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Abstract

We study the problem of estimating the parameters of a Gaussian distribution when samples
are only shown if they fall in some (unknown) subset S ⊆ Rd. This core problem in truncated
statistics has long history going back to Galton, Lee, Pearson and Fisher. Recent work by
Daskalakis et al. (FOCS’18), provides the first efficient algorithm that works for arbitrary sets
in high dimension when the set is known, but leaves as an open problem the more challenging
and relevant case of unknown truncation set.

Our main result is a computationally and sample efficient algorithm for estimating the
parameters of the Gaussian under arbitrary unknown truncation sets whose performance
decays with a natural measure of complexity of the set, namely its Gaussian surface area.
Notably, this algorithm works for large families of sets including intersections of halfspaces,
polynomial threshold functions and general convex sets. We show that our algorithm closely
captures the tradeoff between the complexity of the set and the number of samples needed
to learn the parameters by exhibiting a set with small Gaussian surface area for which it is
information theoretically impossible to learn the true Gaussian with few samples.
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1 Introduction

A classical challenge in Statistics is estimation from truncated samples. Truncation occurs when
samples falling outside of some subset S of the support of the distribution are not observed.
Truncation of samples has myriad manifestations in business, economics, engineering, social
sciences, and all areas of the physical sciences.

Statistical estimation under truncated samples has had a long history in Statistics, going back
to at least the work of Galton [Gal97] who analyzed truncated samples corresponding to speeds
of American trotting horses. Following Galton’s work, Pearson and Lee [Pea02, PL08, Lee14] used
the method of moments in order to estimate the mean and standard deviation of a truncated
univariate normal distribution and later Fisher [Fis31] used the maximum likelihood method for
the same estimation problem. Since then, there has been a large volume of research devoted to
estimating the truncated normal distribution; see e.g. [Sch86, Coh16, BC14]. Nevertheless, the first
algorithm that is provably computationally and statistically efficient was only recently developed
by Daskalakis et al. [DGTZ18], under the assumption that the truncation set S is known.

In virtually all these works the question of estimation under unknown truncation set is raised.
Our work resolves this question by providing tight sample complexity guarantees and an efficient
algorithm for recovering the underlying Gaussian distribution. Although this estimation problem
has clear and important practical and theoretical motivation too little was known prior to our
work even in the asymptotic regime. In the early work of Shah and Jaiswal [SJ66] it was proven
that the method of moments can be used to estimate a single dimensional Gaussian distribution
when the truncation set is unknown but it is assumed to be an interval. In the other extreme
where the set is allowed to be arbitrarily complex, Daskalakis et al. [DGTZ18] showed that it is
information theoretically impossible to recover the parameters. We provide the first complete
analysis of the number of samples needed for recovery taking into account the complexity of the
underlying set.

Our Contributions. Our work studies the estimation task when the truncation set belongs in a
family C of “low complexity”. We use two different notions for quantifying the complexity of sets:
the VC-dimension and the Gaussian Surface Area.

Our first result is that for any set family with VC-dimension VC(C), the mean and covariance
of the true d-dimensional Gaussian Distribution can be recovered up to accuracy ε using only
Õ
(

VC(C)
ε + d2

ε2

)
truncated samples.

Informal Theorem 1. Let C be a class of sets with VC-dimension VC(C) and let N = Õ
(

VC(C)
ε + d2

ε2

)
.

Given N samples from a d-dimensional Gaussian N (µ, Σ) with unknown mean µ and covariance Σ,
truncated on a set S ∈ C with mass at least α, it is possible to find an estimate (µ̂, Σ̂) such that
dTV(N (µ, Σ),N (µ̂, Σ̂)) ≤ ε.

The estimation method computes the set of smallest mass that maximizes the likelihood of the
data observed and learns the truncated distribution within error O(ε) in total variation distance.
To translate this error in total variation to parameter distance, we prove a general result showing
that it is impossible to create a set (no matter the complexity) so that two Gaussians whose
parameters are far have similar truncated distributions (see Lemma 3).

A simple but not successful approach would be to first try to learn an approximation of
the truncation set with symmetric difference roughly ε2/d2 with the true set and then run the
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algorithm of [DGTZ18] using the approximate oracle. This approach would lead to a VC(S)d2/ε2

sample complexity that is worse than what we get. More importantly, doing empirical risk
minimization1 using truncated samples does not guarantee that we will find a set of small
symmetric difference with the true and it is not clear how one could achieve that.

Our result bounds the sample complexity of identifying the underlying Gaussian distribution
in terms of the VC-dimension of the set but does not yield a computationally efficient method
for recovery. Obtaining a computationally efficient algorithm seems unlikely, unless one restricts
attention to simple specific set families, such as axis aligned rectangles. One would hope that
exploiting the fact that samples are drawn from a “tame” distribution, such as a Gaussian, can
lead to general computationally efficient algorithms and even improved sample complexity.

Indeed, our main result is an algorithm that is both computationally and statistically efficient
for estimating the parameters of a spherical Gaussian and uses only dO(Γ2(C)) samples, where
Γ(C) is the Gaussian Surface Area of the class C, an alternative complexity measure introduced by
Klivans et al. [KOS08]:

Informal Theorem 2. Let C be a class of sets with Gaussian surface area at most Γ(C) and let k =

poly(1/α, 1/ε)Γ(C)2. Given N = dk samples from a spherical d-dimensional Gaussian N (µ, σ2I),
truncated on a set S ∈ C with mass at least α,in time poly(m), we can find an estimate µ̂, σ̂2 such that

dTV(N (µ, σ2I),N (µ̂, σ̂2I)) ≤ ε.

The notion of Gaussian surface area can lead to better sample complexity bounds even when
the VC dimension is infinite. An example of such a case is when C is the class of all convex sets.
Table 1 summarizes the known bounds for the Gaussian surface area of different concept classes
and the implied sample complexity in our setting when combined with our main theorem.

Concept Class Gaussian Surface Area Sample Complexity

Polynomial threshold functions of degree k O(k) [Kan11] dO(k2)

Intersections of k halfspaces O(
√

log k) [KOS08] dO(log k)

General convex sets O(d1/4) [Bal93] dO(
√

d)

Table 1: Summary of known results for Gaussian Surface Area. The last column gives the sample
complexity we obtain for our setting.

Beyond spherical Gaussians, our main result extends to Gaussians with arbitrary diagonal
covariance matrices. In addition, we provide an information theoretic result showing that the case
with general covariance matrices can also be estimated using the same sample complexity bound
by finding a Gaussian and a set that matches the moments of the true distribution. We remark
our main algorithmic result Informal Theorem 3 uses Gaussian Surface Area whereas our sample
complexity result Informal Theorem 2 uses VC-dimension. We discuss the differences of the two
approaches in Section 7.

Informal Theorem 3. Let C be a class of sets with Gaussian surface area at most Γ(C) and let k =

poly(1/α, 1/ε)Γ(C)2. Any truncated Gaussian with N (µ̂, Σ̂, Ŝ) with Ŝ ∈ C that approximately matches
the moments up to degree k of a truncated d-dimensional Gaussian N (µ, Σ, S) with S ∈ C, satisfies

1That is finding a set of the family that contains all the observed samples.
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dTV(N (µ, Σ),N (µ̂, Σ̂)) ≤ ε. The number of samples to estimate the moments within the required accuracy
is at most dO(k).

This shows that the first few moments are sufficient to identify the parameters. Analyzing the
guarantees of moment matching methods is notoriously challenging as it involves bounding the
error of a system of many polynomial equations. Even for a single-dimensional Gaussian with
truncation in an interval, where closed form solutions of the moments exist, it is highly non-trivial
to bound these errors [SJ66]. In contrast, our analysis using Hermite polynomials allows us to
easily obtain bounds for arbitrary truncation sets in high dimensions, even though no closed form
expression for the moments exists.

We conclude by showing that the dependence of our sample complexity bounds both on the
VC-dimension and the Gaussian Surface Area is tight up to polynomial factors. In particular, we
construct a family in d dimensions with VC dimension 2d and Gaussian surface area O(d) for
which it is not possible to learn the mean of the underlying Gaussian within 1 standard deviation
using o(2d/2) samples.

Informal Theorem 4. There exists a family of sets S with Γ(S) = O(d) and VC-dimension 2d such that
any algorithm that draws N samples from N (µ, I, S) and computes an estimate µ̃ with ‖µ̃− µ‖2 ≤ 1
must have N = Ω(2d/2).

Our techniques and relation to prior work. The work of Klivans et al. [KOS08] provides a
computationally and sample efficient algorithm for learning geometric concepts from labeled
examples drawn from a Gaussian distribution. On the other hand, the recent work of Daskalakis
et al. [DGTZ18] provides efficient estimators for truncated statistics with known sets. One could
hope to combine these two approaches for our setting, by first learning the set and then using
the algorithm of [DGTZ18] to learn the parameters of the Gaussian. This approach, however,
fails for two reasons. First, the results of Klivans et al. [KOS08] apply in the supervised learning
setting where one has access to both positive and negative samples, while our problem can be
thought of as observing only positive examples (those falling inside the set). In addition, any
direct approach that extends their result to work with positive only examples requires that the
underlying Gaussian distribution is known in advance.

One of our key technical contributions is to extend the techniques of Klivans et al. [KOS08]
to work with positive only examples from an unknown Gaussian distribution, which is the major
case of interest in truncated statistics. To perform the set estimation Klivans et al. [KOS08], rely
on a family of orthogonal polynomials with respect to the Gaussian distribution, namely the
Hermite polynomials and show that the indicator function of the set is well approximated by
its low degree Hermite expansion. While we cannot learn this function directly in our setting,
we are able to recover an alternative function, that contains “entangled” information of both the
true Gaussian parameters and the underlying set. After learning the function, we formulate an
optimization problem whose solution enables us to decouple these two quantities and retrieve
both the Gaussian parameters and the underlying set. We describe our estimation method in
more detail in Section 4. As a corollary of our approach, we obtain the first efficient algorithm for
learning geometric concepts from positive examples drawn from an unknown spherical Gaussian
distribution.
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(a) Execution of our algorithm for isotropic Gaus-
sian distribution with µ∗ = (0.1, 0.78) and µS =
(0.48, 0.32).

(b) Execution of our algorithm for isotropic Gaus-
sian distribution with µ∗ = (0, 0) and µS =
(0.47, 0.27).

Figure 1: Illustration of the results of our algorithm for an unknown truncation set. The ×
sign corresponds to the conditional mean of the truncated distribution, while the green point
corresponds to the true mean and the red points correspond to the estimated true mean depending
on the degree of the Hermite polynomials that are being used by the algorithm.

Simulations. In addition to the theoretical guarantees of our algorithm, we empirically evaluate
its performance using simulated data. We present the results that we get in Figure 1, where one
can see that even when the truncation set is complex, our algorithm finds an accurate estimation
of the mean of the untruncated distribution. Observe that our algorithm succeeds in estimating
the true mean of the input distribution despite the fact that the set is unknown and the samples
look similar in both cases.

1.1 Further Related Work

Our work is related to the field of robust statistics as it can robustly learn a Gaussian even in
the presence of an adversary erasing samples outside a certain set. Recently, there has been
a lot of theoretical work doing robust estimation of the parameters of multi-variate Gaussian
distributions in the presence of arbitrary corruptions to a small ε fraction of the samples, allowing
for both deletions of samples and additions of samples that can also be chosen adaptively
[DKK+16, CSV17, LRV16, DKK+17, DKK+18]. When the corruption of the data is so powerful it
is easy to see that the estimation error of the parameter depends on ε and cannot shrink to 0 as
the number of samples grows to infinity. In our model the corruption is more restrictive but in
return our results show how to estimate the parameters of a multi-variate Gaussian distribution to
arbitrary accuracy even when the fraction of corruption is any constant less than 1.

Our work also has connections with the literature of learning from positive examples. At the
heart of virtually all of the results in this literature is the use of the exact knowledge of the original
non-truncated distribution to be able to generate fake negative examples, e.g. [Den98, LDG00].
When the original distribution is uniform, better algorithms are known. Diakonikolas et al.
[DDS14] gave efficient learning algorithms for DNFs and linear threshold functions, Frieze et al.
[FJK96] and Anderson et al. [AGR13] gave efficient learning algorithms for learning d-dimensional
simplices. Another line of work proves lower bounds on the sample complexity of recovering an
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unknown set from positive examples. Goyal et al. [GR09] showed that learning a convex set in
d-dimensions to accuracy ε from positive samples, uniformly distributed inside the set, requires at
least 2Ω(

√
d/ε) samples, while the work of [Eld11] showed that 2Ω(

√
d) samples are necessary even

to estimate the mass of the set. To the best of our knowledge, no matching upper bounds are
known for those results. Our estimation result implies that dpoly( 1

ε )
√

d are sufficient to learn the set
and its mass when given positive samples from a Gaussian truncated on the convex set.

2 Preliminaries

Notation. We use small bold letters x to refer to real vectors in finite dimension Rd and capital
bold letters A to refer to matrices in Rd×`. Similarly, a function with image in Rd is represented
by a small and bold letter f . Given a subset S of Rd we define 1S(x) to be its 0− 1 indicator. Let
A ∈ Rd×d, we define A[ ∈ Rd2

to be the standard vectorization of A. Let also Qd be the set of all
the symmetric d× d matrices. The Frobenius norm of a matrix A is defined as ‖A‖F =

∥∥∥A[
∥∥∥

2
.

Gaussian Distribution. Let N (µ, Σ) be the normal distribution with mean µ and covariance
matrix Σ, with the following probability density function

N (µ, Σ; x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (1)

Also, let N (µ, Σ; S) denote the probability mass of a measurable set S under this Gaussian measure.
We shall also denote by N0 the standard Gaussian, whether it is single or multidimensional will
be clear from the context.

Truncated Gaussian Distribution. Let S ⊆ Rd be a subset of the d-dimensional Euclidean
space, we define the S-truncated normal distribution N (µ, Σ, S) the normal distribution N (µ, Σ)

conditioned on taking values in the subset S. The probability density function of N (µ, Σ, S) is the
following

N (µ, Σ, S; x) =
1S(x)

N (µ, Σ; S)
N (µ, Σ; x). (2)

We will assume that the covariance matrix Σ is full rank. The case where Σ is not full rank we can
easily detect and solve the estimation problem in the linear subspace of samples.

The core complexity measure of Borel sets in Rd that we use is the notion of Gaussian Surface
Area defined below.

Definition 1 (Gaussian Surface Area). For a Borel set A ⊆ Rd, δ ≥ 0 let Aδ = {x : dist(x, A) ≤ δ}.
The Gaussian surface area of A is

Γ(A) = lim inf
δ→0

N0(Aδ \ A)

δ
.

We define the Gaussian surface area of a family of sets C to be Γ(C) = supC∈C Γ(C).

2.1 Problem formulation

Given samples from a truncated Gaussian N ∗S , N (µ∗, Σ∗, S), our goal is to learn the parameters
(µ∗, Σ∗) and recover the set S. We denote by α∗ = N (µ∗, Σ∗; S), the total mass contained in set S
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by the untruncated Gaussian N ∗ , N (µ∗, Σ∗). Throughout this paper, we assume that we know
an absolute constant α > 0 such that

N (µ∗, Σ∗; S) = α∗ ≥ α. (3)

3 Identifiability with bounded VC dimension

In this section we analyze the sample compexity of learning the true Gaussian parameters when
the truncation set has bounded VC-dimension. In particular we show that the overhead over the
d2/ε2 samples (which is the sample compexity of learning the parameters of the Gaussian without
truncation) is proportional to the VC dimension of the class.

Theorem 1. Let S be a family of sets of finite VC dimension, and let N (µ, Σ, S) be a truncated Gaussian
distribution such that N (µ, Σ; S) ≥ α. Given N samples with

N = poly(1/α) Õ
(

d2

ε2 +
VC(S)

ε

)
Then, with probability at least 99%, it is possible to identify (µ̃, Σ̃) that satisfy dTV(N (µ, Σ),N (µ̃, Σ̃)) ≤ ε

and
∥∥Σ−1/2(µ− µ̃)

∥∥
2 ≤ ε and

∥∥∥I − Σ−1/2Σ̃Σ−1/2
∥∥∥

F
≤ ε.

