is false when c < 1

2 .

This also explains the difficulty of extending Theorem 1.2 to the k = o(log n) regime. It is conceiv-
able that Theorem 1.2 holds for any k ≥ 2.

As an interesting corollary of Theorems 1.2 and 1.5 we get:

Corollary 1.6 (Random k-out subgraph of a (cn/k)-edge connected graph) Let G be a
(cn/k)-edge connected n-vertex graph and let k ≥ c log n, where c is a large enough constant. Let
G′ be a k-out or an expected k-out random subgraph of G. Then G′ is connected with probability
at least 1/2.

Proof: Let p the probability that G′ is not connected. As G is (cn/k)-edge connected, if G′ is not
connected, then the number of inter-component edges is at least cn/k, and the expected number
of inter-component edges is at least p · cn/k. By Theorem 1.2 or 1.5 this expectation is at most
bn/k, for some constant b. Thus, p ≤ b/c and the result follows if c ≥ 2b. We also need c to be
large enough for Theorem 1.2 or 1.5 to hold. 2

Both the k-out and expected k-out models favor the selection of edges incident to low degree
vertices. In Section 1.3 we compare the k-out sampling model to the standard model of picking
each edge with some fixed probability p and explain why the k-out model gives much better results,
in certain cases, using the same total number of sampled edges.

3

On regular or almost regular graphs, the k-out sampling model is essentially identical to the model
of sampling each edge independently with probability p = kn/m. Surprisingly, Theorem 1.5 implies
a new result in this model for almost regular graphs, see Theorem 1.9 below.

An appealing feature of the k-out model is that the sampling can be implemented in a distributed
manner, as the choices of different vertices are independent. Requiring each vertex to choose only k
edges is a natural constraint in many settings, e.g., if a vertex has to communicate the edges
it selected to other vertices or to a referee. It is exactly such a setting (see Section 1.4) that
motivated us. However, we believe that the new sampling theorems have importance beyond the
concrete applications we give here.

In many settings, including the application described in Section 1.4, the number of inter-component
edges is a measure of the “work” that still needs to be done after “processing” the sampled subgraph.

1.2 Previous results in the k-out model

The k-out model is first mentioned in a question of Ulam in “The Scottish Book”1 [18].

PROBLEM 38: ULAM
Let there be given N elements (persons). To each element we attach k others among the
given N at random (these are friends of a given person). What is the probability Pk,N
that from every element one can get to every other element through a chain of mutual
friends? (The relation of friendship is not necessarily symmetric!) Find limN→∞ Pk,N
(0 or 1?).

While this explicitly defines a directed model, most answers in the literature are for the correspond-
ing undirected model. It is not difficult to prove, see [18], that for k ≥ 2 the resulting undirected
graph is connected with probability tending to 1, while for k = 1 the graph is connected with
probability tending to 0.

Let Gk-out be a random k-out subgraph of the complete graph on n vertices, as in Definition 1.1.
Fenner and Frieze [5] prove that for k ≥ 2, Gk-out is k-vertex and k-edge connected with probability
tending to 1, as n tends to ∞. Frieze [7] proved that when n is even then Gk-out has a perfect
matching with probability tending to 1, if k ≥ 2, and tending to 0 if k = 1. Bohman and Frieze [3]
prove that Gk-out has a Hamiltonian cycle with probability tending to 1, if k ≥ 3, and tending to 0,
if k = 1, 2. All these results can also be found in a chapter on random k-out graphs in the book of
Frieze and Karoński [6].

Frieze et al. [8] consider a random subgraph obtained by taking an arbitrary spanning forest of a
graph G, and k−1 random outgoing edges from each vertex. They prove that the resulting random
subgraph has some desirable expansion properties with probability tending to 1.

Frieze and Johansson [9] consider random k-out subgraphs of graphs of minimum degree (12+ε)n, for
some ε > 0. They show that if 2 ≤ k = o(

√
log n), then the random k-out subgraph is k-connected

with probability tending to 1. Thus they generalize the earlier results of Fenner and Frieze [5] for
a complete base graph to arbitrary base graphs with sufficiently high minimum degree. Frieze and
Johansson [9] points out that the generalization fails for lower degrees: there are connected graphs
with minimum degree n/2 where a random k-out subgraph is not even expected to be connected.

Our results are quite different from all the results cited above. We consider random k-out subgraphs
of an arbitrary base graph G. As the graph G is arbitrary, we cannot expect the random k-out

1“The Scottish Book” was a notebook used in the 1930’s and 1940’s by mathematicians of the Lwów School of
Mathematics in Poland to collect problems. The notebook was named after the “Scottish Café” where it was kept.
Among the contributors to the book were Stefan Banach, John von Neumann and Stanislaw Ulam.

4

subgraph to be connected, with high probability. We focus instead on the question of how closely a
random k-out subgraph of G captures the connectivity of G. We do that by bounding the expected
number of inter-component edges, i.e., the number of edges of G that connect different connected
components of the sampled subgraph.

To the best of our knowledge, no result similar to our Corollary 1.6 was known before. It replaces
the requirement of a very high minimum degree made in Frieze and Johansson [9] by a much weaker
connectivity requirement. However, the resulting random k-out subgraph is only guaranteed to be
connected with probability 1/2, not with a probability tending to 1. This is best possible.

In a very recent paper [10], Ghaffari et al. used 2-out sampling to get faster randomized algorithms
for edge connectivity. One of their lemmas is that, with high probability, the number of components
in a random 2-out subgraph is O(n/δ) where δ is the smallest degree. The same bound on the
number of components is tight for k-out for any k ≥ 2. This result complements our bound on
the number of inter-component edges, and may inspire further investigations into the properties of
random k-out subgraphs.

1.3 Sampling each edge independently with probability p

The most widely studied random graph model is, of course, G(n, p), in which each edge of the
complete graph on n vertices is sampled, independently, with probability p. There are literally
thousands of papers written on such random graphs.

The G(n, p) model can also be used to construct a random subgraph of a general base graph
G = (V,E). The most relevant result to our study is the following theorem:

Theorem 1.7 (Karger, Klein and Tarjan [15]) Let G = (V,E) be an arbitrary simple graph
and let 0 < p < 1. Let G′ = (V,E′) be a random subgraph of G obtained by selecting each edge of G
independently with probability p. Then, the expected number of edges of G that connect different
connected components of G′ is at most n/p.

Theorem 1.7 is a special case of a theorem of Karger et al. [15] that deals with weighted graphs.
The more general theorem states that if F is a minimum spanning forest of G′, then the expected
number of edges in G that are F -light, i.e., can be used to improve F , is at most n/p. When the
graph is unweighted, i.e., all edge weights are 1, an edge is F -light if and only if it connects different
connected components of G′. An alternative proof, of the weighted version, using backward analysis
was obtained by Chan [4]. The weighted theorem was used by Karger et al. [15] to obtain a linear
expected time algorithm for finding Minimum Spanning Trees.

Theorem 1.7, as stated, was used by Karger et al. [16] and Halperin and Zwick [12] to obtain almost
optimal and then optimal randomized EREW PRAM algorithms for finding connected components
and spanning trees.

1.3.1 Comparing k-out sampling and independent p sampling

Let us compare our new Theorem 1.2 with Theorem 1.7. Let G = (V,E) be a general n-vertex m-
edge graph. Theorem 1.7 produces a sample of expected size pm. To obtain a random subgraph with
the same number of edges we choose k = pm/n. The expected number of edges connecting different
connected components is then O(n/k) = O((n2/m)/p). Note that this is a huge improvement over
the n/p bound of Theorem 1.7 when the graph is dense, i.e., m� n. Alternatively, if we express the
expressions in term of k, the bound for k-out is O(n/k), while the bound for independent sampling
is only n/p = m/k.

