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Abstract

Let V be any vector space of multivariate degree-d homogeneous polynomials with co-dimension at

most k, and S be the set of points where all polynomials in V nearly vanish. We establish a qualitatively

optimal upper bound on the size of ǫ-covers for S, in the ℓ2-norm. Roughly speaking, we show that

there exists an ǫ-cover for S of cardinality M = (k/ǫ)Od(k
1/d). Our result is constructive yielding an

algorithm to compute such an ǫ-cover that runs in time poly(M).
Building on our structural result, we obtain significantly improved learning algorithms for several

fundamental high-dimensional probabilistic models with hidden variables. These include density and

parameter estimation for k-mixtures of spherical Gaussians (with known common covariance), PAC

learning one-hidden-layer ReLU networks with k hidden units (under the Gaussian distribution), density

and parameter estimation for k-mixtures of linear regressions (with Gaussian covariates), and parameter

estimation for k-mixtures of hyperplanes. Our algorithms run in time quasi-polynomial in the parameter

k. Previous algorithms for these problems had running times exponential in kΩ(1).

At a high-level our algorithms for all these learning problems work as follows: By computing the

low-degree moments of the hidden parameters, we are able to find a vector space of polynomials that

nearly vanish on the unknown parameters. Our structural result allows us to compute a quasi-polynomial

sized cover for the set of hidden parameters, which we exploit in our learning algorithms.
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1 Introduction

1.1 Background and Motivation

The main motivation behind this work is the problem of designing efficient learning algorithms for high-

dimensional probabilistic models with latent (hidden) variables. This general question has a long history

in statistics, starting with the pioneering work of Karl Pearson [Pea94] on learning Gaussian mixtures, that

introduced the method of moments in this context. During the past decades, an extensive line of work in

theoretical computer science and machine learning has made significant progress on various statistical and

computational aspects of this broad question.

In this paper, we focus our attention on high-dimensional latent variable models with a large number k of

hidden parameters1. In the settings we study, previously known learning algorithms have running times that

scale exponentially with k. Roughly speaking, this exponential dependence is typically due to some form of

“brute-force” search, after the high-dimensional problem is reduced down to a k-dimensional one. It should

be noted that, in certain regimes, the exponential dependence on k is inherent, due to either information-

theoretic (see, e.g., [MV10, HP15]) or computational (see, e.g., [DKS17]) bottlenecks. For the problems we

study here, there is no (known) a priori reason ruling out poly(k) time algorithms, while current algorithms

have an exp(kΩ(1)) dependence.

Motivated by this huge gap in our understanding, we develop new algorithms for several high-dimensional

probabilistic models with running times quasi-polynomial in the number k of hidden parameters. More

specifically, we design new algorithms for the following fundamental statistical tasks: density estimation

and parameter learning for k-mixtures of spherical Gaussians, PAC learning one-hidden-layer neural net-

works with k hidden ReLU gates and other well-behaved activations (including generalized linear models)

under the Gaussian distribution, density estimation and parameter estimation for k-mixtures of linear regres-

sions (under Gaussian covariates), and parameter learning for k-mixtures of hyperplanes. See Section 1.4

for detailed statements of our results and comparison to prior work.

All our learning algorithms are based on a new technique that we develop in this work. The key common

ingredient is a new result in algebraic geometry that we believe is of independent interest. In more detail, we

establish the following: Let V be any vector space of multivariate degree-d homogeneous polynomials with

co-dimension at most k and S be the set of points where all polynomials in V nearly vanish. Then the set S

has an ǫ-cover, in ℓ2-norm, of size M = (k/ǫ)Od(k
1/d). Importantly, our proof is constructive immediately

giving an algorithm to compute such a cover that runs in poly(M) time.

With this structural result in hand, all our learning algorithms follow a common recipe: First, given a

set of samples from our distribution there is an efficient procedure to approximate the degree-2d moments

of the hidden parameters. Then we use our structural result to compute a small ǫ-cover for the set of hidden

parameters. Once we have a cover of the parameters, we leverage problem-specific techniques to perform

density estimation or parameter estimation.

1.2 Overview for Our Approach

In this section, we give an overview of our approach with a focus on the problem of learning mixtures of

spherical Gaussians. In particular, we explain how our aforementioned structural result (regarding covers of

near-zero sets of polynomials) naturally comes into play to find a cover for the set of hidden parameters.

Suppose we have access to i.i.d. samples from an unknown k-mixture of identity covariance Gaussians

on Rm, X =
∑k

i=1wiN(µi, I), where wi ≥ 0 are the mixing weights, satisfying
∑k

i=1wi = 1, and

µi ∈ Rm are the mean vectors. There are two versions of the learning problem: (1) Density estimation,

where the goal is to compute a hypothesis distribution H that is ǫ-close to X in total variation distance,

1By this we mean that k = ω(1), in which case an algorithm with runtime exponential in k is not deemed satisfactory.
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and (2) Parameter estimation, where the goal is to approximate the parameters wi, µi within small error ǫ.
Our approach yields significantly improved algorithms for both these problems via a common technique.

In particular, we develop a method to efficiently find a cover for the set of hidden mean vectors, i.e., a set

C ⊂ Rm such that for any µi, i ∈ [k], with wi not too small, there exists c ∈ C such that the ℓ2-distance

‖c− µi‖2 is small.

A natural approach to learn a k-mixture of Gaussians is to use the method of moments. This method

has two steps: (i) We draw sufficiently many samples to accurately approximate the first d moments of the

mixture X. (ii) We use our approximations to the moments to compute an approximation of the distribution

or its parameters. Unfortunately, the method of moments faces the following obstacle in our context: There

exists two k-mixtures of spherical Gaussians, X and X ′, that are far from each other, but have their first

k moments exactly matching. This means that one cannot compute an approximation to X from the first

d < k moments alone.

The above moment-matching statement might suggest that any moment-based method cannot lead to

learning algorithms with running time 2o(k) for our problem. However, looking at the structure of these

moment-matching distributions gives us hope. Essentially, these instances are based on a one-dimensional

construction that matches k moments, which is then embedded into a higher dimensional space. If X and

X ′ are constructed by having all of their Gaussian components centered on an unknown line L, one might

not be able to distinguish X and X ′ directly by using their low-degree moments, but looking at second

moments should suffice to approximately determine the line L. Once this line is determined, it would allow

us to reduce down to a one-dimensional problem, which can be efficiently solved by other means. Of course,

the task of finding the hidden line L could be made more difficult by adding more components to each of X
and X ′, but it is not clear whether or not this could successfully disguise this critical line.

In order to obtain a truly insurmountable hard instance, we would need to construct a k-mixture X,

such that not only do the higher moment tensors of X agree with those of some other k-mixture X ′ (that is

far from X), but in addition the higher moment tensors of X are rotation-invariant. Such a (hypothetical)

construction would imply that the low-degree moments of X are indistinguishable from any rotation of X,

and therefore it would be impossible to locate lower-dimensional sub-structures, like the line L above.

Our approach is motivated by the fact that such a hypothetical hard instance is in fact impossible. In

particular, we can write our unknown k-mixture X as a convolution D ∗ G, where G ∼ N(0, I) is the

standard Gaussian, and D is a discrete distribution on Rm with support size at most k. By de-convolving,

we can use the moments of X to compute the moments of D. Now, if
(m+d

d

)
> k, a dimension counting

argument implies that there exists a non-trivial degree-d polynomial p that vanishes on the support of D.

This means that E[p2(D)] is also 0. But if we know the first 2d moments of X, we can in principle find

such a polynomial p, which would imply that p must be identically zero on the support of D. That is, if we

know the first 2d moments of X, we can find a polynomial p that vanishes on the support of D, and unless

p(x) is a function of ‖x‖22, this will not be a rotationally invariant condition, implying that the moments of

X cannot be rotationally invariant.

The above paragraph naturally leads to an idea for an algorithm. Note that, for any d, the space of

degree-d polynomials on Rm has dimension N =
(
m+d
d

)
. By the same dimension counting argument,

there exists a subspace V of degree-d polynomials with dimension at least N − k that vanishes on the

support of D. On the other hand, given the first 2d moments of D, we can identify V as the space of

polynomials p so that E[p2(D)] = 0. (We note that this is indeed a subspace, since the quadratic form

q → E[q2(D)] is positive semi-definite). If we know V , we know that all the component means of our

mixture must lie on the variety V defined by the polynomials in V . It is not hard to show that this variety

V will have relatively small dimension. This holds because the space of degree-d polynomials on V is

(degree-d polynomials on Rm)/V ,which has dimension at most k. This implies that
(dim(V)+d

d

)
≤ k, and

in particular that dim(V) = O(dk1/d). This allows us to reduce our problem to one on a variety of small
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dimension that we can hopefully brute force in time exponential in k1/d. Indeed, we are able to show that

the variety V will have a small cover. (Of course, having a variety with small dimension does not imply the

existence of a small cover in general. But our variety has additional properties that our proof exploits.)

The biggest technical obstacle to the approach outlined above is, of course, that we cannot have access

to the exact moments of X (and thus D), but can only hope to approximate them. However, if we have

sufficiently accurate approximations to the moments of D, we can still find a vector space V of degree-d
polynomials such that for all p ∈ V we have that E[p(D)2] is small. This implies that for any point x in

the support of D, with reasonable mass, p(x) must nearly vanish for all p ∈ V . At this point, we will

need a robust version of the aforementioned structural result, which is the main geometric result of this

work (Theorem 1). This result essentially says the following: Given such a V and a unit ball B, if we

define S to be the set of all points x in B such that |p(x)| is small for all p ∈ V , then S can be covered by

approximately exp(O(k1/d)) many small balls. Moreover, there is an efficient algorithm to compute such

a cover. This allows us to compute an explicit set of (not too many) hypotheses means xi such that each

center of a Gaussian in X with reasonable weight is close to some xi.
Given our cover for the set of possible parameters, we can solve both the density estimation and the

parameter estimation problems as follows: For density estimation, we note that X can be approximated as

a mixture of the N(xi, I)’s. We can thus draw samples from X and use convex optimization to compute

appropriate mixing coefficients (Proposition 28). For parameter estimation, if we assume separation of the

components of X, we can use the list of hypotheses means to do clustering and learn approximations of the

true means using techniques from [DKS18].

More broadly, our technique can also be applied to a number of other high-dimensional learning prob-

lems. The key requirement is that the unknown distribution in question is determined by a set of k vectors

vi ∈ Rm and non-negative weights wi, and that we can efficiently approximate the quantity
∑k

i=1wip(vi),
for any low degree polynomial p. Given this primitive, we can use our Theorem 1 to find a subspace V of

polynomials that almost vanish on the vi’s, and from there compute a small list of hypotheses so that each

relevant vi must be close to at least one such hypothesis. From this point on, we can use efficient algorithms

operating on the final cover and/or problem-specific techniques to complete the learning algorithm.

1.3 Main Result: Small Covers for Near-Zero Sets of Polynomials

Let V be any vector space of homogeneous degree-d real polynomials on Rm with co-dimension k. We use

R[d][x1, . . . , xm] for the vector space of all homogeneous degree-d real polynomials on Rm. Let S be the

set of points where all polynomials in V are close to zero. Our main result shows that S has a small cover

that can be computed efficiently. Specifically, we show:

Theorem 1 (informal). Let V be any vector space of homogeneous degree-d real polynomials on Rm with

codimension at most k within R[d][x1, . . . , xm]. For δ,R > 0, let

S = S(V,R, δ)
def
= {x ∈ R

m : ‖x‖2 ≤ R and |p(x)| ≤ δ‖p‖ℓ2 for all p ∈ V } .

Then, for sufficiently small δ > 0, there exists an ǫ-cover of S with size at most M = (2(R/ǫ)dk)O(d2k1/d).

Moreover, there exists an algorithm to compute such a cover in poly(M) time.

See Theorems 15 and 25 for more detailed formal statements.

Very Brief Proof Overview. The proof of Theorem 1 is elementary, but quite technically involved. At a

very high level, we consider what happens when we fix the first m′ coordinates of a point x ∈ Rm. Plugging

in these values will change V from a space of polynomials in m variables to a space of polynomials in

m−m′ variables. Since the latter space is much smaller, generically we should expect that this restriction

3



of V produces a very large space of such polynomials, implying (by way of an inductive application of our

theorem) that there are very few ways to fill in the remaining coordinates and still lie in S. This will hold

unless the chosen values satisfy the unusual property that when plugged into polynomials of V they cause

many of them to vanish or nearly vanish. We show that this circumstance is in fact rare by showing that all

points for which this holds must lie near a low-dimensional hyperplane. By restricting our functions to this

hyperplane, we can again use our theorem inductively to handle these bad points.

Discussion. It is instructive to consider Theorem 1 in the special case where δ = 0. Here S is the inter-

section of a variety V with a ball of ℓ2-radius R, and we are asking the natural question of how many balls

are needed to cover the real points of an algebraic variety. For sufficiently nice varieties, we should expect

to have a cover of size approximately O(R/ǫ)dim(V). The constraint that the generating set V is so large

does imply strong bounds on the dimension of V. In particular, the fact that V has codimension k implies

that the restriction of the space of degree-d homogenous polynomials to V has dimension at most k, which

in turn implies that
(dim(V)+d−1

d

)
≤ k, and therefore dim(V) = O(dk1/d). Note that this bound is actually

tight in the case that V is a hyperplane, thus requiring covers of size (R/ǫ)Ω(dk1/d) (for d ≪ log(k)) even in

the δ = 0 case.

The above argument allows one to show that the dependence of our cover size upper bound on R/ǫ is

approximately best possible, as the dimension should equal the metric dimension which is the limit of the

logarithm of the cover size over log(1/ǫ). However, in order to prove this for finite values of (R/ǫ), one

needs to have information not just about the dimension of V, but also about the geometric complexity of the

variety. It is perhaps not surprising that such bounds can be obtained (for example because the codimension

of V should bound the degree of the variety V), but it seems technically highly non-trivial to do so. Further

technical complications arise when one considers the case of δ > 0, i.e., one needs to consider points that

are merely close to satisfying the equations in V.

Another instructive example here is the case where d = 1. In this case, V is a space of linear functions

that all vanish on a hyperplane H with dimension at most k. It is easy to see that only points within distance

δ of H will lie in S, thus making it easy to produce a cover of size O(R/ǫ)k. Given the way that we will

use Theorem 1 in our applications, the degree-1 case will end up looking very similar to the dimension

reduction techniques already known for many of these problems. These techniques involve computing the

second moments of the object in question and noting that the second moment matrix will have small singular

values in directions perpendicular to the span of the k hidden parameters. This provides us with an (m−k)-
dimensional subspace of directions on which none of the (significant) parameters has a large projection,

allowing one to find a subspace H that nearly passes through all of them. From this point, one can usually

reduce to a k-dimensional problem by restricting to or projecting onto H .

In our setting, instead of computing second moments, we compute degree-2d moments. This allows us

to compute not just linear functions that nearly vanish on our points, but many functions of degree up to d.

This gives us a much-smaller dimensional variety which our points must lie near. Unfortunately, since this

new variety is potentially much more complicated than a subspace, we cannot generally project onto it and

reduce to a lower dimensional version of the same problem. However, Theorem 1 will allow us to find a

small cover of this variety, which can then be used in a brute force manner to solve many of our problems.

More formally, by computing the first 2d moments of our distribution, we can solve some equations to

compute the first 2d moments of our parameters. This will allow us to approximate the values of
∑k

i=1 q(vi)

for any degree-2d polynomial q. In particular, we look for degree-d polynomials p for which
∑k

i=1 p
2(vi) is

small. We note that this will hold if and only if p nearly vanishes on all vi. However, we are guaranteed that a

large space of such polynomials will exist and we can find it by an appropriate singular value decomposition.

These p’s will provide the subspace V needed by Theorem 1, which in turn will provide us with a small cover

C. The elements of C can be thought of as hypotheses for our parameters, and we are guaranteed that each
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vi will be close to at least one of our hypotheses. From this point, we can make use of various algorithms to

solve our problem that will run in time polynomial in the cover size.

1.4 Applications: Learning Latent Variable Models

In this section, we present some algorithmic applications of our main result to the problem of learning

various latent variable models. We illustrate the power of our techniques by focusing on a small set of

learning tasks. For each of these tasks, we obtain significantly more efficient algorithms compared to prior

work. We expect that the algebraic geometry tools introduced in this work are applicable to several other

learning tasks. This is left as an interesting direction for future work.

