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Prior work has shown that there exists a relation problem which can be solved

with certainty by a constant-depth quantum circuit composed of geometrically local

gates in two dimensions, but cannot be solved with high probability by any classical

constant depth circuit composed of bounded fan-in gates. Here we provide two

extensions of this result. Firstly, we show that a separation in computational power

persists even when the constant-depth quantum circuit is restricted to geometrically

local gates in one dimension. The corresponding quantum algorithm is the simplest

we know of which achieves a quantum advantage of this type. It may also be more

practical for future implementations. Our second, main result, is that a separation

persists even if the shallow quantum circuit is corrupted by noise. We construct a

relation problem which can be solved with near certainty using a noisy constant-

depth quantum circuit composed of geometrically local gates in three dimensions,

provided the noise rate is below a certain constant threshold value. On the other

hand, the problem cannot be solved with high probability by a noise-free classical

circuit of constant depth. A key component of the proof is a quantum error-correcting

code which admits constant-depth logical Clifford gates and single-shot logical state

preparation. We show that the surface code meets these criteria. To this end, we

provide a protocol for single-shot logical state preparation in the surface code which

may be of independent interest.
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I. INTRODUCTION

The appeal of quantum computing lies in the hope that quantum devices may surpass their
classical counterparts in certain information processing tasks. Indeed, a universal quantum com-
puter could efficiently solve certain computational problems such as factoring, for which no efficient
classical algorithms are known to date. Yet, even an experimental realization of such universal
quantum machines – while impressive and potentially useful in applications – would not conclu-
sively establish a computational quantum advantage in the complexity-theoretic sense. Instead,
an efficient quantum algorithm must be accompanied with a proof of the classical hardness of the
considered problem. For almost any problem of interest, such a proof would itself constitute a major
complexity-theoretic advance.

To solidify the theoretical underpinnings of quantum computation, recent work has focused
on computational problems where quantum advantage can be established, either conditionally or
information-theoretically. Results of the former category rely on certain complexity-theoretic con-
jectures such as the non-collapse of the polynomial hierarchy as well as specific hardness assumptions
for a given problem. For example, so-called IQP circuits and related proposals [1–4] provide ev-
idence that classically sampling from the output distribution of certain shallow quantum circuits
may be intractable – a key feature first identified by Terhal and DiVincenzo [5] and later strength-
ened by Aaronson’s characterization of postBQP [6]. Some of these works also provide experimental
proposals for using a near-term quantum computer to perform a computational task that cannot
be performed by any existing classical computer [7]. A rich debate concerning the feasibility of
such proposals has prompted improvements to the performance of classical simulation algorithms
for quantum computers [8–12].

While these results seek to separate efficient (i.e., polynomial-time) quantum computation from
efficient classical computation, complementary unconditional results have been obtained for a more
narrow question. It has been shown [13] that constant-depth quantum circuits provide a provable
computational advantage over constant-depth classical circuits, where both types of circuits are
assumed to have bounded fan-in gates. Ref. [13] introduced a computational problem such that



3

(i) the problem can be solved with certainty by a constant-depth quantum circuit composed of
geometrically local gates on a 2D grid of qubits, while

(ii) any classical probabilistic circuit which solves the problem with success probability at least 7/8
must have depth growing logarithmically with the input size.

This separation also holds in the average-case setting when the classical circuit only needs to solve a
few instances of the problem that are drawn randomly from a suitable distribution [13, Supplemen-
tary Material]. Similar proofs of quantum advantage with associated average-case hardness results
for classical circuits have been obtained more recently in [14, 15], see also [16]. In this work we
extend these results in two distinct ways.

First, since the quantum algorithm described in Ref. [13] is geometrically local in two dimensions,
it is natural to ask whether a provable quantum advantage can also be achieved in a one-dimensional
geometry. We answer this question in the affirmative.

Following Ref. [13], below we consider relation problems. Recall that a relation R is defined as a
set of valid input-output pairs (zin, zout), where zin and zout are bit strings of appropriate length. We
shall describe a relation by a function R(zin, zout) that takes values 0 or 1. A classical or quantum
circuit is said to solve a relation problem R for some input zin if it outputs a string zout such that
R(zin, zout) = 1. A relation problem is said to have l input-output bits if |zin|+ |zout| = l.

Result 1 (Quantum advantage with 1D shallow circuits — informal). For each n there exists
a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:

• The problem R can be solved with certainty for all inputs by a constant-depth quantum circuit
composed of geometrically local gates on a 1D grid.

• Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least Ω(log n).

The proof of this result is given in Section II, where the formal statements appear as Theorems 2
and 4. As in previous work [13, 14], the separation described in Result 1 is achieved by a quantum
algorithm with input/output statistics that are related to those of a certain nonlocal game. Recall
that in a nonlocal game, cooperating players are each provided with an input and must each produce
an output without communicating with the other players. Their aim is to satisfy a given winning
condition, or input/output relation. It is known that quantum players who share entanglement can
win certain nonlocal games with higher probability than classical players who share randomness.
To prove the above result, we exhibit a constant-depth one-dimensional quantum circuit and a set
S of inputs such that the input/output statistics of the circuit given any input in S are directly
related to a variant of the well known magic-square game [17, 18]. We further establish that for
any classical circuit with low enough depth there are a significant fraction of inputs in S for which
the circuit can be viewed as executing a classical strategy for winning this nonlocal game. The
result then follows as a result of upper bounds on the winning probability of any classical strategy.
The constant-depth quantum circuit which achieves this quantum advantage is shown in Fig. 4. It
is a classically controlled Clifford circuit with a particularly simple one-dimensional structure, and
may be suitable for a near-term experimental demonstration.

Secondly, we ask if the separation between the power of constant-depth classical and quantum
circuits persists even for noisy quantum circuits, i.e., quantum circuits where each qubit/gate can
be erroneous with a constant probability. In this paper we compare the computational power
of noisy shallow quantum circuits with that of noise-free shallow classical probabilistic circuits.
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The quantum circuits we consider will be subject to local stochastic noise [19]. This noise model
assumes that a random Pauli error occurs at each time step in the ideal circuit. The error may
affect multiple qubits, but the probability of high-weight errors must be exponentially suppressed.
This is quantified by a noise rate p ∈ [0, 1] such that the probability of observing k single-qubit
errors at any given subset of k qubits must be at most pk, see Section III.A for formal definitions.
The (probabilistic) classical circuits we consider will be composed of gates of bounded fan-in, as
defined in Section II.C.

We note that standard fault-tolerance constructions which emulate a noise-free universal quan-
tum computation using faulty gates and measurements do not directly apply in this setting: these
constructions typically lead to non-constant depth circuits. As an example, a quantum error-
correcting code with extensive code distance does not have a constant-depth encoding circuit [20–
22]. Thus, standard quantum error correction methods do not directly provide a generic way to turn
a separation such as that established in [13], or the one described in Result 1, into a separation be-
tween noisy constant-depth quantum and (noiseless) constant-depth classical circuits. Nevertheless,
in this paper we do provide such a generic recipe. Applying the recipe to the separation described
in Result 1 we obtain the following.

Result 2 (Quantum advantage with noisy shallow circuits — informal). For each n there
exists a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:

• The problem R can be solved with probability at least 0.99 for all inputs by a constant-depth
quantum circuit composed of geometrically local gates on a 3D grid, subject to local stochastic
noise. The noise rate must be below a constant threshold value independent of n.

• Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least

Ω

(
log(n)

log(log(n))

)
.

Let us briefly describe the main idea which allows us to convert a quantum advantage with ideal
quantum circuits, such as in Result 1, into one with noisy quantum circuits. The recipe is detailed
in Section III. It uses the facts that (A) the quantum circuits which achieves the separation are
controlled Clifford circuits with a classical control (i.e., for any fixed input a Clifford unitary is
applied), and (B) Certain classical computations, such as the decoding needed for quantum error
correction, can be incorporated into the definition of the relation problem rather than performed
explicitly in the quantum algorithm.

Consider a relation problem R such that a constant-depth controlled-Clifford circuit produces
a solution to a given instance with certainty. We are interested in the setting where R cannot be
satisfied by any constant-depth classical circuit. Such relations R are provided in Ref. [13] and
Result 1. For a fixed input the controlled-Clifford circuit implements a constant-depth Clifford
unitary C acting on n qubits followed by measurement of all qubits in the computational basis.
Suppose that our goal is to perform a fault-tolerant version of this computation. We imagine
encoding each logical qubit using m physical qubits of some CSS-type [23, 24] stabilizer code Qm.

As noted above, since good codes do not admit constant-depth encoding circuits, we are unable
to initialize all logical qubits in the state |0〉. However, we can hope to prepare a version of this state
which is corrupted by a known Pauli operator (which may act nontrivially on all physical qubits).
To do this we can initialize all m physical qubits, along with a suitable number manc of ancilla
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qubits, in the all-zeros state, and then perform a Clifford circuit W which measures all stabilizers
of the code to obtain a syndrome s. The resulting state is then

(I ⊗ |s〉〈s|)W |0m〉|0manc〉 ∝ Rec(s)|0〉|s〉. (1)

where the “recovery” Pauli operator Rec(s) is a function of the syndrome s. We shall be interested
in the case when the code Qm is a low-density parity-check (LDPC) code, i.e., it has constant weight
stabilizer generators such that each qubit is acted upon nontrivially by at most a constant number
of them. The syndrome of such codes can be measured by a constant depth Clifford circuit W .
Using this procedure we can prepare the desired logical state |0〉 modulo a Pauli recovery operator
Rec(s). The same method can be used to prepare n copies of the state |0〉, modulo a Pauli recovery
Rec(s) acting on nm qubits. Let C be the logical version of the Clifford circuit C. Applying this
circuit to the prepared logical all-zero state we obtain

CRec(s)|0〉⊗n = P (s)C|0〉⊗n (2)

where P (s) = CRec(s)C
†

is another Pauli operator which is a simple function of s. Here we require
that the logical Clifford C is implementable by a constant-depth physical circuit (for example, this
holds for any CSS code with transversal logical Hadamard and phase gates). In other words, using
such a code Qm we are able to implement a logical encoded version of the constant-depth Clifford
circuit C, masked by a Pauli operator P (s) that depends on the initial syndrome measurement
s obtained in state preparation. The computational basis measurement statistics of the encoded
state with the mask Eq. (2) are related to those of the unencoded state with no mask C|0〉⊗n by
flipping the bits corresponding to the X-type part of P (s) and then decoding the resulting bit
string. Thus we can simulate the desired encoded quantum computation using a constant-depth
quantum circuit along with some simple classical postprocessing. If we chose to incorporate this
classical postprocessing into the quantum algorithm, it could pose a problem as its depth may not
be constant. Happily, it turns out, we can instead modify the definition of the relation problem R
to account for the difference.

Now let us consider the noise-tolerance of this procedure. Since the above quantum circuit has
a constant depth and uses logical encoded qubits and operations, it can be made to work in the
presence of noisy physical gates and measurements, as long as they occur after the state preparation
step. Unfortunately, the state preparation step Eq. (1) is not generally fault-tolerant and the whole
algorithm can fail due to errors in the measured syndrome s. For example, a single faulty bit of s
can potentially damage the recovery operator Rec(s) at multiple qubits resulting in an uncorrectable
error. This can be addressed by using a codeQm that admits a so-called single-shot state preparation
procedure. The latter is closely related to a single-shot error correction [25]. The code Qm is said
to admit a single-shot state preparation for a single-qubit logical state φ if there exists a number of
ancillas manc (upper bounded by a polynomial function of m) and a constant-depth Clifford circuit
W acting on m+manc qubits such that, for any local stochastic Pauli error E with noise rate p, we
have

(I ⊗ |s〉〈s|)EW |0m〉|0manc〉 ∝ FRec(s)|φ〉|s〉.

where F is also a local stochastic Pauli error with a possibly larger noise rate p′ ≤ c1p
c2 for positive

constants c1, c2. For example, single-shot state basis state preparation allows us to use a constant-
depth circuit composed of noisy gates and measurements to prepare a state FRec(s)|0〉|s〉, where
F is a random Pauli error that can be viewed as residual noise. We can also consider single-shot
preparation of k-qubit encoded states, with k > 1, in which case m should be replaced by mk above.

Putting together these ingredients we obtain a recipe which starts with a relation R defined by
the input-output statistics of a constant-depth controlled-Clifford circuit, and converts this “bare
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relation” into a “noise-tolerant” relation R that is based on the encoded circuit with single-shot
state preparation, and which incorporates the classical postprocessing in its definition. We further
show that the input/output statistics of a constant-depth quantum circuit satisfy R, and we show
that the depth required for a classical circuit to satisfy R is comparable to that required to satisfy
the bare relation R.

A crucial requirement for the recipe outlined above is the existence of a CSS stabilizer code Qm
such that elementary logical Clifford gates are implemented by constant-depth Clifford circuits, and
which admits a single-shot state preparation procedure. Here we show that the standard surface
code satisfies these desiderata. The first requirement follows from previous work [26] which describes
how to implement logical single-qubit Hadamard and phase gates in the surface code using constant-
depth Clifford circuits. Together with the transversal logical CNOT gate this provides a complete
set of Clifford generators which can each be implemented in constant depth. A central technical
contribution of our work is to provide a single-shot state preparation procedure for the surface code.
Specifically, we show how to prepare a logical Bell state encoded in two identical surface codes.

Result 3 (Single-shot Bell state preparation in the surface code — informal). For each
d ≥ 4, there is a single-shot state preparation procedure for the encoded Bell state 2−1/2

(
|00〉+ |11〉

)
shared between two distance-d surface codes, each encoding one logical qubit into m = d2 + (d− 1)2

physical qubits. The procedure uses a depth-6 Clifford circuit W composed of geometrically local
gates on a 3D grid and computational basis measurements.

The proof of Result 3, given in Sections IV and V, relies crucially on ideas introduced in Ref. [27].
The authors of Ref. [27] showed how to prepare a logical Bell state encoded into a pair of surface
codes starting from a 3D grid of qubits initially prepared in a (noisy) cluster state and measuring a
suitable subset of qubits. Here we extend the analysis of Ref. [27] and prove that the same protocol
yields a single-shot state preparation scheme with a constant error threshold in the presence of
local stochastic noise. We leave as an open question whether Result 3 in conjunction with Knill’s
syndrome measurement method [28, 29] provides a single-shot error correction scheme based on the
surface code.

The 3D constant-depth quantum circuit described in Result 2 is obtained by combining the 3D
Bell state preparation circuit of Result 3 with the 1D circuit of Result 1 encoded by the surface
code (we shall see that the first few gates of this circuit simply prepare Bell states). We show that
the encoded 1D circuit can be made geometrically local on a 3D grid using the lattice folding trick
introduced in Ref. [26]. The folded encoded 1D circuit uses only nearest-neighbor two-qubit gates
on a 3D grid with O(1) qubits per site, as detailed in Section VI.

Outline

The remainder of the paper is organized as follows: In Section II, we introduce a new compu-
tational problem, the 1D Magic Square Problem, separating constant-depth classical and quantum
circuits. Contrary to the hidden linear function problem considered in [13] which relied on a 2D qubit
architecture, the quantum circuit for the 1D Magic Square Problem is geometrically local in one
dimension. An added benefit is a simpler proof of the computational hardness for constant-depth
classical circuits.

In Section III, we show how noise can be addressed for suitable (relation) problems: given an
ideal constant-depth classically controlled Clifford circuit solving a certain relation problem, we
show how to define a noise-tolerant version of the problem. The latter can be solved with a noisy
quantum circuit constructed using appropriate error-correcting codes, and retains the hardness (in
terms of circuit depth) of the original relation for classical circuits. Instantiating this construction
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|Φ〉

|Φ〉

α

x

β

y

Alice Bob

(a) Quantum strategy

@
@
@β

α
01 10 11

01 X112 11X2 X1X2

10 11Z2 Z112 Z1Z2

11 −X1Z2 −Z1X2 Y1Y2

(b) Optimal measurements

FIG. 1: The magic square game. (a) The two-bit inputs α, β ∈ {01, 10, 11} to the magic square
game specify a column and row for Alice and Bob respectively, and the outputs are three bits
x = (x1, x2, x3) ∈ {−1, 1}3 and y = (y1, y2, y3) ∈ {−1, 1}3 for each entry in the column or row.
The game is won when x1x2x3 = −1, y1y2y3 = 1 and xι(β) = yι(α) (where ι converts between

binary and non-binary representation). (b) The commuting observables for Alice (columns) and
Bob (rows) for each input, yielding 3 output bits for each Alice and Bob that always satisfy the

parity constraints.

with the 1D Magic Square Problem provides the desired separation between noisy constant-depth
quantum and (noise-free) constant-depth classical circuits.

In Section IV, we explain how to obtain the required code properties using the standard 2D sur-
face codes. We give a high-level overview of the procedure for single-shot encoded Bell state prepa-
ration based on a 3D grid of qubits. The full proof is provided in Section V.

In Section VI, we argue that the required quantum circuit for the noise-tolerant 1D Magic
Square Problem can be realized using a constant-depth circuit with geometrically local gates on a
3D architecture of qubits.

II. THE 1D MAGIC SQUARE PROBLEM: QUANTUM ADVANTAGE IN A 1D GEOMETRY

In this section we define a relation problem called the 1D Magic Square Problem. We show that
it can be solved with certainty by a constant-depth quantum circuit with nearest neighbor gates in
a one-dimensional geometry. Conversely, we prove that it cannot be solved with high probability
by any constant-depth classical (probabilistic) circuit composed of bounded fan-in gates. We begin
by describing the magic square game [17, 18].

II.A. The (generalized) magic square game

The magic square game is a nonlocal game with two cooperating players Alice and Bob who
cannot communicate. At the outset, Alice is given an input α ∈ {01, 10, 11} which specifies one
of the three columns ι(α) ∈ {1, 2, 3} of a 3 × 3 table and Bob is given an input β ∈ {01, 10, 11}
which specifies one of the rows ι(β) ∈ {1, 2, 3}. For later convenience, we use a binary encoding
of integers with conversion map ι : {0, 1}2 → {0, 1, 2, 3}. Alice is asked to fill in the three entries
in her column with either zeros or ones such that the overall parity is odd, while Bob is asked to
fill out his row so that the parity is even. They win if they satisfy this property and in addition
they report the same value for the square where the column ι(α) and row ι(β) overlap. There is
no fixed assignment of the table satisfying the winning condition, which can be seen by noting that
the total parity of all bits must be either even or odd, contradicting one of the restrictions. In fact,
the maximal winning probability using a classical strategy is 8/9. On the other hand, quantum
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|0〉
x

H •
U(α)

|0〉 H •
α •
β •
|0〉

yV (β)
|0〉

(a) Circuit

γ = 00 γ = 01 γ = 10

U(γ) 1 H112 H112 · SWAP

V (γ) 1 H1H2 SWAP

γ = 11

U(γ) H112 · CNOT

V (γ) (H1H2) · CZ · (Z1Z2)

(b) Controlled Cliffords

FIG. 2: (a) The quantum strategy for the magic square game as a circuit. The circuits takes as
input α, β ∈ {0, 1}2. The values α = 00 and β = 00 are not used in the magic square game. The

outputs are x = (x1, x2),y = (y1, y2) ∈ {+1,−1}2. We set x3 = −x1x2 and y3 = y1y2 to satisfy the
parity constraints.(b) When γ = 00 we set U(γ) = V (γ) = I. For γ ∈ {01, 10, 11} we choose U(γ)
and V (γ) to be Cliffords which implement the basis changes needed to measure the observables

described in Fig. 1 (b). Here CZ = diag(1, 1, 1,−1) is the controlled-Z gate and SWAP is defined
by SWAP|z1z2〉 = |z2z1〉 for all z1, z2 ∈ {0, 1}.

players can win this game with certainty if Alice and Bob measure the observables in Fig. 1 on two
maximally entangled states |Φ〉⊗2, where |Φ〉 = 2−1/2(|00〉+ |11〉).

