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Abstract

Longest common subsequence (LCS) is a classic and central problem in combinatorial opti-
mization. While LCS admits a quadratic time solution, recent evidence suggests that solving
the problem may be impossible in truly subquadratic time. A special case of LCS wherein each
character appears at most once in every string is equivalent to the longest increasing subse-
quence problem (LIS) which can be solved in quasilinear time. In this work, we present novel
algorithms for approximating LCS in truly subquadratic time and LIS in truly sublinear time.
Our approximation factors depend on the ratio of the optimal solution size over the input size.
We denote this ratio by λ and obtain the following results for LCS and LIS without any prior
knowledge of λ.

• A truly subquadratic time algorithm for LCS with approximation factor Ω(λ3).

• A truly sublinear time algorithm for LIS with approximation factor Ω(λ3).

Triangle inequality was recently used by Boroujeni, Ehsani, Ghodsi, HajiAghayi and Sed-
dighin [BEG+18] and Charkraborty, Das, Goldenberg, Koucky and Saks [CDG+18] to present
new approximation algorithms for edit distance. Our techniques for LCS extend the notion of
triangle inequality to non-metric settings.
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1 Introduction

We consider three problems in combinatorial optimization: the longest common subsequence (LCS),
the edit distance (ED), and the longest increasing subsequence (LIS). The LCS of two strings A and
B is simply their longest (not necessarily contiguous) common subsequence. The edit distance is
defined as the minimum number of character deletions, insertions, and substitutions required to
transform A into B. For the purpose of our discussion, we consider a more restricted definition of
edit distance where substitutions are not allowed1. Longest increasing subsequence is equivalent
to a special case of LCS where the input strings are permutations. All three problems are very
fundamental and have been subject to a plethora of studies in the past few decades and specially in
recent years [LMS98, BYJKK04, BES06, AO09, AKO10, SS10, BI15, ABW15, AHWW16, AB17,
AR18, CGL+19, BEG+18, CDG+18, HSSS19].

If the strings have length n, both LCS and ED can be solved in quadratic time (O(n2)) with
dynamic programming. These running times are slightly improved to O(n2/ log2(n)) by Masek and
Paterson [MP80], however, efforts to improve the running time to O(n2−Ω(1)) for either edit distance
or LCS were all futile.

In recent years, our understanding of the source of complexity for these problems improved
thanks to a sequence of fine-grained complexity developments [ABW15, AHWW16]. We now know
that assuming the strong exponential time hypothesis (SETH) [ABW15], or even weaker assumptions
such as the orthogonal vectors conjecture (OVC) [ABW15] or branching-program-SETH [AHWW16],
there are no truly sub-quadratic2 time algorithms for LCS. Similar results also hold for edit distance
[BI15].

The classic approach to break the quadratic barrier for these problems is approximation algo-
rithms. Note that for (multiplicative) approximations, LCS and edit distance are no longer equivalent
(much like we have a 2-approximation algorithm for Vertex Cover, but Independent Set is NP-hard
to approximate within near-linear factors).

For edit distance, an Õ(n + ∆2)-time algorithm of [LMS98] (where ∆ is the true edit distance
between the strings) implies a linear-time

√
n-approximation algorithm. The approximation factor

has been significantly improved in a series of works to O(n3/7) [BYJKK04], to O(n0.34) [BES06],
to O(2Õ(

√
logn)) [AO09]3, and finally to polylogarithmic [AKO10]. A recent work of Boroujeni et

al. [BEG+18] obtains a constant factor approximation quantum algorithm for edit distance that
runs in truly subquadratic time. Finally, the breakthrough of Chakraborty et al. [CDG+18] gave a
classic (randomized) constant factor approximation for edit distance in truly subquadratic time. A
key component in both of the latest constant factor approximation algorithms is the application of
triangle inequality (for edit distance between certain substrings of the input). A particular challenge
in extending these ideas to LCS is that LCS is not a metric and in particular does not satisfy the
triangle inequality.

Our understanding of the complexity of approximate solutions for LCS is embarrassingly limited.
For general strings, there are several linear-time 1/

√
n-approximation algorithms based on sampling

techniques. For alphabet size |Σ|, there is a trivial 1/|Σ|-approximation algorithm that runs in
linear time. Whether or not these approximation factors can be improved by keeping the running
time linear is one of the central problems in fine-grained complexity. Very recently, both the general
1/
√
n-approximation factor, and, for binary strings, the 1/2-approximation factor, have been slightly

improved ([HSSS19] and [RS20], respectively). These works give improved algorithm for the two
1Alternatively, the cost of a substitution is doubled as it requires a deletion and an insertion.
2By truly sub-quadratic we mean O(n2−ε), for any constant ε > 0
3We define Õ(f) to be f · logO(1)(f).
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extreme cases where the size of the alphabet is very small or very large. In comparison, our
approximation guarantee depends on the solution size rather than the size of the alphabet. Also,
for the special case of balanced strings, we improve upon the result of [RS20] by obtaining an
o(|Σ|) approximate solution in subquadratic time. There are a few fine-grained complexity results
for approximate LCS, but they only hold against deterministic algorithms, and rely on very strong
assumptions [AB17, AR18, CGL+19].

1.1 Our Results

For simplicity, we use lcs(A,B) to denote the size (not the whole sequence) of the longest common
subsequence for two strings A and B. Similarly, we use ed(A,B) to denote the edit distance and
lis(A) for the size of the longest common subsequence. We sometimes normalize the solution by
the length of the strings so that the size of the solution remains in the interval [0, 1]. We refer to
the normalized solutions by ||lcs(A,B)|| = lcs(A,B)/n and || ed(A,B)|| = ed(A,B)/2n (here both
strings have equal length n), and ||lis(A)|| = lis(A)/n. In this way, || ed(A,B)|| + ||lcs(A,B)|| = 1
(assuming both strings have equal length).

As mentioned earlier, recent developments for edit distance are based on a simple but rather
useful observation. Edit distance satisfies triangle inequality, or in other words, given three strings
A1, A2, A3 of length n such that || ed(A1, A2)|| ≤ δ and || ed(A2, A3)|| ≤ δ hold, we can easily imply
that || ed(A1, A3)|| ≤ 2δ. While lcs does not satisfy the triangle inequality in any meaningful way, it
does, on average, satisfy the following birthday-paradox-like property that we call birthday triangle
inequality.

Property 1.1 (birthday triangle inequality). Consider three equal-length strings A1, A2, and A3

such that ||lcs(A1, A2)|| ≥ λ and ||lcs(A2, A3)|| ≥ λ. If the common subsequences correspond to
random indices of each string, we expect that ||lcs(A1, A3)|| ≥ λ2.

Of course, this is not necessarily the case in general. More precisely, it is easy to construct
examples4 in which ||lcs(A1, A2)|| = 1/2 and ||lcs(A2, A3)|| = 1/2, but ||lcs(A1, A3)|| = 0. Our
main result shows that while it only holds on average, we can algorithmically replace the triangle
inequality for edit distance with the birthday triangle inequality on worst case inputs.

Theorem 1.2 (Main Theorem, formally stated as Theorems 2.1 and 2.2). Given strings A,B both
of length n such that || lcs(A,B)|| = λ, we can approximate the length of the LCS between the two
strings within an Ω(λ3) factor in subquadratic time. The approximation factor improves to (1−ε)λ2

when 1/λ is constant.

We remark that our algorithm is actually able to output the whole sequence of the solution,
but we only focus on estimating the size of the solution for simplicity. We begin by comparing
our main theorem to previous work on edit distance. In this case, 1/λ is constant w.l.o.g.5 and
therefore the approximation factor of our algorithm is (1− ε)λ2. If δ = || ed(A,B)||, then our LCS
algorithm outputs a transformation from A to B using at most 2n(1− (1− ε)(1− δ)3) operations.
Observe that when the strings are not overly close and δ = Ω(1) by scaling ε, we already recover
a (3 + ε′)-approximation for edit distance in truly subquadratic time. For mildly far strings, say
δ = 0.1, a more careful look at the expansion of (1− δ)3 reveals that we save an additive Θ(δ2) in
the approximation factor. For example, with δ = 0.1 our approximation factor for edit distance is
2.71 instead of 3.

4For example, A1 = 0n/20n/2, A2 = 0n/21n/2, A3 = 1n/21n/2.
5When we use our solution to approximate edit distance, we can safely assume that ||lcs(A,B)|| = Ω(1) since

otherwise the edit distance of the two strings is very close to 2n.
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An interesting implication of our main result is for LCS over a large alphabet Σ, where the
optimum || lcs(A,B)|| may be much smaller than 1. This is believed to be the hardest regime for
approximation algorithms (and indeed the only one for which we have any conditional hardness of
approximation results [AB17, AR18, CGL+19]). Here, we consider instances that satisfy a mild
balance assumption: we assume that there is a character that appears with frequency at least 1/|Σ|
in both strings6. Then, our main theorem implies an O(1/|Σ|3/4)-approximate solution in truly
subquadratic time (the first improvement over the trivial 1/|Σ| approximation in this regime).

Corollary 1.3 (LCS, formally stated as Corollary 2.3). Given a pair of strings (A,B) of length n
over alphabet Σ that satisfy the balance condition, we can approximate their LCS within an O(|Σ|3/4)
factor in truly subquadratic time.

Next, we show that a similar result can be obtained for LIS. Perhaps coincidentally, the approx-
imation factor of our algorithm is also Ω(λ3) which is same to LCS, but the technique is completely
different. Although LIS can be solved exactly in time O(n log n), there have been several attempts
to approximate the size of LIS and related problems in sublinear time [Sch61, Fre75, DGL+99,
EKK+00, Fis04, ACCL07, SS10]. The best known solution is due to the work of Saks and Se-
shadhri [SS10] that obtains a (1 + ε)-approximate algorithm for LIS in polylogarithmic time, when
the solution size is at least a constant fraction of the input size 7. In other words, if ||lis(A)|| = λ
and 1/λ is constant, their algorithm approximates lis(A) in polylogarithmic time. However, this
only works if 1/λ is constant and even if 1/λ is logarithmically large, their method fails to run
in sublinear time8. We complement the work of Saks and Seshadhri [SS10] by presenting a result
for LIS similar to our result for LCS. More precisely, we show that when ||lis(A)|| = λ, an Ω(λ3)
approximation of LIS can be obtained in truly sublinear time. Although our approximation factor
is worse than that of [SS10], our result works for any (not necessarily constant) λ.

Theorem 1.4 (LIS, formally stated as Theorem 6.8). Given an array A of n integer numbers such
that ||lis(A)|| = λ. We can approximate the length of the LIS for A in sublinear time within a factor
Ω(λ3).

If one favors the running time over the approximation factor, it is possible to improve the
exponent of n in the running time down to any constant κ > 0 at the expense of incurring a larger
multiplicative factor to the approximation.

1.2 Preliminaries

In LCS or edit distance, we are given two strings A and B as input. We assume for simplicity that
the two strings have equal length and refer to that by n. In LCS, the goal is to find the largest
subsequence of the characters which is shared between the two strings. In edit distance, the goal
is to remove as few characters as possible from the two strings such that the remainders for the
two strings are the same. We use lcs(A,B) and ed(A,B) to denote the size of the longest common
subsequence and the edit distance of two strings A and B.

In LIS, the input contains an array A of n integer numbers and the goal is to find a sequence
of elements of A whose values (strictly) increase as their indices increase. For LIS, we denote the
solution size for an array A by lis(A). We also use lis[α,β](A) to denote the size of the longest

6Note that in every instance in each string there is a character that appears with frequency at least 1/|Σ|, but in
general that may not be the same character.

7Their algorithm obtains an additive error of δn in time 2Õ(1/δ). When the solution size is bounded by λn, one
needs to set δ < λ in order to guarantee a multiplicative factor approximation.

8There is a term (1/λ)1/λ in the running time.
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increasing subsequence subject to elements whose values lie in range [α, β]. Longest increasing
subsequence is equivalent to LCS when the inputs are two permutations of n distinct characters.

Finally, we define a notation to denote the normalized solution sizes. For LCS, we denote the
normalized solution size by ||lcs(A,B)|| = lcs(A,B)/

√
|A||B| for A and B and we use || ed(A,B)|| =

ed(A,B)/(2
√
|A||B|) for edit distance. Note that, when the two strings have equal length we

have || ed(A,B)|| + ||lcs(A,B)|| = 1. Similarly, for longest increasing subsequence, we denote by
||lis(A)|| = lis(A)/|A| the normalized solution size. We usually refer to the size of the input array
by n.

Throughout this paper, we call an algorithm f(λ)-approximation for LCS if it is able to distin-
guish the following two cases: i) ||lcs(A,B)|| ≥ λ or ii) ||lcs(A,B)|| < λf(λ). A similar definition
carries over to LIS. Once an f(λ)-approximation algorithm is provided for either LCS or LIS, one can
turn it into an algorithm that outputs a solution with size f(λ)(1− ε)λn provided that the optimal
solution has a size λn. The algorithm is not aware of the value of λ but will start with λ0 = 1 and
iteratively multiply λ0 by 1− ε until a solution is found.

1.3 Techniques Overview

Our algorithm for LCS is inspired by the recent developments for edit distance [BEG+18, CDG+18].
We begin by briefly explaining the previous ideas for approximating edit distance and then we show
how we use these techniques to obtain a solution for LCS. Finally, in Section 1.3.2 we outline our
algorithm for LIS.

1.3.1 Summary of Previous ED Techniques

Indeed, edit distance is hard only if the two strings are far (|| ed(A,B)|| = δ and δ = n−o(1))
otherwise the O(n + (nδ)2) algorithm of Landau et al. [LMS98] computes the solution in truly
subquadratic time. The algorithm of Chakraborty et al. [CDG+18] for edit distance has three main
steps that we briefly discuss in the following.

Step 0 (window-compatible solutions): In the first step, they construct a set of windows, or
(contiguous) substrings, WA for string A, and WB for string B. Let k denote the total number of
windows of WA ∪WB. For simplicity, let all the windows have the same size d and n ' O(kd)9.
The construction features two key properties: 1) provided that the edit distances of the windows
between WA and WB are available, one can recover a 1 + ε approximation of edit distance in time
Õ(n+ k2) via dynamic programming. 2) k2 × d2 ' O(n2). That is, if we naively compute the edit
distance of every pair of windows, the overall running time would still asymptotically be the same
as that of the classic algorithm.

In order to obtain a solution for edit distance, it suffices to know the distances between the
windows. However, Chakraborty et al. [CDG+18] show that knowing the distances between some
of the window pairs is enough to obtain an approximately optimal solution for edit distance. Step
1 provides estimates for the distances of the windows which is approximately correct except for
O(k2−Ω(1)) many pairs and Step 2 shows how this can be used to obtain a solution for edit distance.
Discretization simplifies the problem substantially. For a fixed 0 ≤ δ ≤ 1, they introduce a graph
Gδ where the nodes correspond to the windows and an edge between window wi ∈WA and window
wj ∈ WB means that || ed(wi, wj)|| ≤ δ. If we are able to construct Gδ for logarithmically different
choices of δ, we can as well estimate the distances within a 1 + ε factor for the windows. Therefore

9The equality holds if we assume δ = Ω(1).
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the problem boils down to constructing Gδ for a fixed given δ without computing the edit distance
between all pairs of windows.

Step 1 (sparsification via triangle inequality): This step is the heart of the algorithm. Sup-
pose we choose a high-degree vertex v from Gδ and discover all its incident edges by computing its
edit distance to the rest of the windows. Triangle inequality implies that every pair of windows in
N(v) has a distance bounded by 2δ. Therefore by losing a factor 2 in the approximation, one can
put all these edges in Gδ and not compute the edit distances explicitly. Although this does save
some running time, in order to make sure the running time is truly subquadratic, we need to make
a similar argument for paths of length 3 and thereby lose a factor 3 in the approximation. This
method sparsifies the graph and what remains is to discover the edges of a sparse graph.

Step 2 (discovering the edges of the sparse graph): Step 1 uses triangle inequality and
discovers many edges between the vertices of Gδ. However, it may not discover all the edges
completely. When in the remainder graph, the degrees are small (and hence the graph is sparse)
triangle inequality does not offer an improvement and thus a different approach is required. Roughly
speaking, Chakraborty et al. [CDG+18] subsample the windows of WA into a smaller set S and
discover all pairs of windows wi ∈ S and wj ∈WB such that edge (i, j) is not discovered in Step 1.
Next, they compute the edit distance of each pair of windows (wi, wj), wi ∈WA, wj ∈WB such that
there exist two nearby windows (wa, wb) satisfying wa ∈ S,wb ∈WB and the edge between wa and
wb was missed in Step 1. The key observation is that even though this procedure does not discover
all the edges, the approximated distances lead to an approximate solution for edit distance.

1.3.2 LCS

Our algorithm for LCS mimics the same guideline. In addition to this, Steps 0 and 2 of our
algorithm are LCS analogues of the ones used by Chakraborty et al. [CDG+18]. The main novelty
of our algorithm is Step 1 which is a replacement for triangle inequality. Recall that unlike edit
distance, triangle inequality does not hold for LCS.

Challenge 1.5. How can we introduce a notion similar to triangle inequality to a non-metric setting
such as LCS?

We introduce the notion of birthday triangle inequality to overcome the above difficulty. Given
windows w1, w2, and w3 of size d such that ||lcs(w1, w2)|| ≥ λ and ||lcs(w2, w3)|| ≥ λ hold, what
can we say about the LCS of w1 and w3? In general, nothing! ||lcs(w1, w3)|| could be as small as 0.
However, let us add some randomness to the setting. Think of the LCS of w1 and w2 as a matching
from the characters of w1 to w2 and similarly the LCS for w2 and w3 as another matching between
characters of w2 and w3. Assume (for the sake of the thought experiment) that the characters
of w2 appear randomly in each matching. Since ||lcs(w1, w2)|| ≥ λ, each character of w2 appears
with probability at least λ in the matching between w1 and w2. A similar argument implies that
each character of w2 appears with probability λ in the matching of w2 and w3. Thus, (assuming
independence), each character of w2 appears in both matchings with probability λ2. This means that
in expectation, there are λ2d paths of length 2 between w1 and w3 which suggests ||lcs(w1, w3)|| ≥ λ2

as shown in Figure 1. This is basically birthday paradox used for the sake of triangle inequality.
Replacing triangle inequality by birthday triangle inequality is particularly challenging since

birthday triangle inequality only holds on average. In contrast, triangle inequality holds for any
tuple of arbitrary strings. Most of our technical discussions is dedicated to proving that we can
algorithmically use birthday triangle inequality to obtain a solution for the worst-case scenarios.
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w2

w1 w3

Figure 1: Birthday paradox for triangle inequality: let w1, w2, w3 be three windows of length d = 8
and assume λ = 1/2. The LCS between w1 and w2 is λd = 4 and the LCS between w2 and w3 is
λd = 4. Finally due to birthday paradox, we expect that the LCS between w1 and w3 is λ2d = 2.