5

To highlight the difference between the two sampling schemes, and to show that the gap between
O((n2/m)/p) and n/p can actually occur, consider the following situation. Let G be a graph
composed of a clique of size n/2 and 8k cliques of size n/(16k). All cliques are disjoint. The number
of edges is m ≥ 1

8n
2. If pm = kn, then p ≤ 8k

n . Consider a vertex in one of the small cliques. With
a constant probability none of its incident edges are sampled, in which case it contributes n

16k − 1
to the expectation. The expected number of edges connecting different connected components is
Ω(n2/k). Theorem 1.7 is thus asymptotically tight in this case. The corresponding bound for k-out
is O(n/k), a factor of n smaller. This example shows that it is much wiser, in certain situations,
to sample edges incident on low degree vertices with higher probabilities.

1.3.2 Improved result for independent p sampling for almost regular graphs

While Theorem 1.7 is best possible for general graphs, we show that it can be improved for almost
regular graphs.

Definition 1.8 (Almost regular graphs) A graph G = (V,E) is said to be almost r-regular if
r ≤ deg(v) ≤ 2r, for every v ∈ V . A graph is almost regular if it is almost r-regular for some r.

If G is r-regular, then expected k-out sampling is equivalent to sampling each edge independently
with probability p = k/r. The models are very closely related if G is almost r-regular. Namely, k-
out sampling produces a subsample of the sample obtained by sampling each edge with probability
p = k/r. Thus, Theorem 1.5 immediately implies the following new result for independent p
sampling.

Theorem 1.9 (Independent p sampling of almost regular graphs) Let G = (V,E) be an
almost regular graph and let 0 < p < 1. Let G′ = (V,E′) be a random subgraph of G obtained by
selecting each edge of G independently with probability p. Then, the expected number of edges of G
that connect different connected components of G′ is O((n2/m)/p).

We note that Theorem 1.9 cannot be extended to the weighted case. Consider a complete weighted
graph on n vertices in the which the weights of all edges incident on a vertex are distinct. It is easy
to see that the expect number of F -light edges is Θ(n/p).

1.4 Applications in distributed computing

The problem that led us to consider the sampling model discussed in this paper is the following.
Each vertex in an undirected graph only knows its neighbors. It can send a single message to a
referee which should then determine, with high probability, a spanning forest of the graph. How
many bits does each vertex need to send the referee?

If the vertices have access to public randomness, the answer is Θ(log3 n). The upper bound follows
easily from Ahn et al. [2]. A matching lower bound was recently obtained by Nelson and Yu [19].

In Section 3 we show, using the sampling theorem (Theorem 1.2) with k =
√
n, and a few other

ideas, that O(
√
n log n) bits are sufficient when the vertices only have access to private randomness.

Nothing better than O(n) was previously known with private randomness.

The best known deterministic protocol uses n/2 bits and it is open whether this is optimal.

In the MapReduce-like model (see [17]), messages are passed in the form of (key, value) pairs of
O(log n) bits which is the wordsize. We assume there are n machines and each can send, receive,
and compute with no more than m words in any round. In each round if the words with the

6

same key can fit on one machine, then one machine will receive them all, process them and emit
a new set of messages for the next round. Here we assume each edge (u, v) of the input graph
appears twice, as (key = u, value = v) and (key = v, value = u). As the machines are stateless,
these will be recirculated in every round. It is easily seen that if m = O(n log2 n), the one-way
communication algorithm with public randomness cited above leads to a one round Monte Carlo
algorithm in the MapReduce-like model. Each machine which receives the edges incident to a
particular vertex will compute the corresponding O(log3 n)-bit message for the referee and send it
using O(log2 n) O(log n)-bit messages all tagged with a special key. One machine will receive all
these messages from all machines and can then act as the referee to compute a spanning forest. If
no public randomness is available, then this must be preceded by a round in which a random string
is created by one machine and a copy is sent with a key for each vertex.

A consequence of Theorem 1.2 is an almost equally simple four-round algorithm to compute a
spanning forest which requires space of only m = O(nk) words. Note that for k = log n, this is a
factor log n less memory than above. As before, for each vertex, there is a machine which receives
the edges incident to the vertex and it sends out, in round 1, its up to k sampled edges to a referee.
This is done by giving all these messages a special key so that they are received by one machine
that can act as the referee. The referee computes the spanning forest of the k-out subgraph. The
spanning forest can be distributed to n machines in two rounds (see Jurdziński and Nowicki [13]).
We assume again that the input graph is recirculated and for each vertex there is a machine which
receives all its incident edges and the spanning forest of the k-out subgraph. This machine can
determine which of its incident edges connect up different components of the k-out subgraph, and
use a special key to send them out. The spanning forest of the k-out subgraph is also recirculated
with the special key. Since there are no more than O(n/k) + n < m such edges, a single machine
will receive all these inter-component edges and the edges of the k-out spanning forest and compute
the spanning forest of the original graph. If Theorem 1.2 holds with k = O(1), this would be an
extremely simple four-round algorithm with m = O(n).

Jurdziński and Nowicki [13] obtained a O(1) round algorithm with m = O(n), but it is much more
complicated.

2 Proof of the sampling theorem

2.1 Relation between k-out and expected k-out models

The following simple lemma shows that for sufficiently large k, the expected and (exact) k-out
models have essentially the same expected number of inter-component edges.

Lemma 2.1 Let G be an arbitrary undirected n-vertex graph. For any t, let Xt be the number of
inter-component edges in G with respect to a t-out subgraph, and let Yt be the number of inter-
component edges in G with respect to an expected t-out subgraph. Then for k ≥ c log n where c is a
large enough constant, E[X2k]− o(1) ≤ E[Yk] ≤ E[X k

2
] + o(1).

Proof: Consider the directed edges in a random expected k-out subgraph. For any v ∈ V , let Sv,k
be the set of outgoing edges of v in this subgraph, and let sv,k = |Sv,k|. Note that given sk,v, Sk,v
is a random subset of the outgoing edges of v of size sv,k. If degG(v) ≤ k, then Sk,v includes all
edges incident to v. Assume that degG(v) > k. Let Ev be the set of outgoing edges of v in G.
If sv,k ≥ k/2, then a random subset of size k/2 of Sk,v is a random subset of Ev of size k/2.
Thus, it has the same distribution as the subset of edges chosen by v in the exact k/2-out model.

7

Similarly, if sv,k ≤ 2k, then a random subset of Ev of size 2k that contains Sk,v has exactly the
same distribution as the edges chosen by v in the exact 2k-out model.

Let E be the event that k
2 ≤ Sv,k ≤ 2k for every vertex v with degG(v) > k. Then

E[X2k] ≤ E[Yk | E] ≤ E[X k
2
] . (1)

The first inequality holds because assuming E , we can add random edges to the expected k-out
subgraph to get an exact 2k-out subgraph, as explained above. Adding random edges to a sampled
subgraph can only decrease the number of inter-component edges. Similarly, the second inequality
holds because assuming E , we can randomly remove edges from the expected k-out subgraph to
get an exact k

2 -out subgraph, and this can only increase the number of inter-component edges. It
is easy to check that the required containments hold also for vertices of degree less than k.