This quantum strategy for the magic square game can alternatively be depicted using a quantum
circuit as shown in Fig. 2(a). After creating two Bell states |Φ〉⊗2, Alice (top) applies a Clifford
unitary U(α) and then measures in the computational basis to obtain outcomes (x1, x2). Similarly,
Bob (bottom) applies a Clifford unitary V (β) and measures in the computational basis, getting
outcomes (y1, y2). Alice’s output then is (x1, x2, x3) ∈ {−1,+1}3, where x1 and x2 are the measure-
ment outcomes and the third component x3 = −x1x2 is fixed by the parity constraint in the magic
square game. Similarly, Bob’s output is (y1, y2, y3) ∈ {−1,+1}3, with y3 = y1y2. The Clifford
unitaries U(α), V (β) implement the measurements described in Fig. 1. For example, U(01) = H112

implements the measurements X112 (on the first qubit) and 11Z2 (on the second qubit). For later
convenience we set U(00) = V (00) = I. The full list of Clifford unitaries applied by Alice respec-
tively Bob is given in Fig. 2(b).

We briefly describe a generalized magic square game with parameters (s, t, s′, t′) ∈ {−1,+1}4. In
the generalized game, Alice and Bob are still asked to fill in columns respectively rows of a 3×3 table,
with odd or even parity constraints as above. However, the winning condition xι(β) = yι(α) that
Alice’s outputs (x1, x2, x3) and Bob’s outputs (y1, y2, y3) coincide in the entry where the column ι(α)
and the row ι(β) overlap is replaced by

xι(β)yι(α) = fα,β(s, t, s′, t′) , (3)

where fα,β(s, t, s′, t′) is given by the table in Fig. 3(b).
It is straightforward to show that the maximal winning probability for the generalized magic

square game using a classical strategy is again equal to 8/9. On the other hand, quantum players
can win with probability one if they share the entangled state |Φs,t〉 ⊗ |Φs′,t′〉, where

|Φs,t〉 =
(
Z

1
2

(1+s)X
1
2

(1+t) ⊗ I
)
|Φ〉 s, t ∈ {−1,+1} . (4)

Here the tensor product separates Alice’s qubit (on the left) from Bob’s. The corresponding winning
strategy consists in measuring the same observables (i.e., from Fig. 1) as before.
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α = 01 α = 10 α = 11

sX112 s′11X2 ss′X1X2

t′11Z2 tZ112 tt′Z1Z2

−st′X1Z2 −ts′Z1X2 ss
′tt′Y1Y2

(a) Alice’s observables

α = 01 α = 10 α = 11

β = 01 s s′ ss′

β = 10 t′ t tt′

β = 11 st′ s′t ss′tt′

(b) Definition of fα,β(s, t, s′, t′)

FIG. 3: Generalized magic square game with initial state |Φs,t〉 ⊗ |Φs′,t′〉.

To see that this quantum strategy succeeds with probability 1, observe that because of (4), this
is equivalent to Alice and Bob sharing the initial state |Φ⊗2〉, Bob measuring the same observables
as before (described by the rows of Fig 1(a)), and Alice measuring the observables described in
Fig. 3(a). Clearly, the outcomes x1, x2, x3 for Alice and y1, y2, y3 for Bob still satisfy the parity
conditions as Bob’s measurement is the same as before, whereas Alice’s outcomes again multiply
to −1 as can be seen by taking the product of the operators in each column. The fact that (3) is
satisfied follows by comparing the observables in Fig. 3(a) with the definition of fα,β (see Fig. 1(b)).

In our arguments below (see Lemma 8), we use a variant of this generalized magic square game
where s, t, s′, t′ enter the winning conditions and may depend on the inputs (α, β), but only in a
restricted way. For later reference, we note that the functions fα,β satisfy

3∏
i=1

fι−1(i),β(s, t, s′, t′) =
3∏
j=1

fα,ι−1(j)(s, t, s
′, t′) = 1 for all (α, β) ∈ {01, 10, 11} . (5)

Observe also that each of the functions fα,β depends linearly on each of the arguments (s, t, s′, t′).
In particular, if these variables are products of {+1,−1}-valued variables, then the value of the
function factorizes as

fα,β(sAsB, tAtB, s
′
As
′
B, t
′
At
′
B) = fα,β(sA, tA, s

′
A, t
′
A) · fα,β(sB, tB, s

′
B, t
′
B) (6)

for all sA, sB, tA, tB, s
′
A, s

′
B, t
′
A, t
′
B ∈ {+1,−1}.

II.B. The 1D Magic Square Problem and its solution by a constant-depth quantum circuit

We now describe the relation problem which we call the 1D Magic Square Problem. We si-
multaneously exhibit a constant-depth quantum circuit using classically controlled Clifford gates
which solves this problem with certainty for any input. In fact, we define the problem by giving
this quantum circuit, but remark that, alternatively, a purely algebraic definition could be given
without making reference to quantum circuits.

Consider the quantum circuit shown in Fig. 4. To understand what is going on in this circuit,
it may be useful to compare with Fig. 2. The circuit in Fig. 4 takes inputs αj, βj ∈ {0, 1}2 and
outputs xj,yj ∈ {−1, 1}2, for j ∈ {1, 2, . . . , n}. Thus the circuit has a total of 4n input bits and
4n output bits. It contains 4n data qubits which are labelled p1, q1, p2, q2, . . . , p2n, q2n in the Figure.
The gates U(α) and V (β) are the same Clifford gates which appear in Fig. 2. Recall that for
α, β ∈ {01, 10, 11} they are chosen to implement Alice and Bob’s measurements in the magic square
game, and U(00) = V (00) = I. In addition, the circuit contains controlled 4-qubit Clifford gates
W (β, α) defined by

W (β, α) =

{
M13 ⊗M24, α = β = 00

I, otherwise .
(7)
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p1 |0〉
x1

H •
U(α1)

q1 |0〉 H •
α1 •

β1 • •
p2 |0〉

y1V (β1)

W (β1, α2)
q2 |0〉

p3 |0〉
x2

H •
U(α2)

q3 |0〉 H •
α2 • •

β2 • •
p4 |0〉

y2V (β2)

W (β2, α3)
q4 |0〉

p5 |0〉
x3

H •
U(α3)

q5 |0〉 H •
α3 • •

...
...

...

βn •
p2n |0〉

ynV (βn)
q2n |0〉

FIG. 4: Quantum circuit for the 1D Magic Square Problem. Here the classically controlled
Clifford W (β, α) is the identity unless α = β = (0, 0). In that case, we set W (00, 00) = M13 ⊗M24

where M = (H ⊗ I)CNOT is the Bell basis change, leading to an entanglement-swapping
measurement.

where M = (H ⊗ I)CNOT is the Bell basis change, mapping the Bell basis to the computational
one. We note that the circuit realizes a Clifford unitary C1DMSP

zin
on 4n qubits which is classically

controlled by the input zin = (α1, . . . , αn, β1, . . . , βn), followed by a computational basis measure-
ment yielding zout = (x1, . . . ,xn,y1, . . . ,yn). In the 1D Magic Square Problem we are asked to
reproduce the input-output relation satisfied by the circuit:

Definition 1 (1D Magic Square Problem). We are given an input zin ∈ {0, 1}4n. The goal is
to output any bit string zout ∈ {0, 1}4n which appears with nonzero probability when the circuit
Fig. 4 is run with input zin, i.e., any zout satisfying

pzin(zout) = | 〈zout|C1DMSP
zin

∣∣04n
〉
|2 > 0 . (8)
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Any pair (zin, zout) satisfying (8) will be said to satisfy the 1D Magic Square Relation.

In other words, the 1D Magic Square Problem is a relation problem: for a typical problem
instance zin, the set of valid solutions zout is non-unique. By construction, the problem can be
solved with certainty by running the circuit in Fig. 4. Thus, we immediately obtain the following.

Theorem 2. The 1D Magic Square Problem can be solved with certainty by a depth-4 quantum
circuit in which each gate is a controlled Clifford gate with at most 4 control bits and 4 target qubits.
The gates in this circuit are geometrically local in 1D.

Below we restrict our attention to a particular set S of problem instances (see Eqs. (9) and (10))
where α = 0 iff β = 0. In particular, according to the definition (7) of W (β, α), we can realize such
a gate by a pair of successively applied 2-qubit gates which are classically controlled by α. Thus
we may equivalently use a depth-5-circuit with controlled Clifford gates having at most 2 classical
control bits and 2 target qubits for the 1D Magic Square Problem.

The fact that the quantum circuit for the 1D Magic Square Problem only requires geometrically
local gates in 1D allows us to establish a separation between noisy constant-depth quantum circuits
with geometrically local gates in 3D, and general noise-free shallow classical circuits, as discussed
in Section VI.

We will show that the 1D Magic Square Problem cannot be solved with high probability by a
constant-depth classical circuit composed of bounded fan-in gates. Moreover, we show that any
such circuit must falter on a certain polynomial-sized subset of instances. In particular, we will be
interested in the subset S ⊆ {0, 1}4n of inputs of the following form. Each member of the subset S
can be described by a tuple

(j, k, α, β) where 1 ≤ j < k ≤ n and α, β ∈ {01, 10, 11}. (9)

The associated input bits are given by

αi =

{
α, i = j

00, i 6= j.
βi =

{
β, i = k

00, i 6= k.
(10)

Before establishing this hardness for classical constant-depth circuits, let us briefly comment on
the way in which the described circuit C1DMSP

zin
from Fig. 4 achieves the claimed quantum advantage.

To this end, we show that the circuit C1DMSP
zin

essentially executes the quantum winning strategy of
the generalized magic square game. In other words, it uses quantum non-locality as a resource.

In more detail, we argue that the output of the quantum circuit on an input from the set S (i.e.,
of the form (10)) obeys the winning condition of the generalized magic square game. This may be
phrased as a necessary condition on pairs (zin, zout) satisfying the 1D Magic Square Relation, as
follows:

Lemma 3. Consider an instance zin = (α1, . . . , αn, β1, . . . , βn) of the 1D Magic Square Prob-
lem from the set S, i.e., specified by (10) in terms of a tuple (j, k, α, β) as in (9). Let zout =
(x1, . . . ,xn,y1, . . . ,yn) be any tuple such that (zin, zout) satisfies the 1D Magic Square Relation.
Then the tuple (α, β,xj,yk) satisfies

x
ι(β)
j y

ι(α)
k = fα,β(s, t, s′, t′) for all α, β ∈ {01, 10, 11} (11)

with parameters

s =
k−1∏
i=j

y1
i t =

k−1∏
i=j

x1
i+1 s′ =

k−1∏
i=j

y2
i t′ =

k−1∏
i=j

x2
i+1 . (12)
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Here we use xi = (x1
i , x

2
i ) ∈ {−1,+1}2 (and similarly for yi) to denote the entries of xi, and set

x3
j = −x1

jx
2
j and y3

k = y1
ky

2
k . (13)

We recognize the winning condition Eq. (3) for the generalized magic square game in the iden-
tity (11). In other words, when running the quantum circuit C1DMSP

zin
on an instance from S, a

winning output for the generalized magic square game is given by the measurement results from
qubits p2j−1q2j−1 and p2k, q2k, whereby the particular generalized magic square game considered
(i.e., the parameters s, t, s′, t′) is determined by the measurement outcomes of qubits between these
sites, see Fig. 5. We will later show that satisfying the necessary condition of Lemma 3 is infeasible
for shallow classical circuits. The particular functional dependence captured by (12) will figure
prominently in a reduction to the “standard” magic square game, whose classical value is 8/9 (see
Lemma 8 below).

Proof. Consider the circuit from Fig. 4 applied to the input Eq. (10). We begin by describing how
the input-output statistics are related to the generalized magic square game. The role of the gate
W (00, 00) here is to perform entanglement swapping measurements. Entanglement swapping refers
to the fact that if a four-partite system is in a product ΦAC1 ⊗ ΦC2B of two Bell states, and the
(Bell) observablesX1X2 and Z1Z2 are measured on systems C1C2, then the outcomes s, t ∈ {−1,+1}
respectively are uniformly distributed and the associated postmeasurement state on AB is (up to
a sign) the Bell state |Φs,t〉 defined in Eq. (4).

Now imagine organizing the 4n data qubits in the circuit into two rows of 2n qubits each, as
shown in Fig. 5. Here the first row from left to right contains the qubits labeled p1, p2, p3, . . . , p2n

in Fig. 4 and the bottom row contains the qubits q1, q2, . . . , q2n. It may be helpful to imagine that
Alice holds the two data qubits p2j−1, q2j−1 and receives input α ∈ {01, 10, 11} and Bob holds the
two qubits p2k, q2k and receives input β ∈ {01, 10, 11}.

All 4n qubits begin in the state |0〉. Then a layer of Hadamard gates and a layer of CNOT
gates is applied. These gates prepare entangled states |Φ〉 between adjacent pairs of qubits as
shown in Fig. 5. The remainder of the circuit consists of: the W (00, 00) gates between pairs of
adjacent qubits, Alice’s Clifford gate U(αj) on her qubits p2j−1, q2j−1 and Bob’s Clifford gate V (βk)
acting on his qubits p2k, q2k, and measurement of all data qubits. Since the remaining gates in the
circuit commute, we can imagine that they are performed in two steps. In the first step, we apply
the W (00, 00) gates and measure all data qubits except p2j−1, q2j−1, p2k, q2k. This step performs
entanglement swapping measurement between adjacent pairs of qubits in Fig. 5 except those held
by Alice or Bob. In particular, entanglement swapping measurements are performed on all qubit
pairs

(p2i, p2i+1) and (q2i, q2i+1) i ∈ {1, 2, . . . , n− 1} \ {j − 1, k},

resulting in uniformly random measurement outcomes

si, ti ∈ {−1,+1} and s′i, t
′
i ∈ {−1,+1} i ∈ {1, 2, . . . , n− 1} \ {j − 1, k}

respectively. Here each of the outcomes

si = y1
i

ti = x1
i+1

and
s′i = y2

i

t′i = x2
i+1

is a ±1 valued variable determined by one of the output bits of the circuit in Fig. 4. The crucial point
is that after this step, Alice and Bob’s 4 qubits (p2j−1, p2k, q2j−1, q2k) are in the state |Φs,t〉 ⊗ |Φs′,t′〉
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with s, s′, t, t′ given in

s =
k−1∏
i=j

si t =
k−1∏
i=j

ti s′ =
k−1∏
i=j

s′i t′ =
k−1∏
i=j

t′i

that is, by Eq. (12).
In the second step, starting from the postmeasurement state |Φs,t〉 ⊗ |Φs′,t′〉, Alice and Bob ap-

ply U(αj) and V (βj) to their qubits and then measure to produce outputs xj,yk, respectively. In
other words, they play the winning strategy for the generalized magic square game with parame-
ters (s, t, s′, t′). This implies the claim.

II.C. Hardness of the 1D Magic Square Problem for constant-depth classical circuits

We use the following standard notions: A classical circuit C computes a function F : {0, 1}N →
{0, 1}M (sometimes we use {−1,+1} instead of {0, 1}). It is given by a directed acyclic graph. There
are N vertices with in-degree 0 corresponding to the input bits and M vertices with out-degree 0
(corresponding to outputs). Every vertex with in-degree k > 0 and out-degree L is associated with a
gate, that is, a boolean function f : {0, 1}k → {0, 1}. The output when applying a gate is copied to
all L outgoing edges. Finally, the depth of the circuit, denoted depth(C), is the maximal number of
gates along a path from an input to an output. Here we consider classical circuits with the property
that all gates have constant fan-in, i.e., the associated in-degree is at most some constant K = O(1)
independent of the problem size. When solving a computational problem, we will sometimes only
be interested in a subset of the N input bits (encoding a problem instance) and a subset of the
M output bits (providing the computed solution). The remaining in- and output-bits play no role
in the following arguments. To model probabilistic circuits, we proceed similarly: here some subset
of the N input bits may be randomly distributed according to an arbitrary distribution independent
of the problem instance.

Recall that S ⊆ {0, 1}4n is the set of problem instances (inputs) of the 1D Magic Square Problem
defined by (10) in terms of tuples (j, k, α, β). We prove the following circuit depth lower bound for
classical circuits solving the 1D Magic Square Problem with constant probability.

Theorem 4. Suppose that C is a classical probabilistic circuit composed of gates of fan-in at most
K which, given a randomly chosen input from the set S, produces a solution to the corresponding
instance of the 1D Magic Square Problem with probability at least 9/10. Then

depth(C) ≥ log(0.00001n)

2 log(K)
. (14)

In the above, the probability which is at least 9/10 is taken over all the randomness including
both the choice of the input from S as well as the randomness in the classical probabilistic circuit C.
The proof of Theorem 4 is comprised of two main steps, which we will prove separately below.

1. We show that with high probability the lightcones of the inputs and outputs of the magic
square game do not intersect in a certain way (Lemma 7).

2. Finally, we show that if the lightcones do not intersect in a certain way, then a classical circuit
can succeed with probability at most 8/9 at solving the 1D Magic Square Problem (Lemma 8).
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|Φ〉

|Φ〉q1

p1

q2

p2

. . .

. . .
|Φ〉

|Φ〉 q2n

p2n

|Φ〉

|Φ〉q2j−1

p2j−1

|Φ〉

|Φ〉

|Φ〉

|Φ〉
. . .

. . .
|Φ〉

|Φ〉

|Φ〉

|Φ〉
. . .

. . .

q2k

p2k

Alice

αj = α

xj

Bob

βk = β

yk

FIG. 5: The measurement statistics of the circuit in Fig. 4, when applied to an input of the form
Eq. (10), are related to those of the generalized magic square game played by Alice holding qubits
p2j−1, q2j−1 and Bob holding qubits p2k, q2k. The measurement outcomes of the qubits located

between Alice and Bob determine the particular generalized magic square game, i.e., the
parameters s, t, s′, t′ ∈ {−1,+1}.

We shall consider circuits in which some of the input bits are random; they can be drawn from
any probability distribution which is independent of the problem instance. Since we are interested in
upper bounding the average success probability when solving a computational problem, by convexity
it suffices to assume that the circuit is in fact deterministic and that the input bits are assigned
fixed values independent of the instance which maximize the average success probability. Thus
our results apply to probabilistic circuits, but we will not explicitly deal with randomness in the
following arguments.

II.C.1. Signaling properties of constant-depth circuits: lightcones

The connectivity of the acyclic graph underlying a classical circuit C determines its capability
to signal, ultimately restricting the set of functions F : {0, 1}N → {0, 1}M it can compute and
thus the range of problems a given circuit can solve. In the following, we will use variables xj (with
1 ≤ j ≤ N) and zk (with 1 ≤ k ≤ M) to denote individual input- and output-bits of a circuit C
computing z = F (x). If there is a string x ∈ {0, 1}N such that the value of the k-th bit of the output
F (x) changes when flipping the j-th bit of x, we say that {xj, zk} are correlated. The following
definitions are convenient:

Definition 5. Given every input bit xj, the forward lightcone L→C (xj) is the set of output bits zk
such that {xj, zk} are correlated. Similarly, for every output bit zk, the backward lightcone L←C (zk)
is the set of input bits xj such that {xj, zk} are correlated. More generally, for any set I of input
bits and any set O of output bits, we set

L→C (I) =
⋃
x∈I

L→C (x) and L←C (O) =
⋃
z∈O

L←C (z) .

A circuit C of depth D and gates with fan-in upper bounded by K = O(1) has the following
crucial property: the backward lightcone of each output bit z satisfies

|L←C (z)| ≤ KD . (15)

Eq. (15) also imposes limitations on the size of “most” forward lightcones, as well as the restric-
tions on the intersections of forward lightcones associated with distinct input bits. We will use the
following probabilistic statements:



15

Lemma 6. Let C be a classical circuit consisting of gates with fan-in upper bounded by K, depth D,
and M output bits. Then the following holds:

(i) Let O be a fixed subset of output bits and suppose I is a randomly chosen subset of input bits
such that

Pr[v ∈ I] ≤ q

for every input bit v. Then

Pr[O ∩ L→C (I) 6= ∅] ≤ q|O|2|O|KD .

