
ar
X

iv
:1

90
5.

08
84

1v
4

 [
cs

.D
S]

 6
 D

ec
 2

01
9

Parallel Reachability in Almost Linear Work and Square Root Depth

Arun Jambulapati

Stanford University

jmblpati@stanford.edu

Yang P. Liu

Stanford University

yangpatil@gmail.com ∗

Aaron Sidford

Stanford University

sidford@stanford.edu †

December 9, 2019

Abstract

In this paper we provide a parallel algorithm that given any n-node m-edge directed graph
and source vertex s computes all vertices reachable from s with Õ(m) work and n1/2+o(1) depth

with high probability in n. This algorithm also computes a set of Õ(n) edges which when
added to the graph preserves reachability and ensures that the diameter of the resulting graph
is at most n1/2+o(1). Our result improves upon the previous best known almost linear work
reachability algorithm due to Fineman [Fin18] which had depth Õ(n2/3).

Further, we show how to leverage this algorithm to achieve improved distributed algo-
rithms for single source reachability in the CONGEST model. In particular, we provide a
distributed algorithm that given a n-node digraph of undirected hop-diameter D solves the
single source reachability problem with Õ(n1/2 + n1/3+o(1)D2/3) rounds of the communication
in the CONGEST model with high probability in n. Our algorithm is nearly optimal whenever
D = O(n1/4−ǫ) for any constant ǫ > 0 and is the first nearly optimal algorithm for general
graphs whose diameter is Ω(nδ) for any constant δ.

∗Research supported by the U.S. Department of Defense via an NDSEG fellowship.
†Research supported by NSF CAREER Award CCF-1844855.

http://arxiv.org/abs/1905.08841v4

1 Introduction

Given a n-vertex m-edge directed graph or digraph G = (V,E) and a vertex s ∈ V the single source
reachability problem asks for the set of vertices T ⊆ V reachable from s, i.e. the vertices t ∈ V for
which there is a s to t path in G. This problem is perhaps one of the simplest graph optimization
problems. It easily solvable in linear, O(n+m), time by any of a number of classic graph exploration
algorithms, e.g. breadth first search (BFS), depth first search (DFS), etc. and is often one of the
first graph problems considered in an introductory algorithms course. The reachability problem is
prevalent in theory and practice and algorithms for solving it are leveraged to solve more complex
graph optimization problems, including computing strongly connected components, shortest paths,
maximum flow, spanning arborescenses, etc.

Given the fundamental nature of the reachability problem and the utility of reachability al-
gorithms, the reachability problem is often one of the first considered when investigating re-
source constrained computation. However, despite the simplicity of solving single source reach-
ability with optimal time complexity, obtaining optimal algorithms for this problem under con-
straints of parallelism [Spe97,UY91,Fin18], distributed computation [Nan14,GU15], space utiliza-
tion [Wig92,BBRS98], and dynamic updates [AW14] are all notoriously difficult. In many cases,
reachability lies at the heart of well-known long-standing open problems in complexity theory.
For example, reachability is known to be complete for non-deterministic log space (NL) computa-
tion [Wig92] and obtaining sufficiently efficient dynamic reachability algorithms would break the
popular 3-SUM conjecture and refute the strong exponential time hypothesis (SETH) [AW14].

In the parallel and distributing models of computation, single-source reachability is itself a
fundamental barrier towards achieving efficient graph optimization. Despite extensive study, until
a recent breakthrough of Fineman [Fin18] the best parallel reachability algorithm all required
trading off depth versus work and all known algorithms that had linear work had the trivial O(n)
depth. In distributed computation, for example the popular CONGEST-model [Pel00], though there
have been algorithmic improvements over the trivial O(n) round protocol [Nan14,GU15], the best
known algorithms are polynomial factors larger then the known Ω(D +

√
n)-round lower bound

(where here D denotes the undirected hop-diameter of the graph) [DSHK+11].
Given these complexity theoretic barriers related to reachability and the prevalance of parallel

and distributed models of computation, improved parallel and distributed reachability algorithms
are highly coveted. In this paper we provide improved reachability algorithms under each compu-
tational model. The main results of this paper are as follows.

Theorem 1 (Parallel Reachability). There is a parallel algorithm that given a n-node m-edge
digraph solves the single source reachability problem with work Õ(m) and depth n1/2+o(1) with high
probability in n.

Theorem 2 (Distributed Reachability). There is a distributed algorithm that given a n-node di-
graph of undirected hop-diameter D solves the single source reachability problem with Õ(n1/2 +
n1/3+o(1)D2/3) rounds of the communication in the CONGEST model with high probability in n.

Theorem 1 improves the previous best Õ(n2/3) depth bound achieved by a parallel nearly linear
work algorithm due to Fineman [Fin18]. Theorem 2 is nearly optimal whenever D = O(n1/4−ε) for
some ε > 0 due to a known Ω̃(

√
n + D) lower bound [DSHK+11] and is the first nearly optimal

algorithm for general directed graphs where D = Ω(nδ) for for constant δ > 0. (See Section 1.2 for
a more detailed comparison to and discussion of previous work.)

1

Our results build upon a recent breakthrough result of Fineman [Fin18] and a simple, yet-
powerful decompositional tool regarding reachability known as hopsets or shortcuts. Shortcuts are
edges which if added to the graph, do not change which pairs of vertices can reach each other. It
is well known that in a graph of diameter D, i.e. largest shortest-path distance between a pair of
vertices which can reach each other is D, we can compute reachability in work O(m) and depth
O(D). Consequently, a natural approach towards improved reachability algorithms would simply
be to find a small set of shortcuts in nearly linear time which decrease the diameter of a graph.

Computing shortcutters is a tantalizing approach to improved reachability algorithms. A simple
folklore random sampling argument can be used to show that for every n-node digraph and every
parameter t there exists a set of O(t2 log2 n) shortcuts such that adding them makes the diameter
of the graph is at most O(n/t). Consequently, there is a nearly linear, O(n log2 n), number of edges
which would reduce the diameter to O(

√
n). Finding such a set of shortcuts in nearly linear work

and O(
√
n) depth would immediately yield linear work O(

√
n) depth algorithms for reachability.

Unfortunately, even obtaining almost linear time algorithms for constructing a set of shortcutters
which reduce the diameter to almost square root n was open prior to this work.

Fortunately, recent work of Fineman [Fin18] provided some hope towards achieving this goal.
This work provided the first nearly linear time algorithm for computing a nearly linear number
of shortcutters which provide any polynomial diameter reduction from the trivial O(n) bound. In
particular, Fineman’s work provided a nearly linear time algorithm which computed with high
probability a nearly linear number of shortcutters that decrease the diameter to Õ(n2/3) and lever-
aged this result to obtain a parallel reachability algorithm with Õ(m) work and Õ(n2/3) depth that
succeeds with high probability in n.

Though an impressive result and a considerable breakthrough, this work left open the question
of how well parallel almost linear work algorithms could match the depth bound that would be
optimistically predicted by hopsets, i.e. O(n1/2). Further, this work left open the question of
whether these improvements could be transferred to additional resource constrained computational
problems. In this paper we make progress on both questions with Theorem 1 and Theorem 2. We
provide an Õ(m) work and n1/2+o(1) depth algorithm that computes a set of Õ(n) shortcutters that
reduces the diameter to n1/2+o(1) and use this to achieve improved distributed algorithms.

We achieve our results by strengthening and simplifying parts of Fineman’s algorithm (see
Section 3 for an overview of the approach). Further, we provide a fairly general strategy to turn
improved parallel reachability algorithms into improved distributed algorithms in the CONGEST-
model, building off approaches of [Nan14,GU15]. Interestingly, we show that even Fineman’s algo-
rithm can be be modified to achieve improved distributed algorithms (albeit with weaker bounds).

Ultimately we hope this work sheds light on the structure of single source reachability, may lead
to faster reachability in more resource constrained computational environments, and may ultimately
lead to more practical massive scale graph processing.

Paper Outline The rest of the paper is structured as follows. In the remainder of this introduc-
tion we formally state our results in Section 1.1 and compare to previous work in Section 1.2. In
Section 2 we cover technical preliminaries and leverage this notation to provide a more technical
approach overview in Section 3. In Section 4 we then provide an Õ(m) time algorithm for com-
puting Õ(n) shortcuts which decrease the diameter to n1/2+o(1) with high-probability. This serial
algorithm demonstrates many of the key insights we ultimately build upon to achieve our parallel
reachability algorithms in Section 5 and our distributed reachability algorithms in Section 6.

2

1.1 Our results

In this paper we provide several parallel and distributed algorithms for efficiently constructing
diameter-reducing hopsets and computing reachability in digraphs. Here we provide a brief overview
of these results. Throughout this section (and the rest of the paper) we use Õ(·) to hide polyloga-
rithmic factors in n and we use w.h.p. as shorthand for “with high probability in n” where in both
cases n is used to denote the number of vertices in the original input graph.

First, in Section 4 we provide a sequential algorithm for efficiently computing diameter-reducing
hopsets. This algorithm improves upon the previous best diameter bound of Õ(n2/3) [Fin18], known
to be achievable by a nearly linear time algorithm. Our main result is as follows:

Theorem 3 (Sequential Diameter Reduction). For any parameter k, there is an algorithm that
given any n-node and m-edge digraph in Õ(mk) time computes Õ(nk) shortcuts such that adding
these edges to the graph reduces to the diameter to n1/2+O(1/ log k) w.h.p.

This result forms the basis for our improved parallel reachability algorithms. We first argue that
careful modification and application of the algorithmic and analytic insights of Section 4 suffice to
obtain similar diameter improvements from a parallel algorithm. Our main result of Section 5 is
the following parallel analog of Theorem 3.

Theorem 4 (Parallel Diameter Reduction). For any parameter k, there is a parallel algorithm that
given any n-node and m-edge digraph with Õ(mk + nk2) work and poly(k) · n1/2+O(1/ log k) depth
computes a set of Õ(nk) shortcuts such that adding these edges to the graph reduces the diameter
to n1/2+O(1/ log k) w.h.p.

Setting k = O(log n) immediately gives the following corollary.

Corollary 1.1. There is a parallel algorithm that given any n-node and m-edge digraph performs
Õ(m) work in depth n1/2+o(1) and computes a set of Õ(n) shortcuts such that adding these edges
to the graph reduces the diameter to n1/2+o(1) w.h.p.

Further, since single source reachability can be solved by BFS in linear work and depth propor-
tional to the diameter of the graph applying this corollary and then leveraging BFS immediately
proves Theorem 1, our main result on a parallel solution to single source reachability.

We leverage this parallel reachability result to provide our improved distributed reachability
algorithms in Section 6. Formally we consider the CONGEST-model where given a n-node digraph
G there is a separate processor for each node and in every round, for every vertex u, its processor
may send O(log n)-bits of information to each of its neighbors (i.e. vertices v for which either (u, v)
or (v, u) is an edge). Here the distributed reachability question we consider is how to design a
messaging scheme so that each node learns if it is reachable from a single given source in as few
rounds as possible.

Our main result regarding such distributed algorithms is given by Theorem 2. Formally, we
show that if D is the diameter of the undirected graph associated with G (i.e. there is an edge in
the undirected graph between u and v if and only if either (u, v) of (v, u) is an edge in G) then we
can design a distributed algorithm that solves single source reachability in Õ(n1/2 +n1/3+o(1)D2/3)
rounds of communication in the CONGEST-model with high probability in n. Due to a known lower
bound of Ω̃(

√
n + D) [DSHK+11] this result is nearly optimal whenever D = O(n1/4−ε) for any

ε > 0. Further, to the best of our knowledge this is the first nearly optimal algorithm for general
directed graphs when D = Ω(nδ) for any constant δ ∈ (0, 1/4).

3

Work Span

Parallel BFS O(m) Õ(n)

Parallel Trans. Closure Õ(nω) Õ(1)

Spencer’s [Spe97] Õ(m+ nρ2) Õ(n/ρ)

UY [UY91] Õ(mρ+ ρ4/n) Õ(n/ρ)

Fineman’s [Fin18] Õ(m) Õ(n2/3)

This paper Õ(m) n1/2+o(1)

Table 1: Summary of previous results for parallel single-source digraph reachability. Here ρ ∈ [1, n]
can be chosen arbitrarily and ω < 2.373 denotes the matrix multiplication exponent. This table
was modified from the one in [Fin18].

Interestingly, we achieve this improved distributed algorithm by following a fairly general frame-
work inspired by [GU15,Nan14]. We argue that there is a fairly general procedure for converting
“nice enough” work-efficient parallel reachability algorithms into improved bounds on distributed
reachability. This procedure first computes a set of shortcuts using known prior work on distributed
algorithms [Pel00]. Leveraging these shortcuts, the procedure then solves reachability by applying
a work-efficient parallel reachability algorithm over the a graph with shortcuts added. We then
argue that if the reachability algorithm is “nice enough” we can bound the distributed round com-
plexity of the resulting algorithm as a function of the work and depth of the parallel reachability
algorithm. Ultimately, Section 6 shows that in addition to proving Theorem 2 we could have used
this framework and Fineman’s recent work [Fin18] to obtain improved distributed algorithms (even
without using our work of Section 5); albeit with worse bounds.

1.2 Related Work

The problem of computing single-source reachability from source s in n-node m-edge digraph G
is one of the most fundamental questions in the theory of parallel algorithms. A more complete
survey of previous results can be found in [Fin18] and we describe them briefly here.

Two folklore algorithms exist for parallel reachability. First, the complete transitive closure of
G can be computed in parallel by repeatedly squaring the adjacency matrix of G. This achieves
a polynomial running time with polylogarithmic depth, but the Õ(nω) work algorithm where ω <
2.373 is the matrix multiplication constant [Wil12] is currently not known to be nearly linear even
for dense graphs. Second, a straightforward modification to standard breadth-first search, called
“Parallel BFS,” enables us to compute the single-source reachability from s in O(m) time and
O(n) depth. This has near optimal work, but its depth is trivial, i.e. it is essentially a fully serial
algorithm.

Procedures by Spencer [Spe97] and Ullman and Yannakis [UY91] provide work-depth tradeoffs
that interpolate between the extremes of these two naive procedures, yet neither improve upon
the Õ(n) depth bound in the case of Õ(m) work. Fineman [Fin18] provided a breakthrough by
demonstrating the Õ(m) work algorithm for single-source reachability achieving sublinear depth
Õ(n2/3). Our results build on those of Fineman by improving the depth to n1/2+o(1). These results
are summarized in Table 1.

