
Tree-depth and the Formula Complexity of Subgraph Isomorphism

Deepanshu Kush
University of Toronto

Benjamin Rossman
Duke University

April 29, 2020

Abstract

For a fixed “pattern” graph G, the colored G-subgraph isomorphism problem (denoted SUB(G)) asks,
given an n-vertex graph H and a coloring V (H) → V (G), whether H contains a properly colored copy
of G. The complexity of this problem is tied to parameterized versions of P =? NP and L =? NL,
among other questions. An overarching goal is to understand the complexity of SUB(G), under different
computational models, in terms of natural invariants of the pattern graph G.

In this paper, we establish a close relationship between the formula complexity of SUB(G) and an
invariant known as tree-depth (denoted td(G)). SUB(G) is known to be solvable by monotone AC 0

formulas of size O(ntd(G)). Our main result is an nΩ̃(td(G)1/3) lower bound for formulas that are monotone
or have sub-logarithmic depth. This complements a lower bound of Li, Razborov and Rossman [8] relating
tree-width and AC 0 circuit size. As a corollary, it implies a stronger homomorphism preservation theorem
for first-order logic on finite structures [14].

The technical core of this result is an nΩ(k) lower bound in the special case where G is a complete
binary tree of height k, which we establish using the pathset framework introduced in [15]. (The lower
bound for general patterns follows via a recent excluded-minor characterization of tree-depth [4, 6].)
Additional results of this paper extend the pathset framework and improve upon both, the best known
upper and lower bounds on the average-case formula size of SUB(G) when G is a path.

Contents

1 Introduction 2
1.1 Minor-monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Corollary in finite model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Improved bounds for average-case SUB(Pk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 7
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Threshold weightings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Join-trees and parameters κ(G) and τ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Observations about Φθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Lower bounds on Φθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Lower bound τ(Tk) = Ω(k) 12
3.1 Proof of Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Proofs of Lemmas 3.10, 3.12, 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 A better potential function 21

1

ar
X

iv
:2

00
4.

13
30

2v
1 

 [
cs

.C
C

] 
 2

8 
A

pr
 2

02
0



5 The pathset framework 22

6 Lower bound τ(Pk) ≥ log√5+5(k) 26

7 Randomized AC 0 formulas computing the product of k permutations 37
7.1 Upper bounds on χ(~a) + ‖~a‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.1 Recursive doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.2 Maximally overlapping joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.3 Fibonacci overlapping joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Tightness of upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Open problems 44

A Appendix: Lower bound τ(Pk) ≥ 1
2 log√13+1(k) from [15] 45

1 Introduction

Let G be a fixed “pattern” graph. In the colored G-subgraph isomorphism problem, denoted SUB(G),
we are given an n-vertex “host” graph H and a vertex-coloring c : V (H) → V (G) as input and required
to determine whether or not H contains a properly colored copy of G (i.e., a subgraph G′ ⊆ H such that
the restriction of c to V (G′) constitutes an isomorphism from G′ to G). This general problem includes, as
special cases, several important problems in parameterized complexity. In particular, SUB(G) is equivalent
(up to AC 0 reductions) to the k-clique and distance-k connectivity problems when G is a clique or
path of order k.

For any fixed pattern graph G, the problem SUB(G) is solvable by brute-force search in polynomial
time O(n|V (G)|). Understanding the fine-grained complexity of SUB(G) — in this context, we mean the
exponent of n in the complexity of SUB(G) under various computational models — for general patterns G
is an important challenge that is tied to major open questions including P =? NP, L =? NL, NC 1 =? L,
and their parameterized versions (FPT =? W[1], etc.) An overarching goal is to bound the fine-grained
complexity of SUB(G) in terms of natural invariants of the graph G.

Two key invariants arising in this connection are tree-width (tw) and tree-depth (td). The tree-depth of G
is the minimum height of a rooted forest whose ancestor-descendant closure contains G as a subgraph. This
invariant has a number of equivalent characterizations and plays a major role in structural graph theory and
parameterized complexity [10]. Tree-width is even more widely studied in graph theory and parameterized
complexity [5]. It is defined in terms of a different notion of tree decomposition and provides a lower bound
on tree-depth (tw + 1 ≤ td).

These two invariants provide well-known upper bounds on the circuit size and formula size of SUB(G).

To state this precisely, we regard SUB(G) as a sequence of boolean functions {0, 1}|E(G)|·n2 → {0, 1} where
the input encodes a host graph H with vertex set V (G) × {1, . . . , n} under the vertex-coloring that maps
(v, i) to v. (Restricting attention to this class of inputs is without loss of generality.) Throughout this paper,
we consider circuits and formulas in the unbounded fan-in basis {AND∞,OR∞,NOT}; we measure size of
both circuits and formulas by the number of gates. A circuit or formula is monotone if it contains no NOT
gates. We use AC 0 as an adjective that means “depth O(1)” in reference to upper bounds and “depth
o(log n)” in reference to lower bounds on formula size.1

Theorem 1.1 (Folklore upper bounds). For all pattern graphs G, SUB(G) is solvable by monotone AC 0

circuits (respectively, formulas) of size O(ntw(G)+1) (respectively, O(ntd(G))).

It is conjectured that SUB(G) requires circuit size nΩ(tw(G)) for all graphs G; if true this would imply
FPT 6= W [1] and P 6= NP in a very strong way. As evidence for this conjecture, Marx [9] proved a

1Here and elsewhere, asymptotic notation hides constants that may depend on G. In other contexts, e.g. Ω(td(G)), hidden
constants are absolute.
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conditional nΩ(tw(G)/ log tw(G)) lower bound assuming the Exponential Time Hypothesis. Providing further
evidence, Li, Razborov and Rossman [8] established an unconditional nΩ(tw(G)/ log tw(G)) lower bound for AC 0

circuits, via a technique that extends to (unbounded depth) monotone circuits. This result is best stated in
terms of a certain graph invariant κ(G) introduced in [8]:

Theorem 1.2 (Lower bound on the restricted circuit size of SUB(G) [8]). For all pattern graphs G, the
circuit size of SUB(G) — in both the AC 0 and monotone settings — is at least nκ(G)−o(1) where κ(G) is a
graph invariant satisfying Ω(tw(G)/ log tw(G)) ≤ κ(G) ≤ tw(G) + 1.2

Shifting our focus from circuits to formulas, it is natural to conjecture that SUB(G) requires formula size
nΩ(td(G)). This statement generalizes the prominent conjecture that distance-k connectivity requires
formula size nΩ(log k), which as a consequence implies NC 1 6= NL. (There is also an average-case version of
this conjecture which implies NC 1 6= L, as we explain shortly.)

In this paper, we carry out the final step in the proof of an analogous result to Theorem 1.2 that lower
bounds the restricted formula size of SUB(G) in terms of an invariant τ(G) that is polynomially related to
tree-depth:

Theorem 1.3 (Lower bound on the restricted formula size of SUB(G)). For all patterns graphs G, the
formula size of SUB(G) — in both the AC 0 and monotone settings — is at least nτ(G)−o(1) where τ(G) is a

graph invariant satisfying Ω̃(td(G)1/3) ≤ τ(G) ≤ td(G).

The invariant τ(G) was introduced in [16], where it was also shown that nτ(G)−o(1) is a lower bound on
the formula size of SUB(G) in the AC 0 and monotone settings. The results of [16] generalized lower bounds
for SUB(Pk) from papers [13, 15], which showed that τ(Pk) = Ω(log k) (where Pk is the path graph of length
k). As we will explain shortly, this lower bound for τ(Pk) implies that τ(G) = Ω(log td(G)) for all graphs G.
The contribution of the present paper lies in improving this logarithmic lower bound to a polynomial one by
showing τ(G) = Ω̃(td(G)1/3).

Remark 1.4. It is helpful to keep in mind the related inequalities:

circuit size ≤ formula size, tw + 1 ≤ td, κ ≤ τ.

It is further known that td(G) ≤ (tw(G)+1) log |V (G)| [10]. A nearly maximal separation between invariants
td and tw is witness by bounded-degree trees T , which have tree-width 1 but tree-depth Ω(log |V (T )|). This
class includes paths and complete binary trees, the two families of pattern graphs studied in this paper.

For trees T , we point out that SUB(T ) is computable by monotone AC 0 circuits of size c(T ) · n2 for a
constant c(T ) depending on T . (This follows from Theorem 1.1, since all trees have tree-width 1.) Although
formulas are a weaker model than circuits, establishing formula lower bounds for SUB(T ) of the form
nΩ(log |V (T )|), as we do in this paper, is a subtle task which requires techniques that distinguish formulas
from circuits. Accordingly, Theorem 1.3 involves greater machinery than Theorem 1.2. The invariant τ(G)
is also significantly harder to define and analyze compared to κ(G).

1.1 Minor-monotonicity

Recall that a graph F is a minor of G if F can be obtained from G by a sequence of edge deletions and
contractions (i.e., remove an edge and identify its two endpoint). A graph invariant p is said to be minor-
monotone if p(F ) ≤ p(G) whenever F is a minor of G. As observed in [8], the complexity of SUB(G) (under
any reasonable class of circuits) is minor-monotone in the following sense:

2It is actually shown that κ(G) is at most the branch-width of G, an invariant related to tree-width by 2
3

(tw+1) ≤ bw ≤ tw+1.
The relationship between κ(G) and tw(G) was further investigated by Rosenthal [11], who identified the separating example

κ(Q) = Θ(tw(Q)/
√

log tw(Q)) for hypercubes Q.
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Lemma 1.5. If F is a minor of G, then there is a reduction from SUB(F ) to SUB(G) via a monotone
projection.3

In the quest to characterize the complexity of SUB(G) in terms of invariants of G, it makes sense to focus
on minor-monotone ones. Indeed, invariants tw, td, κ, τ are all minor-monotone. This feature is useful in
bounding the complexity of SUB(G). For example, we can combine the result of [2] that every graph with tree-
width at least k9 polylog k contains a (k×k)-grid minor, with the lower bound κ((k × k)-grid graph) = Ω(k)

from [1], in order to conclude that κ(G) = Ω̃(tw(G)1/9) for all graphs G. (Notation Õ(·) and Ω̃(·) suppresses
poly-logarithmic factors.) The stronger κ(G) = Ω(tw(G)/ log tw(G)) bound of Theorem 1.2 is obtained by a
more nuanced analysis of the invariant κ.

In a similar manner, we can combine the fact that every graph G contains a path of length td(G) [10],
with the lower bound τ(Pk) = Ω(log k) [15], in order to conclude that τ(G) = Ω(log td(G)) for all graphs G.
With the goal of improving this lower bound to Ω(poly td(G)) (that is, Ω(td(G)ε) for some constant ε > 0),
Kawarabayashi and Rossman [6] established a polynomial excluded-minor characterization of tree-depth,
which was subsequently sharpened by Czerwiński, Nadara and Pilipczuk [4].

Theorem 1.6 (Excluded-minor characterization of tree-depth [6, 4]). Every graph G with tree-depth Ω(k3)
satisfies at least one of the following:

(i) G has tree-width ≥ k,

(ii) G contains a path of length 2k,

(iii) G contains a Tk-minor, where Tk is the complete binary tree of height k.

Theorem 1.6 reduces the task of proving τ(G) = Ω(poly td(G)) to the task of proving τ(Tk) = Ω(poly k).
It is this final step that we tackle in this paper.4

Theorem 1.7 (Main result of this paper). τ(Tk) = Ω(k).

This lower bound is proved in Section 3 using a certain potential function (described in Section 2), which
further reduces our task to a combinatorial problem concerning join-trees over Tk, that is, rooted binary trees
whose leaves are labeled by edges of Tk. This is the same combinatorial framework as the τ(Pk) = Ω(log k)
lower bound of [15]; however, the task of analyzing join-trees over Tk turned out to be significantly harder
compared with Pk.

Theorems 1.6 and 1.7 combine to prove Theorem 1.3 (the bound τ(G) = Ω̃(td(G)1/3)) as follows. For a
graph G with tree-depth Ω(k3), we can see that τ(G) = Ω(k/ log k) by considering the three cases given by
Theorem 1.6:

(i) If G has tree-width ≥ k, then τ(G) ≥ κ(G) = Ω(k/ log k) by Theorem 1.2.

(ii) If G contains a path of length 2k, then τ(G) ≥ τ(P2k) = Ω(k) by the lower bound of [15].

(iii) If G contains a Tk-minor, then τ(G) ≥ τ(Tk) = Ω(k) by Theorem 1.7.

1.2 Corollary in finite model theory

Theorem 1.3 has a striking consequence in finite model theory, observed in the paper [14].

3That is, for every n, there is a reduction from SUB(F ) to SUB(G), viewed as boolean functions {0, 1}|E(F )|·n → {0, 1} and
{0, 1}|E(G)|·n → {0, 1}, via a monotone projection that maps each variable of SUB(G) to a variable of SUB(F ) or a constant 0
or 1.

4Theorem 1.7 delivers on a promise in papers [6, 14, 16], which cite τ(Tk) = Ω(poly k) as an unpublished result of upcoming

work. Let us mention that, after finding many devils in the details of an earlier sketch of an Ω(
√
k) bound by the second author,

we worked out an entirely different approach in this paper, which moreover gives a linear lower bound (which is tight up to a
constant since τ(Tk) ≤ td(Tk) = k).
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Corollary 1.8 (Polynomial-rank homomorphism preservation theorem over finite structures). Every first-
order sentence of quantifier-rank r that is preserved under homomorphisms of finite structures is logically
equivalent on finite structures to an existential-positive first-order sentence of quantifier-rank Õ(r3).

The polynomial upper bound of Corollary 1.8 improves an earlier non-elementary upper bound of [12].
This surprising connection between circuit complexity and finite model theory was in fact the original
motivation behind Theorems 1.3 and 1.6, as well as the present paper.

1.3 Improved bounds for average-case SUB(Pk)

Additional results of this paper improve both the average-case upper and lower bounds for SUB(Pk) [13].

Here average-case refers to the p-biased product distribution on {0, 1}kn2

where p = n−(k+1)/k. This input
distribution corresponds to a random graph X, comprised of k + 1 layers of n vertices, where every pair of
vertices in adjacent layers is connected by an edge independently with probability p. For this choice of p,
the probability that X contains a path of length k containing one vertex from each layer is bounded away
from 0 and 1.

Theorem 1.9 ([15]). SUB(Pk) is solvable on X with probability 1−o(1) by monotone AC 0 formulas of size

n
1
2 dlog2(k)e+o(1). On the other hand, AC 0 formulas solving SUB(Pk) on X with probability ≥ 0.9 require size

nτ(Pk)−o(1) where τ(Pk) ≥ 1
2 log√13+1(k) (≥ 0.22 log2(k)).

A similar average-case lower bound for (unbounded depth) monotone formulas was subsequently shown

in [13]. Precisely speaking, that paper gives an n
1
2 τ(Pk)−o(1) lower bound under X, as well as an nτ(Pk)−o(1)

lower bound under the distribution that, half of the time, is X and, the other half, is a uniform random
path of length k with no additional edges.

1.3.1 Upper bound

The average-case upper bound of Theorem 1.9 can be recast, in stronger terms, as a worst-case randomized
upper bound for the problem of multiplying k (n × n)-permutation matrices Q1, . . . , Qk. This problem
is solvable by deterministic (non-randomized) AC 0 formulas of size nlog2(k)+O(1) via the classic “recursive
doubling” procedure: recursively compute matrix products L := Q1 · · ·Qdk/2e and R := Qdk/2e+1 · · ·Qk and
then obtain Q1 · · ·Qk = LR by a single matrix multiplication.

Randomization lets us achieve quadratically smaller formula size n
1
2 log2(k)+O(1). The idea is as follows.

Generate m := Õ(
√
n) independent random sets I1, . . . , Im ⊆ [n], each of size

√
n. Rather than compute

all entries of the permutation matrix L using n2 subformulas, we will encode the information in L more
efficiently using (2 log n + 1)m2 = Õ(n) subformulas (note that log(n!) = O(n log n) bits are required to
encode a permutation matrix). For each (r, s) ∈ [m]2, we recursively construct

• one subformula that indicates5 whether or not there exists a unique pair (a, b) ∈ Ir × Is such that
La,b = 1, and

• 2 log n additional subformulas that give the binary representation of a and b whenever such (a, b)
uniquely exists.

Similarly, with respect to the permutation matrix R, for each (s, t) ∈ [m]2, we have 2 log n + 1 recursively
constructed subformulas that indicate whether there exists a unique pair (b, c) ∈ Is × It such that Rb,c = 1,
and if so, give the binary representation of b and c. Using these subformulas for subproblems L and R,
we construct the corresponding formulas for Q1 · · ·Qk which, for each (r, t) ∈ [m]2, indicate whether there
exists a unique pair (a, c) ∈ Ir × It such that Ra,c = 1, and if so, give the binary representation of a
and c. These formulas check, for each s ∈ [m], whether the (r, s)- and (s, t)-subformulas of the L- and R-
subproblems output (a, b) and (b′, c), respectively such that b = b′. These formulas are therefore larger than

5When describing the behavior of randomized formulas in this subsection (using verbs like “indicate”, “output”, etc.), we
leave implicit that the description holds correctly with high probability for any input.
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the subformulas for subproblems L and R by a factor Õ(m). This implies an upper bound Õ(m)dlog2(k)e =

n
1
2 log2(k)+O(1) on size and O(log k) on depth of the resulting randomized AC 0 formulas.

A similar construction solves SUB(Pk) in the average-case. This yields an upper bound on 1
2 log k+O(1)

on the parameter τ(Pk), which we initially guessed might be optimal. However, in the course of trying prove
a matching lower bound, we were surprised to discover a better upper bound!

Theorem 1.10. There exist randomized AC 0 formulas of size n
1
3 logϕ(k)+O(1) (≤ n0.49 log2(k)+O(1)), where

ϕ = (
√

5 + 1)/2 is the golden ratio, which compute the product of k permutation matrices.

The algorithm generalizes the randomized “recursively doubling” method outlined above. Here we give a
brief sketch (full details are given in Section 7). Let k = Fib(`) where ` ≥ 3 (i.e., the `th Fibonacci number,
which satisfies Fib(`) = Fib(`− 1) + Fib(`− 2)). We will represent information about the product Q1 · · ·Qk
by constructing formulas that enumerate all triples (a, c, d) ∈ [n]3 such that

(1) (Q1 · · ·QFib(`−1))a,c = (QFib(`−1)+1 · · ·Qk)c,d = 1.

This is accomplished by generating m := Õ(n1/3) independent random sets I1, . . . , Im, each of size n2/3, and
recording the unique triples (a, c, d) ∈ Ir × It × Iu for which (1) holds.

The recursive construction breaks into a “left” subproblem on (Q1, . . . , QFib(`−1)) and a “right” subprob-
lem on (QFib(`−2)+1, . . . , Qk).6 (In contrast to the “recursive doubling” method, here the “left” and “right”
subproblems involve overlapping subsequences of permutation matrices.) In the “left” subproblem: for each
(r, s, t) ∈ [m]3, we have

• 3 log n + 1 subformulas that indicate whether there exists a unique triple (a, b, c) ∈ Ir × Is × It such
that (Q1 · · ·QFib(`−2))a,b = (QFib(`−2)+1 · · ·QFib(`−1))b,c = 1, and if so, give the binary representation
of a, b, c.

In the “right” subproblem: for each (r, s, t) ∈ [m]3, we have

• 3 log n+1 subformulas that indicate whether there exists a unique triple (b, c, d) ∈ Is×It×Iu such that
(QFib(`−2)+1 · · ·QFib(`−1))b,c = (QFib(`−1)+1 · · ·Qk)c,d = 1, and if so, give the binary representation of
b, c, d.

The subformulas in the “left” and “right” subproblems may be combined to produce the analogous (left-
handed) formulas for the original input (Q1, . . . , Qk): for each (r, t, u) ∈ [m]3, we construct

• 3 log n + 1 subformulas that indicate whether there exists a unique triple (a, c, d) ∈ Ir × It × Iu such
that (1) holds, and if so, give the binary representation of a, c, d.