1.4.1 Learning Mixtures of Spherical Gaussians

A k-mixture of spherical Gaussians is a distribution on Rm with density function F (x) =
∑k

j=1wjN(µj , I),

where µj ∈ Rm are the unknown mean vectors and wj ≥ 0, with
∑k

j=1wj = 1, are the mixing weights.

We assume that the components have the same known covariance matrix, which we can take for simplicity

to be the identity matrix.

We will consider both density estimation and parameter estimation. In density estimation, we want to

output a hypothesis distribution with small total variation distance from the target. In parameter estimation,

we assume that the component means are sufficiently separated, and the goal is to recover the unknown

mixing weights and mean vectors to small error.

Prior Work on Learning Mixtures of Spherical Gaussians Gaussian mixture models are one of the

most extensively studied latent variable models, starting with the pioneering work of Karl Pearson [Pea94].

In this paper, we focus on the important special case where each component is spherical. Here we survey

the most relevant prior work on density estimation and parameter estimation for this distribution family.

In density estimation, the goal is to output some hypothesis that is close to the unknown mixture in total

variation distance. Density estimation for mixtures of spherical Gaussians in both low and high dimensions

has been studied in a series of works [FOS06, MV10, CDSS13, CDSS14, SOAJ14, DK14, BSZ15, HP15,

ADLS17, DKK+16, LS17, ABH+18]. The sample complexity of this learning task for k-mixtures on Rm,

for variation distance error ǫ, is easily seen to be poly(mk/ǫ), and a nearly tight bound of Θ̃(mk/ǫ2) was

recently shown [ABH+18]. Unfortunately, all previous algorithms for this learning problem have running

times that scale exponentially with the number of components k. Specifically, [SOAJ14] gave a proper

density estimation algorithm that uses poly(mk/ǫ) samples and runs in time poly(mk/ǫ) +m2(k/ǫ)O(k2).

In parameter estimation, the goal is to output the parameters of the data generating distribution, up to

small error. For this problem to be information-theoretically solvable with polynomial sample complexity,

some further assumptions are needed. The typical assumption involves some kind of pairwise separation

between the component means. The algorithmic problem of parameter estimation for high-dimensional

Gaussian mixtures under separation conditions was first studied by Dasgupta [Das99], followed by a long

series of works [AK01, VW02, AM05, KSV08, BV08, RV17, HL18, KS17, DKS18]. For the simplic-

ity of this discussion, we focus on the case of uniform mixtures with identity covariance components.

[RV17] showed that, in order for the problem to be information-theoretically solvable with poly(m,k)
samples, the minimum pairwise ℓ2-mean separation should be Θ(

√
log k). Subsequently, three independent

works [HL18, KS17, DKS18] gave parameter estimation algorithms with sample complexities and running

times poly(m,kpolylog(k)) that succeed under the optimal separation of Θ(
√
log k).

Finally, a related line of work [HK13, BCMV14, ABG+14, GHK15] studied parameter estimation in

a smoothed-like setting, where (instead of separation conditions) one makes certain condition number as-

sumptions about the parameters. These results are incomparable to ours, as we make no such assumptions.
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We are now ready to state our algorithmic contributions for this problem. For the task of density esti-

mation, we prove:

Theorem 2 (Density Estimation for Spherical k-GMMs). There is an algorithm that on input ǫ > 0, and

Õ(m2)poly(k/ǫ) + (k/ǫ)O(log2 k) samples from an unknown k-mixture of spherical Gaussians F on Rm,

it runs in time poly(mk/ǫ) + (k/ǫ)O(log2 k) and outputs a hypothesis distribution H such that with high

probability dTV(H,F ) ≤ ǫ.

(See Theorem 30 for a more detailed formal statement.) Prior to this work, the fastest known algorithm

for this learning problem had running time exponential in k, in particular poly(m)(k/ǫ)O(k2) [SOAJ14].

Interestingly, our density estimation algorithm is not proper. The hypothesis H it outputs is an ℓ-mixture of

identity covariance Gaussians, where ℓ ≫ k.

For the task of parameter estimation, we prove:

Theorem 3 (Parameter Estimation for Spherical k-GMMs). There is an algorithm that on input ǫ >
0, d ∈ Z+, and N = Õ(m2)poly(k) + poly(k/ǫ) + kO(d) samples from a uniform k-mixture F =
(1/k)

∑k
i=1N(µi, I) on Rm with pairwise mean separation ∆ = mini 6=j ‖µi −µj‖2 ≥ C

√
log k, where C

is a sufficiently large constant, the algorithm runs in time poly(N)+ kO(d2k1/d), and outputs a list of candi-

date means µ̃i such that with high probability we have that ‖µi − µ̃π(i)‖ ≤ ǫ, i ∈ [k], for some permutation

π ∈ Sk.

(See Theorem 31 for a more detailed statement handling non-uniform mixtures as well.) Prior to this

work, [HL18, KS17, DKS18] gave algorithms for this problem with sample complexities and runtimes

poly(m/ǫ, kpolylog(k)). Our algorithm provides a tradeoff between sample complexity and running time (by

increasing the parameter d from constant to log k). In particular, for d = log k, the algorithm of Theo-

rem 3 matches the best known (quasi-polynomial in k) sample complexity and runtime. More importantly,

by taking d to be a large universal constant, we obtain an algorithm with polynomial sample complexity

poly(m/ǫ)kc, c > 0, and sub-exponential time poly(m/ǫ)2Oc(k1/c). No algorithm with polynomial sample

complexity and 2o(k) time was previously known under any polylog(k) separation.

Additional Discussion. In this paragraph, we provide two remarks that are useful to put our algorithmic

contributions (Theorems 2 and 3) in context.

[DKS17] gave a Statistical Query (SQ) lower bound of mΩ(k) on the complexity of density estimation

for k-mixtures of Gaussians in Rm. The hard instances constructed in that work are far from spherical. A

question posed in [DKS17] was whether 2k
c
, for some constant 0 < c < 1, or even kω(1) SQ lower bounds

can be shown for learning k-mixtures of spherical Gaussians. The algorithmic results of this paper were

inspired by our unsuccessful efforts to prove such lower bounds. In particular, an SQ lower bound of the

form 2k
c

is ruled out by Theorem 2. An SQ lower bound of the form kω(1) is still possible, in principle. Given

our quasi-polynomial upper bound, it is a plausible conjecture that a poly(k) time algorithm is attainable.

The list-decodable Gaussian mean estimator of [DKS18], with runtime mO(log(1/α)), combined with a

known dimension-reduction [VW02] and a post-processing clustering step, gives a poly(m/ǫ, klog k) sam-

ple and time algorithm for parameter learning of spherical k-GMMs, under the information-theoretically

optimal mean separation. Due to an SQ lower bound shown in [DKS18] for list-decodable mean estimation,

Theorem 3 cannot be obtained via a reduction to list-decoding.

1.4.2 Learning One-hidden-layer ReLU Networks

A one-hidden-layer ReLU network with k hidden units is any function F : Rm → R that can be expressed

in the form F (x) =
∑k

i=1 aiReLU(wi ·x), for some unit vectors wi ∈ Rm and ai ∈ R+, where ReLU(t) =
max{0, t}, t ∈ R. We will denote by Cm,k the class of all such functions.

6



The PAC learning problem for Cm,k is the following: The input is a multiset of i.i.d. labeled examples

(x, y), where x ∼ N(0, I) and y = F (x) + ξ, for some F ∈ Cm,k and ξ ∼ N(0, σ2), with ξ independent of

x. We will call such an (x, y) a noisy sample from F . The goal is to output a hypothesis H : Rm → R that

with high probability is close to F in L2-norm.

Prior Work on Learning One-hidden-layer ReLU Networks In recent years, there has been an explo-

sion of research on provable algorithms for learning neural networks in various settings, see, e.g., [JSA15,

SJA16, DFS16, ZLJ16, ZSJ+17, GLM18, GKLW19, BJW19, GKKT17, MR18, GK19, VW19] for some

works on the topic. Many of these works focused on parameter learning—the problem of recovering the

weight matrix of the data generating neural network. We also note that PAC learning of simple classes of

neural networks has been studied in a number of recent works [GKKT17, MR18, GK19, VW19].

The work of [GLM18] studies the parameter learning of positive linear combinations of ReLUs under

the Gaussian distribution in the presence of additive noise. It is shown in [GLM18] that the parameters can be

approximately recovered efficiently, under the assumption that the weight matrix is full-rank with bounded

condition number. The sample complexity and running time of their algorithm scales polynomially with the

condition number. More recently, [BJW19, GKLW19] obtained efficient parameter learning algorithms for

vector-valued depth-2 ReLU networks under the Gaussian distribution. Similarly, the algorithms in these

works have sample complexity and running time scaling polynomially with the condition number.

In contrast to parameter estimation, PAC learning one-hidden-layer ReLU networks does not require any

assumptions on the structure of the weight matrix. The PAC learning problem for this class is information-

theoretically solvable with polynomially many samples. The question is whether a computationally efficient

algorithm exists. Until recently, the problem of PAC learning positive linear combinations of ReLUs had

remained open, even under Gaussian marginals and for k = 3, and had been posed as an open problem by

Klivans [Kli17]. Recent work [DKKZ20] gave the first non-trivial PAC algorithm for this problem. The

algorithm in [DKKZ20] uses poly(mk/ǫ) samples, and has runtime poly(mk/ǫ) + (k/ǫ)O(k2).

Our main result for this learning problem is the following:

Theorem 4 (PAC Learning Cm,k). There is a PAC learning algorithm for Cm,k with respect to N(0, I) with

the following performance guarantee: Given ǫ > 0, and O(m2k2/ǫ6) + (k/ǫ)O(log k) noisy samples from

an unknown F ∈ Cm,k, the algorithm runs in time poly(mk/ǫ) + (k/ǫ)O(log2 k), and outputs a hypothesis

H : Rm → R that with high probability satisfies ‖H − F‖22 ≤ ǫ2(‖F‖22 + σ2).

(See Theorem 39 for a more detailed statement.) Interestingly, our PAC learning algorithm is not proper.

The hypothesis H it outputs is a positive linear combination of ℓ ReLUs, for some ℓ ≫ k.

Our algorithm establishing Theorem 4 does not make crucial use of the assumption that the activation

function is a ReLU. The only properties we require is that our activation function has bounded higher

moments and non-vanishing even-degree Fourier coefficients. We note that our algorithmic ideas can be

extended to other activation functions satisfying these properties (see Theorem 44).

1.4.3 Learning Mixtures of Linear Regressions

A k-mixture of linear regressions (k-MLR), specified by mixing weights wi ≥ 0, where
∑k

i=1wi = 1, and

regressors βi ∈ Rm, i ∈ [k], is the distribution Z on pairs (x, y) ∈ Rm × R, where x ∼ N(0, I) and with

probability wi we have that y = βi · x+ ν, where ν ∼ N(0, σ2) is independent of x.

We study both density estimation and parameter learning for k-MLRs. For simplicity of the presentation,

we will assume in this section that maxi ‖βi‖2 ≤ 1 and that the mixing weights are uniform.
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Prior Work on Learning Mixtures of Linear Regressions Mixtures of linear regressions are a natural

probabilistic model introduced in [DeV89, JJ94] and have been extensively studied in machine learning.

Prior work on this problem is quite extensive. The reader is referred to Section 1.2 of [CLS19] for a detailed

summary of prior work on this problem. Here we focus on the prior work that is most closely related to the

results of this paper.

Most prior work on learning MLRs has focused on the parameter estimation problem. A line of work

(see, e.g., [ZJD16, LL18, KC19] and references therein) has focused on analyzing non-convex methods (in-

cluding expectation maximization and alternating minimization). These works establish local convergence

guarantees: Given a sufficiently accurate solution (warm start), these non-convex methods can efficiently

boost this to a solution with arbitrarily high accuracy. The focus of our algorithmic results in this section is

to provide such a warm start. We note that the local convergence result of [LL18] applies for the noiseless

case, while the more recent result of [KC19] can handle non-trivial regression noise when the weights of the

unknown mixture are known.

The prior works most closely related to ours are [LL18, CLS19]. The work of [LL18] focuses on the

noiseless setting (σ = 0) and provides an algorithm with sample complexity and running time scaling

exponentially with k. The main bottleneck of their algorithm lies in a univariate parameter estimation step,

which relies on the method of moments and requires kO(k) samples and time. The recent work [CLS19]

pointed out that the exponential dependence on k is inherent in this approach: One can construct a pair of

k-MLRs whose moment tensors of degree up to Ω(k) match, but their parameters are far from each other.

[CLS19] concludes that “any moment-based estimator” would therefore require runtime exp(Ω(k)). Our

approach also uses moments, but exploits the underlying symmetry to circumvent this obstacle.

The fastest previously known algorithm for the parameter estimation problem of k-MLRs was given

in [CLS19]. This work circumvents the aforementioned exponential barrier by considering moments of care-

fully chosen projections of the Fourier transform. Roughly speaking, [CLS19] gives algorithms whose sam-

ple complexity and running time scales with exp(Õ(k1/2)). In more detail, for the noiseless (σ = 0) and uni-

form weights case with separation ∆ > 0, the algorithm of [CLS19] has sample complexity and runtime of

the form poly(mk/∆) (k ln(1/∆))Õ(k1/2). For the noisy case, when σ = O(ǫ) and the weights are uniform,

the algorithm of [CLS19] has sample complexity and runtime of the form poly(mk/(ǫ∆)) (k/ǫ)Õ(k1/2/∆2).

In summary, prior to this work, the best known learning algorithm for k-MLRs had sample complexity

and running time scaling exponentially with k1/2 [CLS19].

We are now ready to state our results for this problem. For density estimation, we show:

Theorem 5 (Density Estimation for k-MLR). There is an algorithm that on input ǫ > 0, and N =(
m2poly(k) + kO(log k)

)
Õ(log(1/σ)) + (k/ǫ)O(log2 k) samples from an unknown k-MLR Z on Rm × R, it

runs in poly(N) time and outputs a hypothesis distribution H such with high probability dTV(H,Z) ≤ ǫ.

(See Theorem 47 for a detailed statement handling general mixtures.) To the best of our knowledge, this is

the first algorithm for density estimation of k-MLRs with running time sub-exponential in k.

For the parameter estimation problem, we provide two algorithmic results – one for the noiseless case

(corresponding to σ = 0) and one for the noisy case (corresponding to σ > 0). We note that the σ = 0 case

is already quite challenging, and most prior work (with provable guarantees) for the large k regime focuses

on this case (see, e.g., [ZJD16, LL18, CLS19]).

For the noiseless case, we achieve exact recovery (see Theorem 48 for a more detailed statement):

Theorem 6 (Parameter Estimation for k-MLR, Noiseless Case). There is an algorithm that given N =(
m2poly(k) + kO(log k)

)
Õ(log(k log(m)/∆)) samples from an unknown k-MLR Z on Rm × R with uni-

form weights and pairwise separation ∆ = mini 6=j ‖βi−βj‖2 > 0, the algorithm runs in time poly(N, klog
2 k),

and outputs a list of hypothesis vectors β̃i such that with high probability we have that βi = β̃π(i), i ∈ [k],
for some permutation π ∈ Sk.
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Our second result can handle additive noise (see Theorem 49 for a more detailed statement).

Theorem 7 (Parameter Estimation for k-MLR, Noisy Case). There is an algorithm that on input ǫ > 0, N =(
m2poly(k) + kO(log k)

)
Õ(log(k log(m)/∆)) + Õ(m)poly(k, 1/ǫ) samples from an unknown k-MLR Z

with uniform weights and mean separation ∆ = mini 6=j ‖µi − µj‖2 such that ∆/σ at least an appropriate

polynomial in k log(m), the algorithm runs in poly(N, klog
2 k) time, and outputs a list of hypothesis vectors

β̃i such that with high probability we have that ‖βi − β̃π(i)‖ ≤ ǫ, i ∈ [k], for some permutation π ∈ Sk.

1.4.4 Learning Mixtures of Hyperplanes

Our final learning application is for the problem of parameter estimation for mixtures of hyperplanes. A

k-mixture of hyperplanes is a distribution on Rm with density function F (x) =
∑k

j=1wjN(0, I − vjv
T
j ),

where vj ∈ Rm with ‖vj‖2 = 1 and wj ≥ 0 with
∑k

j=1wj = 1.