Our algorithm, like [Fin18], solves a more general problem than single-source reachability: we
show show that our algorithm gives work-efficient parallel construction of an Õ(n)-edge hopset of

4

diameter n1/2+o(1). With this hopset we can answer arbitrary single-source reachability queries
in nearly-linear work and n1/2+o(1) depth. A natural question is whether our hopset construction
can be improved. However even from the perspective of constructibility the true tradeoff between
diameter and number of added edges is not known. As mentioned previously a straightforward
random construction provides a O(t2 log2 n)-edge hopset with diameter O(n/t), but it is not known
how to improve upon this result in any regime. Building off of [Hes03], [HP18] demonstrates that
O(n)-edge hopsets cannot ensure diameter less than O(n1/6) and O(m)-edge hopsets cannot achieve
O(n1/11) diameter; no results are known in other parameter regimes. Nevertheless we conjecture
that in the case of nearly-linear sized hopsets our construction is tight and therefore any polynomial
improvement to our algorithm must somehow avoid the hopset paradigm.

Distributed algorithms in the CONGEST model [Pel00] have been studied extensively over the
past two decades. Though there have been multiple improvements to the round complexity of
approximately solving single source shortest paths in this model (see for example [BKKL17,GL18,
FN18] for the relevant literature), there has been comparatively little progress on the solving the
same problem on directed graphs [Nan14,GL18,FN18]. For the single-source reachability problem
considered in this paper the previous state of the art for this problem is due to [GU15], which
solved the problem in Õ(D +

√
nD1/4) rounds w.h.p. This algorithm in turn improved upon the

Õ(D+
√
nD1/2) w.h.p. round bound of [Nan14], which was (to the best of our knowledge) the first

non-trivial distributed algorithm for this problem.

2 Preliminaries

We denote vertex set of a graph G by V (G), and the edge set by E(G). We simply write these as
V and E when the graph G is clear from context. For a V ′ ⊆ V , we let G[V ′] denote the induced
subgraph on V ′, i.e. the graph with vertices V ′ and edges of G that have both endpoints in V ′.

Digraph relations: Let G be a directed graph or digraph for short. We say that u � v if there is
a directed path from u to v in G. In this case we say that u can reach v, or that v is reachable from
u. We say that u 6� v if there is no directed path from u to v in G. In this case we say that u cannot
reach v, or that v is not reachable from u. When u � v and v � u we say that u and v are in the same
strongly connected component. We define the descendants of v to be RDes

G (v)
def
= {u ∈ V (G) : v � u}

and the ancestors of v to be RAnc
G (v)

def
= {u ∈ V (G) : u � v}. We say that u and v are related if

u � v or v � u. We define the related vertices of v as RG(v)
def
= RDes

G (v) ∪ RAnc
G (v). Throughout,

the letter R we use in the notation should be read as “related” or “reachable”. We say that u is
unrelated to vertex v if u ∈ V (G)\RG(v).

We extend this notation to subsets V ′ ⊆ V in the natural way. We define the ancestors,
descendants, and related vertices to V ′ as

RDes
G (V ′)

def
=
⋃

v∈V ′

RDes
G (v) , RAnc

G (V ′)
def
=
⋃

v∈V ′

RAnc
G (v) , and RG(V

′)
def
= RDes

G (V ′) ∪RAnc
G (V ′).

We say that a vertex v is related to a subset V ′ if v ∈ RG(V
′). When the graph G is clear from

context, we will often drop the G subscript and simply write (for example) RDes(v), RAnc(v), and
R(v) instead of RDes

G (v), RAnc
G (v), RG(v).

We further extend this notation to induced subgraphs of G. Let G′ be a subgraph of G, possibly
with a different set of vertices and edges than G. We say that u �G′ v if there is a directed path

5

from u to v in the subgraph G′; we say that v is reachable from u through G′ in this case. Define

RDes
G′ (v)

def
= {u ∈ V (G′) : v �G′ u}, RAnc

G′ (v)
def
= {u ∈ V (G′) : u �G′ v}, and

RG′(v)
def
= RDes

G′ (v)∪RAnc
G′ (v). We similarly extend this definition to subsets of vertices V ′ ⊆ V (G′):

RDes
G′ (V ′)

def
= ∪v∈V ′RDes

G′ (v), RAnc
G′ (V ′)

def
= ∪v∈V ′RAnc

G′ (v), and RG′(V ′)
def
= RAnc

G′ (V ′) ∪RDes
G′ (V ′).

As our algorithm performs recursion on subgraphs of G, this notation enables us to reference specific
subproblems as our algorithm progresses.

A shortcut refers to adding an edge (u, v) to a graph G where u � v in G. Adding the edge
does not affect the reachability structure of G. A shortcutter v is a node we add shortcut edges to
and from. A hopset refers to a collection of shortcuts.

Paths: Our analysis will consider paths in the graph as well as the relations between the ver-
tices on the path and other vertices in the graph. Let G be a digraph. We denote a path
P = 〈v0, v1, . . . , vℓ〉, where all the vi are vertices of G and (vi, vi+1) ∈ E(G). Here, the length
of the path is ℓ, where we have that v0 � v1 � . . . � vℓ. We say that the head of the path is
head(P)

def
= v0 and the tail is tail(P)

def
= vℓ. We now make the following definitions.

Path-related vertices: We adopt a similar convention as [Fin18]. For a path P = 〈v0, v1, . . . , vℓ〉
we say that v is path-related if v ∈ RG(P). Further, for any path P in digraph G, we define

s(P,G)
def
= |RG(P)| as the number of path-related vertices. All path-related vertices are one of the

following three types:

• Descendants: We say that a vertex v is a descendant of the path P if v ∈ RDes
G (P)\RAnc

G (P).
Note that this holds if and only if v0 � v and v 6� vℓ.

• Ancestors: We say that a vertex v is an ancestor of the path P if v ∈ RAnc
G (P)\RDes

G (P).
Note that this holds if and only if v0 6� v and v � vℓ.

• Bridges: We say that a vertex v is a bridge of the path P if v ∈ RDes
G (P) ∩ RAnc

G (P). Note
that this holds if and only if v0 � v and v � vℓ.

A vertex which is not a descendant, ancestor, or bridge for a path P is called unrelated to P . Later
in Section 5 we explain how to extend all these definitions to the distance-limited case.

Subproblems: During our algorithms’ recursions, we will make reference to the induced recursive
calls made. Consider a graph G and a path P in G. During a call to an algorithm on the graph G,
we define a subproblem to be an induced subgraph G[V ′] along with a subpath P ′ of P which lies
inside G[V ′] on which we perform a recursive execution.

Miscellaneous: We let B(n, p) be the binomial random variables over n events of probability p.
We have the following standard fact about binomial random variables:

Lemma 2.1 (Chernoff Bound). Let X ∼ B(n, p) be a binomial random variable. Then

Pr [X > (1 + δ)np] ≤ exp

(
− δ2

2 + δ
np

)
.

6

The diameter of a directed graph G is defined as max{d(u, v) : u, v ∈ V (G) and d(u, v) < ∞}
i.e. the longest shortest path between two vertices u, v where u can reach v.

For functions f(n) and g(n) we say that f(n) = Õ(g(n)) if f(n) = O(g(n) · poly log n). In
particular, Õ(1) = O(poly log n).

3 Overview of Approach

Here we provide an overview of our approach towards achieving our algorithmic improvements
on reachability. First, we provide a blueprint for our sequential nearly linear time algorithm for
computing diameter reducing hopsets. While further work is needed to make this algorithm imple-
mentable in low depth and more insights are needed to obtain our parallel and distributed results
(and we discuss these briefly), we believe this simple sequential algorithm demonstrates the primary
algorithmic insights of the paper.

For the remainder of this section, let G = (V,E) be a digraph for which we wish to efficiently
compute diameter-reducing shortcuts. For simplicity we consider the case where G is a directed
acyclic graph (DAG); the analysis of the general case is essentially identical and for the purposes
of reachability (ignoring parallel computation issues) we can contract every strongly connected
component to a single vertex.

Our shortcutting algorithms follows the general blueprint leveraged by Fineman [Fin18] for
efficiently computing diameter reducing shortcuts. Briefly, Fineman’s algorithm consists of the
following iteration: in every step, a “shortcutter” vertex v is selected from V uniformly at random.
It then constructs three sets: v’s ancestors RAnc

G (v), v’s descendants denoted RDes
G (v), and the set of

notes unrelated to v UG(v)
def
= V \{RDes

G (v)∪RAnc
G (v)}. The algorithm then adds shortcut edges from

v to every node in RDes
G (v) and from every node in RAnc

G (v) to v. The algorithm then computes the
induced graphs GD = G[RDes

G (v)], GA = G[RAnc
G (v)] and GU = G[UG(v)] and recursively applies

the procedure to each of these three graphs.
To analyze this procedure, consider any path P in G. The algorithm in [Fin18] considers how

the shortcuts the algorithm constructs affect the distance between the endpoints of P . When a
shortcutter vertex v is picked, there are four possibilities with how it interacts with P : it is either

1. Unrelated to every node in P .

2. An ancestor to some nodes in P forming a subpath P1 and unrelated to the remaining subpath
P2.

3. A descendant to some nodes in P forming a subpath P2 and unrelated to the remaining
subpath P1.

4. An ancestor to the tail of P and a descendant to the head of P .

Consider shortcutting through any vertex v and following the recursion of the above algorithm. By
the above, it is clear that after shortcutting through any vertex v one of three things can happen:
either P remains intact in a subproblem (case 1), it gets split into exactly two pieces in two different
subproblems (cases 2 or 3), or the connectivity between the endpoints of P is resolved through v,
i.e. we can go from P ’s head to tail in two edges by going through v (case 4). Thus we either split
P into at most two pieces or we ensure the endpoints P are distance 2 from each other. Let Pi be

7

the pieces P is split into at some state of the algorithm’s execution, and let Vi be the subproblem
vertex set containing Pi.

The key insight of Fineman is to define the following function (which we defined in Section 2)
and to use it to reason about the effect of this random process:

s(Pi, Gi)
def
= |{u ∈ V (Gi)|u is related to some node in Pi}| .

Observe that s(Pi, Gi) is an overestimate of the length of Pi, and that s(P,G) ≤ n. Define

L(P)
def
=
∑

i

s(Pi, Gi)

to be the sum over all s(Pi, Gi) at this state of our algorithm. L(P) is a random variable, but by
reasoning about the above cases we can reason about how L(P) changes in expectation. For any
subpath Pi, consider the induced subproblems after shortcutting through a randomly selected node
v. If v lands in case 1 nothing changes, and if v lands in case 4 we resolve the connectivity of Pi

and set s(Pi, Gi) to 0, as there is no remaining subproblem. In cases 2 and 3 however, we split Pi

into two pieces: call these Pi1 and Pi2. In these cases, Fineman is able to argue that a randomly
chosen node can ensure that the number of nodes which are related to either Pi1 or Pi2 decreases
by some constant factor c in expectation. Thus if f(x) is the expected shortcut length of a path Pi

with s(Pi, Gi) = x we can essentially guarantee by induction that f(x) ≤ maxa+b=cx f(a) + f(b).
Fineman achieves a constant c = 3/4: this gives a bound of f(n) ≤ O(n1/ log(8/3)). A sophisticated
refinement of this argument allows him to obtain his claimed Õ(n2/3) bound.

Our algorithm is almost identical to that of Fineman with one crucial modification: we pick
more than one shortcutter node before we recurse. Specifically, we shortcut from k random vertices
in the graph instead of only a single vertex. After shortcutting, we partition the vertices of the graph
into subsets, much like Fineman’s algorithm partitioned the vertices in ancestors, descendants, and
unrelated vertices. In our partitioning scheme, two vertices are in the same subset if and only if
they have the same relationship to each of the k shortcutters. As an example, two vertices u1 and
u2 are not in the same subset if say u1 is an ancestor of shortcutter v and u2 is a descendant of
shortcutter v. If we pick k shortcutter nodes from cases 2, 3, or 4 at a time and partition in the
way described, we are able to guarantee that the number of path-related nodes after we recurse
decreases by a factor of 2

k+1 in expectation after we recurse (Lemma 4.4). Although the path splits
into k+ 1 pieces after recursing, analyzing the resulting recursion in the same manner as Fineman
reveals that k = ω(1) will ensure our algorithm will shortcut paths to length n1/2+o(1) as desired.
Unfortunately, we are not able to guarantee this directly. The above analysis requires that in any
recursive level we pick either 0 or k path-relevant shortcutters in any recursive level; however we
do not know how to obtain such fine-grained control without knowing the path.

Intuitively, we would like to pick as many shortcutter vertices as possible while staying within our
nearly-linear work bound– the more shortcutters we pick, the more likely we are to obtain the 2

k+1
reduction in path-related nodes. However, we cannot simply pick the same number of shortcutters
in every level of recursion: because the number of path-related nodes goes down rapidly, picking
k shortcutters per level of recursion will eventually only enable us to pick a single path-relevant
shortcutter per round. Instead, we show that after each level of recursion the structure of the
subproblems is such that we can pick k times more shortcutters while still having nearly-linear
work. This, combined with a new inductive analysis in Lemma 4.6 to get around the fact that we
don’t have as precise control over the change in L(P) enables us to obtain our result.

8

Parallel Implementation: Our techniques as described give us a nearly-linear work algorithm
which constructs a nearly-linear number of shortcuts that reduce the diameter to n1/2+o(1). We
make our construction parallel in a similar fashion to Fineman. The key insight to [Fin18]’s paral-
lelization is to consider Dsearch-restricted searches; instead of computing the ancestor, descendant,
and unrelated sets with full graph traversals from a vertex v, Fineman computes collections of
Dsearch-ancestors and Dsearch-descendants. These are the set of ancestors (resp. descendants)
which are reachable from v at distance at most Dsearch. Now although these can be computed in
low depth, we cannot use these as a direct replacement for the full ancestor and descendant sets as
we can no longer guarantee an expected decrease in L(P).