Let p = P[¬E] = 1−P[E] be the probability that Sv,k 6∈ [k2 , 2k] for at least one v with degG(v) > k.
Then E[Yk] = (1− p)E[Yk | E] + pE[Yk | ¬E] and thus E[Yk | E] = E[Yk] + p

1−p
(
E[Yk]− E[Yk | ¬E]

)
.

Setting D := p
1−p

∣∣E[Yk]− E[Yk | ¬E]
∣∣ and combining with (1) gives

E[X2k]−D ≤ E[Yk | E]−D ≤ E[Yk] ≤ E[Yk | E] +D ≤ E[X k
2
] +D .

By definition, 0 ≤ Yk ≤
(
n
2

)
, so D ≤ p

1−p
(
n
2

)
. For any vertex v with degG(v) > k, we have

E[Sv,k] = k, so by Chernoff bounds P[Sv,k > 2k] < e−
k
3 and P[Sv,k <

k
2] < e−

k
8 . A union bound

then gives p < n · (e−
k
3 + e−

k
8). For k ≥ c lnn, where c > 24, we then have D ≤ p

1−p
(
n
2

)
= o(1). 2

The first inequality E[X2k] ≤ E[Yk] + o(1), for k ≥ c log n, shows that Theorem 1.5 implies Theo-
rem 1.2.

2.2 Overview of the proof of the sampling theorem for expected k-out

We prove Theorem 1.5 by sampling edges gradually. We construct two sequences of random sub-
graphs G1 ⊆ G2 ⊆ . . . ⊆ Gr, and H1 ⊇ H2 ⊇ . . . ⊇ Hr, for some r ≤ n, all subgraphs of G.
We also have Gi ⊆ Hi, for i = 1, 2, . . . , r. Each subgraph Gi is obtained by sampling more edges
from Hi−1 \Gi−1 and adding them to Gi−1. Each subgraph Hi is obtained from Hi−1 by removing
some edges that are inter-component edges of Gi, and possibly some additional edges not contained
in Gi. Initially G1 contains all edges that touch a vertex of degree at most k. Note that all these
edges are contained in every (expected) k-out sample. We let H1 = G, the original graph. At the
end of the process, Gr and Hr have the same connected components, viewed as sets of vertices.

Edges are sampled and added during the process in a way that ensures that Gr can be extended
into an expected k-out sample of G. Adding more edges to Gr can only reduce the number of inter-
component edges. All the edges of G that are inter-component with respect to Gr, and therefore
also with respect to Hr, must be in G \Hr. Thus, to prove the theorem it is enough to prove that
E[|G \Hr|] = O(n/k).

The round sampling model A convenient way to view the expected k-out sampling is that
for every (directed) edge e = (u, v) ∈ E, where deg(u) ≥ k, we independently generate a uniform
random number xe ∈ [0, 1], and include (the undirected version of) e in the sampled subgraph if
and only if xe < pe = k/deg(u). (In what follows, we let E stand for both the undirected edges of
the original graph G and their corresponding directed edges.)

Edges are sampled in rounds. For every edge e, we generate a sequence of numbers qe,0, . . . , qe,r
such that 0 = qe,0 ≤ qe,1 ≤ · · · ≤ qe,r = pe, where r is the number of rounds. Edge e is sampled in

8

round i if and only if xe ∈ [qe,i−1, qe,i). An edge e is thus sampled in any one of the rounds, if and
only if xe < pe. The last round r is special and is just used to ensure that pe,r = pe for every e.

In the beginning of round i, where i < r, we set qe,i for every (directed) edge e ∈ E such that
qe,i ∈ [qe,i−1, pe). The values qe,i may depend on the sampling outcomes in previous rounds. That
is, for all j < i, we know Gj , Hj , and all the qe,j . In particular, we know if e has already been
sampled, i.e., if xe < qe,i−1.

We do not choose the number of rounds r in advance. At the end of round i, we may decide to end
round sampling with one last special round, by setting r = i+ 1 and qe,r = pe for all edges e.

Given that e was not sampled in rounds 1, . . . , i− 1, the probability that it is sampled in round i
is pe,i = (qe,i− qe,i−1)/(1− qe,i−1). In the analysis, we adopt the opposite view: We choose pe,i and
then set qe,i = qe,i−1 + pe,i(1− qe,i−1). We can pick any sequence of pe,i such that

∑i
j=1 pe,j ≤ pe.

General sampling strategy More specifically, to move from Gi to Gi+1, we look at a smallest
connected component Ai of Gi that is not a complete connected component of Hi. We assign edges
that emanate from Ai some carefully chosen non-zero sampling probabilities pe,i, being careful not
to exceed the overall sampling probability of each edge. We add edges to Gi+1 according to these
probabilities. We hope that the addition of new edges, if any, connects Ai to at least one other
component of Gi. If this happens, i.e., at least one of the edges of the cut ∂Hi(Ai) defined by Ai
in Hi was sampled, we let Hi+1 = Hi. Otherwise, we let Hi+1 be Hi with the edges of the cut
∂Hi(Ai) removed. (Note that this ensures that Ai is also a connected component of Hi+1.) We
are essentially deciding to ‘give-up’ on the edges of ∂Hi(Ai) and assume that they will end up as
inter-component edges of Gr. If Hi+1 (Hi, we perform an additional trimming operation that
removes some additional edges from Hi+1, but still maintaining Gi+1 ⊆ Hi+1. Trimming will be
explained later.

Each round reduces the number of connected components of Gi that are not connected components
of Hi. Thus, for some r ≤ n, all the connected components in Gr are also connected components
of Hr and the process stops.

We let Xi = |Hi\Hi+1|, the number of edges that were removed from Hi to form Hi+1. Note that Xi

is a random variable. Our goal is to bound E[|G\Hr|] = E[
∑r−1

i=1 Xi] =
∑r−1

i=1 E[Xi]. To bound E[Xi],
we consider conditional expectations of the form E[Xi|Ti], where Ti is a transcript of everything
that happened during the construction of G1 ⊆ G2 ⊆ . . . ⊆ Gi and H1 ⊇ H2 ⊇ . . . ⊇ Hi. (Actually,
G1, . . . , Gi and H1, . . . ,Hi give a full account of what happened. The last two subgraphs Gi and Hi

on their own do not tell the whole story, as they do not specify when each edge of Gi was added.)

Let T be the probability distribution induced on full transcripts of the process described above.
Let Ti be the probability distribution of transcripts of the first i rounds. Given a full transcript T ,
we let Ti be its restriction to the first i rounds. Clearly, if T is chosen according to T , then Ti is
distributed according to Ti. Then,

r−1∑
i=1

E[Xi] =

r−1∑
i=1

ETi∼Ti
[
E[Xi|Ti]

]
= ET∼T

[
r−1∑
i=1

E[Xi|Ti]

]
.

We prove that
∑r−1

i=1 E[Xi|Ti] = O(n/k) for every transcript T . This is done using judiciously
chosen sub-sampling probabilities and an intricate amortized analysis that shows that charging
each vertex a cost of O(1/k) is enough to cover the expected total number of inter-component
edges.

For a given transcript T , the expression
∑r−1

i=1 E[Xi|Ti] has the following meaning. The transcript T
gives a full description of what happens during the whole process. No randomness is left. However,

9

Figure 1: A schematic description of the repeated growing and trimming process.

in the ith round we compute the expectation of Xi given the past Ti, without peeping into the
future.

(The above discussion ignores the fact that r is also a random variable. This can be easily fixed by
adding dummy rounds that ensure that we always have r = n.)