These formulas check, for each s ∈ [m], whether the (r, s, t)- and (s, t, u)-subformulas in the “left” and
“right” subproblems output triples (a, b, c) and (b′, c′, d), respectively, such that b = b′ and c = c′. These

formulas are therefore larger than the subformulas in the “left” and “right” subproblems by a factor Õ(m).

Taking k = Fib(3) = 2 as our base case with formula size nO(1), this gives an upper bound Õ(m)`−3 ·nO(1) =

n
1
3 logϕ(k)+O(1) for all k = Fib(`) (which extends as well to non-Fibonacci numbers k).

In Section 7, we introduce a broad class of randomized algorithms (based on a simplification of the pathset
complexity measure) that generalize both the “recursive doubling” and “Fibonacci overlapping” algorithms

outlined above. We also discuss reasons, including experimental data, which suggest that n
1
3 logϕ(k)+O(1)

might in fact be the asymptotically tight bound on the randomized formula size of multiplying k permutations.

6The “right” subproblem on (QFib(`−2)+1, . . . , Qk) can also be viewed as a “left” subproblem on (P1, . . . , PFib(`−1)) where
Pi is the transpose of Qk−i+1.
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1.3.2 Lower bound

The final result of this paper improves the τ(Pk) ≥ 1
2 log√13+1(k) (≥ 0.22 log2(k)) lower bound of Theo-

rem 1.9.

Theorem 1.11. τ(Pk) ≥ log√5+5(k)− 1 (≥ 0.35 log2(k)− 1)

More significant than the quantitative improvement we obtain in Theorem 1.11 is the fact that our proof
further develops pathset framework by introducing a new potential function that gives stronger lower bounds
on τ(G). This development and the proof of Theorem 1.11 are presented in detail in Sections 4, 5 and 6.

Since 1
3 logϕ(k) = log√5+2(k), our upper and lower bounds are off by exactly 3 in the base of the logarithm.

It would be very interesting to completely close this gap.

1.4 Related work

There have been several papers, including [3, 7, 9], which give conditional lower bounds (under ETH and
other assumptions) on the circuit size of SUB(G) and its uncolored variant. We are not aware of any
conditional hardness results for the formula size of SUB(G). It would be interesting to show that SUB(G)
requires (unrestricted) formula size nΩ(td(G)) under a natural assumption.

2 Preliminaries

For a natural number n, [n] denotes the set {1, . . . , n}. For simplicity of presentation, we occasionally omit
floors and ceilings, e.g., treating quantities like

√
n as natural numbers). This is always without loss of

parameters in our results. When no base is indicated, log(·) denotes the base-2 logarithm.

2.1 Graphs

In this paper, graphs are simple graphs, i.e., pairs G = (V (G), E(G)) where V (G) is a set and E(G) is

a subset of
(
V (G)

2

)
(the set of unordered pairs {v, w} where v, w are distinct elements of V (G)). Unless

explicitly stated otherwise, graphs are assumed to be locally finite (i.e., every vertex has finite degree) and
without isolated vertices (i.e., V (G) =

⋃
e∈E(G) e). For a vertex v ∈ V (G), degG(v) or simply deg(v) denotes

the degree of v in G.
We regard G as a fixed (possibly infinite) “pattern” graph. F shall consistently denote a finite subgraph

of G. We write ⊆ for the subgraph relation and ⊂ (or sometimes $) for the proper subgraph relation. If F
is a subgraph of G, then G \ F denotes the graph with edge set E(G) \ E(F ) (and no isolated vertices).

Two important graphs in this paper are paths and complete binary trees. Pk denotes the path graph of
length k (with k + 1 vertices and k edges). Tk denotes the complete binary tree of height k (with 2k+1 − 1
vertices and 2k+1 − 2 edges). We also consider infinite versions of these graphs. P∞ is the path graph with
vertex set Z and edge set {(i, i+ 1) : i ∈ Z}. T∞ is the union

⋃∞
k=1 Tk under the nesting T1 ⊂ T2 ⊂ T3 ⊂ · · ·

where Leaves(T1) ⊂ Leaves(T2) ⊂ Leaves(T3) ⊂ · · · . Thus, T∞ is an infinite, rootless, layered binary tree,
with leaves in layer 0, their parents in level 1, etc.

We use terms graph invariant and graph parameter interchangeably in reference to real-valued functions
on graphs that are invariant under isomorphism.

2.2 Threshold weightings

We describe a family of edge-weightings on graphs G, which in the case of finite graphs correspond to product
distributions that are balanced with respect to the problem SUB(G). (Definitions in this section are adapted
from [8].)
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Definition 2.1. For any graph G and function θ : E(G) → R, we denote by ∆θ : {finite subgraphs of
G} → R the function

∆θ(F ) := |V (F )| −
∑

e∈E(F )

θ(e).

Definition 2.2. A threshold weighting for a graph G is a function θ : E(G) → [0, 2] such that ∆θ(F ) ≥ 0
for all finite subgraphs F ⊆ G; if G is finite, we additionally require that ∆θ(G) = 0.

We refer to the pair (G, θ) as a threshold-weighted graph. When θ is fixed, we will at times simply write
∆(·) instead of ∆θ(·).
Definition 2.3. A Markov chain on a graph G is a matrix [0, 1]V (G)×V (G) that satisfies

• ∑w∈V (G)Mv,w = 1 for all v ∈ V (G) and

• Mv,w > 0 =⇒ {v, w} ∈ E(G) for all v, w ∈ V (G).

Lemma 2.4. Every Markov chain M on G induces a threshold weighting θ on G defined by

θ({v, w}) := Mv,w +Mw,v.

This threshold weighting satisfies

∆θ(F ) =
∑

v∈V (F )

∑
w∈V (G) : {v,w}/∈E(F )

Mv,w.

We remark that this lemma has a converse (shown in [11]): Every threshold weighting on G is induced by
a (not necessarily unique) Markov chain on G. Lemma 2.4 also gives us a way to define threshold weightings
when G is an infinite graph; this will be useful later on.

Example 2.5. Let M be the transition matrix of the uniform random walk on Tk where k ≥ 2. That is,

Mv,w :=

{
1/deg(v) if {v, w} ∈ E(Tk),

0 otherwise.

For the associated threshold weighting θ : E(Tk)→ [0, 2], we have

θ(e) =


4/3 if e contains a leaf,

5/6 if e contains the root,

2/3 otherwise.

A key property of this θ that we will use later on (Lemma 3.8) is that

∆θ(F ) ≥ |V (F ) ∩ V (Tk \ F )|
3

(that is, ∆θ(F ) is at least one-third the size of the boundary of F ) for all graphs F ⊆ Tk. This is a
straightforward consequence of Lemma 2.4, which is also true in the infinite tree T∞.

Example 2.6. Let Pk be the path of length k (with k + 1 vertices and k edges). The constant function
θ ≡ 1 + 1

k is a threshold weighting for Pk. (This is different from the threshold function induced by the
uniform random walk on Pk, which has value 1/2 on the two outer edges of Pk and value 1 on the inner
edges.)

This example again makes sense for k =∞. The constant function E(P∞) 7→ {1} is a threshold weighting
for P∞. This threshold function has the nice property that

∆(F ) = |V (F )| − |E(F )| = #{connected components of F}

for all finite subgraphs F ⊂ P∞.
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Definition 2.7. Let G be a finite graph, let θ be a threshold weigting on G, and let n be a positive integer.
We denote by Xθ,n be the random V (G)-colored graph (i.e., input distribution to SUB(G)) with vertex set
V (G)× [n], vertex-coloring (v, i) 7→ v, and random edge relation given by

P[ {(v, i), (w, j)} is an edge of Xθ,n ] =

{
1/nθ({v,w}) if {v, w} ∈ E(G),

0 otherwise,

independently for all {(v, i), (w, j)} ∈
(
V (G)×[n]

2

)
.

Lemma 2.8 ([8]). The probability that Xθ,n is a YES-instance of SUB(G) is bounded away from 0 and 1.

The lower bounds of Theorem 1.2 and 1.3 are in fact average-case lower bounds for SUB(G) under Xθ,n

for arbitrary threshold weightings θ. Parameters κ(G) and τ(G) are obtained by taking the optimal choice
of threshold weighting θ, as we describe in the next subsection.

2.3 Join-trees and parameters κ(G) and τ(G)

Parameters κ(G) and τ(G) are defined in terms of a notion called join-trees for subgraphs of G. A join-tree
is simply a “formula” computing a subgraph of G, starting from individual edges, where union (∪) is the
only operation.

Definition 2.9. A join-tree over G is a finite rooted binary tree A together with a labeling labelA :
Leaves(A) → E(G) ∪ {⊥} (which may also be viewed as a partial function Leaves ⇀ E(G)). We reserve
symbols A,B,C,D,E for join-trees. (F will always denote a subgraph of G.)

The graph of A, denoted GA, is the subgraph of G with edge set E(G) ∩ Range(labelA). (Note that GA
is always finite.) As a matter of notation, we write E(A) for E(GA) and V (A) for V (GA). We also write
∆θ(A) for ∆θ(GA) where θ is a threshold weighting on G.

We write 〈〉 for the single-node join-tree labeled by ⊥. For e ∈ E(G), we write 〈e〉 for the single-node
join-tree labeled by e. For join-trees B and C, we write 〈B,C〉 for the join-tree consisting a root with B and
C as children (with the inherited labels, i.e., label〈B,C〉 = labelB ∪ labelC). Note that G〈B,C〉 = GB ∪GC .

Every join-tree A is clearly either 〈〉, or 〈e〉 where e ∈ E(G), or 〈B,C〉 where B,C are join-trees. In the
first two cases, we say that A is atomic; in the third case, we say that A is non-atomic.

We say that B is a child of A if A ∈ {〈B,C〉, 〈C,B〉} for some C. We say that D is a sub-join-tree of
A (denoted D � A) if D = 〈〉 or D = A or D is a sub-join-tree of a child of A. We say that D is a proper
sub-join-tree (denoted D ≺ A) if D � A and D 6= A.

We are now able to define the invariant κ(G) in Theorem 1.2, which lower bounds the restricted circuit
size of SUB(G). (In fact, κ(G) also provides a nearly tight upper bound on the average-case AC 0 circuit
size of SUB(G) [11].)

Definition 2.10 (The invariant κ(G) of Theorem 1.2). For finite graphs G, let

κ(G) := max
threshold weightings θ for G

min
join-trees A with graph G

max
B�A

∆θ(B).

The invariant of τ(G) of Theorem 1.3 is significantly more complicated to define. We postpone the
definition to Section 5 and, in the meantime, focus on a simpler “potential function” on join-trees, denoted
Φθ(A), which we use to lower bound τ(G). In order to state the definition of Φθ(A), we require the following
operation 	 (“restriction away from”) on graphs and join-trees.

Definition 2.11 (The operation 	 on graphs and join-trees). For F ⊆ G and a subset S ⊆ V (G), we denote
by F 	 S the graph consisting of the connected components of F that are vertex-disjoint from S.

For a join-tree A, we denote A	S the join-tree with the same rooted tree structure as A and leaf labeling
function

labelA	S(l) :=

{
labelA(l) if labelA(l) ∈ E(GA 	 S),

⊥ otherwise.
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That is, A	 S deletes all labels except for edges in GA 	 S. Note that GA	S = GA 	 S.
As a matter of notation, if B is another join-tree, we write A 	 B for A 	 V (B) and A 	 (S ∪ B) for

A	 (S ∪ V (B)).

e g h e

f⊥

e ⊥ ⊥ e

f⊥

A A⊖ S

b b b b b b
e f g h

GA

S

Figure 1: An example where A is a join-tree whose graph GA consists of two paths of length 2 with edges
e, f, g, h. S is the set containing just the external endpoint of h. The join-tree A	S is depicted to the right.

Definition 2.12 (The potential function Φθ on join-trees). Fix a threshold weighting θ on a graph G. The
potential function Φθ : {join-trees over G} → R≥0 is the unique pointwise minimum function satisfying the
following inequalities for all join-trees A,B,C,D:

Φθ(A) ≥ Φθ(D) + ∆θ(C 	D) + ∆θ(A	 (C ∪D)) if A ∈ {〈B,C〉, 〈C,B〉} and D � B,(†)

Φθ(A) ≥ 1

2

(
Φθ(D) + Φθ(E 	D) + ∆θ(A) + ∆θ(A	 (D ∪ E))

)
if D,E ≺ A.(‡)

Alternatively, Φθ(A) has the following recursive characterization:

• If A is an atomic join-tree, then

Φθ(A) := ∆θ(A) =

{
0 if A = 〈〉,
2− θ(e) if A = 〈e〉 where e ∈ E(G).

(Obs: In the case A = 〈e〉, the constraint Φθ(A) ≥ ∆θ(A) is forced by (‡) where B = C = 〈〉.)

• If A = 〈B,C〉, then

Φθ(A) := max


max
D�B

Φθ(D) + ∆θ(C 	D) + ∆θ(A	 (C ∪D)),

max
D�C

Φθ(D) + ∆θ(B 	D) + ∆θ(A	 (B ∪D)),

max
D,E≺A

1

2

(
Φθ(D) + Φθ(E 	D) + ∆θ(A) + ∆θ(A	 (D ∪ E))

)
 .

That is, at least one of inequalities (†) or (‡) is tight for each join-tree A.

This definition, although opaque at first, will be clarified later (in Sections 4 and 5). The key property
of Φθ(A) is that it provides a lower bound the invariant τ(G), which in turn provides a lower bound on the
restricted formula complexity of SUB(G).

Theorem 2.13 ([16]). The invariant τ(G) of Theorem 1.3 satisfies

τ(G) ≥ max
threshold weightings θ for G

min
join-trees A with graph G

Φθ(A).

The definition of τ(G) and proof of Theorem 2.13 are postponed to Section 5. First, in Section 3, we will
present our combinatorial main lemma, which gives a lower bound on Φθ(A) for all join-trees with graph Tk
under the threshold weighting θ of Example 2.5.
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2.4 Observations about Φθ

Note that inequality (†) implies Φθ(A) ≥ Φθ(D) for all D � A (since ∆θ(·) is nonnegative). Also note that
inequality (‡) implies Φθ(A) ≥ ∆θ(A) in the special case B = C = 〈〉 (since Φθ(〈〉) = 0 and A	 (the empty
graph) = A). Combining these observations, we see that Φθ(A) ≥ ∆θ(D) for all D � A. It follows that
τ(G) ≥ κ(G) for all graphs G, which makes sense in light of the fact that κ(G) bounds circuit size and τ(G)
bounds formula size.

Next, observe that Φθ(A) always equals either Φθ(D) + (some ∆θ(·)-terms) or 1
2 (Φθ(D) + Φθ(E 	D)) +

(some ∆θ(·)-terms) where D and E are proper sub-join-trees of A. This can be expanded out until we get
a nonnegative linear combination of ∆θ(·)-terms. Looking closely, we see that

Φθ(A) =
∑
F⊆G

cF ·∆θ(F )

where coefficients cF (which depend on both θ and A) are nonnegative dyadic rational numbers coming from
the tight instances of inequalities (†) and (‡). We may further observe, for any v ∈ V (G), that∑

F⊆G : v∈V (F )

cF ≤ 1.

This is easily shown by induction using the fact that graphs F1 and F2	F1 and F3	 (F1 ∪F2) are pairwise
disjoint for any F1, F2, F3 ⊆ G.

One consequence of this observation is the following lemma, which we will use in Sections 3 and 6.

Lemma 2.14. Suppose (G, θ) and (G∗, θ∗) are threshold-weighted graphs such that G ⊆ G∗ and θ∗(e) ≤ θ(e)
for all e ∈ E(G). Then for any join-tree A with graph G, we have

Φθ(A) ≥ Φθ∗(A)−
∑

e∈E(G)

(
θ(e)− θ∗(e)

)
.

Proof. Let {cF }F⊆G be nonnegative dyadic rationals — arising from the tight instances of inequalities (†)
and (‡) in the recursive definition of Φθ∗(A) — such that Φθ∗(A) =

∑
F⊆G cF · ∆θ∗(F ). We may apply

inequalities (†) and (‡) in the exact same way to get the bound Φθ(A) ≥∑F⊆G cF ·∆θ(F ). We now have

Φθ∗(A)− Φθ(A) ≤
∑
F⊆G

cF

(
∆θ∗(F )−∆θ(F )

)
=
∑
F⊆G

cF
∑

e∈E(F )

(
θ(e)− θ∗(e)

)
=

∑
e∈E(G)

(
θ(e)− θ∗(e)

) ∑
F⊆G : e∈E(F )

cF

≤
∑

e∈E(G)

(
θ(e)− θ∗(e)

)
,

using the fact that θ(e)− θ∗(e) ≥ 0 and
∑
F⊆G : v∈V (F ) cF ≤ 1 for all v ∈ V (G).

2.5 Lower bounds on Φθ

Having introduced the potential function Φθ and described its connection to τ in Theorem 2.13, we conclude
this section by briefly explaining how it is used derive lower bounds τ(Pk) and τ(Tk). The main combinatorial
lemma behind the lower bound of Theorem 1.9 is the following:

Lemma 2.15 ([15]). Let θ be the constant 1+ 1
k threshold weighting on Pk. For every join-tree A with graph

Pk, we have Φθ(A) ≥ 1
2 log√13+1(k). (Therefore, τ(G) ≥ 1

2 log√13+1(k).)
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The proof is included in Appendix A, for the sake of comparison with our two lower bounds below. We
remark that this proof makes crucial use of both (†) and (‡); it was shown in [15] that no lower bound better
than Φθ(A) = Ω(1) is provable using (†) alone or (‡) alone.

Our lower bound τ(Tk) = Ω(k) (Theorem 1.7) is an immediate consequence of the following:

Lemma 2.16. Let θ be the threshold weighting arising from the uniform random walk on Tk (Example 2.5).
For every join-tree A with graph Tk, we have Φθ(A) ≥ k/30− 1/5.

Our proof, given in the next section, is purely graph-theoretic. Interestingly, the argument essentially
uses only inequality (‡); we do not require (†), other than in the weak form Φθ(A) ≥ Φθ(D) for all D ≺ A.

It is worth mentioning that the choice of threshold weighting is important in Lemma 2.16. A different,

perhaps more obvious, threshold weighting is the constant function with value |V (Tk)|
|E(Tk)| (= 2k+1−1

2k+1−2
). With

respect to this threshold weighting, no lower bound better than Ω(1) is possible.
Finally, our improved lower bound τ(Pk) ≥ log√5+5(k) (Theorem 1.11) is obtained via the following

lemma. This result involves a 2-parameter extension of Φθ(A) denoted Φθ(A|S) (where S ⊆ V (G)), which
we introduce in Section 4.

Lemma 2.17. Let θ be the constant 1 + 1
k threshold weighting on Pk. For every join-tree A with graph Pk,

we have Φθ(A|∅) ≥ log√5+5(k)− 1.

This lemma is proved in Section 6, after we show how Φθ(·|·) provides a lower bound on τ(·) in Section 5.

3 Lower bound τ(Tk) = Ω(k)

We fix the infinite pattern graph T∞ with the threshold weighting θ induced by the uniform random walk.
Recall that T∞ =

⋃∞
k=1 Tk under a nesting T1 ⊂ T2 ⊂ T3 ⊂ · · · with Leaves(T1) ⊂ Leaves(T2) ⊂ Leaves(T3) ⊂

· · · . F,G,H will represent finite subgraphs of T∞, and A,B,C,D,E will be join-trees over T∞. (In particular,
note that G no longer denotes the ambient pattern graph.)

We next recall the definition of θ from Example 2.5. Let M ∈ [0, 1]V (T∞)×V (T∞) be the transition matrix
of the uniform random walk on T∞, that is,

Mv,w =


1 if {v, w} ∈ E(T∞) and v is a leaf,

1/3 if {v, w} ∈ E(T∞) and v is a non-leaf,

0 if {v, w} /∈ E(T∞).

This induces the threshold weighting θ : E(T∞)→ [0, 2] given by

θ({v, w}) := Mv,w +Mw,v =

{
2/3 if v or w is a leaf of T∞,

4/3 otherwise.