We study parameter estimation for this probabilistic model under ∆ pairwise separation for the vj’s.

Specifically, we will assume that we know some ∆ > 0 such that for all i 6= j and σi, σj ∈ {±1}, we have

that ‖σivi − σjvj‖2 ≥ ∆. Note that the vj’s are only identifiable up to sign, which motivates this definition.

For simplicity, we will assume uniform weights in this section, i.e., that all the wi’s are 1/k. The goal of

parameter learning in this context is to output a list of unit vectors {ṽj}kj=1 such that there is a permutation

π ∈ Sk and a list of signs σj ∈ {±1} for which vj = σj ṽπ(j) for all j ∈ [k].

Prior Work on Learning Mixtures of Hyperplanes Mixtures of hyperplanes is a natural probabilistic

model that was recently studied in [CLS19], motivated by its connection to the subspace clustering problem

(see, e.g., [PHL04, Vid11] for overviews). In the subspace clustering problem, the data is assumed to be

drawn from a union of linear subspaces, and the algorithmic problem is to identify the hidden subspaces.

The mixtures of hyperplanes model can be viewed as a hard instance of subspace clustering, but is also of

interest in its own right as it arises in various contexts (see [CLS19] for a detailed discussion).

The fastest previously known algorithm for the parameter estimation problem of k-mixtures of hyper-

planes was given in [CLS19]. In more detail, for uniform weights and separation ∆ > 0, the algorithm

of [CLS19] has sample complexity and runtime of the form poly(mk/∆) (k ln(1/∆))Õ(k3/5).

Our main result in this section is the following theorem (see Theorem 62):

Theorem 8 (Parameter Learning for k-mixtures of Hyperplanes). There is an algorithm that on input N =
O(k/∆)O(log k) +O(m2)poly(k log(m)/∆) samples from a uniform k-mixture of hyperplanes on Rm with

pairwise separation ∆ > 0, the algorithm runs in time poly(N) + m2 log(log(m)/∆)kO(log2 k) and with

high probability outputs an ǫ-approximation to the unknown parameter vectors.

1.5 Organization

The structure of the paper is as follows: In Section 2, we provide the necessary definitions and technical

facts. In Section 3, we prove our main geometric result. Sections 4 describes how our main geometric result

is used for our learning theory applications. The next sections present our learning algorithms in order:

mixtures of spherical Gaussians (Section 5), positive linear combinations of ReLUs (Section 6) and GLMs

(Section 7), mixtures of linear regressions (Section 8), and mixtures of hyperplanes (Section 9). Some

omitted proofs are deferred to an Appendix.
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2 Preliminaries

Basic Notation and Definitions. For n ∈ Z+, we denote by [n] the set {1, 2, . . . , n}. For a vector v ∈ Rn,

let ‖v‖2 denote its Euclidean norm. We denote by x · y the standard inner product between x, y ∈ Rn.

For a, b ∈ R, we will write a ≫ b (or b ≪ a) to mean that there exists a sufficiently large constant

C > 0 such that a ≥ Cb. We will denote by δ0 the Dirac delta function and by δi,j the Kronecker delta.

For x ∈ Rn and r > 0, let Bn(x, r) = {z ∈ Rn : ‖z − x‖2 ≤ r}. Let S ⊂ Rn and ǫ > 0. We say that

a set C ⊂ Rn is an ǫ-cover of S (with respect to the ℓ2-norm) if for all x ∈ S there exists cx ∈ C such that

x ∈ Bn(cx, ǫ).
Throughout the paper, we let ⊗ denote the tensor/Kronecker product. For a vector x ∈ Rn, we denote

by x⊗d the d-th order tensor product of x.

We will denote by N(µ,Σ) the multivariate Gaussian distribution with mean µ and covariance Σ. The

underlying dimension will be clear from the context. For a random variable X and p ≥ 1, we will use ‖X‖p
to denote its Lp-norm, i.e., ‖X‖p def

= E[|X|p]1/p, assuming the RHS is finite.

The total variation distance between probability distributions P and Q on Rm, denoted dTV(P,Q), is

defined as dTV(P,Q)
def
= supA⊆Rm |P (A) −Q(A)|.

2.1 Tools from Linear Algebra

If V is a subspace of a finite dimensional vector space W , then the codimension of V in W is the dif-

ference codimW (V ) = dim(W ) − dim(V ). We will make essential use of the following basic fact (see

Appendix A.1 for the simple proof):

Fact 9. LetU, V,W be finite dimensional vector spaces with U ⊆ W . Then codimU (V ∩U) ≤ codimW (V ).

Polynomials and Tensors. Let R[x1, . . . , xn] be the vector space of real polynomials in variables x1, . . . , xn.

If x = (x1, . . . , xn) is a vector of indeterminates, we will sometimes use the notation R[x]. A real polyno-

mial in n variables is called homogeneous degree-d if it only contains monomials of degree exactly d. Let

R[d][x1, . . . , xn] denote the vector space of real homogeneous degree-d polynomials in variables x1, . . . , xn.

A tensor A of dimension n and order d is a multilinear map defined by a d-dimensional array with

real entries Aα, where α = (α1, . . . , αd) with αi ∈ [n]. A tensor A is symmetric if Aα = Aασ , where

ασ = (ασ1 , . . . , ασd
), for any permutation σ : [d] → [d]. For tensors A,B of dimension n and order d,

we will denote by 〈A,B〉 their entry-wise inner product. For a tensor A, let ‖A‖2 = 〈A,A〉1/2 denote the

ℓ2-norm of its entries.

Recall that there is a bijection between the space of real symmetric tensors of dimension n and order

d and the space of real homogeneous degree-d polynomials in n variables. The inner product of two real

homogeneous degree-d polynomials p, q ∈ R[d][x1, . . . , xn], denoted by 〈p, q〉, is defined to be the inner

product of their corresponding symmetric tensors, i.e., if p(x) = 〈Ap, x
⊗d〉 and q(x) = 〈Aq, x

⊗d〉 then

〈p, q〉 = 〈Ap, Aq〉. Consequently, the ℓ2-norm of a homogeneous polynomial p ∈ R[d][x1, . . . , xn] is the

ℓ2-norm of the corresponding symmetric tensor, i.e., if p(x) = 〈Ap, x
⊗d〉, then ‖p‖ℓ2 := ‖Ap‖2. By the

multi-linearity property of tensors, the ℓ2-norm of a homogeneous polynomial is rotationally invariant.

An n-dimensional multi-index α is an n-tuple of non-negative integers, i.e., α = (α1, . . . , αn) ∈ Nn
0 .

We will define the length of the multi-index α as |α| = ∑n
i=1 αi. We will also denote α! =

∏n
i=1 αi! and

use c(α) = |α|!/α! for the multinomial coefficient. For a vector of indeterminates x = (x1, . . . , xn), we

will denote the monomial corresponding to the multi-index α by xα =
∏n

i=1 x
αi
i .

With this notation, we have the following fact:
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Fact 10. For any multi-indices α, β ∈ Nn
0 , and x = (x1, . . . , xn) a vector of indeterminates, we have that

〈xα, xβ〉 =
{

0 , α 6= β
1

c(α) =
α!
|α|! , α = β

Our proofs will repeatedly use the following simple lemma (see Appendix A.2 for the simple proof):

Lemma 11. For any p ∈ R[d][x1, . . . , xn] and x, y ∈ Rn, we have that:

(i) |p(x)| ≤ ‖x‖d2 ‖p‖ℓ2 , and

(ii) |p(x)− p(y)| ≤ dmax{‖x‖2, ‖y‖2}d−1 ‖x− y‖2 ‖p‖ℓ2 .

2.2 Tools from Probability

Concentration and Anti-concentration for Gaussian Polynomials. We will require standard concentra-

tion and anti-concentration bounds for multivariate degree-d polynomials under the standard Gaussian dis-

tribution. For a polynomial p : Rn → R, we consider the random variable p(x), where x ∼ N(0, I). We will

use ‖p‖r , for r ≥ 1, to denote the Lr-norm of the random variable p(x), i.e., ‖p‖r def
= Ex∼N(0,I)[|p(x)|r]1/r .

We first recall the following moment bound for low-degree polynomials, which is equivalent to the

well-known hypercontractive inequality of [Bon70, Gro75]:

Theorem 12. Let p : Rn → R be a degree-d polynomial and q > 2. Then ‖p‖q ≤ (q − 1)d/2‖p‖2.

The following concentration bound for low-degree polynomials, a simple corollary of hypercontractiv-

ity, is well known (see, e.g., [O’D14]):

Theorem 13. Let p : Rm → R be a degree-d polynomial. For any t > ed, we have

Prx∼N(0,I) [|p(x)| ≥ t‖p‖2] ≤ exp(−Ω(t2/d)).

We will also require the following anti-concentration bound for Gaussian polynomials:

Theorem 14 ([CW01]). Let p : Rn → R be a nonzero real degree-d polynomial. For all ǫ > 0 and t ∈ R

we have

Prx∼N(0,I)

[
|p(x)− t| ≤ ǫ ·

√
Varx∼N(0,I)[p(x)]

]
≤ O(dǫ1/d).

Additionally, we will require basic facts KL Divergence (Pinsker’s inequality), a classical result from

empirical process theory (VC Inequality), and basics on Hermite analysis. These tools are reviewed in

Appendix A.4.
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3 Main Geometric Result

In Section 3.1, we show the existence of small covers for near-zero sets of polynomials. In Section 3.2, we

point out how to turn our existence proof into an efficient algorithm to compute such a small cover.

3.1 Existence of Small Covers

Our main geometric result is the following theorem:

Theorem 15. There exists a universal constant C > 0 such that the following holds: Let d, k,m ∈ Z+ and

V be any vector space of homogeneous degree-d real polynomials in m variables with codimension at most

k within R[d][x1, . . . , xm]. For δ,R > 0, let

S = S(V,R, δ)
def
= {x ∈ R

m : ‖x‖2 ≤ R and |p(x)| ≤ δ‖p‖ℓ2 for all p ∈ V } .

Then, for any ǫ ≥ δ
1

(C+1)d (2Rdkm)
C

C+1 , there exists an ǫ-cover of S with size at most (2(R/ǫ)dkm)C
2d2k1/d .

Detailed Proof Overview. The proof of Theorem 15 is elementary, though highly technical. Before we

give the formal proof, we start by explaining the main ideas here. Fundamentally, the proof is recursive, and

we show that given V , δ, ǫ, and R, we can find an appropriate cover of the corresponding set B by reducing

to a number of smaller and similar looking problems. The first step in this reduction involves writing Rm as

Rm′ × Rm−m′

for m′ a sufficient multiple of k1/d. We then cover B(0, R) by a number of cylinders of the

form B(x, ǫ′)×Rm−m′

(ǫ′ a carefully chosen constant on the order of δ). Our basic plan is to show that for

most x that there is a small cover of the intersection of B with the associated cylinder, and then to show that

the bad x all lie close to a hyperplane of co=dimension at least m′/2.

For each cylinder, we note that for x′ ∈ B(x, ǫ′) and y ∈ Rm−m′

not too large that p(x′, y) is close

to p(x, y) for all p. This means that in order to cover B(x, ǫ′) × Rm−m′

, it suffices to find a cover of just

{x} × Rm−m′

with slightly stronger parameters. The set that needs to be covered is the set of points that

nearly vanish on every polynomial in V , where V is a set of degree-d polynomials in m variables. We restrict

our attention to those polynomials p ∈ V that when restricted to x in their first m′ coordinates leave a degree

d− 1 polynomial in m−m′ variables. We note that for any such polynomial p, if substituting x into its first

m′ coordinates does not decrease its L2 norm by too much, the resulting polynomial q(y) := p(x, y) must

nearly vanish on every point of B ∩ {x} ×Rm−m′

. One way of formalizing this is as follows. We let W be

the subspace of V consisting of polynomials that are homogeneous degree-1 in the x-coordinates. We define

a linear transformation Ax mapping W to degree-(d− 1) polynomials in the y-coordinates by evaluation on

the x coordinates. We note that all points in B∩{x}×Rm−m′

nearly vanish on all polynomials in U , where

U is the span of the eigenvectors of Ax with not-too-small eigenvalues. If the number of such eigenvectors

is large, then we can recursively find a small cover of B ∩ {x} × Rm−m′

. In particular, if the number of

small eigenvectors is less than k′ = k(d−1)/d, the recursive bounds should suffice. We call such x good. We

will need a different technique for finding a cover of the bad points.

For this, we claim that there is a hyperplane H of codimension at least m′/2 so that all of the bad x
lie close to H . If we can show this, we can cover all of the bad cylinders by recursively finding a cover

of H (considering only the polynomials in the variables along H). To prove this statement, we proceed

by contradiction. If no H can be found, there must be many bad xi so that xi+1 is far from the span

of {x1, . . . , xi}. To each xi we associate degree-(d − 1) polynomials pi1, . . . , pik′ corresponding to the

small eigenvectors of Axi . We let qi(x) be the linear function qi(x) = x · xi, and consider the set S of

polynomials qi(x)pij(y). It is not hard to see that each polynomial in S has a large component orthogonal

to the previous elements, and thus their Gram matrix must have a relatively large determinant. On the other

hand, |S| ≫ m′k′ ≫ k, so there must be many linear combinations of polynomials in S that lie in W . It is
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also not hard to see that any polynomial in W will have relatively small inner product with any polynomial

in S, and this will imply that the Gram matrix of S has relatively small determinant, yielding a contradiction

with our previous bound.

We are now ready to proceed with the formal proof of Theorem 15. We start with the following defini-

tion:

Definition 16. In the context of Theorem 15, let f(R, d, ǫ, δ, k,m) be the smallest integer such that for

any subspace V of m-variable homogeneous degree-d real polynomials with codimension at most k in

R[d][x1, . . . , xm], the set S = S(V,R, δ)
def
= {x ∈ Rm : ‖x‖2 ≤ R and |p(x)| ≤ δ‖p‖ℓ2 for all p ∈ V } has

an ǫ-cover, in ℓ2-norm, of cardinality at most f(R, d, ǫ, δ, k,m).

The proof of Theorem 15 relies on the following crucial proposition:

Proposition 17. For any 0 < ǫ′ < ǫ ≤ R, k,m, k′,m′ ∈ Z+ with k′ < k and m′ < m, and η > 0 with

ǫ− ǫ′ ≫ k1/2 η1/4R3/4d−1/8, we have that

f(R, d, ǫ, δ, k,m) ≤ f(R, d, ǫ′, δ, k,m′)f
(
R, d− 1, ǫ− ǫ′,

(
δ + d (2R)d−1ǫ′

)
/η, k′,m−m′

)

+ f
(
R, d, ǫ− ǫ′ −O

(
k1/2η1/4R3/4d−1/8

)
, δ, k,m −m′ + 2(k/k′)

)
.

Proof of Proposition 17. The basic strategy of our proof will be as follows. Firstly, it is straightforward to

show that the projection of S onto the first m′-coordinates has an ǫ′ cover of size at most f(R, d, ǫ′, δ, k,m′).
For each of the points c in this cover, we will need to cover the cylinder (B(c, ǫ′)×Rm−m′

)∩S. We show that

for most such c there is such a cover of size at most f
(
R, d− 1, ǫ− ǫ′,

(
δ + d (2R)d−1ǫ′

)
/η, k′,m−m′).

For the remaining points of S, we show that they all lie close to a hyperplane H of dimension at most

m−m′ + 2k/k′. By considering the projection of these points onto H , we are left with a similar problem

in a smaller dimensional space, and show that all of these remaining points have a cover of size at most

f
(
R, d, ǫ− ǫ′ −O

(
k1/2η1/4R3/4d−1/8

)
, δ, k,m −m′ + 2(k/k′)

)
.

We begin by decomposing Rm as Rm′×Rm−m′

. Each element z ∈ Rm can be written as z = (x, y) with

x ∈ Rm′

and y ∈ Rm−m′

. Let Vx be the subset of V that consists of homogeneous degree-d polynomials

that only depend on coordinates in x.

To cover the projection onto the x-coordinates, we note that |p(x, y)| = |p(x)| must be small for all

(x, y) ∈ S and p ∈ Vx. This means that these points are a set of near zeroes of a large space of polynomials.