The most inconvenient step of our analysis is to show that our algorithm estimates the LCS of most
window pairs in the sparsification phase. While this is straightforward for edit distance, birthday
triangle inequality requires a deeper analysis of the underlying graph. In particular, we need to
prove that if the undiscovered edges are too many, then birthday triangle inequality can be applied
to certain neighborhoods of the graph.

There are two difficulties that we face here. On one hand, in order to apply birthday triangle
inequality to a subgraph, we need to have enough structure for that subgraph to show the impli-
cation can be made. On the other hand, our assumptions cannot be too strong, otherwise such
neighborhoods may not cover the edges of the graph. Therefore, the first challenge that we need
to overcome is characterizing subgraphs in which birthday triangle inequality is guaranteed to be
applicable. Our suggestion is the bi-cliques structure. Although combinatorial techniques seem
unlikely to prove this, we use the Blakley-Roy inequality to show that in a large enough bi-clique,
we can use birthday triangle inequality to imply a bound on the LCS of certain pairs. The second
challenge is to prove that if the underlying graph is dense enough, the graph contains many bi-
cliques that cover almost all the edges that we plan to discover. This is again a challenging graph
theoretic problem. We leverage extremal graph theory tools such as Turan’s theorem for cliques
and bi-cliques to obtain this bound.

Similar to edit distance, we construct a set W = WA ∪WB of k windows in Step 0 and aim to
sparsify the edges of the lcs-graph in Step 1. Our construction ensures that kd ' Θ(n) and that
knowing the LCS of the window pairs suffices to approximate the LCS of the two strings. For a
threshold 0 ≤ λ ≤ 1, define a matrix O : [k]× [k]→ {0, 1} to be a matrix which identifies whether
||lcs(wi, wj)|| ≥ λ. In other words, O[i][j] = 1 ⇐⇒ ||lcs(wi, wj)|| ≥ λ. For an 0 < α ≤ 1, we call a
matrix Oα an α approximation of O if it meets the following two conditions:

Oα[i][j] = 0 =⇒ ‖lcs(wi, wj)‖ < λ and Oα[i][j] = 1 =⇒ ‖lcs(wi, wj)‖ ≥ α · λ

Notice that Oα gives more flexibility than O for the cases that λα ≤ lcs(wi, wj) < λ. That is,
both 0 and 1 are acceptable in these cases. Indeed an α approximation algorithm for the above
problem is enough to obtain an α approximation algorithm for LCS. However, this is not necessary
as Step 2 allows for incorrect approximation for up to k2−Ω(1) many window pairs. Therefore, the
problem of approximating LCS essentially boils down to approximating O for a given basket of
windows W = Wa ∪Wb and a fixed λ by allowing sufficiently small error in the output. A naive
solution is to iterate over all pairs wi and wj and compute lcs(wi, wj) in time O(d2) and determine
O accordingly. However, this amounts to a total running time of O(k2d2) which is quadratic and
not desirable. In order to save time, we need to compute the LCS of fewer than k2 pairs of windows.
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To make this possible, we allow our algorithm to miss up to O(k2−Ω(1)) edges of the graph. Step 2
ensures that this does not hurt the approximation factor significantly.

We construct a graph from the windows wherein each vertex corresponds to a window and each
edge identifies a pair with a large LCS (in terms of λ). Let us call this graph the lcs-graph and denote
it by Gλ. The goal is to detect the edges of the graph by allowing false-positive. As we discussed
earlier, the hard instances of the problem are the cases where the lcs-graph is dense for which we need
a sparsifier. Roughly speaking, in our sparsification technique, our algorithm constructs another
graph Ĝλ such that Ĝλ is valid in the sense that the edges of Ĝλ correspond to pairs of windows
with large enough LCS. In addition to this, our algorithm guarantees that after the removal of the
edges of Ĝλ from Gλ the remainder is sparse. In other words, |E(Gλ) \E(Ĝλ)| = O(|V (Gλ)|2−Ω(1)).
Of course, if the overall running time of the sparsification phase is truly subquadratic, the error of
undiscovered edges can be addressed by the techniques of [CDG+18] in Step 2. Below, we bring a
formal definition for sparsification.

sparsification
input: Windows w1, w2, . . . , wk, parameters λ, and α.
solution: A matrix Ôα ∈ {0, 1}k×k such that:

• Ôα[i][j] = 1 =⇒ ||lcs(wi, wj)|| ≥ α · λ

•
∣∣∣{(i, j) | ||lcs(wi, wj)|| ≥ λ and Ôα[i][j] = 0

}∣∣∣ = k2−Ω(1)

We present two sparsification techniques for LCS. The first one (Section 3.1), has an approxi-
mation factor of (1 − ε) · λ2. In Section 3.2 we present another sparsification technique that has a
worse approximation factor Ω(λ3) but leaves fewer edges behind. Although the second sparsification
technique has a worse approximation factor, it has the advantage that the number of edges that
remain in the sparse graph is truly subquadratic regardless of the value of λ and therefore it extends
our solution to the case that λ = o(1) (see Section 3.2 for a detailed discussion).

Let us note one last algorithmic challenge to keep in mind before we begin to describe our
sparsification techniques. For edit distance, if window pairs (w1, w2) and (w2, w3) are close, we
are guaranteed that w1 and w3 are also close; for longest common subsequence, we will argue that
(w1, w3) are likely to be have a long LCS (for a “random” choice of (w1, w3)). Nonetheless, in order
to add (w1, w3) as an edge to our graph we have to verify that their LCS is indeed long. If we were
to verify an edge naively, we would need as much time as computing the LCS between (w1, w3) from
scratch!

Sparsification 1, (1− ε)λ2-approximation Similar to edit distance, applying the birthday vari-
ant of triangle inequality to paths of length 2 for LCS does not improve the running time significantly.
Therefore, we need to use birthday triangle inequality for paths of length 3. To this end, we define
the notion of constructive tuples as follows: a tuple 〈wi, wa, wb, wj〉 is an (ε, λ)-constructive tuple,
if we have ||lcs(wi, wa)|| ≥ λ, ||lcs(wi, wj)|| ≥ λ, ||lcs(wb, wj)|| ≥ λ and by taking the intersection
of the three LCS matchings, we are able to imply ||lcs(wa, wb)|| ≥ (1 − ε)λ3 (see Figure 2 for an
example). Taking the intersection of the matchings can be done in linear time which is faster than
computing the LCS.

Our sparsification technique here is simple but the analysis is very intricate. We subsample
a set S of windows and compute the LCS of every window in S and all other windows. We set
|S| = kγ log k, where γ ∈ (0, 1). At this point, for some pairs, we already know their LCS. However,
if neither wi nor wj is in S, we do not know if ||lcs(wi, wj)|| ≥ λ or not. Therefore, for such pairs,
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wi

wa

wb

wj

Figure 2: Let wi, wa, wb and wj denote four windows and each of them has length d = 8. This
figure shows how the intersection of the edges of three windows are taken in order to construct a
solution for the LCS of wi and wj . If the size of the intersection is large, then such a tuple is called
constructive. The solid lines represent LCS between two strings, and the dashed line represents the
intersection of the three LCSs.

we try to find windows wa, wb ∈ S such that 〈wi, wa, wb, wj〉 is constructive. If such a constructive
tuple is found for a pair of windows, then we conclude that their normalized LCS is at least (1−ε)λ3.

All that remains is to argue that this method discovers almost all the edges of the lcs-graph Gλ
and the number of undiscovered edges is k2−Ω(1). This is the most difficult part of the analysis.
We note that even proving the existence of only one constructive tuple is already non-trivial even
when Gλ is complete. However, our goal is to show that almost all the edges are discovered via
constructive tuples when Gλ is dense (and of course not necessarily complete).

Define a pair of windows wi and wj to be well-connected, if there are at least k2−γ different
(wa, wb) pairs such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive. Since each window appears in S with
probability kγ−1 log k, for each well-connected pair we find one constructive tuple via our algorithm
with high probablity. Therefore, we need to prove that the total number of pairs (wi, wj) such that
(wi, wj) is not well-connected but ||lcs(wi, wj)|| ≥ λ is subquadratic. Let us put these edges in a
new graph NGλ whose vertices are all the windows.

We first leverage the Blakley-Roy inequality and a double counting technique to prove that if
NGλ has a large complete bipartite subgraph, then there is one constructive tuple which includes
only the vertices of this subgraph (Lemma 3.12). Next, we apply the Turan’s theorem to show that if
NGλ is dense, then it has a lot of large complete bipartite subgraphs. Finally, we use a probabilistic
method to conclude that NGλ cannot be too dense otherwise there are a lot of constructive tuples
in the graph which implies that at least one edge (wi, wj) in NGλ is well-connected. This is not
possible since all the well-connected pairs are detected in our sparsification algorithm with high
probability.

The above argument proves that if we sparsify our graph using our sparsification algorithm, the
remainder graph would have a subquadratic number of edges. Therefore after plugging Step 2 into
the algorithm, the running time remains subquadratic. However, since Turan theorem gives us a
weak bound, the running time of the algorithm using this sparsification is O(n2−Ω(λ)) and is only
truly subquadratic when 1/λ is constant.

Sparsification 2, Ω(λ3)-approximation In Section 3.1, we present another sparsification method
that although gives us a slightly worse approximation factor Ω(λ3) it always leaves a truly sub-
quadratic number of edges behind and therefore the running time of the algorithm would be truly
subquadratic regardless of the parameter λ. This sparsification is based on a novel data structure.
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We assume for simplicity in the following that all the windows are of the same length even though
this does not hold in general and having windows of different length adds more complication to the
algorithm. We discuss the details in Section 3.1.

Let opti,a denote the longest common subsequence of wi and wa (with some fixed tie-breaking
rule, e.g. lexicographically first). Define lcswa(wi, wj) to be the size of the longest common subse-
quence between opti,a and wj . Notice that this definition is no longer symmetric. Let ||lcswa(wi, wj)||
denote the relative value, i.e., ||lcswa(wi, wj)|| = lcswa(wi, wj)/

√
|wi| · |wj |. The first ingredient of

the algorithm is a data-structure, namely lcs-cmp. After a preprocess of time O(|wa|
∑

i∈S |wi|),
lcs-cmp is able to answer queries of the following type in time O(|wi|+ |wj |):

• “for a 0 ≤ λ̃ ≤ 1 either certify that ‖lcswa(wi, wj)‖ ≥ Ω(λ̃2) or report that

‖lcswa(wi, wj)‖ < O(λ̃)”

.

In our sparsification, we repeat the following procedure kγ times, where γ ∈ (0, 1). We sample a
window wa uniformly at random and construct lcs-cmp(wa, S) for S = {wi|i 6= a and |wi| ≥ |wa|}.
After the preprocessing step, we make a query for every pair of windows (wi, wj) such that wi, wj ∈ S
and determine if lcswa(wi, wj) is at least Ω(λ4) or upper bounded by O(λ2) (here λ̃ = λ2/2). If
their LCS is at least Ω(λ4) we report this pair as an edge in our lcs-graph. Finally, we use the Turan
theorem to prove that the number of remaining edges in our graph is small.

To be more precise, we first construct a graph NGλ that reflects the edges that are not detected
via our sparsification. If NGλ is dense enough, then there is one vertex v in NGλ with a large
enough degree. We use the neighbors of v to construct another graph NFλ with vertex set N(v).
An edge exists in NFλ if max{‖lcswv(wi,wj)‖, ‖lcswv(wj ,wi)‖} ≥ Ω(λ2). We prove that NFλ has no
large independent set. In other words, if we select a large enough set of vertices in NFλ, then there
is at least one edges between them. Next, we apply the Turan theorem to prove that NFλ is dense.
Finally, we imply that since NFλ is dense, there is one vertex u in the neighbors of v such that there
are a lot of 2-paths between v and u. This implies that the edge (u, v) should have been detected
in our sparsification and therefore must not exist in NGλ. This contradiction implies that NGλ is
sparse in the first place.

1.3.3 LIS

In this section, we present our result for longest increasing subsequence. More precisely, we show
that when the solution size is lower bounded by nλ (λ ∈ [0, 1]), one can approximate the solution
within a factor Ω(λ3) in time Õ(

√
n/λ7). This married with a simple sampling algorithm for the

cases that λ < n−Ω(1), provides an Ω(λ3)-approximate algorithm with running time of Õ(n0.85)
(without further dependence on λ). We further extend this result to reduce the running time to
Õ(nκ poly(1/λ)) for any κ > 0 by imposing a multiplicative factor of poly(1/λ)10 to the approxi-
mation.

Our algorithm heavily relies on sampling random elements of the array for which longest increas-
ing subsequence is desired. Denote the input sequence by A = 〈a1, a2, . . . , an〉. A naive approach to
approximate the solution is to randomly subsample the elements of A to obtain a smaller array B
and then compute the longest increasing subsequence of B to estimate the solution size for A. Let
us first show why this approach alone fails to provide a decent approximation factor. First, consider

10The exponent of 1/λ depends exponentially on 1/κ.
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an array A = 〈1, 2, . . . , n〉 which is strictly increasing. Based on A, we construct two inputs A′ and
A′′ in the following way:

• A′ is exactly equal to A except that a p fraction of the elements in A′ are replaced by 0.

• A′′ is exactly equal to A except that every block of length
√
n is reversed in A′′. In other words,

A′′ = 〈
√
n,
√
n−1,

√
n−2, . . . , 1, 2

√
n, 2
√
n−1, . . . ,

√
n+1, . . . , n, n−1, n−2, . . . , n−

√
n+1〉.

We subsample the two arrays A′ and A′′ with a rate of 1/
√
n to obtain two smaller arrays B′

and B′′ of size roughly O(
√
n). It is easy to prove that lis(B′) = Ω(

√
n) and lis(B′′) = Ω(

√
n), yet

lis(A′) = Ω(n) but lis(A′′) = O(
√
n). By setting p = 1/e11 we can also make sure that lis(B′) and

lis(B′′) are within a small multiplicative range even though the gap between lis(A′) and lis(A′′) is
substantial.

The above observation shows that the problem is very elusive when random sampling is involved.
We bring a remedy to this issue in the following. Divide the input array into

√
n subarrays of size√

n. We denote the subarrays by sa1, sa2, . . . , sa√n and fix an optimal solution opt for the longest
increasing subsequence of A. Define sm(sai) to be the smallest number in sai that contributes to
opt and lg(sai) to be the largest number in sai that contributes to opt. Moreover, define lis[`,r] to be
the longest increasing subsequence of an array subject to the elements whose values lie within the
interval [`, r]. This immediately implies

lis(A) =

√
n∑

i=1

lis[sm(sai),lg(sai)](sai).

Another observation that we make here is that since we assume ||lis(A)|| ≥ λ and the size of each
subarray is bounded by

√
n, then we have

lis(A)

maxi lis
[sm(sai),lg(sai)](sai)

≥
√
nλ

which means that in order to approximate lis(A) it suffices to compute lis[sm(sai),lg(sai)](sai) for
Õ(1/λ) many randomly sampled subarrays. This is quite helpful since this shows that we only need
to sample Õ(1/λ) many subarrays and solve the problem for them. However, we do not know the
values of sm(sai) and lg(sai) in advance. Therefore, the main challenge is to predict the values of
sm(sai) and lg(sai) before we sample the subarrays.

Indeed, one needs to read the entire array to correctly compute sm(sai) and lg(sai) for each of
the subarrays. However, we devise a method to approximately guess these values without losing
too much in the size of the solution. Roughly speaking, we show that if we sample k = O(1/(λε))
different elements from a subarray sai for some constant ε and denote them by aj1 , aj2 , . . . , ajk , then
for at least one pair (α, β), [ajα , ajβ ] is approximately close to [sm(sai), lg(sai)] up to a (1− ε) factor.

The above argument provides O((1/(λε))2) candidate domain intervals for each sai. This
does not provide a solution since we do not know which candidate domain interval approximates
[sm(sai), lg(sai)] for each sai. Of course, if we were to randomly choose one candidate interval for
every subarray, we would make a correct guess for at least O(

√
n(λε)2) subarrays which provides an

approximation guarantee of Ω(λ2) for our algorithm. However, our assignments have to be mono-
tone too. More precisely, let [s̃m(sai), l̃g(sai)] be the guesses that our algorithm makes, then we
should have

11e ' 2.7182.
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Figure 3: Red rectangles show the elements of sai that contribute to lis(A) and gray circles show
the elements of sa that are sampled via our algorithm.

s̃m(sa1) ≤ l̃g(sa1) ≤ s̃m(sa2) ≤ l̃g(sa2) ≤ . . . ≤ s̃m(sa√n) ≤ l̃g(sa√n).

Random sampling does not guarantee that the sampled intervals are monotone. To address this
issue, we introduce the notion of pseudo-solutions. A pseudo-solution is an assignment of monotone
intervals to subarrays in order to approximate sm(sai) and lg(sai). The quality of a pseudo-solution
with intervals [`1, r1], [`2, r2], . . . , [`√n, r

√
n] is equal to

∑
i lis

[`i,ri](sai). For a fixed pseudo-solution,
this can be easily approximated via random sampling. Thus, our goal is to construct a pseudo-
solution whose quality is at least an Ω(λ3) approximation of the size of the optimal solution. To
this end, we present a greedy method in Section 6.2 to construct the desired pseudo-solution.

Finally, in Section 6.4, we show how the above ideas can be generalized to improve the running
time down to Õ(nκ poly(1/λ)) for any arbitrarily small κ > 0 by imposing a factor poly(1/λ)12 to
the approximation guarantee.

12The exponent of 1/λ exponentially depends on 1/κ.
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2 Organization of the Paper

Our algorithm for LCS is explained in Section 4 (Step 0), Section 3 (Step 1), and Section 5 (Step
2).

In both our results for LCS and LIS, we assume that the goal is to find approximate solutions,
provided that the solution size is at least λ0n. After the algorithms terminate, if the output is
smaller than what we expect, we realize that the solution is smaller than λ0n. Therefore, we begin
by setting λ0 = 1 and iteratively multiply λ0 by a 1− ε factor until we obtain a solution. This only
adds a multiplicative factor of log 1/λ to the running time and a multiplicative factor of 1− ε to the
approximation. Since we present two different sparsification techniques, we obtain two theorems:
one is Theorem 2.1 and the other is Theorem 2.2.

Theorem 2.1. Given strings A,B of length |A| = |B| = n with || lcs(A,B)|| = λ, we can approxi-
mate the length of the LCS between the two strings within a factor Ω(λ3) in time Õ(n39/20).