Since θ is fixed, we will suppress it when writing ∆(F ) and Φ(A).

Definition 3.1. For all k ≥ 0, let

Vk := {v ∈ V (Tk) : v has distance k from a leaf}.

Thus, V0 is the set of leaves in T∞, V1 is the set of parents of leaves, etc. Note that V (T∞) =
⋃∞
k=0 Vk. We

shall refer to the Vk as the various levels of T∞.
For k ≥ 1 and x ∈ Vk, let Tx ⊂ T∞ be the complete binary tree of height k rooted at x (in the case

k = 0, we regard Tx as a single isolated vertex). We denote by T+
x the graph obtained from Tx by including

an extra edge between x and its parent. Note that

|V (Tx)| = 2k+1 − 1, |V (T+
x )| = 2k+1, |E(Tx)| = 2k+1 − 2, |V (T+

x )| = 2k+1 − 1.

For j ∈ {0, . . . , k}, let Vj(Tx) := Vj ∩ V (Tx).
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Observation 3.2. If x ∈ Vk, then for j ∈ {0, . . . , k}, |Vj(Tx)| = 2k−j .

We next define two useful parameters of finite subgraphs of T∞.

Definition 3.3 (Max-complete height). For a finite subgraph F of T∞, define the max-complete height λ(F )
to be the maximum k ∈ N for which there exists x ∈ Vk with Tx ⊆ G; λ(F ) is defined to be zero when no
such x exists (in particular, this happens when V (F ) ∩ V0 = ∅).

Observation 3.4. For any x ∈ Vk, λ(Tx) = λ(T+
x ) = k.

Definition 3.5 (Boundary size). Let ∂(F ) denote the size of boundary of F in T∞:

∂(F ) := |V (F ) ∩ V (T∞ \ F )|.

Observation 3.6. For any x ∈ Vk, we have ∂(Tx) = ∂(T+
x ) = 1, as the boundaries in the respective graphs

are simply the singletons {x} and {parent(x)}. Another example is as follows: if x ∈ Vk for some k ≥ 2 and
F is the subgraph of Tx induced by the set of vertices V (Tx) \ V0, then ∂(F ) = 2k−1 + 1 as all vertices in
V1(Tx) (along with x) lie in the boundary of F .

Definition 3.7 (Grounded and ungrounded subgraphs of T∞). Let F,H be finite subgraphs of T∞. We say
that F is grounded if it is connected and V (F ) ∩ V0 6= ∅ (that is, F is a tree, at least one of whose leaves is
also a leaf of T∞). We say that H is ungrounded if it is non-empty and connected and V (H) ∩ V0 = ∅ (that
is, H is a non-empty tree, none of whose leaves is a leaf of T∞).

x

bc

b b

b

bc

b

bc

b

b bcbcbc

bbb

b

b b

y

V0

V1

V2

V3

V4
bc

Figure 2: Example of a grounded graph F ⊂ T∞. The dotted lines indicate the various levels that V (F )
intersects and dashed lines indicate (some of the) edges in T∞ \ F . The nodes colored white lie in the
boundary of F , and therefore ∂(F ) = 7 and ∆(F ) = 11/3. The max-complete height λ(F ) = 2, since
Tx ⊂ F for x ∈ V2 and x is the highest such node. The subgraph H = F ∩Ty is ungrounded with λ(H) = 0.

We shall think of the function ∂(F ) as essentially a proxy for ∆(F ), as it has the advantage of having a
simple combinatorial definition. This is justified by the following:

Lemma 3.8. For every F ⊂ T∞, we have ∆(F ) ≥ ∂(F )/3.

It also holds that ∆(F ) ≤ 2∂(F )/3 for F without isolated vertices (or ∆(F ) ≤ ∂(F ) if we allow isolated
vertices), but we will not need this upper bound.

Proof. Since θ is the threshold weighting induced by M , Lemma 2.4 tells us

∆(F ) =
∑

v∈V (F )

∑
w∈V (T∞) : {v,w}∈E(T∞\F )

Mv,w.

Note that v ∈ V (F ) contributes to this sum if, and only if, it belongs to the boundary of F (i.e., v ∈
V (F ) ∩ V (T∞ \ F )). Since Mv,w ≥ 1/3 whenever {v, w} ∈ E(F ), the claim follows.

We are now ready to state the main theorem of the section.
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Theorem 3.9. Let ε = 1/30 and δ = 2/5. Then for every join-tree A,

Φ(A) ≥ ελ(A) + δ∆(A).

Theorem 3.9 directly implies Lemma 2.16, which in turn yields the lower bound τ(Tk) = Ω(k) of Theorem
1.7. To see why, let θ′ be the threshold weighting on Tk coming from the uniform random walk (Example
2.5). Viewing Tk a subgraph of T∞, note that

∑
e∈E(Tk)(θ

′(e)− θ(e)) = 2( 5
6 − 2

3 ) = 1
3 . For any join-tree A

with graph Tk, Lemma 2.14 and Theorem 3.9 now imply

Φθ′(A) ≥ Φ(A)− 1

3
≥ 1

30
λ(Tk) +

2

5
∆(Tk)− 1

3
=

1

30
k +

2

5
· 1

3
− 1

3
=

1

30
k − 1

5
.

We proceed with a few definitions and lemmas needed for the proof of Theorem 3.9 in Section 3.1. In
order to present the main arguments first, proofs of three auxiliary lemmas (3.10, 3.12, 3.13) are postponed
to Section 3.2.

Lemma 3.10. Let H be a non-empty finite subgraph of T∞, all of whose components are ungrounded. Then
∂(H) ≥ 1

2 (|E(H)|+ 3).

We make a note of its following corollary here.

Corollary 3.11. Suppose H be a finite connected subgraph of T∞ and y ∈ V (H) such that E(H)∩E(Ty) 6= ∅
and H does not contain any path from y to a leaf of Ty. Then ∂(H) ≥ 1

2 (|E(H) ∩ E(Ty)|+ 1).

Proof. Let F be the graph with edge set E(F ) := E(H) ∩E(Ty). Note that F is non-empty, connected and
ungrounded. Observe that ∂(H) ≥ ∂(F )−1 because all vertices in the boundary of H, with the only possible
exception of y, also lie in the boundary of F . Hence by Lemma 3.10, ∂(H) ≥ 1

2 (|E(H) ∩ E(Ty)|+ 1).

The second auxiliary lemma gives a useful inequality relating ∂(G), λ(G) and |E(G)|.

Lemma 3.12. For every finite subgraph G of T∞, we have λ(G) + ∂(G) ≥ log(|E(G)|+ 1).

(This is tight whenG = T+
x for some x ∈ Vk, in which case λ(G) = k and ∂(G) = 1 and |E(G)| = 2k+1−1.)

The third auxiliary lemma shows that subgraphs of Tk that contain at most half the edges of Tk and have
boundary size j (≤ k/2) have empty intersection with a large complete subtree of Tk of height k − j.

Lemma 3.13. Let x ∈ Vk and suppose G ⊆ Tx such that |E(G∩ Tx)| ≤ 2k − 1 and ∂(G) ≤ k/6. Then there
exists a vertex z ∈ Vk−∂(G)(Tx) such that E(G) ∩ E(T+

z ) = ∅.

We now state and prove the main lemma used in the proof of Theorem 3.9.

Lemma 3.14. For any integers 1 ≤ t ≤ `, let z ∈ V` and suppose A is a join-tree such that Tz ⊆ GA. Then
one the following conditions holds:

(i) There exists D � A such that ∂(D) ≥ t and λ(D) + ∂(D) ≥ `.

(ii) There exists C ≺ A with λ((C ∩ Tz)	 {z}) + ∂((C ∩ Tz)	 {z}) ≥ `− t.

(iii) There exists E ≺ A such that ∂(E) ≥ `− t.

Proof. Descend in the join-tree A until reaching a B � A such that B contains a path P from z to a leaf of
Tz, but no B′ ≺ B contains a path from z to a leaf of Tz.

Let j ∈ {1, . . . , `} be maximal such that there exists y ∈ Vj(Tz) ∩ P such that Ty ⊆ GB . We claim that
∂(B) ≥ ` − j. To see this, note that for every vertex v 6= y on the path from z to y (a subpath of P ), if
c(v) denotes the child of v that is not on the path P , then G does not contain T+

c(v) (because if it did then

λ(G) > k). As a result, it must be the case that for every vertex v 6= y on the path from z to y, some vertex
in V (GB) ∩ V (T+

c(v)) lies in the boundary of G and so, ∂(G) ≥ `− j.
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(a) Here j = 1 is “small”. For each i ∈ {2, . . . , 5}, either
vi or a node in its right subtree lies in the boundary of B.
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(b) C doesn’t contain the path between y and z. So we
can directly use Lemma 3.12 on (C ∩ Tz)	 {z}.
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(c) C contains the path from z to y and H∩Ty is “large”.
But also H is ungrounded and thus has large boundary.
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v1

v4

z = v5

bcbc

b

b b

b b
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bc

b

b

b

b

b b b b
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(d) H ∩ Ty is “small”. But then again, (C ∩ Tz)	 {z} is
large and so Lemma 3.12 is applicable.

Figure 3: An illustration with ` = 5, t = 3. In each example, solid lines denote the edges of B, thickly
shaded lines denote the subgraph C, and dashed lines denote edges of Tz \B. Nodes shaded white lie in the
boundary of B (thought not necessarily the boundary of C). P is the path v0v1v2v3v4v5.

As an illustration of this argument, consider the graph GB in Figure 3a. Then for every vertex v ∈
{v2, . . . , v5}, either v itself is in the boundary (like v2 and v5) or some vertex in Tc(v) is in the boundary (for
v3, it is c(v3) for example and for v4, it is either child of c(v4)).

Consider the case that j ≤ ` − t (again see Figure 3a). Letting D := B, we have ∂(D) ≥ ` − j ≥ t and
λ(D) ≥ j, so condition (i) is satisfied. We shall therefore proceed under the assumption that

j ≥ `− t+ 1.

Since Ty ⊆ GB , at least one child C of B satisfies

|E(C) ∩ E(Ty)| ≥ 1

2
|E(Ty)| = 2j − 1.

Fix one such C.
Consider the case that C does not contain the path between z and y (see Figure 3b). Then C ∩ Ty ⊆

C 	 {z}, so by Lemma 3.12,

λ((C ∩ Tz)	 {z}) + ∂((C ∩ Tz)	 {z}) ≥ log(|E(C ∩ Ty)|+ 1) ≥ log(2j) ≥ `− t+ 1.

In this case, we satisfy condition (ii). We shall therefore proceed under the assumption that C contains the
path between z and y.

Note that C does not contain a path from y to any leaf of Ty (since otherwise C would contain a path
from z to a leaf of Tz, contradicting the way we choose B � A). Let H be the connected component of GC
that contains y (and hence also contains the path between z and y).

We now consider two final cases, depending on the size of |E(H)∩E(Ty)|. First, assume |E(H)∩E(Ty)| ≥
2(`− t) (see Figure 3c). In this case, Corollary 3.11 implies

∂(C) ≥ ∂(H) ≥ 1

2

(
|E(H) ∩ E(Ty)|+ 1

)
≥ `− t.
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We satisfy condition (iii) setting E := C.
Finally, assume |E(H) ∩ E(Ty)| ≤ 2(`− t)− 1 (see Figure 3d). We have

|E((C ∩ Tz)	 {z})| ≥ |E(C) ∩ E(Ty)| − |E(H) ∩ E(Ty)|
≥ (2j − 1)− (2(`− t)− 1)

≥ 2`−t+1 − 2(`− t).

Lemma 3.12 now implies

λ((C ∩ Tz)	 {z}) + ∂((C ∩ Tz)	 {z}) ≥ log(|E((C ∩ Tz)	 {z})|+ 1)

≥ log(2`−t+1 − 2(`− t) + 1)

> `− t

since 2x+1 − 2x+ 1 > 2x for all x ≥ 0. Therefore, condition (ii) is again satisfied in this final case.

3.1 Proof of Theorem 3.9

We now prove Theorem 3.9: the lower bound Φ(A) ≥ ελ(A) + δ∆(A) where ε = 1/30 and δ = 2/5.
We argue by a structural induction on join-trees A. First, consider the case that GA is empty, then

Φ(A) = 0 and ελ(A) + δ∆(A) = 0. We shall assume that GA is non-empty.
Next consider the base case where A is the atomic join-tree 〈e〉 for an edge e ∈ E(T∞). In this case, we

have λ(A) ≤ 1 and

Φ(A) = ∆(A) =

{
2/3 if e contains a leaf,

4/3 otherwise.

Therefore, ελ(A)+δ∆(A) ≤ (1/30)+(2/5)(4/3) = 17/30. We are done, since Φ(A) ≥ 2/3 > ελ(A)+δ∆(A).
From now on, let A be a non-atomic join-tree with whose graph is non-empty. Let

k := λ(A).

Our goal is thus to prove Φ(A) ≥ εk + δ∆(A), which we do by analyzing numerous cases.
Consider first the case that k = 0. In this case, we clearly have Φ(A) ≥ εk + δ∆(A) (since Φ ≥ ∆ ≥ 0

and δ < 1). So shall proceed on the assumption that k ≥ 1.
Since Φ ≥ ∆, we are done if ∆(A) ≥ εk+ δ∆(A). So we shall proceed on the additional assumption that

(2) ∆(A) ≤ ε

1− δ k =
1

18
k.

Fixing x ∈ Tk with Tk ⊆ GA: By definition of λ(A), there exists a vertex x ∈ Tk such that Tk ⊆ GA. Let
us fix any such x.

Fixing B � A with 2k−1 ≤ |E(B) ∩ E(Tx)| ≤ 2k − 1: We next fix a sub-join-tree B � A satisfying
2k−1 ≤ |E(B)∩E(Tx)| ≤ 2k−1. To see that such B exists, first note that |E(A)∩E(Tx)| = |E(Tx)| = 2k+1−2.
Consider a walk down A which at each step descends to a child C which maximizes |E(C) ∩ E(Tx)|. This
quantity shrinks by a factor ≥ 1/2 at each step, eventually reaching size 1. Therefore, at some stage, we
reach a sub-join-tree B such that the intersection size |E(B) ∩ E(Tx)| is between 2k−1 and 2k − 1.

Observe that Φ(A) ≥ Φ(B) ≥ ∆(B) (by (†) and the fact that Φ ≥ ∆ for all join-trees). Therefore, we
are done if ∆(B) ≥ εk + δ∆(A). So we shall proceed under the additional assumption that

(3) ∆(B) ≤ εk + δ∆(A) =
1

30
k +

2

5
∆(A) ≤

( 1

30
+

2

5
· 1

18

)
k =

1

18
k.
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Since |E(B)| ≥ |E(B) ∩ E(Tx)| ≥ 2k−1, Lemma 3.12 tells us that λ(B) + ∂(B) ≥ k − 1. We make note
of the fact that this implies

Φ(B) ≥ ελ(B) + δ∆(B) (induction hypothesis)(4)

≥ ε
(
k − ∂(B)− 1

)
+ δ∆(B)

≥ εk + (δ − 3ε)∆(B)− ε (using −∂ ≥ −3∆).

Fixing z ∈ Vk−∂(B)(Tx) with E(B) ∩ E(T+
z ) = ∅: Note that ∂(B) ≤ 3∆(B) ≤ k/6 by (3). Since

|E(B) ∩ E(Tx)| ≤ 2k − 1, the hypotheses of Lemma 3.13 are satisfied with respect to the vertex x and the
graph GB ∩ Tx. Therefore, we may fix a vertex z ∈ Vk−∂(B)(Tx) such that E(B) ∩ E(T+

z ) = ∅.

We next introduce a parameter

t := 6∆(A) + 3∆(B).

Note that t is an integer, since 3∆ is integral. Our choice of parameters moreover ensure that 1 ≤ t ≤ k/2,
since ∆(A),∆(B) ≤ k/18 by (2),(3) and ∆(A),∆(B) ≥ 1/3 for all nonempty graphs. Since k − ∂(B) ≥
k − 3∆(B) ≥ 5k/6, it follows that t < k − ∂(B).

Since z ∈ Vk−∂(B) and Tz ⊆ Tx ⊆ GA, Lemma 3.14 (with respect to z and 1 ≤ t < ` := k − ∂(B)) tells
us that one of the following conditions holds:

(i) There exists D � A such that ∂(D) ≥ t and λ(D) + ∂(D) ≥ k − ∂(B).

(ii) There exists C ≺ A with λ((C ∩ Tz)	 {z}) + ∂((C ∩ Tz)	 {z}) ≥ k − ∂(B)− t.

(iii) There exists E ≺ A with ∂(E) ≥ k − ∂(B)− t.

We will show that Φ(A) ≥ εk + δ∆(A) in each of these three cases.

Case (i): Suppose D = A. Then it follows that ∂(A) ≥ t > 6∆(A), but this contradicts Lemma 3.8 by
which ∆(A) ≥ ∂(A)/3, as boundary of a non-empty graph is always non-empty. Thus, D ≺ A and we have

Φ(A)
(†)
≥ Φ(D) ≥ ελ(D) + δ∆(D) (induction hypothesis)

≥ ελ(D) +
δ

3
∂(D) (since ∆ ≥ ∂/3)

≥ ε
(
k − ∂(B)

)
+
(δ

3
− ε
)
∂(D) (since λ(D) + ∂(D) ≥ k − ∂(B) by Case (i))

≥ ε
(
k − ∂(B)

)
+
(δ

3
− ε
)
t (since δ/3 > ε and ∂(D) ≥ t by Case (i))

= ε
(
k − ∂(B)

)
+
(δ

3
− ε
)(

6∆(A) + 3∆(B)
)

≥ ε
(
k − 6∆(A)− 6∆(B)

)
+ δ
(

2∆(A) + ∆(B)
)

(since −∂ ≥ −3∆)

= εk + δ∆(A) +
(

∆(A) + ∆(B)
)

(δ − 6ε)

≥ εk + δ∆(A) (since δ > 6ε).

17



Case (ii): Recall that z ∈ Vk−∂(B)(Tx) was chosen such that E(B)∩E(T+
z ) = ∅. It follows that the graph

of (C ∩ Tz) 	 {z} is a union of connected components of C 	 S. Therefore, λ(C 	 B) ≥ λ((C ∩ Tz) 	 {z})
and ∆(C 	B) ≥ ∆((C ∩ Tz)	 {z}). Case (ii) now implies

λ(C 	B) + ∂(C 	B) ≥ k − ∂(B)− t

It follows that

Φ(C 	B) ≥ ελ(C 	B) + δ∆(C 	B) (induction hypothesis)

≥ ε
(
k − ∂(B)− ∂(C 	B)− t

)
+ δ∆(C 	B) (by the above inequality)

≥ ε
(
k − 6∆(A)− 6∆(B)− 3∆(C 	B)

)
+ δ∆(C 	B) (using −∂ ≥ −3∆)

= εk − 6ε
(

∆(A) + ∆(B)
)

+ (δ − 3ε)∆(C 	B)

≥ εk − 6ε
(

∆(A) + ∆(B)
)

(since δ > 3ε).

By inequality (‡) and the induction hypothesis, we have

Φ(A)
(‡)
≥ 1

2
Φ(B) +

1

2
Φ(C 	B) +

1

2
∆(A)

≥ 1

2

(
εk + (δ − 3ε)∆(B)− ε

)
+

1

2

(
εk − 6ε

(
∆(A) + ∆(B)

))
+

1

2
∆(A) (by (4) and the above)

= εk +
1− 6ε

2
∆(A) +

δ − 9ε

2
∆(B)− ε

2

= εk + δ∆(A) +
1

20
∆(B)− 1

60

≥ εk + δ∆(A).

The final step above uses ∆(B) ≥ ∂(B)/3 ≥ 1/3 since GB is a nonempty subgraph of T∞.