More formally, by Fact 9, Vx is a subspace with codimension at most k in R[d][x1, . . . , xm′ ], i.e., within the

space of all homogeneous degree-d polynomials in these variables. Consider the set of Sx ⊂ Rm′

defined

as follows:

Sx
def
= Sx(Vx, R, δ) = {x ∈ R

m′

: ‖x‖2 ≤ R and |p(x)| ≤ δ‖p‖ℓ2 for all p ∈ Vx} .

First, we claim that Sx ⊇ Πx(S)
def
= {x ∈ Rm′ | ∃y ∈ Rm−m′

with (x, y) ∈ S}, i.e., Sx contains the

projection of S onto the x-coordinates. Indeed, let x ∈ Πx(S). Then there exists y ∈ Rm−m′

such that (a)

‖(x, y)‖2 ≤ R and (b) |p(x, y)| ≤ δ‖p‖ℓ2 for all p ∈ V . Condition (a) a fortiori implies that ‖x‖2 ≤ R.

Since Vx ⊆ V and p(x, y) = p(x) for all p ∈ Vx, condition (b) gives that |p(x)| ≤ δ‖p‖ℓ2 for all p ∈ Vx.

Therefore, x ∈ Sx.

Let Cǫ′ be an ǫ′-cover of Sx (and therefore of Πx(S)) with minimum cardinality. Since Vx is a subspace

with codimension at most k in R[d][x1, . . . , xm′ ], by Definition 16 we have that |Cǫ′ | ≤ f(R, d, ǫ′, δ, k,m′).

For each c ∈ Cǫ′ , we would like to cover the cylinder (B(c, ǫ′) × Rm−m′

) ∩ S. We note that this is a

set of points where |p(x, y)| is small for all p ∈ V . However, for x in this set p(x, y) ≈ p(c, y). Thus, it
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suffices to consider the set of points where |p(c, y)| is small, which will allow us to reduce more easily to a

similar-looking problem. In particular, for each c ∈ Cǫ′, we consider the set

Sy,c
def
= {y ∈ R

m−m′

: ‖y‖2 ≤ R and |p(c, y)| ≤ (δ + d (2R)d−1ǫ′)‖p‖ℓ2 for all p ∈ V } .

We require the following claim:

Claim 18. For any given c ∈ Cǫ′ , let Dc,ǫ−ǫ′ be an (ǫ − ǫ′)-cover of Sy,c. The set c × Dc,ǫ−ǫ′ is an ǫ-cover

for S ∩ (Bm′(c, ǫ′)× Rm−m′

).

Proof. To prove this claim, we start by noting that for any (x, y) ∈ S ∩ (Bm′(c, ǫ′) × Rm−m′

), where

x ∈ Rm′

and y ∈ Rm−m′

, we have that (a) ‖x − c‖2 ≤ ǫ′ and (b) y ∈ Sy,c. Condition (a) follows directly

from the fact that x ∈ Bm′(c, ǫ′). To show condition (b), we start by noting that ‖y‖2 ≤ ‖(x, y)‖2 ≤ R,

where the second inequality holds since (x, y) ∈ S. Moreover, for each p ∈ V we have that

|p(c, y)| ≤ |p(x, y)|+ |p(c, y)− p(x, y)|
≤ δ‖p‖ℓ2 + d max{‖x‖2, ‖c‖2}d−1‖c− x‖2 ‖p‖ℓ2
≤ δ‖p‖ℓ2 + d (2R)d−1ǫ′ ‖p‖ℓ2
= (δ + d (2R)d−1 ǫ′) ‖p‖ℓ2 ,

where the first inequality is the triangle inequality, the second inequality uses that |p(x, y)| ≤ δ‖p‖2 (since

(x, y) ∈ S) and Lemma 11 (ii), the third inequality uses that ‖x‖2 ≤ ‖(x, y)‖2 ≤ R (since (x, y) ∈ S) and

‖c‖2 ≤ ‖c− x‖2 + ‖x‖2 ≤ ǫ′ +R ≤ 2R.

Since y ∈ Sy,c and Dc,ǫ−ǫ′ is an (ǫ− ǫ′)-cover of Sy,c, there exists d ∈ Dc,ǫ−ǫ′ with ‖d− y‖2 ≤ ǫ− ǫ′.
Therefore, for any (x, y) ∈ S ∩ (Bm′(c, ǫ′) × Rm−m′

) we have that ‖x − c‖2 ≤ ǫ′ and ‖d − y‖2 ≤ ǫ − ǫ′

for some d ∈ Dc,ǫ−ǫ′. The claim now follows from the Pythagorean theorem.

Note that the set ∪c∈Cǫ′ (c × Dc,ǫ−ǫ′) is an ǫ-cover of S. To see this, fix any z = (x, y) ∈ S, where

x ∈ Rm′

and y ∈ Rm−m′

. Since x ∈ Πx(S) ⊆ Sx, there exists c ∈ Cǫ′ such that ‖x − c‖2 ≤ ǫ′. For this

choice of c, by definition we have that z ∈ S ∩ (Bm′(c, ǫ′) × Rm−m′

). By Claim 18, there exists a point

z′ ∈ c×Dc,ǫ−ǫ′ such that ‖z − z′‖2 ≤ ǫ, as desired.

Therefore, if we could show that the set Sy,c has a small a (ǫ − ǫ′)-cover for all c ∈ Cǫ′ , we would

obtain a small ǫ-cover of S. While this strong statement may not hold, we will show that Sy,c has a small

(ǫ− ǫ′)-cover for most points c ∈ Cǫ′ . In particular, we will show that Sy,c has a small (ǫ− ǫ′) cover for all

points c ∈ Cǫ′ except for those near a low-dimensional subspace H . We will then separately show how to

construct a small cover of the points near H × Rm−m′

.

To understand why we will have a small cover for most Sy,c, note that, for y ∈ Sy,c and p ∈ V , |p(c, y)|
will be small. We note that a basis of p ∈ V consists of dim(R[d](z1, . . . , zm))− k polynomials, and so we

have a very large number of polynomials p(c,−) that must be small at all y ∈ Sy,c, especially considering

that dim(R[d](z1, . . . , zm)) is much bigger than dim(R[d](y1, . . . , ym−m′)). However, this intuition will be

wrong if for many of these polynomials p it is the case that ‖p(c,−)‖ℓ2 ≪ ‖p‖ℓ2 . So, to see when this works

and when it does not, we will need to consider when this kind of restriction leaves us with a polynomial of

reasonable size.

To proceed, we require a few additional definitions.

Definition 19. Let W be the subspace of V consisting of polynomials in (x, y), where x ∈ Rm′

and

y ∈ Rm−m′

, that are homogeneous degree-1 in the x-variables and homogeneous degree-(d − 1) in the

y-variables.
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By Fact 9, W is a subspace of the space of all polynomials that are homogeneous degree-1 in the

x-variables and homogeneous degree-(d − 1) in the y-variables with codimension at most k.

Note that for each x ∈ Rm′

, x defines a linear map Ax : W → R[d−1][y] from W to the vector space of

homogeneous degree-(d − 1) polynomials in the y coordinates. In particular, for a polynomial p ∈ W , we

define Ax(p) by evaluation as (Ax(p))(y) = p(x, y).
With this setup, we introduce the notion of a good point:

Definition 20. Fix k′ ∈ Z+ and η > 0. A point x ∈ Rm′

is called (k′, η)-good if the linear map Ax has at

most k′ left singular values smaller than η (or equivalently if Ax has at least dim(R[d−1][y]) − k′ singular

values that are at least η). A point x ∈ Rm′

is called (k′, η)-bad otherwise.

Our next key claim is that for any good point c ∈ Cǫ′ , the set Sy,c has a small cover:

Claim 21. For any (k′, η)-good point c ∈ Cǫ′ , Sy,c has an (ǫ− ǫ′)-cover of size

f(R, d− 1, ǫ− ǫ′, (δ + d (2R)d−1ǫ′)/η, k′,m−m′) .

Proof. The idea of this proof is as described above. For c a good point, we note that for p ∈ W any singular

vector of Ac with large singular value, we have that for any y ∈ Sy,c it holds

|p(c, y)| ≤ (δ + d(2R)d−1ǫ′)‖p‖ℓ2 ≤ (δ + d(2R)d−1ǫ′)/η‖p(c,−)‖ℓ2 .

This gives a large dimensional subspace of polynomials that nearly vanish on Sy,c allowing us to bound the

size of its cover.

In particular, fix any (k′, η)-good point c ∈ Cǫ′. Let Vc be the vector space of homogeneous degree-

(d − 1) polynomials in the y coordinates (i.e., in Rm−m′

) spanned by the left singular vectors of Ac with

singular value more than η. By Definition 20, Vc has codimension at most k′ within R[d−1][y]. Furthermore,

for any p ∈ Vc there exists q ∈ W ⊆ V with Acq = p and ‖p‖ℓ2 ≥ η‖q‖ℓ2 , where the last inequality

follows from the definition of Vc. In particular, the singular value decomposition gives us orthonormal sets

of polynomials {v(i)} ∈ W and {u(i)} ∈ R[d−1][y] such that Acv
(i) = σiu

(i). By definition, Vc is spanned

by the u(i)’s with corresponding σi ≥ η. In particular, we can write p =
∑

i aiu
(i) and we have that

‖p‖2ℓ2 =
∑

i a
2
i . Note that if we consider the polynomial q =

∑
i aiσ

−1
i v(i), then we have that q ∈ W ,

Acq = p, and ‖q‖2ℓ2 =
∑

i a
2
i σ

−2
i . Since σi ≥ η for all i with ai 6= 0, we get that ‖q‖2ℓ2 ≤ η−2‖p‖2ℓ2 or

‖p‖ℓ2 ≥ η‖q‖ℓ2 .

For any p ∈ Vc and y ∈ Sy,c, we have that

|p(y)| = |q(c, y)| ≤ (δ + d (2R)d−1ǫ′)‖q‖ℓ2 ≤ (δ + d (2R)d−1ǫ′)‖p‖ℓ2/η ,

where the equality follows from the definition of p and q, the first inequality uses the definition of Sy,c, and

the second inequality uses that ‖q‖ℓ2 ≤ ‖p‖ℓ2/η. Therefore, Sy,c is contained in the set

S′
y,c

def
=
{
y ∈ R

m−m′

: ‖y‖2 ≤ R and |p(y)| ≤ (δ + d (2R)d−1ǫ′)‖p‖ℓ2/η for all p ∈ Vc

}
.

Since Vc is a vector space of codimension at most k′ within R[d−1][y], we have that S′
y,c (and therefore Sy,c)

has an (ǫ− ǫ′)-cover of size f(R, d−1, ǫ− ǫ′, (δ+d (2R)d−1ǫ′)/η, k′,m−m′), as desired. This completes

the proof of Claim 21.

By Claims 18 and 21, the subset of S consisting of points z = (x, y) whose x-coordinate is within

ℓ2-distance ǫ′ of a (k′, η)-good point c ∈ Cǫ′ has an ǫ-cover of size at most

f(R, d, ǫ′, δ, k,m′)f
(
R, d− 1, ǫ− ǫ′,

(
δ + d (2R)d−1ǫ′

)
/η, k′,m−m′

)
.
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To complete the proof of Proposition 17, we proceed to establish an upper bound on the size of an ǫ-
cover for the subset of S consisting of points z = (x, y) whose x-coordinate is within ℓ2-distance ǫ′ of a

(k′, η)-bad point c ∈ Cǫ′ . To that end, we prove the following key lemma:

Lemma 22. There exists a subspace H in Rm′

of dimension at most 2k/k′ so that all the (k′, η)-bad points

in Cǫ′ are within ℓ2-distance O(η1/4k1/2R3/4d−1/8) of H .

Proof. We proceed by contradiction. Let t
def
= ⌈2k/k′⌉. If the lemma statement does not hold, there exists

a sequence of (k′, η)-bad points x(1), x(2), . . . , x(t) in Cǫ′ , where each x(j) has a component orthogonal

to the span of x(1), . . . , x(j−1) of ℓ2-norm at least γ,where γ is a sufficiently large constant multiple of

η1/4k1/2R3/4d−1/8. This sequence of points can be constructed inductively as, by assumption, not all of the

(k′, η)-bad points in Cǫ′ are within ℓ2-distance γ of the hyperplane spanned by x(1), . . . , x(j−1), allowing us

to find an appropriate x(j).
By definition, each (k′, η)-bad point x(i) ∈ Cǫ′ in the aforementioned sequence has associated with it

at least k′ orthogonal homogeneous degree-(d − 1) polynomials in the y-variables corresponding to left

singular vectors of Ax(i) with singular value at most η. Let pi,1, . . . , pi,k′ be a set of k′ orthonormal such

polynomials, i.e., assume w.l.o.g. that the pi,j’s are orthogonal and satisfy ‖pi,j‖ℓ2 = 1. For each x(i),
i ∈ [t], we also consider the linear polynomial qi(x) := x · x(i). Let Bi,j(x, y) be the polynomial in

Rm defined as Bi,j(x, y) = qi(x)pi,j(y) for i ∈ [t] and j ∈ [k′]. Let U be the set of all Bi,j’s, i.e.,

|U | = t k′ ≥ 2k.

We will require the following claim (whose simple proof is in Appendix A.3):

Claim 23. Let q1(x), q2(x) be homogeneous degree-1 polynomials in x and p1(y), p2(y) be homogeneous

degree-(d − 1) polynomials in y. Then 〈q1 p1, q2 p2〉 = (1/d) 〈q1, q2〉 〈p1, p2〉.

Fix any p ∈ W . If {z(1), . . . , z(m′)} is a basis of Rm′

, we can write p(x, y) =
∑m′

j=1(x · z(j))pj(y),
for some homogeneous degree-(d − 1) polynomials pj(y). If we pick the z(j)’s so that z(1) · x(i) = 1 and

z(j) · x(i) = 0 for j > 1, for some i ∈ [t], then the polynomial (x · z(j)), for j > 1, is orthogonal to qi(x),
and (x · z(1)) has inner product 1 with qi(x). By Claim 23, this implies that 〈p,Bi,j〉 = (1/d) 〈p1, pi,j〉. On

the other hand, it is easy to see that (Ax(i)(p))(y) = p(x(i), y) = p1(y). Therefore, we have that

|〈p,Bi,j〉 | = (1/d) |〈Ax(i)p, pi,j〉| = (1/d)
∣∣〈p,AT

x(i)pi,j〉
∣∣ ≤ (η/d) ‖p‖ℓ2 , (1)

where the last inequality is Cauchy-Schwarz using the assumption that pi,j is a singular vector of AT
x(i) with

singular value at most η.

We will use (1) to prove a contradiction, based on an analysis of the eigenvalues of the Gram matrix

of the Bi,j’s. By construction, we have that each Bi,j has a component orthogonal to all of the Bi′,j′ with

i′ < i or with i′ = i and j′ 6= j of ℓ2-norm at least γ/
√
d. Fix an ordering of the Bi,j’s in increasing order

of i. For simplicity, we use a single index ℓ = (i, j) and will refer to the set of Bℓ’s in this ordering. Note

that ℓ ∈ L, where the index set L has size |L| = |U | = Θ(k).
Let M be the matrix whose rows are the Bℓ’s, in increasing order of ℓ according to our ordering. That

is, M is a linear operator such that MT eℓ = Bℓ, where eℓ is the standard basis vector whose ℓ-th coordinate

is 1. By writing the rows of M in the appropriate basis (i.e., a basis where the j-th term is the orthogonal

part of the j-th row), we obtain a lower triangular matrix with diagonal entries of magnitude at least γ/
√
d.

Therefore, if MMT is the corresponding Gram matrix, we have that

det(MMT )1/2 ≥ (γ/
√
d)|U | . (2)
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Note that for any p =
∑

ℓ∈L aℓBℓ ∈ W , with a = [aℓ]ℓ∈L ∈ R|U |, we can write:

∥∥aTMMT
∥∥
2

=
∥∥pMT

∥∥
2
= ‖[〈p,Bℓ〉]‖2 ≤

√
|U |max

ℓ∈L
|〈p,Bℓ〉|

= O(
√
kη/d)‖p‖ℓ2

= O(
√
kη/d)‖a‖1 max

ℓ∈L
‖Bℓ‖ℓ2

= O(
√
kη/d)O(

√
k)‖a‖2 (R/

√
d)

= O(kηR/d3/2)‖a‖2 ,

where the second line follows from (1) and the fourth line uses Claim 23 to get that

‖Bi,j‖ℓ2 = (1/
√
d)‖qi‖ℓ2 ‖pi,j‖ℓ2 = (1/

√
d)‖x(i)‖2 ≤ R/

√
d .