Proof. Fix a sufficiently small constant ε (e.g. ε = 1/10000). Since we do not know the value of λ,
we start with λ = 1 and iteratively try to solve the problem within a factor Ω(λ3). Each time we
are not able to find a solution, we multiply the value of λ by 1− ε and proceed. This imposes a 1− ε
factor to the approximation and a logarithmic factor to the runtime that can be hidden in the Õ
and Ω notations. Thus, in what follows, we assume that we fix a λ and we know that the solution
size is λn. Also, we define κ = n−1/140.

If λ ≤ κ we run the following algorithm: we choose nλ3 characters of A uniformly at random to
obtain a string A′. With high probability, the LCS of A′ and B is at least (1 − ε)λ4n. Therefore,
we set our aim to find such a solution. To this end, we spend a preprocessing time of O(n log n) on
string B and then we will be able to find such a solution in time O(|A′|λ4n log n) (see Theorem A.8).
Thus, the overall runtime would be bounded by

Õ(|A′|λ4n) ≤ Õ(nλ7n) ≤ Õ(n2−7/140) = Õ(n39/20).

Moreover, the approximation factor is also Ω(λ3) as desired.
When λ ≥ κ we run the three steps of our algorithm (Step 0 stated in Fact 4.6, Step 1 stated

in Theorem 3.21, and Step 2 stated in Lemma 5.1) by setting d =
√
nλ, γ = 2/3, wmax =

√
n

and k = Õ(
√
n/λ) ≤ Õ(n71/140). After constructing the windows in Step 0 (Fact 4.6), we run the

algorithm of Theorem 3.21 (Step 1) for every λ′ ∈ {ελ, ε(1 + ε)λ, ε(1 + ε)2λ, . . . , 1}. If for a pair of
windows wi, wj our algorithm in Step 1 detects an edge at λ′ then we update the solution size for
such a pair to max{|wi|, |wj |}λ′4/16. We then run the algorithm of Step 2 (Lemma 5.1) to find a
solution. In what follows, we bound the approximation factor and the runtime of the algorithm.

Approximation factor: For now, we only consider the multiplicative and additive approxi-
mation losses that are incurred in Steps 0, 1, and 2 but we assume that for each λ, the output of
Step 1 is without any errors. We then incorporate those errors to bound the overall approximation
factor. These errors are listed below:

• We lose a multiplicative constant factor in Step 0 followed by an additive error of ελn (see
Lemma 4.7).

• We lose a multiplicative factor 1 − 2ε in Step 1 due to the fact that we ignore window pairs
whose LCS sizes drops below a threshold ελ times the maximum window size.

• We also lose a multiplicative factor 1− ε in Step 3 (Lemma 5.1).
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Since ε is very small and all the multiplicative loss factors are constant, we can assume that all
the above errors amount to an overall 1/c for a constant factor c. Now we are ready to discuss
the loss in the approximation incurred in Step 1. If Step 1 did not incur any error, we would find a
solution of size 1/cλn for the two strings. Suppose that (w1, w

′
1), (w2, w

′
2), . . . is a such a window-

compatible solution that provides a solution of total size 1/cλn if the estimations were correct. We
put these pairs in two sets based on whether the A side window is larger or the B side window is
larger. At least one set gives us a solution of size 1/(2c)λn. Without loss of generality, we assume
that these are the pairs whose B side is at least as large as their A side and in the rest of the proof
we restrict ourselves to such pairs.

For each pair (wi, w
′
i), define λi to be the ratio of the actual LCS of wi and w′i divided by |w′i|.

Since
∑
|w′i| ≤ n and

∑
λi|w′i| ≥ 1/(2c)λn then it follows from Lemma A.7 that

∑
|w′i|λ4

i ≥ (
1/(2c)nλ∑
|w′i|

)4
∑
|w′i| = (1/(2c)λ)4n(n/

∑
|w′i|)3 ≥ (1/(2c)λ)4n,

and therefore
∑
|w′i|λ4

i /16 ≥ λ4n
256c4

= Ω(λ4n). Thus, via the estimations we find in Step 1, we would
be able to find a solution that loses a factor of at most Ω(λ3).

Runtime: The runtime of Step 0 is Õ(k) = Õ(
√
n/λ) = Õ(n71/140) which is negligible. By

Theorem 3.21, the runtime of Step 1 is equal to

Õ(k1+γw2
max + k2+γwmax) ≤ Õ(n1+71/140(5/3) + n1/2+71/140(8/3)) ≤ Õ(n1.86).

Moreover, the number of remaining edges in the graph is bounded by (see Theorem 3.21)

Õ(k2−γ/λ) ≤ Õ(k2−2/3+1/70) ' Õ(k1.35).

This implies a runtime of (see Theorem 5.2)

Õ(k2−(2−1.35)/2w2
max/λ

6) = Õ(k1.675w2
max/λ

6) ≤ Õ(n1+6/140+71/140(1.675)) ≤ Õ(n1.9)

for Step 2.

Theorem 2.2. Given strings A,B of length |A| = |B| = n with || lcs(A,B)|| = λ where λ is
constant, we can approximate the length of the LCS between the two strings within a factor (1− ε)λ2

in n2−Ωελ(1) time for any constant 0 < ε < 1.

Proof. Let ε′ = ε/200. Since we do not know the value of λ, we start with λ = 1 and iteratively try
to solve the problem within a factor (1 − ε′)λ2. Each time we are not able to find a solution, we
multiply the value of λ by 1− ε′ and proceed. This imposes a 1− ε′ factor to the approximation and
a constant factor to the runtime. Thus, in what follows, we assume that we fix a λ and we know
that the solution size is at least λn.

We run the three steps of our algorithm (Step 0 stated in Fact 4.3, Step 1 stated in Theorem 3.13,
and Step 2 stated in Lemma 5.1) by setting d =

√
n, wmax =

√
n and k = Õ(

√
n) (Notice that

here λ is constant). After constructing the windows in Step 0 (Fact 4.3), we run the algorithm of
Theorem 3.13 (Step 1) for every λ′ ∈ {ελ, ε(1 + ε′)λ, ε(1 + ε′)2λ, . . . , 1}. If for a pair of windows
wi, wj our algorithm in Step 1 detects an edge at λ′ then we update the solution size for such a pair
to
√
|wi||wj |(1 − ε′)λ′3. We then run the algorithm of Step 2 (Lemma 5.1) to find a solution. In

what follows, we bound the approximation factor and the runtime of the algorithm.
Approximation factor: For now, we only consider the multiplicative and additive approxi-

mation losses that are incurred in Steps 0, 1, and 2 but we assume that for each λ, the output of
Step 1 is without any errors. We then incorporate those errors to bound the overall approximation
factor. These errors are listed below:
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• We lose an additive error of 8ε′λn in Step 0 (see Lemma 4.4).

• We lose a multiplicative factor 1 − ε′ in Step 1 due to the fact that we ignore window pairs
whose normalized LCS sizes drops below a threshold ε′λ.

• We also lose a multiplicative factor 1− ε′ in Step 3 (Lemma 5.1).

Since ε′ = ε/200 < 1/200, we can assume that all the above errors amount to an overall 1 − 20ε′

factor. Now we are ready to discuss the loss in the approximation incurred in Step 1. If Step 1 did
not incur any error, we would find a solution of size (1− 20ε′)λn for the two strings. Suppose that
(w1, w

′
1), (w2, w

′
2), . . . is a such a window-compatible solution that provides a solution of total size

(1 − 20ε′)λn if the estimations were correct. For each pair (wi, w
′
i), define λi to be ||lcs(wi, w′i)||.

Since
∑
|wi| ≤ n,

∑
|w′i| ≤ n and

∑
λi
√
|wi| · |w′i| ≥ (1− 20ε′)λn, it follows from Lemma A.7 and

Cauchy–Schwarz inequality that

∑√
|wi| · |w′i|(1− ε

′)λ3
i ≥ (1− ε′)

∑√
|wi| · |w′i|

(∑
λi
√
|wi| · |w′i|∑√
|wi| · |w′i|

)3

≥ (1− ε′) ((1− 20ε′)λn)3(∑√
|wi| · |w′i|

)2
≥ (1− ε′)((1− 20ε′)λn)3

n2

≥ (1− ε′)(1− 20ε′)3λ3n

≥ (1− ε′)(1− 60ε′)λ3n.

Thus, via the estimations we find in Step 1, we would be able to find a solution that loses a factor
of at most (1− ε′)(1− 60ε′)λ3 ≥ (1− ε)λ3.

Runtime: The runtime of Step 0 is Õ(k) = Õ(
√
n) which is negligible. By Theorem 3.13 and

setting γ = 1/10, the runtime of Step 1 is equal to

Õ(w2
maxk

1.1 + wmaxk
2.2) = Õ(n1.6).

Moreover, the number of remaining edges in the graph is bounded by (see Theorem 3.13)

Õ(k2−ελ3/(800wlayerswgap)) = Õ(k2−Ω(ελ6/ log(1/λ))) = Õ(k2−Ω(ελ7))

This implies a runtime of (see Theorem 5.3)

Õ(k2−Ω(ελ7)w2
max/λ

6) = Õ(n2−Ω(ελ7/2)) = n2−Ωλ,ε(1)

for Step 2.

As an immediate corollary of Theorem 2.1, we present an algorithm that beats the 1/|Σ| ap-
proximation factor in truly subquadratic time, when the strings are balanced.

Corollary 2.3. Given a pair of strings (A,B) of length n over alphabet Σ that satisfy the balance
condition, we can approximate their LCS within an O(|Σ|3/4) factor in time O(n39/20).
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Proof. Since A and B are balanced, there is a character σ ∈ Σ that appears at least n/|Σ| times in
both strings. Indeed, finding a solution of size n/|Σ| by restricting our attention to only character σ
can be done in time O(n). If lcs(A,B) ≤ n/|Σ|1/4 this already gives us an O(|Σ|3/4) approximate so-
lution. Otherwise, ||lcs(A,B)|| > 1/|Σ|1/4 and the approximation factor of our Ω(λ3)-approximation
algorithm would be bounded by O(|Σ|3/4).

Finally, we bring our results for LIS in Section 6. We show that

Theorem 2.4. Given a length-n sequence A with lis(A) = nλ. We can approximate the length of
the LIS within a factor of Ω(λ3) in time Õ(n17/20).

Proof. If λ < n−1/20 we sample the array with a rate of n−3/20 and compute the LIS for the
sampled array. The running time of the algorithm is Õ(n17/20). The approximation factor is
O(n−3/20) ≥ Ω(λ3). Otherwise, by Theorem 6.8, we estimate the size of LIS up to an Ω(λ3)
approximation factor in time Ω̃(λ−7√n) ≤ Õ(n17/20).
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3 LCS Step 1: Sparsification via Birthday Triangle Inequality

Recall that we are given two sets of windows WA and WB for the strings and our goal is to
approximate the LCS of all but a few pairs of windows fromWA×WB. For simplicity, we put all the
windows in the same basketW = WA∪WB and denote the windows by w1, w2, . . . , wk where k is the
total number of windows. Since the windows have different lengths, we define wmax = maxi∈[k] |wi|
to be the maximum length of the windows. Similarly, we also define wmin = mini∈[k] |wi| to be the
minimum length of the windows. Let wgap = wmax/wmin. Let wlayers denote the number of different
window sizes. Notations wgap and wlayers will be used in the later analysis.

In order to approximate the LCS’s we fix a λ ∈ {ελ0, (1 + ε)ελ0, (1 + ε)2ελ0, . . . , 1} and sparsify
graph Gλ. In Section 3.1, we present a sparsification algorithm (Algorithm 1) which provides
(1− ε)λ2-approximation when λ is constant. The formal guarantee of the algorithm is provided in
Theorem 3.13. In Section 3.2, we present a sparsification which provides Ω(λ3)-approximation for
any (potentially sub-constant) λ.
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3.1 Sparsification for constant λ (Step 1 of Theorem 2.2)

Fix an arbitrary LCS for every pair of windows and refer to that as opti,j for two windows wi
and wj . Note that we do not explicitly compute opti,j in our algorithm. Let us for simplicity,
think of each opti,j as a matching between the characters of the two windows. Also, denote by(
opti,a ∩ opta,b ∩ optb,j

)
a solution which is constructed for windows wi and wj by taking pairs of

characters (x, y) such that:

(x, y) ∈
(
opti,a ∩ opta,b ∩ optb,j

)
⇐⇒∃x′, y′ such that

(x, y′) ∈ opti,a and

(y′, x′) ∈ opta,b and

(x′, y) ∈ optb,j .

Let
∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ =

∣∣∣(opti,a∩opta,b∩optb,j)∣∣∣√
|wi||wj |

.

Our analysis is based on a notion which roughly reflects “in how many ways a desirable solution
can be made for a pair of windows (wi, wj) by taking the intersection of the LCS for other pairs".
Below, we provide a definition for this notion.

Definition 3.1 ((ε, λ)-constructive). Let 0 < ε, λ < 1 be fixed values. We call a tuple 〈wi, wa, wb, wj〉
(wi 6= wa 6= wb 6= wj) an (ε, λ)-constructive tuple, if∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ ≥ (1− ε)λ3.

The advantage of a constructive tuple is that if opti,a, opta,b, and optb,j are provided, one can
construct a desirable solution for opti,j in linear time by taking the intersection of the given match-
ings.

We parametrize our algorithm by a value 0 < γ < 1 to be set later. One may optimize the
runtime of the algorithm by setting the value of γ in terms of the number of windows and the
length of the windows. We first sample a set S of O(kγ log k) windows. Next, we compute opti,j of
every window wi ∈ S and every other window wj (not necessarily in S). Finally, we find all tuples
〈wi, wa, wb, wj〉 such that wa, wb ∈ S and they satisfy the following property:∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ ≥ (1− ε)λ3.

Recall that we call such tuples (ε, λ)-constructive and update Ôλ2 [i][j], Ôλ2 [j][i] ← 1 accordingly.
This is shown in Algorithm 1.

The running time of our algorithm is equal to O(k|S|w2
max+k2|S|2wmax). The rest of this section

is dedicated to proving that what remains in the lcs-graph is sparse; this is formalized in Lemma 3.4.

Definition 3.2 (NGλ). Define a graph NGλ with k vertices and the following edges:

E(NGλ) =

{
(i, j)

∣∣∣∣ ||lcs(wi, wj)|| ≥ λ and Ôλ2 [i][j] = 0

}
.

In other words, NGλ contains all of the edges that are not detected in our algorithm. We extend
the notion of constructive tuples to the undetected edges in our algorithm. We call such tuples
undetected-constructive.

Definition 3.3 (undetected-constructive tuple). We say a tuple 〈wi, wa, wb, wj〉 is
(ε, λ)-undetected-constructive if it is (ε, λ)-constructive and also

(i, a), (a, b), (b, j), (i, j) ∈ E(NGλ).
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Algorithm 1 Sparsification for constant λ (Step 1 of Theorem 2.2)

1: procedure QuadraticSparsification(w1, w2, . . . , wk, λ, ε) . Theorem 3.13
2: S ← 40kγ log k i.i.d. samples of [k]
3: Ôλ2 ← {0}k×k
4: for wi ∈ S do . Takes k|S|w2

max time
5: for j ← 1 to k do
6: opti,j , optj,i ← lcs(wi, wj)
7: end for
8: end for
9: for wi ∈ S do . Takes k|S|wmax time

10: for j ← 1 to k do
11: if ||opti,j || ≥ λ then
12: Ôλ2 [i][j]← 1
13: Ôλ2 [j][i]← 1
14: end if
15: end for
16: end for
17: for i← 1 to k do . Takes k2|S|2wmax time
18: for j ← 1 to k do
19: for wa ∈ S do
20: for wb ∈ S do
21: if

∥∥(opti,a ∩ opta,b ∩ optb,j
)∥∥ ≥ (1− ε)λ3 then

22: Ôλ2 [i][j]← 1
23: Ôλ2 [j][i]← 1
24: end if
25: end for
26: end for
27: end for
28: end for
29: return Ôλ2
30: end procedure

Lemma 3.4. With probability at least 1− 2/k3, NGλ has at most k2−γελ3/(80wlayerswgap) edges.

Instead of arguing directly about NGλ, our proof uses another graph NFλ, which is sub-sampled
from NGλ:

Definition 3.5 (NFλ). Let NFλ be the graph constructed in the following way: for each node
v ∈ NGλ we keep v in NFλ with probability

p := k−1+γ/4/4.

For each u, v ∈ NFλ, if (u, v) ∈ NGλ then we also draw an edge u, v in NFλ. We identify between the
vertices and edges of NFλ and the corresponding vertices and edges of NGλ, i.e. V (NFλ) ⊆ V (NGλ)
and E(NFλ) ⊆ E(NGλ).

The proof has two main ingredients. The first part of the proof uses the details of our algorithm
to show that, w.h.p. over the algorithm’s randomness, NGλ contains few undetected-constructive
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tuples (Lemma 3.7). Whenever this is the case, w.h.p. over the sub-sampling procedure, NFλ does
not contain any undetected-constructive tuples (Claim 3.8).

The second part of the proof assumes by contradiction that NGλ is dense. It uses this assump-
tion to conclude that NFλ is also dense (w.h.p. over the sub-sampling procedure, see Claim 3.9),
and therefore by Turan’s Theorem contains a large bi-clique (Claim 3.11). Finally, we use the
large bi-clique to show that NFλ does contain an undetected-constructive tuple (Lemma 3.12) - a
contradiction!

3.1.1 Proof of Lemma 3.4, part 1: NFλ does not contain an undetected-constructive
tuple

We first introduce the notion of “well-connected pairs".

Definition 3.6 (well-connected pair). We say that a pair of windows (wi, wj) is well-connected if
there are at least k2−γ pairs of windows (wa, wb) such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive.

We argue that well-connected pairs are detected in our algorithm with high probability.

Lemma 3.7. Let Ôλ2 ∈ {0, 1}k×k denote the output of Algorithm 1. With probability at least
1−2/k3, for all (i, j) ∈ [k]× [k] such that (wi, wj) is a well-connected pair (Definition 3.6), we have
Ôλ2 [i][j] = 1.

Proof. We consider a fixed (i, j) such that pair (wi, wj) is well-connected. Let

Qi,j =

{
(a, b)

∣∣∣∣ ∥∥opti,a ∩ opta,b ∩ optb,j
∥∥ ≥ (1− ε)λ3

}
.

Conceptually, we divide the process of sampling S into two phases: we sample 20kγ log k windows
in the first phase, and then we sample 20kγ log k more windows in the second phase.