Our algorithm works by first learning the truncated distribution within total variation dis-
tance ε. To do this, we first assume that we know the mean and covariance of the underlying
Gaussian by guessing the parameters and accurately learn the underlying set. After drawing
N = Θ(VC(S) log(1/ε)

ε ) samples from the distribution, any set in the class that contains the samples
will only exclude at most an ε fraction of the total mass. Picking the set S̃ that maximizes the
likelihood of those samples, i.e. the set with minimum mass according to the guessed Gaussian
distribution, guarantees that the total variation distance between the learned truncated distribution
and the true is at most ε, if the guess of the parameters was accurate (Lemma 1). The proof of
Lemma 1 can be found in Appendix B.

Lemma 1. Let S be a family of subsets in Rd and Let N (µ, Σ, S∗) = N ∗S be a Normal distribution
truncated on the set S∗ ∈ S . Fix ε ∈ (0, 1), δ ∈ (0, 1/4) and let

N = O
(

VC(S) log(1/ε)

ε
+ log

(
1
δ

))
Moreover, let µ̃, Σ̃ be such that dTV(N (µ̃, Σ̃),N (µ, Σ)) ≤ ε. Assume that we draw N samples xi from
NS∗ , Let S̃ be the solution of the problem

min
S
N (µ̃, Σ̃; S) subject to xi ∈ S for all i ∈ [n]

Then with probability at least 1− δ we have dTV(N (µ̃, Σ̃, S̃),N (µ, Σ, S)) ≤ 3ε/(2α).

This is because the total variation distance between two densities f and g can be written as∫
( f (x)− g(x))1 f (x)>g(x)dx. Note that by choosing the set of the smallest mass consistent with the

samples, we guarantee that the guess will have higher density at every point apart from those
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outside the support S̃. However, as we argued the outside mass is at most ε with respect to the
true distribution which gives the bound in the total variation distance.

To remove the assumption that the true parameters are known, we build a cover of all possible
mean and covariance matrices that the underlying Gaussian might have and run the tournament
from [DK14] to identify the best one (Lemma 20). While there are (d/ε)O(d2) such parameters, the
number of samples needed for running the tournament is only logarithmic which shows that an
additional Õ(d2/ε2) are sufficient to find a hypothesis in total variation distance ε (Lemma 2). The
proof of Lemma 2 can be found in Appendix B.

Lemma 2. Let S ∈ S be a subset of Rd and N (µ, Σ, S) be the corresponding truncated normal
distribution. Then Õ

(
VC(S)/ε + d2/ε2) samples are sufficient to find parameters µ̃, Σ̃, S̃ such that

dTV(N (µ, Σ, S),N (µ̃, Σ̃, S̃)) ≤ ε with probability at least 99%.

We finally argue that the ε error in total variation of the truncated distributions translates to an
O(ε) bound in total variation distance of the untruncated distributions (Lemma 3). We show that
this is true in general and does not depend on the complexity of the set. To prove this statement,
we consider two Gaussians with parameters that are far from each other and construct the worst
possible set to make their truncated distributions as close as possible. We show that under the
requirement that the set contains at least α mass, the total variation distance of the truncated
distributions will be large.

Lemma 3 (Total Variation of Truncated Normals). Let D1 = N (µ1, Σ1, S1) and D2 = N (µ2, Σ2, S2)

be two truncated Normal distributions such that N (µ1, Σ1; S1),N (µ2, Σ2; S2) ≥ α. Then

dTV(D1, D2) ≥ Cα dTV(N (µ1, Σ1),N (µ2, Σ2))

where Cα < α/8 is a positive constant that only depends on α, Cα = Ω(α3).

Proof. Without loss of generality we assume that D1 = N (0, I, S1) and D2 = N (µ, Λ, S2), where
Λ is a diagonal matrix. We want to find the worst sets S1, S2 so that dTV(D1, D2) is small. If
D1(S1 \ S2) ≥ α/2 then the statement holds. Therefore, we consider the set S = S1 ∩ S2 and
relax the constraint that the truncated Gaussian D2 integrates to 1. Taking into account the fact
that the set S = S1 ∩ S2 must have at least some mass α/2 with respect to N (0, I), the following
optimization problem provides a lower bound on the total variation distance of D1 and D2.

min
S∈S ,β>0

1
α

∫
|N (0, I; x)− α

β
N (µ, Λ; x)| 1S(x)dx

subj. to
∫
N (0, I; x) 1S(x)dx ≥ α/2,

For any fixed β > 0 this is a fractional knapsack problem and therefore we should include in
the set the points x in order of increasing ratio of weight that is contribution to the L1 error
|N (0, I; x)− α

βN (µ, Λ; x)|, over value, that is density N (0, I; x) until we reach some threshold T.
Therefore, the set is defined to be

S =

{
x ∈ Rd :

|N (0, I; x)− α
βN (µ, Λ; x)|

N (0, I; x)
≤ T

}
=
{

x ∈ Rd : |1− exp(p(x))| ≤ T
}

,
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where p(x) = − 1
2 (µ− x)TΛ−1(µ− x) + 1

2 xTx + log(α/(
√
|Λ|β)). Using Theorem 9 for the degree

2 polynomial p(x) and setting q = 4, γ = α2(Ex∼N0 p2(x))1/2/(256C2), where C is the absolute
constant of Theorem 9, we get that

N0({z : |p(z)| ≤ γ}) ≤ α

4
.

To simplify notation set Q = {z : |p(z)| ≤ γ}. Therefore, for any x in the remaining α/4 mass
of the set S we know that |p(x)| ≥ γ. Next, we lower bound γ in terms of the distance of the
parameters of the two Gaussians. We have

E
x∼N0

[p2(x)] ≥ Var
x∼N0

[p(x)] = Var
x∼N0

[
−1

2
(µ− x)TΛ−1(µ− x) +

1
2

xTx
]

= Var
x∼N0

[
d

∑
i=1

(
µi

λi
x + x2 (1− 1/λi)

2

)]
=

d

∑
i=1

Var
x∼N (0,1)

[
µi

λi
x + x2 (1− 1/λi)

2

]

=
d

∑
i=1

1
2

(
1
λi
− 1
)2

+
µ2

i
λ2

i
=

1
2

∥∥∥Λ−1 − I
∥∥∥2

F
+
∥∥∥Λ−1/2µ

∥∥∥2

2

Therefore, using the inequality
√

2
√

x + y ≥
√

x +
√

y we obtain

γ ≥ α2

256
√

2C2

(
1√
2

∥∥∥Λ−1 − I
∥∥∥

F
+
∥∥∥Λ−1/2µ

∥∥∥
2

)
≥ α2

256C2 dTV(N (µ1, Σ1),N (µ2, Σ2)),

where we used Lemma 16. Assume first that γ ≤ 1. We have that the L1 distance between the
functions f (x) = N (0, I; x)1S(x) and g(x) = α

βN (µ, Λ; x)1S(x) is

∫
| f (x)− g(x)|dx = E

x∼N0
[|1− exp(p(x))|1S(x)] ≥ E

x∼N0

[
|p(x)|

2
1S\Q(x)

]
≥ γ E

x∼N0

[
1S\Q(x)

]
≥ αγ

4
≥ CαdTV(N (µ1, Σ1),N (µ2, Σ2)),

where for the first inequality we used the inequality |1− ex| ≥ |x|/2 for |x| ≤ 1. Note that
Ca = Ω(α3). If γ > 1 we have∫

| f (x)− g(x)|dx = E
x∼N0

[|1− exp(p(x))|1S(x)] ≥ E
x∼N0

[
1
2

1S\Q(x)
]
≥ α/8,

where we used the inequality |1− ex| ≥ 1/2 for |x| > 1. �

4 Estimation Algorithm for bounded Gaussian Surface Area

In this section, we present the main steps of our estimation algorithm. In later sections, we provide
details of the individual components. The algorithm can be thought of in 3 stages.

First Stage In the first stage, our goal is to learn a weighted characteristic function of the
underlying set. Even though we cannot access the underlying set directly, for any given function
f we can evaluate the expectation Ex∼N (µ∗,Σ∗,S)[ f (x)] using truncated samples.
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This expectation can be equivalently written as Ex∼N (0,I)[ f (x)ψ(x)] for the function

ψ(x) ,
1S(x)

α∗
N (µ∗, Σ∗; x)
N (0, I; x)

=
1S(x)

α∗
N ∗(x)
N0(x)

.

By evaluating the above expectation for different functions f corresponding to the Hermite
polynomials HV(x), we can recover ψ(x), through its Hermite expansion:

ψ(x) = ∑
V∈Nd

E
x∼N0

[HV(x)ψ(x)]HV(x) = ∑
V∈Nd

E
x∼N ∗S

[HV(x)]HV(x).

Of course, it is infeasible to calculate the Hermite expansion for any V ∈Nd. In Section 4.1,
we show that by estimating only terms of degree at most k, we can achieve a good approximation
to ψ where the error depends on the Gaussian surface area of the underlying set S. To do this,
we show that most of the mass of the coefficients cV = Ex∼N0 [HV(x)ψ(x)] is concentrated on low
degree terms, i.e. ∑|V|>k c2

V is significantly small. Moreover, we show that even though we can
only estimate the coefficients cV through sampling, the sampling error is significantly small.

Overall, after the first stage, we obtain a non-negative function ψk that is close to ψ. The
approximation error guarantees are given in Theorem 4.

Second Stage Given the function ψk that was recovered in the first stage, our goal is to decouple
the influence of the set 1S(x)

α∗ and the influence of the underlying Gaussian distribution which
corresponds to the multiplicative term N (µ∗,Σ∗;x)

N (0,I;x) . This would be easy if we had the exact function
ψ in hand. In contrast, for the polynomial function ψk the problem is significantly challenging as
it is only close to ψ on average but not pointwise.

To perform the decoupling and identify the underlying Gaussian we explicitly multiply the
function ψk with a corrective term of the form N (0,I;x)

N (µ,Σ;x) . We set up an optimization problem

seeking to minimize the function C(µ, Σ)Ex∼N ∗S [
N (0,I;x)
N (µ,Σ;x)ψk(x)] with an appropriate choice of

C(µ, Σ) so that the unique solution corresponds to (µ, Σ) = (µ∗, Σ∗). Under a reparameterization
of (u, B) = (Σ−1µ, Σ−1), we show that the corresponding problem is strongly convex. Still,
optimizing it directly is non-trivial as it involves taking the expectation with respect to the
unknown truncated Gaussian. Instead, we perform stochastic gradient descent (SGD) and show
that it quickly converges in few steps to point close to the true minimizer (Algorithm 1).

This allows us to recover parameters (µ̂, Σ̂) so that the total variation distance between the
recovered and the true (untruncated) Gaussian is very small, i.e. dTV

(
N (µ̂, Σ̂),N (µ∗, Σ∗)

)
≤ ε.

Theorem 2 describes the guarantees of the second stage. Further details are provided in Section 4.2.

Third Stage Given the weighted indicator function ψk and the recovered Gaussian N (µ̂, Σ̂),
we move on to recover the underlying set S. To do this, we compute the function N (0,I;x)

N (µ̂,Σ̂;x)
ψk(x)

and set a threshold at 1/2. It is easy to check that if there were no errors, i.e. ψk = ψ and
dTV

(
N (µ̂, Σ̂),N (µ∗, Σ∗)

)
= 0, that this thresholding step would correctly identify the set. In

Section 4.3 we bound the error guarantees of this approach. We show that it is possible to
obtain an estimate Ŝ of the underlying set so that the mass of the symmetric difference with
the true Gaussian is small, i.e. N (µ∗, Σ∗; S4Ŝ) < ε. Overall, our algorithm requires at most
dpoly(1/α,1/ε)Γ2(S), where Γ(S) is the Gaussian surface area of the set S and α is a lower-bound on
the mass that is assigned by the true Gaussian on the set S. The running time of our algorithm is
linear in the number of samples.
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The guarantees of the algorithm We first show our algorithmic results under the assumption
that the untruncated Gaussian N ∗ is known to be in near-isotropic position.

Definition 2 (Near-Isotropic Position). Let µ ∈ Rd, Σ ∈ Rd×d be a positive semidefinite symmetric
matrix and a, b > 0. We say that (µ, Σ) is in (a, b)-isotropic position if the following hold.

‖µ‖2
2 ≤ a, ‖Σ− I‖2

F ≤ a, (1− b)I � Σ � 1
1− b

I

We later transform the more interesting case with an unknown mean and an unknown diagonal
covariance matrix to the isotropic case.

Theorem 2. Let N (µ∗, Σ∗) be a d-dimensional Gaussian distribution that is in (O(log(1/α∗), 1/16)-
isotropic position and consider a set S such that N (µ∗, Σ∗; S) ≥ α. There exists an algorithm such that for

all ε > 0, the algorithm uses n > dpoly(1/α) Γ2(S)
ε8 samples and produces, in poly(n) time, estimates that,

with probability at least 99%, satisfy dTV(N (µ∗, Σ∗),N (µ̂, Σ̂)) ≤ ε.

We can apply this theorem to estimate the parameters of any Gaussian distribution with an
unknown mean and an unknown diagonal covariance matrix by bringing the Gaussian to an
(O(log(1/α∗), 1/16)-isotropic position. Lemma 18 shows that with high probability, we can obtain
initial estimates µ̃S and Σ̃S so that ‖Σ−1/2(µ̃S − µ∗)‖2

2 ≤ O(log 1
α ) and

Σ̃S � Ω(α2)Σ∗, and
∥∥∥Σ∗−1/2Σ̃SΣ∗−1/2 − I

∥∥∥2

F
≤ O(log

1
α
).

Given these estimates, we can transform the space so that µ̃S = 0, and Σ̃S = I. We note that
after this transformation, the mean will be at the right distance from 0, while the eigenvalues λi

of Σ∗ will all be within the desired range 15
16 ≤ λi ≤ 16

15 apart from at most O(log(1/α)). This is

because the condition
∥∥∥Σ∗−1/2Σ̃SΣ∗−1/2 − I

∥∥∥2

F
≤ O(log 1

α ) implies that ∑i(1− 1
λi
)2 ≤ O(log(1/α)).

With this observation, since we know of the eigenvectors of Σ∗, we would be able to search over
all possible corrections to the eigenvalues to bring the Gaussian in (O(log(1/α)), 1

16 )-isotropic
position as required by Theorem 2. We only need to correct O(log(1/α)) of them.

We can form a space of candidate hypotheses for the underlying distribution, for each choice of
O(log(1/α)) out of the d vectors along with the all possible scalings. These hypotheses are at most
dO(log(1/α)) times (log(1/α))O(log(1/α)) for all possible scalings. Thus, there are at most dO(log(1/α))

hypotheses. Running the algorithm for each one of them, we would learn at least one distribution
and one set that is accurate according to the guarantees of Theorems 2. Running the generic
hypothesis testing algorithm of Lemma 20, we can identify one that is closest in total variation
distance to the true distribution N ∗S . The sample complexity and runtime would thus only increase
by at most dO(log(1/α)). As we showed in Lemma 3, knowing the truncated Gaussian in total
variation distance suffices to learn in accuracy ε the parameters of the untruncated distribution.
We thus obtain as corollary, that we can estimate the parameters when the covariance is spherical
or diagonal. The same results hold when one wants to recover the underlying set in these cases.

4.1 Learning a Weighted Characteristic Function

Our goal in this section is to recover using conditional samples from N ∗S a weighted characteristic
function of the set S. In particular, we will show that it is possible to learn a good approximation

10



to the function

ψ(x) =
1S(x)

α∗
N (µ∗, Σ∗; x)
N (0, I; x)

=
1S(x)

α∗
N ∗(x)
N0(x)

. (4)

We will later use the knowledge of this function to extract the unknown parameters and learn
the set S.

4.1.1 Hermite Concentration

We start by showing that the function ψ(x) admits strong Hermite concentration. This means that
we can well-approximate ψ(x) if we ignore the higher order terms in the Hermite expansion of
ψ(x).

Theorem 3. (Low Degree Approximation) Let Skψ denote the degree k Hermite expansion of function
ψ defined in (4). We have that

E
x∼N0

[
(Skψ(x)− ψ(x))2] = ∑

|V|≥k
ψ̂(V)2 ≤ poly(1/α)

(√
Γ(S)

k1/4 +
1
k

)
.

where Γ(S) is the Gaussian surface area of S, and a < α∗ is the absolute constant of (3).

We note that the Hermite expansion of ψ is well-defined as ψ(x) ∈ L2(Rd,N0). This can be
seen from the following lemma which will be useful in many calculations throughout the paper.

Lemma 4. Let N (µ1, Σ1) and N (µ2, Σ2) be two (B, 1−δ
2k )-isotropic Gaussians for some parameters

B, δ > 0 and k ∈N. It holds

exp
(
−13k2

δ
B
)
≤ E

x∼N0

[(
N (µ1, Σ1; x)
N (µ2, Σ2; x)

)k
]
≤ exp

(
13k2

δ
B
)

.