We are thus left with the task of bounding
∑r−1

i=1 E[Xi|Ti] for a specific transcript T . Let Ai be the
component we try to connect at the i-th round. The expectation E[Xi|Ti] is the size of cut ∂Hi(Ai)
multiplied by the probability that no edge from this cut is sampled. (This ignores trimming that
will be explained later.) We need to bound this quantity and then decide how to split it among the
vertices of Ai. As mentioned, the total cost of each vertex, during all iterations, should be O(1/k).
In deciding how to split the cost, we take the full history Ti into account.

Having explained the general picture, we need to get down to the details. In the following we
use G′, H and A instead of Gi, Hi (or Hi+1) and Ai.

2.3 Growing and trimming

Our proof repeatedly uses growth and trimming steps:

• Growth Step: Pick a smallest connected component A of G′ which is not a complete con-
nected component of H and try to connect it to other components of G′ by some limited
sampling of edges adjacent to A (as shall be described later). If the step fails to connect A
to other components, remove all of the edges in the cut defined by A from H.

• Trimming Step: If v ∈ G is such that degH(v) < 1
3 degG(v), remove from H all edges that

connect v to vertices not in the connected component of v in G′.

A schematic description of the process is given in Figure 1. The red components on the left are
components that will not grow anymore, as none of the edges going out of them is in H. The
green components on the right are components that may still grow. Solid edges are edges that were
already sampled, i.e., are in G′. Dashed edges are edges in H \G′, i.e., edges that were not sampled
yet, but may still be sampled. Finally, dotted edges are edges that were removed from H and thus
will not be sampled. Unfilled vertices represent vertices that were trimmed.

By choosing a smallest component at each growth step we ensure that the size of the component is
at least doubled, if the step is successful. Each vertex can therefore participate in at most log n such
growth steps. (Components may also grow as a result of other components growing into them.)

10

A trimming step may trigger a cascade of additional trimming steps. When the process ends, for
every vertex v which has edges in H that connect it to vertices not in the connected component
of v in G′, we have degH(v) ≥ 1

3 degG(v). This is important in the proofs below as it shows that we
can sample edges with probabilities proportional to k/ degH(v). The following lemma claims that
trimming does not remove too many additional edges.

Lemma 2.2 The number of edges removed from H during Trimming steps is at most the number
of edges removed from H during (unsuccesful) Growing steps.

Proof: We use a simple amortization argument. We say that a vertex v is active if v is part of
a component in G′ that can still grow and if it was not trimmed yet. Suppose that a vertex is
trimmed when degH(v) ≤ α degG(v) for some α < 1

2 . (We use α = 1
3 .) We define the potential of an

active vertex v to be β(degG(v)−degH(v)), i.e., β times the number of edges of v that were deleted,
for some β > 0 to be chosen later. The amortized cost of deleting an edge (u, v) following a failed
growth step, where u belongs to the component that failed to grow, is at most 1 +β, where 1 is the
actual cost of deleting the edge, and β is the increase of potential of v if it remains active. When
a vertex u is trimmed, its potential is at least (1− α)β degG(u). We want this potential to pay for
the amortized cost of deleting the at most α degG(v) remaining edges of u, i.e., (1−α)β ≥ α(1+β),
which is satisfied if we choose β = α

1−2α . For α = 1
3 we have β = 1. It follows that the total number

of edges deleted is at most twice the number of edges deleting following failed growth steps. 2

Thus, it is enough to bound the number of edges removed during Growing steps. Moreover, during
Growing steps we can always assume that the degrees of relevant vertices in H are the same as their
degrees in G up to a multiplicative constant. Up to a constant factor, we can therefore assume that
an edge (u, v) is sampled with probability k/ degH(u).

2.4 High level details

During growth steps, we distinguish between two types of components.

• High-degree: A component A that contains a vertex v ∈ A such that degH(v) ≥ 2|A|.

• Low-degree: A component A such that for every vertex v ∈ A we have degH(v) < 2|A|.

High-degree components are easier to deal with when k ≥ c log n. Note that if degH(v) ≥ 2|A|,
then at least half of the edges of v leave the component A. Thus, a random edge of v leaves A with
a probability of least 1/2.

To grow a high-degree component A we pick some vertex v ∈ A with degH(v) ≥ 2|A| and repeatedly
sample its edges until an edge connecting it to a different connected component is found. This is a
slight deviation from the framework of Section 2.2, as we might exceed the sampling probabilities
of certain edges. We show, however, that this only happens with a very small probability, and is
therefore not problematic. (See the formal argument after Lemma 2.3.)

The main challenge, where novel ideas need to be used, is in the growth of low-degree components.

To grow a low-degree component A, we sample each edge adjacent to a vertex v ∈ A with probability
C · k√

degH(v)|A|
, where C is a constant to be chosen later. As the size of the component containing

a vertex v at least doubles between two consecutive growth steps in which the component of A
participates, it is easy to check that the total sampling probability is not exceeded.

11

2.5 Growth of high-degree components

When k ≥ c log n, high-degree components can be easily grown using a simple technique.

To grow a high-degree component A we pick a vertex v ∈ A with d = degH(v) ≥ 2|A| and
perform rounds in which we sample each edge of v with probability 1/d. We do that until an edge
connecting A to another component is sampled. The next lemma shows that with high probability
no sampling probability is exceeded, assuming that k ≥ c log n.

Lemma 2.3 With high probability, the over all probability in which an edge touching a vertex of
degree d is sampled during all growth steps of high-degree components is O((log n)/d).

Proof: Let v be a vertex of degree d. In each sampling round in the growth of a high-degree
component in which v is the chosen highest degree vertex, we sample each edge adjacent to v with
probability 1/d. The probability that at least one edge is sampled in such a round is at least
1 − (1 − 1

d)d > 1 − 1
e >

1
2 . If an edge is sampled, then with probability at least 1/2 it leaves the

component and the process stops. Thus, each round is successful with a probability of at least 1/4.

Each time v belongs to a component that undergoes a growth step, the size of the component
of v doubles. Thus, v participates in at most log n such steps. The total number of 1/d sampling
rounds in which v participates, over all growth steps, is thus stochastically dominated by a negative
binomial random variable T ∼ NB(log n, 14), the number of times a coin that comes up “head” with
probability 1/4 needs to be flipped until seeing log n “heads”. We want to bound P[T ≥ 32 log n].

Let X ∼ B(32 log n, 14) be a binomial random variable that gives the number of “heads” in 32 log n
throws of a coin that comes up “head” with probability 1

4 . Clearly P[T ≥ 32 log n] = P[X ≤ log n].

By Chernoff’s bound, if X is a binomial random variable with µ = E[X] and 0 < δ < 1, then

P[X ≤ (1− δ)µ] ≤ e−δ
2µ/2. In our case µ = 8 log n and δ = 7

8 . Thus, P[X ≤ log n] ≤ e−(
7
8
)2·4 logn ≤

e−3 logn ≤ n−3. (Note that log n = log2 n > lnn.)

Thus by a simple union bound, the probability that any vertex, and hence any directed edge,
participates in more than 32 log n rounds is at most n−2. 2

When k ≥ 32 log n, then (32 log n)/d ≤ k/d, so the probability of exceeding any sampling proba-
bility during the growth of high-degree components is at most n−2. This is much more than what
we need.

With a very low probability, our scheme might exceed the allowed sampling probability of certain
edges. This is a slight deviation from the framework of Section 2.2. This is justified as follows.
Let S be the event that no sampling probability is exceeded. By Lemma 2.3, we have that P[S] ≥
1−n−2 ≥ 1/2. We prove below that E[X] = O(n/k), where X is the number inter-component edges.
To prove Theorem 1.5, we need to show that E[X|S] = O(n/k). However, as E[X] ≥ P[S] ·E[X|S],
we have E[X|S] ≤ E[X]/P[S] ≤ 2E[X] = O(n/k), as required.