Fineman gets around this issue with a new idea. Let G be a digraph. Assume that we could
efficiently find a set of edges F to add to G such that if s and t are nodes at distance D from each
other their distance in G∪F is at most D/5 w.h.p. Then for any nodes u, v at distance more than
D from each other we observe that their distance in G∪ F is halved w.h.p., i.e. this breaks up the
u−v shortest path into chunks of length D and observe that each subpath’s size falls by a constant
factor with constant probability. Thus by repeating this procedure on G∪F and iterating O(log n)
times we observe that every pair of reachable nodes u, v can be brought within distance D. Doing
this reduction only costs logarithmic factors in total work and parallel depth.

Fineman therefore modifies his recursion in the following way. In every level set Dsearch =
(κ+1)D, where κ is a random variable. Fineman then constructs the Dsearch-ancestors and Dsearch-
descendants, but he then defines the unrelated set to be set of all nodes which are not κD-ancestors
or κD-descendants. This modification duplicates all nodes at distance between κD and (κ + 1)D
from the shortcutter v, but now any path of length D is partitioned into two contiguous subpaths,
copies of which can be found in these three induced sets. Fineman argues that the expected increase
in the number of nodes can be controlled and that an analogous bound on L(P) in expectation can
be obtained as in the serial setting by picking and choosing the specific copies of subpaths to split
P into in the recursion. Combining these pieces allows him to obtain his claimed Õ(n2/3) depth
algorithm. Our approach (Section 5) will build off of these ideas with several modifications for our
new algorithm to leverage our inductive analysis.

Application to Distributed Reachability: Let G be a n-vertex directed graph with undirected
hop diameter D. We describe our approach for solving the single source reachability problem in
the CONGEST model on G. Our approach involves combining our parallel diameter reduction algo-
rithm with the approaches of Ghaffari and Udwani [GU15] and Nanongkai [Nan14]. The approach
(loosely) involves using Õ(α + n/α) rounds of communication in the CONGEST model to reduce
the problem to computing reachability on a set of vertices S of size α, with the difference that the
vertices must communicate via global broadcasting, as the vertices in S aren’t actually connected
in the original graph. We then simulate our parallel reachability algorithm on S. By analyzing our
parallel reachability algorithm, we can analogously get a bound on the number of rounds needed
to simulate it in the CONGEST model.

4 Sequential Algorithm

The main goal of this section is to prove Theorem 3 showing that for all k there is an Õ(mk)
time algorithm which adds Õ(nk) shortcuts which reduce the diameter to n1/2+O(1/ log k) w.h.p. In
Section 4.1 we present our algorithm for achieving this result. In Section 4.2 we bound the work of

9

the algorithm and the number of shortcuts it adds. In Section 4.3 we provide our main technical
lemma regarding diameter reduction and then in Section 4.4 we apply this lemma repeatedly to
prove that the algorithm reduces diameter, thereby proving Theorem 3.

4.1 Algorithm Description

Here we present our sequential short-cutting algorithm (see Algorithm 1). Before stating the algo-
rithm, we give some definitions and intuition for the quantities defined in the algorithm. Let G be
the graph that we input to our algorithm and consider the following.

• Inputs k, r: k is a parameter governing the speed that we recurse at. Intuitively, our
algorithm picks shortcutters so that graphs at one level deeper in the recursion are “smaller”
by a factor of k. This is made precise in Lemma 4.1. r ≤ logk n is the depth of recursion that
the algorithm is currently at, where we start at r = 0.

• Set S: S is the set of vertices from which we search and build shortcuts from.

• Set F : F is the final set of shortcuts we construct.

• Probability pr: At recursion depth r, for each vertex v ∈ V (G), we put v in S with
probability pr.

• Labels vDes, vAnc,✗: We want to distinguish vertices by their relations to vertices in S. There-
fore, when we search from a vertex v we add a label vDes to add vertices in RDes

G (v)\RAnc
G (v), a

label vAnc to all vertices in RAnc
G (v)\RDes

G (v), and a label ✗ to all vertices in RDes
G (v)∩RAnc

G (v).
The label ✗ should be understood as “eliminating” the vertex (since it is in the same strongly
connected component as v and we have shortcut through v already).

Our algorithm can be thought of as an extension of Fineman’s shortcut construction procedure.
In every iteration, we seek to add as many shortcutters as possible while staying within our claimed
work bound. Thus, in the first iteration we add Õ(k) shortcutters w.h.p. and perform Õ(mk) work.
We then partition the nodes into clusters such that any two nodes x and y which are in the same
Vi have exactly the same labels assigned to them by the shortcutters, none of which are ✗. We
will show how to implement this step later (Lemma 4.3). We then recursively apply the algorithm
within each cluster with a sampling probability that is a factor of k larger. We will show two
things. First, we show that the increase in sampling probability is offset by a decrease in the
number of related pairs such that the work done in an iteration is the same w.h.p. (Lemma 4.1
and Lemma 4.2). Second, we show that if we pick q shortcutters that are path related to a path P
we get an expected decrease in the number of path-related nodes to all the induced subproblems
of P (Lemma 4.4). This second fact enables us to replace the recursion in Fineman with one that
decreases more quickly (Lemma 4.6): this gives our depth improvement.

4.2 Work and Shortcut Bound

In this section we bound the work and number of shortcuts added by Algorithm 1. In any recursion
level of our algorithm there are two sources of work. The first source is from computing the requisite
labels vDes, vAnc, and ✗ for every node v we shortcut from. The second source comes from grouping
the nodes by these labels to generate the subproblems for the next level. We will bound both of

10

Algorithm 1 Seq(G, k, r). Takes a graph G, parameter k and recursion depth r ≤ logk n (starts
at r = 0). Returns a set of shortcut edges to add to G. Sequential diamater reduction algorithm.
n denotes the number of vertices at the top level of recursion.

1: pr ← min
{
1, 20k

r+1 logn
n

}
; ⊲ Begin level r of recursion.

2: S ← ∅;
3: for v ∈ V do
4: With probability pr do S ← S ∪ {v};
5: F ← ∅;
6: for v ∈ S do
7: for w ∈ RDes

G (v) do add edge (v,w) to F ;

8: for w ∈ RAnc
G (v) do add edge (w, v) to F .

9: for w ∈ RDes
G (v)\RAnc

G (v) do add label vDes to vertex w.

10: for w ∈ RAnc
G (v)\RDes

G (v) do add label vAnc to vertex w.

11: for w ∈ RDes
G (v) ∩RAnc

G (v) do add label ✗ to vertex w.

12: W ← {v ∈ V : v has no label of ✗}.
13: V1, V2, . . . , Vℓ ← partition of W such that x, y ∈ Vi if and only if x and y have the same exact

labels. ⊲ Vertices in the Vi have no label of ✗.
14: for 1 ≤ i ≤ ℓ do
15: F ← F ∪ Seq(G[Vi], k, r + 1)

16: return F

these sources of work by using a useful fact on the number of ancestors and descendants a node
has in the subproblem it belongs to in any level.

Lemma 4.1. Consider an execution of Seq(G, k, 0) on n-node m-edge G. With probability 1−n−10

in each recursive execution of Seq(G′, k, r) in line 15 of Algorithm 1 the following holds

RDes
G′ (v) ≤ nk−r and RAnc

G′ (v) ≤ nk−r for all v ∈ G′.

Proof. We prove by induction on r. Clearly the claim is true for the one recursive call at r = 0. We
will show that assuming the claim for all recursive calls with r = j the result holds for all r = j+1
problems with probability at least 1 − n−11. By applying union bound over all Õ(1) values of r
encountered in the algorithm implies the result.

Assume the result holds for every recursive execution with r = j. Let v ∈ V be any vertex, and
let G′ be the induced subgraph our algorithm is recursively called on with r = j+1 which contains
v. We prove the claim for RDes

G′ (v) as the claim for RAnc
G′ (v) follows by a symmetric argument.

Observe that the recursive call Seq(G′, k, j + 1) is ultimately called through an execution of
Seq(H, k, j) on some H ⊆ G. Let Q be the set of nodes in V (G′) which are descendants of v in
H. Now if |Q| = RDes

H (v) is less than nk−r we are done since the induced subgraphs we recurse on
only decrease in size. Thus assume |Q| ≥ nk−r.

Let Q1, Q2, · · · be the strongly connected components of Q, and consider any topological order
over these subsets of Q, where Qi precedes Qj whenever a path from Qi to Qj exists. Consider any
x, y ∈ Q where y precedes x in this order. We investigate the random choices in Seq(H, k, j) that
lead to G′’s formation. Observe that if we chose y as a shortcutter for H, G′ would not contain

11

x since v is in G′ yet x and v receive different labels from y: v is y’s ancestor but x is either a
descendant of or unrelated to y. Further, we observe that if we shortcut from y any node z in y’s
strongly connected component would also fail to be in G′: z would be given an ✗ label. Thus if
we shortcut the graph with any of the nk−j nodes which are earliest in the topological order of Q
(which are closest to v in H) we can guarantee that v in the G′ level has at most nk−j descendants.

Since we choose each node with probability 20kj logn
n we fail to do this with probability at most

(
1− 20kj log n

n

)nk−j

≤ e−20 logn = n−20.

By union bounding over all vertices in G′ and over all induced subgraphs encountered at level r = j
we see that our bound holds for all recursive calls with r = j with probability at least 1 − n−11.
The result follows.

We now bound the number of labels any vertex v receives in any recursive execution which
contains it. This will provide us with an elegant way to bound the total work of our procedure.

Lemma 4.2. Consider an execution of Seq(G, k, 0) on n-node m-edge G with k ≥ 2. With proba-
bility 1− 2n−10, every recursive execution Seq(G[Vi], k, r) assigns at most 80k log n labels to every
node w ∈ Vi in lines 9, 10, and 11, where ✗ labels assigned by different shortcutters are counted as
distinct labels.

Proof. Note that v receives a label from a shortcutter u only if u is related to v. By Lemma 4.1 we
have that at most 2nk−r nodes are related to v for all v in all executions of Seq with probability

1 − n−10. Since we pick nodes in the rth level with probability pr = 20kr+1 logn
n we see that the

probability that more than 80k log n labels are given to v, assuming that at most 2nk−r vertices
are related to v, is at most

Pr

[
B
(
2nk−r,

20kr+1 log n

n

)
> 80k log n

]
≤ exp

(
−40

3
k log n

)
≤ n−12

by Lemma 2.1. Thus v receives at most 80k log n labels with probability at least 1 − n−12. Union
bounding this over all nodes in all recursive executions of Seq implies the result.

Finally, we conclude this subsection by bounding the total work of Seq, as well as the number
of shortcut edges it adds.

Lemma 4.3. Consider an execution of Seq(G, k, 0) on n-node m-edge G with k ≥ 2. With proba-
bility 1− 2n−10 Seq(G, k, 0) runs in Õ(mk) time and adds Õ(nk) shortcuts.

Proof. By our given probability of failure, we may assume Lemma 4.1 and Lemma 4.2 hold deter-
ministically.

We begin by considering a single recursive execution Seq(G[Vi], k, r) generated by Seq. We
will bound the number of shortcuts added by this call and amount of work it performs before it
recurses in 15. We will then aggregate these bounds over all recursive executions and obtain our
final result. For convenience, let G[Vi] have n̂ nodes and m̂ edges.

We first bound the number of shortcuts added by Seq(G[Vi], k, r). By Lemma 4.2 we observe
that every recursive execution Seq(G[Vi], k, r) assigns Õ(k) labels to every w ∈ Vi. As each label

12

corresponds to a shortcut we add in lines 7 and 8, we see that Seq(G[Vi], k, r) adds Õ(k) edges to
every w ∈ Vi: this is Õ(n̂k) edges in total.

We now bound the work performed by Seq(G[Vi], k, r). Within a call to Seq, we perform work
in two places: within the loop in line 6 and when generating the partition in line 12. We bound
the contributions of these sources in order. First, observe that the loop in 6 can be implemented
by computing breadth-first searches forwards and backwards from every w in the shortcutter set S.
The amount of work needed to apply the labels and and the shortcuts themselves is clearly Õ(n̂k)
by the above argument, so we need only to bound the cost of running these traversals.

Observe that by 4.2 Seq(G[Vi], k, r) assigns Õ(k) labels to every w ∈ Vi. Now the number of
labels w receives is within a factor of two the number of times it is visited in searches. Thus w is
visited Õ(k) times in our traversals. Each time we encounter w in a traversal we perform a constant
amount of work for each edge incident upon it. Thus if δi(w) is the undirected degree of w in G[Vi],
the total work performed by Seq(G[Vi], k, r) is

Õ

∑

w∈Vi

kδi(w)

 = Õ(m̂k).

We finally bound the cost of generating the partition in line 12. We implement this in two parts.
First, we check each vertex to see whether it has an ✗ label and discard any vertex which does.
Next, we define an order over all possible combinations of labelings a node could receive. We then
sort the remaining nodes by this order: we can then trivially read off the partition. To implement
this order of labelings, pick an arbitrary ordering on the individual labels we distribute to nodes.
To compare two labeling schemes a and b we internally sort a and b by our arbitrary ordering, and
then determine the order amongst a and b lexicographically.

To implement this procedure, we first note that by Lemma 4.2 every node receives at most
Õ(k) labels. Determining which of the n̂ nodes have an ✗ label clearly takes O(n̂k) time. It is
straightforward to verify that comparing two labelings each with at most Õ(k) labels with this
scheme requires Õ(k) time: thus this partitioning can be found in Õ(n̂k) time using a mergesort.
Combining this with the previous bound we see that Seq(G[Vi], k, r) requires Õ(m̂k) time before
recursing.

We now obtain our final work and shortcut bounds by aggregating. If we consider the set of
recursive calls Seq(H, k, r) for any fixed value of r, we see that the calls are applied to a disjoint
collection of subgraphs of G. Thus, the total number of nodes in all of these subproblems is n, and
the total number of edges is at most m. Thus cost of performing all of these calls without recursing
is Õ(mk), and these calls collectively add Õ(nk) shortcuts. As there are at most Õ(1) different
values of r our claim follows.