Lemma 4 applied for N0 and N ∗ for k = 2 implies that ψ(x) ∈ L2(Rd,N0).
To get the desired bound for Theorem 3 we use the following lemma, which allows us to

bound the Hermite concentration of a function f through its noise stability.

Lemma 5. For any function f : Rd 7→ R and parameter ρ ∈ (0, 1), it holds

∑
|V|≥1/ρ

f̂ (V)2 ≤ 2 E
x∼N (0,I)

[
f (x)2 − f (x)T1−ρ f (x)

]
Lemma 5 was originally shown in [KKMS05] for indicator functions of sets, but their proof

extends to arbitrary real functions. We provide the proof in the appendix for completeness.
Using Lemma 5, we can obtain Theorem 3 by bounding the noise sensitivity of the function ψ.

The following lemma directly gives the desired result.

Lemma 6. For any ρ ∈ (0, 1), Ex∼N0

[
ψ(x)2 − ψ(x)T1−ρψ(x)

]
≤ poly(1/α)

(√
Γ(S)ρ1/4 + ρ

)
.

To prove Lemma 6, we will require the following lemma whose proof is provided in the
appendix.
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Lemma 7. Let r(x) ∈ L2(Rd,N (0, I)) be differentiable at every x ∈ Rd. Then

1
2

E
(x,z)∼Dρ

[(r(x)− r(z))2] ≤ ρ E
x∼N (0,I)

[
‖∇r(x)‖2

2

]
We now move on to the proof of Lemma 6.

Proof of Lemma 6: For ease of notation we define the following distribution

Dρ = N
(

0,
(

I (1− ρ)I
(1− ρ)I I

))
.

We also denote by r(x) = N ∗(x)/N0(x) We can now write

2 E
x∼N0

[
ψ(x)2 − ψ(x)T1−ρψ(x)

]
= E

(x,z)∼Dρ

[
ψ(x)2 − ψ(x)ψ(z)

]
=

1
α∗2 E

(x,z)∼Dρ

[1S(x)r2(x)− 1S(x)1S(z)r2(x)]+

E
(x,z)∼Dρ

[1S(x)1S(z)r2(x)− 1S(x)1S(z)r(x)r(z)]

We bound each of the two terms separately. For the first term, using Schwarz’s inequality we get

E
(x,z)∼Dρ

[1S(x)r2(x)− 1S(x)1S(z)r2(x)] ≤
(

E
(x,z)∼Dρ

[1S(x)1S̄(z)]
)1/2(

E
(x,z)∼Dρ

[r4(x)]
)1/2

≤ (NS[S])1/2 poly(1/α) ≤
√

Γ(S)ρ1/4 poly(1/α)

where the bound on the expectation of r4(x) follows from Lemma 4 and the last inequality follows
from Lemma 19.

For the second term, we have that

E
(x,z)∼Dρ

[1S(x)1S(z)(r2(x)− r(x)r(z))] = E
(x,z)∼Dρ

[
1S(x)1S(z)

(
r2(x)

2
+

r2(z)
2
− r(x)r(z)

)]
= E

(x,z)∼Dρ

[
1S(x)1S(z)

1
2
(r(x)− r(z))2

]
≤ 1

2
E

(x,z)∼Dρ

[
(r(x)− r(z))2] ≤ ρ E

x∼N0
[‖∇r(x)‖2

2],

where the last inequality follows from Lemma 7. It thus suffices to bound the expectation of the
gradient of r. We have

E
x∼N0

[‖∇r(x)‖2
2] = E

x∼N0

[∥∥∥−Σ∗−1(x− µ∗) + x
∥∥∥2

2
r2(x)

]
≤ 2 E

x∼N0
[
∥∥∥(I − Σ∗)−1x

∥∥∥2

2
r2(x)] + 2

∥∥∥Σ∗−1µ∗
∥∥∥2

2
E

x∼N0
[r2(x)]

≤ 2
√

E
x∼N0

[‖(I − Σ∗−1)x‖4
2] E

x∼N0
[r4(x)] + 2

∥∥∥Σ∗−1µ∗
∥∥∥2

2
E

x∼N0
[r2(x)] ≤ poly(1/α)

where the bound on the expectation of r4(x) and r2(x) follows from Lemma 4 and the expectation

E
x∼N0

[∥∥∥(I − Σ∗−1)x
∥∥∥4

2

]
= E

x∼N0

(∑
i
(1− λi)

2x2
i

)2
 ≤ 3

(
∑

i
(1− λi)

2

)2

≤ 3 log2(1/α) ≤ poly(1/α)

�
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4.1.2 Learning the Hermite Expansion

In this section we deal with the sample complexity of estimating the coefficients of the Hermite
expansion. We have

cV = E
x∼N (µ,Σ,S)

[HV(x)]

Using samples xi from N (µ, Σ, S), we can estimate this expectation empirically with the unbiased
estimate

c̃V =
∑N

i=1 HV(xi)

N
.

We now show an upper bound for the variance of the above estimate. The proof of this lemma
can be found in Appendix C.

Lemma 8. Let N (µ∗, Σ∗, S) be the unknown truncated Gaussian. The variance of the following unbiased

estimator of the Hermite coefficients c̃V = ∑N
i=1 HV(xi)

N , is upper bounded

E
x∼N (µ,Σ,S)

[(c̃V − cV)
2] ≤ poly(1/α)

5|V|

N
.

Theorem 4. Let S be an arbitrary (Borel) subset of Rd. Let α be the constant of (3). Let N (µ∗, Σ∗, S) be
the corresponding truncated Gaussian in (O log(1/α), 1/16)-isotropic position (see Definition 2), Then,
for the estimate

ψk(x) = max

(
0, ∑

V:0≤|V|≤k
c̃V HV(x)

)
, c̃V =

∑N
i=1 HV(xi)

N

it holds for k� d, Γ(S) > 1,

E
x1,...,xN∼N (µ∗,Σ∗,S)

[
E

x∼N (0,I)

[
(ψk(x)− ψ(x))2]] ≤ poly(1/α)

(√
Γ(S)

k1/4 +
(5d)k

N

)
.

Alternatively, for k = poly(1/α)Γ(S)2/ε4 we obtain that with N = dpoly(1/α)Γ(S)2/ε4
samples, with

probability at least 9/10, it holds Ex∼N0 [(ψN,k(x)− ψ(x))2] ≤ ε.

Proof. Instead of considering the positive part of the Hermite expansion, we will prove the claim
for the empirical Hermite expansion of degree k and N samples

pN,k = ∑
V:0≤|V|≤k

c̃V HV(x).

As usual we denote by Skψ(x) the true (exact) Hermite expansion of degree k of ψ(x). Using the
inequality (a− b)2 ≤ 2(a− c)2 + 2(c− b)2 we obtain

E
x∼N0

[
(pN,k(x)− f (x))2] ≤ 2 E

x∼N0

[
(pN,k(x)− Skψ(x))2]+ 2 E

x∼N0

[
(Skψ(x)− ψ(x))2]

Since Hermite polynomials form an orthonormal system with respect to N0, we obtain

E
x∼N0

[
(pN,k(x)− Skψ(x))2] = E

x∼N0

( ∑
V:0≤|V|≤k

(c̃V − cV)HV(x)

)2
 = ∑

V:0≤|V|≤k
(c̃V − cV)

2.
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Using Lemma 8 we obtain

E
x1,...,xN∼N ∗

[
∑

V:0≤|V|≤k
(c̃V − cV)

2

]
≤ poly(1/α)

N ∑
V:0≤|V|≤k

5|V| ≤ poly(1/α)

N

(
d + k

k

)
5k,

where we used the fact that the number of all multi-indices V of d elements such that 0 ≤ |V| ≤ k
is (d+k

k ). Moreover, from Theorem 3 we obtain that

E
x∼N0

[
(Skψ(x)− ψ(x))2] ≤ poly(1/α)

(√
Γ(S)

k1/4 +
1
k

)
.

The theorem follows. �

4.2 Optimization of Gaussian Parameters

In this section we show that we can formulate a convex objective function that can be optimized
to yield the unknown parameters µ∗, Σ∗ of the truncated Gaussian. Let S be the unknown
(Borel) subset of Rd such that N (µ∗, Σ∗; S) = α∗ and let N ∗S = N (µ∗, Σ∗, S) be the corresponding
truncated Gaussian.

To find the parameters µ∗, Σ∗, we define the function

M f (u, B) , E
x∼N ∗S

[
eh(u,B;x)N (0, I; x) f (x)

]
(5)

where h(u, B; x) = xT Bx
2 − tr((B−I)(Σ̃S+µ̃Sµ̃T

S ))
2 − uT(x− µ̃S) +

d
2 log 2π.

We will show that the minimizer of M f (u, B) for the polynomial function f = ψk, will satisfy
(B−1u, B−1) ≈ (µ∗, Σ∗). Note that M f (u, B) can be estimated through samples. Our goal will be
to optimize it through stochastic gradient descent.

In order to make sure that SGD algorithm for Mψk converges fast in the parameter space we
need to project after every iteration to some subset of the space as we will see in more details later
in this Section. Assuming that the pair (µ∗, Σ∗) is in (

√
log(1/α∗), 1/16)-isotropic position we

define the following set

D =
{
(u, B) | (B−1u, B−1) is in (c · log(1/α∗), 1/16)-isotropic position

}
(6)

Where c is the universal constant guaranteed to exist from Section 2.1 so that

max
{
‖µ∗ − µ̃‖Σ∗ ,

∥∥Σ∗ − Σ̃
∥∥

F

}
≤ c · log(1/α∗).

It is not hard to see that D is a convex set and that for any (u, B) the projection to D can be done
efficiently. For more details we refer to Lemma 8 of [DGTZ18]. Since after every iteration of our
algorithm we project to D we will assume for the rest of this Section that (u, B) ∈ D.

An equivalent formulation of M f (u, B) that will be useful for the analysis of the SGD algorithm
is

M f (u, B) = e−
1
2 (tr((B−I)(Σ̃S+µ̃Sµ̃T

S )))+uT B−1u−uT µ̃S)
√
|B| E

x∼N ∗S

[
N (0, I; x)

N (B−1u, B−1; x)
f (x)

]
, Cu,B E

x∼N ∗S

[
N0(x)
Nu,B(x)

f (x)
]

(7)
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Lemma 9. For (u, B) ∈ D, we have that poly(α) ≤ Cu,B ≤ poly(1/α).

Proof. We have that

|2 log Cu,B| =
∣∣∣tr((B− I)(Σ̃S + µ̃Sµ̃T

S ))) + uTB−1u− uTµ̃S − log |B|
∣∣∣

=
∣∣∣tr(B− I) + tr((B− I)(Σ̃S − I)) + uTB−1u− log |B|

∣∣∣
≤ |tr(B− I)− log |B||+

∣∣∣tr((B− I)(Σ̃S − I))
∣∣∣+ ∣∣∣uTB−1u

∣∣∣
We now bound each of the terms separately. Let λ1, ..., λd be the eigenvalues of B.

1. For the first term, we have that

|tr(B− I)− log |B|| = |
d

∑
i=1

(λi − 1− log λi)| ≤
d

∑
i=1

(λi − 1)2

λi
≤ ‖B− I‖2

F
λmin

where we used the fact that 0 ≤ x− 1− log x ≤ (x−1)2

x for all x > 0.

2. For the second term, we have that
∣∣∣tr((B− I)(Σ̃S − I))

∣∣∣ ≤ ‖B− I‖F‖Σ̃S − I‖F

3. For the third term, we have that
∣∣uTB−1u

∣∣ = uTB−1BB−1u ≤ λmax‖B−1u‖2
2

Now from the assumption (u, B) ∈ D we have that ‖B− I‖F ≤ O(
√

log(1/α∗)),
∥∥B−1u

∥∥
2 ≤

O(
√

log(1/α∗)), λmin ≥ 15/16 and λmax ≤ 17/16. Also from Lemma 18 we get that
∥∥Σ̃S − I

∥∥
F ≤

O(
√

log(1/α∗)) and hence |2 log Cu,B| ≤ O(log(1/α∗)). This means that Cu,B = poly(1/α) and
the lemma follows. �

4.2.1 The Objective Function and its Approximation

To show that the minimizer of the function Mψk is a good estimator for the unknown parameters

µ∗, Σ∗, we consider the function M′f , defined as M f (u, B) = Ex∼N ∗S

[
eh′(u,B;x)N (0, I; x) f (x)

]
for

h′(u, B; x) = xT Bx
2 − tr((B−I)(ΣS+µSµT

S ))
2 − uT(x− µS) +

d
2 log 2π. This function corresponds to an

ideal situation where we know the parameters µS, ΣS exactly. Similarly to (7), we can write M′f as

C′u,B Ex∼N ∗S

[
N0(x)
Nu,B(x) f (x)

]
. We argue that both M f and M′f are convex.

Claim 1. For any function f : Rd 7→ R≥0, M f (u, B) and M′f (u, B) are convex functions of the parameters
(u, B).

Proof. We show the statement for M f . The proof for M′f is identical. The proof follows by
computing the Hessian of M f and arguing that it is positive semidefinite.

The gradient with respect to (u, B) is

∇M f (u, B) = E
x∼N (µ∗,Σ∗,S)

[
∇h(u, B; x)eh(u,B;x)N (0, I; x) f (x)

]
= E

x∼N (µ∗,Σ∗,S)

[(
1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

)
eh(u,B;x)N (0, I; x) f (x)

]
(8)
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Moreover, the Hessian is

HM f (u, B) = E
x∼N (µ∗,Σ∗,S)

( 1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

)(
1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

)T

eh(u,B;x)N (0, I; x) f (x)


which is clearly positive semidefinite since for any z ∈ Rd×d+d we have

zTHM f (u, B)z = E
x∼N (µ∗,Σ∗,S)

(zT

(
1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

))2

eh(u,B;x)N (0, I; x) f (x)

 ≥ 0.

�

We now argue that the minimizer of the convex function M′ψ for the weighted characteristic

function ψ(x) = 1S(x)
α∗
N (µ∗,Σ∗;x)
N (0,I;x) is (u, B) = (Σ∗−1, Σ∗−1µ∗).

Claim 2. The minimizer of M′ψ(u, B) is (u, B) = (Σ∗−1, Σ∗−1µ∗).

Proof. The gradient of M′ψ with respect to (u, B) is

∇M′ψ(u, B) = E
x∼N ∗S

[(
1
2

(
xxT − ΣS − µSµT

S
)[

µS − x

)
eh(u,B;x)N (0, I; x)

1S(x)
α∗
N (µ∗, Σ∗; x)
N (0, I; x)

]

= E
x∼N ∗S

[(
1
2

(
xxT − ΣS − µSµT

S
)[

µS − x

)
eh(u,B;x)N (µ∗, Σ∗; x)

α∗

]

For (u, B) = (Σ∗−1µ∗, Σ∗−1), this is equal to

∇M′ψ(Σ
∗−1µ∗, Σ∗−1) = Cu,B · E

x∼N ∗S

[(
1
2

(
xxT − ΣS − µSµT

S
)[

µS − x

)
1

N (µ∗, Σ∗; x)
N (µ∗, Σ∗; x)

α∗

]

=
Cu,B

α∗
· E

x∼N ∗S

[(
1
2

(
xxT − ΣS − µSµT

S
)[

µS − x

)]

where Cu,B that does not depend on x. This is equal to 0 by definition of µS and ΣS. �

We want to show that the minimizer of Mψk is close to that of M′ψ. To do this, we bound the
difference of the two functions pointwise. The proof of the following lemma is technical and can
be found in Appendix D.

Lemma 10 (Pointwise Approximation of the Objective Function). Assume that we use Lemma
17 to estimate µ̃S, Σ̃S with ε = 1

poly(1/α∗) ε′ and Theorem 4 with ε = 1
p(1/α∗) ε′2 then∣∣∣Mψk(u, B)−M′ψ(u, B)

∣∣∣ ≤ ε′.

Now that we have established that Mψk is a good approximation of M′ψ we will prove that we
can optimize Mψk and get a solution that is very close to the optimal solution of M′ψ.
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4.2.2 Optimization of the Approximate Objective Function

Our goal in this section is to prove that using sample access to N (µ∗, Σ∗, S) we can find the
minimum of the function Mψk defined in the previous section. First of all recall that Mψk can be
written as an expectation over N (µ∗, Σ∗, S) in the following way

Mψk(u, B) , E
x∼N ∗S

[
eh(u,B;x)N (0, I; x)ψk(x)

]
.