Case (iii): We have

Φ(A)
(†)
≥ Φ(E) ≥ ∆(E) ≥ 1

3
∂(E) ≥ 1

3

(
k − ∂(B)− t

)
(by the inequality of Case (iii))

≥ 1

3

(
k − 6∆(A)− 6∆(B)

)
(using −∂ ≥ −3∆)

= εk + δ∆(A) +
(1

3
− ε
)
k − (2 + δ)∆(A)− 2∆(B)

= εk + δ∆(A) +
( 3

10
k − 12

5
∆(A)− 2∆(B)

)
.

Recalling that ∆(A),∆(B) ≤ k/18 by (2), (3), we have

3

10
k − 12

5
∆(A)− 2∆(B) ≥

( 3

10
− 12

5
· 1

18
− 2 · 1

18

)
k =

5

90
k > 0.

This establishes that Φ(A) ≥ εk + δ∆(A) in the final case, which concludes the proof of the theorem.

3.2 Proofs of Lemmas 3.10, 3.12, 3.13

Proof of Lemma 3.10. Let H be a non-empty finite subgraph of T∞, all of whose components are un-
grounded. Then ∂(H) ≥ 1

2 (|E(H)|+ 3).
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As ∂(·) and |E(·)| are additive over disjoint components, it suffices to prove the lemma in the case where
H is connected. Let y be the unique highest vertex in H (i.e., belonging to Vk for the maximal k), which we
view as the “root” of H.

We now argue by induction on the size of E(H). If |E(H)| = 1, then both y and one of its children lie
in the boundary of H and hence, we are done. If |E(H)| = 2, then either H is the graph induced by y and
its two children, or H is a path of length 2 emanating from y. In either case, as H is ungrounded, all three
vertices are in the boundary of H and the claim follows.

So assume that |E(H)| > 2. We consider two cases:

Case 1: H contains a vertex v such that both its children v1 and v2 are leaves of H. Let H ′ be the subgraph of
H induced by V (H)\{v1, v2}. By the induction hypothesis, ∂(H ′) ≥ 1

2 (|E(H ′)|+ 3). But ∂(H) = ∂(H ′) + 1
because v1, v2 are in the boundary of H while v is not. Therefore,

∂(H) = ∂(H ′) + 1 ≥ 1

2
(|E(H ′)|+ 5) =

1

2
(|E(H)|+ 3).

Case 2: There exists a leaf u of H such that v := parent(u) ∈ V (H) and w := parent(v) ∈ V (H) and
degH(v) = 2. Define H ′ to be the subgraph of H induced by V (H) \ {u, v}. By the induction hypothesis,
∂(H ′) ≥ 1

2 (|E(H ′)|+ 3). But ∂(H) ≥ ∂(H ′) + 1 because u, v are in the boundary of H while w may or may
not be. In either case, we again have,

∂(H) ≥ ∂(H ′) + 1 ≥ 1

2
(|E(H ′)|+ 5) =

1

2
(|E(H)|+ 3),

which completes the proof.

Proof of Lemma 3.12. For all finite subgraphs G of T∞, λ(G) + ∂(G) ≥ log(|E(G)|+ 1).

We will prove the following equivalent inequality

(5) |E(G)|+ 1 ≤ 2∂(G)+λ(G).

We claim that it suffices to establish (5) for connected graphs G. To see why, assume (5) holds for two
vertex-disjoint graphs G and H. Then we have

|E(G ∪H)|+ 1 = (|E(G)|+ 1) + (|E(H)|+ 1)− 1 ≤ 2∂(G)+λ(G) + 2∂(H)+λ(H) − 1

≤ 2max{λ(G),λ(H)} · (2∂(G) + 2∂(H))− 1

≤ 2max{λ(G),λ(H)}+∂(G)+∂(H) − 1

= 2∂(G∪H)+λ(G∪H) − 1 < 2∂(G∪H)+λ(G∪H)

proving (5) for the graph G ∪H.
We now prove (5) assuming G is connected. If G is ungrounded, then we have λ(G) = 0 and ∂(G) ≥

1
2 (|E(G)|+ 3) by Lemma 3.10, and so

|E(G)|+ 1 ≤ 2∂(G)− 2 < 2∂(G) = 2∂(G)+λ(G).

So assume now that G is grounded. Let y ∈ Vm be the unique vertex in G of maximum height. Let
k := λ(G) (note that 0 ≤ k ≤ m) and fix a choice of x ∈ Vk such that Tx ⊆ G. If y = x, then G = Tx and
therefore λ(G) = k and ∂(G) = 1 and |E(G)| = 2k+1 − 2, so the inequality follows. So assume that y 6= x.

As G is connected, it contains the path P from y to x. Consider the case when G contains only one child
y′ of y. (See Figure 4a for an example.) Then G ⊆ T+

y′ and therefore |E(G)| ≤ |E(T+
y′ )| = 2m−1. Further, we

claim that ∂(G) ≥ m−k. To see this, note that for every vertex v 6= x on the path P , if c(v) denotes the child
of v that is not on the path P , then G does not contain T+

c(v) (because otherwise, λ(G) > k). As a result, it
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must be the case that for every v 6= x on the path P , some vertex in V (G)∩V (T+
c(v)) lies in the boundary of G

and so, ∂(G) ≥ m−k. Therefore, the desired inequality follows as |E(G)|+1 ≤ 2m = 2(m−k)+k ≤ 2∂(G)+λ(G).

v0

x = v1

v2

v3

y = v5

bc bc

b b

b

bc

bc

b

b

b

c(v3)

c(v4)

b

bb

bc

y′ = v4

(a) An example where m = 5 and y has only one child
in G. Every vertex on the path from y to parent(x)
“contributes” to the boundary of G. (Here each vi
belongs to Vi.)

x

y′

bc

b b

b

bc

b

b

y′′

b

bb

bc

b

y

b

b b

b

bb b

b

b

b b

(b) An example where m = 4 and G contains both
children of y. Every vertex on the path from y to
parent(x) “contributes” to the boundary of G. Fur-
thermore, Ty′′ 6⊆ G, thereby providing an additional
vertex in the boundary.

Figure 4: Examples of two cases that arise when the graph G is grounded.

Next, suppose that G contains both children of y. Let y′ be the child of y on the path to x, and let y′′ be
its sibling. (See Figure 4b for an example.) Note that G cannot contain the complete binary tree Ty′′ (since
otherwise λ(G) > k contradicting our choice of x). Therefore, there is at least one vertex in Ty′′ that lies in
the boundary of G. As a result, ∂(G) ≥ m− k + 1 (the m− k vertices identified by the previous argument,
along with the additional boundary element in V (G)∩V (Ty′′)). Also as G ⊆ Ty, we have |E(G)| ≤ 2m+1−2
and thus, |E(G)|+ 1 < 2m+1 = 2(m−k+1)+k ≤ 2∂(G)+λ(G).

Proof of Lemma 3.13. Let x ∈ Vk and suppose G ⊆ Tx such that |E(G)| ≤ 2k−1 and ∂(G) ≤ k/6. Then
there exists a vertex z ∈ Vk−∂(G)(Tx) such that E(G) ∩ E(T+

z ) = ∅.
The claim is easy to establish when G is empty or of the form Ty or T+

y where y ∈ V (T∞) (that is, in
the cases where ∂(G) ≤ 1). So we shall assume that ∂(G) ≥ 2.

Note that Tx contains 2∂(G) vertices with height k − ∂(G), that is, |Vk−∂(G)(Tx)| = 2∂(G) (Observation
3.2). Let

Y := {y ∈ Vk−∂(G)(Tx) : T+
y ⊆ G},

Z := {z ∈ Vk−∂(G)(Tx) : ∅ $ G ∩ T+
z $ G}.

It suffices to show that |Y |+ |Z| < 2∂(G).
Since

⊔
y∈Y E(T+

y ) ⊆ E(G), it follows that

|Y | · (2k−∂(G)+1 − 1) ≤ |E(G)| ≤ 2k − 1.

We next observe that ∂(G) ≥ |Z|+ 1. This is because for each z ∈ Z, G has at least one boundary element
in the set V (G ∩ Tz); and we get an additional boundary element by consider any element w ∈ V (G) of
maximum height, noting that w cannot lie in V (Tz) for any z ∈ Z. Therefore,

|Y |+ |Z| ≤ 2k − 1

2k−∂(G)+1 − 1
+ ∂(G)− 1.

Letting b := ∂(G), it suffices to show that

2k − 1

2k−b+1 − 1
+ b− 1 < 2b, or equivalently, 2b + (b− 1)(2k−b+1 − 1) < 2k + 1.

This numerical inequality is simple to verify for all 2 ≤ b ≤ k/6, so we are clearly done by the assumption
that 2 ≤ ∂(G) ≤ k/6.
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4 A better potential function

We again fix a graph G and a threshold weighting θ. In this section, we define a potential function Φθ(A|S)
with two parameters: a join-tree A and a set S ⊆ V (G). This improved potential function serves the same
purpose of lower-bounding τ(G). In Section 6 we use Φθ(A|S) to obtain a better lower bound on τ(Pk).

Let us begin by recalling the defining inequalities for Φθ(A):

Φθ(A) ≥ Φθ(D) + ∆θ(C 	D) + ∆θ(A	 (C ∪D)) if A ∈ {〈B,C〉, 〈C,B〉} and D � B,(†)

Φθ(A) ≥ 1

2

(
Φθ(D) + Φθ(E 	D) + ∆θ(A) + ∆θ(A	 (D ∪ E))

)
if D,E ≺ A.(‡)

A first observation toward improving Φθ(A) is that we could have included an additional inequality in the
definition of Φθ(A) while maintaining Theorem 2.13 (the lower bound on τ(G) in terms of Φθ(A)). We call
this inequality (

†

), since it is a variant of (†):

Φθ(A) ≥ Φθ(D 	 C) + ∆θ(C) + ∆θ(A	 (C ∪D)) if A ∈ {〈B,C〉, 〈C,B〉} and D � B.(

†

)

A second observation is that, in the recursive view of Φθ(A), we “shrink” more than necessary by passing to
Φθ(D	C) in (

†

) and Φθ(E 	D) in (‡). Recall that D	C is a join-tree with graph GD 	 V (C) formed by
the connected components of GD that are vertex-disjoint from V (C). Rather than recursing on D 	 C, we
can instead simply recurse on D while treating “	C” as an extra parameter. These two observations lead
to the definition of Φθ(A|S) below.

Notation 4.1. The following alternative notation for ∆θ will be convenient in what follows. For a graph
F ⊆ G and a set S ⊆ V (G), we write ∆θ(F |S) for ∆θ(F 	S). Similarly, for a join-tree A, we write ∆θ(A|S)
for ∆θ(GA 	 S).

Definition 4.2 (The potential function Φθ(A|S)). Let Φθ : {join-trees for subgraphs of G} × {subsets of
V (G)} → R≥0 be the unique pointwise minimum function — written as Φθ(A|S) rather than Φθ(A,S) —
satisfying the following inequalities for all sets S ⊆ V (G) and join-trees A,B,C,D:

Φθ(A|S) ≥ Φθ(B|S) + ∆θ(C|S ∪B) if A ∈ {〈B,C〉, 〈C,B〉},(†)
Φθ(A|S) ≥ ∆θ(B|S) + Φθ(C|S ∪B) if A ∈ {〈B,C〉, 〈C,B〉},(

†

)

Φθ(A|S) ≥ 1

2

(
Φθ(D|S) + Φθ(A|S ∪D) + ∆θ(A|S)

)
if D ≺ A.(‡)

Alternatively, Φθ(A|S) has the following recursive characterization:

• If A is an atomic join-tree, then Φθ(A|S) := ∆θ(A|S).

• If A = 〈B,C〉, then

Φθ(A|S) := max


Φθ(B|S) + ∆θ(C|S ∪B), Φθ(C|S) + ∆θ(B|S ∪ C),

∆θ(B|S) + Φθ(C|S ∪B), ∆θ(C|S) + Φθ(B|S ∪ C),

max
D≺A

1

2

(
Φθ(D|S) + Φθ(A|S ∪D) + ∆θ(A|S)

)
 .

(To avoid circularity, we take this maxD≺A over proper sub-join-trees D ≺ A such that V (D) * S.)

That is, at least one among inequalities (†), ( †), (‡) is tight for each join-tree A.
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Remark 4.3. We could have defined Φθ(A|S) in a stronger manner that ensures Φθ(A	 S) ≤ Φθ(A|S) for
all A and S (in order to claim that Φθ(A|∅) improves Φθ(A)) by using the following more general versions
of (†), ( †), (‡):

Φθ(A|S) ≥ Φθ(D|S) + ∆θ(C|S ∪D) + ∆θ(A|S ∪ C ∪D) if A ∈ {〈B,C〉, 〈C,B〉} and D � B,(†′)
Φθ(A|S) ≥ Φθ(D|S ∪ C) + ∆θ(C|S) + ∆θ(A|S ∪ C ∪D) if A ∈ {〈B,C〉, 〈C,B〉} and D � B,( †′)

Φθ(A|S) ≥ 1

2

(
Φθ(D|S) + Φθ(E|S ∪D) + ∆θ(A|S) + ∆θ(A|S ∪D ∪ E)

)
if D,E ≺ A.(‡′)

We chose the simpler Definition 4.2 since it is sufficient for our lower bound on τ(Pk) in Section 6. Definition
4.2 also leads to a mildly simpler proof of Theorem 5.10 in Section 5, compared with inequalities (†′), ( †′),
(‡′) above.

The following theorem shows that Φθ(A|∅) serves the same purpose as Φθ(A) of lower-bounding the
invariant τ(G).

Theorem 4.4. The invariant τ(G) in Theorem 1.3 satisfies

τ(G) ≥ max
threshold weightings θ for G

min
join-trees A with graph G

Φθ(A|∅).

In the next section, we will finally state the definition of τ(G) and prove Theorem 4.4. We will then use
this theorem to prove a lower bound on τ(Pk) using Φθ(A|S) in Section 5. (The argument in Section 5 is
purely graph-theoretic and does not require the material in Section 5 if Theorem 4.4 is taken for granted.)

Remark 4.5. The authors first proved the lower bound for τ(Tk) using Φθ(A) before considering the
improved potential function Φθ(A|S). It is conceivable that the use of Φθ(A|S) would simplify or improve
the constant in our k/30 lower bound. On the other hand, a suitable induction hypothesis would have to
account for the additional parameter S, so it is unclear whether a dramatic simplification can be achieved.

5 The pathset framework

In this section we present the pathset framework, state the definition of τ(G), and prove Theorem 4.4 (which
bounds τ(G) in terms of the potential function Φθ(A|S)). All definitions and results in this section are from
papers [13, 15, 16] (with minor modifications); a few straightforward lemmas are stated without proof. The
reader is referred to those papers for much more context, illustrative examples, and an explanation of how
τ(G) provides a lower bound on the AC 0 and monotone formulas size of SUB(G).

Throughout this section, we fix a threshold-weighted graph (G, θ) and an arbitrary positive integer n.
Let F range over subgraphs of G, let S, T range over subsets of V (G), and let A,B,C,D range over join-trees
for subgraphs of G.

Definition 5.1 (Relations, density, join, projection, restriction). Let V,W, T be arbitrary finite sets.

• For a tuple x ∈ [n]V and subset U ⊂ V , let xU ∈ [n]U denote the restriction of x to coordinates in U .

• For a relation A ⊆ [n]V , the density of A is denoted

µ(A ) := |A |/n|V |.

• For relations A ⊆ [n]V and B ⊆ [n]W , the join A ./ B ⊆ [n]V ∪W is the relation defined by

A ./ B := {z ∈ [n]V ∪W : xV ∈ A and zW ∈ B}.

• For A ⊆ [n]V and U ⊆ V , the projection projU (A ) ⊆ [n]U is defined by

projU (A ) := {x ∈ [n]U : ∃y ∈ A s.t. yU = x}.
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• For A ⊆ [n]V and z ∈ [n]T , the restriction restV \T (A |z) ⊆ [n]V \T is defined by

restV \T (A |z) := {x ∈ [n]V \T : ∃y ∈ A s.t. yV \T = xV \T and yV ∩T = zV ∩T }.

The next two lemmas bound the density of relations in terms of projections and restrictions.

Lemma 5.2. For every relation A ⊆ [n]V and U ⊆ V ,

µ(A ) ≤ µ(projU (A )) · max
z∈[n]U

µ(restV \U (A |z)).

Lemma 5.3. For all relations A ⊆ [n]V and B ⊆ [n]W ,

µ(A ./ B) ≤ µ(A ) · max
z∈[n]V

µ(restW (B|z)).

For subgraph F ⊆ G and sets S ⊆ V (G), we will be interested in relations A ⊆ [n]V (G)\S called G|S-
pathsets that satisfy certain density constraints. These density constraints are related to subgraph counts in
the random graph Xθ,n (see [16]).

Definition 5.4 (Pathsets). Let F ⊆ G and S ⊆ V (G).

• We write [n]F |S for [n]V (F )\S .

• We write RelationF |S for the set of relations A ⊆ [n]F |S . (That is, RelationF |S is the power set of

[n]F |S .)

• For A ∈ RelationF |S and F ′ ⊆ F , let projF ′|S(A ) := projV (F ′)\S(A ).

• For A ∈ RelationF |S and T ⊇ S and z ∈ [n]T , let restF |T (A |z) := restV (F )\T (A |z).

• A relation A ∈ RelationF |S is a F |S-pathset if it satisfies

µ(restF |T (A |z)) ≤ (1/n)∆(F |T )

for all T ⊇ S and z ∈ [n]T . The set of all F |S-pathsets is denoted by PathsetF |S .

The next lemma is immediate from the definition of PathsetF |S .

Lemma 5.5 (Pathsets are closed under restriction). For all A ∈ PathsetF |S and T ⊇ S and z ∈ [n]T , we
have restF |T (A |z) ∈ PathsetF |T .

We next introduce, for each join-tree A and set S, a complexity measure χA|S on relations A ⊆ [n]V (A)\S .
Very roughly speaking, χA|S measures the cost of “constructing” A via operations ∪ and ./, where all
intermediate relations are subject to pathset constraints and the pattern of joins is given by A.

Definition 5.6 (Pathset complexity χA|S(A )).

• For a join-tree A, let RelationA|S := RelationGA|S , PathsetA|S := PathsetGA|S , etcetera.

• For an atomic join-tree A and relation A ∈ RelationA|S , the A|S-pathset complexity of A , denoted
χA|S(A ), is the minimum number m of pathsets A1, . . . ,Am ∈ PathsetA|S such that A ⊆ ⋃mi=1 Ai.

• For a non-atomic join-tree A = 〈B,C〉 and relation A ∈ RelationA|S , the A|S-pathset complex-
ity of A , denoted χA|S(A ), is the minimum value of

∑m
i=1 max{χB|S(Bi), χC|S(Ci)} over families

{(Ai,Bi,Ci)}i∈[m] satisfying

◦ (Ai,Bi,Ci) ∈ PathsetA|S × PathsetB|S × PathsetC|S for all i,
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◦ Ai ⊆ Bi ./ Ci for all i, and

◦ A ⊆ ⋃mi=1 Ai.

We express this concisely as:

χA|S(A ) := min
{(Ai,Bi,Ci)}i

∑
i max{χB|S(Bi), χC|S(Ci)}.

We refer to any family {(Ai,Bi,Ci)}i achieving this minimum as a witnessing family for χA|S(A ).

The next lemma lists three properties of χA|S , which are easily deduced from the definition.

Lemma 5.7 (Properties of χA|S).

• χA|S is subadditive: χA|S(A1 ∪A2) ≤ χA|S(A1) + χA|S(A2),

• χA|S is monotone: A1 ⊆ A2 =⇒ χA|S(A1) ≤ χA|S(A2),

• if A = 〈B,C〉 and B ∈ PathsetB|S and C ∈ PathsetC|S, then χA|S(B ./ C ) ≤ max{χB|S(B), χC|S(C )}.
The next two lemmas show that pathset complexity is non-increasing under restrictions, as well as under

projections to sub-join-trees.

Lemma 5.8 (Projection Lemma). For all A ∈ RelationA|S and B � A, we have

χB|S(projB|S(A )) ≤ χA|S(A ).