Since there is at least a |U |−k ≥ |U |/2 dimensional subspace of such a’s, it follows that MMT has at least

|U |/2 many eigenvalues of size at most O(kRη/d3/2).
Since the determinant is the product of the eigenvalues, it follows that

det(MMT ) ≤
(
λmax O

(
kRη/d3/2

))|U |/2
, (3)

where λmax is the largest eigenvalue of MMT . Combining (2) and (3), we obtain that the largest eigenvalue

of MMT is at least λmax = Ω
(
γ4/(kRηd1/2)

)
. On the other hand, the eigenvalues of MMT can be

bounded from above as follows:

vT (MMT )v = ‖vTM‖2ℓ2 =

∥∥∥∥
∑
ℓ∈L

vℓBℓ

∥∥∥∥
2

2

≤ ‖v‖21 max
ℓ∈L

‖Bℓ‖22 ≤ O(kR2/d)‖v‖22 ,

which implies that γ = O(η1/4k1/2R3/4d−1/8). This gives the desired contradiction, completing the proof

of Lemma 22.

By Lemma 22, all points z = (x, y) in S, with x ∈ Rm′

and y ∈ Rm−m′

, whose x-coordinates

are within ℓ2-distance ǫ′ of a (k′, η)-bad point c ∈ Cǫ′ have their x-coordinates within ℓ2-distance ǫ′ +
O(η1/4k1/2R3/4d−1/8) from some specific origin-centered hyperplane H of dimension at most 2k/k′.
Therefore, all such points z ∈ S are within ℓ2-distance ǫ′+O(η1/4k1/2R3/4d−1/8) from the origin-centered

hyperplane H ′ = H × Rm−m′

of dimension at most m − m′ + 2k/k′. Any such point z can be written

as (zH′ , zp), where zH′ is the orthogonal projection onto H ′ and zp is the orthogonal complement, where

‖zp‖2 ≤ ǫ′ +O(η1/4k1/2R3/4d−1/8).
Let VH be the subspace of m-variable homogeneous polynomials in V that depend only in the coordi-

nates of zH′ , i.e., for each p ∈ VH we have that p(zH′ , zp) = p(zH′).
By Fact 9, VH has codimension at most k in the space of all degree-d homogeneous polynomials in

these variables. Let

SH′

def
=
{
z ∈ R

m : ‖z‖2 ≤ R, z ∈ H ′, and |p(z)| ≤ δ‖p‖ℓ2 for all p ∈ VH

}
.

Note that for all z ∈ S we have zH ∈ SH . We can apply our inductive hypothesis to obtain a small cover of

SH′ . To do so, we need to perform a change of variables to associate H ′ = H×Rm−m′

with Rm−m′+dim(H).

This does not affect our bounds because the defined ℓ2-norm on homogeneous polynomials is rotationally

invariant. Therefore, there is an (ǫ− ǫ′ −O(η1/4k1/2R3/4d−1/8))cover of SH of size

f
(
R, d, ǫ− ǫ′ −O(η1/4k1/2R3/4d−1/8), δ, k,m −m′ + 2(k/k′)

)
.
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Using the points of this cover as centers gives us an appropriate ǫ-cover for the set of points z = (x, y)
in S with x-coordinate within distance ǫ′ of any (k′, η)-bad point c ∈ Cǫ′ . This completes the proof of

Proposition 17.

We are now ready to give the proof of Theorem 15.

Proof of Theorem 15. We proceed by induction and a careful application of Proposition 17.

We start by noting that f(R, d, ǫ, δ, k,m) is bounded from above O(R/ǫ)m, i.e., the size of an ǫ-cover

of Bm(0, R). We will use this trivial upper bound when the dimension m is sufficiently small.

The proof will proceed by induction on d+m. We will prove the following inductive hypothesis: There

exists a (sufficiently large) universal constant C > 0 such that if 0 < ǫ ≤ R and

δ ≤ ǫd ((ǫ/R)/(2kdm))Cd , (4)

we have that f(R, d, ǫ, δ, k,m) ≤ (2(R/ǫ)dkm)C
2d2k1/d .

The trivial upper bound of O(R/ǫ)m on the cover size already implies our inductive hypothesis when

m ≤ Cd2k1/d.

When d = 1, a codimension k subspace of linear functions in V defines a dimension at most k subspace

U ⊆ Rm, where V is the set of linear functions vanishing on U . We claim that all points of S must be within

ℓ2-distance δ ≤ ǫ/2 of U . This is because for any x, there exists a unit vector v perpendicular to U so that

v ·x is the distance from x to U . However, this means that p(x) = x ·v vanishes on U , so p ∈ V . Therefore,

since ‖p‖ℓ2 = ‖v‖2 = 1, we have that the distance from x to U is |v · x| ≤ δ‖p‖ℓ2 ≤ δ.
Therefore, there is a k-dimensional subspace U so that all points of S are within ǫ/2 of U . Note that

Bm(0, R) ∩ U has an ǫ/2-cover of size O(R/ǫ)k, which gives an ǫ-cover of S of the appropriate size.

For the induction step, we will use the maximum allowable value of δ, i.e., the RHS of (4) (noting that

increasing the value of δ only makes the claim in question stronger), and we will apply Proposition 17 with

the following parameters:

ǫ′
def
= δ/((2R)d−1d), k′

def
= ⌊k1−1/d⌋, m′ def= ⌈3k/k′⌉, η

def
= ǫ (ǫ/R)4/poly(C, d, k,m) , (5)

for an appropriately large polynomial function poly(C, d, k,m). Since m > Cd2k1/d, the definition of m′

above implies that m′ < m. Also, we clearly have that k′ < k.

For Proposition 17 to be applicable, we also need that ǫ− ǫ′ ≫ k1/2η1/4R3/4d−1/8. To see this, we first

note that, by the definition of ǫ′ and δ, we get

ǫ′ ≤ δ/(2R)d−1 ≤
(
ǫ/(2kdm)C

)d
/(2R)d−1 ≤ ǫ/(2kdm)Cd . (6)

Moreover, we have that

k1/2η1/4R3/4d−1/8 ≤ k1/2η1/4R3/4 = k1/2ǫ(ǫ/R)1/4/poly(C, d, k,m) ≤ ǫ/poly(C, d, k,m) , (7)

where we used that ǫ ≤ R and that the polynomial function in the denominator of η is of sufficiently large

constant degree. By choosing C to be a sufficiently large universal constant and the denominator of η to be

sufficiently large, the above implies that ǫ− ǫ′ ≫ k1/2η1/4R3/4d−1/8, as desired.

Since the conditions of Proposition 17 are satisfied, we have that f(R, d, ǫ, δ, k,m) is at most the sum

of

f(R, d, ǫ′, δ, k,m′)f(R, d− 1, ǫ− ǫ′, (δ + d(2R)d−1ǫ′)/η, k′,m−m′) (8)

and

f(R, d, ǫ− ǫ′ −O(k1/2η1/4R3/4d−1/8), δ, k,m −m′ + 2(k/k′)) . (9)
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We start by analyzing (8). By the definition of m′ and ǫ′, our trivial upper bound on the cover size gives

f(R, d, ǫ′, δ, k,m′) = O(R/ǫ′)m
′

= (2(R/ǫ)kdm)O(Cdm′) ≤ (2(R/ǫ)kdm)C
2dk1/d , (10)

where the second equation uses the definition of ǫ′ and the last inequality follows from the definition of m′

assuming that C is sufficiently large.

We consider the parameters of the recursive call f(R, d − 1, ǫ − ǫ′, (δ + d(2R)d−1ǫ′)/η, k′,m −m′),
i.e., the second term in (8). To be able to apply the inductive hypothesis for this term, we need to show that

it satisfies the version of (4) for the corresponding parameters, i.e., that

(δ + d(2R)d−1ǫ′)/η ≤ (ǫ− ǫ′)d−1
(
((ǫ− ǫ′)/R)/(2k′(d− 1)(m −m′))

)C(d−1)
.

We will establish the above inequality as follows: By the definition of ǫ′, the LHS is equal to 2δ/η. To

bound the RHS, we make two simplifications. First, we observe that the RHS only decreases if we replace

k′ by k, d − 1 by d, and m −m′ by m. Second, we note that the RHS changes by a factor of at most 2 if

ǫ− ǫ′ is replaced by ǫ. Indeed, by (6), we have that ǫ− ǫ′ ≥ ǫ(1− 1/(2kdm)Cd) and the ratio between the

relevant quantities is (ǫ/(ǫ − ǫ′))(C+1)(d−1). Therefore, to show the desired inequality, it suffices to show

that

δ/η ≪ ǫd−1 ((ǫ/R)/(2kdm))C(d−1) .

By the definition of δ, the RHS above is equal to δ(2kdm/(ǫ/R))C/ǫ. Hence, the above is equivalent

to showing that ǫ/η ≪ (2kdm(R/ǫ))C . By the definition of η, we need that (R/ǫ4)poly(C, d, k,m) ≪
(2kdm(R/ǫ))C , which holds if C is a sufficiently large constant.

We now proceed to analyze the recursive call (9). To be able to apply the inductive hypothesis for this

term, we similarly need to show that

δ ≤ ǫ̃d
(
(ǫ̃/R)/(2kd(m −m′ + 2k/k′))

)Cd
,

where ǫ̃ := ǫ − ǫ′ − O(k1/2η1/4R3/4d−1/8). Note that m − m′ + 2k/k′ ≤ m − 1. By the definition of

δ, the desired inequality holds, as long as (ǫ/ǫ̃) ≤ (m/(m − 1))C/(C+1). By (6) and (7), we obtain that

ǫ̃ ≥ ǫ (1− 1/(2m)). Thus, it suffices to show that 1/(1− 1/(2m)) ≤ (m/(m− 1))C/(C+1). Recalling that

m ≥ 2, the latter inequality is easily seen to hold for a sufficiently large constant C > 0.

We can now apply the inductive hypothesis for both (8) and (9). Using the fact that (k′)1/(d−1) < k1/d

and ǫ− ǫ′ ≥ ǫ(1− 1/(2kdm)Cd), we obtain that the second terms of (8) can be bounded as follows

(
(R/(ǫ− ǫ′))2dk′(m−m′)

)C2(d−1)2k1/d
< ((R/ǫ)2dkm)C

2(d−1)2k1/d eC .

Using the upper bound from (10) on the first term of (8), we obtain that (8) is bounded from above by

(1/(2m))((R/ǫ)2kdm)C
2d2k1/d .

Moreover, we can bound (9) as follows:

((R/ǫ̃)2kd(m − 1))C
2d2k1/d ≤

(
(R/ǫ)2kd

4m

4m − 1
(m− 1)

)C2d2k1/d

≤
(
(R/ǫ)2kd

(
1− 1

2m

)
m

)C2d2k1/d

< (1− 1/(2m))((R/ǫ)2kdm)C
2d2k1/d ,

where we used that m −m′ + 2k/k′ ≤ m− 1 and ǫ̃ ≥ ǫ (1− 1/(4m)). Summing these two terms proves

our inductive step and completes the proof of Theorem 15.
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We note that Theorem 15 has poor dependence on m. This will not matter for our applications, which all

begin by reducing to the case m ≤ k. However, if one wants a better bound in general, there is a black-box

way to remove most of the dependence on m.

Proposition 24. If δ < ǫd/2, then f(R, d, ǫ, δ, k,m) ≤ f(R, d, ǫ/2, δ, k,O(k2(R/ǫ)2)) + 1.

Proof. Suppose that V is a codimension k subspace of R[d][x1, . . . , xm]. We claim that there is a low-

dimensional subspace H ⊆ Rm such that every point in S(V,R, δ) is ǫ/2-close to H .

To begin, we write V ⊥ = span({p1, . . . , pk}), where pi(x) = 〈Ai, x
⊗d〉 and the Ai’s are an orthonor-

mal set of symmetric tensors. In particular, by duality, V is the set of polynomials p(x) = 〈A, x⊗d〉, where

A is a symmetric tensor orthogonal to all of the Ai. If we let W = span({A1, . . . , Ak}), then for any

x ∈ Rm we can write x⊗d as xW + xV , where xW is the orthogonal projection onto W and xV the orthog-

onal complement. We note by the above that the polynomial p given by p(y) = 〈xV , y⊗d〉 is in V and that

|p(x)| = ‖xV ‖22 = ‖xV ‖2 ‖p‖ℓ2 . Therefore, if x ∈ S(V,R, δ), it must be the case that ‖xV ‖2 ≤ δ.

Therefore, if x ∈ S(V,R, δ), we can write

x⊗d =

k∑

i=1

ciAi + xV , (11)

where ci are real numbers with
∑k

i=1 c
2
i ≤ ‖x‖2d2 and ‖xV ‖2 ≤ δ. Now if y is a unit vector, taking the inner

product of y with each side (in one of the tensor directions) and taking the norms of each side, we find that

|x · y|‖x‖d−1
2 = ‖y · x⊗d‖2 ≤

k∑

i=1

ci‖y ·Ai‖2 + ‖y · xV ‖2 ≤
k∑

i=1

ci‖y ·Ai‖2 + δ.

Equivalently, if ‖x‖2 ≥ ǫ, we have that

|x · y| ≤
k∑

i=1

(ci/‖x‖d−1
2 )‖y ·Ai‖2 + δ/‖x‖d−1

2 ≤
√
kRmax

i
‖y · Ai‖2 + δ/ǫd−1 ,

where we used the fact that
∑k

i=1(ci/‖x‖d−1
2 )2 ≤ ‖x‖22, and thus

∑k
i=1(ci/‖x‖d−1

2 ) ≤
√
k‖x‖2.

Each Ai can be thought of as a linear transformation mapping vectors to rank d − 1-tensors. As such,

its Frobenius norm is ‖Ai‖2 = 1. Therefore, each Ai has at most O(k(R/ǫ)2) singular vectors of singular

value at least ǫ/(4
√
kR). Let H ⊆ Rm be the space of dimension O(k2(R/ǫ)2) spanned by these singular

vectors for all i. Now if y is perpendicular to H , then plugging into the above, for x ∈ S(V,R, δ), we have

that

|x · y| ≤
√
kRmax

i
‖y · Ai‖2 + δ/Rd−1 ≤ ǫ/2 .

This means that any x ∈ S(V,R, δ) is either in Bm(0, ǫ) (which can be covered by a single ball) or within

Euclidean distance ǫ/2 of H .

Therefore, to get an ǫ-cover of S(V,R, δ), it suffices to get an ǫ/2-cover of the projection onto H . If

we let VH be the subspace of V consisting only of polynomials p(x) = p(πH(x)) that depend only on

the projection onto H , by Fact 9, VH is of codimension at most k in the space of all such polynomials.

Therefore, we can find such a cover of size at most f(R, d, ǫ/2, δ, k,O(k2(R/ǫ)2)).

3.2 Algorithmic Version of Theorem 15

In this subsection, we show:
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Theorem 25. In the context of Theorem 15, given a basis for the vector space V , there is an algorithm to

compute an ǫ-cover of S with size at most M = (2(R/ǫ)dkm)C
2d2k1/d that runs in poly(M) time.

Proof. The proof of Theorem 15 presented in the previous section can be made algorithmic in a straight-

forward manner. First, note that the base cases of the induction described above are easy to implement

algorithmically. A random set of size O(R/ǫ)m can easily be seen to cover Bm(0, R), and thus S, with high

probability. When d = 1, it is easy to compute the subspace U of points on which V vanishes. Then, as

described in the proof of Theorem 15, a cover on U ∩Bm(0, R) suffices.

Otherwise, we can set ǫ′, k′,m′, η as in the inductive step given in the proof of Theorem 15, and we

will need to make algorithmic a version of Proposition 17. For this, we partition the coordinates as x and

y as described in the proof. We compute Vx and compute a cover Cǫ′ of Sx of size O(R/ǫ′)m
′

. Next we

can compute W using linear algebra to compute the intersection of V with polynomials homogeneous of

degree-1 in the x-coordinates and homogeneous of degree d−1 in the y-coordinates. Then for each c ∈ Cǫ′ ,
we can compute Ac and determine whether or not it is (k′, η)-good.