4.3 Path Related Nodes and Main Helper Lemma

We now prove a significant helper lemma that will enable us to prove our diameter bound. We begin
with some context. Recall that the goal of our algorithm is, for any path P ∈ G with endpoints s
and t, to find a bridge for P . If in a recursive call to S we succeed in finding a bridge for P we add
the corresponding shortcuts to connect s and t with a length 2 path: there is nothing more for us
to do. If instead we do not find a bridge in S, we observe that P gets split amongst several different
node-disjoint subproblems: we then seek to find bridges for each of these subproblems separately.
Thus the collection of paths Pj represents the “residual” paths left for our algorithm to resolve: we

13

either pick a bridge and entirely resolve the path or split it into pieces. While this splitting of the
path may seem counterproductive, we show that the total number of path-related vertices in the
next recursion level summed over all Pi decreases significantly in expectation when we recurse. We
thus can ensure some form of progress whether we resolve the path or not.

In the below lemma, for a path P ′ in a subgraph G′ ⊆ G, we define s(P ′, G′) to be the number
of vertices in G′ that are related to P ′, as was done in Section 2.

Lemma 4.4. Let G be a digraph and let P be a path in G. Let T be a uniformly random subset
of V [G], where any node v ∈ V [G] is in T with some probability p. Define S = T ∩ RG(P), and
let |S| = t. Consider running lines 5-13 of Seq(G, k, r) (Algorithm 1) with this choice of S. Then
there exists a partition of P into exactly t + 1 (possibly empty) subpaths P1, P2, · · · , Pt+1 which
satisfies the following conditions:

1. If S contains a bridge for P , then all the Pj are empty.

2. If S contains no bridges for P , then the vertex disjoint union of the Pj is exactly P .

3. Each Pj is inside some G[Vf(j)] generated by Seq for a recursive execution for some f(j).

Further,

E|S|=t

[
∑

i

s(Pi, G[Vf(i)])

]
≤ 2

t+ 1
· s(P,G).

Here, the expectation is conditioned on the event that |S| = t; equivalently, we may take the expec-
tation over a uniformly random subset of t elements from RG(P).

Before we prove this lemma, we describe our general proof strategy. Depending on what S
is, we will construct a partition of P which satisfies our four constraints. If the set S contains a
bridge for P , our partition will be empty: P ’s endpoints are connected through the bridge. If S
does not contain any bridges, we simply consider all nonempty subpaths of P inside the recursively
generated subproblems induced by S: we will show that this partition does not form too many
pieces. To prove the expected decrease in the number of path-related nodes, we will explicitly use
the randomness of S. Consider any set C of ancestors and decendants of P . Let v be a vertex
inside C, and imagine shortcutting P with C − {v} and forming the subpaths by our partition.
Now consider the event that v is path-relevant for one of these induced subpaths. We will show
that there are at most two choices of v from C such that this happens. The result follows with
some computation.

Lemma 4.5. Let P be a path, and let A = {a1, a2, · · · , al+1} be ancestors (resp. descendants) of
nodes in P . If we pick ai at random from this collection and shortcut using the other l points, ai
is path-relevant for one of the subproblems with probability at most 1/(l + 1).

Proof. Index the path from head to tail 1, and let α(x) be the lowest-indexed node p such that
x � p. Assume node a ∈ A remains path-relevant after shortcutting through all the other ai. We
will show that a must satisfy the following:

• a is a strictly minimal element amongst the A: no ai can have a as an ancestor.

1We assign the head an index of 0.

14

• Amongst all ai which are unrelated to a, α(a) < α(ai).

For the first claim, assume for the sake of contradiction that some aj had a as an ancestor. Note
that since we shortcut from aj it labels a with either aAnc

j or ✗ depending on whether a an reach
ai. In the latter case we are done since we do not recurse on nodes which receive ✗. In the former
case we observe that all the ai can reach the path yet no node in the path can reach any ai since
the ai are all ancestors. Thus every node p ∈ P receives either no label from aj or a aDes

j label.
As a receives a different label from every node in P we conclude that it cannot be path-relevant to
any path subproblem in the next level of the recursion.

For the second claim, assume there existed aj which was unrelated to a such that α(aj) ≤ α(a).
This implies that if a is an ancestor to a node p ∈ P then aj is also an ancestor for p. Thus every
node in the path is either unrelated to a or a descendant of aj. As all of aj ’s descendants get a
label aDes

j yet a receives no label from aj , we conclude that a can only be placed in a subproblem
(if at all) with a piece of the path that it is unrelated to: thus a ceases to be path relevant.

We now show that there is at most one vertex amongst A which satisfies both of these condi-
tions. Assume for the sake of contradiction that both ai and aj would remain path relevant if we
shortcutted through A\ai and A\aj respectively. If these two vertices were related, then by the
first of our conditions the one which was an ancestor will not remain path-related; contradiction.
If the two vertices were unrelated, then α(ai) ≥ α(aj) or vice-versa: the vertex with the smaller
α value cannot remain path related by our second condition. Thus at most one node satisfies our
condition, and the claim follows.

An identical proof can be used in the case where the ai are all path descendants.

With this, we complete the proof of Lemma 4.4.

Proof of Lemma 4.4. We begin by defining the partition Pi. If S contains a bridge for P , we set
all the Pi = ∅: this clearly satisfies the conditions. If S does not contain a bridge, we look at the
induced subgraphs generated by Seq in a recursive call. Let Qi denote P intersected with Vi– the
part of P that lies in G[Vi]. We choose the Pj to be exactly those Qi which are nonempty. We need
only show that there are at most |S|+ 1 nonempty Pj : conditions 1, 2, 3 are trivial. Observe that
as S does not contain any bridges, every path-relevant shortcutter picked is either an ancestor or
a descendant of P . Thus every shortcutter s ∈ S induces a “cut” of P into two contiguous pieces
each assigned a different label from P . It is straightforward to verify that this implies that P can
be split into at most |S|+1 contiguous regions each internally with the same labels: this forms our
partition Pi.

We now turn our attention to the second fact. Consider picking a random point v from RG(P).
We will show that v is counted in some s(Pi, G[Vf(i)]) (that is, it remains path-relevant for some

subpath) with probability at most 2
t+1 . Let the points of S be s1, s2, · · · , st, and observe that the

t+1 points v, s1, · · · , st form a random sample from s(P,G). Amongst the s1, . . . st we chose, some
points are path ancestors, some are path descendants, and some are both (bridges). Assume that
there are α ancestors, δ descendants, and β bridges amongst the s(P,G) path related points. We
relabel the si as x1, · · · , xa, y1, · · · , yd, and z1, · · · , zb where the x are path ancestors, the y are path
descendants, and the z are path bridges. Here, among the si there are a ancestors, d descendants,
and b bridges. There are two cases: either we picked at least one path bridge (in which case the
endpoints of the path are linked and the path gets completely resolved) or we picked 0 bridge nodes.

15

The probability that we picked 0 bridge vertices is at most

(
1− β

s(P,G)

)t

.

Now as v is also a randomly chosen vertex: with probability p = α
s(P,G) it is an ancestor, with

probability q = δ
s(P,G) it is a descendant, and with probability g = β

s(P,G) it is a bridge. If we

condition on the event that none of the si were bridges, we observe that a ∼ B(t, p
p+q) and d ∼

B(t, p
p+q). Thus the probability v is path relevant is at most

E

[
p

a+ 1
+

q

d+ 1

]
+ g.

by simply applying Lemma 4.5 to the cases where v is an ancestor and v is a descendant separately
and union bounding the events. We now recall a useful fact: if X ∼ B(n, p), E[(X + 1)−1] =
1−(1−p)n+1

p(n+1) < 1
p(n+1) . By applying this fact we observe that the probability v is path relevant

conditioned on us never picking a bridge shortcut is at most 2
t+1 + g. Thus by multiplying by the

chance of us never picking a bridge, we see that the final probability v survives is at most

(
1− β

s(P,G)

)t(2

t+ 1
+ g
)
= (1− g)t

(2

t+ 1
+ g
)
.

This can be verified to be at most 2
t+1 , and the result follows.

4.4 Recursion and Inductive Diameter Bound

With this helper lemma in place, we now use it to prove our claimed diameter bound.

Lemma 4.6 (Inductive diameter bound). Consider running Seq(G, k, 0), and consider a recursive
execution Seq(G[V ′], k, r) with path P ′ inside G[V ′]. Let t ≤ logk n be the largest value of r ever
encountered in our recursive calls. If we complete our algorithm’s recursion from Seq(G[V ′], k, r),
the expected distance from head(P ′) to tail(P ′) after applying our computed shortcuts is at most
(4
√
2)r̄s(P ′, G′)1/2, where r̄ = logk n− r. 2

Proof. We proceed by induction on r with base case r = logk n. Note that at this stage we have
no more recursion to do: P ′ must consist of a single node and thus the distance from head(P ′) to
tail(P ′) is 0. Therefore, the result holds for r = logk n.

For our induction step, consider an inductive execution of algorithm Seq(G[V ′], k, r), and as-
sume the result for depth r + 1. Consider the subexecutions directly induced by Seq(G[V ′], k, r).
We shortcut P ′ in the following way. Say that our algorithm chose a set S of t vertices in RG(P

′)
as shortcutters. If one of the vertices in S is a bridge of P ′, we would simply traverse the bridge
and go from our path’s head to tail in 2 edges. Otherwise, by Lemma 4.4 we would split P ′ into
t+ 1 subpaths P ′

1, P
′
2, · · · , P ′

t+1 where

• The disjoint vertex union of the P ′
i is P ′.

2We note that the bound obtained here is weaker than the one obtained in the parallel setting. We give a less

tight analysis for this lemma in pursuit of a shorter proof.

16

• Each P ′
i is inside some G[Vf(i)] on which Seq executes Seq(G[Vf(i)], k, r+1) on for some f(i).

We can get from the head to tail of P ′ by inductively traversing each P ′
i in the order we

encounter them, while using t extra edges to go between these paths. Now in either case we use at
most t + 2 edges to traverse between the subpaths formed by our recursion. We additionally use
some number of edges to traverse from the tail to head of each of the subpaths we form. By our
inductive hypothesis, we see that the length of each P ′

i after applying our shortcuts satisfies

E
[
shortcut length of P ′

i

]
≤ (4
√
2)r̄−1

E[s(P ′
i , G[V ′

i])
1/2].

Thus if we condition on the fact that |S| = t the expected shortcut length of P ′ is at most

E

[
shortcut length of P ′

∣∣∣|S| = t
]
≤ t+ 2 +

t+1∑

i=1

(4
√
2)r̄−1

E

[
s(P ′

i , G[V ′
i])

1/2
∣∣∣|S| = t

]

≤ 2 +
t+1∑

i=1

(2
√
2)−1(4

√
2)r̄E

[
s(P ′

i , G[V ′
i])

1/2
∣∣∣|S| = t

]

as (4
√
2)r̄−1

E[s(P ′
i , G[V ′

i])
1/2] ≥ 1 for every i. We obtain

E

[
shortcut length of P ′

∣∣∣|S| = t
]
≤ 2 +

t+1∑

i=1

(2
√
2)−1(4

√
2)r̄E

[
s(P ′

i , G[V ′
i])

1/2
∣∣∣|S| = t

]

≤ 2 +

t+1∑

i=1

(2
√
2)−1(4

√
2)r̄E

[
s(P ′

i , G[V ′
i])
∣∣∣|S| = t

]1/2

≤ 2 + (2
√
2)−1(4

√
2)r̄
√
t+ 1E

[
t+1∑

i=1

s(P ′
i , G[V ′

i])
∣∣∣|S| = t

]1/2

≤ 2 + (2
√
2)−1(4

√
2)r̄
√
t+ 1

[
2

t+ 1
s(P ′, G[V ′])

]1/2

≤ 2 + 2−1(4
√
2)r̄s(P ′, G[V ′])1/2

≤ (4
√
2)r̄s(P ′, G[V ′])1/2,

where we used Jensen’s inequality in the second inequality, Cauchy-Schwarz in the third, and
Lemma 4.4 in the fourth. As our final bound is independent of the value of t, the result follows.

With this result in place, we can now prove our final theorem statement by setting r = 0 in
Lemma 4.6.

Theorem 5. Let G = (V,E) be a digraph with n nodes and m edges. Then with probability 1−2n−10

algorithm Seq(G, k, 0) runs in Õ(mk) time and constructs a set F of Õ(nk) shortcuts such that an
arbitrary path P is shortcut to length n1/2+O(1/ log k) w.h.p.

Proof. By Lemma 4.3 our claimed work and shortcut bound follow immediately. Let P be any
path from s to t. By Lemma 4.6 we observe that the expected length of P after applying our
constructed shortcuts is at most (4

√
2)logk n(s(P,G))1/2. As s(P,G) ≤ n, this equals n1/2+O(1/ log k)

as claimed.

17

We observe that Theorem 3 follows from this by calling Seq(G, k, 0) O(log n) times: the prob-
ability that any given pair s, t fails to have a path of length twice the bound in Theorem 5 between
them after c log n calls is at most 1/nc by Markov’s inequality. By union bounding over all n2 pairs
of points the claim follows.

5 Parallel Algorithm

In this section, we show how to extend the nearly linear work sequential shortuctting algorithm of
Section 4 into a work-efficient, low depth parallel algorithm. In Section 5.1 we extend the definitions
in Section 2 to the setting of distance limited searches and reachability, which we need throughout
the section. In Section 5.2 we state our main algorithms ParallelSC and ParallelDiam, and
give intuition for how to reason about them. In Section 5.3 we bound the total work, depth, and
number of shortcut edges added in the algorithm. Finally, in Section 5.4 we bound the diameter of
the resulting graph after the execution of our algorithms.

5.1 Notation for Distance Limited Searches

Digraph distances and distance-limited relations: Let G be a digraph. For vertices u, v ∈ V
define d(u, v) to be the length of the shortest path from u to v. We define d(u, v) = +∞ if
v 6∈ RDes

G (u), i.e. v is not reachable from u. We also define distance-limited reachability, which is a
natural extension of the notion of reachability defined in Section 2. For a parameter D, we define
the D-descendants, D-ancestors, and D-related vertices to v as

RDes
G (v,D) = {u ∈ V : d(v, u) ≤ D} and RAnc

G (v,D) = {u ∈ V : d(u, v) ≤ D}

and RG(v,D) = RDes
G (v,D) ∪RAnc

G (v,D).