In Section 4.1 we prove that we can learn the function ψk and hence Mψk can be written as

Mψk(u, B) = E
x∼N ∗S

[
mψk(u, B; x)

]
where mψk(u, B; x) = eh(u,B;x)N (0, I; x)ψk(x), and for any u, B and x we can compute mψk(u, B; x).
Since Mψk is convex we are going to use stochastic gradient descent to find its minimum. To prove
the convergence of SGD and bound the number of steps that SGD needs to converge we will use
the the formulation developed in Chapter 14 of [SSBD14]. To be able to use their results we have
to define for any (u, B) a random vector v(u, B) and prove the following

Unbiased Gradient Estimation
E [v(u, B)] = ∇Mψk ,

Bounded Step Variance
E
[
‖v(u, B)‖2

2

]
≤ ρ,

Strong Convexity for any z ∈ D it holds

zTHM f (u, B)z ≥ λ.

We start with the definition of the random vector v. Given a sample x from N (µ∗, Σ∗, S), for any
(u, B) we define

v(u, B) = ∇u,B mψk(u, B; x) (9)

=

(
1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

)
eh(u,B;x)N (0, I; x)ψk(x) (10)

observe that the randomness of v only comes from the random sample x ∼ N (µ∗, Σ∗, S). The
fact that v(u, B) is an unbiased estimator of ∇M f (u, B) follows directly from the fact calculation
of ∇M f (u, B) in Section 4.2.1. For the other two properties that we need we have the following
lemmas. The following lemma bounds the variance of the step of the SGD algorithm. It’s rather
technical proof can be found in Appendix D.

Lemma 11 (Bounded Step Variance). Let α be the constant of (3). For every (u, B) ∈ D it holds

E
x∼N ∗S

[
‖v(u, B)‖2

2

]
≤ poly(1/α) · d2k,

We are now going to prove the strong convexity of the objective function Mψk . For this we are
going to use a known anti-concentration result (Theorem 9) for polynomial functions over the
Gaussian measure. See Appendix A.

The following lemma shows that our objective is strongly convex as long as the guess u, B
remains in the set D. Its proof can be found in Appendix D.
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Lemma 12 (Strong Convexity). Let α be the absolute constant of (3). For every (u, B) ∈ D, any
z ∈ Rd such that ‖z‖2 = 1 and the first d2 coordinated of z correspond to a symmetric matrix, then

zTHM f (u, B)z ≥ poly(α),

4.2.3 Recovering the Unconditional Mean and Covariance

The framework that we use for proving the fast convergence of our SGD algorithm is summarized
in the following theorem and the following lemma.

Theorem 5 (Theorem 14.11 of [SSBD14].). Let f : Rd → R. Assume that f is λ-strongly convex, that

E
[
v(i) | w(i−1)

]
∈ ∂ f (w(i−1)) and that E

[∥∥∥v(i)
∥∥∥2

2

]
≤ ρ2. Let w∗ ∈ arg minw∈D f (w) be an optimal

solution. Then,

E [ f (w̄)]− f (w∗) ≤ ρ2

2λT
(1 + log T) ,

where w̄ is the output projected stochastic gradient descent with steps v(i) and projection set D after T
iterations.

Lemma 13 (Lemma 13.5 of [SSBD14].). If f is λ-strongly convex and w∗ is a minimizer of f , then, for
any w it holds that

f (w)− f (w∗) ≥ λ

2
‖w−w∗‖2

2 .

Now we have all the ingredients to present the proof of Theorem 2.
Proof of Theorem 2: The estimation procedure starts by computing the polynomial function ψk

using dpoly(1/α∗) Γ2(S)
ε′8 samples from N (µ∗, Σ∗, S) as explained in Theorem 4 to get error poly(α∗)ε′2.

Then we compute µ̃S and Σ̃S as explained in Section 2.1 with ε = q(α∗)
8p(1/α∗) (ε

′)2 where p comes from

Lemma 10 and q comes from Lemma 12. Our estimators for µ̂, Σ̂ are the outputs of Algorithm 1.
We analyze the accuracy of our estimation by proving that the minimum of Mψk is close in the

parameter space to the minimum of M′ψ. Let u′, B′ be the minimum of the convex function M′ψ
and uk, Bk be the minimum of the convex function Mψk . Using Lemma 10 we have the following
relations ∣∣∣M′ψ(u′, B′)−Mψk(u

′, B′)
∣∣∣ ≤ ε′,

∣∣∣M′ψ(uk, Bk)−Mψk(uk, Bk)
∣∣∣ ≤ ε′

and also
M′ψ(u

′, B′) ≤ M′ψ(uk, Bk), Mψk(uk, Bk) ≤ Mψk(u
′, B′).

These relations imply that∣∣Mψk(u
′, B′)−Mψk(uk, Bk)

∣∣ = Mψk(u
′, B′)−Mψk(uk, Bk)

≤ Mψk(u
′, B′)−M′ψ(u

′, B′) + M′ψ(uk, Bk)−Mψk(uk, Bk)

≤
∣∣∣M′ψ(u′, B′)−Mψk(u

′, B′)
∣∣∣+ ∣∣∣M′ψ(uk, Bk)−Mψk(uk, Bk)

∣∣∣ ≤ 2ε′.

But from Lemma 12 and Lemma 13 we get that
∥∥∥∥(B′[

u′

)
−
(

B[
k

uk

)∥∥∥∥
2
≤ ε′

2 . Now we can apply the

Claim 2 which implies that ∥∥∥∥((Σ∗−1)[

Σ∗−1µ∗

)
−
(

B[
k

uk

)∥∥∥∥
2
≤ ε′

2
. (11)
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Therefore it suffices to find (uk, Bk) with accuracy ε′/2 to get our theorem.

Let w∗ =
(

B[
k

uk

)
To prove that Algorithm 1 converges to w∗ we use Theorem 5 which together

with Markov’s inequality, Lemma 11 and Lemma 12 gives us

P

(
Mψk(û, B̂)−Mψk(uk, Bk) ≥ poly(1/α∗) · d2k

T
(1 + log(T))

)
≤ 1

3
. (12)

To get our estimation we first repeat the SGD procedure K = log(1/δ) times independently,
with parameters T, λ each time. We then get the set of estimates E = {w̄1, w̄2, . . . , w̄K}. Because
of (12) we know that, with high probability 1− δ, for at least the 2/3 of the points w̄ in E it
is true that Mψk(w)−Mψk(w

∗) ≤ η where η = poly(1/α∗) · d2k

T (1 + log(T)). Moreover we will
prove later that Mψk(w)−Mψk(w

∗) ≤ η and this implies ‖w−w∗‖ ≤ c · η, where c is a universal
constant. Therefore with high probability 1− δ for at least the 2/3 of the points w̄, w̄′ in E it is
true that ‖w−w′‖ ≤ 2c · η. Hence if we set ŵ to be a point that is at least 2c · η close to more
that the half of the points in E then with high probability 1− δ we have that f (w̄)− f (w∗) ≤ η.
Hence we can we lose probability at most δ if we condition on the event

Mψk(û, B̂)−Mψk(uk, Bk) ≤ poly(1/α∗) · d2k

T
(1 + log(T)) .

Using once again Lemma 13 we get that∥∥∥∥(B̂[

û

)
−
(

B[
k

uk

)∥∥∥∥
2
≤ ε′

2
.

which together with (11) implies ∥∥∥∥(B̂[

û

)
−
(
(Σ∗−1)[

Σ∗−1µ∗

)∥∥∥∥
2
≤ ε′

2
.

and the theorem follows as closeness in parameter distance implies closeness in total variation
distance for the corresponding untruncated Gaussian distributions. �
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Algorithm 1 Projected Stochastic Gradient Descent. Given access to samples from N (µ∗, Σ∗, S).

1: procedure Sgd(T, λ) . T: number of steps, λ: parameter.

2: w(0) =

(
(B(0))[

u(0)

)
←
(
(Σ̃−1

S )[

Σ̃−1
S µ̃S

)
3: for i = 1, . . . , T do
4: Sample x(i) from N (µ∗, Σ∗, S)
5: ηi ← 1

λ·i

6:

(
(B(i−1))[

u(i−1)

)
← w(i−1)

7: v(i) ←

 1
2

(
x(i)x(i)T − Σ̃S − µ̃Sµ̃T

S

)[
µ̃S − x(i)

 eh(u(i−1),B(i−1);x(i))N (0, I; x(i))ψk

(
x(i)
)

. From (8).

8: r(i) ← w(i−1) − ηiv(i)

9: w(i) ← arg minw∈D

∥∥∥w− r(i)
∥∥∥2

2
. From Lemma 8 of [DGTZ18].

10:

(
B̂[

û

)
← 1

T ∑T
i=1 w(i)

11: Σ̂← B̂−1

12: µ̂← B̂−1û
13: return (µ̂, Σ̂)

4.3 Recovering the Set

In this section we prove that, given only positive examples from an unknown truncated Gaussian
distribution, that is samples from the conditional distribution on the truncation set, one can in
fact learn the truncation set. We only give here the main result, for details see Appendix E.

Theorem 6 (Recovering the Set). Let S be a class of measurable sets with Gaussian surface area at most
Γ(S). Let N ∗ be a Gaussian in (O(log(1/α), 1/16))-isotropic position. Then, given dpoly(1/α)Γ(S)2/ε32

samples from the conditional distribution N ∗S we can recover an indicator of the set S̃ such that with
probability at least 99% it holds Px∼N ∗ [S̃(x) 6= 1S(x)] ≤ ε.

5 Lower Bound for Learning the Mean of a Truncated Normal

Theorem 7. There exists a family of sets S with Γ(S) = O(d) such that any algorithm that draws m
samples from N (µ, I, S) and computes an estimate µ̃ with ‖µ̃− µ‖2 ≤ 1 must have m = Ω(2d/2).

Proof. Let H = [−1, 1]d+1 be the d + 1-dimensional cube. We will also use the left and right
subcubes H+ = [−1, 0] × [−1, 1]d, H− = [0, 1] × [−1, 1]d respectively. Let N+ = N (e1, I) and
N− = N (−e1, I). We denote by r the (scaled) pointwise minimum of the two densities truncated
at the cube H, that is

r(x) =
min(N+(H; x),N−(H; x))

c
=

1H(x)
c

min(N+(x),N−(x)),

where c = 1− dTV(N+,N−).
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To simplify notation we assume that we work in Rd+1 instead of Rd. Let V = (v1, . . . , vd) ∈
{+1,−1}d. For every V we define the set GV = H ∩ {y ∈ Rd : yivi ≥ 0}. We also define the
subcubes HV = [0, 1] × GV . We consider the following subset of H parameterized by the 2d

parameters tV ∈ [0, 1] and δ ∈ [−1, 1].

S+ = [−1 + δ, 0]× [−1, 1]d ∪
⋃

V∈{−1,+1}d

[0, tV ]× GV

We will argue that there exists a distribution D+ on the values tV such that on expectation
dTV(N S+

+ ,N S−
− ) is O(2−d). We show how to construct the distribution D+ since the construction

for D− is the same. In fact we will show that both distributions are very close to r(x). Notice that
for some (t, y) ∈ Rd+1 we have We draw each tV independently from the distribution with cdf

F(t) = 1[0,1)(t)(1− e−2t) + 1[1,+∞)(t)

Notice that for t ∈ (0, 1) and any y ∈ Rd we have that 1− F(t) = N−(t, y)/N+(t, y).
After we draw all tV from F we choose δ so that N+(S+; x) = c. We will show that on

expectation over the tV we have δ = 0, which means that no correction is needed. In fact we show
something stronger, namely that for all x ∈ H+ we have that ES+∼D+ [N+(S+; x)] = r(x). Assume
that x ∈ HV . Indeed,

E
S+∼D+

[N+(S+; x)] =
N+(x)

c
E

S+∼D+

[1S+(x)] =
N+(x)

c
E

S+∼D+

[1{x1≤tV}]

=
N+(x)

c
(1− F(tV)) =

N−(x)
c

= r(x)

Moreover, observe that for all x ∈ H− ∩ S+ we have that N+(S+; x) = r(x) always (with probability
1). We now argue that in order to have constant probability to distinguish N+(S+) from r(x) one
needs to draw Ω(2d) samples. Since the expected density of N+(S+) matches r(x) for all x ∈ H+,
to be able to distinguish the two distributions one needs to observe at least two samples in the
same cube HV . Since we have 2d disjoint cubes HV the probability of a sample landing in HV

is at most 1/2d. Therefore, using the birthday problem, to have constant probability to observe
a collision one needs to draw Ω(

√
2d) = Ω(2d/2) samples. Since for all x ∈ H− ∩ S+, N+(S+)

exactly matches r(x), to distinguish between the two distributions one needs to observe a sample
x with −1 + δ < x1 < −1. Due to symmetry, N+ assigns to all cubes HV equal probability, call
that p. Moreover, we have that c = 2d+1 p. Now let pV be the random variable corresponding to
the probability that N+ assigns to [0, tV ]× GV . We have that EtV∼F[pV ] = p for all V. Since the
independent random variables pV are bounded in [0, 1/2d], Hoeffding’s inequality implies that
|∑V∈{−1,1}d(pV − p)| < 1/2d/2 with probability at least 1− 2/e2. This means that with probability
at least 3/4 one will need to draw Ω(2d/2) samples in order to observe one with x1 < −1 + δ.

Since any set S in our family S has almost everywhere (that is except the set of its vertices
which a finite set and thus of measure zero) smooth boundary we may use the following equivalent
(see e.g. [Naz03]) definition of its surface area

Γ(S) =
∫

∂S
N0(x)dσ(x),

where dσ(x) is the standard surface measure on Rd. Without loss of generality we assume that S
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Figure 2: The set S+ when d = 1.

t−1

t+1

H+1

H−1

corresponds to the set S+ defined above (the proof is the same if we consider a set S−). We have

∂S ⊆
⋃

V∈{+1,−1}d

({tV} × GV) ∪ ∂([−1,+1]d+1) ∪
d+1⋃
i=1

{x : xi = 0}.

By the definition of Gaussian surface area it is clear that Γ(A ∪ B) ≤ Γ(A) + Γ(B). From Table 1
we know that Γ([−1,+1]d+1) = O(

√
log d). Moreover, we know that a single halfspace has surface

area at most
√

2/π (see e.g. [KOS08]). Therefore Γ
(⋃d+1

i=1 {x : xi = 0}
)
≤ ∑d+1

i=1

√
2/π = O(d).

Finally, we notice that for any point x on the hyperplane {x : x1 = 0} and any y on {x : x1 = c}
(for any c ≥ 0), we have N0(x) ≥ N0(y). Therefore, the surface area of each set tV × GV is
maximized for tV = 0. In this case

⋃
V∈{+1,−1}d({tV} × GV) ⊆ {x : x1 = 0}, which implies that the

set
⋃

V∈{+1,−1}d({tV}×GV) contributes at most
√

2/π to the total surface area. Putting everything
together, we have that Γ(S) = O(d).

�

6 Identifiability with bounded Gaussian Surface Area

In this section we investigate the sample complexity of the problem of estimating the parameters
of a truncated Gaussian using a different approach that does not depend on the VC dimension of
the family S of the truncation sets to be finite. For example, we settle the sample complexity of
learning the parameters of a Gaussian distribution truncated at an unknown convex set (recall
that the class of convex sets has infinite VC dimension). Our method relies on finding a tuple
(µ̃, Σ̃, S̃) of parameters so that the moments of the corresponding truncated Gaussian N (µ̃, Σ̃, S̃)
are all close to the moments of the unknown truncated Gaussian distribution, for which we have
unbiased estimates using samples. The main question that we need to answer to determine the
sample complexity of this problem is how many moments are needed to be matched in order to be
sure that our guessed parameters are close to the parameters of the unknown truncated Gaussian.
We state now the main result. Its proof is based on Lemma 15 and can be found in Appendix F.

Theorem 8 (Moment Matching). Let S be a family of subsets of Rd of bounded Gaussian surface
area Γ(S). Moreover, assume that if T is an affine map and T(S) = {T(S) : S ∈ S} is the family
of the images of the sets of S , then it holds Γ(T(S)) = O(Γ(S)). For some S ∈ S , let N (µ, Σ, S) be
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an unknown truncated Gaussian. dO(Γ(S)/ε4) samples are sufficient to find parameters µ̃, Σ̃, S̃ such that
dTV(N (µ, Σ, S),N (µ̃, Σ̃, S̃)) ≤ ε.