2.6 Main challenge: Growth of low-degree components

To grow a low-degree component A we sample each edge adjacent to a non-trimmed vertex v ∈ A
with probability C · k√

degH(v)|A|
, where C is a constant to be chosen later.

Lemma 2.4 The probability with which an edge e adjacent on vertex v is sampled from v during

growth steps of low-degree components is O
(

k
degG(v)

)
.

12

Proof: Let A0 ⊂ A1 ⊂ · · · ⊂ Ar−1 be all the low-degree components containing v throughout the
entire process until v is trimmed. Let Hi be the graph H when component Ai is grown. Note that
degHi(v) ≥ 1

3 degG(v), for every i. The probability with which e is sampled when growing Ai is

C · k√
degHi (v)|Ai|

= O(k√
degG(v)|Ai|

). We also have |Ai| ≥ 2i|A0|. As A0 is a low-degree component

we have degH0
(v) < 2|A0|. Thus, the total probability with which e is sampled from v is

O

(
r−1∑
i=0

k√
degG(v)|Ai|

)
=

k

degG(v)
O

(
r−1∑
i=0

2−i/2

)
= O

(
k

degG(v)

)
.

2

For a component A, denote by |∂HA| the number of edges in H in the cut defined by A.

We need to show that E[|G\H|] = O(n/k). As a warm-up, we show that E[|G\H|] = O((n log n)/k).

Proof: [That E[|G\H|] = O((n log n)/k).] Let A be the low-degree component that we are currently
growing. We are sampling each edge, and in particular each edge of the cut, with probability
C · k√

degH(v)|A|
> C k

2|A| . If none of the edges of the cut ∂H(A) is sampled, then all the edges in the

cut are added to H. The expected number of edges added to H, divided by |A| is:

|∂H(A)|
|A|

(
1− C k

2|A|

)|∂H(A)|
<
|∂H(A)|
|A|

exp

(
−Ck

2

|∂H(A)|
|A|

)
.

The function f(x) = xe−ax is maximized at x0 = 1
a and its maximum value is 1

ea . Thus, the
maximum value of the expression above is 2

eCk <
1
Ck .

Thus to cover this expected cost, each vertex only needs to pay 1
Ck each time it participates in a

growing component. As this happens at most log n times, the total cost per vertex is at most logn
Ck ,

and the total cost for all vertices is n logn
Ck . 2

To prove that E[|G \ H|] = O(n/k), we need a much more elaborate argument. We start with
several definitions.

Definition 2.5 (Maximum degree) The maximum degree dH(A) of a component A is defined
to be

dH(A) := max
v∈A

degH(v) .

We also let v(A) be a vertex of maximum degree in A. (Ties broken arbitrarily.)

Definition 2.6 (Density) The density ρ(A) of a component A is defined to be

ρ(A) := |∂HA|/
(|A|
k

)
=
k|∂HA|
|A|

.

Definition 2.7 (Density level of a component) The density level `(A) of a component A is
defined to be the unique integer ` such that ρ(A) ∈ [2`, 2`+1).

Definition 2.8 (Density level of a vertex) Let v ∈ V and let A1 ⊂ A2 ⊂ · · · ⊂ Ar be all the
low-degree components to which v belonged so far. The level `(v) is defined to be

`(v) := min
1≤i≤r

`(Ai) ,

where `(Ai) is the level of Ai when it participated in a growth step. If v did not participate yet in
a low-degree component, then `(v) =∞. Note that `(v) cannot increase.

13

Definition 2.9 (Cost of a component) Let A be a low-degree component currently participating
in a growth step. We define the cost of A to be

cost(A) := 2`(A)
|A|
k

exp

(
−C2`(A)

(
|A|

dH(A)

)1/2
)
.

The following simple technical lemma is used several times in what follows.

Lemma 2.10 The function f(x) = xβe−ax
γ
, where a, β, γ > 0, attains its maximum value at the

point x0 = (βaγ)
1
γ and is decreasing for x ≥ x0.

Proof: The claim is immediate as

∂f

∂x
= βxβ−1e−ax

γ − xβ · aγxγ−1e−axγ = xβ−1e−ax
γ

(β − aγxγ) .

2

Lemma 2.11 Let A be a low-degree component. Then, the expected number of edges removed

from H during the growth step of A is at most ρ(A) · |A|k · exp

(
−Cρ(A)

(
|A|

dH(A)

)1/2)
.

Proof: Let d = dH(A) and let q = C · k√
d|A|

. Every non-trimmed vertex v ∈ A samples each of

its incident edges with probability at least q. Thus, the probability of missing all cut edges is

(1− q)ρ(A)·
|A|
k ≤ exp

(
−qρ(A) · |A|

k

)
= exp

(
−Cρ(A)

(
|A|
d

)1/2
)
.

The expected number of edges removed from H is thus at most

ρ(A) · |A|
k
· exp

(
−Cρ(A)

(
|A|
d

)1/2
)
.

2

We partition the growth steps of a low-degree component A into the following four types:

Type 0: ρ(A) ≤ 1.

Type 1: dH(A) ≤ 5|∂HA|.

Type 2: A is the first low-degree component of level at most `(A) that contains v(A), a
vertex of maximum degree in A, and dH(A) > 5|∂HA|.

Type 3: A is not the first low-degree component of level at most `(A) that contains v(A).

In types 1, 2 and 3 we assume that ρ(A) > 1. In type 3 we may assume that dH(A) > 5|∂HA|, but
we do not rely on it.

When growing a type 0 component A, i.e., when ρ(A) ≤ 1, we do not actually try to grow A. We
simply remove all the edges of ∂HA from H.

14

Lemma 2.12 The total number of edges removed from H during growth steps of low-degree com-
ponents of type 0 is at most n/k.

Proof: Let A1, A2, . . . , Ar be all the low-degree type 0 components encountered throughout the
process. As type 1 growth steps always fail, all these components are disjoint. Thus, the total
number of edges removed from H is at most

∑r
i=1

|Ai|
k ≤

n
k . 2

When growing a component A not of type 0, we sample each edge adjacent to a non-trimmed vertex
of A with probability C k√

degH(v)|A|
. The next lemma justifies the definition of cost(A).

Lemma 2.13 Let A be a low-degree component with ρ(A) > 1. Then, the expected number of edges
removed from H during the growth step of A is at most cost(A).

Proof: Let d = dH(A). By Lemma 2.11, the expected number of edges removed while growing A
is at most

ρ(A) · |A|
k
· exp

(
−Cρ(A)

(
|A|
d

)1/2
)
≤ 2`(A) · |A|

k
· exp

(
−C2`(A)

(
|A|
d

)1/2
)

= cost(A) ,

where the inequality follows from Lemma 2.10 as ρ(A) ≥ 2`(A) ≥ 1. (Use the lemma with x = ρ(A),

β = γ = 1 and a = C(|A|d)1/2. Then, x0 = 1
C (d
|A|)

1/2. Note that d
|A| ≤ 2, so for C ≥

√
2 we have

x0 ≤ 1, the function is decreasing for x ≥ 1, and the inequality follows.) 2

We next bound the expected cost of all growth steps of types 1,2 and 3.

Lemma 2.14 If A is a low-degree component and dH(A) ≤ 5|∂HA|, then cost(A)
|A| = o(1

k logn).