We extend all this notation to subgraphs G′ of G in the natural way. Define dG′(u, v) to the
length of the shortest path from u → v only using only vertices and edges in G′. Then we define
RDes

G′ (v,D), RAnc
G′ (v,D), and RG′(v,D) as above. A vertex u is unrelated within distance D to a

vertex v (with respect to a subgraph G′) if u ∈ V [G′]\RG′(v,D).

Distance limited path relations. In Algorithm ParallelSC, our searches are limited to dis-
tance κD for some random parameter κ. Here we define distance limited path relations, analogous to
the vertex and path relations defined in Section 2. As before, we denote a path P = 〈v0, v1, . . . , vℓ〉,
where all the vi are vertices of G. We now make the following definitions. As the range the pa-
rameter κ is chosen from depends on r, the current recursion depth of the algorithm, our below
definitions also depend on r. This dependence is made explicit in lines 3 and 4 of Algorithm
ParallelSC.

Throughout, we say that u �s v if dG(u, v) ≤ s, i.e. there is a path of length at most s from u
to v. We say that u 6�s v if dG(u, v) > s.

• Fully path-related vertices. We say that vertex v is fully path-related if v ∈ RG(P, κ2r+1D).
In other words, v ∈ RG(P, κD) for all κ ∈ [κ2r+1, κ2r].

• Partially path-related vertices. We say that a vertex v is partially path-related if v ∈
RG(P, κ2rD). In other words, v ∈ RG(P, κD) for some κ ∈ [κ2r+1, κ2r].

18

We distinguish three types of fully or partially path-related vertices. The below definitions
depend on the parameter κ chosen.

• κD-Descendants. We say that a vertex v is a κD-descendant of the path P if v ∈
RDes

G (P, κD)\RAnc
G (P, κD). Note that then we have that v0 �(κ+1)D v and v 6�κD vℓ.

• κD-Ancestors. We say that a vertex v is an κD-ancestor of the path P if it is the case that
v ∈ RAnc

G (P, κD)\RDes
G (P, κD). Note that then we have that v0 6�κD v and v �(κ+1)D vℓ.

• κD-Bridges. We say that a vertex v is a κD-bridge of the path P if v ∈ RDes
G (P, κD) ∩

RAnc
G (P, κD). Note that then we have that v0 �(κ+1)D v and v �(κ+1)D vℓ.

Now, we define the following quantities and briefly explain their importance in Algorithm 2.
Further details are explained in the paragraph below (explanation of Algorithm 2 and Algorithm 3).
Let G be the n-vertex m-edge digraph which we input, with vertex set V and edge set E.

• Inputs k, r, rfringe: The input k denotes the speed that our algorithm recurses at, and intu-
itively digraphs one level lower in the recursion are “smaller” by a factor of k. This is made
precise by Lemma 5.1. The level r ≤ logk n denotes the level of recursion the algorithm is at.
Additionally, we have an inner recursion level rfringe ≤ log n for the “fringe vertices” (defined
below). For each level of recursion r, it has at most log n inner levels of recursion.

• Set S: S is the set of vertices from which we search and build shortcuts from.

• Set F : F is the final set of shortcuts we construct.

• Search scale / distance D: The parameter D denotes the scale on which the algorithm is
runs breadth first searches. Our main claim is that through one call of ParallelSC(G, k, 0, 0)
an arbitrary path in G of length D will be shortcut to expected length D

10 (Lemma 5.8).

• Parameters κi, κ: In the r-th recursion level, we randomly choose the parameter κ ∈
[κ2r+1, κ2r] to obtain our search radius κD for our breadth first searches.

• Probability pr: At recursion depth r, for each vertex v ∈ V (G), we put v in S with
probability pr.

• Labels vDes, vAnc,✗: We want to distinguish vertices by their relations to vertices in the
set S. Therefore, when we search from a vertex v we assign a label vDes to add vertices in
RDes(v,D)\RAnc(v,D), label vAnc to all vertices in RAnc(v,D)\RDes(v,D), and label ✗ to
all vertices in RDes(v,D) ∩ RAnc(v,D). The label ✗ should be understood as “eliminating”
the vertex (since it is in the same strongly connected component as v and we have shortcut
through v already).

5.2 Main Algorithm Description

Overview of Algorithm 2. Algorithm 2 is similar to Algorithm 1. All parts of Algorithm 1
can be implemented in low parallel depth except for the breadth first searches from the vertices
in S (lines 9 to 15). To resolve this, a natural idea is to limit the distance of the breadth first
searches toD, whereD denotes the diameter bound given by Lemma 4.6. Running these incomplete
searches introduces issues in the analysis though. To get around this, we follow an approach similar

19

Algorithm 2 ParallelSC(G, k, r, rfringe). Takes a digraph G, parameter k, recursion depth
r ≤ logk n (starts at r = 0), and inner fringe node recursion depth rfringe ≤ log n. Returns a set of
shortcut edges to add to G. n denotes the number of vertices at the top level of recursion, not the
number of vertices in G.

1: pr ← min
(
1, 10k

r+1 logn
n

)
.

2: S ← ∅.
3: κ2r+1 ← 106k2 log5 n

(
1 + 1

4 logn

)−2r−1
and κ2r ← 106k2 log5 n

(
1 + 1

4 logn

)−2r
.

4: Choose κ ∈ [κ2r+1, κ2r] uniformly at random. ⊲ Picking a random search distance

5: D ← 100 ·
√
2
logk n · n 1

2 · log2 n.
6: for v ∈ V do
7: With probability pr do S ← S ∪ {v}.
8: F ← ∅.
9: for v ∈ S do

10: for w ∈ RDes(v, (κ + 1)D) do add edge (v,w) to F .

11: for w ∈ RAnc(v, (κ + 1)D) do add add (w, v) to F .

12: for w ∈ RDes(v, κD)\RAnc(v, κD) do add label vAnc to vertex w.

13: for w ∈ RAnc(v, κD)\RDes(v, κD) do add label vDes to vertex w.

14: for w ∈ RDes(v, κD) ∩RAnc(v, κD) do add label ✗ to vertex w.

15: V ring
v ← R(v, (κ + 1)D)\R(v, (κ − 1)D).

16: F ← F ∪ ParallelSC(G[V ring
v], k, r, rfringe + 1). ⊲ Recursion on fringe nodes

17: W ← {v ∈ V : v has no label of ✗}.
18: V1, V2, . . . , Vℓ ← partition of W such that x, y ∈ Vi iff x and y have exactly the same labels. ⊲

Vertices in the Vi have no label of ✗.
19: for 1 ≤ i ≤ ℓ do
20: F ← F ∪ ParallelSC(G[Vi], k, r + 1, 0).

21: return F

Algorithm 3 ParallelDiam(G, k). Takes a digraph G = (V,E), parameter k. Modifies digraph
G. Parallelizable diameter reduction algorithm.

1: for i = 1 to 10 log n do
2: for j = 1 to 10 log n do
3: Sj ← ParallelSC(G, k, 0, 0), aborting if the work or shortcut edge count exceeds 10

times the bound in Lemma 5.7.
4: E(G)← E(G) ∪

(⋃
j Sj

)

20

to [Fin18] and perform some additional computation on the fringe of our breadth first searches.
Specifically, we choose a random integer κ in the range [κ2r+1, κ2r] (think of these as parameters
which are poly(log n, k)), and search from a vertex v to distance approximately κD. Then, we call
the vertices in the set R(v, (κ + 1)D)\R(v, (κ − 1)D) the fringe vertices. We chose κ randomly to
ensure that the expected number of fringe vertices is sufficiently small. We then recurse on the
fringe vertices, which is done in line 16 of Algorithm 2.

In addition, we assign labels based on reachability within distance κD. As we show later in the
section, the analysis as done in Section 4 can be modified to tolerate these changes and obtain a
similar result.

We would like to note some differences between the ways fringe vertices are handled in our
algorithms compared to those in [Fin18]. One difference is that we directly handle fringe vertices
by recursing on only that set, while in Fineman’s algorithm the fringe vertices are lumped into
the recursion on ancestor sets. The reason for the difference is that our way of partitioning our
vertex set before recursing is more involved. Additionally, in our algorithm, we explicitly track
the depth of recursion on fringe vertices (parameter rfringe) inside our algorithm. We must do this
as our algorithm requires good control on the number of ancestors and descendants of a vertex
(Lemma 4.1), and we do not obtain the required bound on the number of ancestors or descendants
when we recurse on fringe vertices. Additionally, we must ensure that rfringe ≤ log n so that our
algorithm still has low parallel depth.

Explanation of Algorithm 2 and Algorithm 3. Here, we give a detailed description of what
each part of Algorithm 2 and Algorithm 3 is doing. Lines 1 and 2 of Algorithm 2 are simply
initializing the set of vertices we search from S to the empty set and picking the probability pr for
which v ∈ S. In line 5, we choose our search scale D. This is chosen to be a constant factor larger
than the bound given in Lemma 4.6 and the analogous Lemma 5.8. In lines 3 and 4, we define the
parameters κ ∈ [κ2r+1, κ2r], which will define our search radius κD. Note that κ0 ≥ κ1 ≥ κ2 ≥ · · ·
and that κi ≥ 1

2κ0 for all i, as r ≤ logk n. This way, the search radius is decreasing with every
recursion level. In lines 6 and 7, we are choosing the set of vertices to breadth first search from,
and we are adding them to S. In line 8, we initialize the set of shortcut edges we are going to
eventually add to the empty set.

In lines 10 and 11, we are adding all the shortcut edges through a vertex v ∈ S. In lines 12 to
14 we are applying the ancestor, descendant, and “eliminated” labels to other vertices. In line 16,
we are running a recursion on the fringe vertices in our search from v. Note that we have increased
rfringe to rfringe + 1 but have kept the parameter r the same.

In lines 17 and 18, we are processing the labels assigned to the vertices. We first remove from
consideration all vertices which have a ✗ label, and then we partition the remaining ones into groups
based on matching labels. In lines 19 and 20 we recurse on these groups we have created. Note
that we have increased r to r + 1 and reset rfringe to 0.

In Algorithm 3 we are simply running ParallelSC for multiple iterations. Specifically, we
can guarantee that the expected head to tail distance of any path of original length at most D is
now at most D

10 . Running this O(log n) times ensures that any fixed path of length D has been
shortcut to length D

5 with high probability. Now, if we run this procedure O(log n) times, it is easy
to see that any path’s head to tail distance will get reduced to D with high probability: split this
path into polynomially many paths of length at most D and note that with high probability each
of these paths’ lengths gets reduced by a constant factor. Thus the original path’s length falls by

21

a constant factor, and we continue to do this until the original path’s length becomes at most D.

How to reason about the randomness. In order to reason about the randomness used in
sampling κ and S, we should imagine that the during an execution of ParallelSC(G′, k, r, rfringe)
the algorithm first samples κ before doing anything else. After sampling κ, we then know precisely
which vertices are κD-descendants, κD-ancestors, and κD-bridges with respect to the specific path
P that we are analyzing. Given this, we can essentially proceed forwards with similar arguments
to those in Section 4.

5.3 Shortcut and Work Bound

In this section, we prove many lemmas which help us bound the total amount of work and shortcut
edges added. We attempt to make the bounds with high probability whenever possible, but some
are in expectation.

We start by proving an analogue of Lemma 4.1.

Lemma 5.1. Consider an execution of ParallelSC(G, k, 0, 0) on n-node m-edge digraph G. With
probability 1 − n−4 in each recursive execution of the form ParallelSC(G′, k, r, rfringe) of Algo-
rithm 2 the following holds:

|RDes
G′ (v, κ2rD)| ≤ nk−r and |RAnc

G′ (v, κ2rD)| ≤ nk−r for all v ∈ V (G′) .

Proof. We proceed by induction. The base case r = rfringe = 0 is clear. All recursive calls are one
of the following forms: let G′ be a digraph in which we made a call to ParallelSC(G′, k, r, rfringe).
We consider the cases of a recursive call to ParallelSC(G′[V ring

v], k, r, rfringe + 1) and a recursive
call to ParallelSC(G′[Vi], k, r+1, 0) separately (line 16 and 20). In the former case, the claim is
clear, as in our recursive call to ParallelSC(G′[V ring

v], k, r, rfringe+1) the parameter r stays fixed,
and the digraph G′ already satisfied

RDes
G′ (v, κ2rD) ≤ nk−r and RAnc

G′ (v, κ2rD) ≤ nk−r for all v ∈ V (G′) .

Now we consider the case referring to G′[Vi]. Consider a vertex v ∈ Vi, and let κ be the pa-
rameter chosen by the algorithm. Let the vertices in RDes

G′ (v, κD) be x1, x2, . . . , xM , where M =
|RDes

G′ (v, κD)|. For 1 ≤ i ≤M , define

Si = {xj : 1 ≤ j ≤M,xi ∈ RDes
G′ (xj, κD) or xi unrelated within distance κD to xj}.

In other words, Si consists of all vertices xj such that xi is a κD-descendant of xj or xi is unrelated
within distance κD to xj .

We now show that if xj is in the shortcutter set S and xj ∈ Si, then xi /∈ RDes
G′[Vi]

(v, κD),
i.e. is not a κD-descendant of v in the recursive subproblem induced. Indeed, v would receive a
xAnc
j label, while xi receives either a xDes

j label, unrelated label, or ✗. Because κ2r+2 ≤ κ, then

xi /∈ RDes
G′[Vi]

(v, κ2r+2D) also. Now, if |Si| ≥ nk−r−1/2, then the probability that no xj ∈ Si is

chosen to be in the shortcutter set S is at most (1 − pr)
|Si| ≤ n−5 by our choice of pr. A union

bound over all i gives that the failure probability is bounded by n−4.
To finish the proof, we argue that the number of indices i with |Si| < nk−r−1/2 is at most

nk−r−1. Define
Y = {1 ≤ i ≤M : |Si| < nk−r−1/2}.

22

Note that for all 1 ≤ i, j ≤M , either xi ∈ Sj or xj ∈ Si. Therefore, some i ∈ Y satisfies |Si| ≥ |Y |
2 ,

as xi ∈ Si also, so |Y | ≤ 2|Si| ≤ nk−r−1 as desired.

As we must recurse separately on fringe vertices (hence redoing the computation on them), we
need to be able to control the number of fringe vertices. Therefore, it is natural to bound the
expected number of times a fixed vertex is a fringe vertex for some breadth-first search.