Proof. It suffices to prove the lemma in the case where A = 〈B,C〉 (since ≺ is the transitive closure of “B is
a child of A”). Fix a witnessing family {(Ai,Bi,Ci)}i for χA|S(A ). Note that projB|S(A ) ⊆ ⋃i Bi, since
A ⊆ ⋃i Ai and Ai ⊆ Bi ./ Ci. It follows that

χB|S(projB|S(A )) ≤ χB|S(
⋃
i Bi)

≤∑i χB|S(Bi)

≤∑i max{χB|S(Bi), χC|S(Ci)}
= χA|S(A ).

Lemma 5.9 (Restriction Lemma). For all A ∈ RelationA|S and T ⊇ S and z ∈ [n]T , we have

χA|T (restA|T (A |z)) ≤ χA|S(A ).

Proof. We argue by induction on join-trees A. The lemma is trivial in the base case where A is atomic.
So assume A = 〈B,C〉. Fix a witnessing family {(Ai,Bi,Ci)}i for χA|S(A ). Observe that the family of
restricted triples {(restA|T (Ai|z), restB|T (Bi|z), restC|T (Ci|z))}i satisfies:

◦ (restA|T (Ai|z), restB|T (Bi|z), restC|T (Ci|z)) ∈ PathsetA|T × PathsetB|T × PathsetC|T for all i,

◦ restA|T (Ai|z) ⊆ restB|T (Bi|z) ./ restC|T (Ci|z) for all i,

◦ restA|T (A |z) ⊆ ⋃i restA|T (Ai|z).
Therefore,

χA|T (restA|T (A |z)) ≤∑i max{χB|T (restB|T (Bi|z)), χC|T (restC|T (Ci|z))}
≤∑i max{χB|S(Bi), χC|S(Ci)} (induction hypothesis)

= χA|S(A ).

We now prove the key theorem bounding pathset complexity χA|S(A ) in terms of the density of A and
the potential function Φ(A|S).
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Theorem 5.10. For every join-tree A and set S and relation A ∈ RelationA|S, we have

µ(A ) ≤ (1/n)Φ(A|S) · χA|S(A ).

Proof. We argue by induction on join-trees A. The base case where A is atomic is straightforward. Suppose
χA|S(A ) = m where A1, . . . ,Am ∈ PathsetA|S with A ⊆ ⋃i Ai. We have µ(A ) ≤ ∑i µ(Ai). For each

i, we have µ(Ai) ≤ (1/n)Φ(A|S) (by definition of Ai ∈ PathsetA|S). Therefore, µ(A ) ≤ (1/n)Φ(A|S) ·m =

(1/n)Φ(A|S) · χA|S(A ) as required.
So we assume A = 〈B,C〉 is non-atomic. Fix a witnessing family {(Ai,Bi,Ci)}i for χA(A ). Since

µ(A ) ≤∑i µ(Ai), it suffices to show, for each i, that

µ(Ai) ≤ (1/n)Φ(A|S) ·max{χB|S(Bi), χC|S(Ci)}.(6)

We establish (6) by considering the three different cases for Φ(A|S), according to which of the inequalities
(†), (

†) (‡) is tight.

Case (†): Φ(A|S) = Φ(B|S) + ∆(C|S ∪B) (or symmetrically Φ(A|S) = Φ(C|S) + ∆(B|S ∪ C))

Since Ai ⊆ Bi ./ Ci and Bi ∈ PathsetB|S , we have projB|S(Ai) ⊆ Bi and µ(restC|S∪B(Ai|z) ⊆ Ci for

any z ∈ [n]B|S . We now have (6) as follows:

µ(Ai) ≤ µ(projB|S(Ai)) max
z∈[n]B|S

µ(restC|S∪B(Ai|z)) (Lemma 5.3)

≤ µ(Bi) max
z∈[n]B|S

µ(restC|S∪B(Ci|z)) (by above observations)

≤ (1/n)∆(C|S∪B) · µ(Bi) (since Ci ∈ PathsetC|S)

≤ (1/n)∆(C|S∪B) · (1/n)Φ(B|S) · χB|S(Bi) (induction hypothesis)

≤ (1/n)Φ(A|S) ·max{χB|S(Bi), χC|S(Ci)}.

Case ( †): Φ(A|S) = ∆(B|S) + Φ(C|S ∪B) (or symmetrically Φ(A|S) = ∆(C|S) + Φ(B|S ∪ C))

We show (6) as follows:

µ(Ai) ≤ µ(Bi) max
z∈[n]B|S

µ(restC|S∪B(Ci|z)) (as in the previous case)

≤ (1/n)∆(B|S) max
z∈[n]B|S

µ(restC|S∪B(Ci|z)) (since Bi ∈ PathsetB|S)

≤ (1/n)∆(B|S) max
z∈[n]B|S

(1/n)Φ(C|S∪B) · χC|S∪B(restC|S∪B(Ci|z)) (induction hypothesis)

≤ (1/n)∆(B|S) · (1/n)Φ(C|S∪B) · χC|S(Ci) (Restriction Lemma 5.9)

≤ (1/n)Φ(A|S) ·max{χB|S(Bi), χC|S(Ci)}.

Case (‡): Φ(A|S) = 1
2

(
Φ(D|S) + Φ(A|S ∪D) + ∆(A|S)

)
for some D ≺ A

We have

µ(Ai) ≤ µ(projD|S(Ai)) max
z∈[n]D|S

µ(restA|S∪D(Ai|z)) (Lemma 5.2)

≤ (1/n)Φ(D|S)+Φ(A|S∪D) · χD|S(projD|S(Ai)) max
z∈[n]D|S

χA|S∪D(restA|S∪D(Ai|z)) (induction hyp.)

≤ (1/n)Φ(D|S)+Φ(A|S∪D) · χA|S(Ai) · χA|S∪D(restA|S∪D(Ai|z)) (Proj. Lemma 5.8)

≤ (1/n)Φ(D|S)+Φ(A|S∪D) ·
(
χA|S(Ai)

)2
(Rest. Lemma 5.9).
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Since Ai ∈ PathsetA|S , we also have

µ(Ai) ≤ (1/n)∆(A|S).

Taking the product of the square roots of these two bounds on µ(Ai), we conclude

µ(Ai) ≤ (1/n)
1
2 (Φ(D|S)+Φ(A|S∪D)+∆(A|S)) · χA|S(Ai)

≤ (1/n)Φ(A|S) · χA|S(Bi ./ Ci) (since Ai ⊆ Bi ./ Ci)

≤ (1/n)Φ(A|S) ·max{χB|S(Bi), χC|S(Ci)} (Lemma 5.7).

Having established (6) in all three cases, the proof is complete.

Finally, we define the graph invariant τ(G). Since we no longer fix a particular threshold weighting θ and
positive integer n, we include these as subscripts to the pathset complexity function by writing χθ,n,A|S(A )

for relations A ⊆ [n]V (G)\S .

Definition 5.11 (The parameter τ(G) of Theorem 1.3). For a graph G, let τ(G) ∈ R≥0 be the minimum
real number such that

χθ,n,A|S(A ) ≥ nτ(G) · µ(A )

for every threshold weighting θ on G, join-tree A with graph G, positive integer n, and relation A ⊆ [n]V (G).

It is evident from this definition that Theorem 4.4 is an immediate corollary of Theorem 5.10.

6 Lower bound τ(Pk) ≥ log√5+5(k)

Throughout this section, we fix the infinite pattern graph P∞ and threshold weighting θ : E(P∞) → {1}.
Let F range over finite subgraphs of P∞, and let S range over finite subsets of V (P∞) (= Z). We suppress
θ, writing ∆(F |S) instead of ∆θ(F |S).

For integers i < j, let Pi,j ⊆ P∞ be the path from i to j (with edges {i, i+1}, {i+1, i+2}, . . . , {j−1, j}).
For k ≥ 0, let Pk := P0,k.

Definition 6.1 (Open/half-open/closed components of F |S). For integers i < j such that Pi,j ⊆ F , we say
that

• (i, j) is an open component of F |S if V (Pi,j) ∩ S = {i, j},

• [i, j) is a half-open component of F |S if V (Pi,j) ∩ S = {i} and {j, j + 1} /∈ E(G),

• (i, j] is a half-open component of F |S if V (Pi,j) ∩ S = {j} and {i− 1, i} /∈ E(F ),

• [i, j] is a closed component of F |S if V (Pi,j) ∩ S = ∅ and {i, i− 1} /∈ E(F ) and {j, j + 1} /∈ E(F ).

We shall use the term ‘interval’ and component interchangeably. In each of the four cases above, we define
the length of the interval to be j − i and refer to i and j as the left and right ‘end-points’ of that interval,
respectively. We shall also refer to the length of an interval I by |I|. We treat a join-tree A as its graph GA
when speaking of the open/half-open/closed components of A|S.

As a matter of notation, let V ((i, j)) = {i + 1, . . . , j − 1} and V ([i, j)) = {i + 1, . . . , j} and V ((i, j]) =
{i+ 1, . . . , j} and V ([i, j]) = {i, . . . , j}.
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F |S
0

b b b b b b b b b b b bb b
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Figure 5: An example where F is the graph P0,4 ∪ P6,8 ∪ P9,14 ∪ P17,21 and S = {0, 6, 8, 21}. Then F |S
consists of four components: (0, 4], (6, 8), [9, 14], and [17, 21). We follow the same format for the rest of the
figures in this section: ‘(’, ‘)’ indicate that the corresponding (left or right, respectively) end-point of that
component is in S, while ‘|’ indicates that it is not. We shall skip marking the internal vertices of an interval.

Lemma 6.2. ∆(F |S) equals the number of closed components of F |S.

Proof. We have ∆(F |S) = ∆(F 	 S) = |V (F 	 S)| − |E(F 	 S)| = #{connected components of F 	 S} =
#{closed components of F |S}.

Recall that for any any graph F and set T , we denote by F [T ] the subgraph induced by the vertices of
V (F ) ∩ T . We have the following observation that follows immediately from Lemma 6.2:

Observation 6.3. For a graph F , set S and a set T such that for every open/half-open/closed component
K of F |S, either T ∩ V (K) = ∅ or V (K) ⊆ T ,

∆(F |S) = ∆(F [T ]|S) + ∆(F |S ∪ T )

where note that ∆(F [T ]|S) equals the number of closed components of F |S that T contains.

The following lemma will allow us to “zoom” into any component of A|S when bounding Φ(A|S) and
gain 1 for each closed component that we discard.

Lemma 6.4. Let A be a join-tree and let S, T be subsets of V (A) such that, for every open/half-open/closed
component K of A|S, either T ∩ V (K) = ∅ or V (K) ⊆ T . Then

Φ(A|S) ≥ Φ(A|S ∪ T ) + ∆(A[T ]|S).

Proof. We argue by induction on join-trees A and by a backward induction on the set S. The lemma is trivial
when A is atomic, or when S = V (A). So assume A = 〈B,C〉. Note that the given condition means that
A[T ]|S is a union of components of A|S and since B|S,C|S are subgraphs, B[T ]|S is a union of components
of B|S (and similarly for C|S and C|S ∪B). We start with the observation that

(7) ∆(B[T ]|S) + ∆(C[T ]|S ∪B) ≥ ∆(A[T ]|S).

To see this, note that as the graph A[T ]|S is a union of the graphs B[T ]|S and C[T ]|S, each closed component
of A[T ]|S either contains at least one closed component of B[T ]|S, or it does not. In the latter case, it is
then clear that it must also be a component of C[T ]|S ∪B. See Figure 6 for an illustration.

B|S

C|S
G1

C2

B3 B4

C3 C4

A|S A1 A2 A3 A4

B2

C1 C5

C|S ∪ B
G2 G4G3

B1

T

Figure 6: An example where the set T and the graphs A|S,B|S,C|S are as depicted. Then B[T ]|S = B3∪B4

and C[T ]|S ∪B = G2 ∪G3 ∪G4 with ∆(A|S) = ∆(A[T ]|S) = 2, ∆(B[T ]|S) = 2 and ∆(C[T ]|S ∪B) = 1.

We will now consider three cases according to whether (†), ( †) or (‡) is tight for Φ(A|S ∪ T ).
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First, assume Φ(A|S ∪ T ) = Φ(B|S ∪ T ) + ∆(C|S ∪ T ∪B). We have

Φ(A|S)
(†)
≥ Φ(B|S) + ∆(C|S ∪B))

≥ Φ(B|S ∪ T ) + ∆(B[T ]|S) + ∆(C|S ∪B) (by induction hypothesis)

= Φ(B|S ∪ T ) + ∆(B[T ]|S) + ∆(C[T ]|S ∪B) + ∆(C|S ∪B ∪ T ) (by observation 6.3 for C|S ∪B)

≥ Φ(A|S ∪ T ) + ∆(A[T ]|S) (by assumption and by eq. (7))

Next, assume Φ(A|S ∪ T ) = ∆(B|S ∪ T ) + Φ(C|S ∪ T ∪B). We have

Φ(A|S)
(

†

)

≥ ∆(B|S) + Φ(C|S ∪B)

= ∆(B|S ∪ T ) + ∆(B[T ]|S) + Φ(C|S ∪B) (by observation 6.3 for B|S)

≥ ∆(B|S ∪ T ) + ∆(B[T ]|S) + Φ(C|S ∪B ∪ T ) + ∆(C[T ]|S ∪B) (by induction hypothesis)

≥ Φ(A|S ∪ T ) + ∆(A[T ]|S) (by assumption and by eq. (7))

Finally, assume Φ(A|S ∪T ) = 1
2

(
Φ(D|S ∪T ) + Φ(A|S ∪T ∪D) + ∆(A|S ∪T )

)
for some D ≺ A. We have

Φ(A|S)
(‡)
≥ 1

2

(
Φ(D|S) + Φ(A|S ∪D) + ∆(A|S)

)
≥ 1

2

(
Φ(D|S ∪ T ) + Φ(A|S ∪D ∪ T ) + ∆(A|S ∪ T ) + ∆(D[T ]|S) + ∆(A[T ]|S ∪D) + ∆(A[T ]|S)

)
where the last inequality follows from the induction hypothesis on D|S and A|S ∪D (this is where we use
the backward induction for sets). It thus suffices to check that

∆(D[T ]|S) + ∆(A[T ]|S ∪D) ≥ ∆(A[T ]|S).

But this is straightforward as each closed component of A[T ]|S either contains at least one closed component
of D[T ]|S, or it does not. In the latter case, it is then clear that it must also be a component of A[T ]|S∪D.

Theorem 6.5. For every join-tree A and set S, and a component K of A|S of length k,

Φ(A|S) ≥ logc(εδk) + ∆(A|S ∪K) if K is open,

Φ(A|S) ≥ logc(δk) + ∆(A|S ∪K) if K is half-open,

Φ(A|S) ≥ logc(k) + ∆(A|S ∪K) if K is closed.

where c =
√

5 + 5, δ = (c− 3)/c and ε = 1/2.

Proof. We prove this by a structural induction on join-trees as well as a backward induction on the set
S. Note that we may assume without loss of generality that S ⊆ V (A). Assume A|S is non-empty as the
statement follows immediately, otherwise. If A is atomic, then as k = 1 in each case, the statement is trivial.
So let us assume that A is non-atomic with A = 〈B,C〉 and that the theorem statement holds for any proper
sub-join-tree D ≺ A and set T ⊆ Z with the given parameter settings of c, δ, ε. Moreover, we shall also
assume so for the given join-tree A and for every S′ such that S $ S′ ⊆ VA.

Fix a component K of A|S. Let T be the union of the vertex sets of all components of A|S excluding K.
Then note that ∆(A[T ]|S) = ∆(A|S ∪K). Therefore, by Lemma 6.4, it suffices to show that

Φ(A|S ∪ T ) ≥ logc(εδk) if K is open,

Φ(A|S ∪ T ) ≥ logc(δk) if K is half-open,

Φ(A|S ∪ T ) ≥ logc(k) if K is closed,

where we know that the graph of A|S∪T is simply K. Hence, we may now assume without loss of generality
that A|S is connected and has length k.

28



Henceforth, we shall think of ε, δ, and c as indeterminates, imposing constraints on them as we move
along the proof. We will eventually verify that the parameter settings specified in the theorem statement
indeed satisfy these constraints. We shall proceed by considering the three cases one by one: that A|S is
(i) open, (ii) half-open, or (iii) closed. The strategy in each case is to suitably apply one of the three rules,
namely (†), ( †), or (‡) in order to obtain a lower bound on Φ(A|S). We remark that cases (i) and (ii) are
similar in terms of the ideas involved to arrive at the lower bound: in particular, neither uses the (‡) rule,
which is solely used in case (iii). Roughly speaking, we shall see that case (i) determines the value of ε, while
case (ii) that of δ and finally, case (iii) that of c.

Case (i): A|S is open. Suppose A|S = (0, k). Let A = 〈B,C〉 and suppose B|S = B1 t · · · t Bn(B)

(respectively C|S = C1 t · · · tCn(C)) where Bi’s (respectively Ci’s) are the components of B|S (respectively
C|S), sorted in the increasing order of left end-points. Then with the possible exception of B1 and Bn(B),
every other Bi is a closed interval (similarly for C). Also note that for any i and j, Bi 6= Cj . We define

I(B) = {Bi : @j such that Cj ⊇ Bi} and I(C) = {Ci : @j such that Bj ⊇ Ci}

It follows that I(B) ∪ I(C) is a covering of the interval (0, k) and moreover, each of the end-points 0 and k
lie in a unique (and half-open) interval among the members of I(B) ∪ I(C), which we denote by I0 and Ik
respectively. Observe that if we arrange the intervals in I(B)∪I(C) in the increasing order of left end-points
(starting with I0 obviously), then they alternate membership between I(B) and I(C). Finally, we denote
by C(A) := I(B) ∪ I(C) \ {I0, Ik}, the set of all closed intervals in the covering I(B) ∪ I(C) and define
t(A) := |C(A)|. See Figure 7 for an example that illustrates these notions.

Figure 7: An example where the graphs A|S, B|S and C|S are as depicted above. Here I(B) = {B1, B3, B4},
I(C) = {C2, C4}, I0 = B1 and Ik = B4. Thus, C(A) = {C2, B3, C4} and t(A) = 3. Also, notice that
I(B) ∪ I(C) = {B1, C2, B3, C4, B4} and thus its members alternate membership between I(B) and I(C)
when arranged in increasing order of left end-points.

We now consider four sub-cases according to whether t(A) = 0, t(A) = 1, t(A) ≥ 2 and t(A) is even,
or t(A) ≥ 3 and t(A) is odd. They all involve very similar ideas except for the t(A) = 1 sub-case, which is
slightly more subtle and requires the application of ( †) unlike the other sub-cases. The reader should bear
in mind that the variables a, b, x, y are taken to hold a distinct meaning in each of these sub-cases.

Open sub-case t(A) = 0: Either B or C then has a half-open component of size at least k/2 and without
loss of generality, suppose that is B. See Figure 8 for an example.

Figure 8: An example for t(A) = 0 where I0 ∈ I(B) and Ik ∈ I(C), with |I0| ≥ k/2. Note that both B|S
and C|S each may have additional components, such as the unlabelled intervals depicted in this example.
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We have

Φ(A|S)
(†)
≥ Φ(B|S) + ∆(C|S ∪B) ≥ Φ(B|S) ≥ logc(δk/2) ≥ logc(εδk)

as long as ε ≤ 1/2. Note that this sub-case is tight for our setting of ε but works for any c > 1, 0 < δ ≤ 1.

Open sub-case t(A) = 1: Both I0 and Ik belong to the same collection i.e., either I(B) or I(C). Without
loss of generality, assume that it is the former. Then we know that |I(C)| = 1, so let I = [i, j] be that closed
interval in I(C), for some 0 < i < j < k. Note that max{i, k − j} ≥ (k − |I|)/2 so assume without loss of
generality that i ≥ (k − |I|)/2 (in words, that there is more ‘space’ to the left of I than to its right). Next,
let J1, . . . , Js be the closed intervals in C|S (labelled in the increasing order of left end-points) that appear
‘before’ I i.e., their right end-points are (strictly) less than i (of course it may be the case that s = 0, when
there is no such interval) and let y := 1

k (maxJ∈{I,J1...,Js} |J |). Let J0 be the component (if it exists) in C|S
containing 0, and let b := |J0|/k (define b = 0 if it does not exist).