Proof: Let d = dH(A). Then,

|A|
d
≥ |A|

5|∂HA|
=

k

5ρ(A)
>

k

5 2`(A)+1
.

Therefore,

cost(A)

|A|
=

2`(A)

k
exp

(
−C2`(A)

(
|A|
d

)1/2
)

≤ 2`(A)

k
exp

(
−C2`(A)

(
k

5 2`(A)+1

)1/2
)

≤ 2`(A)

k
exp

(
−C

(
k

10

)1/2

· 2`(A)/2
)

=
f(x)

k
,

where f(x) = xβe−ax
γ
, with x = 2`(A), β = 1, γ = 1

2 and a = C
(
k
10

)1/2
. By Lemma 2.10, f(x) is

decreasing for x ≥ x0 where x0 = (βaγ)1/γ =
(
2
C

)2 10
k < 1. Since x ≥ 1, f(x) < f(1) and thus

cost(A)

|A|
=

f(x)

k
≤ f(1)

k
≤ 1

k
exp

(
−C

(
k

10

)1/2
)

= o

(
1

k log n

)
,

as k = c log n = ω((log log n)2). 2

We note that the constant 5 in the statement of the lemma is arbitrary, but this is what we will
use below.

15

Lemma 2.15 The total cost of growth steps of type 1 is o(n/k) .

Proof: By Lemma 2.14, assigning a cost of cost(A)
|A| = o(1

k logn) to each vertex of a component A
participating in a growth step of type 1 covers the cost of this growth step. Since each vertex
participates in at most log n such growth steps, the total cost is n log n · o(1

k logn) = o(nk). 2

It remains to analyze growth steps of types 2 and 3. We say that the level of a vertex v ∈ A
decreased to `(A), if A is the first low-degree component containing v whose level is at most `(A).
In particular, if A is of type 2, then the level of v(A) decreased to `(A).

Lemma 2.16 If the growth step corresponding to A is of type 2, then charging 2−`(A)

k to every
vertex of A whose level decreased to `(A) is enough to cover cost(A).

Proof: Let v = v(A) be a vertex of degree d = dH(A) in A. As the growth step is of type 2, we
have `(v) = `(A) and d > 5|∂HA|.
We start by showing that at least half of the neighbors of v in A also had their level decreased
to ` = `(A) by A. Assume, for the sake of contradiction, that the level of at least half of neighbors
of v in A was at most ` before A was formed. Let B1, B2, . . . , Bs be the maximal components of
level at most ` that are included in A. Clearly B1, B2, . . . , Bs are disjoint and they must contain
at least half of the neighbors of v in A. The number of neighbors of v in these components is at
most

∑s
i=1 |∂HiBi| ≤ 2`+1

∑s
i=1

|Bi|
k ≤ 2`+1 |A|

k ≤ 2ρ(A) |A|k = 2|∂HA|, since the levels of the Bi’s is
at most `, and the level of A is `. Thus, the total number of neighbors of v in A is at most 4|∂AH|,
and the total number neighbors of v, not necessarily in A, is at most 5|∂AH|, a contradiction.

Thus, v has at least 1
2(d− |∂HA|) ≥ 2

5d neighbors in A whose level decreased to ` by A. To cover
cost(A), it is thus enough to charge each one of these vertices by

cost(A)
2
5d

=
2`

2
5k

|A|
d

exp

(
−C2`

(
|A|
d

)1/2
)

=
2`

2
5k
· f
(
|A|
d

)
,

where f(x) = xe−ax
1/2

and a = C2`. By Lemma 2.10, with β = 1 and γ = 1
2 , f(x) attains its

maximum at x0 = (βaγ)1/γ = (2
C2`

)2. If C ≥ 3, then x0 <
1
2 < |A|/d, for every ` ≥ 0. Thus,

cost(A)
2
5d

≤ 2`

2
5k
f(x0) =

2`

2
5k

(2

C2`

)2
e−2 =

10

(Ce)2
· 2−`

k
<

2−`

k

2

Lemma 2.17 The total cost of steps of type 2 is O(n/k).

Proof: By Lemma 2.16, charging every vertex whose level decreases to ` a cost of 2−`

k covers the
cost of all growth steps of type 2. As the level of each vertex decreases to any given level at most
once, we get that the total charge for a given vertex is at most

∑
`≥0

2−`

k ≤
2
k . The total charges of

these form, for all vertices, is thus at most 2n
k . 2

Lemma 2.18 Suppose that the growth step of A is of type 3, i.e., the vertex v = v(A) of maximum

degree in A is contained in a previous component B with `(B) ≤ `(A). Then, cost(A) ≤ |B||A|cost(B).

16

Proof: Let d = dH(A) and d′ = dH′(B), where H ′ is the graph H at the time B was grown.
Note that d ≤ 2|A| and d′ ≤ 2|B|, as both A and B are low degree components. As v is a vertex
of maximum degree in A and as v ∈ B, we get that d′ ≥ d. (Note that the degree of v may have
decreased, which works in our favor.) Let `′ = `(B) ≤ `(A) = `. Then,

cost(B) = 2`
′ |B|
k exp

(
−C2`

′
(
|B|
d′

)1
2

)
≥ 2`

′ |B|
k exp

(
−C2`

′
(
|B|
d

)1
2

)
≥ 2` |B|k exp

(
−C2`

(
|B|
d

)1
2

)
,

where the last inequality follows from Lemma 2.10. (Let x = 2`, β = γ = 1 and a = C
(
|B|
d

)1/2
.

The maximum is attained at x0 = (βγ a)1/γ = 1
C

(
d
|B|

)1/2
. As d

|B| ≤ 2, we get that x0 ≤ 1 for

C ≥
√

2.)

We next claim that

|A|cost(A) = 2` |A|
2

k exp

(
−C2`

(
|A|
d

)1/2)
≤ 2` |B|

2

k exp

(
−C2`

(
|B|
d

)1/2)
≤ |B|cost(B) .

The first inequality follows again using Lemma 2.10. (Divide both sides by d2. Let x = |A|
d , β = 2,

γ = 1
2 and a = C2`. Then, x0 = (βaγ)1/γ = (4

C2`
)2. Thus, x0 ≤ 1

2 , for every ` ≥ 0, when, say, C ≥ 6.

Note that 1
2 ≤

|B|
d ≤

|A|
d .) The claim of the lemma follows. 2

Lemma 2.19 Suppose that the growth step of A is of type 3. Then there is a component B ⊂ A
whose growth step is not of type 3 such that cost(A) ≤ |B||A|cost(B).

Proof: By induction on the order which the components were created. The first low-degree
component is not of type 3, which forms the basis of the induction. Suppose that A is a type 3
component and that the claim holds for every component created before A. By Lemma 2.18, there
exists a component B ⊂ A such that cost(A) ≤ |B|

|A|cost(B). If B is not of type 3, we are done.
Otherwise, by the induction hypothesis, there exists a component C ⊂ B ⊂ A, where C is not of
type 3, such that cost(B) ≤ |C||B|cost(C). We then have

cost(A) ≤ |B|
|A|

cost(B) ≤ |B|
|A|
|C|
|B|

cost(C) =
|C|
|A|

cost(C) ,

as required. 2

Lemma 2.20 The total cost of all growth steps of type 3 is at most the total cost of all growth
steps not of type 3.