Lemma 5.2. Consider an execution of ParallelSC(G, k, 0, 0) on n-node m-edge digraph G and a
recursive execution of the form ParallelSC(G′, k, r, rfringe). Let u ∈ V (G′). The expected number
of times u is in a recursive fringe subproblem, i.e.

u ∈ RG′(v, (κ + 1)D))\RG′(v, (κ − 1)D))

for some v ∈ S (line 16), is at most 1
1000k log3 n

.

Proof. For a vertex v ∈ RG′(u, κ2rD), the probability that v ∈ S and u ∈ RG′(v, (κ+1)D))\RG′ (v, (κ−
1)D)) over a random κ ∈ [κ2r+1, κ2r] is clearly at most pr· 2

κ2r−κ2r+1
. Also, we have that |RG′(u, κ2rD)| ≤

2n
kr with high probability by Lemma 5.1, so the expected number of times u is in a fringe subproblem
is at most

pr ·
2

κ2r − κ2r+1
· 2n
kr
≤ 1

1000k log3 n

from our choice of κ2r, κ2r+1, pr.

Now, we can show that the total size of all the digraphs we process during the algorithm doesn’t
increase much between levels of recursion. Additionally, at deep fringe recursion levels (for large
rfringe) exponentially few vertices are processed.

Lemma 5.3 (Expected total size bounds). Consider an execution of ParallelSC(G, k, 0, 0) on
n-node m-edge digraph G. For any recursion depth r ≤ logk n and fringe recursion depth rfringe we
have that:

• The expected value of the total number of vertices of the digraphs G′ in all recursive executions

ParallelSC(G′, k, r, rfringe) is at most n ·
(
1 + 1

logn

)r
· 1

(2 logn)r
fringe .

• The expected value of the total number of edges of the digraphs G′ in all recursive executions

ParallelSC(G′, k, r, rfringe) is at most m ·
(
1 + 1

logn

)r
· 1

(2 logn)r
fringe .

Proof. We focus on proving the first point, as the second is analogous. The first point follows
directly by induction from a combination of Lemma 5.1 and Lemma 5.2. Specifically, we separate
the cases rfringe > 0 and rfringe = 0. In the former case, note that this must result as a recursive call
of the form ParallelSC(G′′[V ring

v], k, r, rfringe), where we also made a recursive call of the form
ParallelSC(G′′, k, r, rfringe − 1). By induction and Lemma 5.2, we know that the expected total
number of vertices in all recursive calls to ParallelSC(G′′[V ring

v], k, r, rfringe) is at most

1

1000k log3 n
· n ·

(
1 +

1

log n

)r

· 1

(2 log n)rfringe−1
≤ n ·

(
1 +

1

log n

)r

· 1

(2 log n)rfringe

as desired. We would like to note that the value 1
1000k log3 n

is much smaller than we need to prove

Lemma 5.3; instead it is needed in Lemma 5.9 below.

23

In the case rfringe = 0, it must have resulted in a recursive call to ParallelSC(G′′[Vi], k, r+1, 0)
for some digraph G′′, where we also made a recursive call of the form ParallelSC(G′′, k, r, rfringe).
As the Vi form a partition of V (G′′), we can see that the total number of vertices over all calls to
ParallelSC(G′′[Vi], k, r + 1, 0) for such G′′ and Vi is at most

∑

rfringe≥0

n ·
(
1 +

1

log n

)r

· 1

(2 log n)rfringe
≤ n ·

(
1 +

1

log n

)r+1

as desired.

Because exponentially few vertices are processed at large fringe recursion depths, we can guar-
antee that with high probability that rfringe ≤ log n always.

Corollary 5.4 (Fringe depth is at most logarithmic). Consider an execution of ParallelSC(G, k, 0, 0)
on an n-node m-edge digraph G. With probability at least 1 − n−10 we make no recursive calls of
the form ParallelSC(G′, k, r, rfringe) and rfringe > log n.

Proof. The expected value of the total number of vertices of the digraphs G′ in all calls to
ParallelSC(G′, k, r, rfringe) where rfringe > log n is at most

logk n∑

r=0

∑

rfringe>logn

n ·
(
1 +

1

log n

)r

· 1

(2 log n)rfringe
≤ 3n

(log n)logn
≤ 1

n10

by Lemma 5.3. Thus, the claim follows.

Additionally, we can bound the total sizes of all digraphs we process during the algorithm.

Corollary 5.5 (Total size bound). Consider an execution of ParallelSC(G, k, 0, 0) on an n-node
m-edge digraph G.

• The expected value of the total number of vertices in the digraphs G′ in all recursive calls to
ParallelSC(G′, k, r, rfringe) for some r ≤ logk n, r

fringe is at most 3n log n.

• The expected value of the total number of edges in the digraphs G′ in all recursive calls to
ParallelSC(G′, k, r, rfringe) for some r ≤ logk n, r

fringe is at most 3m log n.

Proof. Note that the total number of vertices over all the G′ in recursive calls is at most

logk n∑

r=0

∑

rfringe≥0

n ·
(
1 +

1

log n

)r

· 1

(2 log n)rfringe
≤ 3n log n

by Lemma 5.3. The edge bound follows similarly.

We now proceed towards proving our ultimate bounds on expected total work and expected
number of shortcut edges added.

Lemma 5.6. Consider an execution of ParallelSC(G, k, 0, 0) on an n-node, m-edge digraph G.
Consider a recursive execution of ParallelSC(G′, k, r, rfringe). For all integers κ ∈ [κ2r+1, κ2r],
with probability 1 − n−10 over the choice of S we have that for all vertices v ∈ V (G′), the number
of vertices u ∈ S such that v ∈ RG′(u, κD) is at most 50k log n.

24

Proof. Fix v ∈ V (G′). By Lemma 5.1, the number of u for which v ∈ RG′(u, κD) is at most
2nk−r. Therefore, the expected number of u ∈ S for which v ∈ RG′(u, κD) is at most pr · 2nk−r ≤
20k log n. By a Chernoff bound (Lemma 2.1), we have that the number of vertices u ∈ S such that
v ∈ RG′(u, κD) is at most 50k log n with probability at least

1− exp (−11k log n) ≥ 1− n−11.

The claim follows by union bound.

Lemma 5.7 (Work and depth bound). An execution of ParallelDiam(G, k) on an n-node, m-
edge digraph G can be implemented to do Õ(mk+nk2) total work in expectation, add Õ(nk) shortcut

edges in expectation, and have parallel depth Õ(poly(k)
√
2
logk n

n
1
2) with high probability.

Proof. It suffices to show that an execution of ParallelSC(G, k, 0, 0) on an n-node, m-edge
digraph G can be implemented to do Õ(mk) total work in expectation, add Õ(nk) shortcut

edges in expectation, and have parallel depth Õ(poly(k)
√
2
logk n

n
1
2) with high probability. We

show this in the two paragraphs below. Then the lemma follows as all digraphs G that we call
ParallelSC(G, k, 0, 0) on during an execution of ParallelDiam(G, k) will have Õ(m+nk) edges
with high probability.

Work bound. By Lemma 5.6, it is clear that the number of shortcut edges added is within a
multiplicative Õ(k) of the total number of vertices in all digraphs in all recursive subproblems with
high probability, hence is Õ(nk) in expectation by Lemma 5.3.

Similarly, the total work from the breadth first searches is within a multiplicative Õ(k) of
the total number of edges in all digraphs in all recursive subproblems, hence is Õ(mk) in ex-
pectation by Lemma 5.3. The remaining nontrivial work comes from line 18. We implement
line 18 in the following manner. Consider a recursive execution of the algorithm on a digraph
ParallelSC(G′, k, r, rfringe). We put an arbitrarily total ordering on the labels vAnc and vDes, and
for each vertex u ∈ V (G′) we assume that its set of labels, none of which are ✗, are sorted according
to this total ordering. Now, we sort all vertices u ∈ V (G′) that have no label which is ✗ lexico-
graphically by their set of labels using Cole’s mergesort algorithm [Col93], and then group them
into the sets Vi based on contiguous groups that have the same label. Each comparison takes work
Õ(k) with high probability as every vertex u has Õ(k) labels with high probability by Lemma 5.6.
The total work of the merge sort is thus Õ(k|V (G′)|) as desired.

Depth bound. Clearly, the breadth first searches (lines 9 to 15) can be implemented in Õ(κ0D) =

Õ(poly(k)
√
2
logk n

n
1
2) parallel depth by our choice of κ0. Line 18 can be implemented in parallel

depth Õ(k) via Cole’s merge sort [Col93] as described in the above paragraph.

5.4 Diameter Bound after Shortcutting

In this section we show the analogue of Lemma 4.6.

Lemma 5.8 (Inductive parallel diameter bound). Perform an execution of ParallelSC(G, k, 0, 0)
on an n-node, m-edge digraph G. Consider a recursive execution of ParallelSC(G′, k, r, rfringe),

25

with all shortcut edges added. For any path P ⊆ G′ with length at most D, the expected distance
from head(P) to tail(P) using edges in G′ and shortcut edges is at most

5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

s(P,G′)
1
2 ,

where r̄ = logk n − r, and s(P,G′) is the number of partially path related vertices to P in G′, i.e.
s(P,G′) = |RG′(P, κ2rD)|.

Note that we have that

5(logk n+ 1)

(√
2 +

1

2 log n

)logk n

n
1
2 ≤ 10 log n

√
2
logk n

n
1
2 ≤ D

10
,

so that any path of lengthD will be shortcut to expected length D
10 in one run of ParallelSC(G, k, 0, 0).

Setup for proof of Lemma 5.8. An execution of ParallelSC(G′, k, r, rfringe) will generate
many recursive subproblems, each of the form ParallelSC(G′[V ring

v], k, r, rfringe + 1) or
ParallelSC(G′[Vi], k, r + 1, 0). These recursive subproblems (other than the fringe vertices) all
involve disjoint sets of vertices, hence the path P that we are trying to analyze gets “split” into
subpaths when we look at the recursive subproblems. Our next claim gives structure on how we
can split up the path P into subpaths, which are contained in our various subproblems. Here, we
define s(P,G′) to be the number of partially path-related vertices to P in G′.

Lemma 5.9 (Splitting up a path). Consider the setup described in the above paragraph and
Lemma 5.8. Let κ be such that κ2r+1 ≤ κ ≤ κ2r and S ⊆ RG′(P, κD) be the set of shortcut-

ters. There exists paths PS,κ
i (possibly empty) for 1 ≤ i ≤ |S| + 1 and PS,κ,fringe

i (possibly empty)
for 1 ≤ i ≤ |S| such that

1. If a vertex u ∈ S is a κD-bridge, then all PS,κ
i and PS,κ,fringe

i are empty.

2. If no vertex u ∈ S is a κD-bridge, then the vertex disjoint union of all PS,κ
i for 1 ≤ i ≤ |S|+1

and PS,κ,fringe
i for 1 ≤ i ≤ |S| is exactly P .

3. Each PS,κ
i is inside Vai for some index ai.

4. Each PS,κ,fringe
i is a subset of V ring

ui for some vertex ui ∈ S (line 16).

Additionally, we have that

Eκ,|S|=t

[
t+1∑

i=1

s(PS,κ
i , G′[Vai])

]
≤ 2

t+ 1
s(P,G′) (1)

and

Eκ,S

[
t∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

]
≤ 1

1000k log3 n
s(P,G′), (2)

where Eκ,|S|=t refers first selecting κ ∈ [κ2r+1, κ2r] uniformly at random and then picking the short-
cutter set S as a random subset of RG′(P, κD) of size exactly t (as opposed to the way S is selected in
Algorithm 2). Eκ,S refers to first selecting κ ∈ [κ2r+1, κ2r] uniformly at random and then selecting
S as in Algorithm 2, where every vertex u ∈ V (G′) is in S with probability pr.

26

Here, we assert that S ⊆ RG′(P, κD) as searching to distance κD from vertices u 6∈ RG′(P, κD)
does not affect the path P .

Proof. We describe a process for constructing the PS,κ
i and PS,κ,fringe

i , and then verify that this
construction satisfies all the necessary constraints.

If a vertex u ∈ S is a κD-bridge, then we set all the PS,κ
i and PS,κ,fringe

i to be empty. Otherwise,
first consider the case where u ∈ S is a κD-descendant. Let v0 � v1 � · · · � vℓ be the vertices on
the path P . Define

bot(u) = min{i : 0 ≤ i ≤ ℓ, vi ∈ RAnc
G′ (u, κD)} and

top(u) = min
(
bot(u) + 1,max{i : 0 ≤ i ≤ ℓ, vi ∈ RAnc

G′ (u, (κ− 1)D)}
)

and top(u) = bot(u) + 1 in the case that the set {i : 0 ≤ i ≤ ℓ, vi ∈ RAnc
G′ (u, (κ − 1)D)} is empty.

Define

W top(u) = {vi : 0 ≤ i < top(u)},W bot(u) = {vi : bot(u) < i ≤ ℓ},W fringe(u) = {top(u) ≤ i ≤ bot(u)}.

In particular, it is easy to verify thatW fringe(u) ⊆ V fringe
u . For the case where u ∈ S is a κD-ancestor,

define
top(u) = max{i : 0 ≤ i ≤ ℓ, vi ∈ RDes

G′ (u, κD)} and
bot(u) = max

(
top(u)− 1,min{i : 0 ≤ i ≤ ℓ, vi ∈ RDes

G′ (u, (κ − 1)D)}
)
,

where bot(u) = top(u)− 1 in the case that the set {i : 0 ≤ i ≤ ℓ, vi ∈ RDes
G′ (u, (κ− 1)D)} is empty.

We can now define W top(u),W bot(u), and W fringe(u) analogously.
Now, our goal is to define a set of natural subpaths of P which are inside various Vi (line 18).

Specifically, for a subset T ⊆ S, we define

WT =

(
⋂

u∈T

W top(u)

)
∩

⋂

u∈S\T

W bot(u)

 .

WT was defined so that it is inside some subset Vi (line 18) and is a subpath of P . To show that
WT is contained inside some Vi it suffices to show that all vertices in W top(u) receive the same label
from u (and by symmetry the same holds for W bot(u)). In the case where u is a κD-descendant of
P , it is easy to verify that W top(u) ⊆ RAnc

G′ (u, κD), and that all vertices in W bot(u) are unrelated
to u. In the case where u is a κD-ancestor, it is easy to verify that W bot(u) ⊆ RDes

G′ (u, κD), and
that all vertices in W top(u) are unrelated to u. This shows that WT always lies inside Vi for some
i.