(ii) Suppose I and J are randomly chosen disjoint subsets of input bits such that, for any two
input bits v, w we have

Pr[v ∈ I and w ∈ J ] ≤ p.

Then

Pr [L→C (I) ∩ L→C (J) 6= ∅] ≤ pMK2D.

Proof. We have

Pr[O ∩ L→C (I) 6= ∅] =
∑
P⊆O
P 6=∅

Pr [O ∩ L→C (I) = P ]

≤
∑
P⊆O
P 6=∅

Pr [I ∩ L←C (P ) 6= ∅]

≤
∑
P⊆O
P 6=∅

∑
v∈L←C (P )

Pr [v ∈ I]

≤ 2|O||O|KDq .

Here we have used (15), which implies that |L←C (P )| ≤ |P |KD ≤ |O|KD for P ⊆ O. This shows the
claim (i).

For the proof of claim (ii), let Vout be the set of all output bits, so that |Vout| = M . A union
bound gives

Pr [L→C (I) ∩ L→C (J) 6= ∅] ≤
∑
z∈Vout

Pr [I ∩ L←C (z) 6= ∅ and J ∩ L←C (z) 6= ∅]

≤
∑
z∈Vout

∑
v,w∈L←C (z)

Pr[v ∈ I and w ∈ J ]

≤
∑
z∈Vout

∑
v,w∈L←C (z)

p

≤ pMK2D.

where in the last line we used Eq. (15).
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II.C.2. Proof of hardness using lightcones

Let us now give and prove the formal statements corresponding to the steps outlined after
the statement of Theorem 4. We consider a classical circuit C for the 1D Magic Square Prob-
lem. Such a circuit has inputs (α1, . . . , αn, β1, . . . , βn) ∈ ({0, 1}2)2n ≡ {0, 1}4n and outputs
(x1, . . . ,xn,y1, . . . ,yn) ∈ (({−1,+1})2)2n ≡ {−1,+1}4n. We first define an event which occurs
with high probability and ensures that the lightcones of certain input/output bits do not intersect.

Lemma 7. Consider a classical probabilistic circuit C of depth D, with 4n output bits, and composed
of gates of fan-in at most K. Define the event EC ⊂ S in which the input parameters 1 ≤ j < k ≤ n
in Eq. (10) satisfy

L→C (αj) ∩ L→C (βk) = ∅ and yk ∩ L→C (αj) = ∅ and xj ∩ L→C (βk) = ∅ . (16)

Under a uniform choice of input from S, the event EC occurs with probability Pr[EC] ≥ 1− 80K2D

n
.

Proof. Consider a random input from the set S. In other words, suppose (j, k, α, β) is a uniformly
random tuple satisfying Eq. (9) and consider the associated input Eq. (10). We claim that with
high probability the lightcones of the input bits αj ∈ {0, 1}2 and βk ∈ {0, 1}2 do not intersect. In
particular, we may apply Lemma 6 with subsets I = αj and J = βk each containing two input bits,
for j < k chosen uniformly at random. Note that by definition, these sets are disjoint. Fix any two
(distinct) input bits v, w. Since the sets {αj}j ∪ {βk}k form a disjoint partition of the set of input
bits, it is clear that Pr [v ∈ αj and w ∈ βk] (for randomly chosen j < k) vanishes unless v ∈ αj∗ and
w ∈ βk∗ for some j∗ < k∗. In the latter case, we have

Pr [v ∈ αj and w ∈ βk] = Pr [(j, k) = (j∗, k∗)] =
2

n(n− 1)

since there are
(
n
2

)
pairs 1 ≤ j < k ≤ n. Applying part (ii) of the Lemma with p = 2/(n(n − 1))

and M = 4n gives

Pr [L→C (αj) ∩ L→C (βk) 6= ∅] ≤
8K2D

n− 1
. (17)

Consider a set O = xj consisting of two output bits for a fixed j ∈ {1, . . . , n}. Let I = βk for a
uniformly chosen k ∈ {1, . . . , n}. Applying (i) of Lemma 6 to the random subset I (consisting of
two input bits) with q = 1/n gives

Pr
k

[xj ∩ L→C (βk) 6= ∅] ≤
8KD

n
.

Since this holds for any 1 ≤ j ≤ n, the probability that xj ∩ L→C (βk) 6= ∅ for uniformly chosen
(j, k) ∈ {1, . . . , n}2 is upper bounded by 8KD/n. This implies that choosing (j, k) uniformly at
random subject to j < k, we have that

Pr [xj ∩ L→C (βk) 6= ∅] ≤
32KD

n
(18)

because the number
(
n
2

)
of such pairs satisfies n2/

(
n
2

)
≤ 4. By the same reasoning, we have

Pr [yk ∩ L→C (αj) 6= ∅] ≤
32KD

n
. (19)

when (j, k) is part of a uniformly chosen tuple (j, k, α, β) from S.

Applying the union bound and Eqs. (17), (18), (19) we get Pr[EC] ≥ 1 − 8K2D

n−1
− 64KD

n
≥

1− 80K2D

n
.
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We remark that for a uniform choice of input (j, k, α, β) from S, the marginal distribution of
(α, β) conditioned on the event EC is uniform on the set {01, 10, 11}2. This is because the event EC
only depends on (j, k) by definition, and the uniform distribution over S is of product form. In the
following, we consider such fixed values of (j, k) and establish an upper bound on the probability
that the output of the classical circuit C is a valid solution of the 1D Magic Square Problem. To
this end, we show that the necessary condition of Lemma 3 is only satisfied with probability at
most 8/9 for uniformly chosen (α, β):

Lemma 8. Consider a classical circuit C as in Lemma 7, and let 1 ≤ j < k ≤ n be such that
the event EC occurs. Suppose (α, β) ∈ {01, 10, 11}2 are chosen uniformly at random, and the
input zin = (α1, . . . , αn, β1, . . . , βn) of S specified by (j, k, α, β) is fed to C. Then the average
probability that C outputs zout = (x1, . . . ,xn,y1, . . . ,yn) such that (zin, zout) satisfy the condition of
Lemma 3 is at most 8/9.

Proof. For (j, k) as described, the definition of EC implies that any output bit of the circuit is
either independent of both α and β, or depends on αj = α or βk = β only (but not both). To
check the condition of Lemma 3, we should focus on the output bits x` = (x1

` , x
2
`) and y` = (y1

` , y
2
` )

for ` = j, . . . , k; these define the variables s, t, s′, t′ as described in Eq. (12), as well as the triples
(x1, x2, x3) ≡ (x1

j , x
2
j , x

3
j) and (y1, y2, y3) ≡ (y1

k, y
2
k, y

3
k) by (13).

Since no output bit can depend on both α and β, and the parameters s, s′, t, t′ are computed by
taking products of output bits of C, their dependence on (α, β) has the functional form (suppressing
their dependence on all other inputs):

s(α, β) = sA(α)sB(β)

t(α, β) = tA(α)tB(β)

s′(α, β) = s′A(α)s′B(β)

t′(α, β) = t′A(α)t′B(β)

for all α, β ∈ {01, 10, 11} . (20)

That is, the circuit C gives rise to certain functions sA, sB, tA, tB, s
′
A, s

′
B, t
′
A, t
′
B : {01, 10, 11} →

{−1,+1} such that (20) is satisfied. Moreover, since the event EC occurs we also have the functional
(in)dependence

x1 = x1(α), x2 = x2(α), y1 = y1(β), y2 = y2(β) ,

that is, the circuit defines functions x1, x2, x3, y1, y2, y3 : {01, 10, 11} → {−1,+1} where

x3(α) ≡ −x1(α)x2(α) and y3(α) = y1(α)y2(α) for α ∈ {01, 10, 11} . (21)

Now note that under the restrictions expressed by (20) the necessary condition (11) takes on the
form

xι(β)yι(α) = fα,β(sA(α), tA(α), s′A(α), t′A(α)) · fα,β(sB(β), tB(β), s′B(β), t′B(β)) . (22)

where we used the factorization property (6) of the functions fα,β.
Suppose for the sake of contradiction that the outputs produced by the circuit on a random input

(α, β) satisfy the condition (22) with probability greater than 8/9. Using the functions introduced
above, let us define the functions x̃i, ỹj : {01, 10, 11} → {−1,+1} for i, j = 1, 2, 3 by

x̃i(α) = xi(α)fα,ι−1(i)

(
sA(α), tA(α), s′A(α), t′A(α)

)
for all α ∈ {01, 10, 11}

ỹj(β) = yj(β)fι−1(j),β

(
sB(β), tB(β), s′B(β), t′B(β)

)
for all β ∈ {01, 10, 11} .
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We note that since (x̃1(α), x̃2(α), x̃3(α)) and (ỹ1(β), ỹ2(β), ỹ3(β)) can be computed from α respec-
tively β only, these functions constitute a classical strategy for the magic square game.

We claim that this strategy satisfies the winning condition for the magic square game with
probability exceeding 8/9. To verify this, note that because of property Eq. (5) of the functions fα,β
and Definition (21) we have

3∏
i=1

x̃i(α) =
3∏
i=1

xi(α)
3∏
i=1

fα,ι−1(i)

(
sA(α), tA(α), s′A(α), t′A(α)

)
=

3∏
i=1

xi(a) = −1 ,

and similarly
∏3

j=1 ỹ
j(b) = 1. Thus the parity constraints in the magic square game are satisfied

with probability one. On the other hand, the equality constraint x̃ι(β) = ỹι(α) of the game, that is,
x̃ι(β)(α) = ỹι(α)(β), is equivalent to the condition (22) by definition of the strategy, hence satisfied
with probability greater than 8/9 by assumption.

Since we know that the magic square game cannot be won using a classical strategy with prob-
ability exceeding 8/9, this contradicts our assumption and concludes the proof.

We can now combine the above three lemmas to prove the theorem.

Proof of Theorem 4. Because Lemma 8 holds for all pairs (j, k) constituting the event EC (cf. (16)),
and because of the necessity of satisfying the generalized Magic Square Relation when solving the 1D
Magic Square Problem (see Lemma 3), we conclude that the success probability of such a circuit C
conditioned on the event EC is bounded by

Pr [C succeeds | EC] ≤ 8/9 .

Using this fact and Lemma 7 we get

Pr [C succeeds] ≤ Pr
[
C succeeds

∣∣EC]+ (1− Pr[EC]) ≤
8

9
+

80K2D

n
.

Now suppose that the circuit succeeds with probability at least 9/10 as stated in the theorem.
Bounding the right hand side in this way and rearranging gives

K2D ≥ (9/10− 8/9)
n

80
≥ 0.00001n ,

and taking logarithms we arrive at the bound Eq. (14).

III. NOISY QUANTUM CIRCUITS VERSUS NOISELESS CLASSICAL CIRCUITS

So far, we have considered the case where our quantum circuit is noise-free. We note that
the quantum circuit for the 1D Magic Square Problem presented above is not fault-tolerant. In
particular, in the limit of large problem sizes, it does not permit to observe a quantum advantage
under any physically reasonable noise model: for a constant error-rate per qubit, the probability of
producing an output satisfying the relation quickly falls below the classical threshold value of 8/9
in this limit. This can be seen for example from the necessary condition Eq. (13) in Lemma 3: for
typical problem instances, this involves the parity of a number of output bits which scales linearly
in n. We note that the quantum circuit for the Hidden Linear Function Problem in [13] suffers from
the same issue in the presence of noise.

In this section, we address this problem and establish a separation between noisy constant-depth
quantum circuits and ideal constant-depth classical circuits. To this end, we construct new relation
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problems: these incorporate fault-tolerance mechanisms allowing for a solution by noisy constant-
depth quantum circuits. We emphasize that these constructions do not proceed by “amplification”
of the classical threshold (or the “soundness”) towards 1 (as considered in [14, 15]). Indeed, as our
relational problems involve an extensive number of output bits such amplification techniques do not
appear to be suitable for this purpose. Rather, we use quantum error-correcting codes.

Specifically, we show the following: given a certain relation problem providing a separation
between constant-depth quantum circuits and classical circuits of sublogarithmic depth, we present
a new relation problem which (a) can be solved with high probability with constant-depth noisy
quantum circuit, and (b) which is still hard for classical circuits of a certain depth. The main
underlying idea is that a quantum error-correction procedure can be folded into the relation.

This section is structured as follows: In Section III.A, we present the details of the noise model
we consider. In Section III.B, we list the required properties of quantum error-correcting codes
used in our construction. In Section III.C, we give the construction of a noise-tolerant relation, and
give an (ideal) quantum circuit solving the relation. In Section III.C.1, we prove that this circuit is
noise-tolerant: it still produces a valid solution with high probability under local stochastic noise. In
Section III.C.2, we argue that the noise-tolerant relation retains its hardness for classical circuits.
Finally, in Section III.D, we instantiate this construction using the 1D Magic Square Problem,
obtaining a quantum advantage using noisy constant-depth quantum circuits.

III.A. The local stochastic quantum noise model

Noise in a quantum computation can affect initial states, the execution of gates (which may
include identities or “wait locations”) and measurement operations. Here we adopt a standard
model to describe noise occuring during the execution of a quantum circuit. We refer to it simply
as local stochastic noise, following the recent work [19]. The model has also been referred to as
the simplified model, and is related to a more general basic model of fault-tolerance in [30, Section
7]. In the simplified model, errors occur in each time step on the physical qubits, and additionally,
the results of measurements can be erroneous. In other words, both physical qubits and classical
measurement outcomes are affected by noise.

Below we consider random n-qubit Pauli errors E ∈ {I,X, Y, Z}⊗n. Let Supp(E) ⊆ [n] be the
support of E, that is, the subset of qubits acted upon by either X, Y , or Z.

Definition 9. Let p ∈ [0, 1]. A random n-qubit Pauli error E is called p-local stochastic noise if

Pr [F ⊆ Supp(E)] ≤ p|F | for all F ⊆ [n]. (23)

We write E ∼ N (p) to denote random variables which are p-local stochastic noise.

We will assume that each layer of gates in the ideal circuit is followed by a random Pauli error
E ∼ N (p) for some noise rate p. Errors occurring after each layer may or may not be independent.
Namely, if Ej is the error occurring after the j-th level of gates, we only require that the marginal
distribution of Ej belongs to N (p), that is, Ej ∼ N (p). No further assumptions are made about the
joint distribution of the errors Ej. For simplicity we shall assume that the noise rate p is identical
for each layer of gates.

A noisy preparation of the initial state |0n〉 will be modeled by the ideal state preparation followed
by a random Pauli error Ein ∼ N (pin) for some noise rate pin. It produces a random basis vector
|x〉, where xi = 1 if Ein acts on the i-th qubit by X or Y , and xi = 0 otherwise.

Likewise, a noisy measurement of n qubits in the computational basis will be modeled by the
ideal measurement preceded by a random Pauli error Eout ∼ N (pout) for some noise rate pout. A
noisy measurement of a state ψ produces an outcome z ∈ {0, 1}n with probability |〈z|Eout|ψ〉|2 =
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|〈z ⊕ x|ψ〉|2, were xi = 1 if Eout acts on the i-th qubit by X or Y , and xi = 0 otherwise. Thus the
random bit string x determines positions of faulty measurement outcome bits.

Let us now formally define what we mean by a noisy implementation of a quantum circuit.

Definition 10 (Noisy implementation). Consider a circuit U = UD · · ·U1 of depth D, where Uj
is a depth-1 circuit applied in the j-th time step/layer, with the initial state |0n〉 and a computational
basis measurement at the end. A noisy implementation of the circuit U with noise rates pin, p, pout
produces an output zout ∈ {0, 1}n according to the conditional distribution

Pr(zout|Ein, E1, . . . , ED, Eout) = | 〈zout|EoutEDUD · · ·E1U1Ein |0n〉 |2. (24)

Here Ein, E1, . . . , ED, Eout are random n-qubit Pauli errors drawn from some joint distribution such
that Ein ∼ N (pin), Ej ∼ N (p) for 1 ≤ j ≤ D, and Eout ∼ N (pout).

To simplify the notations, below we assume that all noise rates are identical, i.e. p = pin = pout.
This noise model is motivated by the concept of locally decaying and “adversarial stochastic” noise,
where every fault path of k locations in the circuit occurs with probability bounded by pk, see
e.g., [31, 32]. In particular, it does not assume independence of noise processes acting on different
qubits or regions of the circuit. Likewise, it does not assume independence of errors that occur at
different time steps. Local stochastic noise has the following basic features.

Lemma 11 (Basic properties of local stochastic noise).

(i) Suppose E ∼ N (p), and E ′ is a random Pauli such that Supp(E ′) ⊆ Supp(E) with probability
1. Then E ′ ∼ N (p).

(ii) Suppose E ∼ N (p) and E ′ ∼ N (q) are independent random Paulis. Then E ·E ′ ∼ N (p+ q).

(iii) Suppose E ∼ N (p) and E ′ ∼ N (q) are random Paulis which may be dependent. Then E ·E ′ ∼
N (q′) where q′ = 2 max{√p,√q}.

(iv) Suppose E ∼ N (p) is a random Pauli and C is a depth-1 Clifford circuit composed of one-
and two-qubit gates. Then CEC† ∼ N (

√
2p).

Proof. For convenience in the following we identify n-qubit Pauli operators with the n-bit string
describing its support (that is, we omit the Supp notation).

Part (i) follows directly from the definition of local stochastic noise and the fact that

Pr [F ⊆ E ′] ≤ Pr [F ⊆ E]

since E ′ ⊆ E.
For part (ii), note that

Pr [F ⊆ E · E ′] ≤
∑

F=F1F2

Pr [F1 ⊆ E] Pr [F2 ⊆ E ′]

where the right hand side is the sum over partitions of F into two disjoint bit strings F1, F2. We
arrive at (i) by plugging in Eq.(23) and performing the sum.

For part (iii) we can again sum over partitions of F into two disjoint bit strings F1, F2:

Pr [F ⊆ E · E ′] ≤
∑

F=F1F2

Pr [F1 ⊆ E and F2 ⊆ E ′] (25)
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Now we use the fact that

Pr [F1 ⊆ E and F2 ⊆ E ′] ≤ min{Pr [F1 ⊆ E] ,Pr [F2 ⊆ E ′]} ≤ min{p|F1|, q|F2|} ≤ max{p, q}|F |/2.
(26)

where in the last line we used the fact that |F1| + |F2| = |F |. Plugging Eq. (26) into Eq. (25) we
get

Pr [F ⊆ E · E ′] ≤ 2|F |max{p, q}|F |/2,
which establishes part (iii).

For part (iv) we need to show that

Pr[F ⊆ CEC†] ≤ (2p)|F |/2.

Recall that C is a depth-1 circuit composed of one- and two-qubit Clifford gates. Let F ′ ⊆ F be the
subset of qubits that do not participate in any two-qubit gate. Note that F ′ ⊆ CEC† iff F ′ ⊆ E.
Suppose C contains m two-qubit gates that act non-trivially on F . Let these gates be G1, . . . , Gm

and Qi = {qi(0), qi(1)} ⊆ [n] be the qubits acted upon by Gi. By definition, F ∩ Qi 6= ∅ for all i.
For each bit string x ∈ {0, 1}m define a subset Fx ⊆ [n] as

Fx = F ′ ∪ {q1(x1)} ∪ {q2(x2)} ∪ . . . ∪ {qm(xm)}.

Here all unions are disjoint. We claim that

Pr[F ⊆ CEC†] ≤
∑

x∈{0,1}m
Pr[Fx ⊆ E]. (27)

Indeed, suppose F ⊆ CEC†. Then F ′ ⊆ CEC† and thus F ′ ⊆ E. From F ∩Qi 6= ∅ and F ⊆ CEC†

one infers that CEC† acts non-trivially on Qi. By assumption, C is a depth-1 circuit. Thus CEC†

and GiEG
†
i have the same action on Qi. Since GiG

†
i = I, we conclude that E must act non-trivially

on Qi. Thus qi(0) ∈ E and/or qi(1) ∈ E for each i = 1, . . . ,m. The above shows that Fx ⊆ E for
at least one x. The union bound now gives Eq. (27).