Proof: By Lemma 2.19, if A is of type 3, then there exists a component B ⊂ A, not of type 3, such
that cost(A) ≤ |B||A|cost(B). We thus charge the cost of A to B. Let B be non-type 3 component,
and let B ⊂ A1 ⊂ A2 ⊂ · · · ⊂ As be the type 3 components whose cost is charged to B. As
|Ai| ≥ 2i|B|, we get that the total charge for B is at most (

∑
i≥1 2−i)cost(B) ≤ cost(B). 2

Combining Lemmas 2.12, 2.15, 2.17 and 2.20 we obtain the following theorem which implies The-
orem 1.2.

Theorem 2.21 The total cost of all low-degree growth steps is O(n/k).

17

As an immediate corollary of Theorem 1.2 we obtain:

Corollary 2.22 Let G = (V,E) be an arbitrary undirected n-vertex graph and let k ≥ c log n,
where c is a large enough constant. Let G′ be a random k-out subgraph of G. Then there exists a
constant b such that the probability that the number of edges in G that connect different connected
components of G′ exceeds ` · bn/k is at most 2−`.

Proof: By Theorem 1.2 there is a constant b such that the expected number of inter-component
edges is at most bn/k. By Markov’s inequality, the probability that the number of inter-component
edges is more than 2bn/k is at most 1/2.

A random k-out subgraph can be obtained by taking the union of ` independent random k/`-out
subgraphs, and adding more edges, if needed, to make sure that k edges incident on each vertex
were chosen. The number of inter-component edges with respect to the random k-out subgraph
is clearly at most the number of such edges for each one of the k/`-out subgraph. Thus, the
probability that the number of inter-component edges is more than ` · 2bn/k is at most 2−`. 2

It is not difficult to see that the tail bound given in Corollary 2.22 is asymptotically tight.

3 One-way spanning forest protocol with private randomness

As an application of the new sampling theorem we consider the following one-way communication
problem. Each vertex of an input graph has a distinct ID of O(log n) bits. Each vertex knows its
ID and the IDs of its neighbors. Each vertex can send a single message to a referee. The referee
must then determine a spanning forest of the graph. How many bits does each vertex need to send?

A sketching technique of Ahn, Guha and McGregor [1, 2] (see also Gibb et al. [11]) provides a
O(log3 n)-bit solution, provided that public randomness is available. The referee can then determine
a spanning forest with a constant probability. Nelson and Yu [19] have recently shown that this
bound is tight.

We provide the first o(n)-bit solution using private randomness. More specifically, we show that each
vertex only needs to send O(

√
n log n) bits, following which the referee can determine a spanning

forest with constant probability. The failure probability can be made polynomially small if each
vertex sends O(

√
n log3/2 n) bits.

In addition to the sampling theorem, we need two additional ingredients which are described next.

3.1 XOR trick

The XOR trick is the basis of the sketching technique of Ahn et al. [1, 2]. It is also used by Kapron
et al. [14] and Gibb et al. [11] to obtain dynamic graph connectivity algorithms. In the following
we identify the name of a vertex with its ID.

Suppose that each edge {i, j} is assigned an `-bit string name x({i, j}). (Edges are undirected, so
x({i, j}) = x({j, i}).) Perhaps the most natural name of an edge is the concatenation of the names
of its endpoints, in an appropriate order. We will usually employ, however, more ‘resilient’ edge
names, as explained in Section 3.2.

For each vertex i ∈ V , we let X(i) =
⊕

j:{i,j}∈E x({i, j}). For any C ⊂ V , let X(C) =
⊕

i∈C X(i).
Recall that ∂C denotes the set of edges that cross the cut (C, V \ C).

Lemma 3.1 For any C ⊂ V , we have X(C) =
⊕
{i,j}∈∂C x({i, j}). In words, X(C) is the xor of

the names of all the edges that cross the cut (C, V \ C).

18

In particular, if |∂C| = 1, then X(C) is the name of the single edge in the cut (C, V \ C). This
simple observation is heavily used in [1, 2, 11, 14].

3.2 Resilient edge names

We observed above that if |∂C| = 1, then X(C) is the name of the single edge in the cut (C, V \C).
What if |∂C| > 1? To identify the edges that cross the cut in this case, provided that there are at
most k edges that cross the cut we use resilient edge names.

Definition 3.2 (Resilient edge names) A collection of edge names is said to be r-resilient, if
and only if, for any two subsets A 6= B ⊂ E, with |A|, |B| ≤ r we have X(A) 6= X(B), where
X(A) =

⊕
{i,j}∈A x({i, j}). Equivalently, for every A ⊂ E with |A| ≤ 2r, we have X(A) 6= 0.

Lemma 3.3 For every r ≥ 1, the edges of a complete undirected graph on n vertices can be given
r-resilient edge names of length ` ≤ 4r lg n.

Proof: We use a simple probabilistic argument. Let ` = 4r lg n. For every i < j, let x({i, j}) be a
random `-bit string. All bit strings are chosen independently. For a given A ⊂ E, the probability
that X(A) = 0 is exactly 2−`. By the union bounds, the probability that there exists a set of at

most 2r edges A such that X(A) = 0 is at most 2−`
∑2r

i=1

((n2)
i

)
< 1. 2

In Appendix A we describe efficient explicit construction of r-resilient edge names based on linear
error correcting codes. We note that for our purposes the existence of r-resilient names is enough,
as the vertices can agree on such names before the protocol starts.

3.3 O(
√
n log n)-bit messages using private randomness

The n vertices agree on a collection of r-resilient names for all potential edges, where r = c
√
n, for

a sufficiently large constant c. Each edge thus has an `-bit name x({i, j}), where ` = O(
√
n log n).

The message vertex i sends to the referee is composed of two parts:

1. A sample of
√
n edges incident on i, or all the edges incident on i, if its degree is less

than
√
n. (Note that this corresponds exactly to the

√
n-out model.) This part is composed

of O(
√
n log n) bits.

2. The xor of the names of all the edges incident on the vertex, i.e., X(i) =
⊕

j:{i,j}∈E x({i, j}).
The number of bits in this part is again O(

√
n log n).

The collection of edges received by the referee is exactly a random
√
n-out subgraph G′ of the

original graph. The referee computes the connected components and a spanning forest of this
subgraph. By Theorem 1.2, with k =

√
n, the expected number of inter-component edges is

O(
√
n). Thus, with probability at least 1/2 the number of inter-component edges is at most c

√
n,

for some constant c. We assume in the following that this is the case.

For every connected component C of G′, the referee computes X(C) =
⊕

i∈C X(i). As the number
of inter-component edges is at most c

√
n, we also have |∂C| ≤ c

√
n. As the names of the edges

are c
√
n-resilient, the referee can infer all the edges of ∂C. The referee can thus easily extend the

spanning forest of G′ to a spanning forest of G.

The protocol described produces a spanning forest of the input graph with probability of at least 1/2.
When it fails, the spanning forest returned may contain edges not present in the graph, and may

19

fail to span all connected components of the graph. By Corollary 2.22, the failure probability of
the algorithm can be reduced to 2−`, for any ` ≥ 1, by using ` · c

√
n resilient edge names, or

alternatively, sending ` · c
√
n edges incident on each vertex.

To get a polynomially small error probability, i.e., n−α, for some α > 0, each vertex sends a
√
n log n

incident edges, and a
√
n log n-resilient edge names are used, for a sufficiently large constant a.

The spanning forest protocol gives a Monte-Carlo, i.e., two-sided error, protocol for checking the
connectivity of a graph. Converting the protocol into a Las Vegas, i.e., one-sided error, protocol is
an interesting open problem.

We note that an Õ(
√
n) protocol with private randomness can also be obtained without the use of

the new sampling theorem. However, the procedure used by the referee to construct a spanning
forest of the input graph is more complicated, and the number of bits sent by each vertex is larger
by a factor of log n. See Appendix B for the details.