The key lemma of this section is Lemma 15. It shows that if two truncated normals are in total
variation distance ε then there exists a moment where they differ. The main idea is to prove that
there exists a polynomial that approximates well the indicator of the set { f1 > f2}. Notice that the
total variation distance between two densities can be written as

∫
1{ f1> f2}(x) f1(x)− f2(x)dx. In

our proof we use the chi squared divergence, which for two distributions with densities f1, f2 is
defined as

Dχ2( f1‖ f2) =
∫

( f1(x)− f2(x))2

f2(x)
dx

To prove it we need the following nice fact about chi squared divergence between Gaussian
distributions. In general chi squared divergence may be infinite for some pairs of Gaussians. In
the following lemma we prove that for any pair of Gaussians, there exists another Gaussian N
such that Dχ2(N1‖N) Dχ2(N2‖N) are finite even if Dχ2(N1‖N2) = ∞.

Lemma 14. Let N1 = N (µ1, Σ1), and N2 = N (µ1, Σ2) be two Normal distributions that satisfy the
conditions of Lemma 18. Then there exists a Normal distribution N such that

Dχ2(N1‖N), Dχ2(N2‖N) ≤ exp
(

2
∥∥∥Σ−1/2

1 (µ1 − µ2)
∥∥∥

2
+

1
2

max(1, ‖Σ1‖2)
∥∥∥Σ−1/2

1 Σ2Σ−1/2
1 − I

∥∥∥2

F

)
Now we state the main lemma of this section. We give here a sketch of its proof. It’s full

version can be found in Appendix F.

Lemma 15. Let S be a family of subsets of Rd of bounded Gaussian surface area Γ(S). Moreover, assume
that if T is an affine map and T(S) = {T(S) : S ∈ S} is the family of the images of the sets of S , then
it holds Γ(T(S)) = O(Γ(S)). Let N (µ1, Σ1, S1) and N (µ2, Σ2, S2) be two truncated Gaussians with
densities f1, f2 respectively. Let k = O(Γ(S)/ε4). If dTV( f1, f2) ≥ ε, then there exists a V ∈ Nd with
|V| ≤ k such that ∣∣∣∣ E

x∼N (µ1,Σ1,S1)
[xV ]− E

x∼N (µ2,Σ2,S2)
[xV ]

∣∣∣∣ ≥ ε/dO(k).

Proof sketch. Let W = S1 ∩ S2 ∩ { f1 > f2} ∪ S1 \ S2, that is the set of points where the first density
is larger than the second. We now write the L1 distance between f1, f2 as∫

| f1(x)− f2(x)|dx =
∫

1W(x)( f1(x)− f2(x))dx

Denote p(x) the polynomial that will do the approximation of the L1 distance. From Lemma 14
we know that there exists a Normal distribution within small chi-squared divergence of both
N (µ1, Σ1) and N (µ2, Σ2). Call the density function of this distribution g(x). We have∣∣∣ ∫ | f1(x)− f2(x)|dx−

∫
p(x)( f1(x)− f2(x))

∣∣∣ (13)

≤
∫
|1W(x)− p(x)| | f1(x)− f2(x)|dx

≤
∫
|1W(x)− p(x)|

√
g(x)

| f1(x)− f2(x)|√
g(x)

dx

≤
√∫

(1W(x)− p(x))2g(x)dx

√∫
( f1(x)− f2(x))2

g(x)
dx, (14)
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where we use Schwarzs’ inequality. From Lemma 14 we know that∫ f1(x)2

g(x)
dx ≤

∫ N (µ1, Σ1; x)2

g(x)
dx = exp(poly(1/α)).

Similarly,
∫ f2(x)2

g(x) dx = exp(poly(1/α)). Therefore we have,

∣∣∣ ∫ | f1(x)− f2(x)|dx−
∫

p(x)( f1(x)− f2(x))
∣∣∣ ≤ exp(poly(1/α))

√∫
(1W(x)− p(x))2g(x)dx

Recall that g(x) is the density function of a Gaussian distribution, and let µ, Σ be the parameters of
this Gaussian. Notice that it remains to show that there exists a good approximating polynomial
p(x) to the indicator function 1W . We can now transform the space so that g(x) becomes the
standard normal. Notice that this is an affine transformation that also transforms the set W; Since
the Gaussian surface area is "invariant" under linear transformations

Since 1W ∈ L2(Rd,N0) we can approximate it using Hermite polynomials. For some k ∈ N
we set p(x) = Sk1W(x), that is

pk(x) = ∑
V:|V|≤k

1̂W HV(x).

Combining Lemma 5 and Lemma 19 we obtain

E
x∼N0

[(1W(x)− pk(x))2] = O
(

Γ(S)
k1/2

)
.

Therefore,
∣∣∣ ∫ | f1(x)− f2(x)|dx−

∫
pk(x)( f1(x)− f2(x))

∣∣∣ = exp(poly(1/α)) Γ(S)1/2

k1/4 . Ignoring the

dependence on the absolute constant α, to achieve error O(ε) we need degree k = O(Γ(S)2/ε4).
To complete the proof, it remains to obtain a bound for the coefficients of the polynomial

q(x) = pk(Σ
−1/2(x− µ)). Using known facts about the coefficients of Hermite polynomials we

obtain that ‖q(x)‖∞ ≤ (d+k
k )

2
(4d)k/2(O(1/α2))k. To conclude the proof we notice that we can pick

the degree k so that∣∣∣∣∫ q(x)( f1(x)− f2(x))
∣∣∣∣ =

∣∣∣∣∣ ∑
V:|V|≤k

xV( f1(x)− f2(x))

∣∣∣∣∣ ≥ ε/2.

Since the maximum coefficient of q(x) is bounded by dO(k) we obtain the result. �

7 VC-dimension vs Gaussian Surface Area

We use two different complexity measures of the truncation set to get sample complexity bounds,
the VC-dimension and the Gaussian Surface Area (GSA) of the class of the sets. As we already
mentioned in the introduction, there are classes, for example convex sets, that have bounded
Gaussian surface area but infinite VC-dimension. However, this is not the main difference between
the two complexity measures in our setting. Having a class with bounded VC-dimension means
that the empirical risk minimization needs finite samples. To get an efficient algorithm we still
need to implement the ERM for this specific class. Therefore, it is not clear whether it is possible to
get an algorithm that works for all sets of bounded VC-dimension. On the other hand, bounded
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GSA means that we can approximate the weighted indicator of the set using its low order Hermite
coeffients. This approximation works for all sets of bounded GSA and does not depend on the
specific class of sets. Therefore, using GSA we manage to get a unified approach that learns the
parameters of the underlying Gaussian distribution using only the assumption that the truncation
set has bounded GSA. In other words, our approach uses the information of the class that the
truncation set belongs only to decide how large the degree of the approximating polynomial
should be. Having said that, it is an interesting open problem to design algorithms that learn the
parameters of the Gaussian and use the information that the truncation set belongs to some class
(e.g. intersection of k-halfspaces) to beat the runtime of our generic approach that only depends
on the GSA of the class.
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A Additional Preliminaries and Notation

We first state the following simple lemma that connects the total variation distance of two Normal
distributions with their parameter distance. For a proof see e.g. Corollaries 2.13 and 2.14 of
[DKK+16].

Lemma 16. Let N1 = N (µ1, Σ1) , N2 = N (µ2, Σ2) be two Normal distributions. Then

dTV(N1, N2) ≤
1
2

∥∥∥Σ−1/2
1 (µ1 − µ2)

∥∥∥
2
+
√

2
∥∥∥I − Σ−1/2

1 Σ2Σ−1/2
1

∥∥∥
F

We readily use the following two lemmas from [DGTZ18]. The first suggests that we can
accurately estimate the parameters (µS, ΣS).

Lemma 17. Let (µS, ΣS) be the mean and covariance of the truncated Gaussian N (µ, Σ, S) for a set S
such that N (µ, Σ; S) ≥ α. Using Õ( d

ε2 log(1/α) log2(1/δ)) samples, we can compute estimates µ̃S and
Σ̃S such that ,with probability at least 1− δ,

‖Σ−1/2(µ̃S − µS)‖2 ≤ ε and (1− ε)ΣS � Σ̃S � (1 + ε)ΣS

The second lemma suggests that the empirical estimates are close to the true parameters of
underlying truncated Gaussian.

Lemma 18. The empirical mean and covariance µ̃S and Σ̃S computed using Õ(d2 log2(1/αδ)) samples
from a truncated Normal N (µ, Σ, S) with N (µ, Σ; S) ≥ α satisfies with probability 1− δ that:

‖Σ−1/2(µ̃S − µ)‖2
2 ≤ O(log

1
α
), Σ̃S � Ω(α2)Σ,

∥∥∥Σ−1/2Σ̃SΣ−1/2 − I
∥∥∥2

F
≤ O(log

1
α
).

Moreover, Ω(α2) ≤
∥∥∥Σ̃−1/2

S ΣΣ̃−1/2
S

∥∥∥
2
≤ O(1/α2).
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In particular, the mean and covariance µ̃S and Σ̃S that satisfy the conditions of Lemma 18, are
in (O(log(1/α)), 1−O(α2))-near isotropic position.

We will use the following very useful anti-concentration result about the Gaussian mass of
sets defined by polynomials.

Theorem 9 (Theorem 8 of [CW01]). Let q, γ ∈ R+, µ ∈ Rd, Σ ∈ Rd×d such that Σ is symmetric
positive semidefinite and p : Rd → R be a multivariate polynomial of degree at most `, we define

Q̄ =
{

x ∈ Rd | |p(x)| ≤ γ
}

,

then there exists an absolute constant C such that

N (µ, Σ; Q̄) ≤ Cqγ1/`(
Ez∼N (µ,Σ)

[
|p(z)|q/`

])1/q .

A.1 Hermite Polynomials, Ornstein-Uhlenbeck Operator, and Gaussian Surface Area.

We denote by L2(Rd,N0) the vector space of all functions f : Rd → R such that Ex∼N0 [ f 2(x)] < ∞.
The usual inner product for this space is Ex∼N0 [ f (x)g(x)]. While, usually one considers the
probabilists’s or physicists’ Hermite polynomials, in this work we define the normalized Hermite
polynomial of degree i to be H0(x) = 1, H1(x) = x, H2(x) = x2−1√

2
, . . . , Hi(x) = Hei(x)√

i!
, . . . where by

Hei(x) we denote the probabilists’ Hermite polynomial of degree i. These normalized Hermite
polynomials form a complete orthonormal basis for the single dimensional version of the inner
product space defined above. To get an orthonormal basis for L2(Rd,N0), we use a multi-index
V ∈Nd to define the d-variate normalized Hermite polynomial as HV(x) = ∏d

i=1 Hvi(xi). The total
degree of HV is |V| = ∑ vi ∈ Vvi. Given a function f ∈ L2 we compute its Hermite coefficients
as f̂ (V) = Ex∼N0 [ f (x)HV(x)] and express it uniquely as ∑V∈Nd f̂ (V)HV(x). We denote by Sk f (x)
the degree k partial sum of the Hermite expansion of f , Sk f (x) = ∑|V|≤k f̂ (V)HV(x). Then, since
the basis of Hermite polynomials is complete, we have limk→∞ Ex∼N0 [( f (x)− Sk f (x))2] = 0. We
would like to quantify the convergence rate of Sk f to f . Parseval’s identity states that

E
x∼N0

[( f (x)− Sk f (x))2] =
∞

∑
|V|=k

f̂ (V)2.

Definition 3 (Hermite Concentration). Let γ(ε, d) be a function γ : (0, 1/2)×N 7→ N. We say
that a class of functions F over Rd has a Hermite concentration bound of γ(ε, d), if for all d ≥ 1, all
ε ∈ (0, 1/2), and f ∈ F it holds ∑|V|≥γ(ε,d) f̂ (V)2 ≤ ε.

We now define the Gaussian Noise Operator as in [O’D14]. Using a different parametrization,
which is not convenient for our purposes, these operators are also known as the Ornstein-
Uhlenbeck semigroup, or the Mehler transform.

Definition 4. The Gaussian Noise operator Tρ is the linear operator defined on the space of functions
L1(Rd,N0) by

Tρ f (x) = E
y∼N0

[
f (ρx +

√
1− ρ2y)

]
.
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A nice property of operator T1−ρ that we will use is that it has a simple Hermite expansion

Sk(Tρ f )(x) = ∑
V:|V|≤k

ρ|V| f̂ (V)HV(x) (15)

We also define the noise sensitivity of a function f .

Definition 5 (Noise Sensitivity). Let f : Rd 7→ R be a function in L2(Rd,N0). The noise sensitivity
of f at ρ ∈ [0, 1] is defined to be

NSρ[ f ] = 2 E
x∼N0

[ f (x)2 − f (x)T1−ρ f (x)]

Since, the vectors x and z = (1− ρ)x +
√

1− ρ2y are jointly distributed according to

Dρ = N
((

0
0

)
,
(

I (1− ρ)I
(1− ρ)I I

))
. (16)

we can write

NSρ[ f ] = E
(x,z)∼Dρ

[
f (x)2]+ E

(x,z)∼Dρ

[
f (z)2 − 2 f (x) f (z)

]
= E

(x,z)∼Dρ

[( f (x)− f (z))2]. (17)

When f is an indicator of a set, the noise sensitivity is

NSρ[1S] = 2 E
(x,z)

[1S(x)(1− 1S(z))] = 2 E
(x,z)

[1S(x)1Sc(z)], (18)

which is equal to the probability of the correlated points x, z landing at "opposite" sides of S.
Ledoux [Led94] and Pisier [Pis86] showed that the noise sensitivity of a set can be bounded by

its Gaussian surface area.

Definition 6 (Gaussian Surface Area). For a Borel set A ⊆ Rd, its Gaussian surface area is Γ(A) =

lim infδ→0
N0(Aδ\A)

δ , where Aδ = {x : dist(x, A) ≤ δ}.

We will use the following lemma given in [KOS08].

Lemma 19 (Corollary 14 of [KOS08]). For a Borel set S ⊆ Rd and ρ ≥ 0, NSρ[1S(x)] ≤
√

π
√

ρ Γ(S).

For more details on the Gaussian space and Hermite Analysis (especially from the theoretical
computer science perspective), we refer the reader to [O’D14]. Most of the facts about Hermite
polynomials that we shall use in this work are well known properties and can be found, for
example, in [Sze67].

B Missing proofs of Section 3

We will use a standard tournament based approach for selecting a good hypotheses. We will use
a version of the tournament from [DK14]. See also [DL12].

Lemma 20 (Tournament [DK14]). There is an algorithm, which is given sample access to some distribution
X and a collection of distributions H = {H1, . . . , HN} over some set, access to a PDF comparator for every
pair of distributions Hi, Hj ∈ H, an accuracy parameter ε > 0, and a confidence parameter δ > 0. The
algorithm makes O(log(1/δ)ε2) log N) draws from each of X, H1, . . . , HN and returns some H ∈ H or
declares ”failure” If there is some H ∈ H such that dTV(H, X) ≤ ε then with probability at least 1− δ the
returned distribution H satisfies dTV(H, X) ≤ 512ε. The total number of operations of the algorithm is
O(log(1/δ)(1/ε2)(N log N + log 1/δ)).
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We first argue that if the class of sets S has VC-dimension VC(S) then we can learn the
truncated model in ε total variation by drawing roughly VC(S)/ε samples. We will use the
following standard fact whose proof may be found for example in page 398 of [SSBD14]. For
convenience we restate the result using our notation.

Lemma 21 ([SSBD14]). Let D be a distribution on Rd. Let S be a family of subsets of Rd. Fix
ε ∈ (0, 1), δ ∈ (0, 1/4) and let N = O(VC(S) log(1/ε)/ε + log(1/δ)) Then, with probability at least
1− δ over a choice of a sample X ∼ DN we have that if D(S) ≥ ε then |S ∩ X| 6= ∅.

Proof of Lemma 1

We define the class of sets A = {S∗ \ S : S ∈ S}. We first argue that for any A ⊂ Rd we have
VC(A) ≤ VC(S). Let X ⊂ Rd be a set of points. The set of different labellings of X using sets of S
resp. A is LS = {X ∩ S : S ∈ S} resp. LA = {X ∩ S : S ∈ A} = {X ∩ (A \ S) : S ∈ S}. We define
the function g : LA → LS by g(X ∩ (A \ S)) = X ∩ S. We that observe for S1, S2 ∈ S we have
that X ∩ S1 = X ∩ S2 implies that X ∩ (A \ S1) = X ∩ (A \ S2). Therefore, g is one-to-one and we
obtain that |LA| ≤ |LS |. We draw N samples X = {xi, i ∈ N}. Applying Lemma 21 for the family
A, we have that with N samples, with probability at least 1− δ it holds that if N (µ, Σ; S∗ \ S) ≥ ε

for some set S ∈ S then |(S∗ \ S)∩ X| > 0. Therefore, every set that is consistent with the samples,
i.e. every S that that contains the samples, satisfies the property N (µ, Σ; S∗ \ S) ≤ ε. Moreover,
since dTV(N (µ̃, Σ̃),N (µ, Σ)) ≤ ε we obtain that N (µ̃, Σ̃, S∗ \ S) ≤ 2ε for any set S consistent with
the data.

Next, we use the fact that S̃ is chosen so that N (µ̃, Σ̃, S∗) ≥ N (µ̃, Σ̃, S̃). This means that for
all x ∈ S∗ ∩ S̃ it holds N (µ̃, Σ̃, S∗; x) ≤ N (µ̃, Σ̃, S̃; x). To simplify notation we set ÑS̃ = N (µ̃, Σ̃, S̃),
ÑS∗ = N (µ̃, Σ̃, S∗), and NS∗ = N (µ, Σ, S∗). We have

2dTV(ÑS̃, ÑS∗) =
∫
ÑS∗ (x)≥ÑS̃(x)

(
ÑS∗(x)− ÑS̃(x)

)
dx ≤

∫
S∗\S̃
ÑS∗(x)dx ≤ N (µ̃, Σ̃; S∗ \ S̃)

α
≤ ε

α
.

Moreover,

dTV(ÑS∗ ,NS∗) ≤
dTV(N (µ̃, Σ̃),N (µ, Σ))

α
≤ ε

α

Using the triangle inequality we obtain that dTV(N (µ̃, Σ̃, S̃),N (µ, Σ, S∗)) ≤ 3ε/(2α). �

Proof of Lemma 2

Using Lemma 18 we know that we can draw Õ(d2 log2(1/αδ)) samples and obtain estimates
of the conditional mean and covariance µ̃C, Σ̃C. Transforming the space so that µ̃C = 0 and
Σ̃C = I. For simplicity we will keep denoting the parameters of the unknown Gaussian µ, Σ after
transforming the space. From Lemma 18 we have that

∥∥Σ−1/2µ
∥∥

2 ≤ O(log(1/α)1/2/α), Ω(α2) ≤∥∥Σ−1/2
∥∥

2 ≤ O(1/α2) and ‖I − Σ‖F ≤ O(log(1/α)/α2). Therefore, the cube of Rd+d2
where all

the parameters µi, Σij of the mean and the covariance lie has side length at most O(1/ poly(a)).
We can partition this cube into smaller cubes of side length O(ε poly(a)/d) and obtain that
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there exists a point of the grid (u, B) such that
∥∥Σ−1/2(u− µ)

∥∥
2 ≤ ε,

∥∥I − Σ−1/2BΣ−1/2
∥∥

F ≤ ε,
which implies that dTV(N (u, B),N (µ, Σ)) ≤ ε. Assume now that for each guess (u, B) of our
grid we solve the optimization problem as defined in Lemma 1 and find a candidate set Su,B.
Notice that the set of our hypotheses u, B, Su,B is O((d2/ε)d2+d). Moreover, using Lemma 1 and
the fact that there exists a point u, B) in the grid so that dTV(N (u, B),N (µ, Σ)) ≤ ε, we obtain
that dTV(N (u, B, Su,B),N (µ, Σ, S)) ≤ ε. Now we can use Lemma 20 we can select a hypotheses
N (u, B, S̃) within O(ε) total variation distance of N (µ, Σ, S), and the number samples required to
run the tournament is as claimed. �

C Missing Proofs of Section 4.1

To prove Theorem 3 we shall use the inequalities of Lemma 22.

Lemma 22. Let k ∈N. Then for all 0 < x < 2k+1
2k it holds,

−k log x− 1
2

log(1− 2k(x− 1) ≤ 2k2(x− 1)2
(

1
x
+

1
1− 2k(x− 1)

)
Moreover, for all x > 2k−1

2k

k log x− 1
2

log(1− 2k(1− x)) ≤ k2(1− x)2
(

1 +
1

1− 2k(1− x)

)
.

Proof. We start with the first inequality. Let f (x) = −k log x− 1
2 log(1− 2k(x− 1). We first assume

that 1 ≤ x 2k+1
2k . We have

f (x) =
∫ x

1

(
k

1− 2k(t− 1)
− k

t

)
dt

= k(1 + 2k)
∫ x

1

t− 1
t(1− 2k(t− 1))

dt

≤ k(1 + 2k)
1− 2k(x− 1)

∫ x

1
(t− 1)dt

≤ 2k2 (x− 1)2

1− 2k(x− 1)

If 0 < x ≤ 1 we have

f (x) ≤ k(1 + 2k)
x

∫ x

1
(t− 1)dt ≤ 2k2 (x− 1)2

x

Adding these two bounds gives an upper bound for all 0 < x < 2k+1
2k . Similarly, we now show the

second inequality. Let g(x) = k log x− 1
2 log(1− 2k(1− x)). We first assume that 1 ≤ x and write

g(x) =
∫ x

1

(
k
t
− k

1− 2k(1− t)

)
dt

= k
∫ x

1

(t− 1)(2k− 1)
t(1 + 2k(t− 1))

dt

≤ k(2k− 1)
∫ x

1

t− 1
d

t

≤ k2(x− 1)2.
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Similarly, if 2k−1
2k < x ≤ 1 we have

g(x) ≤ k2 (1− x)2

1− 2k(1− x)
.

We add the two bounds together to get the desired upper bound.
�

Proof of Lemma 4

For simplicity we denote Ni = N (µ1, Σi). We start by proving the upper bound. Using Schwarz’s
inequality we write

E
x∼N0

[(
N1(x)
N0(x)

)k (N0(x)
N2(x)

)k
]
≤
(

E
x∼N0

(
N1(x)
N0(x)

)2k
)1/2(

E
x∼N0

(
N0(x)
N2(x)

)2k
)1/2

.

We can now bound each term independently. We start by the ratio of N1/N0. Without loss of
generality we may assume that Σ1 is diagonal, Σ1 = diag(λ1, . . . , λd). We also let µ1 = (µ1, . . . , µd).
We write

E
x∼N0

[(
N1(x)
N0(x)

)2k
]
=

1
|Σ1|k

E
x∼N0

[
exp

(
−k(x− µ1)

TΣ1
−1(x− µ1) + kxTx

)]
=

exp(−kµ1
TΣ1

−1µ1)

|Σ1|k
E

x∼N0

[
exp

(
kxT(I − Σ−1

1 )x + 2kµT
1 Σ1

−1x
)]

≤ 1
|Σ1|k

E
x∼N0

[
exp

(
d

∑
i=1

(
k(1− 1/λi)x2

i + 2k
µi

λi
xi

))]

=
d

∏
i=1

1
λk

i
E

x∼N0

[
exp

(
k(1− 1/λi)x2 + 2k

µi

λi
x
)]

︸ ︷︷ ︸
A

We now use the fact that for all a < 1/2.

E
x∼N0

[exp(ax2 + bx)] =
1√

1− 2a
exp

(
b2

2− 4a

)
At this point notice that since for all i it holds λi < 2k/(2k− 1) we have that term A is bounded.
We get that

A = exp

(
d

∑
i=1

(
k log

1
λi
− 1

2
log
(

1− 2k
(

1− 1
λ i

))))
︸ ︷︷ ︸

A1

exp

(
d

∑
i=1

2k2µ2
i

λ2
i (1− 2k(1− 1/λi))

)
︸ ︷︷ ︸

A2

To bound the term A1 we use the second inequality of Lemma 22 to get

A1 ≤ exp

(
d

∑
i=1

k2(1− 1/λi)
2
(

1 +
1

1− 2k(1− 1/λi)

))
≤ exp

(
2k2B

δ

)
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Bounding A2 is easier

A2 ≤ exp

(
2k2 ‖µ1‖2

2

λ2
minδ

)
Combining the bounds for A1 and A2 we obtain

E
x∼N0

[(
N1(x)
N0(x)

)2k
]
≤ exp

(
10k2

δ
B
)

We now work similarly to bound the ratioN0/N2. We will again assume that Σ2 = diag(λ1, . . . , λd)

and µ2 = (µ1, . . . , µd). We have

E
x∼N0

[(
N0(x)
N2(x)

)2k
]
= exp(kµT

2 Σ−1
2 µ2) E

x∼N0

[
|Σ2|k exp

(
kxT(Σ−1

2 − I)x− 2kµ2Σ−1
2 x
)]

≤ exp((k + 1)B)
d

∏
i=1

E
x∼N0

[
exp

(
k(1/λi − 1)x2 − k log(1/λi)− 2k(µi/λi)x

)]
= exp

((
8k2

δ
+ k + 1

)
B
)

exp

(
d

∑
i=1

(
−k log(1/λi)−

1
2

log (1− 2k(1/λi − 1))
))

≤ exp
((

10k2

δ
+ 4k2 + k + 1

)
B
)

,

where to obtain the last inequality we used the first inequality of Lemma 22 and the bounds for
the maximum and minimum eigenvalues of Σ2. Finally, plugging in the bounds for the two ratios
we get for i = 1, 2

E
x∼N0

[(
N3−i(x)
Ni(x)

)k
]
≤ exp

(
13k2

δ
B
)

.

Having the upper bound it is now easy to prove the lower bound using the convexity of x 7→ x−1

and Jensen’s inequality.

E
x∼N0

[(
N1(x)
N2(x)

)k
]
= E

x∼N0

[(
N2(x)
N1(x)

)−k
]
≥
(

E
x∼N0

[(
N2(x)
N1(x)

)k
])−1

≥ exp
(
−13k2

δ
B
)

.

�

Proof of Lemma 5

For any ρ ∈ (0, 1), using identity 15, we write

E
x∼N0

[ f (x)T1−ρ(x)] = ∑
V∈Nd

(1− ρ)|V| f̂ (V)2
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E
x∼N (0,I)

[
f (x)2 − f (x)T1−ρ f (x)

]
= ∑

V∈Nd

f̂ (V)2 − ∑
V∈Nd

(1− ρ)|V| f̂ (V)2

= ∑
V∈Nd

(1− (1− ρ)|V|) f̂ (V)2

≥ ∑
|V|≥1/ρ

(1− (1− ρ)|V|) f̂ (V)2

≥ ∑
|V|≥1/ρ

(1− (1− ρ)1/ρ) f̂ (V)2

≥ (1− 1/e) ∑
|V|≥1/ρ

f̂ (V)2

�

Proof of lemma 7

We first write

1
2

E
(x,z)∼Dρ

[(r(x)− r(z))2] =
1
2

E
(x,z)∼Dρ

[
r(x)2

2
+

r(z)2

2
− r(x)r(z)

]
= E

(x,z)∼Dρ

[r(x)2 − r(z)r(x)].

Let
∑

V∈Nd

r̂(V)HV(x)

be the Hermite expansion of r(x). From Parseval’s identity and the Hermite expansion of
OrnsteinâĂŞUhlenbeck operator, (15) we have

E
(x,z)∼Dρ

[r(x)2 − r(x)r(z)] = ∑
V∈Nd

r̂(V)2 − ∑
V∈Nd

(1− ρ)|V|r̂(V)2

≤ ρ ∑
V∈Nd

|V|r̂(V)2,

where the last inequality follows from Bernoulli’s inequality 1− ρ|V| ≤ (1− ρ)|V|. We know that
(see for example [Sze67])

∂

∂xi
HV(x) =

∂

∂xi
∏

vi∈V
Hvi(xi) = ∏

vj∈V\vi

Hvj(xj)
√

vi Hvi−1(xi)

Therefore,
∂r(x)

∂xi
= ∑

V∈Nd

r̂(V)
√

vi Hvi−1(xi) ∏
vj∈V\vi

Hvj(xj)

From Parseval’s identity we have

E
x∼N (0,I)

[(
∂r(x)

∂xi

)2
]
= ∑

V∈Nd

r̂(V)2vi.

Therefore,
E

x∼N (0,I)

[
‖∇r(x)‖2

2

]
= ∑

V∈Nd

|V|r̂(V)2.

The lemma follows. �
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C.1 Learning the Hermite Expansion

In this section we present a way to bound the variance of the empirical estimation of Hermite
coefficients. To bound the variance of estimating Hermite polynomials we shall need a bound for
the expected value of the fourth power of a Hermite polynomial.

Lemma 23. For any V ∈Nd it holds Ex∼N0 [H
4
V(x)] ≤ 9|V|.

Proof. We compute

E
x∼N0

[H4
V(x)] = ∏

vi∈V
E

x∼N (0,1)
[H2

vi
(xi)H2

vi
(xi)]

= ∏
vi∈V

E
x∼N (0,1)

[(
vi

∑
r=0

(
vi

r

)√
2r!
r!

H2r(xi)

)(
vi

∑
r=0

(
vi

r

)√
2r!
r!

H2r(xi)

)]

= ∏
vi∈V

vi

∑
r=0

(
vi

r

)2 (2r)!
(r!)2 E

x∼N (0,1)

[
H2r(xi)

2] = ∏
vi∈V

vi

∑
r=0

(
vi

r

)2 (2r)!
(r!)2

≤ ∏
vi∈V

vi

∑
r=0

(
vi

r

)2

22r ≤ ∏
vi∈V

(
vi

∑
r=0

(
vi

r

)
2r

)2

≤ ∏
vi∈V

9vi = 9|V|.

In the above computation we used the formula for the product of two (normalized) Hermite
polynomials

Hi(x)Hi(x) =
vi

∑
r=0

(
vi

r

)√
2r!
r!

H2r(xi),

see, for example, [Sze67]. �

Proof of Lemma 8

We have

E
x∼N ∗S

[(HV(x)− cV)
2] = E

x∼N ∗S
[H2

V(x)]− c2
V ≤

1
α

E
x∼N ∗

[H2
V(x)]

We have ∣∣∣∣ E
x∼N ∗

[H2
V(x)]− 1

∣∣∣∣ = ∣∣∣∣ E
x∼N ∗

[H2
V(x)]− E

x∼N0
[H2

V(x)]
∣∣∣∣

≤
∫

H2
V(x)|N ∗(x)−N0(x)|dx

=
∫

H2
V(x)

√
N0(x))

|N ∗(x)−N0(x)|√
N0(x)

dx

≤
( ∫

H4
V(x)N0(x)dx︸ ︷︷ ︸

A

)1/2( ∫
(N ∗(x)−N0(x))2

N0(x)
dx︸ ︷︷ ︸

B

)1/2

36



To bound term A we use Lemma 23. Using Lemma 4 we obtain

B ≤ E
x∼N (0,I)

[(
N ∗(x)
N0(x)

)2
]
≤ poly(1/α).