By assumption, E ∼ N (p) and thus Pr[Fx ⊆ E] ≤ p|Fx|. Note that |Fx| = |F | −m2, where m2

is the number of gates Gi such that Qi ⊆ F . Substituting this into Eq. (27) gives

Pr[F ⊆ CEC†] ≤
∑

x∈{0,1}m
p|Fx| = 2mp|F |−m2 ≤ (2p)|F |−m2 .

Here the last inequality uses the bound m = |Fx| − |F ′| ≤ |Fx| = |F | −m2. It remains to notice
that m2 ≤ |F |/2 and thus (2p)|F |−m2 ≤ (2p)|F |/2 assuming that 2p ≤ 1.

Lemma 11 allows us to rewrite the error model defined by the conditional distribution (24) in
the case of constant depth Clifford circuits. That is, we have the following:

Lemma 12. Suppose U = CD · · ·C2C1, where Cj are depth-1 Clifford circuits composed of one-
and two-qubit gates. Then a noisy implementation of U with the noise rate p produces an output
zout ∈ {0, 1}n according to the conditional distribution

Pr(zout|E) = | 〈zout|EU |0n〉 |2, (28)

where E ∼ N (4p4−D−1
) is a random n-qubit Pauli error.

In particular, if we consider a noisy implementation of a Clifford circuit of constant depth D =
O(1), we may without loss of generality assume that the output distribution is of the form (28)
with E ∼ N (q) for some constant q ∈ (0, 1].
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Proof. Suppose C is a depth-1 Clifford circuit composed of one- and two-qubit gates. Let E ∼ N (p)
and E ′ ∼ N (q) be random Pauli errors which may be dependent. We claim that

ECE ′ = E ′′C where E ′′ ∼ N (r), r = 2 max {(2q)1/4, p1/2}. (29)

Indeed, part (iv) of Lemma 11 implies that CE ′ = ẼC, where Ẽ ∼ N (
√

2q). Merging E and
Ẽ using part (iii) of Lemma 11 one gets Eq. (29). Let Ein, E1, . . . , ED, Eout be the random Pauli
errors that occur in the noisy implementation of U , see Eq. (24). By assumption, Ein ∼ N (p),
Eout ∼ N (p), and Ej ∼ N (p) for all 1 ≤ j ≤ D. For a given realization of noise, the condition
distribution of zout is | 〈zout|Unoisy |0n〉 |2, where

Unoisy = EoutEDCD · · ·E2C2E1C1Ein.

Let us insert a dummy depth-1 circuit CD+1 = I between Eout and ED. Repeatedly using Eq. (29)
with C ∈ {C1, . . . , CD+1} one can commute all errors that appear in Unoisy to the left and merge
them into a single Pauli error. One arrives at Unoisy = EU , where E ∼ N (qD+2) and qD+2 is given
by a recursive equation

qj+1 = 2 max {(2qj)1/4, p1/2}, j = 1, . . . , D + 1

with q1 = p. A simple algebra shows that (2qj)
1/4 ≥ p1/2 for all j. Thus qj+1 = 2(2qj)

1/4 for j ≥ 1,
that is,

qj+1 = p4−j

25
∑j

i=1 4−i ≤ 25/3p4−j ≤ 4p4−j

.

We conclude that Unoisy = EU with E ∼ N (qD+2), qD+2 ≤ 4p4−D−1
.

III.B. Quantum code properties

In the following we shall make use of a CSS-type [23, 24] quantum error correcting code Qm
encoding one logical qubit into m physical qubits. Such a code has logical basis states

|0〉 = γ
∑
x∈B

|x〉 and |1〉 = γ
∑
x∈B

|x⊕ β〉, (30)

where B ⊆ {0, 1}m is a linear subspace, β /∈ B is some vector, and γ = |B|−1/2 is a normalizing
coefficient. Given a bit string v ∈ {0, 1}m let X(v) and Z(v) be the products of Pauli X and Z
respectively over all qubits j ∈ [m] with vj = 1. Logical Pauli operators of Qm can be chosen as

Z = Z(α) and X = X(β),

where β is given in Eq. (30) and α ∈ {0, 1}m must have odd overlap with β (to ensure that Z and
X anti-commute) and α ∈ B⊥ (to ensure that the logical states |0〉, |1〉 are eigenvectors of Z).

We shall need an infinite family of codes Qm as above for some diverging sequence of m’s that
obey the following conditions.

Condition 1. The logical Hadamard and the phase gate S = diag(1, i) can each be implemented
by a depth-1 Clifford circuit composed of one- and two-qubit Clifford gates.

Recall that the logical CNOT can be implemented transversally for any CSS code [23, 24]. Thus
any logical depth-d Clifford circuit composed of H,S,CNOT gates can be implemented by a physical
depth-d Clifford circuit composed of two-qubit Clifford gates.
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Next, we require that Qm satisfies a certain single-shot state preparation property [25]. Namely,
we assume that the logical basis state |0〉 can be prepared by the procedure shown in Fig. 6. In
addition to m qubits which hold the final logical state, it uses manc ancilla qubits. The procedure
involves initializing all qubits in the state |0〉, applying a constant depth Clifford circuit W , and
measuring all ancillas in the computational basis. Let s ∈ {0, 1}manc be the measurement outcome.
Finally, a suitable Pauli recovery operator Rec(s) is applied to the remaining m qubits.

In order for this procedure to prepare the logical state
∣∣0〉 in the absence of noise, we require

that manc,W and Rec(s) obey

(Rec(s)⊗ |s〉 〈s|)W (|0m〉 ⊗ |0manc〉) = γs
∣∣0〉⊗ |s〉 (31)

for all s ∈ {0, 1}manc . Here γs ∈ C is a normalization coefficient and the tensor product separates
the m-qubit register used by the code Qm and a register of manc ancillary qubits.

1. Prepare m+manc qubits in the state |0m〉⊗ |0manc〉.

2. Apply a constant-depth Clifford circuit W .

3. Measure each ancilla qubit in the Z-basis, giving an

outcome s ∈ {0, 1}manc .

4. Depending on the outcome s, apply a suitable Pauli

recovery Rec(s) to the state of the m unmeasured

qubits.

(a) State preparation algorithm

|0m〉
W

Rec(s)

|0manc〉 •

(b) Single shot state preparation circuit.

FIG. 6: The single-shot state preparation procedure. Below we will incorporate the Pauli
correction Rec(s) into our computational problem, eliminating the need to evaluate Rec(s) by a

quantum circuit.

We require a stronger property in order to guarantee that even a noisy implementation of the
circuit in Fig. 6b prepares the logical state

∣∣0〉 up certain “manageable” errors. A noisy implemen-
tation of the circuit outputs the measured string s and a state

(Rec(s)⊗ |s〉 〈s|)EW (|0m〉 ⊗ |0manc〉),

where E is a random Pauli error acting on all m+manc qubits. Indeed, as in Lemma 12, all qubit
initialization errors and gate errors in the execution of W can be absorbed into E by commuting
them forward in time towards the last gate of W . A Pauli error in the execution of Rec(s) either
commutes or anti-commutes with Rec(s). Since the global phase of a state is irrelevant, such error
can be commuted backwards towards W and incorporated into E. Likewise, a measurement error
on some ancillary qubit u is equivalent to a Pauli error Xu immediately preceding the measurement.
Such errors can be absorbed into E.

The difference between the final state of the noisy circuit and the desired logical state
∣∣0〉 can

be quantified using a repair operator Rep(E) which is an m-qubit Pauli operator satisfying

(Rec(s)⊗ |s〉 〈s|)EW (|0m〉 ⊗ |0manc〉) = γs(Rep(E)
∣∣0〉)⊗ |s〉

for all s and E. Thus Rep(E) can be thought of as the residual error in the prepared state when using
a noisy implementation of the state preparation circuit. Recall that a random Pauli operator E is
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said to be p-local stochastic noise, denoted E ∼ N (p), if Eq. (23) is satisfied. For the error Rep(E)
to be “manageable”, we require that it is local stochastic whenever E is. This leads to the following
requirement for the error-correcting code Qm. Here and below we write Pauli(m) for the m-qubit
Pauli group.

Condition 2 (Single-shot basis state preparation). Let c, c′, c′′, d be some universal constants.
For each code Qm in the family there must exist an integer manc ≤ mc, a depth-d Clifford circuit
W acting on m+manc qubits, recovery and repair functions

Rec : {0, 1}manc → Pauli(m)

Rep : Pauli(m+manc) → Pauli(m)

such that
(Rec(s)⊗ |s〉〈s|)EW (|0m〉 ⊗ |0manc〉) = γs(Rep(E)|0〉)⊗ |s〉 (32)

for all s ∈ {0, 1}manc and E ∈ Pauli(m+manc). Here γs ∈ C is a normalization factor. Furthermore,
for all noise rates p ∈ [0, 1], we must have that E ∼ N (p) implies Rep(E) ∼ N (c′pc

′′
).

In the noise-free case p = 0 one has E = I with certainty and Rep(E) ∼ N (0), that is, Rep(I) = I.
Thus condition (32) specializes to its noise-free version (31). We emphasize that in this definition, we
make no assumptions about how efficiently the recovery function Rec can be computed, or whether
or not it can be computed by a constant-depth circuit. In fact, the quantum circuits we construct
will not apply the recovery Rec(s) to physical qubits. Rather, this recovery is incorporated into the
computational problem such that only the efficiency of verifying the validity of a solution depends
on Rec (see Section III.C). Likewise, the repair function Rep(E) does not have to be efficiently
computable.

Our final requirement is that the logical qubit encoded by Qm can be measured in the Z-basis
in a manner which is robust to local stochastic noise. Recall that the logical-Z operator of the code
Qm is chosen as Z = Z(α) for some α ∈ {0, 1}m. Define a function

Parity(x) =
m∑
j=1

xjαj (mod 2),

where x ∈ {0, 1}m. The eigenvalue of Z can be measured using the following protocol:

1. Measure each of the m qubits in the Z-basis, obtaining an outcome x ∈ {0, 1}m.

2. Compute the value Dec(x) ∈ {0, 1} of a certain decoding function Dec : {0, 1}m → {0, 1}.

3. Output (−1)Dec(x).

Let us first consider the noiseless case. Suppose this procedure is applied to a logical basis state |b〉,
where b ∈ {0, 1}. From Eq. (30) one infers that the outcome x obtained at Step 1 always belongs
to a linear subspace

L = span(β,B) ⊆ {0, 1}m. (33)

This subspace includes all m-qubit basis states that appear in the logical states |0〉, |1〉, see Eq. (30)
(equivalently, L includes all basis vectors that obey Z-type stabilizers of the code Qm). To ensure
that (−1)Dec(x) = (−1)b for each possible outcome x, the decoding function must obey

Dec(x) = Parity(x) for all x ∈ L
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Indeed, this guarantees that (−1)Dec(x) = 〈x|Z|x〉 for all possible outcomes x. By linearity, the
noiseless measurement also works for any superposition of the logical basis states.

To deal with noise, we require a stronger property for the decoding function. It must produce
– with high probability – a correct output even in the case of a noisy implementation of the above
procedure. Here the noise may include errors in the input logical state as well as faulty measurements
of physical qubits. As in Lemma 12, such errors can be merged into a single Pauli error E preceding
the ideal m-qubit measurement. Furthermore, only the X-part of the error E matters since every
qubit is measured in the Z-basis. Thus we can assume without loss of generality that E = X(v)
for some random bit string v ∈ {0, 1}m. This leads to the following requirement:

Condition 3 (Error threshold). Let c, c′, qth > 0 be some universal constants. For each code
Qm in the family there must exist a function Dec : {0, 1}m → {0, 1} such that the following holds.
First,

Dec(x) = Parity(x) for all x ∈ L. (34)

Secondly, suppose q < qth and v ∈ {0, 1}m is a random bit string such that X(v) ∼ N (q). Then

Pr [Dec(x⊕ v) = Parity(x)] ≥ 1− exp(−c′mc) (35)

for all x ∈ L.

This condition ensures that the logical Z measurement can be realized by the above algorithm
even if the physical measurements as well as the input logical state are noisy, provided that the
noise rate is below a certain constant threshold value qth. The threshold value qth is a key figure of
merit in our scheme: it determines how much noise can be tolerated while still guaranteeing that
a noisy implementation produces correct outputs. Akin to fault-tolerance threshold theorems, we
provide rigorous but rather pessimistic analytical bounds on this quantity.

In Section IV we show that the standard 2D surface code [33] equipped with a suitable single-shot
state preparation scheme satisfies Conditions 1, 2 and 3.

III.C. A noise tolerant relation from any controlled Clifford circuit

Recall that a relation R is defined by a subset of valid input-output pairs, R : {0, 1}v×{0, 1}n →
{0, 1}. An input-output pair (b, z) ∈ {0, 1}v × {0, 1}n is said to satisfy the relation if and only if
R(b, z) = 1. We say that a (classical or quantum) circuit solves the relation problem defined by R
on input b ∈ {0, 1}v if it outputs z ∈ {0, 1}n such that R(b, z) = 1.

We will consider relations (and associated problems) defined by certain (ideal) quantum circuits:
the 1D Magic Square Problem and the HLF problem considered in [13] are examples. Suppose that
U is a depth-D quantum circuit which acts on two registers, a data register of n qubits and an
input register of v qubits. We specialize to the case where U is a controlled Clifford circuit. That is,
every gate in the circuit is a classically controlled Clifford gate which acts as |φ〉|b〉 → (Cb|φ〉)|b〉 for
some Clifford unitary Cb. We also assume each gate acts nontrivially on at most k = O(1) qubits.
Thus, for any input b ∈ {0, 1}v, a depth-D Clifford unitary Cb is applied to the data register:

U |φ〉|b〉 = (Cb|φ〉) |b〉 b ∈ {0, 1}v.

Now consider a quantum computation in which the circuit U is applied to the initial state |0n〉|b〉 and
then all data qubits are measured in the computational basis, resulting in a bit string z ∈ {0, 1}n
sampled from the distribution

pb(z) = |〈z|Cb|0n〉|2 . (36)

A corresponding circuit diagram in shown in Fig. 7. We define the following relation:
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b •
|0〉

Cb

z1

|0〉 z2

...
...

|0〉 zn

FIG. 7: (Ideal) circuit U defining the bare relation RU : It takes as input b ∈ {0, 1}v and applies a
classically controlled Clifford gate Cb.

Definition 13 (Bare relation). Let RU : {0, 1}v × {0, 1}n → {0, 1} be the relation

RU(b, z) =

{
1, pb(z) > 0

0, otherwise.
.

We will call this the bare relation associated with U .

That is, pairs (b, z) satisfying RU have the property that z occurs with non-zero probability in
the distribution (36) over outputs in the above computation. In particular, this definition trivially
implies the following, for any classically controlled Clifford circuit U .

Lemma 14. For every input b ∈ {0, 1}v, the circuit U solves the relation problem defined by RU

with probability 1.

While the input/output of an ideal implementation of U satisfies the relation RU , this may no
longer hold for a noisy implementation. Moreover, if we use standard quantum fault-tolerance
techniques to protect the computation from noise, we would incur an undesirable super-constant
overhead in circuit depth when a typical constant-depth circuit is recompiled into a fault-tolerant
one, see e.g. Ref. [34].

In the following we show that this overhead can be avoided by modifying the relation, that is,
the computational problem, rather than the circuit computing solutions. In particular, for any
constant-depth controlled Clifford circuit U we describe a noise-tolerant relation relation RU with
the following properties (informally): (a) The input/output of a constant-depth quantum circuit
satisfies RU with high probability, even in the presence of noise, and (b) If a classical probabilistic
circuit satisfies RU then there is another classical probabilistic circuit with comparable depth that
satisfies the bare relation RU .

The definition of RU relies on a quantum error-correcting code Qm with the properties outlined
in Section III.B. Recall that this involves recovery- and decoding functions

Rec : {0, 1}manc → Pauli(m)

Dec : {0, 1}m → {0, 1} .

Below we consider n copies of the code Qm, where each copy encodes one of the qubits acted upon
by the circuit Cb. Accordingly, we shall use n-tuples of syndromes s = (s1, . . . , sn) ∈ {0, 1}nmanc .
Let Cb be the encoded version of the Clifford circuit Cb, where each qubit of Cb is encoded into m
qubits using the code Qm. Note that Cb is a Clifford circuit acting on nm qubits. For the definition
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of the relation RU , we need to know how the tensor product of Pauli recovery operators Rec(sj)
propagates through the Clifford circuit Cb. We have

Cb

(
Rec(s1)⊗ · · · ⊗ Rec(sn)

)
C
†
b ∼ X(f)Z(h) (37)

for some f, h ∈ {0, 1}mn depending on s and b. We write f = f 1f 2 . . . fn, where f i is the restriction
of f onto the i-th codeblock. Note that f i = f i(s, b) since Eq. (37) uniquely defines f i for each s
and b. This can be described by functions f i : {0, 1}nmanc × {0, 1}v → {0, 1}m for 1 ≤ i ≤ n.

Definition 15 (Noise-tolerant relation). The noise-tolerant relation

RU : {0, 1}v ×
(
{0, 1}nmanc × {0, 1}nm

)
→ {0, 1}

defined by U is given by

RU(b, (s, y)) =

{
1, if RU(b, z) = 1,where zi = Dec(yi ⊕ f i(s, b))) for 1 ≤ i ≤ n

0, otherwise.

Note that RU depends on the choice of recovery and decoding functions Rec,Dec associated with
the code Qm. To motivate this definition, we present a quantum algorithm which solves the relation
problem defined by RU with certainty for any input. We consider a system of mn physical qubits
partitioned into n codeblocks [mn] = B1B2 · · ·Bn, where each codeblock encodes a single logical
qubit using a code Qm of the type described in the previous section. Each codeblock will also be
associated with an additional manc ancilla qubits which are used for state preparation. Here and
below we use superscripts to index codeblocks and subscripts to index individual bits. We use an
overbar to denote logical operators and states. Suppose we are given an input bit string b ∈ {0, 1}v.
In the following we imagine that b is held in a perfect classical memory. Consider the procedure
described in Algorithm 1 (see Fig. 8a and the circuit realization shown in Fig. 8b). The output of
the algorithm is the pair (s, y) ∈ {0, 1}nmanc × {0, 1}nm. We show the following:

Lemma 16. The circuit in Fig. 8 solves the relation RU with certainty for any input b ∈ {0, 1}v.
Lemma 16 shows how the circuit in Fig. 8 performs in the absence of noise. In Section III.C.1,

we will show that a noisy implementation of this circuit still satisfies the relation RU with high
probability.

Proof. For the state preparation step, this corresponds to noise rate p = 0 in Condition 2, so that
Rep(E) = I in Eq. (32). Therefore the state after step 1. of the algorithm is

Rec(s)|0n〉 where Rec(s) =
n⊗
j=1

Rec(sj).

After applying the Clifford circuit in step 2. the state is

|φb,s〉 = X(f)Z(h)Cb|0
n〉, (38)

where f, h ∈ {0, 1}mn are the functions of (s, b) defined by Eq. (37).
Note from Eq. (38) that X(f)|φb,s〉 has the same Z-basis measurement statistics as the encoded

output state Cb|0
n〉 of the ideal controlled Clifford circuit. Therefore the n-bit string z with bits

zi = Dec(yi ⊕ f i(s, b)))
satisfies RU(b, z) = 1. That is,

|〈y|φb,s〉| > 0 implies RU(b, (s, y)) = 1. (39)

We have shown that the input/output (b, (s, y)) pair of Algorithm 1 satisfies this relation with
probability 1 in the absence of noise. This is the claim.
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1. Single-shot state preparation: For each

codeblock j = 1, . . . , n, prepare |0m〉 ⊗ |0manc〉,
apply the constant-depth Clifford unitary W

from Condition 2 and measure the manc an-

cilla qubits to get an outcome sj ∈ {0, 1}manc .

Write s = s1s2 · · · sn for all measurement out-

comes obtained in this step.