For each a ∈ [k], let Qi,j,a = {b : (a, b) ∈ Qi,j}. Since
∑

a∈[k] |Qi,j,a| = |Qi,j | ≥ k2−γ , there are
at least k1−γ

2 different number a’s in [k] such that |Qi,j,a| ≥ k1−γ

2 . Hence, in the first phase, there is
a sampled number q such that |Qi,j,q| ≥ k1−γ/2 with probability at least

1−
(

1− k1−γ/2

k

)20kγ log k

>
k5 − 1

k5
.

We fix such a q. In the second phase, there is a sampled number r such that r ∈ Qi,j,q with
probability at least

1−
(

1− k1−γ/2

k

)20kγ log k

>
k5 − 1

k5
.

Since the number of (i, j) pairs is at most k2, the lemma is obtained by a union bound on all
the well-connected pairs (wi, wj).

We complete the first part of the proof by showing that with probability at least 0.99, NFλ does
not have an undetected-constructive tuple.

Claim 3.8 (NFλ has no undetected-constructive tuple). With probability at least 0.99, there is no
undetected-constructive tuple in NFλ.
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Proof. By Lemma 3.7, we assume that no edge (i, j) in NGλ is well-connected. In other words, for
all pairs of windows (wi, wj) that are connected in NGλ, there are at most k2−γ pairs of windows
(wa, wb) such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive.

Recall that for a tuple 〈wi, wa, wb, wj〉 to be undetected-constructive, edge (i, j) should belong
to NGλ. For a fixed (i, a, b, j), the probability that we keep it in NFλ is p4. Therefore, the expected
number of undetected-constructive tuples in NFλ is bounded by

E[#undetected-constructive tuple] ≤ k2k2−γ · p4 = 1/256

where the last step follows from p = k−1+γ/4/4.
By Markov’s inequality, we have

Pr[#undetected-constructive tuple ≥ 1/2] ≤ E[#undetected-constructive tuple]
1/2

< 1/100.

Thus, with probability 0.99, there is no undetected-constructive tuple in NFλ.

3.1.2 Proof of Lemma 3.4, part 2: NFλ contains an undetected-constructive tuple

Now we assume by contradiction that the NGλ is dense. To simplify the notation, we introduce
another parameter,

β := γελ3/(80wlayerswgap).

Note that β < γ − Ω(1).
We are able to show that if NGλ is dense, so is NFλ.

Claim 3.9 (NFλ is a dense graph). If for some 0 < β < γ/4−Ω(1), NGλ contains is at least k2−β

edges then with probability at least 0.98 we have

|E(NFλ)| ≥ |V (NFλ)|2−4β/γ

128
.

The proof of Claim 3.9 uses the following elementary graph theory fact:

Fact 3.10. In every graph G = (V,E), we have∑
v

deg(v)2 ≤ 2|V ||E|.

Proof. ∑
v

deg(v)2 ≤ |V |
∑
v

deg(v) ≤ 2|V ||E|.

Proof of Claim 3.9. Based on the sampling rate, we know that the following holds in expectation:

E[|V (NFλ)|] = p|V (NGλ)| = kγ/4/4, (1)

and

E[|E(NFλ)|] ≥ p2|E(NGλ)| ≥ kγ/2−β/16.
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Using standard Chernoff bound, we have with probability 0.99,

|V (NFλ)| ≤ 2E[|V (NFλ)|] = kγ/4/2.

In the rest of this proof, we show that with probability 0.99,

|E(NFλ)| ≥ kγ/2−β/128,

and then the claim follows.
It is known that any graph can be made bipartite by removing at most half of its edges [Wes01].

Thus, for the sake of this proof, we only consider a bipartite subgraph of NGλ with parts P and
Q that contains at least k2−β/2 edges. We refer to this graph by N̂Gλ. We consider a two-step
construction of N̂Fλ based on sampling in N̂Gλ, where we first only sub-sample the vertices on the
P-side, and then also sub-sample the vertices on the Q-side. Let N̂Fλ(P) denote the graph after
subsampling only the P-side, and V (N̂Fλ(P),P) denote the set of vertices in N̂Fλ on the P-side.

The number of edges in N̂Fλ(P) is the sum of degrees of surviving P-vertices, aka a sum of
i.i.d. random variables bounded in [0, k]. It’s expectation is given by:

E[|E(N̂Fλ(P))|] = p|E(N̂Gλ(P))| ≥ k2−β/2,

and by Hoeffding’s inequality this sum concentrates around its expectation with high probability:

Pr
[
|E(N̂Fλ(P))| ≤ pk2−β/4

]
≤Pr

[
|E(N̂Fλ(P))| ≤ E[|E(N̂Fλ(P))|]− pk2−β/4

]
≤ exp

(
−2|P|2p2k4−2β/16

|P|k2

)
≤ exp

(
−Θ

(
kγ/2−2β

))
. By |P | ≥ 1

By Chernoff bound,

Pr[|V (N̂Fλ(P),P)| > 2pk] ≤ [|V (N̂Fλ(P),P)| > 2p|P|] ≤ exp (−p|P|/3) ≤ exp(−Θ(kγ/4−β)),

where the last inequality is obtained by |P| ≤ k. We henceforth fix any realization of N̂Fλ(P)
conditioned on

|E(N̂Fλ(P))| ≥ pk2−β/4 and |V (N̂Fλ(P),P)| ≤ 2pk.

We now consider the second step of the sub-sampling, which transforms N̂Fλ(P) to N̂Fλ. The
expected number of edges in N̂Fλ satisfies:

E[|E(N̂Fλ)|] = p|E(N̂Fλ(P))| ≥ p2k2−β/4 = kγ/2−β/64.

We now argue about concentration. Notice that the degree of each vertex in N̂Fλ(Q) is at most the
number of vertices on P-side in N̂Fλ(P) is at most |V (N̂Fλ(P),P)| ≤ 2pk. Therefore, by Hoeffding’s
inequality,

Pr
[
|E(N̂Fλ)| < kγ/2−β/128

]
≤Pr

[
|E(N̂Fλ)| < E[|E(N̂Fλ)|]− kγ/2−β/128

]
≤ exp

(
−Θ

(
|Q|2kγ−2β

|Q|p2k2

))
≤ exp

(
−Θ

(
kγ/2−2β

))
By |Q| ≥ 1.

By taking a union bound on the low probability events and the fact that E(N̂Fλ) is a subset of
E(NFλ), we have |E(NFλ)| ≥ kγ/2−β/128.
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We now use the fact that NFλ is dense to argue that it contains a large bi-clique.

Claim 3.11 (NFλ contains a large bi-clique). With probability at least 0.98 NFλ, contains a complete
bipartite subgraph Kγ/(5β),γ/(5β).

Proof. Using Turán’s Theorem (Lemma A.4), we know, for any integer s ≥ 2, that a graph G with
n vertices and n2−1/s edges has at least one Ks,s subgraph. We apply this to graph NFλ. Since
λ is constant then β/γ becomes constant and thus |V (NFλ)|β/γ is super constant. It follows from
Claim 3.9 that

|E(NFλ)| ≥ |V (NFλ)|2−4β/γ

128
> |V (NFλ)|2−5β/γ

holds with probability at least 0.98. This in turn implies that with probability at least 0.98 NFλ
contains a complete bipartite subgraph Kγ/(5β),γ/(5β).

The last step in the proof is to use the large bi-clique to exhibit an undetected-constructive
tuple.

Lemma 3.12. Let X and Y be two sets of windows such that for every wi ∈ X and wj ∈ Y there
is an edge (i, j) in E(NGλ). If |X| ≥ 16wlayerswgap/(ελ

3) and |Y | ≥ 16wlayerswgap/(ελ
3), then there

exist wi, wa, wb, wj ∈ X ∪ Y such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive, i.e.,∥∥opti,a ∩ opta,b ∩ optb,j
∥∥ ≥ (1− ε)λ3

and either wi, wb ∈ X and wa, wj ∈ Y or wi, wb ∈ Y and wa, wj ∈ X.

Proof. Let ε′ = ε/4. By assumption, we know that |X|, |Y | ≥ 4wlayerswgap/(ε
′λ3). Moreover the

total number of different window sizes is bounded by wlayers. Thus, there exist two sets X̂ ⊆ X

and Ŷ ⊆ Y such that |X̂|, |Ŷ | ≥ 4wgap/(ε
′λ3) and the windows within X̂ are of the same size and

the windows within Ŷ are of the same size (though the windows of X̂ and Ŷ may have different
sizes). Let dx denote the window size for each window in X̂, and dy denote the window size for each
window in Ŷ .

We select X ′ ⊆ X̂ and Y ′ ⊆ Ŷ such that

1. |X ′| ≥ 4/(ε′λ3).

2. |Y ′| ≥ 4/(ε′λ3).

3. |X ′|dx ≤ (1 + ε′)|Y ′|dy.

4. |Y ′|dy ≤ (1 + ε′)|X ′|dx.

To do this, if |X̂|dx > (1 + ε′)|Ŷ |dy, then we set Y ′ = Ŷ and select X ′ as an arbitrary subset of
X̂ with size

⌈
|Y ′|dy
dx

⌉
. Otherwise, we set X ′ = X̂ and select Y ′ an arbitrary subset of Ŷ with size⌈

|X′|dx
dy

⌉
.

We define a character-based (bipartite) graph GC = (VC , EC) as follows: Each window of X ′ has
dx nodes in the character-based graph such that each node represents a character of the window.
Similarly, each window of Y ′ has dy nodes in the character-based graph. Two nodes x, y in the
character-based graph are adjacent if and only if (x, y) ∈ opti,j where wi is the window containing
character x and wj is the window containing character y. Let lx = |X ′| and ly = |Y ′|.
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Figure 4: The graph on the left is an example of the string-based graph and the graph on the right
is an example of the character-based graph.

The total number of nodes in the character-based graph is |VC | = lxdx + lydy. By the last two
desiderata of definition of X ′, Y ′ that, each side of the character based-graph has approximately the
same number of nodes:

lxdx, lydy ≈(1± ε′)-factor |VC |/2. (2)

Similarly, we also have that:

max{lx, ly}min{dx, dy} ≈(1± ε′)-factor |VC |/2. (3)

The total number of edges in the character-based graph satisfies

|EC | ≤ lxly min{dx, dy}, (4)

and, by (2),

|EC | ≥ lxlyλ
√
dxdy ≈√1± ε′-factor

√
lxlyλ|VC |/2. (5)

By Blakley-Roy inequality (Lemma A.3), the number of walks of length 3 in the character-based
graph is at least

#3-walks ≥ |VC | ·
(

2
|EC |
|VC |

)3

≈(1± ε′)1.5-factor λ
3(lxly)

1.5|VC |.

We are interested in the number of 3-walks that are not degenerate. Thus, we need to exclude
such degenerate walks from the total count. The number of such walks is upper bounded by

#degenerate 3-walks ≤ (max degree of GC) · 4|EC |
≤ max{lx, ly} · 4(lxly min{dx, dy}) (Eq. (4))
≈(1± ε′)-factor 2lxly · |VC | (Eq. (3))

Therefore the ratio of the number of degenerate 3-walks and the total number of 3-walks is bounded
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by

#degenerate 3-walks
#3-walks

≈(1±O(ε′))-factor
2lxly · |VC |

λ3(lxly)1.5|VC |

=
2

λ3
√
lxly

≤ 2

4/ε′
(Def. of X ′, Y ′)

= ε′/2.

Hence, the total number of 3-paths (3-walks that are not degenerate) is at least

#3-paths &(1± ε′)2.5-factor λ
3(lxly)

1.5|VC |.

On the other hand, the number of 4-tuples of windows that contribute to those 3-paths of
characters is 8

(
lx
2

)(
ly
2

)
≤ 2l2xl

2
y. Thus, there must exist a 4-tuple containing at least

#3-paths
#4-tuples

&(1± ε′)2.5-factor
λ3(lxly)

1.5|VC |
2l2xl

2
y

=
λ3|VC |√
lxly

≈√1± ε′-factor
λ3
√
lxdxlydy√
lxly

(Eq. (2))

= λ3
√
dxdy

many 3-walks. This means that such a 4-tuple is (ε, λ)-constructive.

3.1.3 Guarantees of the sparsification algorithm

Theorem 3.13 (Sparsification for constant λ (Step 1 of Theorem 2.2)). Given k windows w1, · · · , wk.
Let wmax = maxi∈[k] |wi|, wmin = mini∈[k] |wi| and wgap = wmax/wmin. Let the number of different
window sizes be wlayers. For any constant λ ∈ (0, 1) and 0 < ε < 1, there is a randomized algorithm
(Algorithm 1) that runs in time

O(w2
maxk

1.1 log k + wmaxk
2.2 log2 k),

outputs a table Ôλ2 ∈ {0, 1}k×k such that

||lcs(wi, wj)|| ≥ (1− ε)λ3, if Ôλ2 [i][j] = 1

and ∣∣∣∣{(i, j)

∣∣∣∣ ||lcs(wi, wj)|| ≥ λ, and Ôλ2 [i][j] = 0

}∣∣∣∣ ≤ k2−ελ3/(800wlayerswgap).

The algorithm has success probability at least 1− 1/ poly(k).
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Proof. We set γ = 1/10. The overall running time is

O(k|S|w2
max + k2|S|2wmax)

= O(k · kγ log k · w2
max + k2 · k2γ log2 k · wmax)

= O(k1.1 log k · w2
max + k2.2 log2 k · wmax)

where the first step follows from |S| = O(kγ log k), the second step follows from γ = 0.1.
The guarantee of table Ôλ2 follows from properties of graph NGλ (Algorithm 1 provides the

first property of table in Theorem statement, Lemma 3.4 provides the second property of table in
Theorem statement).

3.2 Sparsification for arbitrary λ (Step 1 of Theorem 2.1)

One shortcoming of Lemma 3.4 is that the number of remaining edges is only truly subquadratic if
λ is constant. As we discuss in Section 3.1, the overall running time of the algorithm depends on the
number of edges in the remaining graph; and in order for the running time to be truly subquadratic,
we need to reduce the number of edges to truly subquadratic. In this section, we show how one
can obtain this bound even when λ is sub-constant. However, instead of losing a factor λ2 in the
approximation, our technique loses a factor of Ω(λ3).

From here on, we assume that all of the windows are of the same length and we show at the end
of the section that this is almost without loss of generality. We begin by giving a definition:

Definition 3.14 (lcswa(wi, wj)). For two windows wi and wj , and a window wa, define lcswa(wi, wj)
as the length of the LCS of opti,a and wj , where opti,a denotes a fixed LCS of wi and wa.

Notice that unlike lcs, this new definition is not symmetric. That is, the size of lcswa(wi, wj)
may be different from the size of lcswa(wj , wi). Throughout this section and Section 3.2.1, opti,a
refers to a fixed (e.g., lexicographically smallest) longest common subsequence of wi and wa. We
moreover assume that opti,a and opta,i refer to the same matching.

Similar to lcs, we also normalize the size of lcss by the geometric mean of the lengths of the
two windows. Our assumption from here on, until the statement of Theorem 3.21 is that all the
windows are of the same length which implies that

||lcswa(wi, wj)|| = lcswa(wi, wj)/
√
|wi||wj | = lcswa(wi, wj)/|wi| = lcswa(wi, wj)/|wj |.

We bring a reduction in Theorem 3.21 to make our solution work for windows of arbitrary length.
In what follows, we first give an algorithm for detecting close pairs (a notion that we introduce later
in the section) of windows, and then prove that the number of remaining pairs whose normalized
lcs is at least λ is truly subquadratic.

Our algorithm is based on a data structure which we call lcs-cmp(wa, S, λ̃). The reader can
think of λ̃ = λ2/2. Let us fix a threshold λ̃ and a window wa. lcs-cmp(wa, S, λ̃) receives a set S of
windows as input and preprocesses the windows in time Õ(|wa|2|S|). Next, lcs-cmp(wa, S, λ̃) would
be able to answer each query of the following form in almost linear time (O(wmax)):

Given two windows wi, wj ∈ S, either certify that ||lcswa(wi, wj)|| < λ̃ or find a solution
for ||lcswa(wi, wj)|| of size at least λ̃2/4.

We first show in Section 3.2.1, how lcs-cmp gives us a sparsification in truly subquadratic time and
then discuss the algorithm for lcs-cmp in Section 3.2.2.
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3.2.1 Ω(λ3) Sparsification using lcs-cmp

We use a constant parameter γ in our algorithm, and in the end we adjust γ to minimize the total
running time. Our algorithm repeats the following procedure O(kγ log k) times: sample a window
wa uniformly at random and let S be the set of all the other windows. Next, by setting λ̃ = λ2/2,
we obtain lcs-cmp(wa, S, λ

2/2) via running the preprocessing step. Finally, for each pair of windows
wi, wj ∈ S, we make a query to lcs-cmp to verify one of the following two possibilities:

• ||lcswa(wi, wj)|| < λ2/2;

• ||lcswa(wi, wj)|| ≥ λ4/16.

If the latter is verified we set Ôλ3 [i][j] and Ôλ3 [j][i] to 1 otherwise we take no action. In what
follows, we prove that after the above sparsification, the number of edges in the remaining graph is
truly subquadratic.

Algorithm 2 Sparsification for arbitrary λ (Step 1 of Theorem 2.1)

1: procedure CubicSparsification(w1, w2, . . . , wk, λ) . Theorem 3.21
2: λ̃← λ2/2
3: for counter = 1→ 10kγ log k do
4: Sample a ∼ [k] uniformly at random
5: S ← ∅
6: for i = 1→ k do
7: if i 6= a then
8: S ← S ∪ {wi}
9: end if

10: end for
11: lcs-cmp.Initial(wa, S, λ̃) . Algorithm 3, Lemma 3.22
12: for wi ∈ S do
13: for wj ∈ S do
14: if lcs-cmp.Query(wi, wj) outputs accept then . Alg. 3, Lemma 3.23
15: Ôλ3 [i][j]← 1 . ||lcswa(wi, wj)|| ≥ λ̃2/8
16: end if
17: end for
18: end for
19: end for
20: return Ôλ3
21: end procedure

Our goal for the rest of this section is to prove (Lemma 3.19) an upper bound on the number of
edges that remain in the following graph:

Definition 3.15 (NGλ). Define a graph NGλ with k vertices and the following edges:

E(NGλ) =

{
(i, j)

∣∣∣∣ ||lcs(wi, wj)|| ≥ λ and Ôλ3 [i][j] = 0

}
.

We define a notation called “close” which is similar to the notion of “well-connected” vertices in
Section 3.1.
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Definition 3.16 (close). Let γ ∈ (0, 1) and λ ∈ (0, 1). We say a pair (wi, wj) of windows is close,
if there are at least k1−γ windows wa such that ||lcswa(wi, wj)|| ≥ λ2/2.

Our first observation is that Algorithm 2 detects all the close pairs with high probability.