Let G1 t · · · t Gs+1 = (0, i] | (J0 ∪ · · · ∪ Js ∪ S) ⊆ B|(S ∪ C) be the ‘gap’ intervals (labelled in the
increasing order of left end-points) as shown in Figure 9. Now with the possible exception of G1 which may
be half-open or open (depending or whether J0 is empty or not), all other Gi are open. Let gk be the length
of the longest gap interval. Then it follows that (s+ 1)g + b+ sy ≥ i

k ≥
1−y

2 .

Figure 9: An example for t(A) = 1 where s = 2. The gap intervals Gi are shown in dashed lines. Both B|S
and C|S each may have additional components, such as the unlabelled intervals depicted in this example.

Now if either of the following occurs, we are immediately done.

• If a ≥ ε, then simply use the induction hypothesis on B. We have

Φ(A|S)
(†)
≥ Φ(B|S) + ∆(C|S ∪B) ≥ Φ(B|S) ≥ logc(δak) ≥ logc(εδk).

• If b ≥ ε/cs+1, then as C|S contains at least s+ 1 other closed components, we have

Φ(A|S)
(†)
≥ Φ(C|S) + ∆(B|S ∪ C) ≥ Φ(C|S) ≥ logc(δbk) + (s+ 1) ≥ logc(εδk).

• If y ≥ (εδ)/cs, then we have

Φ(A|S)
(†)
≥ Φ(C|S) + ∆(B|S ∪ C) ≥ Φ(C|S) ≥ logc(yk) + s ≥ logc(εδk).

So we may assume that a < ε, b < ε/cs+1, and y < (εδ)/cs, which together imply that

g >
1

s+ 1

(
1

2
− ε

cs+1
−
(
s+

1

2

)
· εδ
cs

)
.

We have (this time by ( †))

Φ(A|S)
(

†

)

≥ ∆(C|S) + Φ(B|S ∪ C) ≥ s+ 1 + logc

(
εδk

s+ 1

(
1

2
− ε

cs+1
−
(
s+

1

2

)
· εδ
cs

))

30



which is at least logc(εδk) as long as for all s ≥ 0,

cs+1 − 2ε− 2(s+ 1
2 ) · εδc

2(s+ 1)
≥ 1

which upon plugging in ε ≤ 1/2, reduces to showing for all s ≥ 0 that

cs+1 ≥ 2s+ 3 +

(
s+

1

2

)
· δc

which is indeed true for c > 6, 0 < δ ≤ 1. We note that this sub-case is not tight for our parameter settings
c =
√

5 + 5, δ = c−3
c .

Open sub-case t(A) ≥ 2 and t(A) is even: If s = t(A)/2, then both B|S and C|S contain (exactly)
one half-open interval among I0, Ik and s ≥ 1 closed intervals each. Similar to the previous case, we define
a := 1

k (max{|I0|, |Ik|}) and x := 1
k (maxI∈C(A) |I|). It follows that 2a+2sx ≥ 1. See Figure 10 for an example.

Figure 10: An example where t(A) = 4. Here, I(B) = {I0, B2, B3} and I(C) = {C2, C3, Ik}. a is therefore
defined to be |Ik|/k and x is defined to be |B3|/k.

If a ≥ ε/cs, then as one of B|S or C|S has a half-open interval of length ak along with at least s closed
intervals, we have

Φ(A|S)
(†)
≥ max{Φ(B|S),Φ(C|S)} ≥ logc(δak) + s ≥ logc(εδk)

and we are done. So assume that a < ε/cs, implying x > 1
s ( 1

2 − ε
cs ). Therefore, as one of B|S or C|S has a

closed interval of length xk with at least s− 1 other closed intervals, we have

Φ(A|S)
(†)
≥ max{Φ(B|S),Φ(C|S)} ≥ logc(xk) + (s− 1) > logc

(
cs−1k

s

(
1

2
− ε

cs

))
and it is enough to check that this last expression is at least logc(εδk), which reduces to showing that for all
s ≥ 1,

cs − 2ε ≥ 2cεδs

which is clearly true when c > 4, 0 < δ ≤ (c − 1)/c and ε ≤ 1/2. Therefore, this sub-case is also not tight
for our parameter settings c =

√
5 + 5, δ = c−3

c .

Open sub-case t(A) ≥ 3 and t(A) is odd: Both I0 and Ik must then lie in I(B), without loss of
generality. Then if s = (t(A) + 1)/2, then I(C) has s ≥ 2 closed components while I(B) has s − 1.
Define a := 1

k (max{|I0|, |Ik|}), x := 1
k (maxI∈I(B)\{I0,Ik} |I|), and y := 1

k (maxI∈I(C) |I|). It follows that
2a+ (s− 1)x+ sy ≥ 1.

Refer back to the example described in Figure 7. For those particular graphs A|S, B|S, and C|S, we
would have a = |B1|/k, x = |B3|/k, and y = |C2|/k.

Now if either of the following occurs, we are immediately done.
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• If a ≥ ε/cs−1, simply use the induction hypothesis on B: one of I0 or Ik is a half-open component of
length at least ak and B|S has s− 1 closed components. We have

Φ(A|S)
(†)
≥ Φ(B|S) + ∆(C|S ∪B) ≥ Φ(B|S) ≥ logc(δak) + (s− 1) ≥ logc(εδk).

• Similarly if x ≥ (εδ)/cs−2, then there is closed component of length at least xk in B|S along with
s− 2 ≥ 0 other closed components. We have

Φ(A|S)
(†)
≥ Φ(B|S) + ∆(C|S ∪B) ≥ Φ(B|S) ≥ logc(xk) + (s− 2) ≥ logc(εδk).

Hence, we may assume that a < ε/cs−1 and x < (εδ)/cs−2, which together imply that

y >
1

s

(
1− 2ε

cs−1
− εδ(s− 1)

cs−2

)
.

Now C|S has a closed component of length at least yk along with s− 1 other components. We have

Φ(A|S)
(†)
≥ Φ(C|S) ≥ logc(yk) + (s− 1) > logc

(
cs−1k

s

(
1− 2ε

cs−1
− εδ(s− 1)

cs−2

))
and it is enough to show that this last expression is at least logc(εδk), which in turn reduces to checking
that for all s ≥ 2,

cs−1

εδs
− 2

δs
− c(s− 1)

s
≥ 1

which is straightforward to verify for any 4 < c, 0 < δ ≤ 1, and ε ≤ 1/2. In particular, this sub-case is also
not tight for our parameter settings c =

√
5 + 5, δ = c−3

c .

Remark: The above inequality is not true for s = 1 irrespective of the choice of c, which is precisely why we
have a separate argument for the sub-case t(A) = 1.

Case (ii): A|S is half-open. Suppose without loss of generality that A|S = [0, k). Again, let A = 〈B,C〉
and suppose B|S = B1 t · · · t Bn(B) (respectively C|S = C1 t · · · t Cn(C)) where Bis (respectively Cis)
are the connected components of B|S (respectively C|S). Then with the possible exception of Bn(B), every
other Bi is a closed interval (similarly for C). Also note that for any i and j, Bi 6= Cj . We define

I(B) = {Bi : @j such that Cj ⊇ Bi} and I(C) = {Ci : @j such that Bj ⊇ Ci}
It follows that I(B) ∪ I(C) is a covering of the interval [0, k) and moreover, each of the end-points 0 and
k lies in a unique (closed and half-open, respectively) interval among the members of I(B) ∪ I(C), which
we denote by I0 and Ik respectively. Again, observe that if we arrange the intervals in I(B) ∪ I(C) in the
increasing order of left end-points, then they alternate membership between I(B) and I(C). Finally, we
denote by C(A) := I(B) ∪ I(C) \ {Ik}, the set of all closed intervals in the covering I(B) ∪ I(C) and define
t(A) := |C(A)|. See Figure 11 for an example that illustrates these notions.

Figure 11: An example where the graphs A|S, B|S and C|S are as depicted above. Here I(B) = {B1, B2, B3},
I(C) = {C1, C2, C5}, I0 = C1 and Ik = C5. Thus, C(A) = {C1, B1, C2, B3} and t(A) = 4. Also, notice that
I(B) ∪ I(C) = {C1, B1, C2, B3, C5} and thus its members alternate membership between I(B) and I(C)
when arranged in increasing order of left end-points.
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We again consider four sub-cases according to whether t(A) = 1, t(A) = 2, t(A) ≥ 3 and t(A) is odd, or
t(A) ≥ 4 and t(A) is even. The first two sub-cases are slightly more subtle and require the application of (

†

)
unlike the rest. Again, the variables a, b, x, y are taken to hold a distinct meaning in each of these sub-cases.

Half-open sub-case t(A) = 1: This means that I0 is the unique interval in C(A), also implying that Ik
and I0 overlap. So suppose without loss of generality that I(B) = {Ik}, I(C) = {I0}, and let J1, . . . Js be the
closed intervals that appear in C|S ‘after’ I0. Further, let J be the half-open interval in C|S that contains
k and let b := |J |/k where b := 0 if such an interval does not exist. We define y := 1

k (maxI∈{|I0,J1,...,Js} |I|).
See Figure 12 for an example.

Figure 12: An example for t(A) = 1 where s = 2. The gap intervals Gi are shown in dashed lines. B|S may
have additional components, such as the unlabelled interval depicted in this example.

Now if y ≥ δ/cs, then

Φ(A|S)
(†)
≥ Φ(C|S) + ∆(B|S ∪ C) ≥ Φ(C|S) ≥ logc(yk) + s ≥ logc(δk)

and we are done. So assume that y < δ/cs. Further, if b ≥ 1/cs+1, then

Φ(A|S)
(†)
≥ Φ(C|S) + ∆(B|S ∪ C) ≥ Φ(C|S) ≥ logc(bk) + s+ 1 ≥ logc(δk)

and so we assume that b < 1/cs+1. Next, suppose G1 t · · · tGs+1 = Ik | (I0 ∪ J1 ∪ · · · ∪ Js ∪S) ⊆ B|(C ∪S)
are the ‘gap’ intervals as shown in Figure 12. Let gk be the length of the longest gap interval. Then it
follows that (s+ 1)g + sy + b ≥ 1− y. We have (this time by ( †))

Φ(A|S)
(

†

)

≥ ∆(C|S) + Φ(B|S ∪ C) ≥ s+ 1 + logc(εδgk) ≥ s+ 1 + logc

(
εδk

s+ 1

(
1− δ(s+ 1)

cs
− 1

cs+1

))
.

The task of showing that this expression is at least logc(δk) reduces to showing that for all s ≥ 0,

ε

(
cs+1 − 1

s+ 1
− δc

)
≥ 1

which is clearly true when c > 4, δ ≤ (c− 3)/c, and ε = 1/2. We note that this sub-case is indeed tight for
our parameter settings δ = c−3

c and ε = 1/2, however it works for any c > 4.

Half-Open sub-case t(A) = 2: Let I(C) = {I0, Ik}, I(B) = {J} and a := |Ik|/k. If a ≥ 1/c, then we
have (†)

Φ(A|S) ≥ Φ(C|S) ≥ logc(δak) + 1 ≥ logc(δk)

and we are done. So we may assume that a < 1/c. Let J1, . . . , Js (s may be zero) be the closed intervals
in C|S that appear ‘before’ J as shown in Figure 13 and suppose y := 1

k (maxI∈{J,J1,...,Js} |I|). If y ≥ δ/cs,
then

Φ(A|S)
(†)
≥ Φ(B|S) ≥ logc(yk) + s ≥ logc(δk)
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and we are done. So assume that y < δ/cs. Now let i be the left end-point of J and suppose G1t· · ·tGs+1 =
(0, i] | (J ∪ J1 ∪ · · · ∪ Js ∪ S) ⊆ C|(S ∪ B) are the ‘gap’ intervals as shown in the Figure 13. Let gk be the
length of the longest gap interval. Then it follows that (s+ 1)g + sy ≥ i

k ≥ 1− a− y ≥ 1− δ
cs − 1

c .

Figure 13: An example for t(A) = 2 where s = 2. The gap intervals Gi are shown in dashed lines. Both B|S
and C|S each may have additional components, such as the unlabelled intervals depicted in this example.

We have (by ( †))

Φ(A|S)
(

†

)

≥ ∆(B|S) + Φ(C|S ∪B) ≥ s+ 1 + logc(εδgk) ≥ s+ 1 + logc

(
εδk

s+ 1

(
1− δ(s+ 1)

cs
− 1

c

))
The task of showing that this expression is at least logc(δk) reduces to showing that for all s ≥ 0,

ε

(
cs+1 − cs
s+ 1

− δc
)
≥ 1

which is clearly true when c > 4, δ ≤ (c − 3)/c, and ε = 1/2. This sub-case is also tight for our parameter
settings δ = c−3

c and ε = 1/2, however it works for any c > 4.

Half-open sub-case t(A) ≥ 3 and t(A) is odd: Suppose Ik is in I(B), without loss of generality. Then
if s = (t(A) + 1)/2, then I(C) has s ≥ 2 closed components while I(B) has s − 1. Let a := |Ik|/k,
x := 1

k (maxI∈I(B)\{Ik} |I|), and y := 1
k (maxI∈I(C) |I|) (see Figure 14 for an example). It follows that

a+ (s− 1)x+ sy ≥ 1.

Figure 14: An example for t(A) = 5. Here, we would have x = |B3|/k and y = |C2|/k.

Now if either of the following occurs, we are immediately done.

• If a ≥ 1/cs−1, then

Φ(A|S)
(†)
≥ Φ(B|S) ≥ logc(δak) + (s− 1) ≥ logc(δk).

• Similarly if x ≥ δ/cs−2, then there is closed component of length at least xk in B|S along with s−2 ≥ 0
other closed components. We have

Φ(A|S)
(†)
≥ Φ(B|S) ≥ logc(xk) + (s− 2) ≥ logc(δk).
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Hence, we may assume that a < 1/cs−1 and x < δ/cs−2, which together imply that

y >
1

s

(
1− 1

cs−1
− δ(s− 1)

cs−2

)
.

Now C|S has a closed component of length at least yk along with s− 1 other components. Thus,

Φ(A|S)
(†)
≥ Φ(C|S) ≥ logc(yk) + (s− 1) > logc

(
cs−1k

s

(
1− 1

cs−1
− δ(s− 1)

cs−2

))
and it is enough to show that this last expression is at least logc(δk), which in turn reduces to checking that
for all s ≥ 2,

cs−1

δs
− 1

δs
− c(s− 1)

s
≥ 1

which is straightforward to verify for 4 < c and 0 < δ ≤ (c − 1)/(c + 2). In particular, this is true for our
parameter settings c =

√
5 + 5, δ = c−3

c and it follows that this sub-case is not tight.

Half-open sub-case t(A) ≥ 4 and t(A) is even: Suppose a := |Ik|/k without loss of generality, Ik ∈ I(C).
Then if s = t(A)/2, then both B|S and C|S contain at least s ≥ 2 closed intervals each. We define
x := 1

k (maxI∈C(A) |I|). It follows that a+ 2sx ≥ 1.
Refer back to the example depicted in Figure 11. For that particular example, we would then have

a = |C5|/k and x = |B3|/k, as B3 is the longest interval in C(A).
If a ≥ 1/cs, then

Φ(A|S)
(†)
≥ Φ(C|S) ≥ logc(δak) + s ≥ logc(δk)

and we are done. So assume that a < 1/cs, implying x > 1
2s (1− 1

cs ). Therefore,

Φ(A|S)
(†)
≥ max{Φ(B|S),Φ(C|S)} ≥ logc(xk) + (s− 1) > logc

(
cs−1k

2s

(
1− 1

cs

))
and it is enough to check that this last expression is at least logc(δk), which reduces to showing that for all
s ≥ 2,

cs − 1 ≥ 2cδs

which is clearly true when c > 4 and 0 < δ ≤ 1. This sub-case is also not tight for our parameter settings
c =
√

5 + 5, δ = c−3
c .

Case (iii): A|S is closed. Finally, suppose A|S = [0, k]. First, consider the sub-case that there exists
D ≺ A such that D = [0, j] or D = [j, k] with

1

2
(1−√x)k ≤ j ≤ 1

2
(1 +

√
x)k

for x = 1
(
√

5+2)2
, as shown in Figure 15. Then j(k − j) ≥ 1−x

4 k2. We have (this time by (‡))

Φ(A|S)
(‡)
≥ 1

2

(
Φ(D|S) + Φ(A|S ∪D) + ∆(A|S)

)
≥ 1

2

(
logc(k − j) + logc(δj) + 1

)
(induction hypothesis on A|S ∪D)

=
1

2
logc(cδj(k − j)) ≥

1

2
logc

(
cδ(1− x)

4
k2

)
= logc(k) +

1

2
logc

(
cδ(1− x)

4

)
.
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Note that for our choice of x, and the given parameter settings c =
√

5+5 and δ = c−3
c , cδ(1−x)

4 = 1, thereby
establishing the claim if such a D ≺ A exists. We also note that our parameter settings are indeed tight in
this case.

Figure 15: An example where A|S is closed and there exists a connected D ≺ A containing one of the
end-points of A|S and having ‘intermediate’ length. We apply the (‡) rule in this situation.

Therefore, now assume that no such D exists.
Furthermore, we may assume that if there exists D ≺ A such that D contains a component of length at

least 1
ck, then D is connected (call this assumption (∗)). Because otherwise, we have the following:

Φ(A|S)
(†)
≥ Φ(D|S) ≥ 1 + logc(k/c) = logc(k)

Note that 1
c <

1
2 (1−√x).

It follows from the application of (‡) above and (∗) that the only case left now is when there exists a
(connected) D ≺ A and a child E of D such that D = [0, j] and the component J0 = [0, i] of E containing 0
satisfy

i ≤ 1

2

(
1−√x

)
k and

1

2

(
1 +
√
x
)
k ≤ j.

Let E have s other components J1, . . . , Js apart from J0. We now consider sub-cases according to whether
s is zero or not.

Closed sub-case I: s = 0. It follows that E is connected. Then note that D|S ∪ E = G = (i, j] is as
shown in Figure 16, and we have

Φ(A|S)
(†)
≥ Φ(D|S)

(

†

)

≥ ∆(E|S) + Φ(D|S ∪ E) ≥ 1 + logc(δ(j − i)) ≥ 1 + logc(δ
√
xk) = logc(k) + logc(cδ

√
x).

So it only remains to check that x ≥ 1/(cδ)2, which is indeed true for our parameter settings. We note that
this sub-case is tight for our parameter settings.

Figure 16: An example where A|S is closed and E ≺ D is connected.

Closed sub-case II: s ≥ 1. We still apply ( †) as in the previous sub-case, but the analysis is different. As E
has s+1 components in all, we may assume that each Ji has length at most 1

cs k as otherwise, we immediately
obtain Φ(A|S) ≥ Φ(D|S) ≥ logc(k) from the (†) rule. As a consequence, if G1 t · · · t Gs+1 = D|S ∪ E are
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the ‘gap’ intervals as shown in Figure 17, some Gi must be an open (or half-open) interval of length at least
1
s+1 (j − s+1

cs ).

Figure 17: An example where A|S is closed and s = 2.

We have

Φ(A|S)
(†)
≥ Φ(D|S)

(

†

)

≥ ∆(E|S) + Φ(D|S ∪ E) ≥ s+ 1 + logc

(
εδ

s+ 1

(
j − s+ 1

cs
k

))

which is at least logc(k) as long as for all s ≥ 1,

εδcs+1

s+ 1

(
j

k
− s+ 1

cs

)
− 1 ≥ 0

By assumption, j
k ≥ 1

2 (1 +
√
x) =

√
5−1
2 . Thus, we plug in ε = 1

2 and cδ =
√

5 + 2 and see that it is enough
to verify that for all s ≥ 1,

√
5 + 2

2(s+ 1)

(
cs(
√

5− 1)

2
− (s+ 1)

)
− 1 ≥ 0

which is easily seen to be true for c =
√

5 + 5.