2. Logical circuit: Apply the logical Clifford

circuit Cb as a sequence of depth-1 logical

gates.

3. Measurement: For each j = 1, . . . , n, mea-

sure all physical qubits in Bj in the compu-

tational basis. Write the measured bits as

y = y1y2 · · · yn where yj ∈ {0, 1}m.

(a) Description of the algorithm.

b •
|0m〉

W

Cb

y1

|0manc〉 s1

|0m〉
W

y2

|0manc〉 s2

...
...

|0m〉
W

yn

|0manc〉 sn

(b) Circuit realization.

FIG. 8: Algorithm 1 and its realization as a circuit.

III.C.1. Noise tolerance of quantum circuit

We now show that a noisy implementation of the circuit in Fig. 8 satisfies RU with high proba-
bility. We consider a noise model in which a random Pauli E ∼ N (p) is applied immediately before
the measurements, see Lemma 12 for a justification. In particular, the output (s, y) of the noisy
algorithm with input b is sampled from the distribution

Pb(s, y) = |〈y ⊗ s|E(Cb ⊗ I)W⊗n (|0mn〉 ⊗ |0mancn〉) |2 E ∼ N (p). (40)

Here the tensor product separates the n codeblocks from the mancn ancilla qubits used for state
preparation. The random error E may act nontrivially on both registers.

Theorem 17 (Noise tolerance). Let b ∈ {0, 1}v be an arbitrary input. Let (b, (s, y)) be the
input/output of a noisy implementation the circuit in Fig. 8, i.e., (s, y) are sampled from the

distribution Eq. (40). We may choose m = O(poly(log(n))) and pth = 2−2O(D)
such that for all

p < pth we have
Pr [RU(b, (s, y)) = 1] > 0.99 (41)

Theorem 17 shows that a noisy constant-depth quantum circuit satisfies the relation RU with
high probability.

Proof. Let us consider a noisy run of Algorithm 1 with input b ∈ {0, 1}v, in which a Pauli error
E ∼ N (p) is applied before the measurements. The amplitude for obtaining output (s, y) is:

A(s, y) = 〈y ⊗ s|E(Cb ⊗ I)W⊗n|0mn ⊗ 0mancn〉. (42)

We may write E = E ′ ⊗ E ′′ where E ′ is an mn-qubit Pauli and E ′′ is an nmanc-qubit Pauli. Using
part (i) of Claim 11 we have E ′, E ′′ ∼ N (p). Applying Condition 2 to each of the n codeblocks
gives

(Rec(s)⊗ |s〉〈s|)(I ⊗ E ′′)W⊗n|0mn ⊗ 0mancn〉 = γs(F |0
n〉)⊗ |s〉, (43)
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where γs ∈ C is a normalization coefficient and F = F (E ′′) is a tensor product of n repair operators
associated with each codeblocks. More precisely,

F = Rep(I ⊗ E1)⊗ · · · ⊗ Rep(I ⊗ En),

where Ej is the restriction of E onto the ancillary register associated with the j-th codeblock.
Multiplying both sides of Eq. (43) by Rec(s) and substituting it into Eq. (42) gives

A(s, y) = 〈y|E ′Cb〈s|E ′′W⊗n|0mn ⊗ 0mancn〉 = ±γs〈y|E ′CbFRec(s)|0
n〉.

Here we noted that F and Rec(s) are Pauli operators, so that commuting them through each other
can only change the overall sign. Since Ej ∼ N (p), Condition 2 ensures that Rep(I⊗Ej) ∼ N (c′pc

′′
)

for some universal constants c′, c′′. Therefore F ∼ N (c′pc
′′
).

Now define
F ′ = CbFCb

†
.

Each layer of gates in Cb is a depth-1 Clifford circuit with gates acting on O(1) qubits. Each gate
acting on O(1) qubits can be decomposed into O(1) Clifford gates acting on 1- and 2 qubits. We
may then apply part (iv) of Claim 11 to get

F ′ ∼ N (2
∑O(D)

j=1 2−j

(c′pc
′′
)2−O(D)

) ∼ N (2(c′pc
′′
)2−O(D)

) (44)

and
A(s, y) = ±γs〈y|E ′F ′CbRec(s)|0

n〉. (45)

Now let E ′F ′ = GH where G is an X-type Pauli and H is a Z-type Pauli. Write

G = G1G2 . . . Gn Gj ∼ N (q) q = O((c′pc
′′
)2−O(D)

)

where we used part (iii) of Claim 11, Eq. (44) and the fact that E ′ ∼ N (p). Now we enforce q < qth

where qth is the constant noise threshold from Condition 3. This is achieved by choosing

p < pth where pth = Ω(qβth)

with β = (c′′)−12O(D) = O(1). Using Eq. (45) and the definition of G we arrive at the probability
distribution over outputs (s, y):

|A(s, y)|2 = |γs|2|〈y ⊕ Supp(G)|CbRec(s)|0
n〉|2 = |γs|2|〈y ⊕ Supp(G)|φb,s〉|2

where φb,s is given by Eq. (38). A pair (s, y) which is obtained with positive probability satisfies

|〈y ⊕ Supp(G)|φb,s〉|2 > 0 (46)

and applying Eq. (39) gives
RU(b, (s, y ⊕ Supp(G))) = 1. (47)

Moreover for each j = 1, . . . , n we have

yj ⊕ Supp(Gj)⊕ f j(b, s) ∈ L (48)

where f is defined in Eq. (37) and L ⊆ {0, 1}m is the set of m-qubit basis states that appear in
the logical states |0〉, |1〉, see Eq. (33). Indeed, Eq. (48) follows from Eq. (46) and Eq. (38) which
implies that X(f)Z(h)|φb,s〉 is a logical state of the code Qm.
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Let zj = Dec(yj ⊕ f j(b, s)) and Zj = Dec(yj ⊕ Supp(Gj)⊕ f j(b, s)) for each j = 1, 2, . . . n. Then
Eq. (47) and Definition 15 imply

RU(b, Z) = 1. (49)

Now using Eq. (48), Condition 3, and the fact that Gj ∼ N (q) with q < qth, we get that for each
j = 1, 2, . . . , n:

Pr
[
Zj = zj

]
≥ 1− exp(−Ω(mc))

for some constant c > 0. By a union bound, we may choose m = O(poly(log(n))) such that Zj = zj

for all j = 1, . . . , n with probability at least 0.99. Combining with Eq. (49) gives RU(b, z) = 1 with
probability at least 0.99 and plugging this into Definition 15 we arrive at Eq. (41).

III.C.2. Circuit depth lower bound for classical circuits

Consider a classical probabilistic circuit which satisfies the relation RU with high probability.
The following Theorem establishes a lower bound on the depth D that such a circuit must have, as
a function of the depth required to satisfy the bare relation RU .

Theorem 18 (Classical depth lower bound). Let U be a controlled Clifford circuit of depth D
composed of k-qubit gates. Suppose there is a classical probabilistic circuit of depth D and gates of
fan-in at most K, such that the input/output pairs (b, (s, y)) of the circuit satisfy RU with probability
at least 1 − pF for a random input b ∈ S uniformly chosen from some subset S ⊂ {0, 1}v. Then
there is another classical probabilistic circuit with gates of fan-in at most K + 2k + max{m,manc}
and depth at most

Depth ≤ D +D + 3,

such that the input/output pairs (b, z) satisfy RU with probability at least 1− pF , for b ∈ S chosen
uniformly at random.

Proof. It suffices to show that from any pair (b, (s, y)) satisfying RU(b, (s, y)) = 1, we may compute
z ∈ {0, 1}n such that RU(b, z) = 1 using a classical circuit of depth at most D + 3 with gates of
fan-in at most 2k + max{m,manc}.

So suppose (b, (s, y)) satisfies RU(b, (s, y)) = 1. From the definition of RU we have that z ∈
{0, 1}n defined by

zi = Dec(yi ⊕ f i(s, b))

satisfies RU(b, z) = 1. Note that the Dec function maps m bits to 1 bit, so applying this function in
parallel to all codeblocks requires only one layer of gates with fan-in m. The ⊕ gates likewise only
require depth 1.

It remains to show that f i (defined by Eq. (37)) can be computed from (b, s) in depth D + 1
using gates of fan-in at most 2k + manc. First recall that Rec(s) = ⊗nj=1Rec(s

j), where Rec(sj) is
a function that depends only on manc bits of s. Therefore we can classically compute Rec(s) from
s using a depth-1 circuit composed of gates with fan-in manc. Here and below an n-qubit Pauli is
represented (up to an overall global phase) by a 2n-bit string in the usual way.

Next we compute f i from Rec(s) using a circuit of depth D using gates of fan-in at most 2k.
Suppose P is a Pauli operator and C is a depth-1 quantum circuit composed of k-qubit Clifford
gates. Using the standard stabilizer formalism one can construct a depth-1 classical circuit with
fan-in 2k computing the function P → CPC†. Likewise, if C has depth D, the classical circuit
computing the function P → CPC† has depth D and fan-in 2k. By Condition 1, the circuit Cb has
depth at most D and consists of two-qubit Clifford gates, where each gate is classically controlled
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by at most k bits of b. Thus a function P, b → CbPC
†
b can be computed by a classical depth-D

circuit with fan-in 2k. Recall that f i(s, b) is defined by

X(f)Z(h) = CbRec(s)C
†
b.

The above shows that f i(s, b) can be computed by a classical circuit with depth D + 1 and fan-in
at most 2k +manc.

III.D. Fault-tolerant quantum advantage

Theorems 17 and 18 can be applied to obtain a fault-tolerant quantum advantage with shallow
circuits from a constant-depth controlled-Clifford circuit that achieves a quantum advantage in the
absence of noise. In particular, we may construct the noise-tolerant relationRU from the controlled-
Clifford circuit. Theorem 17 states that the noise-tolerant relation can still be solved by a constant
depth quantum circuit, whereas Theorem 18 can be used to lower bound the circuit depth required
by classical probabilistic algorithms which satisfy the relation. Crucially, the code length m and the
number of ancillas manc needed to achieve a fault-tolerant quantum advantage in Theorem 17 scales
only poly-logarithmically with the size of input/output strings in the relation problem. Thus, the
lower bound of Theorem 18 applies to classical circuits with a poly-logarithmic fan-in. We shall see
that a quantum advantage established in Section II persists even if the classical circuit may have
poly-logarithmic fan-in.

To make this strategy work we need a controlled Clifford circuit that achieves a quantum ad-
vantage in the absence of noise. Below we will use the relation RMS

U for the 1D Magic Square
Problem defined in Section II. Note that we could have instead used other relation problems known
to achieve a quantum advantage, such as the one described in Ref. [13].

Recall from Theorem 2 that the quantum circuit U which solves the 1D Magic Square Problem
is a depth D = O(1) controlled Clifford circuit composed of k-qubit gates with k = O(1). We can
therefore define its noise-tolerant version RMS

U which can be satisfied with probability close to one
by the input-output statistics of a noisy constant-depth quantum circuit (by Theorem 17). On the
other hand, we may use Theorem 18 to establish the following lower bound on the depth of any
classical circuit satisfying this relation.

Theorem 19. Suppose C is a classical probabilistic circuit composed of gates with fan-in at most
K = O(poly(log(n))) which satisfies the relation RMS

U with probability greater than 9/10 for inputs
chosen uniformly at random from the subset S ⊂ {0, 1}4n defined after Theorem 2. Then its depth
satisfies

D ≥ Ω

(
log(n)

log(log(n))

)
.

Proof. Combining Theorems 4 and 18 we get

D ≥ log(0.0001n)

2 logK ′
−O(1)

where K ′ = K + 2k + max{m,manc} = O(poly(log(n))). Here we used the fact that the number of
physical qubits m per logical qubit and the number of ancilla qubits manc needed for fault-tolerant
state preparation are both polylogarithmic in n (cf. Theorem 17 and Condition 2).

This shows that the noise-tolerant 1D Magic Square relationRMS
U separates noisy constant-depth

quantum circuits from noise-free constant-depth classical circuits with at most polylogarithmic fan-
in. At this point we cannot say very much about the geometric locality of the resulting quantum
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algorithm, however. Recall that the (ideal) circuit U for the 1D Magic Square Problem introduced
in Section II only has gates acting on qubits located within a neighborhood of diameter O(1) on a 1D
line graph; furthermore, in the given setup, every Clifford appearing in the circuit is controlled by
input bits located near the qubits it acts on. However, the geometric locality of the ideal controlled-
Clifford circuit U solving the bare relation RMS

U is not necessarily inherited by the quantum circuit
which solves the noise-tolerant relation RMS

U . Indeed, the circuit given in Fig. 8b may require
geometric non-locality in three different ways:

(a) The constant depth Clifford circuit W used for state preparation may be geometrically nonlocal.

(b) The logical Clifford gates in the circuit Cb may be geometrically non-local.

(c) If a subset of input bits controls a certain gate in the ideal circuit U , this set of input bits ends
up potentially controlling unitaries acting on all qubits within one (or several) codeblock(s).
Thus the classical control may be geometrically non-local.

In Section VI we will address these potential sources of geometric non-locality.
For this purpose it will be convenient to consider ideal and noise-tolerant relations where the

initial basis state |0n〉 is replaced by an entangled state |Φ⊗n/2〉, where Φ is the Bell state. Note
that initial entangled states are more natural in the context of non-local games. Accordingly, the
bare relation RU(b, z) is satisfied iff

pb(z) = |〈z|Cb|Φ⊗n/2〉|2 > 0.

Here the input b, the output z, and the controlled Clifford circuit Cb are the same as in Definition 13.
The corresponding fault-tolerant relation RU(b, s, y) is based on Algorithm 1 where the first step
prepares n/2 copies of the logical Bell state Φ instead of the logical basis state. The i-th copy
of the Bell state is encoded into codeblocks B2i−1 and B2i. The codeblocks B2i−1B2i share the
same subset of manc qubits and are initialized in the state |02m〉 ⊗ |0manc〉. Each pair B2i−1B2i

then applies a constant-depth Clifford circuit W satisfying a suitable single-shot state preparation
property (stated below) and measures the manc ancilla qubits to get an outcome si ∈ {0, 1}manc .
A noise-tolerant relation is then defined according to Definition 15, with s = s1s1s2s2 · · · sn/2sn/2.
The modified version of Condition 2 tailored to preparation of the logical Bell state is as follows.

Condition 2 (Single-shot Bell state preparation). Let c, c′, c′′, d be some universal constants.
For each code Qm in the family there must exist an integer manc ≤ mc, a depth-d Clifford circuit
W acting on 2m+manc qubits, recovery and repair functions

Rec : {0, 1}manc → Pauli(2m)

Rep : Pauli(2m+manc) → Pauli(2m)

such that
(Rec(s)⊗ |s〉〈s|)EW (|02m〉 ⊗ |0manc〉) = γs(Rep(E)|Φ〉)⊗ |s〉

for all s ∈ {0, 1}manc and E ∈ Pauli(2m + manc). Here γs ∈ C is the normalization. Furthermore,
the following must hold for all noise rates p ∈ [0, 1]. Suppose E ∼ N (p). Then Rep(E) ∼ N (c′pc

′′
).

The above modifications do not alter the proof of Theorems 17,18 in any substantial way. Applied
to the 1D Magic Square Problem, using this single-shot Bell state preparation eliminates the need
for the initial layer of CNOT gates in the ideal circuit U of Fig. 4. In Section VI we will argue
that the remaining entangling gates, stemming from the classically controlled gates U(α) and V (β)
determining the measurement bases, as well as the gates W (β, α) responsible for the entanglement
SWAPS, can all be implemented in a geometrically local way. Finally, we show how the classical
control can also be made geometrically local, if desired, by a suitable modification of the relation.
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IV. QUANTUM CODE CONSTRUCTIONS

The quantum advantage established in Theorems 4, 17, 18 and 19 hinges on the existence of
quantum error correcting codes with suitable properties. Recall that we need a family of CSS-
type codes that enable a depth-1 implementation of the logical gates S,H, single-shot logical state
preparation, and a decoding algorithm that can tolerate local stochastic noise with a small enough
rate, see Conditions 1,2 and 3 in Section III.B for formal statements. In this section we show how
to satisfy these conditions using the standard 2D surface codes [33]. The latter are among the most
promising codes for quantum fault-tolerance applications due to their high error threshold, efficient
decoding algorithms, and simple syndrome extraction circuits [34–36].

A distance-d surface code encodes one logical qubit into m = d2 +(d−1)2 physical qubits located
at edges of a square lattice of size d× d. The lattice has smooth top/bottom boundaries and rough
left/right boundaries, as shown at Fig. 9. Let us agree that a qubit is placed at the center of each
edge. We shall use notations V , E , and F for the sets of vertices, edges, and faces of the surface
code lattice. The code is defined by a set of stabilizer generators Av and Bf associated with vertices
v ∈ V and faces f ∈ F . Specifically, Av =

∏
e∈δ(v) Xe and Bf =

∏
e∈∂f Ze. Here δ(v) is the subset

of edges incident to a vertex v and ∂f is the boundary of a face f . Logical Pauli operators can be
chosen as

Z =
∏

e∈Ediag
Ze and X =

∏
e∈Ediag

Xe,

where Ediag ⊂ E is the subset of qubits lying on the main diagonal of the lattice, see Fig. 10. It can
be easily verified that Z X = −X Z. Furthermore, Z and X commute with all stabilizer generators.

!⊗#!⊗$ !⊗$

%⊗#%⊗$ %⊗$

&'

()

FIG. 9: Example of the d = 4 surface code lattice (left) and the corresponding dual lattice (right).
Stabilizer generators are shown at the center.

IV.A. Geometrically local circuits for logical Clifford gates

The logical gates H, S can be implemented by depth-1 Clifford circuits using the lattice folding
trick of Ref. [26]. For completeness, we restate the result of Ref. [26] below. We begin by introducing
some extra notations. Let σ be a reflection of the ambient space R2 against the main diagonal of
the surface lattice, see Fig. 10. Note that σ maps the surface code lattice to its dual and vice verse.
In other words, σ defines bijective maps E → E , V → F , and F → V . More formally, suppose
v ∈ V , f ∈ F , and e, e′ ∈ E . Set σ(v) = f if σ(v) is the center of f . Set σ(f) = v if σ maps the
center of f to v. Set σ(e) = e′ if σ maps the center of e to the center of e′.
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Consider the following operators:

H = H⊗m
∏
e∈Etop

SWAPe,σ(e) and S =
∏

e∈Ediag
Sφ(e)
e

∏
e∈Etop

CZe,σ(e). (50)

Here E top ⊂ E denotes the subset of qubits lying above the main diagonal, see Fig. (10), φ(e) = +1
for horizontal edges, and φ(e) = −1 for vertical edges.

Ɛdiag

Ɛtop

!

"

FIG. 10: Left: Subsets of qubits Ediag and E top. Center: Example of a face f and a vertex v
mapped to each other by the reflection against the main diagonal, that is, v = σ(f) and f = σ(v).

Right: Folded surface code. Red and green circles indicate single qubits and pairs of qubits
respectively.

Lemma 20 ([26]). The circuits H and S defined in Eq. (50) implement the logical Clifford gates
H and S respectively.

Proof. It suffices to check that the conjugation by H and S maps stabilizers Av, Bf to products of
stabilizers and implements the desired transformation of the logical Pauli operators, that is,

H Z H = X, H X H = Z, (51)

S Z S
−1

= Z, S X S
−1

= iX Z. (52)

Consider first the circuit H. Since Z and X have support only on the main diagonal, the product
of SWAP gates in Eq. (50) has trivial action on Z and X. The bitwise Hadamard in Eq. (50)
exchanges all X and Z. This proves Eq. (51). Next consider some vertex stabilizer Av. The
product of SWAP gates in Eq. (50) maps the support of Av to the face f = σ(v), see Fig. 10 for an
example. The bitwise Hadamard in Eq. (50) changes each Pauli X to Z. Thus H AvH = Bσ(v). A

similar argument shows that HBfH = Aσ(f). We conclude that H implements a logical H gate.