Lemma 3.17. Let Ôλ3 ∈ {0, 1}k×k be the output of Algorithm 2. For each (i, j) ∈ [k] × [k], if
(wi, wj) is close (Definition 3.16), then Ôλ3 [i][j] = 1 holds with probability at least 1− 1/k3.

Proof. We consider a fixed (i, j) such that (wi, wj) is close. By Definition 3.16, there are at least k1−γ

windows wa such that ||lcswa(wi, wj)|| ≥ λ2/2. If such a wa window is sampled in our algorithm,
then we detect the edge between the close pair. The probability that none of these windows is
sampled is at most (

1− k1−γ

k

)10kγ log k

=

(
1− 1

kγ

)10kγ log k

≤ 1

k5
.

Taking a union over at most k2 pairs completes the proof.

Before we proceed to Lemma 3.19, we bring Lemma 3.18 as an auxiliary observation.

Lemma 3.18 (existence of a correlated pair). Let λ ∈ (0, 1). Given a window wa and a set T
containing at least 2/λ windows. If for each wi ∈ T we have ||lcs(wa, wi)|| ≥ λ, then there exist two
windows wi, wj ∈ T such that both ||lcswa(wi, wj)|| ≥ λ2/2 and ||lcswa(wj , wi)|| ≥ λ2/2 hold.

Proof. Let d be the size of the windows. We consider a character-based bipartite graph: On one
side, it has d nodes, and on the other side it has d|T | nodes. Two nodes x, y in the character-based
graph are adjacent iff (x, y) ∈ opta,i where wa is the window containing character x and wi is the
window containing character y. Since ||lcs(wa, wi)|| ≥ λ for every wi ∈ T , the total number of edges
in character-based bipartite graph is at least λ|T |d.

For `-th character in window wa, we use D` to denote the degree of the corresponding node in
the character-based bipartite graph. The number of 2-walks between pairs of nodes on the side with
d|T | nodes is at least

d∑
`=1

D`(D` − 1) =

(
d∑
`=1

D2
` −

d∑
`=1

D`

)

≥

(
1

d
(

d∑
`=1

D`)
2 −

d∑
`=1

D`

)
by Cauchy-Schwarz inequality

≥
(

1

d
(λ|T |d)2 − (λ|T |d)

)
by Eq. (8) explained below

=
(
λ2d|T |2 − λ|T |d

)
≥ 1/2λ2d|T |2 by |T | ≥ 2/λ

The number of 3-tuples (wi, wa, wj) is at most |T |2. Thus, there must exist a pair (wi, wj) such
that

||lcswa(wi, wj)|| ≥ λ2/2.

This also means that

||lcswa(wj , wi)|| ≥ λ2/2
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which is the other conclusion of our lemma.
It remains to show Eq. (8). Since the number of edges in the character-based bipartite graph is

at least λ|T |d, we have

d∑
`=1

D` ≥ λ|T |d

≥ λ(2/λ)d > d. (|T | ≥ 2/λ by lemma premise) (6)

We also require the following simple fact:

∀x ≥ y ≥ z ≥ 0, x(x− z) ≥ y(y − z). (7)

Combining the last two inequalities, we finally have:

1

d
(
d∑
`=1

D`)
2 −

d∑
`=1

D` =

∑d
`=1D`

d
(
d∑
`=1

D` − d)

≥ 1

d
(λ|T |d)2 − (λ|T |d) (Ineq. (6) and (7)). (8)

Now, we are ready to prove that the remaining graph is sparse.

Lemma 3.19 (upper bound on |E(NGλ)|).

|E(NGλ)| ≤ 2k2−γ

λ

holds with probability at least 1− 1/k3.

In the proof of this lemma we will construct an auxiliary graph NFλ in the following way:

Definition 3.20 (NFλ). Let a denote the node in V (NGλ) that has the highest degree. The vertices
of NFλ would be the set of neighbors of a in NGλ.We add an edge between vertices (i, j) in NFλ if
both ||lcswa(wi, wj)|| ≥ λ2/2 and ||lcswa(wj , wi)|| ≥ λ2/2 hold.

Proof of Lemma 3.19. We prove the lemma by contradiction. Suppose

|E(NGλ)| > 2k2−γ

λ
.

Since the number of vertices in NFλ is equal to the maximum degree of NGλ we have

|V (NFλ)| > 2k1−γ

λ
. (9)

Using Lemma 3.18, we have for each set T ⊆ V (NFλ) with |T | ≥ 2/λ, there exist two nodes u
and v in T such that (u, v) is an edge of NFλ.

If we look at the complement of graph NFλ, we know there is no clique Kr where r = 2/λ.
Using Turan’s theorem (Lemma A.5) we know that the complement of graph NFλ has at most
(1− 1

r−1) q
2

2 < (1− 1
r ) q

2

2 edges, where q := |V (NFλ)|. Then we have

|E(NFλ)| > q(q − 1)

2
− (1− 1

r
)
q2

2
=
q2

2r
− q

2
.
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This implies that there exists a vertex b whose degree in NFλ is more than

|V (NFλ)|
r

− 1 =
|V (NFλ)|

2/λ
− 1 ≥ k1−γ − 1,

where the inequality follows by Eq. (9). Thus, the degree of b is at least k1−γ . For each vertex c of
NFλ which is adjacent to b we have

||LCSwc(wa, wb)|| = ||LCSwa(wc, wb)|| ≥ λ2/2.

Since the degree of b in NFλ is at least k1−γ , this means that pair (wa, wb) is a close pair and the
edge (wa, wb) should not have existed between the vertices in NGλ in the first place.

Now, we are ready to bring our main theorem of this section. In Theorem 3.21 we assume that
the windows may have different length but the total number of distinct window sizes is bounded by
wlayers.

Theorem 3.21 (Sparsification for arbitrary λ (Step 1 of Theorem 2.1)). Given k windows w1, · · · , wk.
Let wlayers denote the number of different sizes for windows. For any λ ∈ (0, 1) and γ ∈ (0, 1), there
is a randomized algorithm (Algorithm 2) that runs in time

O(w2
layers(k

1+γw2
max log2 k + k2+γwmax log k))

and outputs a table Ôλ3 ∈ {0, 1}k×k such that

lcs(wi, wj)/max{|wi|, |wj |} ≥ λ4/16, if Ôλ3 [i][j] = 1

and ∣∣∣{(i, j) | lcs(wi, wj)/max{|wi|, |wj |} ≥ λ, and Ôλ3 [i][j] = 0
}∣∣∣ = O(k2−γw2

layers/λ).

The algorithm has success probability 1− 1/k3.

Proof. We run the algorithm explained above wlayers +
(wlayers

2

)
times. Each of the first wlayers runs

considers one set of windows with equal sizes. Each of the next
(wlayers

2

)
runs on one pair of window

sizes. For such runs, we pad the smaller windows by dummy characters to make sure all windows
have equal lengths. Our estimation for each pair of windows is obtained in one of the runs (which
focuses on those particular lengths). Thus, both the runtime and the number of false-negatives of
our algorithm are multiplied by a factor of O(w2

layers).
The running time of each round of Algorithm 2 is

= O(lcs-cmp.Initial time + |S|2 · (lcs-cmp.Query time))

= O(|S|w2
max log k + |S|2wmax)

= O(kw2
max log k + k2wmax)

Since the algorithm repeats the sampling procedure O(kγ log k) rounds, thus the overall running
time is

O(kγ log k) ·O(kw2
max log k + k2wmax) = O(k1+γw2

max log2 k + k2+γwmax log k).
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3.2.2 Implementation of lcs-cmp

The goal of this section is to design a data-structure that will be used in our subquadratic time
algorithm for LCS. The data structure receives a window wa, a threshold λ̃, and a set S of windows
w1, w2, . . . , ws. (To avoid confusing, one can assume a = 0 and wa = w0 but we refer to this special
window by wa to be consistent with the previous sections.) All the windows wa, w1, w2, . . . , ws have
equal sizes. We present an O(s|wa|2 log n) time preprocessing algorithm and an O(|wa|) time query
algorithm for lcs-cmp such that for any i, j ∈ [s]

1. if ‖lcswa(wi, wj)‖ ≥ λ̃, then the query algorithm outputs accept;

2. if ‖lcswa(wi, wj)‖ < λ̃2/4, then the query algorithm outputs reject.

We bring the high level idea in the following (see also Algorithm 3 for pseudocode). We first
compute opta,i for every i ∈ [s]. Next, for each window wi, we find a set of at most 2/λ̃ common
subsequences between wa and wi. Let us put the corresponding indices in the wa side of all such
common subsequences in a set Ya,i for each window wi. Our algorithm maintains the property
that if we remove all characters corresponding to Ya,i from wa, the LCS of the remainder with wi
is smaller than |wa|λ̃

2 . For each pair wi, wj ∈ S, if LCSwa(wi, wj) ≥ |wa|λ̃ then at least half of
the characters that contribute to such a solution lie in Ya,j . Thus, the intersection of at least one

common subsequence in Ya,j and opta,i should have size |wa|λ̃2 /(2/λ̃) = |wa|λ̃2/4.
In what follows, we discuss the details.

Lemma 3.22 (Initial). Given a parameter λ̃, a window wa, and a set of windows w1, · · · , ws, the
Initial procedure of data structure lcs-cmp (Algorithm 3) takes O(s|wa|2 log n) time, and outputs
{opta,i}i∈[s] and {Ya,i}i∈[s] such that the following hold.

1. opta,i corresponds to the wa side indices of a fixed longest common subsequence between wa
and wi for every i ∈ [s].

2. Ya,i corresponds to the wa side indices of at most 2/λ̃ common subsequence between wa and
wi for every i ∈ [s].

3. For any common subsequence between wa and wi, if none of its wa side indices are in Ya,i,
then the length of this common subsequence is less than λ̃|wa|/2.

Proof. In order to construct set Ya,i for each window wi we run the following algorithm: We start
by setting Ya,i to an empty set. Next, we set w′a = wa and iteratively compute the LCS of w′a and
wi. Each time we find a solution, we compare its size to λ̃|wa|/2. If the solution size is smaller, we
terminate the algorithm. Otherwise, we add the original positions of the common subsequence in
wa to set Ya,i and continue by removing these characters from w′a. We stop when the solution size
drops below λ̃|wa|/2. It immediately follows that since each time the size of Ya,i is increased by at
least λ̃|wa|/2 then we repeat this procedure at most 2/λ̃ times.

To bound the runtime, we state the following fact: when the size of the LCS between a string
Q and a string R is bounded by `, one can preprocess one of the strings (R in this case) in time
O(|R| log n) and then compute the LCS in time O(|Q|` log n) (see Theorem A.8). Notice that in
order to construct Ya,i for a window wi, the total size of the LCS’s that we find is bounded by |wa|.
Therefore, for a fixed window wi, if we preprocess wi once and use it for all computations, the total
runtime is bounded by

O(|wa||Ya,i| log n+ |wi| log n) = O(|wa|2 log n+ |wi| log n).

Thus, the total preprocessing time of our algorithm over all windows is O(s|wa|2 log n).

30



Algorithm 3 lcs-cmp data structure
1: data structure lcs-cmp
2:
3: members
4: opta,1, · · · , opta,s
5: Ya,1, · · · , Ya,s
6: λ̃ ∈ (0, 1)
7: end members
8:
9: procedure Initial(wa, {wi}i∈[s], λ̃) . Lemma 3.22

10: for i ∈ [s] do
11: compute opta,i, a fixed (e.g. lexicographically smallest) LCS between wa and wi
12: end for
13: for i ∈ [s] do
14: Ya,i ← ∅
15: w′a ← wa
16: while LCS(w′a, wi) ≥ |wa|λ̃/2 do
17: Ya,i ← Ya,i∪ characters in the LCS of w′a and wi
18: w′a ← w′a\ characters in the LCS of w′a and wi
19: end while
20: end for
21: return {opta,i}i∈[s], {Ya,i}i∈[s]

22: end procedure
23:
24: procedure Query(wi, wj) . Lemma 3.23
25: if |opta,i ∩ Ya,j | > λ̃|wa|/2 then
26: return accept
27: else
28: return reject
29: end if
30: end procedure
31:
32: end data structure

Lemma 3.23 (Query). For any (i, j) ∈ [s]×[s], the Query of data structure lcs-cmp (Algorithm 3)
runs in time O(|wa|) with the following properties:

1. If lcswa(wi, wj) ≥ λ̃|wa|, then it outputs accept.

2. If lcswa(wi, wj) < λ̃2|wa|/4, then it outputs reject.

Proof. Our algorithm takes the intersection of the characters that contribute to opta,i with Ya,j . As
explained earlier, if lcswa(wi, wj) ≥ λ̃|wa| then at least half of these characters belong to Ya,j and
thus the intersection of one of the common subsequences contributing to Ya,j with opta,i is at least
λ̃2|wa|/4. Indeed, this can only happen if lcswa(wi, wj) ≥ λ̃2|wa|/4 in the first place. Otherwise we
certainly output reject.
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4 LCS Step 0: Window-compatible Solutions

The goal of this section is to show that window-compatible solutions provide very accurate estimates
for LCS. Roughly speaking, in this section, we construct a set of windows for A and a set of windows
for B and we show that it suffices to only compute the LCS of pairs of windows. If that information
is available, then we can estimate the LCS of the original two strings very accurately.

We use the same definition of window-compatible transformation as [BEG+18], but we will use
slightly different sets of windows. Every window is a (contiguous) substring of each string. Notice
that windows may not have the same length. We use WA to denote the set of windows constructed
for A and WB for the set of the windows that we construct for B.

Let us first state our definition of window-compatible solutions for LCS.

Definition 4.1 (Window-compatible common subsequence). • Let S = 〈w1, · · · , wα〉 and S′ =
〈w′1, · · ·w′α〉 be two sequences of non-overlapping windows fromWA andWB, respectively. We
call a common subsequence of (A,B) window-compatible with respect to S and S′, if it is a
union of k common subsequences of (w1, w

′
1), . . . , (wα, w

′
α)

• We call a common subsequence window-compatible, if it is window-compatible with respect
to some pair of sequences of non-overlapping windows from WA and WB, ordered by their
respective starting indices.

WA will simply be a partitioning of A into disjoint windows of length d (for parameter d to
be finalized later). Setting d = nx leads to a truly subquadratic time solution for any 0 < x < 1,
however, one can play with the value of d to optimize the running time. Below we consider two
constructions of windows WB for string B.

4.1 Window construction for constant λ (Step 0 of Theorem 2.2)

For clarity, we use B(j,l) to denote a length-l substring of B which starts at index j and ends at
index j+ l− 1. Our construction has multiple layers, where each layer contains windows with equal
lengths. For parameter ε0 ∈ (0, 1) to be defined later, let

f := dlog1+ε0(1/ε0)e+ 1 = Θ

(
1

ε0
log(

1

ε0
)

)
.

For each i ∈ {−f, · · · , f}, we define di = d(1 + ε0)i, gi = ε0di, and ti = n/di. For each i, let W i
B

denote the set of all the windows in this layer. In the i-th layer, all the windows have the same size
which is di. gi is the shift size, i.e. for each window (except the leftmost and rightmost windows),
if we shift by ±gi we get another window in W i

B. ti is the number of windows in the i-th layer.

Definition 4.2 (Window construction for constant λ).

W i
B :=

{
B(left,len)

∣∣ left = x · gi + y · di, len = di,

∀x ∈ {0, 1, · · · , di/gi − 1},∀y ∈ {0, 1, · · · , ti − 1}
}

where we use B(left,len) denotes a (contiguous) substring of string B that starts at left and has length
len. Finally WB is ∪i∈{−f,··· ,f}W i

B.

Fact 4.3 (Parameters for constant λ (Theorem 2.2)).
Recall that ε is a small constant and λ is the relative length of the true LCS between A and B.

In order to make sure the loss in the approximation is negligible, we use

ε0 := ελ.
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Algorithm 4 Window construction algorithm for constant λ
1: procedure QuadraticWindows(A,B, n, d, ε0)
2: . Generate WA:
3: WA ← ∅
4: t← n/d
5: for y = 0→ t− 1 do
6: left← y · d
7: WA ←WA ∪

{
A(left,d)

}
8: end for
9: . Generate WB:

10: f ← dlog1+ε0(1/ε0)e+ 1 . d · (1 + ε0)f = Θ(d/ε0)
11: WB ← ∅
12: for i = −f → f do
13: W i

B ← ∅
14: di ← d(1 + ε0)i, ti ← n/di, gi ← ε0di . di is the length, gi is the shift
15: for x = 0→ di/gi − 1 do
16: for y = 0→ ti − 1 do
17: left← x · gi + y · di
18: len← di
19: W i

B ←W i
B ∪

{
B(left,len)

}
20: end for
21: end for
22: WB ←WB ∪W i

B

23: end for
24: return WA,WB, f
25: end procedure
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• The total number of windows is equal to k = |WA|+ |WB| = O((1/λ)3n/d).

• The maximum size of the windows is equal to wmax = Θ(d/λ).

• The minimum size of the windows is equal to wmin = Θ(dλ).

• The ratio of the maximum window size over the minimum window size is bounded by wgap =
wmax/wmin = Θ(1/λ2).

• The number of different layers which is equal to the number of different window sizes is equal
to wlayers = O((1/λ) log(1/λ))

Proof. We derive the number of windows (the rest of the parameters follow immediately from the
construction). In each layer of WB, the number of windows is

|W i
B| = O(tidi/gi) = O(n/(diε0)).

Thus the total number of windows is given by

|WB| =
f∑

i=−f
|W i

B|

= O

n/ε0 f∑
i=−f

1/di

 (Def. 4.2)

= O
(
n/(dε0)

f∑
i=−f

1/(1 + ε0)i︸ ︷︷ ︸
=O(1/ε20)

)

= O(n/(dε30)) (Geometric sequence).

4.1.1 Near-optimality of window-compatible common subsequence

We present a
structural lemma for window-compatible common subsequences. This essentially, shows that the
problem of computing LCS between the two strings reduces to the problem of computing the LCS’s
between the windows.

Lemma 4.4 (Window-compatible structural lemma (constant λ)).
For any two strings A,B of length n: If || lcs(A,B)|| ≥ λ, there exists a window-compatible

common subsequence of A,B of length at least λn− 8ε0n for the window sets constructed in Defini-
tion 4.2.

Proof. Fix a LCS of A,B.
Let Aj be the j-th window of A, and let B̃j be the minimal substring of B containing all

characters common to Aj and the LCS. We consider three cases:

Case 1: |B̃j | ∈ [ε0d, d/ε0]: In this case we can keep this pair.
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Case 2: |B̃j | ≥ d/ε0: Then we throw out this pair. We throw out at least d/ε0 characters, but we
only decrease the entire lcs by at most d.

Case 3: |B̃j | ≤ dε0 : Then we also throw out this pair. We throw out at least d characters, but
we only decrease the entire lcs by at most ε0d.

Let Z denote the set of A-windows that we don’t throw out. Whenever we throw out a pair,
the amount of lcs got decreased is always at most ε0 fraction of the characters we throw out. There
are 2n characters in total. Then we decrease the lcs by at most 2ε0n, i.e.,∑

j∈Z
lcs(Ãj , B̃j) ≥ lcs(A,B)− 2ε0n, (10)

We now derive, for each j ∈ Z, a window Bj ⊆ B̃j of approximately the same length. Let
i ∈ {−f + 1, . . . , f} be the layer such that |B̃j | ∈ (d(1 + ε0)i, d(1 + ε0)i+1). Similarly, B̃j ’s starting
index is in

(
(y − 1) · ε0d(1 + ε0)j−1, y · ε0d(1 + ε0)j−1

]
for some y. Let Bj ∈ WB be the window of

length d(1 + ε0)j−1 with starting index in y · ε0d(1 + ε0)j−1. Notice that Bi ends at

y · ε0d(1 + ε0)j−1 + d(1 + ε0)j−1 = y · ε0d(1 + ε0)j−1 + d(1 + ε0)j − ε0d(1 + ε0)j−1

= (y − 1) · ε0d(1 + ε0)j−1 + d(1 + ε0)j ,

which is a lower bound on B̃j ’s end index, hence indeed Bj ⊆ B̃j . Finally, notice that

|B̃j \Bj | ≤ d(1 + ε0)i+1 − d(1 + ε0)i−1

≤ d(1 + ε0)i−13ε0

< 3ε0|B̃j |. (11)

Therefore, in total the number of characters we lose by restricting to windows Bj is bounded by
3ε0n: ∑

i∈Z
| lcs(Aj , Bj)| ≥

∑
j∈Z

(| lcs(Aj , B̃j)| − 3ε0|B̃j |) (Eq. (11))

≥
∑
j∈Z
| lcs(Aj , B̃j)| − 3ε0n (B̃j ’s are disjoint)

≥ | lcs(A,B)| − 8ε0n (Eq. (10)).

4.2 Window construction for arbitrary λ (Step 0 of Theorem 2.1)

Our construction for this case is similar to Section 4.1, with the exception that when we’re OK
with losing constant factors in approximation, we can afford less shifts and less layers, which will
improve the running time.

Let
f := log(1/ε0).

For each i ∈ {0, · · · , f}, we define di = d · 2i, and ti = n/di. For each i, let W i
B denote the set of

all the windows in this layer. We consider window set W i
B, in i-th layer, all the window have sizes

that are multiples of d, and in the range (di/2, di]. The shift for each layer will be di.
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Definition 4.5 (Window construction for arbitrary λ).

WA,W
0
B :=

{
B(left,len)

∣∣ left = y · d,
∀y ∈ {0, 1, · · · , t0 − 1}

}
W i
B :=

{
B(left,len)

∣∣ left = y · di, len = di/2 + x · d,
∀x ∈ {1, · · · , di/(2d)}∀y ∈ {0, 1, · · · , ti − 1}

}
where we use B(left,len) to denote a (contiguous) substring of string B that starts at left and has
length len. Finally WB is ∪i∈{0,1,··· ,f}W i

B.

In other words, the window construction in Definition 4.5 considers all the substrings that start
at any multiple of d · 2i and whose length is a multiple of d, and at most d · 2i − 1.

Algorithm 5 Window construction algorithm for arbitrary λ
1: procedure CubicWindows(A,B, n, d, ε0)
2: . Generate WA and W 0

B:
3: WA,W

0
B ← ∅

4: t← n/d
5: for y = 0→ t− 1 do
6: left← y · d
7: WA ←WA ∪

{
A(left,d)

}
8: W 0

B ←W 0
B ∪

{
B(left,d)

}
9: end for

10: . Generate WB:
11: f ← log(1/ε0) . d · 2f = d/ε0
12: WB ←W 0

B

13: for i = 1→ f do
14: W i

B ← ∅
15: di ← d · 2i, ti ← n/di
16: for x = 1→ di/(2d) do
17: for y = 0→ ti − 1 do
18: left← y · di
19: len← di/2 + x · d
20: W i

B ←W i
B ∪

{
B(left,len)

}
21: end for
22: end for
23: WB ←WB ∪W i

B

24: end for
25: return WA,WB, f
26: end procedure

Fact 4.6 (Parameters for arbitrary λ (Theorem 2.1)).
Let ε > 0 be a small constant and λ is the relative length of the true LCS between A and B. In

order to make sure the loss in the approximation is small, we use

ε0 := ελ.
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• The total number of windows is equal to k = |WA|+ |WB| = Õ(n/d).

• The maximum size of the windows is equal to wmax = Θ(d/λ).

• The minimum size of the windows is equal to wmin = Θ(d).

• The ratio of the maximum window size over the minimum window size is bounded by wgap =
wmax/wmin = Θ(1/λ).

• The number of different layers which is equal to the number of different window sizes is equal
to wlayers = O(log(1/λ)).

Proof. We derive the number of windows (the rest of the parameters follow immediately from the
construction). In each layer of WB, the number of windows is

|W i
B| = O(ti · (di/d)) = O(n/d).

Therefore the total number of windows is

|WB| = O(fn/d) = Õ(n/d).

4.2.1 Up-to-constant-factor-optimality of window-compatible common subsequence

We present another structural lemma for window-compatible common subsequences. It is similar
to Lemma 4.7, but loses a constant factor in length of common subsequence.

Lemma 4.7 (Window-compatible structural lemma (arbitrary λ)).
For any two strings X,Y of length n, it is possible to map them into A,B in one of the following

ways:

• A = X,B = Y

• A = Y,B = X

• A = reverse(X), B = reverse(Y ), or

• A = reverse(Y ), B = reverse(X),

such that the following holds: If || lcs(A,B)|| ≥ λ, there exists a window-compatible common subse-
quence of A,B of length at least Ω(λn)− 2ε0n for the window sets constructed in Definition 4.5.

Proof. Fix any LCS of X,Y , and suppose we first try A = X,B = Y . For each j, let Aj be the
j-th window of A, and let B̃j be the minimal substring of B containing all characters common to
Aj and the LCS.

We will analyze a few different cases of B̃j ; the trickiest case is when B̃j and B̃j+1 are both
contained in the same W 0

B-window of length d. Denote this window by B̂j,j+1. We claim that in
this case the opposite cannot also be true: The minimal substring of A containing all characters
common to B̂j,j+1 and the LCS is not contained in any WA-window — this is because it intersects
both Aj and Aj+1. We will throw out all such j’s; wlog their contribution is at most half of the
LCS (otherwise we can consider the reverse assignment A = Y,B = X).
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Algorithm 6 Dynamic programming algorithm for block-based lcs problem
1: procedure DP-LCS(WA,WB,M) . Lemma 4.8
2: Note that M is table s.t. M(k1, k2) ≤ lcs(Ak1 , Bk2).
3: Note that WA and WB are sets of windows.
4:
5: Let S1 denote the sorted list of right-indices of WA-windows.
6: Let S2 denote the sorted list of right-indices of WB-windows.
7: for i1 ∈ S1 do
8: for i2 ∈ S2 do
9: C[i1][i2]← 0

10: x1 ← 0
11: for Ak1 , Bk2 have right index i1, i2 do . Case 1
12: left1 ← left index of Ak1
13: left2 ← left index of Bk2
14: tmp← C[left1][left2] +M(Ak1 , Bk2)
15: if tmp > x1 then
16: x1 ← tmp
17: end if
18: end for
19: Let prev(i1) denote the first index ∈ S1 that is earlier than i1
20: Let prev(i2) denote the first index ∈ S2 that is earlier than i2
21: x2 ← C[prev(i1)][i2] . Case 2
22: x3 ← C[i1][prev(i2)] . Case 3
23: C[i1][i2]← max(x1, x2, x3)
24: end for
25: end for
26: end procedure

We also throw out all the B̃j ’s such that |B̃j | > d/(2ε0). Throwing out each such B̃j can decrease
the LCS by at most d, but removes d/(2ε0) characters; hence the total loss to LCS is at most 2ε0 ·n.

Finally, we further throw out either all the B̃j ’s that are contained in someW 0
B-window of length

d, or all the ones that aren’t; again this step loses at most half of the LCS.
Case 1: we keep all the B̃j’s that are contained in some W 0

B-window of length d. By the
previous paragraph, each of them is the only B̃j contained in that window, so we can just match
Aj to that window.
Case 2: we keep B̃j’s that are not contained in any W 0

B-window of length d. For each B̃j ,
consider the index that is a multiple of d · 2i for the largest possible i (notice that this is unique).
We truncate B̃j to the left of this index; wlog the total contribution of truncated characters to the
LCS is at most half (otherwise we reverse both strings). Each B̃j is now contained in a disjoint
W i
B-window, so we can match Aj to that window.

4.3 Dynamic Programming for window-compatible LCS

Lemma 4.8 (Dynamic Programming for Longest Common Sequence). Given two strings A,B of
length n, respective sets of windows WA,WB, and estimates-table M on the pairwise LCS, Algo-
rithm 6 computes the longest common subsequence of A,B that is both: (i) window-compatible, and
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(ii) on each pair of windows uses the common subsequence length from M .
The algorithm runs in time |WA||WB|.

Proof. The proof is based on a classic DP. Define D[i][j] which stores the size of the solution ending
at windows wi ∈ A and wj ∈ B. We then can update the size of the solution for each pair in time
O(1) which gives us a solution in time O(|WA||WB|).
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5 LCS Step 2: Nearby Searching

The arguments of this section follow from the work of [CDG+18]. However, for the sake of
completeness, we restate the theorems here. This section is dedicated to presenting a method
NonMetricEstimation(WA,WB) to be used for estimating the longest common subsequence.
The output of this method is a matrix M̂ : [|WA|]× [|WB|]→ Z+ where M̂ [i][j] estimates the LCS
of windows wi ∈WA and wj ∈WB. We allow for errors in a few elements of M̂ but we prove at the
end of this section that with high probability, the error does not affect the solution significantly.

Our algorithm is pretty simple: We call a pair (wi, wj) of windows underestimated if their LCS is
large enough (at least ελ when normalizing the LCS size) but it is not computed within the desired
approximation factor in Step 1.

We are guaranteed by the bounds of Step 1 that the total number of underestimated pairs
of windows is sublinear in the number of pairs. Thus, we show their count by k2−η. Define
W = kη/2wmax and let two windows of the A side or two windows of the B side be nearby if and only
if the distance of the starting indices of the windows is bounded by W. Fix εnbs to be a small error
rate. In our algorithm, we sample the windows of the A side with a rate p = (10 log n)k−η/2/εnbs
and discover all the underestimated pairs whose A side is subsampled via a naive brute-force. We
then recompute the LCS of each pair of windows (wi, wj) such that wi ∈ WA, wj ∈ WB and we
detect an underestimated pair (wi′ , wj′) such that wi and wi′ are nearby and wj and wj′ are also
nearby. Finally, starting from the distance matrix provided in Step 1, we update the solution for
each pair of windows that we compute their LCS from scratch and output it as matrix M̂ . We prove
in Lemma 5.1 that the error of our estimations is bounded with high probability.

Algorithm 7 Nearby Searching

1: p← (10 log n)k−η/2/εnbs
2: W ← kη/2wmax

3: M̂ ←M
4: for w ∈WA do
5: Skip the following commands with probability 1− p
6: for w′ ∈WB do
7: Compute the LCS of w and w′

8: if (w,w′) is underestimated in M then
9: for any window w1 in WA which is nearby to w do

10: for any window w2 in WB which is nearby to w′ do
11: Update M̂ by computing the LCS of w1 and w2 from scratch.
12: end for
13: end for
14: end if
15: end for
16: end for
17: return M̂

Let M be the output of Step 1 of our algorithm and M̂ be the output of Step 2. We refer to
the size of the optimal LCS made by matrices M and M̂ by LCS(M) and LCS(M ′) respectively.
We moreover, define a matrix M ′ which is the same as M except that the LCS values of all the
underestimated pairs are corrected in M ′. Similarly, we denote by LCS(M ′) the size of the longest
common subsequence made by running DP on matrix M ′. We prove below that the error between
LCS(M ′) and LCS(M̂) is bounded.
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Lemma 5.1 (follows from [CDG+18]). After running Algorithm 7, LCS(M̂) ≥ LCS(M ′) − 2nεnbs
holds with probability at least 1− 1/n4.

Proof. It follows from the definition that the error can only come from the underestimated pairs
of windows; for all other pairs, the corresponding entries of matrix M̂ are at least as large as the
respective entries of M ′. We prove below that the error from underestimated pairs is bounded.

To this end, fix an optimal window-compatible solution with respect to M ′ and let

(x1, y1), (x2, y2), . . .

be the first indices of the underestimated pairs of windows that contribute to this optimal solution.
Let the pairs be sorted by their index. That is x1 < x2 < x3 < . . . and y1 < y2 < y3 < . . . hold.
The proof is based on the following intuitive argument: with high probability, all but very few pairs
of underestimated windows that contribute to the optimal window-compatible solution of M ′ are
detected in Algorithm 7 and thus their values are corrected.

To see this, consider one pair (xi, yi). This means that there is a window w ∈WA and a window
w′ ∈WB such that the starting index of w is equal to xi and the starting index of w′ is equal to yi.
Moreover, the value of the pair (w,w′) is underestimated in M . Let X be the set of all (xj , yj)’s
in (x1, y1), (x2, y2), . . . such that |xj − xi| ≤ W and |yj − yi| ≤ W. Notice that each elements of
X in addition to being an underestimated pair of windows also contributes to the optimal window-
compatible solution of M ′. If |X| ≥ εnbsk

η/2, then with high probability the A-side window of
one of these underestimated pairs will be sampled in Algorithm 7 and therefore after detecting the
underestimated pair, we compute the LCS of (xi, yi) from scratch. If |X| < εnbsk

η/2 then at least
one of the following two constraints should hold:

• The number of xj ’s in (x1, y1), (x2, y2), . . . such that xi−W ≤ xj ≤ xi is smaller than εnbskη/2.

• The number of yj ’s in (x1, y1), (x2, y2), . . . such that yi−W ≤ yj ≤ yi is smaller than εnbskη/2.

Keep in mind that in the constrains above, each (xj , yj) is an underestimated pair which contributes
to the optimal solution ofM ′. If the former holds, we call xi lonely. Similarly, if the latter holds, we
call yi lonely. A simple argument implies that the number of lonely xi’s (and similarly the number
of lonely yi’s) is bounded by (εnbsk

η/2)n/W: Divide the string into blocks of size W. In each block,
at most εnbskη/2 xj ’s are lonely. Thus, the total number of lonely xj ’s is bounded by (εnbsk

η/2)n/W.
A similar argument also holds for the number of lonely yj ’s.

Therefore, the size of |X| may be smaller than εnbsk
η/2 for at most 2(εnbsk

η/2)n/W underes-
timated pairs in (x1, y1), (x2, y2), . . .. This implies that with high probability, the error of M̂ in
comparison to M ′ is bounded by

2wmax(εnbsk
η/2)n/W = 2wmax(εnbsk

η/2)n/(kη/2wmax)

= 2nεnbs

Theorem 5.2 (nearby searching for Ω(λ3) approximation). Given that the number of underesti-
mated pairs in Step 1 is bounded by k2−η, for an arbitrary small constant ε > 0, Step 2 takes time
Õ(w2

maxk
2−η/2/λ6) and has approximation factor 1− ε with probability at least 1− 1/n3.

Proof. To make sure the multiplicative factor in the approximation remains 1 − ε, we set εnbs =
Θ(λ4). Thus, the runtime of the algorithm would be as follows: In the sampling process, we
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subsample each window with probability p = (10 log n)k−η/2/εnbs = Õ(k−η/2/λ4). Therefore, the
number of sampled windows would be Õ(k1−η/2/λ4) with high probability and therefore the runtime
for detecting the underestimated pairs of windows would be

Õ(w2
maxk

2−η/2/λ4).

Since the total number of underestimated pairs is bounded by k2−η and we sample the A-side
windows with probability Õ(k−η/2/λ4), the expected number of underestimated pairs we detect in
the first step is Õ(k2−3η/2/λ4). Moreover, for each underestimated pair of windows that we detect,
we recompute the LCS of all the nearby pairs of windows. The number of nearby windows on the
A-side is O(kη/2/λ) and the number of nearby windows on the B side is Õ(kη/2/λ). This makes a
total runtime of Õ(w2

maxk
2−η/2/λ6).

Notice that the runtime of the algorithm is in expectation since it depends on the number of
underestimated edges we detect in the sampling phase. To make the runtime fixed, we observe that
with probability at least 1/2, the algorithm terminates after Õ(w2

maxk
2−η/2/λ6) operations. Thus,

we run the algorithm in parallel 10 log n times and report the output of any instance that terminates
before Õ(w2

maxk
2−η/2/λ6) operations. This comes with a constant factor overhead in the error rate

of the algorithm which remains smaller than 1/n3.

Theorem 5.3 (nearby searching for (1− ε)λ2 approximation). Given that the number of underes-
timated pairs in Step 1 is bounded by k2−η, for an arbitrary small constant ε > 0, Step 2 takes time
Õ(w2

maxk
2−η/2/λ6) and has approximation factor 1− ε with probability at least 1− 1/n3.

Proof. To make sure the multiplicative factor in the approximation remains 1 − ε, we set εnbs =
Θ(λ3). Thus, the runtime of the algorithm would be as follows: In the sampling process, we
subsample each window with probability p = (10 log n)k−η/2/εnbs = Õ(k−η/2/λ3). Therefore, the
number of sampled windows would be Õ(k1−η/2/λ3) with high probability and therefore the runtime
for detecting the underestimated pairs of windows would be

Õ(w2
maxk

2−η/2/λ3).

Since the total number of underestimated pairs is bounded by k2−η and we sample the A-side
windows with probability Õ(k−η/2/λ3), the expected number of underestimated pairs we detect is
Õ(k2−3η/2/λ3). Moreover, for each underestimated pair of windows that we detect, we recompute
the LCS of all the nearby pairs of windows. The number of nearby windows on the A-side is
O(kη/2/λ) and the number of nearby windows on the B side is Õ(kη/2/λ2). This makes a total
runtime of

Õ(w2
maxk

2−η/2/λ6).