The bound for the variance follows from the independence of the samples. �

D Missing Proofs of Section 4.2

Proof of Lemma 11

We have that
∣∣∣Mψk(u, B)−M′ψ(u, B)

∣∣∣ ≤ ∣∣Mψk(u, B)−Mψ(u, B)
∣∣+ ∣∣∣Mψ(u, B)−M′ψ(u, B)

∣∣∣.
For the first term we have that∣∣∣Mψk(u, B)−M′ψ(u, B)

∣∣∣ ≤ Cu,B E
x∼N ∗S

[
N0(x)
Nu,B(x)

|ψk(x)− ψ(x)|
]

≤ Cu,B

√√√√ E
x∼N0

[( N ∗S (x)
Nu,B(x)

)2
]
· E

x∼N0
[(ψk(x)− ψ(x))2]

≤ Cu,B

α∗

√√√√ E
x∼N0

[(
N ∗(x)
Nu,B(x)

)2
]
· E

x∼N0
[(ψk(x)− ψ(x))2]

now we can use Lemma 4, Lemma 9 and Theorem 4 to get∣∣∣Mψk(u, B)−M′ψ(u, B)
∣∣∣ ≤ poly(1/α∗)

√
ε

For the second term we have that∣∣∣Mψ(u, B)−M′ψ(u, B)
∣∣∣ ≤ ∣∣∣∣1− C′u,B

Cu,B

∣∣∣∣Cu,B E
x∼N ∗S

[
N ∗(x)

α∗Nu,B(x)

]
We need to bound

∣∣∣∣1− C′u,B

Cu,B

∣∣∣∣ = ∣∣∣1− e−
1
2 (tr((B−I)(ΣS+µSµT

S−Σ̃S)))−uTµS)
∣∣∣ ≤ e|

1
2 (tr((B−I)(ΣS+µSµT

S−Σ̃S)))−uTµS)| − 1

≤ e
1
2 (‖B−I‖F‖ΣS+µSµT

S−Σ̃S‖F+‖u‖2‖µS‖2) − 1 ≤ ‖B− I‖F‖ΣS + µSµT
S − Σ̃S‖F + ‖u‖2‖µS‖2

where the last inequality holds when ‖B− I‖F‖ΣS + µSµT
S − Σ̃S‖F + ‖u‖2‖µS‖2 ≤ 1. But we know

that (u, B) ∈ D and hence ‖B− I‖F ≤ poly(1/α∗), ‖u‖2 ≤ poly(1/α∗). Also from Section 2.1 we
have that ‖ΣS + µSµT

S − Σ̃S‖F ≤ ε and ‖µS‖2 ≤ ε and we can set ε to be any inverse polynomial in
1/α∗ times ε. Hence we get ∣∣∣∣1− C′u,B

Cu,B

∣∣∣∣ ≤ ε
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Now we can also use Lemma 9 and Lemma 4 which imply that

Cu,B E
x∼N ∗S

[
N ∗(x)

α∗Nu,B(x)

]
≤ poly(1/α∗)

and therefore we have ∣∣∣Mψ(u, B)−M′ψ(u, B)
∣∣∣ ≤ poly(1/α∗)ε.

Hence we can once again divide ε by any polynomial of 1/α∗ without increasing the complexity
presented in Section 2.1 and the lemma follows. �

Proof of Lemma 11

We apply successive Cauchy-Schwarz inequalities to separate the terms that appear in the
expression for the squared norm of the gradient. We have that

E
x∼N ∗S

[
‖v(u, B)‖2

2

]
= C2

u,B E
x∼N ∗S

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥2

F
+ ‖µ̃S − x‖2

2

) N 2
0 (x)

N 2
u,B(x)

ψ2
k(x)

]

= C2
u,B E

x∼N0

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥2

F
+ ‖µ̃S − x‖2

2

) N0(x)N ∗S (x)
N 2

u,B(x)
ψ2

k(x)

]

≤ C2
u,B E

x∼N0

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥2

F
+ ‖µ̃S − x‖2

2

) N0(x)N ∗S (x)
N 2

u,B(x)

]1/2

E
x∼N0

[
ψ4

k(x)
]1/2

≤ C2
u,B E

x∼N0

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥2

F
+ ‖µ̃S − x‖2

2

)2
]1/4

E
x∼N0

[
N 2

0 (x)N ∗2
S(x)

N 4
u,B(x)

]1/4

E
x∼N0

[
ψ4

k(x)
]1/2

≤ C2
u,B E

x∼N0

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥
F
+ ‖µ̃S − x‖2

)4
]1/4

E
x∼N0

[
N 4

0 (x)
N 4

u,B(x)

]1/8

E
x∼N0

[
N ∗4

S(x)
N 4

u,B(x)

]1/8

E
x∼N0

[
ψ4

k(x)
]1/2

We now bound each term separately.

• By Lemma 9, C2
u,B ≤ poly(1/α).

• Given that (µ̃S, Σ̃S) are near-isotropic,

E
x∼N0

[(∥∥∥xxT − Σ̃S − µ̃Sµ̃T
S

∥∥∥
F
+ ‖µ̃S − x‖2

)4
]1/4

≤ E
x∼N0

[(∥∥∥xxT
∥∥∥

F
+
∥∥Σ̃S

∥∥
F +

∥∥∥µ̃Sµ̃T
S

∥∥∥
F
+ ‖µ̃S‖+ ‖x‖2

)4
]1/4

≤ d poly(1/α).
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• By Lemma 4,

E
x∼N0

[
N 4

0 (x)
N 4

u,B(x)

]1/8

E
x∼N0

[
N ∗4

S(x)
N 4

u,B(x)

]1/8

≤ poly(1/α).

• For the last term, we have

E
x∼N0

[
ψ4

k(x)
]
= E

x∼N0

( ∑
0≤|V|≤k

c̃V HV(x)

)4


≤ 23 ∑
0≤|V|≤k

c̃4
V E

x∼N0

[
H4

V(x)
]

≤ 8

(
∑

0≤|V|≤k
c̃2

V

)2

·
(

max
0≤|V|≤k

{
E

x∼N0

[
H4

V(x)
]})

From Lemma 8 and the conditioning on the event that the estimators of the Hermite
coefficients are accurate we have that (c̃V − cV)

2 ≤ 1 and hence we get the following.

E
x∼N0

[
ψ4

k(x)
]
≤ 210d2k

(
∑

0≤|V|≤∞
c2

V

)4

·
(

max
0≤|V|≤k

{
E

x∼N0

[
H4

V(x)
]})

To bound Ex∼N0

[
H4

V(x)
]

we use Lemma 23. Moreover, from Parseval’s identity we obtain
that ∑0≤|V|≤∞ c2

V = Ex∼N0 ψ2(x). From Lemma 4 we get

E
x∼N0

ψ2(x) ≤ 1
α

E
x∼N0

(
N ∗(x)
N0(x)

)2

= poly(1/α).

From Lemma 8 we obtain that max0≤|V|≤k
{

Ex∼N0

[
H4

V(x)
]}
≤ 2k. The result follows from

the above estimates.

�

Proof of Lemma 12

We will prove this lemma in two steps, first we will prove∣∣∣zTHMψk
(u, B)z− zTHMψ(u, B)z

∣∣∣ ≤ λ (19)

and then we will prove that

zTHMψ(u, B)z ≥ 2λ (20)

for some parameter λ ≥ poly(α∗). To prove (19) we define

p(z; x) =

(
zT

(
1
2

(
xxT − Σ̃S − µ̃Sµ̃T

S
)[

µ̃S − x

))2
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and we have that∣∣∣zTHMψk
(u, B)z− zTHMψ(u, B)z

∣∣∣
= E

x∼N ∗S

[
eh(u,B;x)N (0, I; x) · p(z; x) · |ψk(x)− ψ(x)|

]
= E

x∼N0

[
eh(u,B;x) · 1S(x) · N ∗(x) · p(z; x) · |ψk(x)− ψ(x)|

]
we then separate the terms using the Cauchy Schwarz inequality∣∣∣zTHMψk

(u, B)z− zTHMψ(u, B)z
∣∣∣

≤
√

E
x∼N0

[
e2h(u,B;x) · 1S(x) · (N ∗(x))2 · p2(z; x)

]
·
√

E
x∼N0

[
(ψk(x)− ψ(x))2

]
we apply now the Hermite concentration from Theorem 4 and we get

≤
√

E
x∼N0

[
e2h(u,B;x) · 1S(x) · (N ∗(x))2 · p2(z; x)

]
·
√

ε

≤ 4

√
E

x∼N ∗

[
e4h(u,B;x) · 1S(x) · (N ∗(x))2 (N0(x))2

]
· 4

√
E

x∼N ∗
[p4(z; x)] ·

√
ε

we now use (7), Lemma 9 and the fact that 1S(x) ≤ 1 to get

≤ 4

√
E

x∼N ∗

[
e4h(u,B;x) (N ∗(x))2 (N0(x))2

]
· 4

√
E

x∼N ∗
[p4(z; x)] ·

√
ε

and finally we use Lemma 4 to prove the following∣∣∣zTHMψk
(u, B)z− zTHMψ(u, B)z

∣∣∣ ≤ 4

√
E

x∼N ∗
[p4(z; x)] · poly(1/α∗) ·

√
ε (21)

Next we prove (20). We have that

zTHMψ(u, B)z = E
x∼N ∗S

[
eh(u,B;x)N (0, I; x) · p(z; x) · ψ(x)

]
=

1
α∗

Cu,B E
x∼N ∗S

[
N ∗(x)
Nu,B(x)

p(z; x)
]

.

Now we define the set Q̄z =
{

x ∈ Rd | |p(z; x)| ≤ 1
32C (α∗)4 4

√
Ex∼N ∗ [p4(z; x)]

}
, where C is the

universal constant guaranteed from Theorem 9. Then using Theorem 9 and the fact that p(z; x)
has degree 4 we get that N (µ∗, Σ∗; Q̄) ≤ α∗

2 . Hence we define the set S′ = S ∩ Q̄ and we have that
N (µ∗, Σ∗; S′) ≥ α∗/2.

zTHMψ(u, B)z ≥ 1
α∗

Cu,B E
x∼N ∗S′

[
N ∗(x)
Nu,B(x)

p(z; x)
]

≥
(

min
x∈S′

p(z; x)
)

1
α∗

Cu,B E
x∼N ∗S′

[
N ∗(x)
Nu,B(x)

]
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and from the definition of S′ and Lemma 9 we have that

zTHMψ(u, B)z ≥ poly(α∗) · E
x∼N ∗S′

[
N ∗(x)
Nu,B(x)

]
· 4

√
E

x∼N ∗
[p4(z; x)]

now we can apply Jensen’s inequality on the convex function x 7→ 1/x and we get

zTHMψ(u, B)z ≥ poly(α∗) · 1

Ex∼N ∗S′

[
Nu,B(x)
N ∗(x)

] · 4

√
E

x∼N ∗
[p4(z; x)]

≥ poly(α∗) · 1√
Ex∼N ∗

[(
Nu,B(x)
N ∗(x)

)2
] · 4

√
E

x∼N ∗
[p4(z; x)]

finally using Lemma 4 we get

zTHMψ(u, B)z ≥ poly(α∗) 4

√
E

x∼N ∗
[p4(z; x)] (22)

Now using (21) and (22) we can see that it is possible to pick ε in the Hermite concentration to
be the correct polynomial in α∗ so that∣∣∣zTHMψk

(u, B)z− zTHMψ(u, B)z
∣∣∣ ≤ zTHMψ(u, B)z

which implies from Jensen’s inequality that

zTHMψk
(u, B)z ≥ poly(α∗) 4

√
E

x∼N ∗
[p4(z; x)]

≥ poly(α∗) E
x∼N ∗

[p(z; x)]

So the last step is to prove a lower bound for Ex∼N ∗ [p(z; x)]. For this we can use the Lemma 3
of [DGTZ18] from which we can directly get Ex∼N ∗ [p(z; x)] ≥ poly(α∗) and the lemma follows.
�

E Details of Section 4.3

We present here the of the proof of Theorem 6. We already proved that given only positive
examples from a truncated normal can obtain arbitrarily good estimations of the unconditional
(true) parameters of the normal using Algorithm 1. Recall also that with positive samples we can
obtain an approximation of the function ψ(x) defined in 4. From Theorem 4 we know that with
dpoly(1/α)Γ(S)2/ε4

samples we can obtain a function ψk(x) such that

E
x∼N0

[((ψk(x)− ψ(x))2] ≤ ε.

Now we can construct an almost indicator function using ψk and the learned parameters µ̃, Ĩ. We
denote Ñ = N (µ̃, Σ̃).

f̃ (x) =
N0(x)

Ñ (x)
ψk(x). (23)
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This function should be a good enough approximation to the function

f (x) =
N0(x)
N ∗(x)

ψ(x) =
1S(x)

α∗
. (24)

Notice that even though we do not know the mass of the truncation set α∗ we can still construct
a threshold function that achieves low error with respect to the zero-one loss. We first prove a
standard lemma that upper bounds the zero-one loss with the distance of f and f̃ . We prove it so
that we have a version consistent with our notation.

Lemma 24. Let S be a subset of Rd. Let D be a distribution on Rd and let f : Rd → {0, B}, where B > 1
such that f (x) = B 1S(x). For any g : Rd 7→ [0,+∞) it holds Ex∼D [1{g(x) > 1/2)} 6= 1S(x)}] ≤√

2 Ex∼D

[√
|g(x)− f (x)|

]
.

Proof. It suffices to show that for all x ∈ Rd it holds

1{sgn(g(x)− 1/2) 6= S(x)} ≤
√

2
√
|g(x)− f (x)|. (25)

We only need to consider the case where sgn(g(x)− 1/2) 6= S(x). Assume first that g(x) > 1/2
and x 6= S. Then the LHS of Equation (25) is 1 and the RHS of (25) is

√
2
√
|g(x)− f (x)| ≥√

2
√
|1/2− 0| = 1. Assume now that g(x) < 1/2 and S(x) = 1. Then the RHS of (25) equals√

2
√
|g(x)− f (x)| ≥

√
2
√
|B− 1/2| ≥ 1. �

We now state the following lemma that upper bounds the distance of f and f̃ in with the sum
of the total variation distance of the true and learned distributions as well as the approximation
error of ψk.

Lemma 25. Let α be the absolute constant of (3). Let S ⊆ Rd and let N ∗, Ñ be (O(log(1/α)), 1/16)-
isotropic. Let ψ be as in (4). Moreover, let f̃ , f be as in (23), (24). Then,

E
x∼N ∗

[√
| f̃ (x)− f (x)|

]
≤ poly(1/α)

((
E

x∼N0

[
(ψk(x)− ψ(x))2])1/4

+
(

dTV(N ∗, Ñ )
)1/4

)
Proof. We compute

E
x∼N ∗

[√
| f̃ (x)− f (x)|

]
≤ E

x∼N ∗

(∣∣∣∣∣ψk(x)
N0(x)

Ñ (x)
− ψ(x)

N0(x)
N ∗(x)

∣∣∣∣∣
)1/2


= E

x∼N ∗

(∣∣∣∣∣ψk(x)
N0(x)

Ñ (x)
− ψ(x)

N0(x)

Ñ (x)
+ ψ(x)

N0(x)

Ñ (x)
− ψ(x)

N0(x)
N ∗(x)

∣∣∣∣∣
)1/2


≤ E

x∼N ∗

(|ψk(x)− ψ(x)|N0(x)

Ñ (x)

)1/2
+ E

x∼N ∗

(ψ(x)

∣∣∣∣∣N0(x)

Ñ (x)
− N0(x)
N ∗(x)

∣∣∣∣∣
)1/2


≤
(

E
x∼N ∗

[|ψk(x)− ψ(x)|]︸ ︷︷ ︸
A

)1/2(
E

x∼N ∗

[
N0(x)

Ñ (x)

]
︸ ︷︷ ︸

B

)1/2

+

(
E

x∼N ∗

[
ψ(x)

∣∣∣∣∣N0(x)

Ñ (x)
− N0(x)
N ∗(x)

∣∣∣∣∣
]

︸ ︷︷ ︸
C

)1/2
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where for term C we used Jensen’s inequality. Using Lemma 26 and Lemma 4 we have that

A ≤
(

E
x∼N0

[
(ψk(x)− ψ(x))2])1/2 (

E
x∼N ∗

[
N0(x)
N ∗(x)

])1/2

≤
(

E
x∼N0

[
(ψk(x)− ψ(x))2])1/2

poly(1/α)

Since N0, Ñ , and N ∗ are (O(log(1/α), 1/16)-isotropic, using Lemma 4 we obtain that

B = E
x∼N0

[
N0(x)

Ñ (x)

N ∗(x)

Ñ (x)

]
≤
(

E
x∼N0

[
N0(x)

Ñ (x)

])1/2(
E

x∼N0

[
N ∗(x)

Ñ (x)

])1/2

≤ poly(1/α)

We now bound term C. We write

C = E
x∼N ∗

[
ψ(x)

∣∣∣∣∣N0(x)

Ñ (x)
− N0(x)
N ∗(x)

∣∣∣∣∣
]
=

1
α∗

E
x∼N ∗

[∣∣∣∣∣N ∗(x)

Ñ (x)
− 1

∣∣∣∣∣
]

(26)

To simplify notation, let `(x) =
∣∣∣N ∗(x)
Ñ (x)

− 1
∣∣∣ . Moreover, notice that Ex∼Ñ [`(x)] = dTV(N ∗, Ñ ).

Using the second bound of Lemma 26 and Lemma 4 we obtain

C ≤ 1
α

dTV(N ∗, Ñ ) + poly(1/α)

√
dTV(N ∗, Ñ ) ≤ poly(1/α)

√
dTV(N ∗, Ñ ).

Combining the bounds for A, B and C we obtain the result. �

Since we have the means two make both errors of Lemma 25 small we can now recover the
unknown truncation set S.