For the points that are (k′, η)-good, we compute Vc as the span of the left eigenvectors of Ac with

the largest eigenvalues. We then compute an (ǫ − ǫ′)-cover of S′
y,c, which we can find recursively of size

((R/(ǫ − ǫ′))2k′(d− 1)m)C
2(d−1)2k′1/(d−1)

. This cover will give us a cover of (Bm′(c, ǫ′)× Rm−m′

) ∩ S,

as described in the proof of Proposition 17. Doing this for all good c ∈ Cǫ′ , gives a set of size at most

(1− 1/(2m))((R/ǫ)2dkm)C
2d2k1/d ,

as described in our proof.

We now just need a cover of the points whose x-coordinates are within ǫ′ of a bad point of Cǫ′ . We note

that we can produce a hyperplane H that nearly passes through all of these points inductively. In particular,

we begin with H = 0 and while there is a bad point c ∈ Cǫ′ not within distance γ (a sufficiently large

multiple of η1/4k1/2R3/4d−1/8) of H , we let H be H+ 〈c〉. We note that by the proof of Lemma 22, H will

have dimension at most 2k/k′.
Next, letting H ′ = H+Rm−m′

, we note that all of the points with x-coordinates close to a bad point are

γ-close to H ′. By linear algebra, we can compute VH′ the subspace of the set of polynomials in V that do

not depend on the coordinates orthogonal to H ′. By applying our algorithm recursively to these polynomials

on H ′, we produce a cover of size at most (1/2m)((R/ǫ)2kd)C
2d2k1/d . Combining this with the cover for

points whose x-coordinate is close to a good point, this gives us a full cover of S of appropriate size.

It is not hard to verify that the runtime of this algorithm is within polynomial factors of the upper bound

provided on the final cover size, completing the proof.
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4 Overall Strategy for Learning Applications

In Section 4.1, we explain how and under what conditions one can use Theorem 25 to obtain an ǫ-cover for

the set of parameters in a given learning application. Section 4.2 presents a template for all our applications

that we will follow in the subsequent sections.

4.1 From Covers of Near-Zero Sets of Polynomials to Covers of the Parameters

The overall strategy of our algorithmic applications is as follows. We have an underlying learning problem

that is defined by a collection of k vectors vi ∈ Rm and corresponding non-negative weights wi ≥ 0,

i ∈ [k]. We assume that we have an efficient method for computing the weighted low-degree moments of

the vi’s. That is, we assume that we can efficiently obtain a sufficiently good approximation to the tensors∑k
i=1wiv

⊗2d
i , or equivalently that we can approximate

∑k
i=1wip(vi) for any monomial p of degree 2d.

By linearity, this allows us to approximate
∑k

i=1 wip(vi) to small error for any degree-2d homogeneous

polynomial p.

Let p : Rm → R be a real degree-d homogeneous polynomial. We consider the quadratic form Q :
R[d][x1, . . . , xm] → R defined by letting Q(p) be our aforementioned approximation to

∑k
i=1 wip

2(vi).
Note that Q has the following crucial property: If p vanishes on all of the vi’s, then Q(p) nearly vanishes.

This property allows us to efficiently compute a subspace V of R[d][x], so that for every p ∈ V we will

have that |p(vi)| is very small for all i ∈ [k] such that the corresponding weight wi is not negligibly small.

It is not hard to see that V will have small codimension, so using Theorem 25, we can efficiently compute a

small cover for the set of possible values for such vi’s.

In particular, we show:

Proposition 26. Let m,k ∈ Z+, R > 0, vi ∈ Rm and wi ∈ R+, for all i ∈ [k]. There is an algorithm that

takes as input R, k,m, parameters δ, ǫ > 0 with δ ≤ ǫ2d((ǫ/R)/(2kmd))2Cd for C > 0 a sufficiently large

constant, and a tensor T : Rd → R such that ‖T−∑k
i=1wiv

⊗2d
i ‖2 ≤ δ, runs in time (2(R/ǫ)kmd)O(d2k1/d),

and outputs a set C ⊂ Rm of cardinality at most (2(R/ǫ)kmd)O(d2k1/d), satisfying the following property:

For any i ∈ [k] with wi ≥ ((ǫ/R)/(2kmd))Cd and ‖vi‖2 ≤ R, there is a c ∈ C with ‖vi − c‖2 ≤ ǫ.

Proof. The algorithm is described below:

1. Define the quadratic form Q : R[d][x] → R, where Q(p) is defined as follows: We can write p2(x) =
Ap(x, x, . . . , x), for some uniquely defined rank-2d symmetric tensor Ap. We define Q(p) = 〈Ap, T 〉.

2. Let V ⊆ R[d][x] be the subspace spanned by all but the top-k eigenvectors of Q (with respect to our

‖ · ‖ℓ2 norm on polynomials).

3. Run the algorithm from Theorem 25 on input V, ǫ, k,m, δ,R to obtain the set C.

To show that this algorithm works, we first note that Q is in fact a quadratic form, as the Ap are quadratic in

p. In fact, if p(x) = Bp(x, x, . . . , x), for a symmetric tensor Bp of rank s, then Ap is the symmetrization of

Bp ⊗ Bp. It then follows from the Cauchy-Schwartz inequality that ‖Ap‖2 ≤ ‖Bp‖22 = ‖p‖2ℓ2 . Therefore,
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we have that

Q(p) = 〈T,Ap〉

=

〈
k∑

i=1

wiv
⊗t
i , Ap

〉
+

〈
T −

k∑

i=1

wiv
⊗2d
i , Ap

〉

=

k∑

i=1

wip
2(vi) +O

(∥∥∥∥∥T −
k∑

i=1

wiv
⊗2d
i

∥∥∥∥∥
2

‖Ap‖2

)

=
k∑

i=1

wip
2(vi) +O

(
δ‖p‖2ℓ2

)
.

Therefore, Q(p) is indeed a good approximation to the quadratic form p →∑k
i=1wip

2(vi), as desired.

We next show that Q has many small eigenvalues. In particular, let U be the space of polynomials

p ∈ R[d](x) so that p(vi) = 0 for all i ∈ [k]. Note that U is the kernel of the map E : R[d](x) → Rk given

by E(p) = (p(v1), . . . , p(vk)). Therefore, U has co-dimension at most k in R[d][x]. On the other hand, for

p ∈ U , we have that
∑k

i=1 wip
2(vi) = 0, and therefore |Q(p)| = O(δ‖p‖2ℓ2). Thus, the (k + 1)st largest

eigenvalue of Q is at most O(δ‖p‖2ℓ2). In particular, this implies that V is spanned by eigenvalues of at most

this size. Therefore, for all p ∈ V , we have that

k∑

i=1

wip
2(vi) +O(δ‖p‖2ℓ2) = Q(p) = O(δ‖p‖2ℓ2) .

That is, for p ∈ V , we have that
k∑

i=1

wip
2(vi) = O(δ‖p‖2ℓ2) .

In particular, this means that for all p ∈ V and all wi ≥ ((ǫ/R)/(2kmd))Cd , we have that

|p(vi)| = O
(
ǫd((ǫ/R)/(2kmd))Cd/2‖p‖ℓ2

)
.

This implies that vi satisfies the condition for being in the set S in Theorem 15, and therefore there exists

c ∈ C so that ‖vi − c‖2 ≤ ǫ.

This cover will prove useful to us, however, the requirement that we learn these m-dimensional tensors

for potentially large values of m is suboptimal. We show by a similar technique that we can often reduce

the problem to an at most k-dimensional one.

Proposition 27. Let vi, wi, k,m, T, δ,R be as in Proposition 26 with d = 1 and w > 0. There is an

algorithm that, given this input, computes a subspace U of dimension at most k so that, for all wi ≥ w, we

have that vi is within ℓ2-distance O((δ/w)1/2) of U . Furthermore, this algorithm runs in polynomial time.

Proof. The algorithm is as follows:

1. Compute Q and V as in Proposition 26.

2. Let U be the set of points x ∈ Rm so that p(x) = 0 for all polynomials p in V .
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To show correctness, it is not hard to see that, since V has co-dimension at most k, U will have dimension

at most k. In particular, if p1, . . . , pm−k is a basis for V , U is the subspace defined by these m − k linear

constraints, and so will have dimension k.

On the other hand, suppose that we have an i ∈ [k] with wi ≥ w. We note that there is a unit vector ui
orthogonal to U so that the ℓ2-distance from vi to U is ui · vi. Let p(x) be the polynomial p(x) = x · ui.
Since p vanishes on U , it must be in V . This means that the ℓ2-distance from vi to U is

|ui · vi| = |p(vi)| = O((δ/w)1/2‖p‖ℓ2) = O((δ/w)1/2) ,

as desired.

A common application of this technique is where we are learning a high-dimensional distribution D
that is given as a mixture D =

∑k
i=1 wiθ(vi), where θ is some family of distributions parameterized by the

vectors vi. Proposition 26 will allow us to get a large list of hypotheses that will include approximations to

all of the large components in this mixture. It will usually be the case therefore, that we can approximate D
by another distribution D′ =

∑k
i=1 w

′
iθ(ci), where the ci’s are in our cover. In particular, if ‖v − c‖2 ≤ ǫ

implies that dTV(θ(v), θ(c)) < η, then by replacing vi by the closest ci and letting wi = w′
i, it is not hard

to see that dTV(D,D′) ≤ η + k((ǫ/R)/(2kmd))Cd , as the L1-distance between wiθ(vi) and wiθ(ci) will

always be at most min(((ǫ/R)/(2kmd))Cd , wiη).
This shows that D can be approximated by a mixture of the distributions θ(ci). It turns out that we can

always find such a distribution efficiently:

Proposition 28. Let p1, . . . , pn be explicit probability distributions and let X be a probability distribution

such that, for some w1, . . . , wn, we have dTV(X,
∑n

i=1wipi) ≤ ǫ. Then there exists a poly(n/ǫ)-time

algorithm that given p1, . . . , pn and N > n/ǫ2 samples from X, returns a distribution p such that with

probability at least 2/3, we have that dTV(X, p) = O(
√

ǫ log(n/ǫ)).

Proof. Let ∆ be the set of distributions of the form
∑n

i=1 wipi, where wi ≥ ǫ/n for all i and
∑n

i=1wi = 1.

Note that ∆ is a convex set and that there exists a p∗ ∈ ∆ with dTV(p
∗,X) ≤ 2ǫ. For a distribution p,

let L(p, x) = log(p(x)). We note that L(p) := E[L(p,X)] = D(X||p) + H(X), where D(X||p) is the

KL-divergence. Our strategy will be to find a p ∈ ∆ that is an empirical minimizer of L(p).
In particular, given our N samples x1, . . . , xN and a distribution p, we define

L̂(p) =
1

N

N∑

i=1

L(p, xi) .

We claim that with high probability over our samples, for every pair p, q ∈ ∆ it holds L̂(p) − L̂(q) =
L(p) − L(q) + O(ǫ log(n/ǫ)). To see this, we note that L(p) − L(q) = E[log(p(X)/q(X))]. Since p
and q are both in ∆ and are mixtures of the pi with mixing weights at least ǫ/n, it is easy to see that

ǫ/n ≤ p(x)/q(x) ≤ n/ǫ. From this, we find that

L(p)− L(q) = log(n/ǫ) +

∫ log(n/ǫ)

− log(n/ǫ)
Pr(log(p(x)/q(x)) > t)dt .

Similarly, we have

L̂(p)− L̂(q) = log(n/ǫ) +

∫ log(n/ǫ)

− log(n/ǫ)

#{xi : log(p(xi)/q(xi)) > t}
N

dt .
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It thus suffices to show that, with high probability over our samples, for all p, q ∈ ∆ and t ∈ R, it holds that
∣∣∣∣Pr[log(p(x)/q(x)) > t]− #{xi : log(p(xi)/q(xi)) > t}

N

∣∣∣∣ = O(ǫ) .

Note that log(p(x)/q(x)) > t is equivalent to etp(x)− q(x) > 0. Since p and q are linear combinations of

the pi’s, this in turn is equivalent to saying that
∑n

i=1 aipi(x) > 0, for some specific constants ai. However,

the class of sets defined by this equation, for some numbers ai, has VC-dimension n (as it is just the set of

halfspaces in n dimensions, after embedding x into Rn as (p1(x), . . . , pn(x)). Therefore, our result holds

by the VC-Inequality (Theorem 66).

Our algorithm uses convex optimization to find a p∗ such that L̂(p∗) is within O(ǫ log(1/ǫ)) of the global

maximum over all p ∈ ∆. By the above, this must be a maximizer of L(p∗) up to O(ǫ log(n/ǫ)). Next, we

note that for p, q ∈ ∆, since log(p(x)/q(x)) is bounded, if dTV(X,Y ) = O(ǫ) then E[log(p(X)/q(X))]
and E[log(p(Y )/q(Y ))] differ by O(ǫ log(n/ǫ)). Taking p ∈ ∆ with dTV(X, p) = O(ǫ), we apply the

above with Y = p and q = p∗. This says that

L(p)− L(p∗) = D(p||p∗) +O(ǫ log(n/ǫ)) .

Since p∗ is a near maximizer of L, the left hand size above is at most O(ǫ log(n/ǫ)). This in turn implies

that D(p||p∗) = O(ǫ log(n/ǫ)) and, by Pinsker’s inequality (Fact 64) that dTV(p, p
∗) = O(

√
ǫ log(n/ǫ)).

Our final result now follows from the triangle inequality.

4.2 Template Approach for Learning Applications

In this section, we describe at a high-level how the preceding theorems are used to make our applications

work.

4.2.1 Setup

First, we need to define our problem in the context described. In particular, we have access to an object

parameterized by k vectors vi and k non-negative weights wi.

4.2.2 Moment Computation

Critically, we need a way to compute approximations of the moments
∑k

i=1wiv
⊗2d
i . For this, it suffices

for every degree-2d monomial p(x) to be able to approximate
∑k

i=1wip(vi) to error δ/md. This is usually

done by finding some polynomial function P of our samples that is an unbiased estimator of
∑k

i=1wip(vi)
and computing an empirical mean.

4.2.3 (Optional) Rough Clustering

One issue with this technique is that our requirements on error are often dependent on the upper bound R
we have on the ℓ2-norm of the vi’s. As having large vi will usually also make our sample complexity to

approximate moments higher as well, it is often important to reduce to the case where R is relatively small.

This can often be done by performing some kind of rough clustering of samples to split our problem into

components whose vi all lie in a relatively small ball.

4.2.4 (Optional) Dimension Reduction

We will often want to use Proposition 27 to reduce to the case where the underlying problem is k-dimensional.

This is because the m-dimensional version of the problem will often incur runtime and sample complexity

proportional to md.
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4.2.5 Covering

Next we compute the weighted moments of the vi’s and use Proposition 26 to efficiently find an appropriate

cover.

4.2.6 From Covers to Learning

Finally, we use this cover to learn. For density estimation, this entails some sort of algorithm with time

polynomial in the cover size, analogous to Proposition 28. For parameter estimation, we need to employ

additional problem-specific algorithmic ideas.

5 Mixtures of Spherical Gaussians

5.1 Setup

Definition 29 (Mixtures of Spherical Gaussians). An m-dimensional k-mixture of spherical Gaussians

(spherical k-GMM) is a distribution on Rm with density function F (x) =
∑k

j=1wjN(µj, I), where

µj ∈ Rm, wj ≥ 0, for all j ∈ [k], and
∑k

j=1wj = 1.

We study both density estimation and parameter estimation. In density estimation, we want to output a

hypothesis distribution with total variation distance at most ǫ from the target. In parameter estimation, we

assume that the means of the components are sufficiently separated, and the goal is to recover the unknown

mixing weights and mean vectors to small error ǫ. Specifically, we would like to return a list {(w̃j , µ̃j), j ∈
[k]} such that for some permutation π ∈ Sk, |wj − w̃π(j)| ≤ ǫ, and ‖µj − µ̃π(j)‖2 ≤ ǫ, for all j ∈ [k].

For density estimation, we prove:

Theorem 30 (Density Estimation for Spherical k-GMMs). There is an algorithm that on input d ∈ Z+,

ǫ > 0, and N = Õ(m2)poly(k/ǫ)+ (k/ǫ)O(d2k1/d) samples from an unknown spherical k-GMM F on Rm,

the algorithm runs in time poly(mk/ǫ) + (2kd/ǫ)O(d2k1/d) and outputs a hypothesis distribution H such

that with high probability dTV(H,F ) ≤ ǫ.