Consider now the circuit S. Clearly, S commutes with Z and face stabilizers Bf . Using identities
SXS−1 = Y and S−1XS = −Y one easily gets

S X S
−1

= (−1)d−1
∏

e∈Ediag
Ye = iX Z

proving Eq. (52). It remains to check that S maps vertex stabilizers Av to products of stabilizers.
We claim that

S AvS
−1

= AvBσ(v) (53)

for all v ∈ V . Indeed, suppose first that Av has no overlap with the main diagonal. Then one can

ignore the S-gates in Eq. (50) and SXeS
−1

= CZe,σ(e)XeCZ−1
e,σ(e) = XeZσ(e) for any e in the support
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of Av. This proves Eq. (53). In the remaining case, Av overlaps with the main diagonal on some
consecutive pair of edges e, e′. Since the product of S-gates in Eq. (50) alternates between S and
S−1, one has

S(XeXe′)S
−1

= −YeYe′ = (XeXe′)(ZeZe′) = (XeXe′)(Zσ(e)Zσ(e′)).

Here we noted that σ(e) = e for all edges on the main diagonal. Assume for concreteness that Av
is a weight-4 stabilizer. Then Av = XeXe′XgXh, where g, h ∈ E \ Ediag. The product of CZ-gates in
Eq. (50) maps Xg to XgZσ(g) and maps Xh to XhZσ(h). Thus

SAvS
−1

= (SXeXe′S
−1

) · (SXgXhS
−1

) = (XeXe′)(Zσ(e)Zσ(e′)) · (XgXh)(Zσ(g)Zσ(h)) = AvBσ(v).

The case of weight-3 stabilizers Av is completely analogous. We conclude that S implements a
logical S-gate.

As proposed in Ref. [26], quantum circuits implementing the logical gates H and S can be made
geometrically local by folding the surface code lattice against the main diagonal, as shown in Fig. 10.
The folded lattice has a pair of qubits (e, σ(e)) with e ∈ E top located at the same edge. Now each
SWAP and CZ gate in Eq. (50) acts on qubits located at the same edge, i.e. both logical gates H
and S can be implemented by a depth-1 circuit with geometrically local gates. We shall make use
of the folded surface code in Section VI to construct a 3D embedding of the encoded version of the
quantum circuit solving the 1D Magic Square Problem.

IV.B. Error threshold

Next let us construct a decoding function Dec : {0, 1}m → {0, 1} that satisfies Condition 3 of
Section III.B. We shall use the minimum weight decoder and show that it has a non-zero error
threshold for local stochastic noise. The proof follows ideas of Refs. [35, 37]. Fix an error correction
function Cor : {0, 1}m → {0, 1}m such that y = Cor(x) is a minimum weight bit string that has the
same Z-syndrome as x, that is, 〈y|Bf |y〉 = 〈x|Bf |x〉 for any face f . Note that Cor(x) depends only
on the Z-syndrome of x. Define

Parity(x) =
∑

e∈Ediag
xe and Dec(x) = Parity(Cor(x)⊕ x). (54)

Here the sum is evaluated modulo two. If x has the trivial Z-syndrome (i.e. 〈x|Bf |x〉 = 1 for all f)
then Cor(x) = 0m and thus Parity(x) = Dec(x) proving Eq. (34). To prove Eq. (35) we need

Lemma 21. Consider a random X-type error E ∼ N (q) with q ≤ 0.01. Let y ≡ Supp(E). Then

PrE [Parity(Cor(y)⊕ y) = 1] ≤ 3d(6q1/2)d.

As discussed below (see Eq. (55)), the lemma implies that with high probability, the change in
the parity (and thus the estimated logical Z-eigenvalue) caused by an error is properly accounted
for by the correction function Cor.

Proof. Let r ≡ Cor(y). By definition of the function Cor, the string r ⊕ y has trivial Z-syndome.
Note that a bit string has trivial Z-syndrome iff the corresponding subset of edges is a cycle in
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the dual surface code lattice, see Fig. 9. Such cycle can be represented (non-uniquely) as an edge-
disjoint union of closed loops and paths terminating at the dangling edges. The dual surface code
lattice has dangling edges only at the top/bottom boundaries, see Fig. 9. Consider the event

FAIL = {E : Parity(r ⊕ y) = 1} .

Direct inspection shows that any closed loop has even overlap with Ediag. Likewise, any path having
both endpoints at the same boundary has even overlap with Ediag. Since r ⊕ y is a cycle, FAIL
implies that any decomposition of r⊕y into edge-disjoint loops and paths contains at least one path
δ connecting top/bottom boundaries. Note that such a path must contain at least d edges. Let
∆(k) be the set of all paths of length k connecting top/bottom boundaries. By the union bound,

PrE[FAIL] ≤
∞∑
k=d

∑
δ∈∆(k)

PrE[δ ⊆ r ⊕ y].

Suppose δ ∈ ∆(k) satisfies δ ⊆ r⊕y. We claim that at least half of the edges of δ are not contained
in r. Indeed, otherwise one could replace r by r⊕δ reducing the weight of r without changing its Z-
syndrome (since any path δ ∈ ∆(k) has trivial Z-syndrome). This would contradict the minimality
of r. Thus at least half of the edges of δ are contained in y, that is, δ′ ≡ δ ∩ y has size at least k/2.
From E ∼ N (q) one gets PrE[δ′ ⊆ y] ≤ q|δ

′| ≤ qk/2 for any fixed δ′. Noting that δ has at most 2k

subsets δ′, and |∆(k)| ≤ d3k (since the surface code lattice has vertex degree≤ 4 and since there
are d choices for the starting edge of δ), one gets

PrE[FAIL] ≤ d
∞∑
k=d

(6q1/2)k ≤ 3d(6q1/2)d

provided that q ≤ 0.01.

We can now verify Eq. (35). Suppose v ∈ {0, 1}m is a random string such that X(v) ∼ N (q) is
a local stochastic noise. By definition of the subspace L, any vector x ∈ L has trivial Z-syndrome.
Thus v and x⊕v have the same Z-syndromes. Accordingly, Cor(x⊕v) = Cor(v) for any v ∈ {0, 1}m
and any x ∈ L. Therefore

Parity(x)⊕ Dec(x⊕ v) = Parity(x)⊕ Parity(Cor(x⊕ v)⊕ x⊕ v) = Parity(Cor(v)⊕ v)

because the parity is linear and Parity(x)⊕ Parity(x) = 0. Thus

Parity(x) = Dec(x⊕ v) if and only if Parity(Cor(v)⊕ v) = 0 . (55)

By Lemma 21, the probability of this event is at most 3d(6q1/2)d ≤ 3 exp (−0.2d) for all q ≤ 0.01
and all d ≥ 7. To summarize, we have shown the following:

Theorem 22 (Error threshold for surface codes). The decoding and parity functions (Dec,Parity)
defined by (54) for the distance-d surface code satisfy the correctness condition (34) in the noise-free
case. Furthermore, suppose d ≥ 7 and v ∈ {0, 1}m is a random string such that X(v) ∼ N (q) for
some q ≤ 0.01. Then

Pr [Dec(x⊕ v) = Parity(x)] ≥ 1− 3 exp (−0.2d)

for all x ∈ L.

We note that the local stochastic noise model can account for correlated errors, such as those
introduced by the logical circuits H and S defined in Eq. (50). Theorem 22 shows that the surface
code has error threshold of at least 1% for such correlated noise.
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IV.C. Single-shot logical state preparation

It remains to show that the surface code enables single-shot logical state preparation, as stated
in Condition 2. Here we consider the Bell state version of Condition 2, see Section III.D.

!
ℬ

ℬ

FIG. 11: The cubic lattice C = AB. Region B (gray circles) represents the Bell state encoded by
two surface codes located on the left and the right faces of C. Region A represents ancillary

qubits.

Consider a 3D cubic lattice C of size r × r × r, where r = 2d− 1. We place qubits at sites of C.
The Bell state Φ will be encoded into a pair of distance-d surface codes located on two opposite
faces of C, as shown on Fig. 11. Each surface code contains m qubits. Let B ⊂ C be the subset of
2m qubits encoding the Bell state. The rest of the lattice A = C \B represents ancillary qubits that
are used by the single-shot preparation procedure. Accordingly, |A| = manc. For a formal definition
of A,B, C see Section V.

Logical Bell state preparation proceeds in three stages. First, one initializes each qubit of C in
the state |0〉 and applies a suitable constant-depth Clifford circuit W obtaining a state W |0〉C. Next
one measures each ancillary qubit in the Z-basis. Let s ∈ {0, 1}|A| be the measurement outcome.
Finally, one applies a suitable Pauli recovery operator Rec(s) to the region B obtaining a state

(|s〉〈s|A ⊗ Rec(s)B)W |0〉C = γs|s〉A ⊗ |Φ〉B.

Here γs ∈ C is a normalization factor. A noisy version of this protocol may include initialization,
gate, and measurement errors. By Lemma 12, it suffices to consider a single Pauli error E that
occurs immediately before the measurement. Thus the noisy implementation outputs the measured
string s and a state (|s〉〈s|A ⊗ Rec(s)B)EW |0〉C, where E is a random Pauli error acting on C. The
difference between the final state of the noisy protocol and the desired Bell state can be quantified
using a repair function Rep(E) which returns a Pauli operator acting on B such that

(|s〉〈s|A ⊗ Rec(s)B)EW |0〉C = γs|s〉A ⊗ Rep(E)|Φ〉B (56)

for all s and E. The desired single-shot preparation property is established in the following theorem.

Theorem 23 (Single-shot Bell state preparation for surface codes). Let d ≥ 4 be the desired
surface code distance and C be the cubic lattice of linear size 2d− 1 with one qubit per site. Suppose
E ∼ N (p) is a local stochastic Pauli error acting on C. There exists a depth-6 Clifford circuit W
that uses only nearest-neighbor gates on the lattice C, as well as recovery and repair functions Rec(s)
and Rep(E) satisfying the logical Bell state preparation condition (56) for the distance-d surface code
such that Rep(E) ∼ N (11p1/128).

We shall divide the proof of the theorem into two parts. The first part, presented in the rest of
this section, gives a general recipe for choosing the repair and recovery functions. We show that
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the logical Bell state can be prepared in a single-shot fashion whenever the repair function obeys a
certain “lifting” property. The surface code structure and the lattice geometry play no role in this
part of the proof. Thus we anticipate that the same recipe may be applied to other stabilizer codes
(as well as other types of logical states). The second part of the proof, presented in Section V, deals
specifically with the surface code. This part relies crucially on ideas introduced in Ref. [27].

Given a state ψ and a Pauli operator P , we say that P is a stabilizer of ψ if P |ψ〉 = |ψ〉.
Stabilizers of any state generate an abelian subgroup of the Pauli group. Let S be the stabilizer
group of the state W |0〉C. It has generators WZuW

† with u ∈ C. We shall identify two subgroups

S0 ⊆ S1 ⊆ S

with the following properties.

(i) Any element of S0 has the form Z(α)A ⊗ IB for some subset α ⊆ A.

(ii) Any element of S1 has the form Z(α)A ⊗ SB, where S is a stabilizer of Φ and α ⊆ A.

(iii) If S is a stabilizer of Φ then S1 contains an element Z(α)A ⊗ SB for some α ⊆ A.

In Section V, we will discuss an explicit instantiation of these stabilizer groups.

IV.C.1. Construction of recovery and repair functions

In the following, we analyze the effect of errors, starting from the special case when an error E
acts non-trivially only on A. In particular, our aim here is to describe the construction of the
functions Rec(s) and Rep(E). The stabilizer groups S0 and S1 play distinct roles, as follows.

Elements of S0 will be used to diagnose errors. Namely, suppose S1
0 , . . . , S

k
0 are generators of S0.

Consider the noisy state EW |0〉C. Define an S0-syndrome of E as a bit string syn0(E) ∈ {0, 1}k
such that the i-th bit of syn0(E) is one if E anti-commutes with Si0 and zero otherwise. Importantly,
the S0-syndrome can be inferred from the measurement outcome s. Indeed, Si0 are Z-type Paulis
acting on A that stabilize the ideal state W |0〉C. Since all qubits of A are measured in the Z-basis,
the i-th bit of syn0(E) is

syn0(E)i = Parity(s, Supp(Si0)).

Here and below we use the notation

Parity(s, L) ≡
∑
u∈L

su (mod 2).

Elements of S1 can be identified with stabilizers of the desired final state Φ on B. More precisely,
suppose B1, . . . , B2m is a complete set of stabilizers of Φ (recall that |B| = 2m). By condition (iii),
one can choose Pauli operators S1

1 , . . . , S
2m
1 ∈ S1 such that the restriction of Si1 onto B coincides

with Bi. Furthermore, Si1 acts on A only by Pauli Z. Since Si1 stabilizes the state W |0〉C and acts
on A only by Pauli Z, we conclude that Si1 also stabilizes the state (|s〉〈s|A ⊗ IB)W |0〉C. It follows
that

(IA ⊗Bi
B)(|s〉〈s|A ⊗ IB)W |0〉C = (−1)σi(|s〉〈s|A ⊗ IB)W |0〉C (57)

where σ ∈ {0, 1}2m is defined by

σi = Parity(s, Supp(Si1) ∩ A).
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Given a Pauli error F acting on C, define an S1-syndrome of F as a bit string syn1(F ) ∈ {0, 1}2m

such that the i-th bit of syn1(F ) is one if F anti-commutes with Si1 and zero otherwise. From
Eq. (57) one gets

(IA ⊗Bi
B)(|s〉〈s|A ⊗ IB)EW |0〉C = (−1)σi+syn1(E)i(|s〉〈s|A ⊗ IB)EW |0〉C.

The above equation shows that the reduced state of B after the measurement is an eigenvector of
Bi with an eigenvalue (−1)σi+syn1(E)i . Thus, to ensure that the final state of B is proportional to Φ
it would suffice to choose the recovery Rec(s) as a Pauli operator acting on B with S1-syndrome
σ ⊕ syn1(E).

Unfortunately, the syndrome syn1(E) cannot be inferred from the measurement outcome s.
Instead, we shall compute an approximate version of syn1(E) by replacing E with a suitable Pauli
operator M = M(s) which depends only on s and acts as a proxy for the actual error E. The
definition of the recovery Rec(s) based on the proxy M is summarized in Fig. 12. Namely, for each
s choose Rec(s) as some fixed Pauli operator acting on B such that

syn1(Rec(s)) = σ ⊕ syn1(M). (58)

We choose the proxy M such that it is consistent with the S0-syndrome caused by the actual
error E and has the smallest possible weight subject to this condition. Specifically, choose M as
a minimum weight Pauli operator acting on C such that syn0(M) = syn0(E). Note that that M
acts non-trivially only on A. Indeed, since any element of S0 acts trivially on B, the S0-syndrome
of M depends only on the restriction of M onto A. Thus the weight of M is minimal only if M
acts trivially on B. Furthermore, since all elements of S0 are Z-type Paulis, we can assume wlog
that M is an X-type Pauli. Note that M can be viewed either as a function of s (since syn0(E)
can be inferred from s) or as a function of E. This completes the construction of the proxy M for
the actual error E, and with (58), the definition of the recovery Rec(s).

syndrome of the stabilizers B1, . . . , B2m on the final state

ideal preparation σ(s)

ideal preparation + recovery 0

noisy preparation σ(s)⊕ syn1(E) (actual syndrome)

σ(s)⊕ syn1(M(s)) (guessed syndrome)

noisy preparation + recovery syn1(M(s))⊕ syn1(E) = syn1(Rep(E))

noisy preparation + recovery + repair 0

FIG. 12: Here we consider a complete set of stabilizers B1, . . . , B2m for the desired logical state Φ
and their syndrome on the output of the state preparation circuit before and after applying the

recovery/repair operators. The state preparation succeeds whenever the final syndrome is zero. In
the ideal case (E = I), the syndrome of Bi can be inferred from the measument outcome s. In the

noisy case, the syndrome of Bi can be guessed by replacing the unknown error E with a proxy
M = M(s). We choose the recovery operator Rec(s) based on the guessed syndromes of Bi such

that syn1(Rec(s)) = σ(s)⊕ syn1(M(s)). The repair operator Rep(E) compensates for the difference
between the guessed and the true syndromes of Bi producing the desired logical state Φ.

Finally, the repair operator compensates for the difference between syn1(E) and syn1(M). We
choose Rep(E) as a minimum weight Pauli operator acting on B such that

syn1(Rep(E)) = syn1(E)⊕ syn1(M). (59)
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(More precisely, we shall impose the minimum weight condition independently on the X- and Z-
parts of Rep(E), see Section V.) Recall that M can be viewed as a function of E, so that Rep(E)
is well defined. The above arguments show that

(|s〉〈s|A ⊗ Rep(E)B · Rec(s)B)EW |0〉C ∼ |s〉A ⊗ |Φ〉B

for all s, E. Multiplying both sides by IA ⊗ Rep(E)B gives Eq. (56).
This completes the construction of the recovery and repair functions in the case where the error E

acts trivially on B. In fact, in the following, we will only consider this case, and show that for local
stochastic noise E = EA ⊗ IB ∼ N (p) we have

Rep(EA ⊗ IB) ∼ N (q) for q = pΩ(1) (60)

In the general case one can write E = EA ⊗ EB. The error EB commutes with the measurements
of A. Thus neither the proxy M nor the recovery function Rec(s) depend on EB. We define the
repair function for a general error E as

Rep(E) = (IA ⊗ EB)Rep(EA ⊗ IB).

The same arguments as above show that such repair function obeys Eq. (56). By definition of local
stochastic noise, E ∼ N (p) implies EA ∼ N (p) and EB ∼ N (p), see Lemma 11. With (60) and
using part (iii) of Claim 11 we conclude that

Rep(E) ∼ N (q̃), q̃ = 2 max (p1/2, q1/2).

In Section V, we show how to instantiate this construction using a fault-tolerant scheme for preparing
long-range entanglement in noisy 3D cluster states [38]. This scheme gives q = 26p1/64 resulting in
q̃ ≤ 11p1/128. This is the bound quoted in Theorem 23.

IV.C.2. Single-shot logical state preparation from the lifting property

We have described a general construction of repair and recovery functions starting from stabilizer
groups S0 ⊆ S1 ⊆ S satisfying the properties (i)–(iii). It remains to prove that Rep(E) is a local
stochastic error with the noise rate pΩ(1), that is,

PrE[K ⊆ Supp(Rep(E))] ≤ pΩ(|K|) for any subset K ⊆ B . (61)

As discussed above, we can assume without loss of generality that E = EA ⊗ IB ∼ N (p) is a local
stochastic error acting on the ancilla qubits A only. Accordingly, we can assume that the repair
function Rep(E)) takes as input a Pauli error E acting on A and outputs a Pauli error acting on B.

Next, we identify a certain property of the repair function which is sufficient to imply (61). For
convenience, and as this proof strategy may be applicable to other codes, we introduce the following
definition.

Definition 24. A repair function Rep(E) has the lifting property if there exists a function Lift(K)
that takes as input a subset K ⊆ B and outputs a set of subsets of C = AB such that

(i) For all λ > 0 and K ⊆ B, we have ∑
L∈Lift(K)

λ|L| ≤ (c1λ
c2)|K| . (62)
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(ii) For any Pauli E acting on A and any subset K ⊆ Supp(Rep(E)) there exists a set E ′ ∈ Lift(K)
such that

|E ′ ∩ Supp(E)| ≥ c3|E ′| (63)

Here c1, c2, c3 > 0 are some universal constants.

Here we allow the possibility Lift(K) = ∅ for some K’s. Let us agree that the sum in Eq. (62) is
zero whenever Lift(K) = ∅. In Section V we provide an explicit construction of the function Lift for
the surface code case and compute the constants c1, c2, c3 (see Lemma 30,32). Here property (ii) is
particularly non-trivial to establish as it involves the repair function.