Acknowledgment

The last author would like to thank Orr Fischer and Rotem Oshman for introducing him to the
communication complexity problem and for many helpful discussions about it.

References

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 459–467. SIAM, 2012.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, span-
ners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium
on Principles of Database Systems, pages 5–14. ACM, 2012.

[3] Tom Bohman and Alan Frieze. Hamilton cycles in 3-out. Random Structures & Algorithms,
35(4):393–417, 2009.

[4] Timothy M. Chan. Backwards analysis of the Karger-Klein-Tarjan algorithm for minimum
spanning trees. Inf. Process. Lett., 67(6):303–304, 1998.

[5] Trevor I. Fenner and Alan M. Frieze. On the connectivity of random m-orientable graphs and
digraphs. Combinatorica, 2(4):347–359, 1982.

[6] Alan Frieze and Micha l Karoński. Introduction to random graphs. Cambridge University Press,
2016.

[7] Alan M Frieze. Maximum matchings in a class of random graphs. Journal of Combinatorial
Theory, Series B, 40(2):196–212, 1986.

[8] Alan M. Frieze, Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random
spanning trees. SIAM J. Comput., 43(2):497–513, 2014.

[9] Alan M. Frieze and Tony Johansson. On random k -out subgraphs of large graphs. Random
Struct. Algorithms, 50(2):143–157, 2017.

[10] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connec-
tivity via random 2-out contractions. CoRR, abs/1909.00844, 2019. Accepted for SODA’20.

20

[11] David Gibb, Bruce Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity with
improved worst case update time and sublinear space. arXiv preprint arXiv:1509.06464, 2015.

[12] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests. J. Algorithms, 39(1):1–46, 2001.

[13] Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’18, pages 2620–2632. SIAM, 2018.

[14] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pages 1131–1142. Society for Industrial and Applied Mathematics, 2013.

[15] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time algo-
rithm to find minimum spanning trees. J. ACM, 42(2):321–328, 1995.

[16] David R. Karger, Noam Nisan, and Michal Parnas. Fast connected components algorithms for
the EREW PRAM. SIAM J. Comput., 28(3):1021–1034, 1999.

[17] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for MapRe-
duce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’10, pages 938–948. SIAM, 2010.

[18] R. Daniel Mauldin. The Scottish book: mathematics from the Scottish Café. Birkhauser, 1981.

[19] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. CoRR, abs/1807.05135, 2018.

A Resilient names and error correcting codes

A binary (n, k, d)-code C is a k-dimensional linear subspace of Zn2 such that for every x, y ∈ C we
have dH(x, y) ≥ d, there dH(x, y) is the Hamming distance between the codewords x and y. Each
such code has an (n − k) × n parity check matrix A such that x ∈ C if and only if Ax = 0. (The
rows of A form a basis of the orthogonal subspace C⊥.)

If A is the parity check matrix of an (n, k, d)-code C, then as 0 ∈ C, for every x ∈ Zn2 with w(x) < d
we have x 6∈ C and thus Ax 6= 0. (Here w(x) = dH(x, 0) is the weight of x, i.e., the number of
non-zero coordinates in x.) In other words, the xor of any subset of less than d columns of A is
non-zero. Thus, the columns of A form a collection of d−12 -resilient names. To obtain a collection of
r-resilient `-bit names for the edges of the complete graph we can use an (

(
n
2

)
,
(
n
2

)
− `, 2r+ 1)-code.

For every r, the BCH code of length n is an (n, n− r log n, 2r) code. It can thus be used to obtain
an explicit r-resilient naming scheme with names of length O(r log n).

B An alternative protocol

In this Section we describe an alternative one-way communication protocol with private randomness
for the spanning forest problem that does not rely on Theorem 1.2. It is, however, slightly less
efficient, and slightly more complicated. Trying to improve and simplify this algorithm led us to
the discovery of Theorem 1.2.

21

http://arxiv.org/abs/1509.06464

The protocol is similar to the protocol given in Section 1.4. Each vertex sends, however, log n
independent samples of its edges, each edge is included in each one of the samples with probability
c/
√
n. Each vertex also sends the xor of c

√
n log n-resilient names of its incident edges, for some

large constant c. With high probability, each vertex sends at most O(
√
n log2 n) bits. (Note that

this is larger by a factor of log n compared to Section 1.4.)

The referee proceeds in log n rounds. In each round she only uses edges of the i-th sample which
contains, in expectation, at most c

√
n edges. (Note that unlike the protocol of Section 1.4, low

degree vertices actually send shorter messages.)

In the beginning of each round the referee has a collection of components. At the start of the
first round each vertex is its own component. Let C be a component at the start of the i-th
round. If there is an edge e of the i-th sample that connects C to a different component C ′, then
the components C and C ′ are merged and e is added to the spanning forest. If no such edge is
found, then we can ‘infer’, with high probability, that the number of edges in the cut (C, V \ C)
is at most

√
n log n. (See justification in the next paragraph.) Indeed, if the size of the cut is at

least
√
n log n, then the probability that none of the edges of the cut appears in the i-th sample is

at most (1− c√
n

)
√
n logn ≤ n−c. In this case, the referee computes X(C) =

⊕
{i,j}∈∂C x({i, j}) from

which she can infer the up to
√
n log n edges of the cut. If X(C) = 0, the referee declares C to be

a connected component of the input graph. Otherwise, it uses the edges returned to connect C to
other components.

Let C1, C2, . . . , Cr be the components in the start of the i-th round. Suppose that r′ of the cut
sets ∂Ci are of size at least

√
n log n. The probability that the i-th sample fails to hit each one

of these r′i cuts is at most r′i · n−c. Note that this is also the probability that the referee makes
a mistake in the i-th round. If no mistake is made, then the number of components that are not
complete components of the input graph decreases by a factor of at least 2 in each round, and after
log n round, no such component remains. The referee outputs the spanning tree obtained. The
total error probability is (

∑
r′i)n

−c < n−(c−1). Thus, choosing c = 2 suffices to get a correct result
with probability at least 1− 1

n .

It is important to note that the analysis above is correct as the cuts that we are trying to hit with
the i-th sample are independent of the i-th sample. (They only depend on the first i− 1 samples.)

In the above protocol each edge is sampled independently with probability c/
√
n. The same sam-

pling probability is used for all vertices. We have a simple example that shows that the log n
samples used by the protocol are required in this case. Theorem 1.2 shows, perhaps surprisingly,
that if we sample c

√
n edges from each vertex, i.e., giving low degree vertices a higher sampling

probability, then the separate log n samples can be replaced by a single sample. Proving that,
however, is far from easy.

22

	1 Introduction
	1.1 Our results
	1.2 Previous results in the k-out model
	1.3 Sampling each edge independently with probability p
	1.3.1 Comparing k-out sampling and independent p sampling
	1.3.2 Improved result for independent p sampling for almost regular graphs

	1.4 Applications in distributed computing

	2 Proof of the sampling theorem
	2.1 Relation between k-out and expected k-out models
	2.2 Overview of the proof of the sampling theorem for expected k-out
	2.3 Growing and trimming
	2.4 High level details
	2.5 Growth of high-degree components
	2.6 Main challenge: Growth of low-degree components

	3 One-way spanning forest protocol with private randomness
	3.1 XOR trick
	3.2 Resilient edge names
	3.3 O(nlogn)-bit messages using private randomness

	A Resilient names and error correcting codes
	B An alternative protocol