For parameter estimation, we prove:

Theorem 31 (Parameter Estimation for Spherical k-GMMs). There is an algorithm that on input d ∈ Z+,

ǫ > 0, and sample access to an unknown spherical k-GMM F on Rm with minimum weight pmin and

pairwise mean separation at least a sufficiently large multiple of
√
log(1/pmin), the algorithm draws N =

poly(m/(ǫpmin)) + kO(d) samples from F , runs in time poly(N) + kO(d2k1/d), and with high probability

outputs an ǫ-approximation to the unknown mean vectors and weights.

5.2 Rough Clustering

In this subsection, we show that we can efficiently pre-process our problem to reduce to the case that all the

component means have appropriately bounded ℓ2-norm. In particular, we show the following:

Lemma 32. Let N be a positive integer and X be a k-mixture of spherical Gaussians in Rm. There exists

an algorithm that, given Ck2N independent samples from X, for a sufficiently large constant C > 0, runs

in time poly(N,m, k) and computes at most k centers Ci ∈ Rm such that the following holds: With high

constant probability, to each mixing component with weight wi ≥ 1/(kN) there will be an associated center

Ci with ‖Ci−µi‖2 = O(k(
√
m+log(Nk/ǫ))). Moreover, there is in efficient algorithm that given a sample

from X, with probability at least 1− 1/N returns the center associated with the component that the sample

was drawn from.
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The idea of this lemma is to help us reduce to the case where all of our means are in a ball of bounded

radius. In particular, if we take our N samples from X, there is a decent probability that every sample is

correctly assigned to its component’s center. If so, replacing these samples x by x−Ci will give us N i.i.d.

samples from X ′ :=
∑k

i=1wiN(µi−Ci, I), a k-mixture of spherical Gaussians whose means are all within

ℓ2-distance O(k(
√
m+ log(Nk/ǫ))) of the origin.

Proof. The basic idea here is that all of the samples from a given Gaussian component on Rm will be within

ℓ2-distance about O(
√
m) of each other. If we cluster together close points, we can try to identify the

components. This will not work directly, since we may have pairs of components that are close to each other

and whose samples will lie within O(
√
m) of each other. However, no chain of such close samples will get

us more than O(k
√
m) away. This allows us to cluster together points whose means are within ℓ2-distance

about O(k
√
m) of each other.

More formally, we note that, for any η > 0, a random sample x ∼ N(µ, I) satisfies ‖x − µ‖2 ≤
2(
√
m + log(1/η)) with probability 1 − η. Therefore, if we take 1/η iid samples, with high probability it

will hold that

• Every sample taken is within ℓ2-distance 2(
√
m+ log(1/η)) of some µi.

• For each component i with wi ≥ kη, we will have at least one sample within ℓ2-distance 2(
√
m +

log(1/η)) from the corresponding mean vector µi.

If both of these conditions hold, we can perform a rough clustering on the points. In particular, we declare

two points to be “close” if their Euclidean distance is at most 10(
√
m + log(1/η)), and declare them to be

in the same cluster if they are connected by some chain of close points. We note that since any two points

from the same component of our mixture are close with high probability, these chains need not be longer

than O(k) in length. So, each cluster of points has diameter O(k(
√
m + log(1/η))). For each cluster, we

pick a center Ci.

We then note that a random sample x drawn from our mixture X =
∑k

i=1 wiN(µi, I) satisfies the

following conditions with probability at least 1− k2η:

1. x comes from a component N(µi, I) with ‖µi−Cj‖2 = O(k(
√
m+log(1/η))), for some center Cj .

2. For the Cj chosen above, x is within ℓ2-distance 4(
√
m+ log(1/η)) of some point of that cluster, but

not within this distance of any point of any other cluster.

The first claim will hold if at least one of the original samples x0 drawn to produce the clusters is within

ℓ2-distance 2(
√
m + log(1/η)) of µi. The second claim above holds because, with high probability, x is

within ℓ2-distance 2(
√
m+ log(1/η)) of µi. This means that it is within ℓ2-distance 4(

√
m+ log(1/η)) of

x0. If so, it cannot be this close to an x1 from another cluster, since then, by the triangle inequality, x0 and

x1 will be close, and thus in the same cluster.

This means that if we draw an independent set of N = o(1/(k2η)) additional points from X, we can

associate them to clusters so that with high probability the following holds:

• All of the samples from the same component of X end up in the same cluster.

• All of the components whose samples are associated with a given cluster have means that are within

ℓ2-distance O(k(
√
m+ log(1/η))) of the mean of that cluster.

This completes our proof.
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5.3 Moment Computation

The following lemma shows that we can efficiently approximate any entry of the tensor
∑k

i=1wiµ
⊗2d
i to

small error:

Lemma 33. Suppose that we have sample access to X =
∑k

i=1 wiN(µi, I), where ‖µi‖2 ≤ R, for all i ∈
[k], for a parameter R > 0. There is an algorithm that, given δ > 0, d ∈ Z+, and a multi-index i ∈ [m]2d,

draws (Rmd)O(d)/δ2 samples from X, runs in sample-polynomial time, and outputs an approximation Ti

of (
∑k

i=1wiµ
⊗2d
i )i with expected squared error O(δ2).

Proof. Let Hen(t), t ∈ R, n ∈ Z+, denote the probabilist’s Hermite polynomial. We will show the

following claim:

Claim 34. For any α ∈ Nm we have that:

k∑

i=1

wiµi
a = E




m∏

j=1

Heaj (Xj)


 , (12)

where µi ∈ Rm, i ∈ [k], are the component means of X =
∑k

i=1wiN(µi, I).

Proof. Note that if G = N(0, 1) and µ ∈ R, we can write

E[Hen(G+ µ)] = E

[
n∑

i=0

(
∂

∂x

)i

Hen(G)/i!µi

]

= E

[
n∑

i=0

Hen−i(G)
(n)(n − 1) · · · (n− i+ 1)µi

i!

]
= µn ,

where the first line above is by Taylor expanding Hen about G. Next suppose that X = N(µ̃, I) for some

vector µ̃ = (µ̃1, . . . , µ̃m) ∈ Rm. For a = (a1, . . . , am) ∈ Zm
+ , we have that

E

[
m∏

i=1

Heai(Xi)

]
=

m∏

i=1

E[Heai(Xi)] =

m∏

i=1

µ̃ai
i = µ̃a.

Finally, let X =
∑k

i=1 wiN(µi, I), where µi ∈ Rm, i ∈ [k]. By linearity we get that

k∑

i=1

wiµi
a = E




m∏

j=1

Heaj (Xj)


 ,

as desired. This completes the proof of Claim 34.

Given N independent samples from X =
∑k

i=1wiN(µi, I), we can use Claim 34 to approximate∑k
i=1wiµ

a
i by the empirical mean of

∏m
j=1Heaj (Xj). Recall our assumption that ‖µi‖2 ≤ R, i ∈ [k], for

some parameter R > 0.

To bound the sample complexity, it suffices to bound the variance of the term in the RHS of (12).

We note that Hea(t), t ∈ R, is a degree-a polynomial with sum of absolute values of coefficients at most

a!. So, if |a| = 2d,
∏m

j=1Heaj (Xj) will have degree at most 2d, and the sum of the absolute values of its

coefficients will be at most (2d)!. Therefore, its absolute value will be at most (1 + ‖X‖2d2 )(2d)!. Over any

component, we have that E[‖X‖22] = m+ ‖µ‖22 = O(R2+m). Therefore, by hypercontractivity, it follows

that E[‖X‖4d2 ] ≤ O((R4d +m2d))dO(d). Thus, the variance of
∏m

j=1Heaj (Xj) will be O(Rmd)O(d).
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This is because

Var




m∏

j=1

Heaj (Xj)


 ≤ E






m∏

j=1

Heaj (Xj)




2


≤ E

[
(1 + |X|2)4ddO(d)

]
≤ (1 +R4d +m2d)dO(d) = O(Rmd)O(d).

Recall that if ẐN is the empirical distribution obtained by taking N iid samples from the random variable

Z , then E[(ẐN −E[Z])2] = Var[Z]/N .

Therefore, with N = (Rmd)C
′d/δ2 samples from X, for C ′ a sufficiently large constant, we can

approximate
∑k

i=1 wiµi
a, for |a| = 2d, to expected L2

2-error δ2.

Using Lemma 33 to approximate each entry of
∑k

i=1 wiµ
⊗2d
i to appropriately high accuracy, we can

approximate the entire tensor
∑k

i=1wiµ
⊗2d
i within small ℓ2-error.

Corollary 35. By taking N > (Rmd)Cd/δ2 samples from X, for an appropriate constant C > 0, we can

efficiently compute a tensor T such that with high constant probability it holds ‖T −
∑k

i=1wiµ
⊗2d
i ‖22 ≤ δ2.

Proof. We take N = m2d(Rmd)C
′d/δ2 samples from X, and consider the tensor T = (Ti), i ∈ [m]2d, as

our approximation to
∑k

i=1 wiµ
⊗2d
i . By Lemma 33, we have that

E

[∥∥∥∥T −
k∑

i=1
wiµ

⊗2d
i

∥∥∥∥
2

2

]
≤ m2d(δ/md)2 = O(δ2) .

The corollary follows from Markov’s inequality.

5.4 Dimension Reduction

After reducing the radius, we can perform dimension reduction. Our dimension reduction procedure is

described in the following lemma.

Lemma 36. There exists an algorithm that given N = poly(km/ǫ) i.i.d. samples from X, for a sufficiently

large degree polynomial, runs in poly(N, k,m) time and computes a subspace H in Rm of dimension at

most 2k such that with large constant probability the following holds: For every i ∈ [k] with wi ≥ ǫ/k, we

have that µi is within ℓ2-distance ǫ of H .

We note that (perhaps after replacing ǫ by a slightly smaller quantity) in order to solve either the density

estimation or parameter estimation problems, it will suffice to solve the same problem after projecting X
onto the subspace H . For density estimation, we note that X is O(ǫ)-close in total variation distance to

XH =
∑k

i=1 wiN(πH(µi), I). Note that XH is just the product of πH(X) with a standard Gaussian in the

orthogonal directions. Thus, if we can learn πH(X) to error O(ǫ), we can also learn X to error O(ǫ).
For parameter estimation, we note that every center with non-trivial weight is ǫ-close, in ℓ2-distance,

to its projection on H . In particular, a parameter estimation algorithm applied to πH(X) will learn each

πH(µi) to error δ/wi. We note that if ǫ < δ, this will means that for wi < δ there is nothing to show, and for

wi > δ, we have that µi is at most ǫ distance away from πH(µi), introducing at most an additional δ-error

between µi and our approximation.

We now prove Lemma 36.
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Proof. We begin by applying Lemma 32 with N = (2km/ǫ)C , for C a sufficiently large constant. This gives

us a number of centers Ci. If we then take N additional samples and consider the differences between the

point and the associated center, this will give us i.i.d. samples from X ′ =
∑k

i=1wiN(µi−Ci, I), a mixture

of spherical Gaussians with means of ℓ2-norm at most O(k
√
m+ k log(k/ǫ)). Then applying Corollary 35,

we can use these samples to produce an estimation to
∑k

i=1 wi(µi − Ci)
⊗2 to error O(ǫ3/(Ck)). Finally,

applying Proposition 27, we can compute a subspace U of dimension at most k, such that for ever i with

wi ≥ ǫ/k, we have that µi −Ci is within ℓ2-distance ǫ of U . Letting H be the span of U and the Ci’s yields

our result.

5.5 Clustering and Cover

Now that we have reduced to k dimensions, we can (after reapplying rough clustering in order to reduce the

radius to poly(k)) more readily afford to compute higher moments. We can use this to compute a cover. We

note that we will usually apply this lemma after first projecting onto the subspace H found by Lemma 36,

and thus m will be O(k).

Lemma 37. Let X =
∑k

i=1 wiN(µi, I) be a mixture of Gaussians in Rm and let ǫ > 0. There exists

an algorithm that given N = (2kmd/ǫ)Θ(d) samples (with sufficiently large constant in the exponent)

computes a cover C of size at most (2kmd/ǫ)O(d2k1/d), such that with high probability for every i with

wi ≥ (ǫ/(dkm))Ω(d) , we have that there is a c ∈ C with ‖µi − c‖2 ≤ ǫ. Furthermore, this algorithm runs in

time at most (2kmd/ǫ)O(d2k1/d).

Proof. We begin by letting N ′ be a small multiple of N/k2. Running Lemma 32 with parameter N ′, gives

us a list of centers Ci so that every component with non-trivial mass is associated to some Ci, and so that we

can use our remaining N ′ samples to produce N ′ i.i.d. samples from X ′ =
∑k′

i=1 wiN(µi − Ci, I), where

the wi of mass less than 1/(kN ′) are excluded from the list. We note that this is a mixture of spherical

Gaussians with means of ℓ2-norm at most R = O(k(
√
m+ d log(kd/ǫ))). Using Corollary 35, N ′ samples

suffice to compute the 2d-th moment tensor of this mixture to error ǫ2d((R/ǫ)2kmd)2Cd, for the constant C
required by Proposition 26. Applying this proposition gives us a cover C0 of appropriate size, such that for

every i with wi ≥ ǫ/k, we have that there is some c ∈ C0 with ‖µi − Ci − c‖2 ≤ ǫ. Letting C be the set of

points of the form Ci + c, where Ci is a center and c ∈ C0, gives us an appropriate cover.

5.6 Density Estimation

Here we prove Theorem 30.

Proof. We begin by computing a hyperplane H as described in Lemma 36, and note as described that it

suffices to solve the problem on the mixture of Gaussians πH(X) in O(k) dimensions. We will assume

henceforth that m = O(k).

Using Lemma 37, we can compute an ǫ-cover C of size S = (k/ǫ)O(d2k1/d). We note that X is O(ǫ)-
close to a mixture of Gaussians with centers in C. This is because if each center is rounded to the nearest

element of C, the ones with wi ≤ ǫ/k contribute at most ǫ-error in total, while the ones with larger wi

contribute error O(ǫwi), which sums to O(ǫ). Applying Proposition 28 to the distributions N(c, I), with

c ∈ C, we can learn X to total variation error O(
√

ǫ log(S/ǫ)) in poly(S/ǫ) time. Reparametrizing and

replacing ǫ by a small enough multiple of ǫ2/(d2k1/d log(kd/ǫ)) yields our result.
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5.7 Parameter Estimation

Here we prove Theorem 31.

Proof. We assume that for all i 6= j, we have that ‖µi − µj‖2 ≥ 60
√

log(1/pmin).
We begin by producing a list of candidate means. Using Lemma 36, with poly(m/pmin) samples and

time, we can compute an O(k)-dimensional hyperplane H such that all of the µi’s for which wi ≥ pmin (i.e.,

all of them) are within distance 1/2 of H . Next, applying Lemma 37 to πH(X) =
∑k

i=1wiN(πH(µi), I),

we can use (2kd)O(d) samples and poly(S) time, with S = (2kd)O(d2k1/d)poly(1/pmin), to produce a set C
of size at most S so that for every i with wi ≥ pmin there is a c ∈ C so that ‖πH(µi)− c‖2 < 1/2, which by

the triangle inequality implies that ‖c− µi‖2 ≤ 1.

Once we have constructed our cover of the candidate means, we can use techniques from [DKS18]. We

begin by taking an additional set T of N = O(k3/p2min) samples. For each c ∈ C, we determine whether

there is a weight function u : T → R, such that

1. For each x ∈ T , ux ∈ [0, 1].

2. The sum
∑

x∈T ux ≥ pmin|T |/2.

3. For any other c′ in C, it holds

∑

x∈T :(x−c)·(c′−c)/‖c′−c‖2>2
√

log(1/pmin)

ux ≤ p2min|T |/10 .

We call c good if there is such a u. We note that it can be determined whether or not such a u exists by linear

programming in poly(S, |T |) time.