Given the lifting property, statement (61) can be shown as follows. Consider some fixed subset
K ⊆ B. For each error E with K ⊆ Supp(Rep(E)) fix a set E ′ ∈ Lift(K) satisfying Eq. (63), that
is, E ′ = E ′(E) ⊆ C is a function of the error E. The union bound gives

PrE[K ⊆ Supp(Rep(E))] ≤
∑

L∈Lift(K)

PrE[E ′ = L]. (64)

Let F ≡ E ′ ∩ Supp(E). From Eq. (63) one infers that |F | ≥ c3|E ′| = c3|L|. By the union bound,

PrE[E ′ = L] ≤
∑

F⊆L : |F |≥c3|L|

PrE[F ⊆ Supp(E)] ≤ 2|L|p|F | ≤ (2pc3)|L|. (65)

Here we used the assumption E ∼ N (p) and noted that L has at most 2|L| subsets F . Substituting
Eq. (65) into Eq. (64) and using property Eq. (62) of the Lift function we arrive at

PrE[K ⊆ Supp(Rep(E))] ≤
∑

L∈Lift(K)

(2pc3)|L| ≤ q|K|, q ≡ c12c2pc2c3 . (66)

This confirms Eq. (61).
To summarize, we have shown that any repair function with the lifting property converts a local

stochastic error E ∼ N (p) to a local stochastic error Rep(E) ∼ N (q) where q = pΩ(1). In the
case of the surface code considered in Section V.B, the repair function of interest will be a product
of four functions RepX ,RepZ ,RepX̄ ,RepZ̄ , see Eq. (74). We will show that RepX ,RepZ satisfy the
lifting property and thus preserve the local stochasticity property, that is, RepX and RepZ have
noise rate q = pΩ(1). Furthermore, RepX̄ ,RepZ̄ will be random logical Pauli errors that apply the
logical operators X, Z to one of the surface codes with probability pΩ(d). We shall see that such
logical errors automatically obey the local stochasticity condition with the noise rate pΩ(1). Thus
the full repair function Rep(E) is a product of four local stochastic errors with the noise rate pΩ(1).
By Lemma 11, we conclude that Rep(E) is a local stochastic error with the noise rate pΩ(1).

V. SINGLE-SHOT BELL STATE PREPARATION FROM A 3D LATTICE OF QUBITS

Here we provide all missing steps in the proof of Theorem 23 outlined in Section IV. In Sec-
tion V.A, we specify the geometric arrangement of qubits and define the relevant stabilizer groups.
Together with the recovery function already introduced in Section IV.C, this determines a scheme
for preparing encoded Bell states. We note that this scheme is essentially that introduced in [38].
In the latter paper, the authors show that performing single-qubit measurement in the bulk of a
3D cluster state leads to an encoded Bell state of two surface codes on two boundaries, up to an error
determined by the measurement outcomes. Remarkably, this was shown to be robust with respect
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to errors on the bulk qubits, demonstrating that a 3D cluster state has noise-resilient long-range
localizable entanglement.

The remainder of this section is devoted to establishing the fault-tolerance property of this
scheme. This analysis goes beyond [38] by not requiring noise-free operations on the boundaries.
In Section V.B, we define the repair function used in our analysis to express the residual error. In
Section V.C we show that this repair function satisfies the lifting property. Finally, in Section V.D,
we combine this with the arguments from Section IV.C to complete the proof of Theorem 23.

V.A. 3D lattice code construction

We begin by defining the 3D lattice C, a constant-depth Clifford circuit W acting on C, and
stabilizer groups S0, S1 and S. Let d be the surface code distance, r = 2d− 1, and

C ′ = {(u1, u2, u3) ∈ Z3 : 1 ≤ u1, u3 ≤ r, 0 ≤ u2 ≤ r − 1}.

We shall refer to triples of integers u = (u1, u2, u3) ∈ C ′ as sites. Let e and o denote arbitrary even
and odd integers. Qubits are placed at sites of the sublattice

C = C ′ \ {(o, o, o), (e, e, e)}. (67)

In other words, C contains all sites of C ′ that have at least one odd and at least one even coordinate.
The region B encoding the Bell state is defined as

B = {(e, o, 1), (o, e, 1), (e, o, r), (o, e, r) ∈ C}.

In other words, B contains all qubits u located on the faces of C with u3 ∈ {1, r} such that u1, u2

have different parity. Ancillary qubits live at sites of the region A ≡ C \B. Let n = |C| be the total
number of qubits. Given a site u ∈ C ′ define a set of nearest neighbors of u as

neigh(u) = {v ∈ C : |u1 − v1|+ |u2 − v2|+ |u3 − v3| = 1}.

Note that each site u ∈ C has at most four nearest neighbors. For example, a site (2, 2, 1) has
nearest neighbors (1, 2, 1), (3, 2, 1), (2, 1, 1), and (2, 3, 1), see Eq. (67). Define

W = H⊗n
∏

(u,v)∈C

CZu,v H
⊗n, (68)

where the product runs over all pairs of nearest neighbor sites in C. One can easily verify that the
product of CZ gates in Eq. (68) can be implemented by a depth-four circuit. Thus the full circuit
W has depth six, as promised in Theorem 23. The state W |0n〉 is a stabilizer state with stabilizer
generators

Gu = Zu
∏

v∈neigh(u)

Xv, u ∈ C.

Let S be the group generated by {Gu}u∈C.
Let us briefly comment on how this relates to the construction of [38]. The starting point

of [38] is a cluster (or graph) state |ΨG〉 =
∏

(u,v)∈E CZu,v H⊗n |0n〉 associated with a partic-

ular 3D graph G = (V,E). A certain measurement pattern consisting of single-qubit X- and
Z-measurements is then applied to the state |ΨG〉, resulting in the desired target state on a sub-
set of qubits on the boundaries. We note that measuring a qubit in the Z-basis in a graph state
amounts to removing the corresponding vertex from the graph: in other words, such qubits may be
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removed from the beginning. This is what we do in our description here. Furthermore, we introduce
another layer of Hadamards on each qubit for convenience (see (68)), meaning that the remaining
qubits will be measured in the Z-basis rather than the X-basis as opposed to the description in [38].
Below we mostly follow notations introduced in [38].

To set the stage for what follows it is convenient to describe C ′ as a union of four graphs denoted
Te (even graph), To (odd graph), Tsc (surface code graph), and T ∗sc (dual surface code graph). These
graphs have sets of vertices

V(Te) ={u = (e, e, e) ∈ C ′},
V(To) ={u = (o, o, o) ∈ C ′ : u3 6= 1, r},
V(Tsc) ={u = (e, e, o) ∈ C ′ : u3 = 1, r},
V(T ∗sc) ={u = (o, o, o) ∈ C ′ : u3 = 1, r}

and sets of edges

E(Te) ={u = (e, e, o), (e, o, e), (o, e, e) ∈ C ′},
E(To) ={u = (o, o, e), (o, e, o), (e, o, o) ∈ C ′ : u3 6= 1, r},

E(Tsc) = E(T ∗sc) ={u = (o, e, o), (e, o, o) ∈ C ′ : u3 = 1, r}.

Here a pair of vertices u, v is connected by an edge if one can obtain v from u by changing a single
coordinate by ±2. We show examples of the graph Te and Tsc on Fig. 13. Note that each graph
has dangling edges (i.e. edges with only one endpoint) located at certain external faces of C ′. By
definition,

A = E(Te) ∪ E(To) and B = E(Tsc) = E(T ∗sc).

Vertices of the graphs Te, To and Tsc, T
∗
sc will be associated with generators of the subgroups S0 ⊆ S

and S1 ⊆ S respectively, see Section IV.
Let us first define the subgroup S0. Recall that elements of S0 must act trivially on B and may

act on A only by Pauli Z. The group S0 has generators

Su0 =
∏

v∈neigh(u)

Gv =
∏

v∈neigh(u)

Zv, u ∈ V(Te) ∪ V(To). (69)

Here we noted that allX-type Pauli in the product cancel each other. Also note that neigh(u)∩B = ∅
for any site u ∈ V(Te) ∪ V(To). Thus Su0 acts trivially on B, as desired.

We proceed to defining the subgroup S1. Recall that elements of S1 may act onA only by Pauli Z.
In addition, the restriction of any element of S1 onto B must be a stabilizer of Φ. Generators of S1

come in several types. First, choose any site u ∈ V(Tsc) and define

Su1 = Gu = Zu
∏

v∈neigh(u)

Xv, u ∈ V(Tsc). (70)

We claim that neigh(u) ⊆ B for any site u ∈ V(Tsc). Indeed, such site has the form u = (e, e, 1)
or (e, e, r). Changing the third coordinate of u by ±1 gives a site (e, e, e) which is not contained
in C, see Eq. (67). Changing the first or the second coordinate of u by ±1 gives a site in B. Thus
neigh(u) ⊆ B, that is, all Pauli X in the generator Su1 act on B. The restriction of Su1 onto B
becomes a vertex stabilizer for one of the two surface codes, see Section IV.

Next, choose any site u ∈ V(T ∗sc) and define

Su1 = Gu±(0,0,1)

∏
v∈neigh(u)∩B

Gv = Zu±(0,0,1)

∏
v∈neigh(u)∩B

Zv, u ∈ V(T ∗sc). (71)
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FIG. 13: Examples of the graphs Te (blue) and Tsc (red) for the distance-4 surface code (r = 7).
The glued graph Tgl is constructed from Te ∪ Tsc by attaching left and right dangling edges of Te

to the corresponding vertices of Tsc.

By definition, any site u ∈ V(T ∗sc) has the form u = (o, o, u3) with u3 ∈ {1, r}. The sign in Eq. (71)
is plus for u3 = 1 and minus for u3 = r. Such site u has exactly one nearest neighbor not in B,
namely u ± (0, 0, 1). One can easily check that all Pauli X in Eq. (71) cancel each other. The
restriction of Su1 onto B becomes a face stabilizer of the surface code, see Section IV.

Finally, the group S1 has two special generators SX1 and SZ1 corresponding to the logical Bell
state stabilizers X1X2 and Z1 Z2. The latter can be chosen as

X1X2 =
∏

u=(1,e,1)∈B

Xu

∏
u=(1,e,r)∈B

Xu

(rough boundaries of the surface code lattice) and

Z1 Z2 =
∏

u=(o,0,1)∈B

Zu
∏

u=(o,0,r)∈B

Zu

(smooth boundaries of the surface code lattice). We set

SX1 =
∏

u=(1,e,e)∈E(Te)

Gu = (X1X2)B
∏

u=(1,e,e)∈E(Te)

Zu. (72)

Here the product runs over all dangling edges of the graph Te that cross the face u1 = 1. One can
easily check that all Pauli X in this product cancel each other, except for those that appear in the
logical operators X1 and X2. Finally, set

SZ1 =
∏

u=(o,0,o)∈C

Gu = (Z1Z2)B
∏

u=(o,0,o)∈E(To)

Zu. (73)

Note that {(o, 0, o) ∈ C} ⊆ E(To)∪E(Tsc) where the union is disjoint. Furthermore, E(To) ⊂ A and
E(Tsc) = B. One can check that all Pauli X in the above product cancel each other and the action
of SZ1 onto B gives Z1Z2. This completes the construction of the subgroup S1.
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V.B. Definition of the Rep-function

Suppose E is a Pauli error acting on A. By definition, the syndrome syn0(E) can be viewed as
a subset of V(Te) ∪ V(To) such that u ∈ syn0(E) iff the generator Su0 anti-commutes with E. As
discussed in Section IV, the construction of recovery and repair functions is based on a minimum
weight X-type Pauli operator M supported on A such that syn0(M) = syn0(E). Using Eq. (69)
one can check that an error Xu on any edge u ∈ E(Te) creates S0-syndrome at the endpoints of u in
the graph Te. Likewise, an error Xu on any edge u ∈ E(To) creates S0-syndrome at the endpoints of
u in the graph To. Recall that the graphs Te and To have dangling edges. Errors Xu on such edges
create only one bit of S0-syndrome at the single endpoint of the edge.

To describe the construction of M more formally we need some terminology. Suppose G = (V , E)
is a simple graph that may have dangling edges. Given a subset of edges F ⊆ E , the boundary of F
denoted ∂F is the subset of vertices u ∈ V such that u has an odd number of incident edges from F .
We say that F is a cycle if ∂F = ∅. We say that F is a minimum matching if for any F ′ ⊆ E such
that ∂F ′ = ∂F one has |F ′| ≥ |F |. (Note that our definition of a minimum matching is slightly
different from the one commonly used in graph theory.)

Since M includes only X-type errors, we shall identify M and its support. The above shows that
M ∩ E(Te) is a minimum matching in the graph Te with the boundary syn0(E) ∩ V(Te). Likewise,
M ∩ E(To) is a minimum matching in the graph To with the boundary syn0(E) ∩ V(To). This
completes the construction of M .

At this point we have well-defined S1-syndromes syn1(E), syn1(M) and we are ready to construct
the repair function Rep(E). Recall that Rep(E) is defined as a minimum weight Pauli operator acting
on B such that

syn1(Rep(E)) = syn1(E)⊕ syn1(M).

Define partial S1-syndromes associated with X- and Z-type surface code stabilizers. Given a Pauli
error F acting on C, let syn1X(F ) be the combined syndrome of generators Su1 located at vertices of
the surface code graph, u ∈ V(Tsc), see Eq. (70). Likewise, let syn1Z(F ) be the combined syndrome
of generators Su1 located at vertices of the dual surface code graph, u ∈ V(T ∗sc), see Eq. (71). The
repair function is defined as

Rep(E) = RepX(E) · RepX(E) · RepZ(E) · RepZ(E), (74)

where RepX(E) is a minimum weight X-type Pauli operator acting on B such that

syn1Z(RepX(E)) = syn1Z(E)⊕ syn1Z(M),

RepZ(E) is a minimum weight Z-type Pauli operator acting on B such that

syn1X(RepZ(E)) = syn1X(E)⊕ syn1X(M). (75)

Equivalently, the support of RepZ(E) is a minimum matching in the graph Tsc with the boundary
syn1X(E)⊕ syn1X(M). The support of RepX(E) is a minimum matching in the graph T ∗sc with the
boundary syn1Z(E)⊕ syn1Z(M).

The operators RepX(E) and RepZ(E) can be viewed as residual logical errors. They ensure that
Rep(E) and E ·M have the same syndromes for the generators SX1 and SZ1 associated with the
stabilizers X X and Z Z of the logical Bell state. This is discussed in details in Section V.D.

We shall see that RepZ(E) = I with probability exponentially close to one, and that RepZ(E) is a
local stochastic error with rate pΩ(1). We will also show that RepZ satisfies the lifting property such
that RepZ(E) ∼ N (pΩ(1)). Exactly the same arguments apply to the repair functions RepX(E) and
RepX(E) if one replaces the graphs Te and Tsc with To and T ∗sc respectively. Part (iii) of Claim 11
then implies that the full repair operator Rep(E) is a local stochastic error with rate pΩ(1).
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V.C. Proof of the lifting property

Here we argue that RepZ satisfies the lifting property (see Definition 24). To define the function
Lift we shall need some basic facts from graph theory. Suppose G = (V , E) is a simple graph that
may have dangling edges. A subset of edges F ⊆ E is called a forest iff it contains no cycles. In
other words, F is an edge-disjoint union of trees. Given a subset of vertices S ⊆ V , let F(S;G) be
the set of all forests F in the graph G such that ∂F = S. We shall use the simpler notation F(S)
whenever the graph G is clear from the context. Note that F(∅,G) = ∅.

Lemma 25. Any forest F ∈ F(S) can be partitioned (non-uniquely) into edge-disjoint paths, F =
F1 · · ·Fk, such that each path Fi has endpoints in S and each vertex in S is an endpoint of exactly
one path Fi. Some paths Fi may have only one endpoint (if the graph has dangling edges).

Proof. We shall use induction in |S|. If S = ∅ then F(S) = ∅ and there is nothing to prove. Suppose
|S| ≥ 1 and F ∈ F(S). Choose any vertex u ∈ S and let F ′ be the connected component of F that
contains u. Note that F ′ 6= ∅ since u ∈ ∂F implies that F contains at least one edge incident to u.
We can consider F ′ as a tree rooted at u. Let e ∈ E be any leaf of F ′ and F1 be the unique path
in F ′ connecting u with e. If e is a dangling edge then ∂F1 = {u} and thus ∂(F \ F1) = S \ {u}.
Otherwise, let v be the endpoint of e such that the path F1 terminates at v. Note that v ∈ S since
e is the only edge of F incident to v. Thus ∂(F \ F1) = S \ {u, v}. In both cases one can apply the
induction hypothesis to the forest F \ F1.

Lemma 26. Any minimum matching is a forest.

Proof. Indeed, if F is a minimum matching and F contains a cycle C then |F⊕C| = |F |−|C| < |F |
and ∂(F ⊕ C) = ∂F ⊕ ∂C = ∂F . This contradicts the minimality of F .

Lemma 27. Suppose F is a minimum matching and K ⊆ F . Then K is a minimum matching.

Proof. Assume the contrary, that is, there exists a subset of edges K ′ such that ∂K ′ = ∂K and
|K ′| < |K|. Define F ′ = F ⊕K ⊕K ′. We have ∂F ′ = ∂F and

|F ′| ≤ |F ⊕K|+ |K ′| = |F | − |K|+ |K ′| < |F |.

This contradicts the minimality of F .

Lemma 28. Suppose G is a graph with vertex degree at most D. Let M be a minimum matching
in G. Choose any q ≥ 0 such that 16Dq1/2 ≤ 1. Then∑

F∈F(∂M ;G)

q|F | ≤ (16Dq1/2)|M | (76)

Proof. Given a vertex u let P(u) be the set of all paths in the graph G that have u as an endpoint.
Suppose ∂M = {u1, . . . , uk}. Choose any forest F ∈ F(∂M) and let F = F1 · · ·Fk be the decompo-
sition of F into edge-disjoint paths established in Lemma 25. Define a k-tuple of paths Hj ∈ P(uj),
j = 1, . . . , k as follows. Each path Fi with a single endpoint uj ∈ ∂M gives rise to a path Hj = Fi.
Each path Fi with two endpoints up, uq ∈ ∂M gives rise to a pair of paths Hp = Hq = Fi. By
construction,

|M | ≤ |F | ≤ r ≡
k∑
i=1

|Hi| ≤ 2|F |.
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The above shows that each forest F ∈ F(∂M) can be mapped to a k-tuple of paths Hj ∈ P(uj)
such that r ≥ |M | and q|F | ≤ qr/2. Thus

∑
F∈F(∂M)

q|F | ≤
∞∑

r=|M |

qr/2
∑

H1∈P(u1)

. . .
∑

Hk∈P(uk)

δ(r, |H1|+ . . .+ |Hk|)

Here δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise. The number of length-s paths starting at a
given vertex is at most (D − 1)s ≤ Ds. Thus

∑
F∈F(∂M)

q|F | ≤
∞∑

r=|M |

Γ(r, k) · (Dq1/2)r

where Γ(r, k) is the number of ways to write r as a sum of k non-negative integers (order matters).
Noting that |∂M | ≤ 2|M | one gets k = |∂M | ≤ 2|M | ≤ 2r and thus

Γ(r, k) =

(
r + k − 1

k − 1

)
≤ 2r+k−1 ≤ 8r.

We get ∑
F∈F(∂M)

q|F | ≤
∞∑

r=|M |

(8Dq1/2)r ≤ 2(8Dq1/2)|M |

since, by assumption, 8Dq1/2 ≤ 1/2. We can assume wlog that M 6= ∅ (otherwise both sides of
Eq. (76) equal to one). Then 2 ≤ 2|M | which proves the lemma.

Consider a subset K ⊆ B. We shall define Lift(K) as the set of forests with the boundary ∂K
in a suitable graph. Namely, let Tgl be the graph obtained by gluing together the graphs Te and
Tsc such that the dangling edges (e, e, 1), (e, e, r) ∈ E(Te) are attached to the respective vertices
of V(Tsc), see Fig. 13. The graph Tgl has the set of vertices V(Tsc) ∪ V(Te) and the set of edges
E(Tsc) ∪ E(Te). Note that B = E(Tsc) becomes a subset of edges in the glued graph Tgl. Thus we
define

Lift(K) = F(∂K;Tgl) (77)

as the set of forests in Tgl with boundary ∂K. Below we shall use the following property.