It is easy to check that the number of nonempty WT over subsets T ⊆ S is at most |S| + 1.
We denote these sets W1,W2, . . . ,W|S|+1. For simplicity, label the paths W fringe(u) for u ∈ S as
W|S|+2, . . . ,W2|S|+1. By definition, we see that P itself is the (not necessarily disjoint) union of
W1,W2, . . . ,W2|S|+1 . Now, one can easily check that for any paths W1,W2, . . . ,W2|S|+1 whose
union is P , then there are subpaths Z1, Z2, . . . , Z2|S|+1 (possibly empty) such that Zi ⊆ Wi and
that the vertex disjoint union of the Zi is P .

Now, we define the PS,κ
i as the subpaths Zj for 1 ≤ j ≤ |S|+1, and define the PS,κ,fringe

i as the
subpaths Zj for |S| + 2 ≤ j ≤ 2|S| + 1, which then by definition were subpaths of W fringe(u) for
some u. Now we verify that these choices satisfy the conditions of Lemma 5.9.

27

Construction satisfies item 1. This is by definition (see the first sentence of the proof).

Construction satisfies item 2. We have defined the Zj so that their vertex disjoint union is

P , and each of the PS,κ
i and PS,κ,fringe

i is one of the Zj or empty.

Construction satisfies item 3. The definition

WT =

(
⋂

u∈T

W top(u)

)
∩

⋂

u∈S\T

W bot(u)

corresponds to assigning the labels to vertices V (G′) and partitioning into sets Vi. As each PS,κ
i

was a subpath of some WT , the claim follows.

Construction satisfies item 4. Each PS,κ,fringe
i is a subpath of one ofW|S|+2, . . . ,W2|S|+1, which

were each W fringe(u) for some u. We have noted that W fringe(u) ⊆ V ring
u .

Construction satisfies Eq. (2). Note that

Eκ,S

[
t∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

]
≤ Eκ,S

[
∑

v∈S

∣∣V ring
v ∩RG′(P, κ2rD)

∣∣
]

(3)

as no vertices outside of RG′(P, κ2rD) can become path related. The right hand side of Eq. (3) is
counting for every vertex u in RG′(P, κ2rD) the expectation over the choices of κ, S of the number
of times that u is in a fringe subproblem, i.e. u ∈ V ring

v for some v ∈ S. By applying Lemma 5.2,
we can see that this expression in Eq. (3) is with high probability at most

Eκ,S

[
∑

v∈S

∣∣V ring
v ∩RG′(P, κ2rD)

∣∣
]
≤ 1

1000k log3 n
|RG′(P, κ2rD)| = 1

1000k log3 n
s(P,G′).

Construction satisfies Eq. (1). The proof essentially follows the same shape as Lemma 4.4
and Lemma 4.5. Our main claim is the following.

Claim 5.10. Consider an arbitrary subset of vertices {u1, u2, · · · , ut+1} ⊆ RG′(P, κD). Then there
are at most 2 indices 1 ≤ h ≤ t+ 1 such that setting S = {uj : j 6= h} and running the procedure

described so far in the proof of Lemma 5.9 to produce the sets PS,κ
i and PS,κ,fringe

i results in uh still

being path related in a non-fringe subproblem, i.e. uh ∈ RG′[Vai]
(PS,κ

i , κD) for some 1 ≤ i ≤ t+ 1.

Now we explain why Claim 5.10 implies Eq. (1). Intuitively, in Eq. (1), we can think of choosing
the set S with |S| = t instead as first uniformly randomly choosing a subset S′ ⊆ RG′(P, κD) with
|S′| = t + 1 and then choosing uniformly randomly choosing S ⊆ S′ with |S| = t. We then apply
Claim 5.10. Formally, we have the following, where 1(S, u) is the function evaluating to 1 when

28

u ∈ RG′[Vai]
(PS,κ

i , κD) for some 1 ≤ i ≤ t+ 1 and 0 otherwise.

Eκ,|S|=t

[
t+1∑

i=1

s(PS,κ
i , G′[Vai])

]

= Eκ,|S|=t

∑

u∈RG′ (P,κD)

1(S, u)

≤ s(G′, P) · Eκ,|S′|=t+1ES⊂S′

|S|=t

[
1(S′\S, S)

]

≤ 2

t+ 1
s(G′, P)

by Claim 5.10 as desired. Between the second and third lines we have used linearity of expectation
on the inner sum and symmetry. For the remainder of this proof, we focus on proving Claim 5.10.
We instead prove a slightly stronger and more restrictive version of Claim 5.10 in the case that all
the ui are path ancestors (or all path descendants).

Claim 5.11. Consider an arbitrary subset of vertices {u1, u2, · · · , ut+1} ⊆ RG′(P, κD) such that
the ui are all path ancestors or all path descendants. Then there is at most one index 1 ≤ h ≤ t+1
such that setting S = {uj : j 6= h} and running the procedure described so far in the proof of

Lemma 5.9 to produce the sets PS,κ
i and PS,κ,fringe

i results in uh still being path related in a non-

fringe subproblem, i.e. uh ∈ RG′[Vai]
(PS,κ

i , κD) for some 1 ≤ i ≤ t+ 1.

We now explain why Claim 5.10 follows from Claim 5.11 and then show Claim 5.11. To show
Claim 5.10, note that the claim is trivial if the set S′ = {u1, u2, · · · , ut+1} contains a bridge.
Indeed, as picking the set S to contain a bridge leaves no path related subproblems, the only index
j satisfying the constraints of Claim 5.10 must be the j where uj is the bridge. Now, assume that
all of the vertices in S′ are either path ancestors or descendants (not bridges). Applying Claim 5.11
on the subset of path ancestors among S′ and the subset of path descendants among S′ immediately
implies Claim 5.10: we get one valid index from the path ancestors and one from the descendants,
for a total of two.

We now show Claim 5.11. Consider the set S′ = {u1, u2, · · · , ut+1}, where all the ui are path
ancestors. Therefore, for any subset S ⊆ S′, if we shortcut using vertices in S, then all vertices in
P will only get labels of the form uDes

i , and no uAnc
i labels. For every vertex u ∈ S′, define

α(u) = min{i : 0 ≤ i ≤ ℓ and vj ∈ RDes
G′ (u, κD) for all j ≥ i},

where we recall that the path P consists of vertices v0 � v1 � · · · � vℓ. We claim that the only
index j that could satisfy the condition in Claim 5.11 is such that

• We have that uj 6�κD uj′ for all j
′ 6= j.

• α(uj) is unique and minimal out of all the values of α(uj′) for the vertices uj′ satisfying the
first point.

Indeed, for an index j, if there is an index j′ such that uj �κD uj′ then vertex uj receives the label
uAnc
j′ when we shortcut from uj′ . On the other hand, no vertices on the path P receive the label

uAnc
j′ as uj′ is a path ancestor. Now, let

I = {j : uj 6�κD uj′ for all j
′ 6= j},

29

the set of indices which satisfied the first condition. Note that by definition, for any distinct
indices j, j′ ∈ I, the vertices uj and uj′ are unrelated within distance κD. Now, assume that

α(uj) ≥ α(uj′). We aim to show that in this case that uj 6∈ RG′[Vai]
(PS,κ

i , κD) for any 1 ≤ i ≤ t+1,

which would complete the proof. Indeed, if uj ∈ RG′[Vai
](P

S,κ
i , κD), then by the definition of α(uj)

we would need for PS,κ
i to be a subset of the path P from vα(uj) to vℓ. Otherwise, the path PS,κ

i

would be forced to be part of a fringe subproblem induced by uj . Now, again by the definition
of α(uj′), we know that all vertices in the path P from vα(uj) to vℓ will receive a label of uDes

j′

because α(uj) ≥ α(uj′), while vertex uj does not receive a label from uj′ , as uj′ 6�κD uj . Therefore,

uj 6∈ RG′[Vai]
(PS,κ

i , κD) for any 1 ≤ i ≤ t+ 1, which completes the proof.

Now, we prove Lemma 5.8.

Proof of Lemma 5.8. The proof is via induction and Lemma 5.9. Indeed, the claim is trivial for
r̄ = 0, as Algorithm 2 chooses all vertices as shortcutters as pr = 1.

We first claim that (using the same notation as Lemma 5.9) that with probability 1− n−10 we
have that |RG′(P, κD)| ≤ 100k log n. Indeed, note that

|RG′(P, κD)| ≤ |RG′(head(P), (κ + 1)D)| + |RG′(tail(P), (κ + 1)D)| ≤ 100k log n

with probability at least 1− n−10 by Lemma 5.6.
For a path P , parameter κ, and set S we have by Lemma 5.9 that we can partition P into disjoint

paths PS,κ
i and PS,κ,fringe

i . Then the final length of P after shortcutting through S and recursive

shortcutting is clearly at most the total length of all the PS,κ
i and PS,κ,fringe

i after shortcutting,
plus at most 2|S| + 2 (for edges between adjacent paths). Note that this even holds in the case

where S contains a bridge: in this case all the PS,κ
i and PS,κ,fringe

i are empty by definition, and the
shortcutted length of P is 2, which is at most 2|S|+ 2.

By induction, we have that the expected length of P after shortcutting through S and recursive
shortcutting is at most

Eκ,S

[
2|S|+ 2 +

|S|+1∑

i=1

5r̄

(√
2 +

1

2 log n

)r̄−1

s(PS,κ
i , G′[Vai])

1
2 (4)

+

|S|∑

i=1

5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

]
(5)

= 2 + 2Eκ,S[|S|] + 5r̄

(√
2 +

1

2 log n

)r̄−1

Eκ,S

[|S|+1∑

i=1

s(PS,κ
i , G′[Vai])

1
2

]
(6)

+ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

Eκ,S

[|S|∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

]
(7)

by induction, where Eκ,S refers to first selecting κ ∈ [κ2r+1, κ2r] uniformly at random and then
selecting S analogous to Algorithm 2, where every vertex u ∈ RG′(P, κD) is in S with probability
pr. We only care about those u ∈ RG′(P, κD) as those are the only path related vertices, and
picking other vertices can only make less vertices path related in the future.

30

We bound the pieces of Eq. (6) and Eq. (7) now. We split the analysis into cases depending on
the size of Eκ,S[|S|].

Case 1: pr ≥ s(P,G′)−
1
2 . We assume that the length ℓ of the path P must satisfy

ℓ ≥ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

s(P,G′)
1
2 ,

or else the claim is trivially true. Now, we have that the probability that some vertex of P is in S
is at least

1− (1− pr)
ℓ ≥ 1− exp(−ℓpr) ≥ 1− n−5

by our assumed bounds on ℓ and pr. Therefore, our path P is shortcut to length 2 with high
probability. This completes the analysis for this case.

Case 2: pr ≤ s(P,G′)−
1
2 . We now bound each of the pieces of Eq. (6) and Eq. (7).

Bound on Eκ,S[|S|]. Note that

Eκ,S[|S|] ≤ prs(P,G
′) ≤ s(P,G′)

1
2

by our assumed bound on pr.

Bound on rightmost term in Eq. (6). Using the Cauchy-Schwarz inequality and Lemma 5.9
Eq. (1) we can see that

5r̄

(√
2 +

1

2 log n

)r̄−1

Eκ,S

[|S|+1∑

i=1

s(PS,κ
i , G′[Vai])

1
2

]

≤ 5r̄

(√
2 +

1

2 log n

)r̄−1∑

t

Pr[|S| = t] · Eκ,|S|=t

[t+1∑

i=1

s(PS,κ
i , G′[Vai])

1
2

]

≤ 5r̄

(√
2 +

1

2 log n

)r̄−1∑

t

Pr[|S| = t] · Eκ,|S|=t

(
(t+ 1)

t+1∑

i=1

s(PS,κ
i , G′[Vai])

) 1
2

≤ 5r̄

(√
2 +

1

2 log n

)r̄−1∑

t

Pr[|S| = t] · Eκ,|S|=t

[(
(t+ 1)

t+1∑

i=1

s(PS,κ
i , G′[Vai])

)] 1
2

≤ 5r̄

(√
2 +

1

2 log n

)r̄−1∑

t

Pr[|S| = t] ·
√
2 · s(P,G′)

1
2

= 5r̄

(√
2 +

1

2 log n

)r̄−1

·
√
2 · s(P,G′)

1
2 .

31

Bound on Eq. (7). We follow the same plan as in the above paragraph. Using the Cauchy-
Schwarz inequality, Lemma 5.9 Eq. (2), and our observation above that |RG′(P, κ2rD)| ≤ 100k log n
with high probability we can see that

5(r̄ + 1)

(√
2 +

1

2 log n

)r̄−1

Eκ,S

[|S|∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

]

≤ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄−1

Eκ,S

|S|

|S|∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

≤ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄−1

Eκ,S

|S|

|S|∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

≤ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄∑

t

Pr[|S| = t] ·
√
|RG′(P, κ2rD)|
1000k log3 n

· s(P,G′)
1
2

≤ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄∑

t

Pr[|S| = t] ·
√

100k log n

1000k log3 n
· s(P,G′)

1
2

≤ 5r̄

(√
2 +

1

2 log n

)r̄−1

· 1

2 log n
· s(P,G′)

1
2 .

Summing all our contributions gives that the expression in Eq. (6) and Eq. (7) is at most

2 + 2Eκ,S[|S|] + 5r̄

(√
2 +

1

2 log n

)r̄−1

Eκ,S

[|S|+1∑

i=1

s(PS,κ
i , G′[Vai])

1
2

]

+ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

Eκ,S

[|S|∑

i=1

s(PS,κ,fringe
i , G′[V ring

ui
])

1
2

]

≤ 2 + 2s(P,G′)
1
2 + 5r̄

(√
2 +

1

2 log n

)r̄−1

·
√
2 · s(P,G′)

1
2 + 5r̄

(√
2 +

1

2 log n

)r̄−1

· 1

2 log n
· s(P,G′)

1
2

≤ 5(r̄ + 1)

(√
2 +

1

2 log n

)r̄

s(P,G′)
1
2

as desired.