We note that if ‖c−µi‖2 < 1 for some i ∈ [k], then letting ux = 1, for x drawn from the ith component

and 0 otherwise, satisfies the above with high probability. Finally, we claim that there exists no set of more

than 4/pmin such c ∈ C that are pairwise separated by more than 4
√

log(1/pmin). Indeed, if we had such a

set c1, . . . , ct, then we can reach a contradiction by considering the total weight of all points under the cis’

weight functions. In particular, if uix is the weight function associated with ci, we have that:

|T | ≥
∑

x∈T
1

≥
t∑

i=1

∑

x∈T :argminj‖cj−x‖2=i

uix

≥
t∑

i=1

∑

x∈T :(x−ci)·(cj−ci)/‖cj−ci‖2<2
√

log(1/pmin) for all j 6=i

uix

≥
t∑

i=1



∑

x∈T
uix −

∑

j 6=i

∑

x∈T :(x−ci)·(cj−ci)/‖cj−ci‖2<2
√

log(1/pmin)

uix




≥
t∑

i=1

pmin|T |/2 − (t− 1)p2min|T |/10

≥ |T |(tpmin/2 − (tpmin)
2/10) .

This is a contradiction when t = ⌈4/pmin⌉.
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This means that if we take any maximal set of good elements of C that are pairwise separated by

4
√

log(1/pmin), this set has size at most (4/pmin). Call such a set C′. Note that every µi is within ℓ2-

distance 1 of a good element of C, which is within ℓ2-distance 4
√

log(1/pmin) of an element of C′.
Next take an additional m/pmin samples from X. To each sample associate the closest element of

C′. We claim that with high probability every sample coming from a component N(µi, I) is closest to an

element c ∈ C′ with ‖µi − c‖2 < 15
√

log(1/pmin). This holds for the following reason. Let c0, c1 ∈ C′ be

some elements with ‖c0 −µi‖2 ≤ 4
√

log(1/pmin) and ‖c1 −µi‖2 ≥ 15
√

log(1/pmin). We claim that with

probability at least 1− p4min a random sample from N(µi, I) is closer to c0 than to c1, and note that this will

prove our claim.

To show this, we let v be the unit vector in the direction of c1−c0. We note that x is closer to c1 than c0 if

and only if v·x is closer to v·c1 than to v·c0. However, with high probability, |v·x−v·µi| < 3
√

log(1/pmin).
On the other hand, |v · c0 − v · µi| < 4

√
log(1/pmin), but

|v · c1 − v · µi| ≥ |c1 − c0| − |v · c0 − v · µi| ≥ 11
√

log(1/pmin).

Thus, we have that |v · x− v · c0| ≤ 7
√

log(1/pmin), but |v · x− v · c1| ≥ 8
√

log(1/pmin).
Next consider two samples to be in the same cluster if and only if the associated elements of C′ are

within ℓ2-distance 30
√

log(1/pmin) of each other. If the condition above holds, any two samples from the

same component will lie in the same cluster. However, our separation assumption implies that samples from

different components will not. Thus, each cluster of samples consist of i.i.d. samples from that component.

With high probability, each component has at least k samples from it, so taking the sample mean will give

us an approximation to the mean of that cluster to error O(1). Using this approximation as warm start, we

can apply the algorithm of [RV17] to obtain an ǫ-approximation of each µi with poly(1/ǫ, 1/pmin) further

samples. This completes our proof.

6 Positive Linear Combinations of ReLUs

6.1 Setup

Definition 38 (One-hidden-layer ReLU networks). Let Cm,k denote the concept class of one-hidden-layer

ReLU networks on Rm with k hidden units. That is, F ∈ Cm,k if and only if there exist k unit vectors

wi ∈ Rm and non-negative coefficients ai ∈ R+, i ∈ [k], such that F (x) =
∑k

i=1 aiReLU(wi · x), where

ReLU(t) = max{0, t}, t ∈ R.

The PAC learning problem for the class Cm,k is the following: The input is a multiset of i.i.d. labeled

examples (x, y), where x ∼ N(0, I) and y = F (x) + ξ, for an unknown F ∈ Cm,k and ξ ∼ N(0, σ2),
where ξ is independent of x and σ ≥ 0 is known. We will call such an (x, y) a noisy sample from F .

The goal of the learner is to output a hypothesis H : Rm → R that with high probability is close to F

in L2-norm, i.e., satisfies ‖H − F‖22 ≤ ǫ2(‖F‖22 + σ2). (For a function F : Rm → R, we define ‖F‖2 def
=

Ex∼N(0,I)[F
2(x)]1/2.) The hypothesis H is allowed to lie in any efficiently representable hypothesis class

H. If H = Cm,k, the PAC learning algorithm is called proper.

The main result of this section is the following theorem:

Theorem 39 (PAC Learning for Cm,k). There is a PAC learning algorithm for Cm,k with respect to the

standard Gaussian distribution on Rm with the following performance guarantee: Given d ∈ Z+, ǫ > 0, and

access to noisy samples from an unknown target F ∈ Cm,k, the algorithm draws O(m2k2/ǫ6)+(2kd/ǫ)O(d)

samples, runs in time poly(mk/ǫ)+(2kd/ǫ)O(d2k1/d), and outputs a hypothesis H that with high probability

satisfies ‖H − F‖22 ≤ ǫ2(‖F‖22 + σ2).

We note that the function F (x) =
∑k

i=1 aiReLU(wi · x) satisfies Ex∼N(0,I)[F (x)] = (1/
√
2π)A, and

‖F‖2 = Θ(A), where A
def
=
∑k

i=1 ai. Moreover, we can assume w.l.o.g. that we know the value of ‖F‖2,
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as this can be computed to arbitrary precision using samples via a simple pre-processing. In particular, by

dividing all samples by some sufficiently accurate approximation to ‖F‖2 + σ, we can reduce to the case

where ‖F‖2 + σ = Θ(1), and we will assume that this holds throughout our analysis.

6.2 Moment Estimation

The following lemma shows that we can efficiently approximate any entry of the tensor
∑k

i=1 aiw
⊗2d
i to

small error:

Lemma 40. There is an algorithm that, given δ > 0, d ∈ Z+, and a multi-index i ∈ [m]2d, draws dO(d)/δ2

independent noisy samples from an unknown F (x) =
∑k

i=1 aiReLU(wi · x), runs in sample-polynomial

time, and outputs an approximation Ti of (
∑k

i=1 aiw
⊗2d
i )i with expected squared error O(δ2).

Proof. The proof proceeds by constructing an appropriate polynomial function that is an unbiased estimator

of
∑k

i=1 aiw
α
i , for any multi-index α ∈ Nm with |α| = 2d and using samples to approximate it.

We start with the following claim:

Claim 41. For any α ∈ Nm with |α| = 2d, we have that:

k∑

i=1

aiw
α
i = Cα Ex∼N(0,I),ξ∼N(0,σ2)

[
(F (x) + ξ)

(
m∏

i=1

hαi(xi)

)]
, (13)

where Cα > 0 is an explicit constant satisfying Cα = dO(d).

Proof. We will require the following basic facts about Hermite polynomials. Let hn(t) = Hen(t)/
√
n!,

t ∈ R, be the normalized probabilist’s Hermite polynomial. In particular, for G ∼ N(0, 1) we have

E[hn(G)hm(G)] = δn,m. It is easy to see that h′n(t) =
√
nhn−1(t).

Note that the second derivative of ReLU(t), t ∈ R, is δ0(t). By writing ReLU(t) =
∑∞

n=0 cnhn(t) and

taking the second derivative, we obtain

δ0(t) =
∞∑

n=0

hn(0)hn(t) =
∞∑

n=0

cn+2

√
(n + 2)(n + 1)hn(t) .

Equating terms, we find that

cn = hn(0)/
√

(n+ 1)(n + 2) =





(−1)n/2

2n/2(n/2)!
√

(n+1)(n+2)
, for n > 0 even

0 , for n > 1 odd .

It is also easy to check that c1 = 1/2 and c0 =
1√
2π

.

We next evaluate ReLU(w · x) for a unit vector w. By the rotation formula for Hermite polynomials,

we get that

ReLU(x · w) =
∞∑

n=0

cnhn(x · w) =
∑

α

c|α|w
α
√

|α|!/α!
(

m∏

i=1

hαi(xi) .

)

Therefore, for |α| = 2d, we have that

wα =
√
α!/(2d)!c−1

2d Ex∼N(0,I)

[
ReLU(x · w)

(
m∏

i=1

hαi(xi)

)]
.
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Extending this by linearity, we conclude that

k∑

i=1

aiw
α
i =

√
α!/(2d)!c−1

2d Ex∼N(0,I)

[
(F (x) +N(0, σ2))

(
m∏

i=1

hαi(xi)

)]
.

By the definition of c2d, we have that Cα :=
√
α!/(2d)!c−1

2d = dO(d), completing the proof of Claim 41.

Given Claim 41, we can approximate the weighted moments of the wi’s by replacing the expectation by

the corresponding empirical expectation. To bound the error involved, it suffices to bound from above the

variance of the term

Cα (F (x) +N(0, σ2))

(
m∏

i=1

hαi(xi)

)
,

appearing in the RHS of (13). To bound the variance, note that by the Cauchy-Schwarz inequality, we get

that

Var

[
(F (x) +N(0, σ2))

(
m∏

i=1

hαi(xi)

)]
≤
∥∥(F (x) +N(0, σ2))

∥∥2
4

∥∥∥∥∥

m∏

i=1

hαi(xi)

∥∥∥∥∥

2

4

.

By the hypercontractive inequality (Theorem 12), we have that

∥∥∥∥∥

m∏

i=1

hαi(xi)

∥∥∥∥∥

2

4

≤
∥∥∥∥∥

m∏

i=1

hαi(xi)

∥∥∥∥∥

2

2

dO(d) = dO(d) ,

where we used the fact that the Hermite polynomials have norm one. We also have that

∥∥F (x) +N(0, σ2)
∥∥2
4
≪ ‖F (x)‖24 + ‖N(0, σ2)‖24 ≪ A2 + σ2 ≪ 1 ,

where we used that ‖F (x)‖4 ≤∑k
i=1 ai‖ReLU(x · wi)‖4 ≪∑k

i=1 ai = A. Therefore, the variance of the

relevant term is at most dO(d).

Taking N = dO(d)/δ2, completes the proof of Lemma 40.

Using Lemma 40 to approximate each entry of
∑k

i=1 aiw
⊗2d
i to appropriately high accuracy, we can

approximate the entire tensor
∑k

i=1 aiw
⊗2d
i within small L2-error.

Corollary 42. By taking N = dO(d)m2d/δ2 noisy samples from F , we can efficiently compute a tensor T
such that with high constant probability it holds ‖T −∑k

i=1 aiw
⊗2d
i ‖22 ≤ δ2.

Proof. We take N = dO(d)m2d/δ2 noisy samples from F , and consider the tensor T = (Ti), i ∈ [m]2d, as

our approximation to
∑k

i=1 aiw
⊗2d
i . By Lemma 40, we have that

E

[∥∥∥∥T −
k∑

i=1
aiw

⊗2d
i

∥∥∥∥
2

2

]
≤ m2d(δ/md)2 = O(δ2)) .

The corollary follows from Markov’s inequality.
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6.3 Dimension Reduction

By Corollary 42, applied for d = 1 and δ = ǫ3/k, with O(k2m2/ǫ6) noisy samples from F , we can effi-

ciently compute the weighted degree-2 moment-tensor
∑k

i=1 aiw
⊗2
i to L2

2-error (ǫ6/k2). By Proposition 27,

we can efficiently find a k-dimensional subspace U , such that all of the wi’s with corresponding coefficient

ai ≥ (ǫ/k) are within ℓ2-distance ǫ of U .

By performing a change of variables, we can assume that U is the span of the first k coordinates. By

Lemma 40, given dO(d)/δ2 noisy samples from F , we can efficiently approximate
∑k

i=1 aiw
α
i , for any α

such that |α| = 2d within expected squared error O(δ2). We use this fact (with δ/kd in place of δ) for

all such α that are supported on the first k coordinates. This gives us an approximation T to the tensor

TU :=
∑k

i=1 aiπU (wi)
⊗2d that with high constant probability satisfies ‖T − TU‖22 ≤ δ2. This takes sample

complexity dO(d)k2dδ−2 and sample-polynomial time.

6.4 Cover

We apply the above procedure to produce an approximation T to TU to within L2
2-error δ2, where δ =

(ǫ/(2kd))Cd, where C > 0 is a sufficiently large constant. This takes sample complexity dO(d)k2dδ−2 =
dO(d)k2d(2kd/ǫ)O(d) and sample-polynomial time.

Noting that ‖πU (wi)‖2 ≤ 1 for all i ∈ [k], we can apply the algorithm of Proposition 26 for m = k, R =

1, and T our tensor approximation to TU . This outputs a set C ⊂ Rk of size |C| = S ≤ (2kd/ǫ)O(d2k1/d)

such that each for each i ∈ [k] with ‖πU (wi)‖2 ≥ (ǫ/(2kd))Cd , πU (wi) is within ℓ2-distance ǫ of some

element of C.

6.5 Computing a Non-proper Hypothesis

We are given a set of S functions of the form fi = ReLU(x · ci)/‖ci‖2, for ci ∈ C. We claim that there is a

non-negative linear combination F̃ of the fi’s such that ‖F − F̃‖2 = O(ǫ). This is because for every i with

ai ≥ ǫ/k, wi is ǫ-close to U , and there is a ci ∈ C with ‖ci − πU(wi)‖2 ≤ ǫ. By the triangle inequality,

this implies that ‖ci − wi‖2 = O(ǫ) and, since ‖wi‖2 = 1, that ‖ci/‖ci‖2 − wi‖2 = O(ǫ). Therefore, for

ai ≥ ǫ/k, we have a corresponding fi such that ‖aiReLU(x · wi) − aifi‖2 = O(aiǫ). For ai ≤ ǫ/k, we

have that ‖aiReLU(x · wi)− 0‖2 = O(ǫ/k). Therefore, we have that

∥∥∥∥∥∥
F −

∑

i:ai≥ǫ/k

aifi

∥∥∥∥∥∥
2

≤
k∑

i=1

O(ǫ/k + aiǫ) = O(ǫ(1 +A)) = O(ǫ) .

We wish to find such a non-negative linear combination F̃ . We note that if we can compute each of the

inner products F · fi := Ex∼N(0,I)[F (x)fi(x)] to error O(ǫ2), this will be sufficient. This is because

if we take any F ′(x) =
∑

i a
′
ifi(x) with a′i ≥ 0 and

∑
i a

′
i = A′ = O(1) (and note that E[F ′(x)] is

proportional to A′, so if it is much larger than 1, it cannot be close to F in L2-norm), then we can compute

‖F − F ′‖22 − ‖F‖22 = −2F · F ′ + F ′ · F ′ to error O(ǫ2). Thus, if we find a vector of a′i ≥ 0 that gives an

empirical minimizer of ‖F − F ′‖22, it will give us an F̃ with ‖F − F̃‖22 ≤ O(ǫ2) + inf ‖F − F̃‖22 = O(ǫ2).
Note that this problem is equivalent to finding numbers a′i ≥ 0 that minimize

−2
∑

i

a′i(approximation of F · fi) +
∑

i,j

a′ia
′
jfi · fj ,

which is a convex optimization problem that can be solved in poly(S) time.
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6.6 Putting it Together

In summary, we have described an algorithm that obtains a hypothesis H = F̃ such that with high constant

probability ‖H − F‖22 < ǫ2(‖F‖22 + σ2) with sample complexity

O(m2k2/ǫ6) + (2kd/ǫ)O(d) ,

and running time

poly(mk/ǫ) + (2kd/ǫ)O(d2k1/d) .

In particular, setting d = log(k), we get sample complexity O(m2k2/ǫ6) + (k/ǫ)O(log k) and running time

poly(mk/ǫ) + (k/ǫ)O(log2 k).

7 Positive Linear Combinations of Generalized Linear Models

7.1 Setup

Here we show that the algorithmic results of the last section can be generalized to linear combinations from

any generalized linear model, under certain mild assumptions on the model.

Definition 43. Let σ : R → R be a fixed function. Let Cσ,m,k denote the class of real-valued functions on

Rm of the form F (x) =
∑k

i=1 aiσ(x · wi), where the wi’s are unit vectors and ai ∈ R+.

The setup will be similar to the one in the previous section. The algorithm will be given access to

samples of the form (x, y) where x ∼ N(0, I) and y = F (x) + ξ, where ξ is an error term. We will no

longer assume that ξ is independent of x, but we will assume that it is unbiased for any given x and not too

large. In particular, we will assume that E[ξ | x] = 0 for every value of x, and that E[ξ4] ