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Abstract

The problem of tolerant junta testing is a natural and challenging problem which asks if the
property of a function having some specified correlation with a k-Junta is testable. In this paper
we give an affirmative answer to this question: We show that given distance parameters 1

2
> cu >

cℓ ≥ 0, there is a tester which given oracle access to f : {−1, 1}n → {−1, 1}, with query complexity
2k · poly(k, 1/|cu − cℓ|) and distinguishes between the following cases:

1. The distance of f from any k-junta is at least cu;

2. There is a k-junta g which has distance at most cℓ from f .

This is the first non-trivial tester (i.e., query complexity is independent of n) which works for all
1/2 > cu > cℓ ≥ 0. The best previously known results by Blais et al., required cu ≥ 16cℓ. In fact,
with the same query complexity, we accomplish the stronger goal of identifying the most correlated
k-junta, up to permutations of the coordinates.

We can further improve the query complexity to poly(k, 1/|cu − cℓ|) for the (weaker) task of
distinguishing between the following cases:

1. The distance of f from any k′-junta is at least cu.

2. There is a k-junta g which is at a distance at most cℓ from f .

Here k′ = O(k2/|cu − cℓ|2).
Our main tools are Fourier analysis based algorithms that simulate oracle access to influential

coordinates of functions.
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1 Introduction

Juntas are a fundamental class of functions in Boolean function analysis. A function f : {−1, 1}n →
{−1, 1} is said to be a k-junta if there are some k-coordinates i1, . . . , ik ∈ [n] such that f(x) only
depends on xi1 , . . . , xik . In particular, special attention has been devoted to the problem of testing
juntas.

We recall that a property testing algorithm for a class of functions C is an algorithm which given
oracle access to an f : {−1, 1}n → {−1, 1} and a distance parameter ǫ > 0, satisfies

1. If f ∈ C, then the algorithm accepts with probability at least 2/3;

2. If dist(f, g) ≥ ǫ for every g ∈ C, then the algorithm rejects with probability at least 2/3. Here
dist(f, g) = Prx∈{−1,1}n [f(x) 6= g(x)].

The principal measure of the efficiency of the algorithm is its query complexity. Also, the precise value
of the confidence parameter is irrelevant and 2/3 can be replaced by any constant 1/2 < c < 1.

Fischer et al.[14] were the first to study the problem of testing k-juntas and showed that k-juntas
can be tested with query complexity Õ(k2/ǫ). The crucial feature of their algorithm is that the query
complexity is independent of the ambient dimension n. Since then, there has been a long line of
work on testing juntas [3, 2, 27, 10, 9] and it continues to be of interest down to the present day. The
flagship result here is that k-juntas can be tested with Õ(k/ǫ) queries and this is tight [3, 10]. While
the initial motivation to study this problem came from long-code testing [1, 25] (related to PCPs and
inapproximability), another strong motivation comes from the feature selection problem in machine
learning (see, e.g. [6, 7]).

Tolerant testing The definition of property tester above requires the algorithm to accept if and only if
f ∈ C. However, for many applications, it is important consider a noise-tolerant definition of property
testing. In particular, Parnas, Ron and Rubinfeld [24] introduced the following definition of noise
tolerant testers.

Definition 1.1. For constants 1/2 > cu > cℓ ≥ 0 and a function class C, a (cu, cℓ)-noise tolerant tester for C
is an algorithm which given oracle access to a function f : {−1, 1}n → {−1, 1}

1. accepts with probability at least 2/3 if ming∈C dist(f, g) ≤ cℓ.

2. rejects with probability at least 2/3 if ming∈C dist(f, g) ≥ cu.

We observe that we restrict cu, cℓ < 1/2. This is because most natural classes C are closed under
complementation – i.e., if g ∈ C, then−g ∈ C. For such a class C and for any f , ming∈C dist(f, g) ≤ 1/2.
Further, note that the standard notion of property testing corresponds to a (ǫ, 0)-noise tolerant tester.

The problem of testing juntas becomes quite challenging in the presence of noise. Parnas et al. [24]
observed that any tester whose (individual) queries are uniformly distributed are inherently noise
tolerant in a very weak sense. In particular, [13] used this observation to show that the junta tester
of [14] is in fact a (ǫ, poly(ǫ/k))-noise tolerant tester for k-juntas – note that cℓ is quite small, namely
poly(ǫ/k). Later, Chakraborty et al. [8] showed that the tester of Blais [3] yields a (Cǫ, ǫ) tester (for
some large but fixed C > 1) with query complexity exp(k/ǫ). Recently, there has been a surge of
interest in tolerant junta testing. On one hand, Levi and Waingarten showed that there are constants
1/2 > ǫ1 > ǫ2 > 0 such that any non-adaptive (ǫ1, ǫ2) tester requires Ω̃(k2) non-adaptive queries.
Contrast this with the result of Blais [3] who showed that there is non-adaptive tester for k-juntas
with O(k3/2) queries when there is no noise. In particular, this shows a gap between testing in the
noisy and noiseless case.

In the opposite (i.e., algorithmic) direction, Blais et al. [4] proved the following theorem.
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Theorem 1.2. There is an algorithm which for any ρ ∈ (0, 1), ǫ ∈ (0, 1) and parameter k ∈ N, is a (ǫ, ρǫ
16)-noise

tolerant tester for k-juntas. The query complexity of the tester is O
( k log k
ǫρ(1−ρ)k

)
.

Note that for any C > 16, this yields an (ǫ, ǫ/C)-tolerant tester for k-juntas with exp(k) query
complexity. Thus, it improves on the result of [8] who showed the same result for an unspecified large
constant C .

To understand the main shortcoming of [4], note that this algorithm does not yield a (cu, cℓ) noise
tolerant tester once cℓ >

1
32 – e.g, no setting of parameters in the tester of [4] can yield (say) a (0.1, 0.05)

noise-tolerant tester for k-juntas. Naturally, one would like to obtain (cu, cℓ) testers for any 1/2 > cu >
cℓ. The main result of this paper accomplishes this goal. Below we formalize and state the main results
of the paper.

We will useJn,k to denote the class of k-juntas on n variables. Also, for a subset S ⊆ [n], we letJS,k
denote the class of k-juntas on the variables in S. Further, unless indicated otherwise, all expectations
are taken over uniformly random elements of {−1, 1}n where the ambient dimension n will be clear
from the context. Our first result constructs (cu, cℓ) testers for any 1/2 > cu > cℓ.

Theorem 1.3. There is an algorithm Maximum-correlation-junta which takes as input parameters k ∈ N,
distance parameter ǫ > 0, oracle access to function f : {−1, 1}n → {−1, 1} and has the following guarantee:

With probability 2/3, it outputs a number Ĉorrf,k such that

∣∣Ĉorrf,k − max
ℓ∈Jn,k

E
x
[ℓ(x) · f(x)]

∣∣ ≤ ǫ.

It also outputs a function h : {−1, 1}k → {−1, 1} such that there is a set of coordinates T = {i1, . . . , ik} ⊆ [n]
and ∣∣ max

ℓ∈Jn,k

E
x
[ℓ(x) · f(x)]−E

x
[h(xi1 , . . . ,xik) · f(x)]

∣∣ ≤ ǫ.

The query complexity of the algorithm is 2k · poly(k, 1/ǫ).

Note that the above algorithm is doing something stronger than “merely” computing correlation
of f with k-juntas – in fact, the algorithm also outputs the a k-junta that is most correlated up to ǫ. Note
that the algorithm cannot identify the actual subset of the coordinates of f that maps to those of the
junta, as an standard information theory argument shows that this requires the number of queries to
depend on n, even without noise. Further, for the task of approximately finding the most correlated
k-junta, our query complexity is essentially optimal, since even giving the description of the most
correlated k-junta takes 2k bits. An immediate corollary of Theorem 1.3 is the existence of a noise
tolerant tester for k-juntas.

Corollary 1.4. For any constant 1
2 > cu > cℓ ≥ 0 and k ∈ N, there is (cu, cℓ)-noise tolerant tester for k-juntas

with query complexity 2k · poly(k, 1/|cu − cℓ|).

Proof. Let ǫ = cu−cℓ
2 . Run the algorithm Maximum-correlation-junta with distance parameter ǫ. Let the

output be Ĉorrf,k. Set Thr = 1− 2cℓ − 2ǫ = 1− 2cu + 2ǫ. The rest of the algorithm is

1. If Ĉorrf,k ≥ Thr, then the algorithm accepts.

2. The algorithm rejects otherwise.

Note that if there is a k-junta g such that dist(f, g) ≤ cℓ, then maxg∈Jn,k Ex[g(x) · f(x)] ≥ 1− 2cℓ. Thus,

Ĉorrf,k ≥ 1− 2cℓ − ǫ (w.p. 2/3), and so the algorithm will accept.
On the other hand, if dist(f, g) ≥ cu for every g ∈ Jn,k then maxg∈Jn,k Ex[g(x)f(x)] ≤ 1 − 2cu =

Thr− 2ǫ, meaning that the algorithm will reject with probability at least 2/3.
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We also remark here that the algorithm Maximum-correlation-junta can be modified in a straight-
forward manner to yield a noise tolerant tester against any subclass of juntas, including any specific
junta – e.g., for any 1/2 > cu > cℓ ≥ 0, we can obtain a (cu, cℓ)-tester for k-linear functions [5, 26] with
query complexity poly(k, 1/|cu − cℓ|). We leave the proof to the interested reader.

Finally, we can also improve the query complexity to have a polynomial dependence on k at the
cost of achieving a weaker guarantee.

Theorem 1.5. There is an algorithm Maximum-correlation-gap-junta which takes as input parameters k ∈
N, distance parameter ǫ > 0, oracle access to a function f : {−1, 1}n → {−1, 1} and has the following

guarantee: With probability 2/3, it outputs a number Ĉorrf,gap,k satisfying

max
g∈Jn,k

E
x
[g(x)f(x)] − ǫ ≤ Ĉorrf,gap,k ≤ max

g∈Jn,k2/ǫ2
E[g(x)f(x)] + ǫ.

The query complexity of the algorithm is poly(k, 1/ǫ).

Analogous to Corollary 1.4, we get the following corollary by applying Theorem 1.5.

Corollary 1.6. For any constant 1
2 > cu > cℓ ≥ 0 and k ∈ N, there is an algorithm with query complexity

poly(k, 1/|cu − cℓ|) which with probability 2/3 can distinguish between the following cases:

1. ming∈Jn,k
dist(g, f) ≤ cℓ.

2. ming∈Jn,k′
dist(g, f) ≥ cu, where k′ = k2/(cu − cℓ)

2.

We remark that [4] contains a result along the same lines as Corollary 1.6, but with k′ = 4k and
cu = 16cℓ. That is, compared to the result of [4], Corollary 1.6 has a worse k′, but allows for arbitrarily
good noise tolerance.

1.1 Overview of techniques

One of our main contributions is a Fourier based algorithm to simulate oracles to interesting coordinates
of f . In particular, the first step in both Maximum-correlation-junta and Maximum-correlation-gap-

junta is to obtain oracle access to the functions x 7→ xℓ for all ℓ with large low-degree influence in
f . This idea previously appeared (but in a real-valued setting) in [12], and it may be of independent
interest. In particular, it is a substantial departure from previous approaches to tolerant junta testing.

1.1.1 Sketch of algorithm Maximum-correlation-junta. We begin by giving the high level overview
of the algorithm Maximum-correlation-junta (from Theorem 1.3). Let f : {−1, 1}n → {−1, 1} and let
g : {−1, 1}n → {−1, 1} be a maximally correlated k-junta – for this description, assume that Ex[f(x) ·
g(x)] = Ω(1). The main steps in our algorithm is as follows.

1. First, we show that up to a small loss in correlation, we may assume that every variable in g
has at least k−Θ(1) influence in f – see Claim 3.8 for the precise quantitative parameters. We call
these the “interesting variables,” and our first main goal is to obtain oracle access to them.

2. Suppose that xℓ is an interesting variable. We show that by randomly (in a carefully chosen
sense) restricting certain variables of f , with probability k−O(1) we obtain a function (call it f↾ρ)

such that |f̂↾ρ(ℓ)| ≥ k−O(1). (See Claim 3.7 for the precise details.) In other words, influential
coordinates of f end up with large Fourier coefficients under random restrictions.
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3. Assuming that |f̂↾ρ(ℓ)| ≥ k−O(1), we construct a (randomized) operator on the function f↾ρ
which, with probabililty k−O(1), gives us an oracle to the variable xℓ. This operator is a vari-
ant of the operator used by Håstad [19]) in the context of dictatorship testing and in turn uses a
modified version of the standard Bonami-Beckner noise. The details of this are in Section 3.1.

4. Having obtained an oracle for one particular variable xℓ, we can just repeat steps 2 and 3 kΘ(1)

times to obtain a set S of (oracles to) variables that contains all of the interesting variables. This
reduces the original problem (estimating maxg∈Jn,k Ex[g(x)f(x)]) to the problem of estimating
maxg∈JS,k Ex[g(x)f(x)]. We do this via a simple sampling based algorithm in Find-best-fit. The

query complexity of this routine is 2k · poly(k) and is the bottleneck for Maximum-correlation-

junta.

1.1.2 Sketch of Algorithm Maximum-correlation-gap-junta The difference in the proof of Theo-
rem 1.5 vis-a-vis Theorem 1.3 lies in Step 4 of the above overview. Namely, having obtained the set
S , our goal is find smaller subset S ′ ⊂ S of size O(k2/ǫ2) of the variables that achieves the same
correlation and moreover find this correlation.

1. The novel idea of the proof is to find a polynomial algorithm that is able to compute the function

favg,S(x) := Ey∈{−1,1}[n]\S [f(x,y)]

while only having oracle access to the variables in S . The details of this algorithm are in Sec-
tion 5.1, and we will give an outline shortly. Note that favg,S depends only on the variables in S
(of which there are poly(k)), and among all such functions it has the highest correlation with f .
Further, maxg∈JS,k Ex[g(x)f(x)] = maxg∈JS,k Ex[g(x)favg,S(x)].

2. We replace favg,S by Tρfavg,S (for ρ = 1 − O(ǫ/k)), incurring an O(ǫ) error in the correlation.
The advantage of Tρfavg,S over favg,S is that it has at most O(k2/ǫ2) high-influence (meaning,
influence Ω(ǫ/k)) variables, and that restricting our attention to juntas on these variables only
incurs another O(ǫ) error in the correlation. It is also easy to produce an oracle to Tρfavg,S from
favg,S with polynomially many samples.

3. Our next step is to estimate the influence (in the function Tρfavg,S) of all the variables in S . We
can do so by sampling correlated pairs (x, y) repeatedly until we obtain pairs that differ in one
coordinate and then checking the effect on Tρfavg,S . Having estimated the influences, we let
S ′ ⊆ S be the set of high-influence variables. The problem is reduced to that of estimating
maxg∈JS′,k

Ex[g(x)f(x)].

4. The final output of the algorithm is an estimate for the correlation of f with the best function
depending only on variables of S ′. This is just

E
x
[|favg,S′(x)|],

which can be estimated using the same averaging procedure that we mentioned in the first step.

It remains to explain how to carry out the averaging procedure needed for the first and last steps of
the outline above: how do we estimate Ey∈{±1}[n]\S [f(x,y)], given only oracle access to the variables
in S? The basic idea is to perform a random walk on the the subset of y’s that agree with x on all
the elements of S . We let y(0) = x. Given y(i) we sample y(i+1) to be a noisy version of y(i), where
each coordinate is flipping with probability about 1/|S|. We accept y(i+1) if the value of all oracle
functions in S is identical for y(i+1) and y(i). If we reject the current proposal of y(i+1) we try again an
independent noisy y(i+1).
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Thus we effectively perform a random walk on the noisy hyper-cube on the coordinates in [n] \ S .
The spectral gap of the random walk is inverse polynomial in k, and hence by taking poly(k) steps
of this random walk, we can essentially independently resample those coordinates of x that do not
belong to S . By repeating this, we can estimate favg,S(x).

2 Preliminaries

We begin with the basics of Fourier analysis, in particular the notion of Fourier expansion of functions.

Definition 2.1. For any subset S ⊆ [n], we define χS : {−1, 1}n → {−1, 1} as χS(x) =
∏

i∈S xi. Any
function f : {−1, 1}n → R can be expressed as a linear combination of {χS(x)}S⊆[n] (as follows):

f(x) =
∑

S⊆[n]

f̂(S)χS(x).

This is referred to as the Fourier expansion of f and the coefficients {f̂(S)}S⊆[n] are referred to as the Fourier
coefficients of f .

We next define the concept of influence of variables in f : {−1, 1}n → R

Definition 2.2. For any function f : {−1, 1}n → {−1, 1} and any i ∈ [n], Infi(f) = Prx∈{−1,1}n [f(x) 6=

f(x⊕i)] (where x⊕i differs from x exactly in the ith position). In terms of Fourier coefficients, Infi(f) =∑
S∋i f̂

2(S); in the case of a real-valued function f : {−1, 1}n → R, we take this latter formula as the
definition of Infi(f).

For a number k ≤ n, we let Inf≤k
i (f) denote the quantity Inf

≤k
i (f) =

∑
S∋i:|S|≤k f̂

2(S). We also define the

total influence of f , denoted by Inf(f), as
∑

S |S|f̂
2(S).

We now define the Bonami-Beckner noise operator on the space of functions on {−1, 1}n. To do
this, we first define a general notion of noise distribution on {−1, 1}n. For η ∈ [−1, 1]n, we let Zη

denote the product distribution on {−1, 1}n where the expectation of the ith bit is ηi.

Definition 2.3. For any ρ ∈ [−1, 1], let ρ ∈ [−1, 1]n denote the vector all of whose coordinates are ρ. The
Bonami-Beckner noise operator (denoted by Tρ) operates on f : {−1, 1}n → R as

Tρf(x) = Ey∼Zρ
[f(x · y)].

We let x · y denote the coordinate wise product of x and y.

A standard fact about the operator Tρ is its action on the Fourier expansion of f (see [23] for
details).

Tρf(x) =
∑

S⊆[n]

ρ|S|f̂(S)χS(x).

Bonami-Beckner noise operator as a Markov chain It will be useful for us to view the Bonami-
Beckner noise operator as a Markov chain. We recall the definition of a Markov chain (on a finite
set).

Definition 2.4. Let G be a finite set and let P ∈ RG×G be a stochastic matrix. The random variables (taking
values in G) (xi)

T
i=1 are said to follow the Markov chain MP (with transition matrix given by P ) if for any

T ≥ j > 1 and any g1, . . . , gj ∈ G,

Pr[xj = gj |xj−1 = gj−1, . . . ,x1 = g1] = Pr[xj = gj |xj−1 = gj−1] = P (gj−1, gj).

6



We refer the reader to the book by Levin and Peres [21] for definitions of standard notions such as ergodicity,
aperiodicity and stationary distributions.

Now, consider any ρ ∈ [−1, 1] and define the stochastic matrix Pρ (whose rows and columns are
indexed by {−1, 1}n) such that

Pρ(x, y) = Pr
z∼Zρ

[x · z = y].

It is easy to see that the matrix Pρ is a symmetric matrix and further, the second largest eigenvalue
of the matrix Pρ is at most ρ. The matrix Pρ also defines a corresponding Markov chainMρ (i.e., the
transition matrix ofMρ is Pρ). Markov chains have a certain “averaging property” which is partic-
ularly useful for us and is stated below. We will instantiate it to the Markov chain Mρ in Section 5
later. We now state the following result due to Lezaud [22] (Theorem 1.1 in the paper) which applies
to ergodic and reversible Markov chains. Similar results which apply to the special case of random
walks on undirected graphs have found many applications in computer science [17, 20, 28, 16].

Lemma 2.5. For ρ ∈ (−1, 1), let x(1),x(2), . . . follow the Bonami-Beckner Markov chainMρ with an arbi-
trary initial value x(1) = x ∈ {±1}n. There is a constant C such that for any f : {−1, 1}n → [−1, 1] and any

γ, δ > 0, if T ≥ C log(1/δ)
γ2·(1−ρ) then

Pr

[∣∣∣∣
f(x1) + . . .+ f(xT )

T
−Ex∼{−1,1}n [f(x)]

∣∣∣∣ > γ

]
≤ δ.

2.1 Random restrictions

A crucial role in our algorithm will be played by the notion of random restrictions from circuit com-
plexity [15, 18].

Definition 2.6. For any µ ∈ [0, 1], we let Rµ ∈ {−1, 1, ∗}
n denote the product distribution where each

coordinate is ∗ with probability µ, ±1 with probability (1 − µ)/2 each. Further, for f : {±1}n → {±1} and
ξ ∈ {−1, 0, 1}n , we let f↾ξ : {−1, 1}

S → {−1, 1} where

1. S = {i ∈ [n] : ξi = 0}. The set of variables in S are said to survive in f↾ξ.

2. For x ∈ {±1}S , we f↾ξ(x) = f(z) where zS = x and zj = ξj for j 6∈ S.

3 Construction of coordinate oracles

The main result of this section is an algorithm for constructing a set of “oracles” to all of the inter-
esting coordinates of a function, assuming that there are not too many of them. The basic definition is
the following: For 1 ≤ i ≤ n, let Dicti : {−1, 1}

n → {−1, 1} be defined as Dicti : x 7→ xi.

Definition 3.1. Let D be a set of functions from {−1, 1}n to {−1, 1}. We say that D is an oracle for the
coordinates S ⊂ [n] if

• for every g ∈ D, there is some i ∈ S such that g = Dicti or g = −Dicti; and

• for every i ∈ S , there is some g ∈ D such that g = Dicti or g = −Dicti.

In other words, D is an oracle for S if D = {Dicti : i ∈ S} “up to sign”.
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Due to our constraints, we will not be able to produce coordinate oracles exactly according to
the definition above, so we will relax it slightly. Recall that we have fixed an underlying function
f : {±1}n → {−1, 1} and a parameter k ∈ N.

Definition 3.2. Let D be a set of functions from {−1, 1}n to {−1, 1}. For ǫ ≤ 1
8 , we say that D is an ν-oracle

for S ⊂ [n] if

• for every g ∈ D, there is some i ∈ S such that g is ν-close to Dicti or −Dicti (necessarily only one, since
ν ≤ 1

8 );

• for every i ∈ S , there is exactly one g ∈ D that is ν-close to Dicti or −Dicti; and

• for every x ∈ {±1}n, every g ∈ D, and every δ > 0, there is a randomized algorithm to compute g(x)
correctly with probability at least 1− δ, using poly(k, log 1

δ ) queries to f .

While the definition of D involves both ν and k, since the latter will remain fixed throughout,
the above definition is only quantified in terms of ν. The parameters ν and δ that we choose will
essentially allow us to pretend that an ν-oracle is an oracle. In particular, we will fix δ = 2−ω(k) when
evaluating coordinate oracles at a point. This will preserve the poly(k) query complexity of each oracle
query, while ensuring that (with high probability) every query that we make to a coordinate oracle
will be computed correctly (since in all of our algorithms, we will make no more than 2k · poly(k)
queries). Our choice of ν will depend on the setting: in the setting of Theorem 1.3, we will make at
most 2k ·poly(k) queries to each coordinate oracle, so we will take ν = (2k ·poly(k))−1. This means that
each oracle query requires at most poly(k) queries to f , while ensuring that each coordinate oracle is
so close to a dictator (or anti-dictator) that we will (with high probability) not observe the difference.
In the setting of Theorem 1.5, we will set take ν = poly(1/k) and make at most poly(k) queries to
each coordinate oracle; this requires poly(k) queries to f and ensures that (with high probability) we
will not observe the difference between any coordinate oracle and its corresponding dicator. With
this in mind, and to prevent a proliferation of parameters, we will often pretend that we have access
to an oracle in the sense of Definition 3.1 when we really have access to an ν-oracle in the sense of
Definition 3.2.

3.1 A single oracle

We begin by describing how to construct an oracle to a single coordinate. The basic step notion
is the following operator, which is related to one used by Håstad in the context of dictatorship test-
ing [19].

Definition 3.3. Let η ∈ [−1, 1]n and Zη denote the product distribution on {−1, 1}n where the expectation of
the ith bit is ηi. For any f : {−1, 1}n → R, we define the operator

Hasηf(x) = Ey1,y2∈{−1,1}n,y3∈Zη
[f(y1)f(y2)f(x⊕ y1 ⊕ y2 ⊕ y3)].

In terms of the Fourier expansion, it is easy to check that

Hasηf(x) =
∑

S

f̂3(S)χS(x)η
S ,

where ηS =
∏

j∈S ηj . A consequence of this expansion is that for the right choice of η, Hasηf is a good
approximation to a certain dictator function (depending on η).
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Lemma 3.4. Suppose that |f̂(1)| ≥ κ, where κ ∈ (0, 1), and let α = κ3

16 . Choose η ∈ {0, α}n randomly so that
Pr[ηi = α] = κ6/16, independently for every i. Then with probability at least Ω(κ6), for every x ∈ {±1}n,

∣∣Hasηf(x)− f̂3(0) − αf̂3(1)x1
∣∣ ≤ α

4
|f̂(1)|3.

Proof. Let p = κ6/16 = Pr[ηi = α]. Let Γ = {i : |f̂(i)| ≥ κ3/8}; since
∑

S f̂(S)2 ≤ 1, we have
|Γ| ≤ 64κ−6. Let E be the event that η1 = α and ηj = 0 for all j ∈ Γ \{1}. Then Pr[E] = p(1− p)|Γ|−1 ≥

p(1−p)64κ
−6

= Ω(κ6), and we will show that the claimed inequality happens on E. Indeed, the Fourier
expansion above implies that

Hasηf(x)− f̂3(0) − αf̂3(1)x1 =
∑

1<j≤n

ηj f̂
3(j)xj +

∑

|S|>1

ηS f̂3(S)χS(x)

=
∑

j 6∈Γ

ηj f̂
3(j)xj +

∑

|S|>1

ηS f̂3(S)χS(x),

where the second equality holds on the event E. Now,

∑

j 6∈Γ

|ηj f̂
3(j)| ≤ α

κ3

8

∑

j 6∈Γ

f̂2(j) ≤
ακ3

8

and ∑

|S|>1

|ηS f̂3(S)| ≤
∑

|S|>1

α2f̂2(S) ≤ α2,

and so the triangle inequality gives

|Hasηf(x)− f̂3(0) − αf̂3(1)x1| ≤
ακ3

8
+ α2 ≤

ακ3

4
≤

α

4
|f̂(1)|3.

Lemma 3.4 gives us a natural algorithm for computing something that might be a coordinate
oracle: the basic idea is to sample η and then to define

gη(x) = sgn(Hasηf(x)− f̂3(0)) = sgn(Hasηf(x)−E[f ]3).

Note that computing the function gη requires randomness (to estimate Hasηf(x) and E[f ]). However,
a straightforward Chernoff bound implies that with O(κ−12 log 1

δ ) queries to f , we can estimate both

E[f ] and Hasηf(x) to additive accuracy O(κ6), with probability 1 − δ; according to Lemma 3.4, this is
sufficient to correctly evaluate gη(x) with probability 1− δ. This is the same sort of guarantee required

in Definition 3.2; as discussed there, we can choose δ = 2−k2 so that with high probability, every
evaluation of gη will be correct.

Now, Lemma 3.4 only provides us with a small probability of finding a good gη. To filter out the
bad ones, we add in a dictatorship test: for i ≤ n, let Dicti : {−1, 1}

n → {−1, 1} denote the function
Dicti(x) = xi. We call Dicti a dictator function, and −Dicti an anti-dictator function. There is an
algorithm for testing whether a function is a dictator function (see Chapter 7 of [23]):

Theorem 3.5. There is an algorithm Dictator-test which given an error parameter ν > 0 and confidence
parameter δ̃ > 0, makes O(ν−1 log δ̃−1) queries to f : {−1, 1}n → {−1, 1} and has the following properties:

1. If f : {−1, 1}n → {−1, 1} is a dictator or an anti-dictator, then it accepts with probability 1.
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2. Any f : {−1, 1}n → {−1, 1} which is ν-far from every dictator and anti-dictator is accepted with
probability at most δ̃.

Algorithm Construct-coordinate-oracle gives the algorithm for constructing coordinate oracles.

Input: f (target function), k (arity of Junta),
δ (confidence parameter), ν ≤ 1/8 (first accuracy parameter), τ (second accuracy parameter)
Output: an oracle D
// Construct the initial oracles

1 Let T = Ck5τ−5log(1/δ) and let M = Ck7τ−7log(1/δ);

2 Let δ̃ = δ/(MT ) ;
3 Initialize D = ∅ ;
4 repeat T times

5 Sample ρ according toR1/k (as in Definition 2.6);

6 repeat M times

7 Sample η as in Lemma 3.4;
8 Let g(x) = sgn(Hasηf↾ρ(x)−E[f↾ρ]

3);

9 Apply Dictator-test to g with confidence δ̃ and accuracy ν;
10 if Dictator-test accepts then

11 Add g to D ;

// Clean out duplicates

12 Let N = C log(MT/δ), and sample x(1) . . . ,x(N) ∈ {±1}n independently and uniformly ;

13 while there exist g 6= h ∈ D such that |N−1
∑

i g(x
(i))h(x(i))| ≥ 1

2 do

14 Remove g from D;

15 return D

Algorithm 1: Construct-coordinate-oracle

Lemma 3.6. The algorithm Construct-coordinate-oracle has the following guarantee:

1. As input, it gets oracle access to f : {−1, 1}n → {−1, 1}, an arity parameter k, two accuracy parameters
τ and ν ≤ 1/8 and a confidence parameter δ > 0.

2. With probability 1− δ, there is some set S ⊇ {i : Inf≤k
i (f) ≥ τ2/k2} such that the output of Algorithm 1

is an ν-oracle to S .

3. The number of oracles in D is at most poly(k, τ−1, log(1/δ)).

4. The query complexity of the procedure is ν−1 · poly(k, τ−1, log(1/δ)).

Proof. Note that the number of oracles in D is at most MT . This immediately gives Item 3. Similarly,
the query complexity of the algorithm is M ·T times the cost of applying the Dictator-test in Step 9. By
plugging the bound from Theorem 3.5, we get Item 4. This leaves us with Item 2. Like the algorithm
itself, there are two steps in this proof. The first step is to show that after executing the loop on
line 4, the set D contains only ν-approximate dictators, and it contains at least one dictator for every

coordinate i with large Inf
≥k
i (f). The second step is to show that by the end of the algorithm, each

coordinate that was represented by a dictator after executing the loop on line 4 is now represented
by a unique dictator. Actually, this second step is trivial: if g and h are ν-approximate dictators for
ν ≤ 1

8 then |E[gh]| ≤ 1
4 if they represent different coordinates, while |E[gh]| ≥ 3

4 if they represent the
same coordinate. By a union bound over the O(M2T 2) pairs of elements in D, log(CMT/δ) samples
are enough to estimate all of these correlations to accuracy 1

4 with confidence 1 − δ/4, meaning that

10



the loop starting on line 13 correctly (with probability at least 1 − δ/4) chooses exactly one dictator
function to represent each coordinate.

We turn to the correctness of the first loop: it should find a dictator for every influential coordinate.
The analysis of this part is itself divided into two parts, corresponding to the two nested loops: we
will argue that for every influential coordinate i, at least one iteration of the outer loop will sample ρ

for which f̂↾ρ(i) is large. For this execution of the outer loop, we will argue that at least one iteration
of the inner loop will find an oracle for coordinate i.

We will write the first of these parts as a separate claim, and prove it later:

Claim 3.7. If Inf≤k
i (f) ≥ τ2/k2 and ρ ∼ R1/k then with probability Ω(k−4τ4), |f̂↾ρ(i)| ≥ τ/(4k).

With our choice of T , Claim 3.7 and a union bound imply that with probability at least 1− δ/3, for

every i with Inf
≤k
i (f) ≥ τ2/k2 there is at least one iteration of the outer loop for which |f̂↾ρ(i)| ≥

τ
4k .

We will fix this iteration, and examine the inner loop: by Lemma 3.4 with κ = τ
4k , each iteration has

Ω(τ6k−6) probability of producing g that is equal to ±Dicti. By a union bound, with probability at
least 1− δ/3, the inner loop will succeed in adding ±Dicti to D.

Finally, a union bound implies that with probability at least 1− δ/3, every g that passes the dicta-
torship test is in fact ǫ-close to some dictator.

Proof of Claim 3.7. For i ∈ [n], define the polynomial Dif : Rn → R by

(Dif)(x) =
1

2
(f(x)− f(x−,i)),

where x−,i is equal to x, except that the ith coordinate is negated. In terms of Fourier coefficients, it is
easy to check that

(Dif)(x) = x2i
∑

S⊆[n]\{i}

f̂(S ∪ {i})χS(x).

On the other hand, it is also immediate that for every x ∈ {−1, 0, 1}n , and it is easy to check that

f̂↾ρ(i) = Dif(ρ). In particular,

Varρ[f̂↾ρ(i)] = Varρ[Dif(ρ)]

=
∑

S⊆[n]\{i}

f̂2(S ∪ {i})(1 − 1/k)|S|

≥ (1− 1/k)k
∑

S⊆[n]\{i}
|S|≤k

f̂2(S ∪ {i})

≥
1

4
Inf

≤k
i (f)

≥
η2

4k2
.

We will apply an anti-concentration inequality to the random variable Dif(ρ) = f̂↾ρ(i) (see Lemma 13
in [11]): for any real-valued random variable X with variance at least σ2 and central fourth moment
at most t4σ4,

Pr
[
|X| >

σ

2

]
≥

9

128(t + 2)4
.

Immediately from the definition of Dif , we see that the central fourth moment of Dif(ρ) is at most
16. Setting σ = η/(2k) and t = 4k/η, we have

Pr
[
|f̂↾ρ(i)| >

η

4k

]
≥ Ω(k−4η4),
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as claimed.

Finally, the following claim, which will be useful in both Section 4 and Section 5, says that if f
correlates with a k-junta, then it also correlates nearly as well with a junta on some set S such that for

every variable j ∈ S, Inf≤k
j (f) is large. This is useful because Lemma 3.6 can then be used to construct

oracles to all these relevant variables.

Claim 3.8. Let f : {±1}n → {±1} and let g : {±1}n → {±1} be a k-junta on the variables {1, . . . , k} such
that E[f · g] ≥ c. Then, for any τ > 0, there is a set S ⊆ [k] of variables such that

1. For i ∈ S, Inf≤k
i (f) ≥ τ2

k2 .

2. There is a junta on S with correlation c− τ with f .

Proof. Let us first start with S = [k]. If all variables i ∈ S satisfy Inf
≤k
i (f) ≥ τ2

k2
, we are done. Else, let

j be any variable such that Inf≤k
j (f) ≤ τ2

k2
. For this variable j, define gj : {±1}

n → [−1, 1] as the junta
on the set [k] \ {j}

gj(x) =
1

2

(
g(x) + g(x⊕j)

)
,

where x⊕j is the same as x with the coordinate at j flipped. Observe that for any S, ĝj(S) = ĝ(S) if
j 6∈ S and 0 otherwise. Note that

|Ex[f · gj(x)]−Ex[f · g(x)]| = |
∑

S∋j

ĝ(S)f̂(S)| = |
∑

S∋j:|S|≤k

ĝ(S)f̂(S)| ≤

√ ∑

S∋j:|S|≤k

f̂2(S) ≤
√

Inf
≤k
j (f).

Thus, E[f · gj(x)]] ≥ c− τ
k . By doing a simple randomized rounding step, we can in fact, assume that

the range of gj is ±1. We now set S ← [k] \ j and g = gj and inductively repeat the argument. This
finishes the proof.

4 Description of Maximum-correlation-junta

In this section, we want to prove Theorem 1.3. The final ingredient required to describe the algorithm
Maximum-correlation-junta (from Theorem 1.3) is the routine Find-best-fit. Here, we state the algorith-
mic guarantee for this routine. The description and its proof of correctness is deferred to Appendix A.

Lemma 4.1. There is an algorithm Find-best-fit with the following guarantee:

1. The algorithm gets as input oracle access to a function f : {−1, 1}n → {−1, 1} as well as a set of oracles
S ⊆ {Dict1, . . . ,Dictn}. We clarify that algorithm is only given the oracle Dicti (for Dicti ∈ S) but not
i.

2. The algorithm gets as input error parameter ǫ > 0, arity parameter k and confidence parameter δ > 0.

3. The algorithm makes N(k, |S|, ǫ, δ) = O(2k/ǫ2 · |S| · (log(1/δ) + k2 + |S|)) queries with probability
1− δ.

4. Each query point (to either f or oracle in S) is distributed as a uniformly random element of {−1, 1}n.

5. With probability 1 − δ, the algorithm outputs a number Ĉorrf,S,k and hS,k : {−1, 1}k → {−1, 1} such
that there exists oracles Dicti1 , . . . ,Dictik ∈ S

Ex[f(x) ·hS,k(xi1 , . . . ,xik)] ≥ max
ℓ∈JS,k

Ex[f(x) · ℓ(x)]− ǫ and |Ĉorrf,S,k− max
ℓ∈JS,k

Ex[f(x) · ℓ(x)]| ≤ ǫ.

12



We next describe the algorithm Maximum-correlation-junta (Algorithm 2).

Input: f (target function), k (arity of Junta), ǫ (distance parameter)

Output: Ĉorrf,k ∈ [0, 1] and h : {−1, 1}k → {−1, 1}
// Set parameters for the algorithm

1 Let τ = ǫ
4 , δ = 1/3 ;

2 Let R = poly(k, τ−1, log(1/δ)) – the upper bound on output size from Item 3 of Lemma 3.6 ;
3 Set N = N(k,R, ǫ/4, δ/4) where N(·) is the function in Item 3 of Lemma 4.1 ;
4 Set ν = δ/4N ;
// Construct the initial oracles

5 Run Construct-coordinate-oracle with input function f , junta arity parameter k, confidence
parameter δ/4, first accuracy parameter ν and second accuracy parameter τ ;

6 Let D be the set of returned oracles ;
// Use the oracles to find maximally correlated junta

7 Error parameter for queries to any oracle g ∈ D is set to ν ;
8 Run Find=best-fit with target function f , oracles given by D, confidence parameter δ/4, distance

parameter ǫ/4 and arity parameter k. ;

9 Let the output of this routine be Ĉorrf,D,k and hD,k : {−1, 1}k → {−1, 1}. ;

10 Set h← hD,k and Ĉorrf,k ← Ĉorrf,D,k ;

11 return (Ĉorrf,k, h)

Algorithm 2: Maximum-correlation-junta

Proof of Theorem 1.3: We begin with the following claim.

Claim 4.2. The query complexity of the algorithm is 2k · poly(k, 1/ǫ).

Proof. By just plugging the bounds, we see that R defined in Step 2 of the algorithm is poly(k/ǫ); N
defined in Step 3 is 2k · poly(k/ǫ) and ν defined in Step 4 is 2−k · poly(ǫ/k).

Now, the query complexity of Step 5, i.e., Construct-coordinate-oracle is then ν−1 · poly(k, τ−1) =
2k · poly(k/ǫ) (Item 4 of Lemma 3.6). Next, note that |D| ≤ poly(k/ǫ) (by plugging the bound from
Item 3 of Lemma 3.6). However, this means that the algorithm Find-best-fit (from Step 3 of Lemma 4.1)
makes at most 2k ·poly(k, |D|) = 2k ·poly(k, 1/ǫ) queries where each query is either to f or to an oracle
in D. However, each call to D is made with error ν, the query complexity of making each such call is
poly(k, log(1/ν)) = poly(k). Thus, the total query complexity is 2k · poly(k/ǫ).

Having proven a bound on the query complexity, we now turn to the proof of correctness of this
algorithm. Note that every oracle g ∈ D is ν close to Dicti for some i ∈ [n]. Further, at point x, (by
definition of a ν-oracle), we have an algorithm, which returns the value g(x) with probability at least
1 − ν. We say that the evaluation of g at point x is good, if we get the value of g(x) = Dicti(x). Note
that a randomly chosen point x ∈ {−1, 1}n,

Pr
x∈{−1,1}n

[Evaluation of g is not good] ≤ Pr
x∈{−1,1}n

[g(x) 6= Dicti(x)] + Pr[Evaluation of g is incorrect]

≤ ν + ν = 2ν.

Since the query by the algorithm Find-best-fit to each oracle in D is a random point in {−1, 1}n (Item 4
in Lemma 4.1) and the total number of queries to Find-best-fit is N , hence the probability the evalua-
tion of g ∈ D is not good at any point is at most 2Nν = δ/2. Thus, from now on, we will assume that
g ∈ D is ν-close to Dicti, then the algorithm Find-best-fit has exact access to Dicti. However, with this
the following claim is immediate from Item 5 of Lemma 4.1.

13



Claim 4.3. Suppose the algorithm outputs (Ĉorrf,k, h). Let V = {i ∈ [n] : Dicti is ν-close to some g ∈ D}.
Then, with probability 1− δ/4, there is some {i1, . . . , ik} ∈ V such that

Ex[f(x) · h(xi1 , . . . ,xik)] ≥ max
ℓ∈JV,k

Ex[f(x) · ℓ(x)]−
ǫ

4
and |Ĉorrf,k − max

ℓ∈JV,k

Ex[f(x) · ℓ(x)]| ≤
ǫ

4
.

Finally, we have the following claim.

Claim 4.4. Let f : {−1, 1}n → {−1, 1} and assume that there exists a k-junta g : {−1, 1}n → {−1, 1} such
that Ex[f(x) ·g(x)] ≥ Corrf,g. LetD be the set of returned oracles in Step 6. Let V = {i ∈ [n] : Dicti is ν-close
to some g ∈ D}. Then, with probability 1− δ/4, there exists T ⊆ V, |T | = k and a junta on T with correlation
at least Corrf,g − ǫ/4 with f .

Proof. Let W be the set of variables appearing g. By Claim 3.8 (setting τ = ǫ/4), there is subset W ′ ⊆W
and a W ′-junta r : {−1, 1}n → {−1, 1} with the following properties: (a) Ex[r(x) · f(x)] ≥ Corrf,g −

ǫ
4 .

(b) For every i ∈ W ′, Inf≤k
i (f) ≥ ǫ2

16k2
. Now, with the same value of τ , applying Lemma 3.6 implies

that W ′ ⊆ V with probability 1− δ/4. This finishes the claim.

The proof of correctness is now immediate from Claim 4.4 and Claim 4.3.

5 The polynomial-query gap tester

Recall the context of the relaxed tester compared to the original one: we have already identified (us-
ing Lemma 3.6) a subset S of size poly(k, 1/ǫ) such that all potentially interesting coordinates of f are
contained in S (in the sense of Claim 3.8). Recall, moreover, that we do not have an explicit represen-
tation of the coordinates S ; we only have access to coordinate oracles in the sense of Definition 3.1.
Nevertheless, let us first pretend that we do have explicit access to S , in order to explain roughly how
our algorithm works.

The first step of our algorithm is to replace f by favg,S , defined by favg,S(x) = Ey∼Unif [f(y) | yS =
xS ]. This step turns out to be unnecessary if we have explicit access to S , but on the other hand it is
also clearly harmless, because favg,S is the orthogonal projection of f onto the space of S-juntas, and
hence E[fg] = E[favg,Sg] for every g ∈ JS,k′.

The second step of our algorithm is to replace favg,S with fsmooth, defined by fsmooth = T1−ǫ/(2k)favg,S .
Applying this noise has two nice features: it approximately preserves correlation with k-Juntas, and
it allows us to bound total influence. First, we will show that it preserves correlation:

Lemma 5.1. For every k-Junta g, if s = ǫ/(2k) then

‖g − T1−sg‖2 ≤
ǫ

2
‖g‖2.

In particular, for all f : {±1}n → [−1, 1] and g ∈ JS,k.

|E[(T1−sf)g]−E[fg]| ≤ ǫ/2.

Consequently, maxg∈JS,k E[fsmoothg] is essentially the same as maxg∈JS,k E[favg,Sg].

Proof. If g is a k-Junta then ĝS = 0 whenever |S| > k, and so

‖g − T1−sg‖
2
2 =

∑

|S|≤k

(1− (1− s)|S|)2ĝ2(S) ≤
ǫ2

4

∑

S

ĝ2(S) ≤
ǫ2

4
‖g‖22.

The second claim follows from the fact that E[(T1−sf)g] = E[f(T1−sg)], and so E[(T1−sf − f)g] =

E[f(T1−sg− g)]. Then apply Cauchy-Schwarz and the first claim (together with the fact that ‖f‖2 and
‖g‖2 are at most 1).
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As we claimed above, we can also bound the total influence of a smoothed function:

Lemma 5.2. If f : {±1}n → [−1, 1] then Inf(T1−sf) ≤
1
2s . In particular,

|{1 ≤ j ≤ n : Infj(T1−sf) ≥ 2s}| ≤
1

4s2
.

Proof. Since f takes values in [−1, 1], E[f2] ≤ 1 and so
∑

S f̂2(S) ≤ 1. On the other hand,

Inf(T1−sf) =
∑

S

|S|(1− s)|S|f̂2(S) ≤ max{j(1 − s)j : 1 ≤ j ≤ n} ≤
1

es
≤

1

2s

This proves the first claim. The second follows from Markov’s inequality.

According to Lemma 5.2, if S ′ = {i ∈ S : Inf i(fsmooth) ≥ ǫ/k} then |S ′| ≤ k2/ǫ2 = k′. On the
other hand, we can easily see that coordinates not belonging to S ′ are irrelevant when it comes to
approximating fsmooth by a k-Junta:

Lemma 5.3. For f : {±1}n → [−1, 1], let S ′ ⊂ S ⊂ [n] satisfy i ∈ S ′ whenever Infi(f) ≥ t. Then

∣∣∣∣∣ max
g∈JS,k

E[fg]− max
g∈JS′,k

E[fg]

∣∣∣∣∣ ≤ tk.

Proof. Let g ∈ JS,k maximize E[fg], and let T be the set of coordinates on which g depends. Define
gavg,S′ by gavg,S′(x) = Ey∼Unif [g(y) | yS = xS ]. Then gavg,S′ is a (S ′ ∩ T )-Junta; it does not necessarily
belong to JS′,k because it is not necessarily Boolean. However, maxh∈JS′,k

E[fh] ≥ E[fgavg,S′ ] – this
is because gavg,S′ can be rounded to a Boolean function without decreasing E[fgavg,S′]. Therefore, it
suffices to show that

E[fgavg,S′ ] ≥ E[fg]− tk.

To do this, note that the Fourier coefficients of g and gavg,S′ are related by ĝS = (ĝavg,S′)S whenever
S ⊂ S ′, and (ĝavg,S′)S = 0 otherwise. In particular,

E[f(g − gavg,S′)] =
∑

S⊂T
S 6⊂S′

ĝS f̂S ≤
∑

S⊂T
S 6⊂S′

f̂2
S ≤

∑

i∈T \S′

Infi(f) ≤ tk,

where the last inequality follows because |T \ S ′| ≤ k.

Thanks to Lemma 5.3, if we set S ′ = {i ∈ S : Inf i(fsmooth) ≥ ǫ/k} then maxg∈JS,k E[fsmoothg] ≅
maxg∈JS′,k

E[fsmoothg]. We do not know how to estimate this final quantity, but we can easily estimate
(the larger quantity) maxg∈JS′,k′

E[fsmoothg] (note that k has become k′). This is because JS′,k′ consists
of all boolean functions depending on the coordinates in S ′. The one with maximal correlation can be
found by projecting fsmooth onto the space of S ′-Juntas and rounding the result to a boolean function:
define fsmooth,avg,S′ by fsmooth,avg,S′(x) = E[fsmooth(y) | yS′ = xS′ ]. Then

max
g∈JS′,k′

E[fsmoothg] = E[|fsmooth,avg,S′ |].

This number (or rather, an estimate of it) will be the final output of our algorithm. Thanks to the
preceding arguments, it is larger (or at least, not much smaller) than maxg∈Jn,k E[fg]. On the other
hand, it is certainly smaller than maxg∈Jn,k′

E[fg].
In order to turn the description above into an algorithm, we need to describe how to compute all

the quantities above given implicit access to the coordinates in S . In particular, we will first describe
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how to simulate query access to favg,S . Given this, it is obvious how to simulate query access to fsmooth.
Then, we will show how to estimate S ′; more accurately, we will compute some S̃ ′ that contains all
coordinates of influence at least 2ǫ/2k and no coordinates of influence smaller than ǫ/k. Finally, we
will show how to simulate query access to fsmooth,avg,S̃′ ; we can use this query access to estimate

E[|fsmooth,avg,S̃′|], which is the final output of our algorithm.

5.1 Averaging over irrelevant coordinates

An important primitive for us will be the ability to average over irrelevant coordinates given ora-
cle access to the relevant ones. That is, imagine that there is a collection of coordinates S ⊂ [n].
Given query access to f : {±1}n → [−1, 1] and a fixed point x ∈ {±1}S , we would like to estimate

Ey∼Unif [f(y) | yS = x]. Were we given S explicitly, this would be easy; our challenge is to do it with
only oracle access to S , in the sense of Definition 3.1.

Input: a function f , x ∈ {±1}n, an oracle D, γ (accuracy parameter), δ (failure parameter)
Output: a number

1 Let T = C|D| log 1/δ
γ2 ;

2 Let x(1) = x ;
3 for i = 1 to T − 1 do

4 repeat

5 Let y be a copy of x(i), but flip each bit independently with probability 1
2|D| ;

6 until g(y) = g(x) for all g ∈ D ;

7 Let x(i+1) = y ;

8 return 1
T

∑T
i=1 f(x

(i))

Algorithm 3: Coordinate-projection

Lemma 5.4. Coordinate-projection has the following guarantees. Given a function f : {±1}n → [−1, 1], a
point x ∈ {±1}n, an oracle D for the coordinates S ⊂ [n], and parameters δ, γ > 0, the algorithm makes (in

expectation) Θ(|S| log 1/δ
γ2 ) queries to f and to each element of D and, with probability at least 1 − δ, outputs a

number within γ of Ey∼Unif [f(y) | yS = x].

Remark 5.5. It is not hard to see that Coordinate-projection succeeds even if it is given noisy query access to
f . For example, if each query that Coordinate-projection makes to the function f can produce an error of at
most γ, then (under the assumptions of Lemma 5.4), the output of Coordinate-projection is, with probability
at least 1− δ, accurate to within 2γ.

Proof. First, observe that for every i = 1, . . . , T , x
(i)
S = xS : indeed, D is an oracle for S and so the test

on line 6 will only pass if yS = xS . Next, observe that conditioned on x(i), every coordinate j 6∈ S of

x(i+1) is obtained by (independently) flipping x
(i)
j with probability 1

2|S| . In other words, x
(1)

S̄
, . . . ,x

(T )

S̄

is a Bonami-Beckner Markov chain with correlation parameter ρ = 1− 1
|S| . If z is distributed according

to the stationary distribution of this Markov chain then zS = xS and zS̄ is uniformly distributed

on {±1}S̄ . In particular, E[f(z)] = Ey∼Unif [f(y) | yS = xS ] and so Lemma 2.5 implies that with

probability at least 1− δ, 1
T

∑T
i=1 f(x

(i)) is within γ of Ey[f(y) | yS = xS ]).
It remains to check how many oracle queries our procedure makes; let Xi be the number of at-

tempts it takes to successfully generate x(i). For each i, the probability that the test on line 6 succeeds
is exactly (1− 1

2|S|)
|S| ≥ 1

4 . In particular, each sample takes (in expectation) at most four queries to each

element of D, and so the overall number of queries is at most (in expectation) O(T ) to each element of
D.

16



5.2 Estimating influences

One of the things we need to do is to estimate the influences of coordinates in S . Again, if we had
explicit access to these coordinates then this would be trivial. The point is to get by with only oracle
access, and the difficulty is that given some x ∈ {±1}n, we cannot simply “flip” a bit belonging to
S because we don’t know which bits those are. To work around this, we introduce the notion of an
influence-testing sample, which essentially is a collection of points that manage to flip each bit in S :

Definition 5.6. We say that X ⊂ {±1}n is an influence-testing sample at x ∈ {±1}n with respect to S if

we can enumerate X = {y(i) : i ∈ S} where y
(i)
i = −xi and y

(i)
j = xj for j ∈ S \ {i}.

Note that the definition above doesn’t guarantee anything about bits not belonging to S . The point
of the definition above is that if the function f depends only on coordinates in S , then we can use an
influence-testing sample at a random point to obtain an unbiased estimator for all the influences of f .

The first important point about influence-testing samples is that we can produce them given oracle
access to S .

Input: x ∈ {±1}n, and an oracle D for S
Output: an influence-testing sample at x with respect to S

1 Define (for z ∈ {±1}n) I(z) = {g ∈ D : g(z) 6= g(x)} ;
2 Initialize X = ∅ ;
3 while |X | < |D| do

4 Let y be a copy of x, but flip each bit independently with probability 1
2|D| ;

5 if |I(y)| = 1 and I(y) 6= I(z) for all z ∈ X then

6 Add y to X ;

7 return X

Algorithm 4: Influence-testing-sample

Lemma 5.7. Let D be an oracle for S . Given D and x ∈ {±1}n as input, Influence-testing-sample produces
an influence-testing sample at x with respect to S , while making (in expectation) O(|S| log |S|) queries to each
element of D.

Proof. Each element that Influence-testing-sample adds to X differs from x on exactly one coordinate
of S . Moreover, the test on line 5 ensures that every coordinate of S is represented by at most one
element of X . Hence, by the time the loop is complete, X is an influence-testing sample at x with
respect to S .

Note that each time we sample y, we have Pr[|I(y)| = 1] = (1 − 2|S|−1)|S| ≥ 1
4 . Moreover,

conditioned on |I(y)| = 1, I(y) is uniformly distributed among all size-one subsets of D. Hence, the
number of times that we need to sample y in order to see all size-one subsets at least once is distributed
according to the coupon collector problem, and hence takes O(|S| log |S|) iterations in expectation.

The other important point about influence-testing samples is that if we can use them to estimate
influences. The basic idea is to take the trivial algorithm for estimating influences (sample random
elements, and check whether flipping the jth bit changes the value of f ), but using the notion of
an influence-testing sample to replace the need to bits; in Threshold-influences, x(i) are the random

points at which we’re testing bit-flips, and y
(i)
g is the copy of x(i) with a bit (the one corresponding to
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g ∈ D) flipped.

Input: a function f , an oracle D for S , threshold parameter t, failure parameter δ
Output: an oracle D′

1 Let T = Ct−2 log 1
δ|D| ;

2 For s = 1, . . . , T , sample x(i) uniformly from {±1}n ;

3 For s = 1, . . . , T , let {y
(i)
g : g ∈ D} be an influence testing sample at x(i) (from

Influence-testing-sample), where y
(i)
g is the element for which g(y(i)) 6= g(x(i)) ;

4 For g ∈ D, let Înfg = 1
T

∑T
i=1(f(x

(i))− f(y
(i)
g ))2 ;

5 return D′ = {g ∈ D : Înfg ≥
3
2t}

Algorithm 5: Threshold-influences

Lemma 5.8. Assume that D is an oracle for S and that f is a S-junta. With probability at least 1 − δ, the
output of Threshold-influences satisfies the following: there is a set S ′ ⊂ S such that Inf i(f) ≥ 2t implies
that i ∈ S ′, and i ∈ S ′ implies that Infi(f) ≥ t, and the output of Threshold-influences is an oracle for S ′.

Moreover, Threshold-influences makes O(t−2 log 1
δ|S|) queries to f and (in expectation) O(t−2|S|2 log 1

δ )

queries to each element of D.

Remark 5.9. It is not hard to see that Threshold-influences succeeds even if it is given access to a slightly
noisy version of f : if each evaluation of f is guaranteed to be accurate to within t/10 then the guarantees of
Lemma 5.8 still hold (at the cost of increasing the constant C in Threshold-influences).

Proof. Let us fix a single j ∈ S and its oracle g ∈ D. We will show that with probability at least
1 − δ

|S| , if Infj(f) ≤ t then g ∈ D′ and if Infj(f) ≥ 2t then g 6∈ D′ (and then the lemma will follow by

a union bound over g). To prove this claim, it suffices to show that (with probability at least 1 − δ
|S| )

|Infj(f)− Înfg| ≤ t/2.
For z ∈ {±1}n, let z̃ denote a copy of z with bit j flipped. Recall that Infj(f) = Ez∼Unif [(f(z) −

f(z̃))2]; by a Chernoff bound, with probability at least 1− δ
|S| , Infj(f) is within t/2 of

1

T

T∑

i=1

(
f(x(i))− f(x̃(i))

)2
,

where x(i) are (as in Threshold-influences) independent and uniform in {±1}n. Finally, recall that f

was assumed to be a S-Junta, and recall that among coordinates of S , y
(i)
g differs from x(i) exactly in

coordinate j. Hence, f(y
(i)
g ) = f(x̃(i)) for all i, and so Înfg coincides with the displayed quantity above.

This proves the claim about the correctness of Threshold-influences; the claims about the number of
queries follow immediately from the algorithm and Lemma 5.7.

5.3 The algorithm

In order to set up the algorithm, recall from Section 3 that we can begin by finding an oracle D to a
poly(k)-sized set of relevant coordinates S . As explained before, (e.g. by applying Claim 3.8), in order
to complete the task it suffices to compute maxg∈JS,k′

E[fg] to accuracy ǫ, where k′ = k2/ǫ2.
Recall that Coordinate-projection and Threshold-influences have a failure probability δ > 0; we

will fix take γ = poly(ǫ, 1/k) and δ = 2−(k/γ), and in what follows we will guarantee to invoke these
two algorithms at most poly(k, 1/ǫ) times, meaning that with high probability every single invocation
will succeed.

Here is the final algorithm, together with a justification of the sample complexity:
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• favg,S : {±1} → [−1, 1] is defined by favg,S(x) = Ey∼Unif [f(y) | yS = xS ]. According to
Lemma 5.4, for every x ∈ {±1}n we can approximate favg,S(x) to within γ using poly(k, 1/ǫ)
queries. Moreover (recalling our choice of δ), as long as we repeat this process at most poly(k, 1/ǫ)
times, with high probability we will never fail to obtain accuracy γ. Also, favg,S is an S-Junta.