Similar to Theorem 5.2, one can make sure the runtime of the algorithm is

Õ(w2
maxk

2−η/2/λ6)

and the error remains bounded by 1/n3.
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6 Longest Increasing Subsequence

We outlined the algorithm in Section 1.3.3. Here, we bring the details for each step of the algorithm.
In Section 6.1 we discuss the solution domains and show how we construct them. Next, in Section
6.2 we discuss the details of constructing pseudo-solutions and finally in Section 6.3 we show how
we can obtain an approximate solution from the pseudo-solutions. Also, in Section 6.4 we bring an
improvement to the running time at the expense of having a larger approximation factor for the
algorithm.

6.1 Solution Domains

We assume from now on that lis(A) ≥ nλ holds. As mentioned earlier, we divide the input array
into

√
n subarrays of size

√
n and denote them by

sa1, sa2, . . . , sa√n. For a fixed optimal solution opt, our goal is to approximate the smallest and the
largest number of each subarray that contribute to opt. Let us refer to these numbers as the domain
of each subarray. Let ε := 1/1000 be the accuracy parameter. For a subarray sai, we sample k (will
be decided later) different elements and refer to them by aj1 , aj2 , . . . , ajk .

Algorithm 8 Constructing the candidate domains
1: procedure ConstructCandidateDomains(sai) . Lemma 6.1
2: . Given random access to a subarray sai
3: k ← 20 log(1/δ)/(λε2)
4: Sample k elements from sai, and denote the sampled elements by aj1 , aj2 , . . . , ajk
5: for α in [k] do
6: for β in [k] do
7: If ajα ≤ ajβ , then construct a candidate domain [ajα , ajβ ]
8: end for
9: end for

10: return all the constructed candidate domains
11: end procedure

We first prove that,

Lemma 6.1 (constructing candidate domains). Let λ ∈ (0, 1), ε ∈ (0, 1/2) and δ ∈ (0, 1/10).
Let sai be a length-

√
n subarray whose contribution to the optimal solution is at least ε

√
nλ, i.e.,

lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ. If we uniformly sample k = 20 log(1/δ)/(λε2) elements aj1 , aj2 , . . . , ajk

from sai, then with probability at least 1− δ, there exists a pair (α, β) ∈ [k]× [k] such that the fol-
lowing two conditions hold

1. sm(sai) ≤ ajα ≤ ajβ ≤ lg(sai),

2. lis
[ajα ,ajβ ]

(sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai).

Proof. At least ε
√
nλ elements of sai appear in opt. Let us put all these elements in an array b in

the same order that they appear in sai. Then it is obvious that b has at least ε
√
nλ elements. To

prove the lemma, we bound the probability that none of the first ε/2 fraction of the elements of b
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are sampled in our algorithm.

Pr[none of the elements in the first ε/2 fraction of b is sampled]

≤
(

1− ε

2
· ε
√
nλ · 1√

n

)k
=

(
1− ε2λ

2

) 2
ε2λ
·10 log(1/δ)

≤ e−10 log(1/δ)

≤ δ/2,

where the first step follows from the fact that b contains at least ελ
√
n elements, the second step

follows from k = 20 log(1/δ)/(λε2), and the third step follows from the fact that (1 − 1/x)x ≤ 1/e
for ∀x ≥ 4. Hence, with probability at least 1 − δ/2, at least one of the elements in the first ε/2
fraction of b are sampled.

With the same analysis, one can prove that with probability at least 1− δ/2 at least one of the
elements in the last ε/2 fraction of b are also sampled.

Taking a union bound of two events, with probability at least 1− δ, at least one of the elements
in the first and at least one of the elements in the last ε/2 fraction of b are sampled.

Therefore, the lis of sai subject to this interval is at least a 1− ε fraction of
lis[sm(sai),lg(sai)](sai).

Notice that the average contribution of each subarray to opt is
√
nλ and Lemma 6.1 applies to

a subarray if its contribution to opt is at least an ε fraction of this value. Therefore Lemma 6.1
implies that a considerable fraction of the solution is covered by the candidate domains.

Corollary 6.2 (existence of a desirable solution). Let λ ∈ (0, 1) such that lis(A) ≥ nλ and ε ∈
(0, 1/4). If we run Algorithm 8 with parameter δ = ε on every subarray independently, then with
probability at least 1−exp(−Ω(ε2

√
nλ)), there exists a set T ⊆ [

√
n] and elements αi and βi sampled

from sai for each i ∈ T such that the following conditions hold:

1. For any i ∈ T , αi ≤ βi.

2. For any i, j ∈ T satisfying i < j, βi < αj.

3.
∑

i∈T lis[αi,βi](sai) ≥ (1− 4ε)lis(A).

Proof. Lemma 6.1 holds for all subarrays whose contribution to opt is at least ε
√
nλ. Let S ⊆ [

√
n]

denote the set of coordinates such that for each i ∈ S

lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.

Since
∑√n

i=1 lis
[sm(sai),lg(sai)](sai) = lis(A) and lis[sm(sai),lg(sai)](sai) ≤

√
n, we have

∑
i∈S

lis[sm(sai),lg(sai)](sai) ≥

√
n∑

i=1

lis[sm(sai),lg(sai)](sai)−
√
n · ε
√
nλ ≥ lis(A)− εnλ. (12)

Let T ⊆ S denote the set of coordinates such that for each i ∈ T ,

lis[αi,βi](sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai), and lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.
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Now we show that with probability at least 1− exp(−Ω(ε2
√
nλ)),∑

i∈T
lis[sm(sai),lg(sai)](sai) ≥ (1− 2ε)

∑
i∈S

lis[sm(sai),lg(sai)](sai). (13)

For each i ∈ S, let Xi denote a random variable such that

Xi =

{
lis[sm(sai),lg(sai)](sai), with probability of i ∈ T ;

0, with probability of i /∈ T,

and X =
∑

i∈S Xi. By Lemma 6.1 (with δ = ε), We have

E[X] ≥ (1− ε)
∑
i∈S

lis[sm(sai),lg(sai)](sai).

By Hoeffding bound (Theorem A.2),

Pr[X −E[X] ≥ εE[X]] ≤ 2 exp

− 2ε2(E[X])2∑
i∈S

(
lis[sm(sai),lg(sai)](sai)

)2


≤ 2 exp

−2ε2(1− ε)2
(∑

i∈S lis
[sm(sai),lg(sai)](sai)

)2

n3/2


≤ 2 exp(−2ε2(1− ε)4√nλ)

≤ exp(−Ω(ε2
√
nλ)).

Hence, Equation (13) holds with probability at least 1− exp(−Ω(ε2
√
nλ)).

Conditioned on Equation (13), we have∑
i∈T

lis[αi,aβi ](sai) ≥
∑
i∈T

(1− ε)lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)
∑
i∈S

lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)(lis(A)− εnλ)

≥ (1− 4ε)lis(A)

(14)

where the first inequality follows from the definition of T , the second inequality follows from Equa-
tion (13), the third inequality follows from Equation (12) and the last inequality follows from
lis(A) ≥ nλ.

Finally, by Equation (13) and (14), we have

Pr

[∑
i∈T

lis[αi,aβi ](sai) ≥ (1− 4ε)lis(A)

]
≥ 1− exp(−Ω(ε2

√
nλ)).
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Algorithm 9 Constructing the pseudo solutions
1: procedure ConstructPseudoSolutions(cdi1, . . . , cdi√n) . Lemma 6.3,6.4,6.5
2: . {cdii}i∈[

√
n] is

√
n sets of candidate domain intervals

3: pseudo-solutions← ∅
4: while true do
5: assg← largest assigment of candidate domain intervals to subarrays which is monotone
6: if assg contains less than ε

√
nλ non-empty candidate domain intervals then

7: break
8: else
9: Add assg to pseudo-solutions

10: for i← 1 to
√
n do

11: if assg contains a candidate domain interval for subarray sai then
12: remove the corresponding candidate domain interval from cdii
13: end if
14: end for
15: end if
16: end while
17: return pseudo-solutions ps1, ps2, . . . , pst
18: end procedure

6.2 Constructing Approximately Optimal Pseudo-solutions

We call a sequence of
√
n intervals [`1, r1], [`2, r2], . . . , [`√n, r

√
n] a pseudo-solution if all of the

intervals are monotone. That is `1 ≤ r1 < `2 ≤ r2 < `3 ≤ r3 ≤ . . . ≤ `√n ≤ r√n. These intervals
denote solution-domains for the subarrays. We also may decide not to assign any solution domain
to a subarray in which case we show the corresponding interval by ∅. We define monotonicity of
a pseudo-solution such that it is not violated by ∅. The quality of a pseudo-solution is defined as∑

i lis
[`i,ri](sai). We denote the quality of a pseudo-solution ps by q(ps).

Another way to interpret Corollary 6.2 is that one can construct a pseudo-solution using the
sampled elements whose quality is at least a 1− ε fraction of lis(A). In this section, we present an
algorithm to construct a small set of pseudo-solutions with the promise that at least one of them
has a quality of at least lis(A)/t, where t is the number of pseudo-solutions. Finally, in Section 6.3,
we present a method to approximate the size of the optimal solution using pseudo-solutions.

We construct the pseudo-solutions via Algorithm 9. The input of Algorithm 9 is the set of
candidate domain intervals obtained by Algorithm 8 on every subarray. We first find an assignment
of candidate solution domains to the subarrays which is monotone and has the largest number of
candidate domain intervals. (This step can be implemented by dynamic programming or solved
with an algorithm similar to activity selection algorithm.) We make a pseudo-solution out of this
assignment and update the set of candidate intervals by removing the ones which are used in our
pseudo-solution. We then repeat the same procedure to construct the second pseudo-solution and
update the candidate solution domains accordingly. We continue on, until the number of solution
domains used in our pseudo-solution drops below ελ

√
n in which case we stop.

We first prove in Lemma 6.3 that the number of pseudo-solutions constructed in Algorithm 9
is bounded by O(k2/(λε)). Next, we show in Lemma 6.4 that at least one of the pseudo-solutions
constructed by Algorithm 9 has a quality of at least Ω(lis(A)/t) where t is the number of pseudo-
solutions. Finally we prove in Lemma 6.5 that the running time of Algorithm 9 is O(tk2√n log n).
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Lemma 6.3 (number of pseudo-solutions). For each i ∈ [
√
n], let cdii be a set of at most k2

candidate domain intervals. Let t denote the number of pseudo-solutions constructed in Algorithm
9. Then, we have t ≤ k2/(λε).

Proof. Note that for each subarray we have at most k2 candidate domain intervals. Since there are√
n subarrays, then in total we have

√
nk2 candidate domain intervals. Each time we construct a

pseudo-solution, the total number of the candidate domain intervals is decreased by at least ε
√
nλ.

Thus, the total number of pseudo-solutions t can be upper bounded,

t ≤
√
nk2

ε
√
nλ
≤ k2

λε
.

Lemma 6.4 (quality of pseudo-solutions). Let ps1, ps2, . . . , pst be the pseudo-solutions constructed
by Algorithm 9. If lis(A) ≥ nλ holds, then with probability at least 1− exp(−Ω(

√
nλ)), there exists

an i ∈ [t] such that

q(psi) ≥
lis(A)

2t
.

Proof. Let us focus again on the actual solution domains

[sm(sa1), lg(sa1)], [sm(sa2), lg(sa2)], . . . , [sm(sa√n), lg(sa√n)].

We define set S ⊆ [
√
n] such that

lis[sm(sai),lg(sai)] ≥ ε
√
nλ, ∀i ∈ S.

Using Corollary 6.2 with ε ≤ 1/10, we know that there is a monotone pseudo-solution [αi, βi]i∈T
(T ⊆ S) such that [αi, βi] are candidate domain intervals and∑

i∈T
lis[αi,βi](sai) ≥ (1− 4ε)lis(A).

Denote this pseudo-solution as sol. At the time we terminate Algorithm 9, there are at most ε
√
nλ

candidate domain intervals of sol that do not belongs to any pseudo-solution of the pseudo-solution
set. Also, since each candidate domain interval contributes at most

√
n to the quality of the pseudo-

solution containing the interval, we have

t∑
i=1

q(psi) ≥ (1− 4ε)lis(A)− ε
√
nλ ·
√
n ≥ (1− 4ε)lis(A)− εlis(A) = (1− 5ε)lis(A).

Thus, there exists an i ∈ [t] such that

q(psi) ≥ (1− 5ε)lis(A)/t ≥ lis(A)/(2t).

Lemma 6.5 (running time). For each i ∈ [
√
n], let cdii be a set of at most k2 candidate domain

intervals. Let t denote the number of pseudo-solutions. The running time of Algorithm 9 is bounded
by O(tk2√n log n).
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Algorithm 10 Evaluate the pseudo solutions
1: procedure EvaluatePseudoSolutions(ps1, . . . , pst) . Lemma 6.6
2: . {psi}i∈[t] is a set of pseudo solutions
3: p← 1000t log4 n

ε4λ
√
n

4: Randomly sample each i ∈ [
√
n] with probability p, and put all the samples in a set W

5: for each psj do
6: q̃(psj)← 0
7: for each interval [`i, ri] in psj do
8: if i ∈W then
9: q̃(psj)← q̃(psj) + lis[`i,ri](sai)/p

10: end if
11: end for
12: end for
13: return largest q̃(psj) for all j ∈ [t]
14: end procedure

Proof. Lemma 6.3 states that Algorithm 9 terminates after constructing t
pseudo-solutions. Now we show that constructing each pseudo-solution takes time
O(k2√n log n). Our solution is based on a dynamic programming technique. LetD : [

√
n]×[k2]→ N

be an array such that D[i][j] stores the size of the largest monotone pseudo-solution for the first i
subarrays which ends with the j’th candidate domain interval of sai. Using classic segment-tree data
structure (this data structure can be found in many textbooks, e.g. [CLRS09]), one can compute
the value of D[i][j] in time O(log n) from the previously computed elements of the array.

Thus, the total running is bounded by O(tk2√n log n).

6.3 Evaluating the Pseudo-solutions

We finally use a concentration bound to show that the quality of a pseudo-solution can be approx-
imated well by sampling a small number of subarrays. Since a pseudo-solution specifies the range
of the numbers used in every subarray, the quality of a pseudo-solution, or in other words, the size
of the corresponding increasing subsequence of a pseudo-solution can be formulated as

q(ps) :=

√
n∑

i=1

lis[`i,ri](sai)

where [`i, ri] denotes the corresponding solution domain of ps for sai.
In Lemma 6.6, we prove that by sampling O(logO(1) n/λ4) many subarrays and computing

lis[`i,ri](sai) for them, one can approximate the quality of a pseudo-solution pretty accurately.

Lemma 6.6 (the quality of pseudo-solution). Let λ ∈ (0, 1) and ε be a constant in (0, 1/100).
Let ps1, ps2, · · · , pst be a set of t pseudo-solutions. With probability at least 1 − exp(−Ω(log2 n)),
Algorithm 10 runs in time O(t2

√
n logO(1) n/λ) such that,

1. If there exists an i ∈ [t], q(psi) ≥ λn
2t , then the algorithm outputs an estimation at least λn

4t .

2. If q(psi) <
λn
8t for all i ∈ [t], then the algorithm outputs an estimation smaller than λn

4t .
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Proof. We iterate over all t pseudosolutions, and for each one we estimate their quality separately.
In the end we output the largest estimated value over all pseudosolutions. More precisely, we define
p = 1000t log4 n

ε4λ
√
n

and for each pseudosolution, we sample each of its subarrays with probability p.
We then compute the LIS of the sampled subarrays subject to the range which corresponds to the
pseudosolution. We then estimate the quality of the pseudosolution by scaling the sum of LIS’s by
a factor 1/p. In what follows, we prove that the estimation error is negligible.

By Chernoff bound, for each pseudosolution, with probability 1 − exp(−Ω(log3 n)) at most
2p
√
n = 2000t log4 n

ε4λ
subarrays are sampled. For each pseudo-solution, Algorithm 10 computes the

value of longest increasing subsequence subject to the corresponding range once for every sampled
subarray. Hence, the total running time of the algorithm is O(t2

√
n logO(1) n/λ).

Consider an arbitrary pseudo-solution ps ∈ {ps1, . . . , pst} and let q̃(ps) denote its estimated LIS.
We show that

Pr

[(
1− ε

4

)2
(
q(ps)− ελ4n

100t

)
≤ q̃(ps) ≤

(
1 +

ε

4

)2
q(ps) +

ελ4n

100t

]
≤ 1− exp(−Ω(log3 n)). (15)

Then the lemma holds by a union bound on all the pseudo-solutions.
Let T be the set of subarray indices such that i ∈ T iff there is a non-empty interval [`i, ri] of

ps corresponding to subarray sai. Let p = 1000t log4 n
ε4λ
√
n

be the probability of sampling a subarray. For
each i ∈ T , let Xi denote a random variable such that

Xi =

{
1, with prob. p;
0, with prob. 1− p.

and
X =

∑
i∈T

1

p
lis[`i,ri](sai)Xi.

We have

E[X] = E

[∑
i∈T

1

p
lis[`i,ri](sai)Xi

]
=
∑
i∈T

lis[`i,ri](sai) = q(ps).

Let
Tj =

{
i ∈ T : (1 + ε/4)j−1 ≤ lis[`i,ri](sai) < (1 + ε/4)j

}
for integer 1 ≤ j ∈

⌈
log1+ε

√
n
⌉
.

Let ∆ = ε2λ
√
n

1000t logn . Consider Tj ’s such that |Tj | ≥ ∆. The contribution of q(ps) mostly comes
from Tj in the following sense ∑

j:|Tj |≥∆

∑
i∈Tj

lis[`i,ri](sai) ≤ q(ps) (16)

and ∑
j:|Tj |≥∆

∑
i∈Tj

lis[`i,ri](sai) =q(ps)−
∑

j:|Tj |<∆

∑
i∈Tj

lis[`i,ri](sai)

≥q(ps)−∆
√
n ·
⌈
log1+ε

√
n
⌉

≥q(ps)− ελn

100t
.