Lemma 29. Suppose M is a minimum matching in the surface code graph Tsc. Then M is also a
minimum matching in the glued graph Tgl.

Proof. Let H ⊆ E(Tgl) be a minimum matching in the graph Tgl such that ∂H = ∂M . Here the
boundary is taken in the graph Tgl. It suffices to check that |H| ≥ |M |. Lemma 26 implies that H is
a forest. Let H = H1 · · ·Hk be the partition of H into edge-disjoint paths established in Lemma 25.
We claim that for any path Hi ⊆ E(Tgl) that has both endpoints in V(Tsc) there exists a subset
Mi ⊆ E(Tsc) such that ∂Hi = ∂Mi and |Hi| ≥ |Mi|. Indeed, let u, v ∈ V(Tsc) be the endpoints of
Hi.

Suppose first that u and v belong to the same connected component of Tsc (i.e. both u and v
belong to the same copy of the surface code). Then the desired path Mi can be chosen as a shortest
path in the graph Tsc connecting u and v. We have |Hi| ≥ |Mi| since Mi is also a shortest path in
the graph Tgl connecting u and v.

Suppose now that u and v belong to different connected components of Tsc (i.e. the path Hi

connects the two surface codes). Then the length of Hi must be at least d. Let M ′
i and M ′′

i

be shortest paths connecting u and v to the nearest rough boundary in the respective connected
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components of Tsc. Since any vertex of Tsc is within distance d/2 from some rough boundary, we
have |M ′

i | ≤ d/2 and |M ′′
i | ≤ d/2. Choose Mi = M ′

iM
′′
i . Then ∂Hi = ∂Mi and |Mi| ≤ d ≤ |Hi|, as

claimed. (We note that this is the only step in the proof of Theorem 23 that requires the separation
between the two surface codes to be sufficiently large.)

Likewise, for any path Hi ⊆ E(Tgl) that starts at some vertex of V(Tsc) and terminates at a
dangling edge of Tgl there exists a path Mi ⊆ E(Tsc) such that ∂Hi = ∂Mi and |Hi| ≥ |Mi|. Let
M ′ = M1 ⊕ · · · ⊕Mk. By construction, ∂M ′ = ∂M = ∂H and |H| ≥ |M ′|. The minimality of M
implies |M ′| ≥ |M |. Thus |H| ≥ |M |.

Now we are ready to verify that the function RepZ satisfies – together with the function Lift –
the property stated in Eq. (62), that is, Property (i) of Definition 24.

Lemma 30. Suppose K ⊆ RepZ(E) for some Pauli error E acting on A. Then∑
L∈Lift(K)

λ|L| ≤ (96λ1/2)|K|. (78)

Proof. By definition of the repair function, RepZ(E) is a minimum matching in the surface code
graph Tsc. Using Lemma 29 one infers that RepZ(E) is a minimum matching in the glued graph Tgl.
By Lemma 27, K is also a minimum matching in Tgl. The maximum vertex degree of Tgl is
D = 6 since Tgl is isomorphic to the 3D cubic lattice. Now Eq. (78) follows from Eq. (77) and
Lemma 28.

To establish that RepZ satisfies the lifting property, it remains to map an error E to a subset
E ′ ∈ Lift(K), as stated in property (ii) of Definition 24. To this end we need the following.

Lemma 31. Suppose F ⊆ E(Tsc) is a minimum matching in the graph Tsc. Suppose Y ⊆ E(Te)
is an arbitrary subset such that ∂Y = ∂F , where the boundary is taken in the graph Tgl. For any
subset K ⊆ F there exists a forest L ∈ Lift(K) such that

L ∩ E(Te) ⊆ Y (79)

and
|L| ≤ 2|L ∩ E(Te)|. (80)

Proof. Use induction in the size of Y . The base of induction is Y = ∅. We have ∂F = ∂Y = ∅.
Since F is a minimum matching, F = ∅. Thus K = ∅ and one can choose L = ∅.

Suppose now that Y is non-empty. Let C = F ∪Y . Since the graphs Tsc and Te have no common
edges, one has F ∩Y = ∅ and thus C = F ⊕Y . Note that C is a cycle in the graph Tgl. Let O ⊆ C
be an arbitrary closed loop or a path starting and ending at a dangling edge. Set

F ′ = F \O and Y ′ = Y \O.

Lemma 27 implies that F ′ is a minimum matching in the graph Tsc. We claim that ∂F ′ = ∂Y ′.
Indeed, F ′ ⊕ Y ′ = F ⊕ Y ⊕ O = C ⊕ O is a sum of two cycles. Thus F ′ ⊕ Y ′ is a cycle, that is,
∂F ′ = ∂Y ′. The loop O must use at least one edge of Y since F contains no cycles, see Lemma 26.
Thus Y ′ contains at most |Y | − 1 edges. Consider two cases.
Case 1: O ∩ K = ∅. Then K ⊆ F ′. The desired forest L can be constructed by applying the
induction hypothesis to K,F ′, Y ′.
Case 2: O ∩K 6= ∅. Set

O′ = O \K and K ′ = K \O
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Apply the induction hypothesis toK ′, F ′, Y ′ to construct a forest L′ ∈ Lift(K ′) such that L′∩E(Te) ⊆
Y ′ and

|L′| ≤ 2|L′ ∩ E(Te)|. (81)

Define
L = L′ ⊕O′.

Then
∂L = ∂L′ ⊕ ∂O′ = ∂K ′ + ∂O′ = ∂(K ′ ⊕O′) = ∂(K ⊕O) = ∂K ⊕ ∂O = ∂K.

Below we show that
|O| ≤ 2|O ∩ E(Te)|. (82)

Therefore

|L| ≤ |L′|+|O′| ≤ |L′|+|O| ≤ 2|L′∩E(Te)|+2|O∩E(Te)| = 2|L′∩E(Te)|+2|O′∩E(Te)| = 2|L∩E(Te)|.

Here the third inequality uses Eqs. (81),(82). The last equality uses the assumption L′∩E(Te) ⊆ Y ′

and the identity Y ′ ∩O′ = ∅.
It remains to prove Eq. (82). Let Osc = O ∩ E(Tsc) and Oe = O ∩ E(Te). We have ∂Osc = ∂Oe,

where the boundary is taken in the graph Tgl. Since F is a minimum matching in the graph Tsc and
Osc ⊆ F , we infer (from Lemmas 27,29) that Osc is a minimum matching in the graph Tgl. Finally,
∂Osc = ∂Oe implies that |Osc| ≤ |Oe| and thus |O| ≤ 2|Oe| which is equivalent to Eq. (82).

The following establishes property (ii) of Definition 24 for the Z-part of the repair function, that
is, the function RepZ .

Lemma 32. Consider a Pauli error E acting on A and a subset K ⊆ RepZ(E). There exists a set
L ∈ Lift(K) such that

|L ∩ Supp(E)| ≥ 1

4
|L|. (83)

Proof. Let M ⊆ E(Te) ∪ E(To) be a minimum weight Pauli-X error such that syn0(M) = syn0(E).
Below we shall identify Pauli errors and their supports. Set

Y = (E ⊕M) ∩ E(Te).

By construction, M ∩ E(Te) and E ∩ E(Te) have the same boundary in the graph Te. Thus Y is a
cycle in the graph Te. Let ∂Y ⊆ V(Tsc) be the boundary of Y in the graph Tgl. By definition of the
repair function, RepZ(E) is a minimum matching in the graph Tsc with the boundary ∂Y . Apply
Lemma 31 with F ≡ RepZ(E) and Y defined above to construct a forest L ∈ Lift(K) satisfying
Eqs. (79),(80). Let us check that L obeys Eq. (83). Indeed, set

M ′ = M ⊕ (L ∩ E(Te)).

By definition of the lift function, ∂L = ∂K where the boundary is taken in the graph Tgl. Thus
L ∩ E(Te) is a cycle in the graph Te and ∂M ′ = ∂M (in the graph Te). The minimality of M gives
|M ′| ≥ |M |. Thus at least half of the edges of L ∩ E(Te) are not contained in M . By Eq. (79),
L ∩ E(Te) ⊆ Y , i.e. at least half of the edges of L ∩ E(Te) are contained in E. We get

|L ∩ E| ≥ |L ∩ E(Te) ∩ E| ≥
1

2
|L ∩ E(Te)| ≥

1

4
|L|.

Here the last inequality follows from Eq. (80).
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V.D. Explicit constants: concluding the proof of Theorem 23

We have established that the function RepZ satisfies the lifting property, see Definition 24. Thus
it converts a local stochastic error with rate p to an error with rate pΩ(1). In more detail, we can use
Eq. (66) of Section IV to upper bound the error rate of RepZ(E). Indeed, the universal constant
c1, c2, c3 from Eq. (66) can be extracted from Lemma 30 and Lemma 32. We get c1 = 96, c2 = 1/2,
and c3 = 1/4. Substituting this into Eq. (66) one gets

RepZ(E) ∼ N (q), q = 96
√

2p1/8. (84)

So far we have ignored the generators SX1 , S
Z
1 corresponding to the logical Bell state stabilizers

X1X2 and Z1 Z2, see Eqs. (72), (73). Consider SX1 first. We claim that the repair operator RepZ(E)
satisfies the syndrome condition

synSX
1

(RepZ(E)) = synSX
1

(E)⊕ synSX
1

(M) . (85)

with probability exponentially close to one. Here synSX
1

(F ) ∈ {0, 1} denotes the syndrome bit

of the logical Bell state stabilizer SX1 for a Pauli error F . Combined with Eq. (75), this implies
that – except with exponentially small probability – the repair operator RepZ(E) obeys the part of
syndrome condition (59) associated with all stabilizer generators of S1 defined by Z-type stabilizers
of the encoded Bell state. In particular, defining RepZ(E) appropriately (see Eq. (86) below) and
arguing analogously about X-type stabilizers ensures that the product Rep(E) (cf. (74)) satisfies
the syndrome condition (59) with certainty.

To prove that (85) is satisfied with probability exponentially close to one, let FAIL be the set of
errors E such that RepZ(E) and E ·M have different syndromes for the generator SX1 . Using the
explicit form of SX1 , see Eq. (72), one gets

FAIL = {E : Parity(RepZ(E)⊕ Ee ⊕Me,Ω) = 1},

where Ee ≡ Supp(E) ∩ E(Te), Me ≡ Supp(M) ∩ E(Te), and

Ω = {(1, e, 1), (1, e, r) ∈ B} ∪ {(1, e, e) ∈ E(Te)}.

Note that Ω includes all dangling edges of the graph Tgl located on the face (1, e, e). By construction,

C ≡ RepZ(E)⊕ Ee ⊕Me

is a cycle in the graph Tgl. Thus the event FAIL happens iff C contains at least one “homologically
non-trivial” path that starts at the face (1, e, e) and ends at the face (r, e, e). Let us fix such a
path H for each error E ∈ FAIL. Let Pr[H] be the combined probability of all errors E ∈ FAIL
that give rise to a given path H. Denote

He = H ∩ E(Te) Hsc = H ∩ E(Tsc).

Note that He is a cycle in the graph Te. The minimality of M implies that |Me⊕He| ≥ |Me|. Since
He is contained in C ∩ E(Te) = Me⊕Ee, we infer that He has at least half of the edges in the error
Ee. Thus

Pr[H] ≤
|He|∑

k=|He|/2

(
|He|
k

)
pk ≤ (2p1/2)|He|.
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We have already shown that RepZ(E) ∼ N (q), see Eq. (84). Since Hsc ⊆ RepZ(E), one has

Pr[H] ≤
|Hsc|∑

k=|Hsc|/2

(
|Hsc|
k

)
qk ≤ (2q1/2)|Hsc|.

For sufficiently small p one has p� q and thus

Pr[FAIL] ≤
∑
H

Pr[H] ≤
∑
H

(2q1/2)|H|/2.

where the sum runs over all paths H in the graph Tgl connecting the face (1, e, e) and the face
(r, e, e). Note that such path must have length l ≡ |H| ≥ r. The number of length-l paths in the
graph Tgl that start at the face (1, e, e) is at most r26l since Tgl has vertex degree at most 6. Thus

Pr[FAIL] ≤ r2

∞∑
l=r

6l(2q1/2)l/2 ≤ 2r2(12q1/4)r ≤ (24q1/4)r

provided that 24q1/4 ≤ 1 and r ≥ 7. This completes the proof of the claim that (85) is satisfied
with probability exponentially close to one.

Now define the random error

RepZ(E) =

{
(Z1)B if E ∈ FAIL

I if otherwise.
(86)

Here the logical operator Z1 acts on the first surface code. Clearly, this definition ensures that the
operator Rep(E) defined in Eq. (74) satisfies (85), and thus the part of the syndrome condition (59)
associated with all X-type stabilizers of the encoded Bell state.

To show that Rep(E) is a local stochastic error with rate as given in Theorem 23, recall that we
have shown in (84) that the factor RepZ(E) in its definition is a local stochastic error with rate q.
We claim that RepZ(E) satisfies

RepZ(E) ∼ N (q0), q0 = 600q1/2.

Indeed, consider some fixed subset K ⊆ B and suppose that K ⊆ RepZ(E). Then |K| ≤ d since Z1

has weight d. Recall that r = 2d− 1. Thus

PrE[K ⊆ RepZ(E)] ≤ Pr[FAIL] ≤ (24q1/4)r ≤ (600q1/2)d = qd0 ≤ q
|K|
0 .

Exactly the same arguments (with the graphs Te, Tsc replaced by To, T
∗
sc) show that RepX(E) ∼ N (q)

and RepX(E) ∼ N (q0). Finally, using part (iii) of Lemma 11 we conclude that the full repair
operator Rep(E) defined in Eq. (74) obeys

Rep(E) ∼ N (26p1/64).

This completes the proof of Theorem 23.

VI. FAULT-TOLERANT QUANTUM ADVANTAGE ON A 3D GRID

Here we consider Algorithm 1 specialized to the 1D Magic Square Problem and encode each qubit
using the surface code. We show how to implement this algorithm by a constant-depth quantum
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circuit that uses only nearest-neighbor gates on a 3D grid with O(1) qubits per site. For simplicity,
we allow classical control to be geometrically non-local. At the end of this section we will discuss
how one can modify the relation problem to remove this assumption.

Recall that the ideal quantum circuit solving the 1D Magic Square Problem operates on a register
of 4n qubits labeled as p1, . . . , p2n and q1, . . . , q2n, see Fig. 4. The circuit consists of the following
operations :

(i) Initializing a pair of qubits (p2i−1, p2i) or (q2i−1, q2i) in the Bell state Φ.

(ii) Applying CNOT, SWAP to a pair of qubits (p2i, p2i+1) or (q2i, q2i+1) or (pj, qj).

(iii) Applying a single-qubit Clifford gate H, Z or S.

(iv) Measuring a qubit in the Z-basis.

Here the operations (ii,iii) are classically controlled by the input bits specifying an instance of the
problem.

!"#$%
|'Φ⊗"⟩

!"#

+"#$% +"#

,#
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FIG. 14: A chain of 3D cubes Ci. Each cube is a copy of the 3D lattice C shown on Fig. 11. A pair
of surface codes is attached to the left and to the right face of each cube Ci.

We shall encode each qubit pi and qi by the distance-d surface code denoted Pi andQi respectively.
Each surface code is attached to a face of a 3D cubic lattice C of linear size r = 2d − 1 shown on
Fig. 11 (see Section V for a formal definition of C). Let C1, . . . , Cn be n copies of the lattice C. For
brevity, we shall refer to each lattice Ci as a cube. Each site of Ci holds O(1) physical qubits (we
shall need at most four qubits per site). Surface codes P2i−1 and Q2i−1 are attached to the left face
of the cube Ci such that the two codes share the same subset of sites on the face of Ci. Likewise, we
attach surface codes P2i and Q2i to the right face of the cube Ci. We arrange the cubes C1, . . . , Cn
into a one-dimensional chain such that the right face of Ci is next to the left face of Ci+1, see Fig. 14.

A pair of logical Bell states Φ shared between the codes P2i−1, P2i and between the codes Q2i−1,
Q2i can now be created in a single-shot fashion by a depth-6 Clifford circuit operating on the cube Ci
with nearest neighbor two-qubit gates, see Theorem 23. This provides a robust (logical) realization
of the initialization operation (i).

Recall that the surface code enables transversal logical CNOT and SWAP gates. In the one-
dimensional chain shown in Fig. 14, a pair of the surface codes P2i, Q2i is located next to P2i+1, Q2i+1.
Furthermore, the codes Pj and Qj share the same subset of sites. Thus a logical CNOT (respectively
SWAP) can be applied to pairs of logical qubits (P2i, P2i+1), (Q2i, Q2i+1), and (Pj, Qj) by a depth-1
quantum circuit composed of geometrically local physical CNOT (respectively SWAP) gates. This
provides the necessary encoded two-qubit operations (ii).

The surface codes also permits a transversal implementation of the logical Z gate. To make the
logical gates H, S geometrically local we shall replace each surface code by its folded version defined
in Section IV. Accordingly, each cube Ci is replaced by a wedge Wi in which pairs of sites obtained
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FIG. 15: A wedge Wi obtained from a cube Ci by folding it against the diagonal plane. A pair of
folded surface codes is attached to the left and to the right faces of Wi.

from each other by a reflection against the diagonal plane are identified. An example of the wedge
Wi and the folded surface codes attached to its faces are shown on Fig. 15. Since any reflection is a
distance-preserving operation, all geometrically local gates used at steps (i,ii) remain geometrically
local after mapping cubes Ci to wedgesWi. As shown in Section IV, the folded surface code enables
implementation of logical H, Z and S gates by a depth-1 Clifford circuit composed of geometrically
local gates. This completes the description of the fault-tolerant realization of the operations (iii).

Finally, we recall that a logical Z-measurement can be realized fault-tolerantly in the surface
code by measuring each qubit in the Z-basis and decoding the result as discussed in Section IV.B,
see Theorem 22. We conclude that fault-tolerant analogues of all operations (i–iv) can be imple-
mented by geometrically local constant-depth Clifford circuits on a 3D grid of qubits. Thus we can
implement Algorithm 1 and solve the noise-tolerant version of the 1D Magic Square relation using
a constant-depth quantum circuit with geometrically local gates in 3 dimensions.

Let us now briefly sketch how one can also make the classical control geometrically local, if
desired. Note that every input bit to the 1D Magic Square Problem only acts as a control in O(1)
Clifford gates in the ideal quantum circuit U which solves it. We may then imagine prepending a
classical copying circuit Ccopy to the quantum circuit. The circuit Ccopy simply creates a local copy
of each input bit next to every gate location where it is used as a control in the fault-tolerant circuit
of Fig. 8b. Then we can write down an extended fault-tolerant quantum circuit U ext which accesses
these copies of input bits and which only involves locally controlled gates.

Matching the definition of the extended quantum circuit U ext, we may define an extended fault-
tolerant relation Rext

U . The outputs of this relations are identical to that of RU , but the input is
modified as there are now additional input bits. Suppose a subset S ⊂ {0, 1}v of problem instances
(inputs) can be used to show a quantum advantage for the relation RU . We claim that the subset
Ccopy(S) of inputs for Rext

U can be used to show an advantage for the extended relation: Clearly, the
input/output pairs of the extended quantum circuit U ext, for any input belonging to Ccopy({0, 1}v),
satisfy the relation Rext

U with high probability. To show that the extended relation “remains hard”
for classical circuits, observe that by assumption and because every code block has size m, the
copying circuit Ccopy can be realized by a depth-1 circuit using O(m)-local gates. Thus any classical
circuit Cext for the extended relation Rext

U can be modified to act as a classical circuit for RU by
prepending Cext, increasing the circuit depth only by a constant without changing the fan-in beyond
the restriction given in Theorem 19. This implies the claim.
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