To conclude the proof of the correctness of Algorithm 3, it suffices to argue after a run Algorithm 3,
for any vertices s, t such that s � t, after shortcutting there is now a path of length at most D from
s to t.

Lemma 5.12. Perform an execution of ParallelDiam(G, k) on an n-node, m-edge digraph G.
With high probability for any vertices s, t such that s � t there is a path of length at most D from
s to t in G, where D is as in Algorithm 2.

Proof. By Lemma 5.8 and the observation that

5(logk n+ 1)

(√
2 +

1

2 log n

)logk n

n
1
2 ≤ 10 log n

√
2
logk n

n
1
2 ≤ D

10
,

32

we can see that for a path P of length at most P the probability that it is shortcut to length at most
D
2 in a run of ParallelSC(G, k, 0, 0) which does not exceed the work or shortcut edge bound by ten
times is at least 1− 1

5 − 2
10 > 1

2 by Markov’s inequality. Therefore, running ParallelSC(G, k, 0, 0)
10 log n times as in Algorithm 3 shortcuts a path of length D to length at most D

2 with high
probability. Doing this 10 log n times then guarantees that an arbitrary path is shortcut to length
at most D with high probability. As we only need to shortcut O(n2) paths (a single path for every
pair of vertices s, t) this is sufficient.

Combining Lemma 5.7 and Lemma 5.12 readily gives a proof of Theorem 4. Combining these
along with a breadth first search to depth D now gives a proof of Theorem 1.

Proof of Theorem 1. Take k = O(log n). For input graph G, consider first performing an execution
of ParallelDiam(G, k) and then running a breadth first search from vertex s. Clearly this algo-
rithm solves the single source reachability problem from s. Lemma 5.7 gives with high probability
the desired Õ(mk + nk2) total work bound and shows that the algorithm adds at most Õ(nk)
shortcuts with high probability. Lemma 5.12 shows that the breadth first search runs in depth

D ≤ Õ

(
n

1
2
+O

(

1
log k

))
, where D is as in Algorithm 2. By Lemma 5.7 we have that an execution

of ParallelDiam(G, k) can be implemented in parallel depth Õ

(
poly(k) · n

1
2
+O

(

1
log k

))
. This

finishes the proof.

6 Distributed Single Source Reachability in the CONGEST Model

In this section we explain how to combine our parallel algorithm in Section 5 with the techniques
of [Nan14] and [GU15] to obtain new algorithms for the single source reachability problem in
the CONGEST model. In Section 6.1 we formally define the CONGEST model and the single
source reachability problem, as well as covering some standard results in the CONGEST model.
In Section 6.2 we state our main algorithm DistrReach for solving the single source reachability
problem. Finally, in Section 6.3 we sketch a proof of how to apply the results of Section 5 to bound
the number of rounds our algorithm takes.

6.1 Preliminaries

The CONGEST model. In the CONGEST model, we model a communication network as an
undirected unweighted graph G with n vertices and m edges, where the processors are modeled
as vertices and edges as bounded bandwidth links between processors. We let V (G) and E(G)
denote the vertex set of G and the (directed) edge set of G respectively. The processors/vertices
are assumed to have distinct polynomially bounded IDs. Each vertex has infinite computational
power, but only knows little about the graph G; it only knows the IDs of its neighbors and no other
information about the graph G.

Now we define the single source reachability problem that we consider. Here, each vertex also
knows which of its neighbors are in-neighbors and which are out-neighbors in the directed graph
G. Here, communication on edges are bidirectional even though the edges themselves are directed
edges. Additionally, there is a single source vertex s. As vertex s can communicate that it is the
source to all other vertices in O(D) rounds (Lemma 6.1), we assume that all vertices know s at

33

the start. The goal of the single source reachability problem is for every vertex t ∈ V (G) to know
whether is an s → t path in G at the end of the algorithm. In particular, s doesn’t have to know
whether there is an s→ t path in G, only t must know.

The performance of an algorithm or protocol is judged by the number of rounds of distributed
communication in the worst case. At the start of each round, every vertex can send a message of
length O(log n) to each of its neighbors, where the message need not be the same across different
neighbors. The messages arrive at the end of the round. Running times are analyzed in terms of
the number of vertices n and the undirected/hop diameter of G, which we denote as D. As every
vertex can learn n within O(D) rounds, we assume that all vertices know n.

We now note a few standard results about distributed computation in the CONGEST model.

Lemma 6.1 (Global message broadcast protocol, [Pel00]). Suppose each v ∈ V holds kv ≥ 0
messages of O(log n) bits each, for a total of K =

∑
v∈V kv. Then all nodes in the network can

receive these K messages within O(K +D) rounds.

Theorem 6 ([Gha15]). Consider k distributed algorithms A1, . . . , Ak. Let dilation be such that each
algorithm Ai finishes in dilation rounds if it runs individually. Let congestion be such that there
are at most congestion messages, each of size O(log n), sent through each edge (counted over all
rounds), when we run all algorithms together. There is a distributed algorithm that can execute
A1, . . . , Ak in O(dilation+ congestion · log n) rounds in the CONGEST model.

Corollary 6.2 (Low distance breadth first search). Consider a set T ⊆ V (G) and a distance h.
There is a protocol such that for every vertex v, it learns the subsets of T that are distance h to
and from itself in Õ(|T |+ h) rounds.

6.2 Algorithm description

Algorithm overview. Our algorithm consists of multiple steps. The first is a standard procedure
reminiscent of the classic O(m

√
n) time shortcutting algorithm of Ullman and Yannakakis [UY91].

It has been used in the earlier works of Ghaffari and Udwani [GU15] and Nanongkai [Nan14]. We
randomly sample each vertex in V (G) with probability 10α logn

n to be in a subset T ⊆ V (G). We also

assert that our source s ∈ T . With high probability |T | = Õ(α). Using Corollary 6.2 with parameter
h = Õ(n/α), for each vertex v, it learns exactly the subset of T that can reach itself within distance
h, and the subset of T that it can reach within distance h. This takes Õ(α+h) = Õ(α+ n

α) rounds.
Now, we build the skeleton graph GT on T using the reachability relations learned from the breadth
first searches. Concretely, for vertices u, v ∈ T , there is an edge u→ v in graph GT if dG(u, v) ≤ h.
It is direct to see that with high probability that the reachability from s to T on GT is the same
as that on G.

Now, every vertex in T tries to learn whether it is reachable from s in graph GT . After this, the
vertices in T can global broadcast whether they are reachable from s using Lemma 6.1 in O(D+|T |)
rounds. Then every vertex in G can locally determine whether s can reach it, as desired.

In order to let every vertex in T learn whether it is reachable from s, we run a small variation
on Algorithm 2 and Algorithm 3 on GT . Intuitively, during every unit of time in the parallel
computation every vertex globally broadcasts much of its computational transcript, such as its
current labels, which new shortcut edges are being added, whether it has just been visited in a
breadth first search, etc. Through the guarantees of Theorem 4 with k = log |T | we can see that
this process essentially takes Õ(D|T |1/2+o(1) + |T |) = Õ(Dα1/2+o(1) + α) rounds. The first term

34

comes from a fixed cost of O(D) to globally broadcast during each stage of a |T |1/2+o(1) depth
algorithm. The second term is the total number of messages sent by all vertices during the process,
which corresponds to the nearly linear runtime of the algorithm. Combining this with the first
paragraph gives an algorithm taking

Õ
(n
α
+ α+Dα1/2+o(1)

)

rounds. Properly trading off parameters then gives Theorem 2.
We remark that using the reachability algorithm of [Fin18] (instead of our improved algorithm)

would also imply a new result; precisely the number of rounds would be Õ(
√
n+ n2/5D3/5), which

is nearly optimal for D ≤ n1/6.
We now give algorithmDistrReach (Algorithm 4). It is fairly clear that in this way, Algorithm 4

can simulate ParallelDiam in the CONGEST model.

Algorithm 4 DistrReach(G, s), distributed algorithm for solving the single source reachability
problem from s in G in the CONGEST model.

1. Choose T ⊆ V (G) as follows: each vertex v ∈ V (G) has a 10α logn
n probability of being in

T . Set h = 10n logn
α . Apply Corollary 6.2 so that all vertices v ∈ V (G) learn what vertices in

T are within distance h to / from itself. Build the skeleton graph GT with vertex set T as
follows: for u, v ∈ T there is an edge u→ v if and only if dG(u, v) ≤ h.

2. Run a variant of ParallelDiam(G, k) on GT . After every unit of parallel depth, every
vertex globally broadcasts all new computation of the following forms, as well as an ID for
the current recursive subproblem it is broadcasting for. Note that a vertex can broadcast /
do computation for multiple subproblems simultaneously.

• Vertex v is in the shortcutter set S.

• Vertex v is visited by a breadth first search from a vertex u ∈ S.

• Vertex v gets a new label / becomes a fringe vertex.

• A new shortcut edge is added to the graph.

In addition, each subproblem must choose a “leader” to pick the κ parameter for that sub-
problem.

The skeleton graph GT is updated after each run of ParallelSC(G, k, 0, 0) to include all
the new shortcut edges.

3. Simulate a BFS on GT (with all the new shortcut edges) of depth 100
√
2
logk n

n
1
2 log2 n so

that all v ∈ T learn whether they are reachable from s. All vertices v ∈ T globally broadcast
whether they are reachable from s. Each vertex v ∈ V (G) now locally computes whether it
is reachable from s.

6.3 Analysis

The bulk of the analysis follows in the same way as the analysis in Section 5.

35

Theorem 7. Algorithm DistrReach when executed on an n-vertex m-edge graph G with high
probability solves the single source reachability problem in Õ

(
α+ (n/α) +Dα1/2+o(1)

)
.

Proof. By Corollary 6.2, we have that Line 1 in Algorithm DistrReach can be implemented with
O(|T |+ h) = Õ (α+ n/α) rounds.

Our procedures simulates running ParallelDiam(GT , k) over the graph. After every unit of
parallel depth in our algorithm, we globally broadcast the complete reachability information of all
performed searches over the graph. This consists of Õ(α) messages in total. Further, we observe
that during each graph traversal we perform during ParallelDiam nodes will locally check if one
of their neighbors have been marked by a search and broadcast themselves appropriately if they
have not yet been marked by the same search. Thus every node communicates one message for every
search it is visited in: this is just the total number of shortcuts, and the total amount of communi-
cation needed to perform all the searches of ParallelDiam is Õ(α). Now ParallelDiam itself
takes Õ(α1/2+o(1)) parallel depth in total, thus we can simulate it over GT in Õ(Dα1/2+o(1) + α)
rounds. Thus by Lemma 6.1, it is direct to check (by the results of Section 5) that step 2 can be
implemented with Õ(Dα1/2+o(1) + α) rounds.

As GT now has diameter α1/2+o(1) with high probability by the proof of correctness of algorithm
ParallelDiam, simulating a BFS and globally broadcasting the results takes Õ(Dα1/2+o(1) + α)
rounds. Summing these contributions gives the desired bound.

Now, we prove Theorem 2.

Proof of Theorem 2. The proof simply involves substituting various values of α into Theorem 7.
We handle the cases D ≤ n1/4 and D ≥ n1/4 separately.

Case 1: D ≤ n1/4. We set α =
√
n. This gives us an algorithm that runs in Õ(

√
n+Dn1/4+o(1))

rounds. It is easy to check that Dn1/4+o(1) ≤ D2/3n1/3+o(1) for D ≤ n1/4, which completes the
argument for this case.

Case 2: D ≥ n1/4. In this case, we set α = n2/3

D2/3 . It is easy to check that D ≥ n1/4 gives

that α ≤ √n. Therefore, the resulting algorithm runs in Õ
(
n/α+Dα1/2+o(1)

)
= Õ(D2/3n1/3+o(1))

rounds as desired.

References

[AW14] Amir Abboud and Virginia VassilevskaWilliams. Popular conjectures imply strong lower bounds
for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443, 2014.

[BBRS98] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed s-t connectivity. SIAM J. Comput., 27(5):1273–1282,
1998.

[BKKL17] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, pages 7:1–7:16, 2017.

36

[Col93] Richard Cole. Correction: “Parallel merge sort” [SIAM J. Comput. 17 (1988), no. 4, 770–785;
MR0953293 (89m:68015)]. SIAM J. Comput., 22(6):1349, 1993.

[DSHK+11] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pan-
durangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of dis-
tributed approximation. In STOC’11—Proceedings of the 43rd ACM Symposium on Theory of
Computing, pages 363–372. ACM, New York, 2011.

[Fin18] Jeremy T. Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In
STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 457–470. ACM, New York, 2018.

[FN18] Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest paths
algorithm. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 686–697, 2018.

[Gha15] Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, July 21 - 23, 2015, pages 3–12, 2015.

[GL18] Mohsen Ghaffari and Jason Li. Improved distributed algorithms for exact shortest paths. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 431–444, 2018.

[GU15] Mohsen Ghaffari and Rajan Udwani. Brief announcement: Distributed single-source reacha-
bility. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 163–165, 2015.

[Hes03] William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages 665–669,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[HP18] Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts. In 16th Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2018, June 18-20, 2018, Malmö, Sweden, pages 26:1–26:12, 2018.

[Nan14] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 565–573, 2014.

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[Spe97] Thomas H. Spencer. Time-work tradeoffs for parallel algorithms. J. ACM, 44(5):742–778,
September 1997.

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM J. Comput., 20(1):100–125, 1991.

[Wig92] Avi Wigderson. The complexity of graph connectivity. In Mathematical Foundations of Com-
puter Science 1992, 17th International Symposium, MFCS’92, Prague, Czechoslovakia, August
24-28, 1992, Proceedings, pages 112–132, 1992.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 - 22, 2012, pages 887–898, 2012.

37

	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Preliminaries
	3 Overview of Approach
	4 Sequential Algorithm
	4.1 Algorithm Description
	4.2 Work and Shortcut Bound
	4.3 Path Related Nodes and Main Helper Lemma
	4.4 Recursion and Inductive Diameter Bound

	5 Parallel Algorithm
	5.1 Notation for Distance Limited Searches
	5.2 Main Algorithm Description
	5.3 Shortcut and Work Bound
	5.4 Diameter Bound after Shortcutting

	6 Distributed Single Source Reachability in the CONGEST Model
	6.1 Preliminaries
	6.2 Algorithm description
	6.3 Analysis