Lemma 2.17 and hence Theorem 1.11 (τ(Pk) ≥ log√5+5(k)− 1) now follow as a corollary to Theorem 6.5

and Lemma 2.14 (in the latter, we simply plug in G∗ = P∞, G = Pk, θ and θ∗ to be the constant 1 + 1
k and

1 threshold weightings respectively).

7 Randomized AC0 formulas computing the product of k permu-
tations

In this section we define a broad class of randomized AC 0 formulas for computing the product of k permu-
tations. The size of these formulas corresponds to a complexity measure related to pathset complexity, but
much simpler and easier to analyze.

Definition 7.1. For integers k ≥ 1, let P(k) be the set of sequences ~a = (a0, . . . , ak) ∈ [0, 1]{0,...,k} such

that ‖~a‖ := a0 + · · ·+ ak ≥ 1. We denote by ~a ≤ ~b that each ai ≤ bi.
We define a complexity measure χ :

⋃
k≥1 P(k)→ R≥0 by the following induction:

• In the base case k = 1, let χ(a0, a1) := 0.

• For k ≥ 2, let

χ(a0, . . . , ak) := min
0<i≤j<k,
~b∈P(k) :

~a≤~b,
(b0,...,bj)∈P(j),

(bi,...,bk)∈P(k−i)

‖~b− ~a‖+ max{χ(b0, . . . , bj), χ(bi, . . . , bk)}.
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Note the following properties of χ:

1. For all ~a ∈ P(k) and 1 < i ≤ j < k, if (a0, . . . , aj) ∈ P(j) and (ai, . . . , ak) ∈ P(k − i), then
χ(~a) ≤ max{χ(a0, . . . , aj), χ(ai, . . . , ak)}.

2. For all ~a,~b ∈ P(k), if ~a ≤ ~b, then χ(~a) ≤ ‖~b− ~a‖+ χ(~b).

3. For all k ≥ 1, we have χ( 1
2 , . . . ,

1
2︸ ︷︷ ︸

k+1 times

) = 0.

The complexity measure χ(~a) is a simplified version of pathset complexity χA(A ). In fact, χ(~a) provides
an upper bound on pathset complexity!

Remark 7.2. Consider the infinite pattern graph P∞ under the constant 1 threshold weighting. For join-
trees A over P∞, we will write PathsetA for PathsetA|∅ and χA(·) for χA|∅(·).

Each ~a ∈ P(k) corresponds to a Pk-pathset

A~a := {x ∈ [n]{0,...,k} : xh ∈ Sh for all h ∈ {0, . . . , k}}

where S0, . . . , Sk are arbitrary subsets of [n] of size |Sh| ≤ n1−ah . Then there exists a join-tree A with graph
Pk such that

χA(A~a) ≤ nχ(~a)+o(1).

This join-tree arises from the optimal 1 < i ≤ j < k and ~b in the definition of χ(~a): namely, A = 〈B,C〉
where B is the join-tree for P0,j associated with (b0, . . . , bj) and C is the join-tree for Pi,k associated with
(bi, . . . , bk). (Note that A has the property that GD is a path for each D � A; so, not all join-trees with
graph Pk arise in this way.)

The above bound on χA(A ) (now dropping the subscript as ~a is fixed) is justified as follows. Letting

m := n‖
~b−~a‖+o(1), there exist sets T`,h ⊆ Sh of size |T`,h| ≤ n1−bh , indexed over ` ∈ [m] and h ∈ {0, . . . , k},

such that
⋃
`∈[m](T`,0 × · · · × T`,k) = S0 × · · · × Sk. We then have A =

⋃
`∈[m] B` ./ C` where

B` := {y ∈ [n]{0,...,j} : yh ∈ T`,h for all 0 ≤ h ≤ j},
C` := {z ∈ [n]{i,...,k} : zh ∈ T`,h for all i ≤ h ≤ k}.

Arguing by induction on proper subsequences (b0, . . . , bj) and (bi, . . . , bk) (note that the base case k = 1 is
trivial as χ(~a) = 0 and χA(A ) = 1 as A itself is a pathset), it follows that

χA(A ) ≤
∑
`∈[m]

max{χB(B`), χC(C`)}

≤
∑
`∈[m]

max{nχ(b0,...,bj)+o(1), nχ(bi,...,bk)+o(1)} ≤ m · nχ(~a)−‖~b−~a‖+o(1) = nχ(~a)+o(1).

As a consequence of these observations, we see that χ(~a) is lower-bounded by logn(χA(A )). Since
χA(A ) ≤ nΦ(A) · µ(A ) ≤ nΦ(A) · n−‖~a‖+o(1) (by Theorem 5.10), it follows that

χ(~a) ≥ max
join-trees A with graph Pk s.t.
GD is connected for all D � A

Φ(A)− ‖~a‖.

In particular, our lower bound of Section 6 implies that χ(~a) ≥ log√5+5(k)− ‖~a‖ − 1 for all ~a ∈ P(k).

Finally, note that by covering the complete relation [n]{0,...,k} by n‖~a‖+o(1) shifted copies of rectangles
S0 × · · · × Sk, we get an upper bound

χA([n]{0,...,k}) ≤ nχ(~a)+‖~a‖+o(1).
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By a similar construction, we will show that nχ(~a)+‖~a‖+o(1) is an upper bound on the randomized AC 0

formula size of computing the product of k permutations.

Definition 7.3. Let ~π = (π1, . . . , πk) be a sequence of permutations [n]
∼=→ [n]. For a sequence ~x =

(x0, . . . , xk) ∈ [n]{0,...,k}, we say that ~x is a ~π-path if πh(xh−1) = xh for all h ∈ {1, . . . , k}.
If ~x is a ~π-path and ~S = (S0, . . . , Sk) is a sequence of sets S0, . . . , Sk ⊆ [n], we will say that ~S isolates ~x

if ~x ∈ S0 × · · · × Sk and ~x is the only ~π-path in S0 × · · · × Sk.

Definition 7.4. For a set U and p ∈ [0, 1], notation S ⊆p U denotes that S is a random subset of U that
contains each element independently with probability p.

Given ~a = (a0, . . . , ak) ∈ P(k), we will denote by ~S = (S0, . . . ,Sk) the sequence of independent random
sets Sh ⊆n−ah [n].

We now state the key lemma for our construction.

Lemma 7.5. For every ~a ∈ P(k) and sequence ~S = (S0, . . . , Sk) of sets Sh ⊆ [n], there exist randomized
AC 0 formulas

f~a,~S and ~g~a,~S = {g(h,t)

~a,~S
}r∈{0,...,k}, t∈{1,...,dlog(n+1)e}

each of depth O(k) and size nχ(~a)+o(1) and taking as input a sequence ~π = (π1, . . . , πk) of permutations

[n]
∼=→ [n], such that on every input ~π then with probability 1 − n−ω(1) (with respect to both ~S and the

randomness of f~a,~S and ~g~a,~S):

1. ~f~a,~S(~π) outputs 1 if, and only if, ~S isolates some ~π-path.

2. If ~S isolates a (necessarily unique) ~π-path ~x = (x0, . . . , xk), then formulas ~g~a,~S(~π) output the binary

representation of integers x0, . . . , xk ∈ [n].

Proof. The construction mimics the pathset complexity upper bound in Remark 7.2. In the base case k = 1,

we have sets S0, S1 ⊆ [n] and need to determine if a permutation π : [n]
∼=→ [n] satisfies π(x) = y for a unique

pair (x, y) ∈ S0 × S1. This is accomplished by the following AC 0 formula (writing 1π(x)=y for the input
variable that is 1 if and only if π(x) = y):

f~a,~S(π) :=
∨

(x,y)∈S0×S1

1π(x)=y

∧
∧

t∈{1,...,dlog(n+1)e}
¬
(( ∨

(x,y)∈S0×S1 : the tth bit of x is 0

1π(x)=y

)
∧
( ∨

(x,y)∈S0×S1 : the tth bit of x is 1

1π(x)=y

))

∧
∧

t∈{1,...,dlog(n+1)e}
¬
(( ∨

(x,y)∈S0×S1 : the tth bit of y is 0

1π(x)=y

)
∧
( ∨

(x,y)∈S0×S1 : the tth bit of y is 1

1π(x)=y

))
.

This formula has depth O(1) and size O(log n) (as measured by number of gates). Since χ(~a) = 0, this size
bound is nχ(~a)+o(1) as required. Formulas ~g~a,~S giving the binary representation of x and y (whenever (x, y)

uniquely exists) have just a single OR gate:

g
(0,t)

~a,~S
(π) :=

∨
(x,y)∈S0×S1 : the tth bit of x is 1

1π(x)=y,

g
(1,t)

~a,~S
(π) :=

∨
(x,y)∈S0×S1 : the tth bit of y is 1

1π(x)=y.
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Onto the induction step where k ≥ 2. Fix 0 < i ≤ j < k and ~b ∈ P(k) with ~a ≤ ~b and

~b′ := (b0, . . . , bj) ∈ P(j),

~b′′ := (bi, . . . , bk) ∈ P(k − i),
χ(~a) = ‖~b− ~a‖+ max{χ(~b′), χ(~b′′)}.

Letting m := n‖
~b−~a‖+o(1), we sample independent random sequences of sets ~T1, . . . , ~Tm where for each

` ∈ [m], we have ~T` = (T`,0, . . . ,T`,k) with T`,h ⊆n−bh+ah Sh.7

Writing ~T ′` for (T`,0, . . . ,T`,j) and ~T ′′` for (T`,i, . . . ,T`,k) and ~π′ for (π1, . . . , πj) and ~π′′ for (πi+1, . . . , πk),
we now introduce auxiliary randomized formulas join1, . . . , joinm defined by

join`(~π) := f~b′, ~T ′`
(~π′) ∧ f~b′′, ~T ′′`

(~π′′) ∧
∧

h∈{i,...,j}
t∈{1,...,dlog(n+1)e}

(
g

(h,t)
~b′, ~T ′`

(~π′)↔ g
(h−i,t)
~b′′, ~T ′′`

(~π′′)
)
.

(Here P ↔ Q abbreviates the formula (P ∧ Q) ∨ (¬P ∧ ¬Q).) If we consider the random sequence ~S (in

place of the arbitrary fixed sequence ~S), then for every input ~π, with high probability, the formula join`(~π)

outputs 1 if, and only if, there exists a ~π-path (x0, . . . , xk) such that ~T ′` isolates the ~π′-path (x0, . . . , xj) and
~T ′′` isolates the ~π′′-path (xi, . . . , xk).

Note that the number of ~π-paths in ~S has expectation n1−‖~a‖ (≤ 1); it is easily shown that this number
is at most no(1) with high probability. For each ~π-path ~x and ` ∈ [m], we have (by independence)

P
[
~x ∈ T`,0 × · · · × T`,k

∣∣∣ ~x ∈ S0 × · · · × Sk

]
= n−‖

~b−~a‖.

A further argument8 shows that

P
[
~T ′` isolates (x0, . . . , xj) and ~T ′′` isolates (xi, . . . , xk)

∣∣∣ ~x ∈ T`,0 × · · · × T`,k

]
= 1− o(1).

By independence of ~T1, . . . , ~Tm, we next have

P

 ∨
`∈[m]

(
~T ′` isolates (x0, . . . , xj) and

~T ′′` isolates (xi, . . . , xk)

) ∣∣∣∣∣∣ ~x ∈ S0 × · · · × Sk

 ≤ 1−
(

1− Ω(n−‖
~b−~a‖)

)m
≤ 1− exp(−Ω(n−‖

~b−~a‖m)).

Recalling that m = n‖
~b−~a‖+o(1), the above bound will be 1 − n−ω(1) (i.e., “with high probability”) for a

suitable choice of o(1) in the exponent of m (for instance, if we set m = n‖
~b−~a‖(log n)c for any constant

c > 1).
We have shown that, with high probability, for every ~π-path (x0, . . . , xk) in S0 × · · · × Sk, there exists

` ∈ [m] such that join`(~π) outputs 1. This justifies defining

f~a,~S(~π) :=
∨
`∈[m]

join`(~π)

∧
∧

h∈{0,...,j}
t∈{1,...,dlog(n+1)e}

¬
(( ∨

`∈[m]

join`(~π) ∧ g
(h,t)
~b′, ~T ′`

(~π′)

)
∧
( ∨
`∈[m]

join`(~π) ∧ ¬g(h,t)
~b′, ~T ′`

(~π′)

))

∧
∧

h∈{j+1,...,k}
t∈{1,...,dlog(n+1)e}

¬
(( ∨

`∈[m]

join`(~π) ∧ g
(h−i,t)
~b′′, ~T ′′`

(~π′′)

)
∧
( ∨
`∈[m]

join`(~π) ∧ ¬g(h−i,t)
~b′′, ~T ′′`

(~π′′)

))
.

7A minor technicality arises when ah = bh: in this case, we should instead sample T`,h ⊆1/2 Sh. This case can be also
avoided by approximating χ(~a) to an arbitrary additive constant ε > 0: if we instead consider ~c defined by ch := bh + (ε/k),
then we have max{χ(c0, . . . , cj), χ(ci, . . . , ck)} ≤ max{χ(b0, . . . , bj) + (j + 1)ε, χ(bi, . . . , bk) + (k − i+ 1)ε} ≤ χ(~a) + ε.

8This is a straightforward union bound. Here is where we use the assumption that bh > ah for all h ∈ {0, . . . , k}.
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In light of the above discussion, for random ~S, the subformula
∨
`∈[m] join`(~π) with high probability asserts

the existence of a ~π-path in ~S, while the remainder of f~a,~S(~π) asserts uniqueness. Formulas ~g~a,~S are defined
by

g
(h,t)

~a,~S
(~π) :=


∨
`∈[m]

join`(~π) ∧ g
(h,t)
~b′, ~T ′`

(~π′) if h ∈ {0, . . . , j},∨
`∈[m]

join`(~π) ∧ g
(h−i,t)
~b′′, ~T ′′`

(~π′′) if h ∈ {j + 1, . . . , k}.

If formulas f~b′, ~T ′`
and ~g~b′, ~T ′`

(respectively, f~b′′, ~T ′′`
) and ~g~b′′, ~T ′′`

have depth at most d′ and size at most z′

(respectively, d′′ and z′′), then it is readily seen that formulas f~a,~S and ~g~a,~S have depth d and size z where

d = max{d′, d′′}+O(1), z = O
(
m · (k log n)2 · (z′ + z′′)

)
= n‖

~b−~a‖+o(1) · (z′ + z′′).

This recurrence justifies the bounds d = O(k) and z = nχ(~a)+o(1).
As for the error probability of Properties (1) and (2), it should be clear that every usage of “with high

probability” in this argument can be made to be 1 − n−ω(1) by setting m = n‖
~b−~a‖(log n)ck for suitable

constants ck > 1.

Lemma 7.5 has the following corollary, which for each ~a ∈ P(k), gives a collection of randomized AC 0

formulas of aggregate size nχ(~a)+‖~a‖+o(1) that compute the product of k permutations. Moreover, these
formulas, on input ~π, produce a list of all paths ~x = (x0, . . . , xk) ∈ [n]{0,...,k} such that πh(xh−1) = xh for
all h ∈ {1, . . . , k}.

Corollary 7.6. For every ~a ∈ P(k), there exists a matrix of randomized AC 0 formulas

~h~a = {h(`,t)
~a }`∈{1,...,n‖a‖+o(1)}, t∈{1,...,(k+1) logd(n+1)e}

each of depth O(k) and size nχ(~a)+o(1) and taking a sequence ~π = (π1, . . . , πk) of permutations [n]
∼=→ [n] as

input, such that the following properties hold with probability 1− n−ω(1):

1. Each row in ~h~a(~π) is either the all-0 string or contains the binary representation of integers x0, . . . , xk
for some ~π-path ~x ∈ [n]{0,...,k}.

2. For every ~π-path ~x ∈ [n]{0,...,k}, the binary representation of integers x0, . . . , xk ∈ [n] is given by at

least one row of ~h~a(~π).

Similar to the bound χA([n]{0,...,k}) ≤ nχ(~a)+‖~a‖+o(1) in Remark 7.2, Corollary 7.6 is obtained from
Lemma 7.5 by covering [n]{0,...,k} with m := n‖~a‖+o(1) random rectangles S`,0 × · · · × S`,k where each
~S` = (S`,0, . . . ,S`,k) has the same distribution as ~S (i.e., S`,h ⊆n−ah [n]). The rows of ~h~a(~π) are then
given by the conjunction of f~a,~S`

(~π) with formulas ~g~a,~S`
(~π). Property (1) is immediate from Lemma 7.5,

while Property (2) follows by noting that, with high probability, every ~π-path in [n]{0,...,k} is isolated by a
rectangle S`,0 × · · · × S`,k for some ` ∈ [m].

7.1 Upper bounds on χ(~a) + ‖~a‖
We describe a few different constructions giving upper bounds on χ(~a)+‖~a‖ for sequences ~a ∈ P(k). Thanks
to Corollary 7.6, each of these constructions corresponds to randomized AC 0 formulas of size nχ(~a)+‖~a‖+o(1)

computing the product of k permutations. Our best bound, 1
3 log(

√
5+1)/2(k) + O(1), is obtained via a

construction we call “Fibonacci overlapping”.
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7.1.1 Recursive doubling

For k ≥ 2, let

~ak := ( 1
2 , 0, . . . , 0︸ ︷︷ ︸
dk/2e−1

, 1
2 , 0, . . . , 0︸ ︷︷ ︸
bk/2c−1

, 1
2 )

Then χ(~a2) = χ( 1
2 ,

1
2 ,

1
2 ) = max{χ( 1

2 ,
1
2 ), χ( 1

2 ,
1
2 )} = 0 and for k ≥ 3,

χ(~ak) ≤ max{χ( 1
2 , 0, . . . , 0︸ ︷︷ ︸
dk/2e−1

, 1
2 ), χ( 1

2 , 0, . . . , 0︸ ︷︷ ︸
bk/2c−1

, 1
2 )} ≤ max{ 1

2 + χ(~adk/2e),
1
2 + χ(~adk/2e)} ≤ 1

2dlog2(k)e.

This construction achieves

χ(~ak) + ‖~ak‖ ≤ 1
2dlog2(k)e+ 1.

7.1.2 Maximally overlapping joins

For k ≥ 2, let

~ak := ( 1
k , . . . ,

1
k︸ ︷︷ ︸

k+1

) ∈ P(k).

Then χ(~a2) = χ( 1
2 ,

1
2 ,

1
2 ) = 0 and for k ≥ 3,

χ(~ak) ≤ max{χ( 1
k , . . . ,

1
k︸ ︷︷ ︸

k

), χ( 1
k , . . . ,

1
k︸ ︷︷ ︸

k

)} ≤ χ(~ak−1) + k
(

1
k−1 − 1

k

)
= χ(~ak−1) + 1

k−1 ≤ 1
2 + · · ·+ 1

k−1 .

This construction achieves

χ(~ak) + ‖~ak‖ ≤ 1 + 1
2 + · · ·+ 1

k−1 + 1
k = ln(k) +O(1).

Since ln(k) ≈ 0.69 log2(k), this upper bound is worse that the one from recursive doubling.
It turns out that a 1

2 log2(k) + O(1) upper bound is achievable via a different construction via the
maximally overlapping join-tree. If k = 2` + t where ` ≥ 0 and t ∈ {0, . . . , 2` − 1}, we instead define

~ak := ( 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t

, 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−t+1

, 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t

).

(Note that ~a ∈ P(k) since ‖~a‖ = (2`− t+1) 1
2` +2t 1

2`+1 = 1+ 1
2` > 1.) In the base case k = 1 (i.e., ` = t = 0),

we have χ(~a2) = χ(1, 1) = 0. When ` ≥ 1 and t ≥ 1, we have

χ(~ak) ≤ max{χ( 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t

, 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−t+1

, 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t−1

), χ( 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t−1

, 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−t+1

, 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t

)}

= χ( 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t

, 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−t+1

, 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t−1

) (by symmetry)

= χ( 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t−1

, 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−t+2

, 1
2`+1 , . . . ,

1
2`+1︸ ︷︷ ︸

t−1

) + 1
2` − 1

2`+1 (tth coordinate increases from 1
2`+1 to 1

2` )

= χ(~ak−1) + 1
2`+1 .