Proof of Theorem 6

We first run Algorithm 1 to find estimates µ̃, Σ̃. From Theorem 2 we know that N = dpoly(1/α)Γ2(S)/ε32

samples suffice to obtain parameters µ̃, Σ̃ such that dTV(N (µ∗, Σ∗),N (µ̃, Σ̃)) ≤ poly(α)ε4. Notice,
that from Theorem 3 we also know that N samples from the conditional distribution N ∗S suffice
to learn a function ψk such that Ex∼N0 [(ψk(x) − ψ(x))2] ≤ poly(α)ε4. Now we can construct
the approximation f̃ (x) = ψk(x)N0(x)/Ñ (x). Let our indicator S̃ = 1{ f̃ ((x) > 1/2} and from
Lemma 24 and Lemma 25 we obtain the result. �

Lemma 26. Let P, Q be two distributions on Rd such that P(x), Q(x) > 0 for all x and ` : Rd 7→ R be a
function. Then it holds

∣∣∣∣ E
x∼P

[`(x)]− E
x∼Q

[`(x)]
∣∣∣∣ ≤

(
E

x∼P
[`2(x)] E

x∼P

)1/2([(
Q(x)
P(x)

)2
])1/2

Moreover, ∣∣∣∣ E
x∼P

[`(x)]− E
x∼Q

[`(x)]
∣∣∣∣ ≤ 2

((
E

x∼P
[`2(x)] + E

x∼Q
[`2(x)]

) )1/2√
dTV(P, Q)
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Proof. Write ∣∣∣∣ E
x∼P

[`(x)]− E
x∼Q

[`(x)]
∣∣∣∣ ≤ ∫ `(x)

√
P(x)

|P(x)−Q(x)|√
P(x)

dx

=

( ∫
`2(x)P(x)dx

∫
(P(x)−Q(x))2

P(x)
dx

)1/2

For the second inequality we have∣∣∣∣ E
x∼P

[`(x)]− E
x∼Q

[`(x)]
∣∣∣∣ ≤ ∫ `(x)|P(x)−Q(x)|dx

≤
∫

`(x)
√

P(x) + Q(x)
|P(x)−Q(x)|√

P(x) + Q(x)
dx

≤
(

E
x∼P

[`2(x)] + E
x∼Q

[`2(x)]
)1/2 (∫ (P(x)−Q(x))2

P(x) + Q(x)
dx
)1/2

Now observe that(∫
(P(x)−Q(x))2

P(x) + Q(x)
dx
)1/2

≤
(

2
∫ (√

P(x)−
√

Q(x)
)2

dx

)1/2

= 2dH(P, Q) ≤ 2
√

dTV(P, Q)

�

F Missing Proofs of Section 6

In the following we use the polynomial norms. Let p(x) = ∑V:|V|≤k cV xV be a multivariate
polynomial. We define the ‖p‖∞ = maxV:|V|≤k |cV |, ‖p‖1 = ∑V:|V|≤k |cV |.

Proof of Lemma 15

Let W = S1 ∩ S2 ∩ { f1 > f2} ∪ S1 \ S2, that is the set of points where the first density is larger than
the second. We now write the L1 distance between f1, f2 as∫

| f1(x)− f2(x)|dx =
∫

1W(x)( f1(x)− f2(x))dx

Denote p(x) the polynomial that will do the approximation of the L1 distance. From Lemma 14
we know that there exists a Normal distribution within small chi-squared divergence of both
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N (µ1, Σ1) and N (µ2, Σ2). Call the density function of this distribution g(x). We have∣∣∣ ∫ | f1(x)− f2(x)|dx−
∫

p(x)( f1(x)− f2(x))
∣∣∣ (27)

=

∣∣∣∣∫ (1W(x)− p(x)) ( f1(x)− f2(x))dx
∣∣∣∣

≤
∫
|1W(x)− p(x)| | f1(x)− f2(x)|dx

≤
∫
|1W(x)− p(x)|

√
g(x)

| f1(x)− f2(x)|√
g(x)

dx

≤
√∫

(1W(x)− p(x))2g(x)dx

√∫
( f1(x)− f2(x))2

g(x)
dx, (28)

where we use Schwarzs’ inequality. From Lemma 14 we know that∫ f1(x)2

g(x)
dx ≤

∫ N (µ1, Σ1; x)2

g(x)
dx = exp(poly(1/α)).

Similarly,
∫ f2(x)2

g(x) dx = exp(poly(1/α)). Therefore we have,

∣∣∣ ∫ | f1(x)− f2(x)|dx−
∫

p(x)( f1(x)− f2(x))
∣∣∣ ≤ exp(poly(1/α))

√∫
(1W(x)− p(x))2g(x)dx

Recall that g(x) is the density function of a Gaussian distribution, and let µ, Σ be the parameters of
this Gaussian. Notice that it remains to show that there exists a good approximating polynomial
p(x) to the indicator function 1W . We can now transform the space so that g(x) becomes the
standard normal. Notice that this is an affine transformation that also transforms the set W; call
the transformed set Wt. We now argue that the Gaussian surface area of the transformed set Wt at
most a constant multiple of the Gaussian surface area of the original set W. Let N (µi, Σi; Si) = αi

for i = 1, 2 and let h1(x) = N (µ1, Σ1; x)/α1 resp. h2(x) = N (µ2, Σ2; x)/α2 be the density of first
resp. second Normal ignoring the truncation sets S1, S2. Notice that instead of f1, f2 we may use
h1, h2 in the definition of W, that is

W = (S1 ∩ S2 ∩ {h1 ≥ h2}) ∪ S1 \ S2.

Now, since Σ−1/2 > 0 we have that the affine map T(x) = Σ−1/2(x− µ) is a bijection. Therefore
T(A ∩ B) = T(A) ∩ T(B) and T(A ∪ B) = T(A) ∪ T(B). Similarly to Wt = T(W), let St

1, St
2,

{h1 ≥ h2}t be the transformed sets. Therefore,

Wt = (St
1 ∩ St

2 ∩ {h1 ≥ h2}t) ∪ St
1 \ St

2.

We will use some elementary properties of Gaussian surface area (see for example Fact 17 of
[KOS08]). We have that for any sets S1, S2 Γ(S1 ∩ S2) and Γ(S1 ∪ S2) are upper bounded from
Γ(S1) + Γ(S2). Moreover, Γ(S1 \ S2) ≤ Γ(S1) + Γ(Sc

2) = Γ(S1) + Γ(S2). From our assumptions,
we know that the Gaussian surface area of the sets St

1, St
2 is O(Γ(S). Notice now that the set

{h1 ≥ h2}t is a degree 2 polynomial threshold function. Therefore, using the result of [Kan11]
(see also Table 1) we obtain that Γ({h1 ≥ h2}t) = O(1). Combining the above we obtain that
Γ(Wt) = O(Γ(S). To keep the notation simple we from now on we will by W the transformed set
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Wt. Now, assuming that a good approximating polynomial p(x) of degree k exists with respect to
N (0, I) then p(Σ−1/2(x− µ)) is a polynomial of degree k that approximates 1W(x) with respect to
g(x). Since 1W ∈ L2(Rd,N0) we can approximate it using Hermite polynomials. For some k ∈ N
we set p(x) = Sk1W(x), that is

pk(x) = ∑
V:|V|≤k

1̂W HV(x).

Combining Lemma 5 and Lemma 19 we obtain

E
x∼N0

[(1W(x)− pk(x))2] = O
(

Γ(S)
k1/2

)
.

Therefore, ∣∣∣ ∫ | f1(x)− f2(x)|dx−
∫

pk(x)( f1(x)− f2(x))
∣∣∣ = exp(poly(1/α))

Γ(S)1/2

k1/4

Therefore, ignoring the dependence on the absolute constant α, to achieve error O(ε) we need
degree k = O(Γ(S)2/ε4).

To complete the proof, it remains to obtain a bound for the coefficients of the polynomial
q(x) = pk(Σ

−1/2(x− µ)). We use the standard notation of polynomial norms, e.g. ‖p‖∞ is the
maximum (in absolute value) coefficient, ‖p‖1 is the sum of the absolute values of all coefficients
etc. From Parseval’s identity we obtain that the sum of the squared weights is less than 1 so these
coefficients are clearly not large. The large coefficients are those of the Hermite Polynomials. We
consider first the 1 dimensional Hermite polynomial and take an even degree Hermite polynomial
Hn. The explicit formula for the k-th degree coefficient is

2k/2−n/2
√

n!
(n/2− k/2)!k!

≤ 2n,

see, for example, [Sze67]. Similarly, we show the same bound when the degree of the Hermite
polynomial is odd. Therefore, we have that the maximum coefficient of HV(x) = ∏d

i=1 Hi(xi) is at
most ∏d

i=1 2vi = 2∑d
i=1 vi = 2|V|. Using Lemma 27 we obtain that∥∥∥HV(Σ
−1/2(x− µ))

∥∥∥
1
≤
(

d + |V|
|V|

)
2|V|

(√
d
∥∥∥Σ−1/2

∥∥∥
2
+
∥∥∥Σ−1/2µ

∥∥∥
2

)|V|
≤
(

d + |V|
|V|

)
(4d)|V|/2(O(1/α2))|V|

Now we have

‖q(x)‖∞ ≤ ∑
V:|V|≤k

|cV |
∥∥∥HV(Σ

−1/2(x− µ))
∥∥∥

∞
≤
(

d + k
k

)2

(4d)k/2(O(1/α2))k,

where we used the fact that since ∑V |cv|2 ≤ 1 it holds that |cV | ≤ 1 for all V. To conclude the
proof we notice that we can pick the degree k so that∣∣∣∣∫ q(x)( f1(x)− f2(x))

∣∣∣∣ =
∣∣∣∣∣ ∑
V:|V|≤k

xV( f1(x)− f2(x))

∣∣∣∣∣ ≥ ε/2.

Since the maximum coefficient of q(x) is bounded by dO(k) we obtain the result. �
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Proof of Theorem 8

We first draw O(d2/ε2) and compute estimates of the conditional mean µ̃C and covariance Σ̃C

that satisfy the guarantees of Lemma 17. We now transform the space so that µ̃C = 0 and
ΣC = I. For simplicity we still denote µ and Σ the parameters of the unknown Gaussian
after the transformation. From Lemma 18 we have that

∥∥Σ−1/2µ
∥∥

2 ≤ O(log(1/α)1/2/α), and

Ω(α2) ≤
∥∥Σ1/2

∥∥
2 ≤ O(1/α2). Let m̃V be the empirical moments of N (µ, Σ, S), m̃V = ∑N

i=1 xV

N . We
first bound the variance of a moment xV .

Var
x∼N (µ,Σ,S)

[xV ] ≤ E
x∼N (µ,Σ,S)

[x2V ] ≤ 1
α

E
x∼N (µ,Σ)

[x2V ] =
1
α

E
x∼N (0,I)

[(Σ1/2x + µ)2V ]

Following the proof of Lemma 27 we get that
∥∥(Σ1/2x + µ)2V

∥∥
∞ ≤ (

√
d
∥∥Σ1/2

∥∥
2 + ‖µ‖2)

|V|. Using
Lemma 15 we know that if we set k = Γ(S)/ε4 then given any guess of the parameters µ̃, Σ̃, S̃ we
can check whether the corresponding truncated Gaussian N (µ̃, Σ̃, S̃) is in total variation distance ε

from the true by checking that all moments Ex∼N (µ̃,Σ̃,S̃)[x
V ] of the guess are close to the (estimates)

of the true moments. Using the above observations and ignoring the dependence on the constant α

we get that
∥∥(Σ1/2x + µ)2V

∥∥
∞ ≤ dO(k). Chebyshev’s inequality implies that with dO(k)/ε2 samples

we can get an estimate such that with probability at least 3/4 it holds |m̃V − mV | ≤ ε/dO(k).
Using the standard process of repeating and taking the median estimate we amplify the success
probability to 1− δ. Since we want all the estimates of all the moments V with |V| ≤ k to be
accurate we choose δ = 1/dO(k) and by the union bound we obtain that with constant probability
|m̃V − mV | ≤ ε/dO(k) for all V with |V| ≤ k. Now, for any tuple of parameters (µ̃, Σ̃, S̃) we
check whether the first dO(k) moments of the corresponding truncated Gaussian N (µ̃, Σ̃, S̃) are in
distance ε/dO(k) of the estimates m̃V . If this is true for all the moments, then Lemma 15 implies
that dTV(N (µ, Σ, S),N (µ̃, Σ̃, S̃)) ≤ ε. �

Proof of Lemma 14

Without loss of generality we may assume that N1 = N (0, I) and N2 = N (µ, Λ), where Λ is a
diagonal matrix with elements λi > 0. We define the normal N = N (0, R) with ri = max(1, λi).
We have

Dχ2(N2‖N) + 1 =
∫ N (µ, Λ; x)2

N (0, R; x)
dx

=

√
|R|

(2π)d/2|Λ| exp(−µTΛ−1µ)
∫

exp
(

xT
(

1
2

R−1 −Λ−1
)
+ 2µTΛ−1x

)
dx︸ ︷︷ ︸

I

We have

I =
d

∏
i=1

∫
exp

(
x2

i

(
1

2ri
− 1

λi

)
+ 2

µi

λi
xi

)
dxi = (2π)d/2

d

∏
i=1

exp
(

2riµ
2
i

2riλi−λ2
i

)
√

2/λi − 1/ri
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Therefore,

Dχ2(N2‖N) + 1 ≤
d

∏
i=1

√
ri

2λi − λ2
i /ri

exp
(

2riµ
2
i

2riλi − λ2
i

)

= exp

(
d

∑
i=1

1
2

log
(

ri

2λi − λ2
i /ri

)
+

2riµ
2
i

2riλi − λ2
i

)
Using the fact that ri = max(1, λi) we have

d

∑
i=1

log
(

ri

2λi − λ2
i /ri

)
= ∑

i:λi<1
log
(

1
2λi − λ2

i

)
≤ ∑

i:λi<1

(
1
λ i
− 1
)2

≤
∥∥∥Λ−1 − I

∥∥∥2

F
,

where we used the inequality log(1/(2x − x2)) ≤ (1/x − 1)2 which holds for all x ∈ (0, 1).
Moreover,

d

∑
i=1

2riµ
2
i

2riλi − λ2
i
= ∑

i:λ≤1

2µ2
i

2λi − λ2
i
+ ∑

i:λ>1

2µ2
i

λi
≤

d

∑
i=1

2µ2
i

λi
= 2

∥∥∥Λ−1/2µ
∥∥∥2

2
,

where we used the inequality 1/(2x− x2) ≤ 1/x which holds for all x ∈ (0, 1). Combining the
above we obtain

Dχ2(N2‖N) ≤ exp
(

1
2

∥∥∥Λ−1/2µ
∥∥∥

2
+ 2

∥∥∥Λ−1 − I
∥∥∥2

F

)
Similarly, we compute

Dχ2(N1‖N) + 1 =
d

∏
i=1

√
ri

2− 1/ri
= exp

(
1
2 ∑

i:λi>1
log
(

λi

2− 1/λi

))

≤ exp

(
1
2 ∑

i:λi>1
λi

(
1− 1

λ i

)2
)
≤ exp

(
1
2

max(‖Λ‖2 , 1)
∥∥∥Λ−1 − I

∥∥∥2

F

)
�

The following lemma gives a very rough bound on the maximum coefficient of multivariate
polynomials of affine transformations.

Lemma 27. Let p(x) = ∑V:|V|≤k cV xV be a multivariate polynomial of degree k. Let A ∈ Rd×d, b ∈ Rd.

Let q(x) = p(Ax + b). Then ‖q‖∞ ≤ ‖p‖∞ (d+k
k )
(√

d ‖A‖2 + ‖b‖2

)k
.

Proof. We have that

q(x) = ∑
V:|V|≤k

cV

d

∏
i=1

(
d

∑
j=1

Aijxj + bi

)vi

Therefore,

‖q‖1 ≤ ∑
V:|V|≤k

cV

d

∏
i=1

(
d

∑
j=1
|Aij|+ |bi|

)vi

≤ ∑
V:|V|≤k

cV

d

∏
i=1

(‖A‖∞ + ‖b‖∞)
vi

= ∑
V:|V|≤k

cV (‖A‖∞ + ‖b‖∞)
|V| ≤ ‖p‖∞

(
d + k

k

)
(‖A‖∞ + ‖b‖∞)

k

≤ ‖p‖∞

(
d + k

k

)(√
d ‖A‖2 + ‖b‖2

)k

�
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