• fsmooth is defined by fsmooth = T1−ǫ/(2k)favg,S . By naı̈ve sampling and a Chernoff bound, for
every x in {±1}n we can (with probability at least 1 − δ) approximate fsmooth(x) to within 2γ
using poly(1/γ, log(1/δ)) queries (each with accuracy γ) to favg,S . Thanks to the previous point,
this can be done using poly(k, 1/ǫ) queries to f , and thanks to the choice of δ we can repeat this
poly(k, 1/ǫ) times without failure.

• Thanks to Lemma 5.8 and Remark 5.9 (with t = ǫ/k), we can compute an oracle D̃′ to some set
S̃ ′ such that i ∈ S̃ ′ whenever Infi(fsmooth) ≥ 2ǫ/k, and Infi(fsmooth) ≥ ǫ/k for all i ∈ S̃ ′. This can
be done using poly(k, 1/ǫ) queries to fsmooth, which (thanks to the previous point) can be done
using poly(k, 1/ǫ) queries to f . By Lemma 5.2, |S̃ ′| ≤ k2/ǫ2.

• Applying Lemma 5.4 again (this time, also applying Remark 5.5), for every x ∈ {±1}n we can
approximate fsmooth,avg,S̃′(x) := Ey[fsmooth(y) | yS̃′ = xS̃′ ] to within 3γ using poly(k, 1/ǫ) queries
to fsmooth (which in turn requires poly(k, 1/ǫ) queries to f ).

• Finally, use poly(k, 1/ǫ) independent samples to estimate Ey[|fsmooth,avg,S̃′ |] to within accuracy
4γ (which we can assume is at most ǫ). This estimate is the output of the algorithm.

To complete the proof that this algorithm is correct (i.e. it fulfills the claims made in Theorem 1.5),
let us combine our previous bounds to show that the final quantity being estimated in our algorithm
(namely, E[|fsmooth,avg,S̃′ |]) is approximately between maxg∈JS,k′

E[fg] and maxg∈JS,k E[fg].

Lemma 5.10. With fsmooth,avg,S̃′ defined as above,

max
g∈JS,k′

E[fg] ≥ E[|fsmooth,avg,S̃′ |] = max
g∈Jn,k′

E[f
smooth,avg,S̃′g] ≥ max

g∈JS,k

E[fg]−
3

2
ǫ.

Proof. The first inequality follows immediately from Jensen’s inequality and the fact that fsmooth,avg,S̃′

is defined by repeatedly averaging f in various senses; we will focus on the last inequality. As we
discussed previously,

max
g∈JS,k

E[fg] = max
g∈JS,k

E[favg,Sg].

By Lemma 5.1 applied to favg,S ,

max
g∈JS,k

E[fsmooth] ≥ max
g∈JS,k

E[favg,Sg]− ǫ/2.

By Lemma 5.3 applied with S ′ = S̃ ′ and t = 2ǫ/k,

max
g∈JS′,k

E[fsmoothg] ≥ max
g∈JS,k

E[fsmoothg]− ǫ.

Finally (and for the same reason as the first point),

E[|fsmooth,avg,S̃′|] = max
g∈JS′,k′

E[fsmooth,avg,S̃′g] = max
g∈JS′,k′

E[fsmoothg].
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A Description of the algorithm Find-best-fit

In this section, we describe the algorithm Find-best-fit (from Lemma 4.1) and give its proof of correct-
ness. We begin by describing the algorithm.

Input: f (target function), k (arity of Junta), ǫ (distance parameter)
S (oracles to dictator functions), δ (confidence parameter)

Output: Ĉorrf,S,k ∈ [0, 1] and hS,k : {−1, 1}k → {−1, 1}
// Set parameters for the algorithm

1 Set N = 2k · 1
ǫ2
· 4 ·

(
|S|+ log(1/δ) + k2

)
and M = N · 2−k ;

// Evaluation of the oracles

2 Let N ′ = Poi(N) and sample x(1), . . . ,x(N ′) ∈ {−1, 1}n ;

3 Evaluate f on x(1), . . . ,x(N ′) ;

4 For all S ∋ Dictj(·), evaluate Dictj on x(1), . . . ,x(N ′) ;
// Hypothesis testing

5 for T ⊆ S and |T | = k do

6 Let T = {Dicti1 , . . . ,Dictik} ;

7 for y ∈ {−1, 1}k do

8 Define AT ,y = {x(s) : for 1 ≤ s ≤ N ′, 1 ≤ j ≤ k and Dictij (x
(s)) = yj}. ;

9 Define ĈorrT ,y =

∑
x
(s)∈AT ,y

f(x(s))

M

10 Define ĈorrT =
∑

y |ĈorrT ,y|

2k
and hT : {−1, 1}k → {−1, 1} as hT (y) = sign(ĈorrT ,y).

11 Define T ∗ = argmaxT ⊆S:|T |=k ĈorrT . ;

12 Output Ĉorrf,S,k ← ĈorrT ∗ and hS,k ← hT ∗ : {−1, 1}k → {−1, 1}.

Algorithm 6: Find-best-fit

For convenience of the reader, we restate Lemma 4.1 and then give the proof.

Lemma 4.1. There is an algorithm Find-best-fit with the following guarantee:

1. The algorithm gets as input oracle access to a function f : {−1, 1}n → {−1, 1} as well as a set of oracles
S ⊆ {Dict1, . . . ,Dictn}. We clarify that algorithm is only given the oracle Dicti (for Dicti ∈ S) but not
i.

2. The algorithm gets as input error parameter ǫ > 0, arity parameter k and confidence parameter δ > 0.

3. The algorithm makes N(k, |S|, ǫ, δ) = O(2k/ǫ2 · |S| · (log(1/δ) + k2 + |S|)) queries with probability
1− δ.

4. Each query point (to either f or oracle in S) is distributed as a uniformly random element of {−1, 1}n.

5. With probability 1 − δ, the algorithm outputs a number Ĉorrf,S,k and hS,k : {−1, 1}k → {−1, 1} such
that there exists oracles Dicti1 , . . . ,Dictik ∈ S

Ex[f(x) ·hS,k(xi1 , . . . ,xik)] ≥ max
ℓ∈JS,k

Ex[f(x) · ℓ(x)]− ǫ and |Ĉorrf,S,k− max
ℓ∈JS,k

Ex[f(x) · ℓ(x)]| ≤ ǫ.

Proof. The proof of Item 4 is immediate from Step 2 of the algorithm. Similarly, note that the total
number of queries made is |S| ·Poi(N) where N = O(2k/ǫ2 · (log(1/δ)+ k2 + |S|)). Item 3 now follows
from tail bounds on the Poisson distribution.

Thus, it just remains to prove Item 5. To prove this, consider a fixed T (from Step 5 of the algorithm
Find-best-fit). Define BT ,y = {x ∈ {−1, 1}n : for 1 ≤ j ≤ k, Dictij (x) = yj}. Observe that AT ,y can
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be seen as a sampling of Poi(M) elements from BT ,y. Let us define CorrT ,y = Ex∈BT ,y
[f(x)]. Then,

observe that Ex(1),...,x(N) [ĈorrT ,y] = CorrT ,y. In fact, by Chernoff-Hoeffding bounds, it follows that

Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ǫ/2] ≤
2−k · δ

10 · 2|S|
.

By a union bound, this implies that

For all y ∈ {−1, 1}k, Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ǫ/2] ≤
δ

10 · 2|S|
. (1)

This implies that for any subset T ,

Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ǫ/2] ≤
δ

10 · 2|S|
. (2)

Finally, note that for any subset T ,

Ex∈{−1,1}n [hT (xi1 , . . . ,xik) · f(x)] = Ey∈{−1,1}kEx∈AT ,y
[f(x) · sign(ĈorrT ,y)]

= Ey∈{−1,1}k [sign(ĈorrT ,y) · CorrT ,y]

≥ Ey∈{−1,1}k [CorrT ,y]− 2 max
y∈{−1,1}k

[|CorrT ,y − ĈorrT ,y|]

Using (1), we have that

Pr
x(1),...,x(N)

[Ex∈{−1,1}n [hT (xi1 , . . . ,xik) · f(x)] ≥ CorrT − ǫ] ≥ 1−
δ

10 · 2|S|
. (3)

A union bound over all subsets T ⊆ S on (2) and (3) yields Item 5.
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