(17)
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Now we bound the random variable
∑

j:|Tj |≥∆

∑
i∈Tj lis

[`i,ri](sai)Xi/p. By Chernoff bound, for each
j such that |Tj | ≥ ∆, we have

Pr

(1− ε

4

)
p|Tj | ≤

∑
i∈Tj

Xi ≤
(

1 +
ε

4

)
p|Tj |

 ≥ 1−exp(−Ω(ε2p|Tj |)) = 1−exp(−Ω(log3 n)). (18)

Notice that for set Tj ,

(1 + ε/4)j−1

p

∑
i∈Tj

Xi ≤
∑
i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(1 + ε/4)j

p

∑
i∈Tj

Xi. (19)

We have

Pr

(1− ε

4

)2 ∑
i∈Tj

lis[`i,ri](sai) ≤
∑
i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(
1 +

ε

4

)2 ∑
i∈Tj

lis[`i,ri](sai)


≥Pr

(1− ε

4

)2 ∑
i∈Tj

lis[`i,ri](sai) ≤
(1 + ε/4)j−1

p

∑
i∈Tj

Xi

∧ (1 + ε/4)j

p

∑
i∈Tj

Xi ≤
(

1 +
ε

4

)2 ∑
i∈Tj

lis[`i,ri](sai)


≥Pr

(1− ε

4

)2 (
1 +

ε

4

)j
|Tj | ≤

(1 + ε/4)j−1

p

∑
i∈Tj

Xi

∧ (1 + ε/4)j

p

∑
i∈Tj

Xi ≤
(

1 +
ε

4

)j+1
|Tj |


≥Pr

(1− ε

4

)
p|Tj | ≤

∑
i∈Tj

Xi

∧ ∑
i∈Tj

Xi ≤
(

1 +
ε

4

)
p|Tj |


=1− exp(−Ω(log3 n)),

(20)

where the first inequality follows from Equation (19), the second inequality follows from the defi-
nition of Tj and the last inequality follows from Equation (18). By Equation (16), (17), (21) and
union bound, we have

Pr

(1− ε

4

)2
(
q(ps)− ελn

100t

)
≤

∑
j:|Tj |≥∆

∑
i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

(
1 +

ε

4

)2
q(ps)


≥Pr

(1− ε

4

)2 ∑
j:|Tj |≥∆

∑
i∈Tj

lis[`i,ri](sai) ≤
∑

j:|Tj |≥∆

∑
i∈Tj

1

p
lis[`i,ri](sai)Xi

≤
∑

j:|Tj |≥∆

(
1 +

ε

4

)2 ∑
i∈Tj

lis[`i,ri](sai)


≥1−O

(
log n

ε

)
exp(−Ω(log3 n))

=1− exp(−Ω(log3 n)).

(21)
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Now we bound random variable
∑

j:|Tj |<∆

∑
i∈Tj lis

[`i,ri](sai)Xi/p. If |Tj | < ∆, then by Chernoff
bound we have

Pr

∑
i∈Tj

Xi ≤
2 log3 n

ε2

 ≥ 1− exp(−Ω(log3 n)).

By union bound we have

Pr

 ∑
j:|Tj |<∆

∑
i∈Tj

1

p
lis[`i,ri](sai)Xi ≤

2 log3 n

ε2
·
√
n

p
·
⌈
log1+ε

√
n
⌉
<
ελn

100t

 ≥ (22)

1− exp(−Ω(log3 n))). (23)

By Equation (21) and Equation (22), we obtain Equation (15).

Putting all the previous lemmas together gives the following result:

Corollary 6.7 (algorithm for LIS decision problem). Given a length-n sequence A, let λ ∈ [1/n, 1].
There is a randomized algorithm that runs in time O(λ−7√n logO(1) n) such that with probability
1− 1/ poly(n)

• The algorithm accepts if lis(A) ≥ nλ.

• The algorithm rejects if lis(A) = O(nλ4).

Proof. The correctness follows from Lemma 6.6, Lemma 6.4, and Lemma 6.5.
Running time: The running time is

time = O(tk2√n logO(1) n)︸ ︷︷ ︸
Lemma 6.5

+O(t2λ−1√n logO(1) n)︸ ︷︷ ︸
Lemma 6.6

= O(t2λ−1√n logO(1) n) since t ≤ O(k2/λ)

= O(k4λ−3√n logO(1) n) since k ≤ O(1/λ)

= O(λ−7√n logO(1) n)

Thus, we complete the proof.

Finally, by starting with λ = 1 and iteratively multiplying λ by a 1/(1+ε) factor until a solution
is found, we can approximate lis(A) within an approximation factor of O(λ3).

Theorem 6.8 (polynomial approximation for LIS). Given a length-n sequence A such that lis(A) =
nλ where λ ∈ [1/n, 1] is unknown to the algorithm. There is an algorithm that runs in time
Õ(λ−7√n) and outputs a number est such that

Ω(lis(A)λ3) ≤ est ≤ O(lis(A)).

with probability at least
1− 1/ poly(n).

We remark that one can turn Theorem 6.8 into an algorithm with running time Õ(n17/20) by
considering two cases separately. If λ < n−1/20 we sample the array with a rate of n−3/20 and
compute the LIS for the sampled array. Otherwise, the running time of the algorithm is already
bounded by Õ(n17/20).
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6.4 An O(nκ) Time Algorithm via Bootstrapping

In this section, we present a general framework to reduce the running time for LIS approximation
at the expense of worse approximation factor.

Let us move a step backward and analyze the previous algorithm for obtaining an O(λ3) approx-
imate solution. We first divide the input array into

√
n subarrays of size

√
n and after constructing

the pseudo-solutions, we sample O(λ4) subarrays to estimate the size of the solution for pseudo-
solutions. The reason we set the size of the subarrays to

√
n is that there is a trade-off between the

first and the last steps of the algorithm. More precisely, if we have more than
√
n subarrays then

the number of samples we draw in the beginning would exceed Oλ(
√
n). On the other hand, having

fewer than
√
n subarrays results in larger subarrays which would be costly in the last step.

If one favors the running time over the approximation factor, the following improvement can be
applied to the algorithm: In the last step of the algorithm, instead of sampling the entire subarrays
and computing lis for every pseudo-solution, we recursively call the same procedure to approximate
the size of the solution for each subarray. This way, having large subarrays would no longer be an
issue and therefore we can have fewer subarrays to improve the number of samples we draw in the
first step of the algorithm.

More formally, in order to obtain a running time of O(poly(λ)nκ) for any constant 0 < κ < 1,
we set the size of each subarray to n1−κ and therefore after constructing the pseudo-solutions, the
problem boils down to approximating the solution for poly(λ) many subarrays of length n1−κ. By
running the same algorithm, we would have nκ subarrays of length n1−2κ in the second iteration.
After 1/κ−1 iterations, the subarrays are small enough and we can access all their elements in time
O(poly(λ)nκ). Of course, this imposes a factor of poly(λ) to the approximation.

Figure 5: The flowchart of the Oλ(nε) time algorithm is shown.

By generalizing the ideas from previous subsections, we show that if there is an algorithm for
LIS with approximation factor f(λ), then we can get a

(
f
(
λ4

232

)
· λ4

233

)
-approximate LIS algorithm

with better running time using the f(λ)-approximate algorithm as a subroutine.

Lemma 6.9. Assume we partition the sequence into ζ subarrays, where ζ is polynomially related
to the length of the input sequence. For parameter λ ∈ (0, 1), let Oracle be a f(λ)-approximate
LIS algorithm (with respect to a domain interval) with running time g(n, λ) and success probability
1− exp(−Ω(log2 n)) where n is the length of the input sequence. Then Algorithm 11 using Oracle
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Algorithm 11 Recursive Estimate LIS with Oracle
1: procedure RecursiveEstimationWithOracle(Oracle, A, λ, `, r) . Lemma 6.9
2: . input: sequence A, parameter λ, domain interval [`, r]
3: . assume sa1, sa2, . . . , sanκ are subarrays of A
4: . subroutine Oracle approximate LIS for subarrays with approximation factor f(λ)
5: for i ∈ [ζ] do
6: cdii ← ConstructCandidateDomains(sai)
7: discard all the intervals which are not in [`, r] from cdii
8: end for
9: {ps1, . . . , pst} ← ConstructPseudoSolutions(cdi1, . . . , cdiζ)

10: λ0 ←
(
λ
28

)4
11: p← 20 log4 n

λ0ζ
12: randomly sample each i ∈ [ζ] with probability p, and put all the samples in a set Q
13: for j ∈ [t] do
14: c← 0
15: for i ∈W do
16: if ∃[`i, ri] ∈ psj and Oracle(sai, λ0, `i, ri) accepts then
17: c← c + 1
18: end if
19: end for
20: if c ≥ 3λ0pζ/4 then
21: return accept
22: end if
23: end for
24: return reject
25: end procedure

as a subroutine is a
(
f
(
λ4

232

)
· λ4

233

)
-approximate LIS algorithm with

O

(
λ−4g

(
n

ζ
,
λ4

232

)
logO(1) n+ λ−7ζ logO(1) n

)
running time and success probability 1− exp(−Ω(log2 n)), where ζ is the number of subarrays.

Proof. We first prove the correctness of the algorithm. Let A be a sequence of length n, and
sa1, . . . , saζ be the subarrays.

Consider the case of lis[`,r](A) ≥ λn. By Corollary 6.2 and Lemma 6.4 with ε = δ = 1/10, with
probability 1− exp(−Ω(ζλ)), there exists a pseudo-solution psj within interval [`, r] satisfying

q(psj) ≥
lis[`,r](A)

2t
≥ lis[`,r](A)λε

2k2
≥ lis[`,r](A)λε

2 · 202 log2(1/δ)/(λ2ε4)
≥ ε5λ4

800 log2(1/δ)
n ≥ λ4

231
n.

Let α denote the number of subarrays sai such that lis[`i,ri](sai) ≥ λ0n/ζ where [`i, ri] is the interval
for subarray sai in psj . We have

α ≥
q(psj)− λ4n/232

n/ζ
≥ λ4ζ

232
.
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By Chernoff bound, Step 14 to Step 22 of Algorithm 11 accepts on psj with probability at least
1− exp(−Ω(log2 n)).

Consider the case of

lis[`,r](A) ≤ f
(
λ4

232

)
λ4

233
n.

Then for any pseudo-solution psj , we have

q(psj) ≤ f
(
λ4

232

)
λ4

233
n.

Let β denote the number of subarrays sai such that lis[`i,ri](sai) ≥ f(λ4/232)n/ζ where [`i, ri] is the
interval for subarray sai in psj . We have

β ≤
q(psj)

f(λ4/232)n/ζ
≤ λ4

233
ζ.

By Chernoff bound, Step 14 to Step 22 of Algorithm 11 do not accept on psj with probability
at least 1 − exp(−Ω(log2 n)). By union bound, Algorithm 11 rejects with probability at least
1− exp(−Ω(log2 n)).

Hence, Algorithm 11 is a
(
f
(
λ4

232

)
· λ4

233

)
-approximate algorithm for LIS of length n with success

probability at least 1− exp(−Ω(log2 n)).
Finally, we discuss the running time of Algorithm 11. By the definition of procedures Con-

structCandidateDomains and ConstructPseudoSolutions, the running time of Step 5 to
Step 9 of Algorithm 11 is O(λ−9ζ logO(1) n). By Lemma 6.3, t = O(λ−3), and by Chernoff bound
with probability 1 − exp(−Ω(log2 n)) the size of Q is at most O(λ−4 log4 n). Hence, the running
time of Step 12 to Step 24 of Algorithm 11 is O(λ−7g(n/ζ, λ4/232) log4 n).

By definition, we have the following basic fact about approximate ratio.

Fact 6.10. Let f and f ′ be two functions mapping (0, 1) to (0, 1) such that f(λ) ≥ f ′(λ) for
any λ ∈ (0, 1). If there is a f(λ)-approximate LIS algorithm, then the algorithm is also f ′(λ)-
approximate.

Now we present algorithm to approximate LIS using Õ(nκ poly(λ−1)) space by applying the
pseudo-solution construction-evaluation framework recursively. In particular, we use the same algo-
rithm on subarrays as an oracle and apply Lemma 6.9 recursively to approximate the entire sequence
with slightly worse approximation ratio (compared with approximation ratio of the oracle).

Lemma 6.11. Let κ be a constant of (0, 1) and λ ∈ (0, 1). Algorithm 12 approximates LIS with
approximation ratio

λ2·4(d1/κe−1)

2563·4(d1/κe−1)

and running time O(nκ · λ−4O(1/κ)
logO(1) n) and success probability 1− exp(−Ω(log3 n)).

Proof. We first prove the correctness of the algorithm by induction. Without loss of generality, we
assume 1/κ is an integer.

For i ∈ {2, 3, . . . , 1/κ}, denote

hi(λ) =
λ2·4(i−1)−4

2562·4(i−1)+3·4(i−2)−7
.
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Algorithm 12 Recursive Estimate LIS

1: procedure RecursiveLIS(A, λ, `, r) . Lemma 6.11
2: . input: sequence A, parameter λ, domain interval [`, r]
3: . assume sa1, sa2, . . . , sanκ are subarrays of A
4: if the length of A is greater than n2κ then
5: return RecursiveLISWithOracle(RecursiveLIS, A, λ, `, r) with ζ = nκ

6: else
7: for i ∈ [nκ] do
8: cdii ← ConstructCandidateDomains(sai)
9: discard all the intervals which are not in [`, r] from cdii

10: end for
11: {ps1, . . . , pst} ← ConstructPseudoSolutions(cdi1, . . . , cdinκ)
12: if EvaluatePseudoSolutions(ps1, . . . , pst) ≥ λ|A| then
13: return accept
14: else
15: return reject
16: end if
17: end if
18: end procedure

We show that Algorithm 12 is hi(λ)-approximate if the length of the input sequence is ni·κ.
If the length of input sequence is n2κ, then h2(λ) = λ4

232
. By Corollary 6.2, Lemma 6.4, and

Lemma 6.6, Algorithm 12 is h2(λ)-approximate.
In the induction step, for an integer 2 ≤ i < 1/κ, we assume Algorithm 12 is hi(λ)-approximate

for input instance of length ni·κ. By Lemma 6.9, Algorithm 12 is
(
hi

(
λ4

232

)
λ4

233

)
-approximate for

input instance of length n(i+1)·κ. Since

hi

(
λ4

232

)
λ4

233
=

λ4·(2·4(i−1)−4) · λ4

2564·(2·4(i−1)−4) · 2562·4(i−1)+3·4(i−2)−7 · 233

=
λ2·4i−12

2562·4i+2·4(i−1)+3·4(i−2)−18.875

>
λ2·4i−4

2562·4i+3·4(i−1)−7

=hi+1(λ),

by Fact 6.10, Algorithm 12 is hi+1(λ)-approximate for input instance of length n(i+1)·κ. Since

h1/κ(λ) >
λ2·4((1/κ)−1)

2563·4((1/κ)−1)
,

by Fact 6.10, Algorithm 12 is
(

λ2·4
((1/κ)−1)

2563·4
((1/κ)−1)

)
-approximate for input instance of length n.

By Corollary 6.2, Lemma 6.4, Lemma 6.6 and Lemma 6.9, we have the desired running time.
The success probability is obtained by same corollaries/lemmas and union bound.

Finally, by starting with λ = 1 and iteratively multiplying λ by a 1/(1+ε) factor until a solution
is found, we can approximate lis(A) within an approximation factor of λO(41/κ).
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Theorem 6.12. Let κ be a constant of (0, 1) and λ ∈ (0, 1). There exists a Õ(nκ · λ−4O(1/κ)
) time

algorithm for lis with approximation factor λ4O(1/κ) and success probability 1− exp(−Ω(log3 n)) .
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A Probability, combinatorial, and Graph Tools

In this section, we restate probability and graph tools that we use throughout this paper. All these
theorems are proven in previous work.

Theorem A.1 (Chernoff Bounds [Che52]). Let X =
∑n

i=1Xi, where Xi = 1 with probability pi
and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Theorem A.2 (Hoeffding bound [Hoe63]). Let X1, · · · , Xn denote n independent bounded variables
in [ai, bi]. Let X =

∑n
i=1Xi, then we have

Pr[|X −E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
Theorem A.3 (Blakley-Roy inequality, [BR65], see also Proposition 3.1 in [KSV13]). Let G denote
a graph that has n vertices and average degree d. The number of walks of length k in graph G is at
least ndk.

Theorem A.4 (Turán theorem for bipartite graphs, [KST54], see also [BBK13]). For a graph G
the Turán number ex(G,n) is the maximum number of edges that a graph on n vertices can have
without containing a copy of G. For any s ≤ t, ex(Ks,t, n) ≤ 1

2(t− 1)1/sn2−1/s + o(n2−1/s)

In particular, when s = t, Theorem A.5 implies that for large enough n we have ex(Ks,s, n) ≤
n2−1/s.

Theorem A.5 (Turán theorem for cliques [Tur41]). Let G be any graph with n vertices, such that
G is Kr+1-free. Then the number of edges in G is at most

(1− 1

r
) · n

2

2
.

Corollary A.6 (of Theorem A.5). Let G be any graph with n vertices, such that G has no inde-
pendent set of size r + 1. Then the number of edges in G is at least(

n

2

)
− (1− 1

r
) · n

2

2
=
nr + n2

2r
.

Lemma A.7 (application of Jensen’s inequality). Let n1, n2, . . . , nk be a sequence of integer numbers
of size k and λ1, λ2, . . . , λk be k real numbers in the interval [0, 1]. Define λ = (

∑
niλi)/(

∑
ni).

Then for any y ≥ 0 we have ∑
niλ

1+y
i ≥

∑
niλ

1+y.

Proof. Let ψ(x) = x1+y. Since ψ is real convex function, by Jensen’s inequality, we have

ψ(

∑
i niλi∑
i ni

) ≤
∑
niψ(λi)∑
ni

Applying definition ψ, we have

(

∑
i niλi∑
i ni

)1+y ≤
∑
niλ

1+y
i∑
ni

.
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Using definition of λ, we have

λ1+y ≤
∑
niλ

1+y
i∑
ni

.

Theorem A.8 (A well-known algorithm also used in [HSSS19]). Given two strings A and B, one
can with preprocessing time O(|B| log |B|) verify if the LCS of A and B is at least q or not in time
O(|A|q log |B|). In case the answer is positive, finding such a common subsequence can be done in
time O(|A|q log |B|).

Proof. In the preprocessing step, for each character x in B, we construct a binary tree that keeps
track of all the places that x appears in B. This enables us to answer the following queries in
O(log |B|) time: Given an index i of B and a character x, what is the smallest index i′ ≥ i such
that Bi′ = x?

To find the LCS of A and B, we slightly modify the conventional dynamic program for computing
LCS and construct a two-dimensional array T ∗ that stores the following information

T ∗[i][j] =


the smallest k s.t. if |lcs(A[1, i], B)| ≥ j
|lcs(A[1, i], B[1, k])| = j

∞ otherwise

Using the above definition, we can construct table T ∗ via the following recursive formula:

T ∗[i][j] := min
{ T ∗[i− 1][j],
f(T ∗[i− 1][j − 1] + 1, Ai)

}
(24)

where f(T ∗[i − 1][j − 1] + 1, Ai) is the index of the first occurrence of Ai in B after position
T ∗[i− 1][j − 1] (or ∞ if A∗i does not appear in B after position T ∗[i− 1][j − 1]). Since such queries
can be answered in O(log |B|) time then the overall runtime of the algorithm is O(|A|q log |B|).
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