When ` ≥ 1 and t = 0 (i.e., k = 2`), we have

χ(~ak) = χ( 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`+1

) ≤ χ( 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`

) ≤ χ( 1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−1−1

, 1
2`−1 ,

1
2`−1 ,

1
2` , . . . ,

1
2`︸ ︷︷ ︸

2`−1−1

) + 2( 1
2`−1 − 1

2` )

= χ(~ak−1) + 1
2`−1 .
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For any k = 2` + t, this recurrence shows

χ(~ak) ≤ t · 1
2`+1 + χ(~a2`)

≤ t · 1
2`+1 + 1

2`−1 + χ(~a2`−1)

≤ t · 1
2`+1 +

(
1

2`−1 + (2`−1 − 1) · 1
2`

)
+ χ(~a2(`−1))

= t · 1
2`+1 +

(
1
2 + 1

2`

)
+ χ(~a2(`−1))

≤ t · 1
2`+1 +

∑`
j=1

(
1
2 + 1

2j

)
= 1

2 (`+ t
2` ) + 1− 1

2` .

This second construction thus achieves

χ(~a) + ‖~a‖ ≤ 1
2 (`+ t

2` ) + 2 = 1
2 log2(k) +O(1).

7.1.3 Fibonacci overlapping joins

Let Fib(1) = Fib(2) = 1 and for ` ≥ 3, let Fib(`) := Fib(`− 1) + Fib(`− 2). For ` ≥ 4, let

χ(~aFib(`)) := ( 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−2)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−3)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−2)−1

, 1
3 ) ∈ P(Fib(`))

We have Fib(4) = 3 and

χ(~aFib(4)) = χ( 1
3 ,

1
3 ,

1
3 ,

1
3 ) ≤ χ( 1

3 ,
1
3 ,

1
3 ) ≤ 1

3 + max{χ( 1
3 ,

2
3 ), χ( 2

3 ,
1
3 )} = 1

3 .

For ` ≥ 5, we have

χ(~aFib(`)) ≤ max{χ( 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−2)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−3)−1

, 1
3 ), χ( 1

3 , 0, . . . , 0︸ ︷︷ ︸
Fib(`−3)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−2)−1

, 1
3 )}

= χ( 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−2)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−3)−1

, 1
3 ) (by symmetry)

≤ 1
3 + χ( 1

3 , 0, . . . , 0︸ ︷︷ ︸
Fib(`−3)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−4)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸

Fib(`−3)−1

, 1
3 ) = 1

3 + χ(~aFib(`−1)) = 1
3`− 1.

For k = Fib(`) with ` ≥ 4, this construction gives ~ak ∈ P(k) with

χ(~ak) + ‖~ak‖ ≤ 1
3 (`+ 1).

For Fib(`− 1) < k ≤ Fib(`), the bound χ(~ak) + ‖~ak‖ ≤ 1
3 (`+ 1) extends to all ~ak ∈ P(k) of the form

~ak := ( 1
3 , 0, . . . , 0︸ ︷︷ ︸
≤Fib(`−2)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸
≤Fib(`−3)−1

, 1
3 , 0, . . . , 0︸ ︷︷ ︸
≤Fib(`−2)−1

, 1
3 ).

This construction proves the following

Theorem 7.7. For all k ≥ 1, there exists ~a ∈ P(k) with

χ(~a) + ‖~a‖ = 1
3 logϕ(k) +O(1)

where ϕ = (
√

5 + 1)/2 is the golden ratio.

Since 1
3 logϕ(k) = log√5+2(k) ≤ 0.49 log2(k), Theorem 7.7 improves the 1

2 log2(k) + O(1) upper bounds
from the recursive doubling and maximally overlapping join-trees described above. As a corollary of Corollary
7.6 and Theorem 7.7, we have

Corollary 7.8. There exist randomized AC 0 formulas of size n
1
3 logϕ(k)+O(1) that compute the product of k

(n× n)-permutation matrices.
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7.2 Tightness of upper bounds

We say that a join-tree A (over P∞) is connected if GD is connected for all D � A. For every connected
join-tree A with graph Pk, we can consider the constrained complexity measure χA : P(k) → R≥0 where
parameters 0 < i ≤ j < k in the definition of χ(~a) are fixed according to A. As described in Remark 7.2,
the potential function Φ(A) implies a lower bound χA(~a) ≥ Φ(A)− ‖~a‖.

Let RDk, MOk and FOk be the “recursive doubling”, “maximally overlapping” and “Fibonacci overlap-
ping” connected join-trees recursively defined by RD1 = MO1 = FO1 = 〈{0, 1}〉 and

RDk = RD0,k := 〈RD0,dk/2e,RDdk/2e,k〉 for k ≥ 2,

MOk = MO0,k := 〈MO0,k−1,MO1,k〉 for k ≥ 2,

FOk = FO0,k := 〈FO0,Fib(`−1),FOFib(`−1),k〉 for k = Fib(`), ` ≥ 3.

The upper bounds on χ(·) in the previous subsection respectively apply to constrained complexity measures
χRDk

(·), χMOk
(·) and χFOk

(·).
With respect to these particular join-trees, the upper bounds of previous subsection are in fact tight! By

(†) we have

Φ(RDk) ≥ Φ(RDddk/2e/2e) + 1 for k ≥ 4 ,

Φ(FOFib(`)) ≥ Φ(FOFib(`−3)) + 1 for k = Fib(`), ` ≥ 5.

It follows that Φ(RDk) ≥ 1
2 log2(k) and Φ(FOk) ≥ 1

3 logϕ(k) − O(1). We get a lower bound on Φ(MOk) ≥
1
2 log2(k)−O(1) via (‡):

Φ(MOk) ≥ 1
2

(
Φ(MO0,b(k−1)/2c) + Φ(MOd(k−1)/2e,k) + 1

)
for k ≥ 3.

Therefore, for all ~a ∈ P(k), we have

χRDk
(~a) + ‖~a‖ ≥ 1

2 log2(k),

χMOk
(~a) + ‖~a‖ ≥ 1

2 log2(k)−O(1),

χFOk
(~a) + ‖~a‖ ≥ 1

3 logϕ(k)−O(1).

This establishes the tightness of our upper bounds for these specific join-trees. It is open whether a different
connected join-tree achieves a better bound. (The best lower bound on χ(~a) + ‖~a‖ that we could determine
is log√5+4(k)− 1 via a strengthening of the argument in Section 6 in the case of connected join-trees.)

Experimental results. For any connected join-tree A, the value min~a∈P(k) χA(~a) is computable by a
linear program with O(

∑
D�A |V (D)|) variables and O(

∑
D�A |V (D)|) constraints. In fact, our second

upper bound for the maximally overlapping pattern (achieving χMOk
(~ak) + ‖~ak‖ = 1

2 log2(k) + O(1)) was
found with the help of this linear programs!

We experimentally searched for connected join-trees A that beat the 1
3 logϕ(k) + O(1) upper bound

via Fibonacci overlapping by evaluating min~a∈P(k) χA(~a) + ‖~a‖ on various examples, both structured and
randomly generated. We could not find any better upper bound. (In particular, join-trees FOk appears
optimal among a broad class of “recursively overlapping” join-trees.) It is tempting to conjecture that FOk

in fact gives the optimal bound, that is, χA(~a) + ‖~a‖ ≤ 1
3 logϕ(k) + O(1) for all ~a ∈ P(k). We leave this as

an intriguing open question.

8 Open problems

We conclude by mentioning some open questions raised by this work.

Problem 1. Prove that τ(G) = Ω(td(G)) for all graphs G. (An Ω̃(td(G)) would also be interesting.)
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Problem 1 is unlikely to follow from any excluded-minor approximation of tree-depth along the lines of
Theorem 1.6. A first step to resolving this problem is to identify, for each graph G, a particular threshold
weighting θ such that Xθ,n is a “hard” input distribution with respect to the average-case AC 0 formula size
of SUB(G). (The paper [8] does precisely this with respect to AC 0 circuit size.)

Problem 1 should be easier to tackle in the special case of trees. (We remark that our lower bounds for
Pk and Tk, combined with results in [4, 6], imply that τ(T ) = Ω(

√
td(T )) for all trees T .)

Problem 2. Prove that τ(T ) = Ω(td(T )) for all trees T .

A solution to Problem 2 could perhaps be shown by a common generalization of our lower bounds for Pk
and Tk.

A third open problem is to nail down the exact average-case AC 0 formula size of SUB(Pk) (or the related
problem of multiplying k permutations).

Problem 3. Prove that τ(Pk) = 1
3 logϕ(k) or find an upper bound improving Theorem 1.10.

Finally and most ambitiously:

Problem 4. Prove that nτ(G)−o(1) is a lower bound the unrestricted formula size SUB(G).

This of course would imply NC 1 6= NL. An nΩ(log k) lower bound for SUB(Pk) in the average-case (or
for the problem of multiplying k permutations) would moreover imply NC 1 6= L. Although Problem 3 lies
beyond current techniques, the applicability of the pathset framework in establishing nτ(G)−o(1) lower bounds
in the disparate AC 0 and monotone settings is possibly reason for optimism.

A Appendix: Lower bound τ(Pk) ≥ 1
2 log√13+1(k) from [15]

This appendix gives the proof of Lemma 2.15 from [15]. As in Section 6, we consider infinite pattern graph
P∞ with the constant threshold weighting E(P∞)→ {1}.

Definition A.1. For a join-tree A, let λ(A) denote the length of the longest path in A (i.e., the number of
edges in the largest connected component of A).

We omit the proof of the following lemma, which is similar to Lemma 6.4.

Lemma A.2. For every join-tree A and set S, if S intersects t distinct connected components of GA, then

Φ(A) ≥ Φ(A	 S) + t.

We now present the result from [15] that implies Lemma 2.15. (The precise value of c in Lemma A.3,
below, is thanks to an optimization suggested by an anonymous referee of the journal paper [15].)

Lemma A.3. For every join-tree A, Φ(A) ≥ 1
c log(λ(A)) + ∆(A) where c = 2 log(

√
13 + 1).

Proof. Here c is chosen such that 1
2 − 1

2c/2 − 1
2c−1 = 1

2c−2 .
We argue by induction on join-trees. The base case where A is atomic is trivial. For the induction step,

let A be a non-atomic join-tree and assume the lemma holds for all smaller join-trees. We will consider a
sequence of cases, which will be summarized at the end of the proof.

First, consider the case that GA is disconnected. Let t = ∆(A) (≥ 2). Let S be the set of all vertices of
GA, except those in the largest connected component of GA. We have

Φ(A) ≥ Φ(A�S) + t− 1 (Lemma A.2)

≥ 1
c log(λ(A	 S)) + ∆(A�S) + t− 1 (induction hypothesis)

= 1
c log(λ(A)) + ∆(A).
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This proves the lemma in the case where GA is disconnected.
Therefore, we proceed under the assumption that GA is connected (i.e. ∆(A) = 1). Without loss of

generality, we assume that GA = Pk (i.e. λ(A) = k). Our goal is to show that

Φ(A) ≥ 1
c log(k) + 1.

Consider the case that there exists a sub-join-tree A′ � A such that |EA′ | ≥ 1
2c−1 k and ∆(A′) ≥ 2. Note

that λ(A′) ≥ |EA′ |/∆(A′) (i.e. the number of edges in the largest component of GA′ is at least the number
of edges in GA′ divided by the number of components in GA′). We have

Φ(A) ≥ Φ(A′)

≥ 1
c log(λ(A′)) + ∆(A′) (induction hypothesis)

≥ 1
c log(k)− c−1

c − 1
c log(∆(A′)) + ∆(A′) (λ(A′) ≥ |EA′ |/∆(A′) ≥ 1

2c−1 k∆(A′))

≥ 1
c log(k)− c−1

c − 1
c log(2) + 2 (∆(A′) ≥ 2 and x− 1

c log x increasing)

= 1
c log(k) + 1.

This proves the lemma in this case.
Therefore, we proceed under the following assumption:

(~) for all A′ � A, if |EA′ | ≥ 1
2c−1 k then ∆(A′) = 1.

Going forward, the following notation will be convenient: for a proper sub-join-tree B ≺ A, let B↑ denote
the parent of B in A, and let B∼ denote the sibling of B in A. Note that B↑ = {B,B∼} � A.

By walking down the join-tree A, we can proper sub-join-trees B,Z ≺ A such that

v0 ∈ VB , vk ∈ VZ , |EB |, |EZ | < 1
2c/2 k, |EB↑ |, |EZ↑ | ≥ 1

2c/2 k.

Fix any choice of such B and Z. Note that GB↑ and GZ↑ are connected by (~). In particular, GB↑ is a path
of length |EB↑ | with initial endpoint v0, and GZ↑ is a path of length |EZ↑ | with final endpoint vk.

Consider the case that B↑ and Z↑ are vertex-disjoint. Note that 1
2c/2 k ≥ 1

2c−1 k, so the assumption (~)

implies that B↑ and Z↑ are connected and λ(B↑), λ(Z↑) ≥ 1
2c/2 k. Let Y denote the least common ancestor

of B↑ and Z↑ in A. We have

Φ(A) ≥ Φ(Y )

≥ 1
2

(
Φ(B↑) + Φ(Z↑ 	B↑) + ∆(Y ) + ∆(Y 	 {B↑, Z↑})

)
(by (‡))

≥ 1
2

(
Φ(B↑) + Φ(Z↑)

)
+ 1

2 (∆(Y ) ≥ 1 and Z↑ 	B↑ = Z↑)

≥ 1
2

(
1
c log(λ(B↑)) + ∆(B↑) + 1

c log(λ(Z↑)) + ∆(Z↑)
)

+ 1
2 (induction hypothesis)

≥ 1
2

(
1
c log( 1

2c/2 k) + 1 + 1
c log( 1

2c/2 k) + 1
)

+ 1
2

= 1
c log(k) + 1.

Therefore, we proceed under the assumption that B↑ and Z↑ are not vertex-disjoint. It follows that
λ(B↑) ≥ k/2 or λ(Z↑) ≥ k/2. Without loss of generality, we assume that λ(B↑) ≥ k/2. (We now forget
about Z and Z↑.)

Before continuing, let’s take stock of the assumptions we have made so far:

GA = Pk, (~), B � A, v0 ∈ VB , |EB | < 1
2c/2 k, |EB↑ | = λ(B↑) ≥ k/2.

Going forward, we will define vertices vr, vs, vt where 0 < r < s < t ≤ k. The following illustration will be
helpful for what follows:
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C∼

D

B↑

B B∼

Figure 18: Schematic of sub-join-trees in the argument.

We first define vr ∈ B and vt ∈ B∼ as follows: Let {v0, . . . , vr} be the component of GB containing v0.
(That is, the component of v0 in GB is a path whose initial vertex is v0; let vr be the final vertex in this
path.) Let vt be the vertex in VB∼ with maximal index t (i.e. farthest away from v0).

Note that EB contains edges edge(vi, vi+1) for all i ∈ {0, . . . , r−1}∪{t, . . . , dk/2e−1}. (In the event that
t < k/2, since GB↑ = GB∪GB∼ is a path of length ≥ k/2 and GB∼ does not contain vertices vt+1, . . . , vdk/2e,
it follows that GB contains all edges between vt and vdk/2e.) Therefore, r + (k/2) − t ≤ |EB | < 1

2c/2 k. It
follows that

t− r > ( 1
2 − 1

2c/2 )k.

Next, note that |EB∼ | ≥ |EB↑ | − |EB | ≥ ( 1
2 − 1

2c/2 )k > 1
2c−1 k. We now walk down B∼ to find a proper

sub-join-tree C ≺ B∼ such that

vt ∈ VC , |EC | < 1
2c−1 k, |EC↑ | ≥ 1

2c−1 k.

Fix any choice of such C. Note that GC↑ is connected by (~).
Consider the case that |EC↑ | < ( 1

2 − 1
2c/2 )k. Since GC↑ is connected and vt ∈ VC↑ and t−r > ( 1

2 − 1
2c/2 )k,

it follows that VC↑ ∩ {v0, . . . , vr} = ∅ and hence ∆(B 	 C↑) ≥ 1. We have

Φ(A) ≥ Φ(B↑) ≥ Φ(C↑) + ∆(B 	 C↑) + ∆(B↑ 	 {B,C↑}) (by (†))
≥ Φ(C↑) + 1

≥ 1
c log(λ(C↑)) + ∆(C↑) + 1 (induction hypothesis)

≥ 1
c log( 1

2c−1 k) + 2

> 1
c log(k) + 1.

Therefore, we proceed under the assumption that |EC↑ | ≥ ( 1
2 − 1

2c/2 )k. Since EC↑ = EC ∪EC∼ , we have

|EC∼ | ≥ |EC↑ | − |EC | > ( 1
2 − 1

2c/2 − 1
2c−1 )k = 1

2c−2 k.

We now define vertex vs ∈ VC . Since vt is the vertex of GB∼ with maximal index, it follows that
edge(vt, vt+1) /∈ EB∼ and hence edge(vt, vt+1) /∈ EC (since C ≺ B∼). Therefore, the component of GC

47



containing vt is a path with final vertex vt; let vs be the initial vertex in this path. That is, {vs, . . . , vt} is
the component of GC which contains vt. Recall that t− r > ( 1

2 − 1
2c/2 )k and note that t− s ≤ |EC | < 1

2c−1 k.
Therefore,

s− r = (t− r)− (t− s) > ( 1
2 − 1

2c/2 − 1
2c−1 )k = 1

2c−2 k.

We now claim that there exists a proper sub-join-tree D ≺ C∼ such that

1
2c−1 k ≤ |ED| < 1

2c−2 k.

To see this, note that there exists a chain of sub-join-trees C∼ = D0 � D1 � · · · � Dj such that Dj is

atomic and Di−1 = D↑i and |EDi
| ≥ |ED∼i | for all i ∈ {1, . . . , j}. Since |ED0

| > 1
2c−2 k and |EDj

| = 1
and |EDi−1 | ≤ |EDi | + |ED∼i | ≤ 2|EDi |, it must be the case that there exists i ∈ {1, . . . , j} such that

1
2c−1 k ≤ |EDi | < 1

2c−2 k.
Since |ED| ≥ 1

2c−1 k, (~) implies that GD is connected. Since |ED| < 1
2c−2 k and s− r > 1

2c−2 k, it follows
that VD cannot contain both vr and vs. We are now down to our final two cases: either vr /∈ VD or vs /∈ VD.

First, suppose that vr /∈ VD. We have ∆(B 	D) ≥ 1 and hence

Φ(A) ≥ Φ(B↑) ≥ Φ(D) + ∆(B 	D) + ∆(B↑ 	 {B,D}) (by (†))
≥ Φ(D) + 1

≥ 1
c log(λ(D)) + ∆(D) + 1 (induction hypothesis)

≥ 1
c log( 1

2c−1 k) + 2

> 1
c log(k) + 1.

Finally, we are left with the alternative that vs /∈ VD. In this case ∆(C 	D) ≥ 1 and hence (substituting C
for B in the above), we have

Φ(A) ≥ Φ(C↑) ≥ Φ(D) + ∆(C 	D) + ∆(C↑ 	 {C,D}) ≥ Φ(D) + 1 > 1
c log(k) + 1.

We have now covered all cases. In summary, we considered cases in the following sequence:

1. ∆(A) ≥ 2 otherwise assume GA = Pk w.l.o.g.,

2. ∃A′ ≺ A with ∆(A′) ≥ 2 and λ(A′) ≥ 1
2c−1 k otherwise assume (~),

3. B↑ and Z↑ are vertex-disjoint otherwise assume |EB↑ | ≥ k/2 w.l.o.g.,

4. |EC↑ | < ( 1
2 − 1

2c/2 )k otherwise assume |EC↑ | ≥ ( 1
2 − 1

2c/2 )k,

5. vr /∈ VD or vs /∈ VD.

Since Φ(A) ≥ 1
c log(λ(A)) + ∆(A) in each case, the proof is complete.
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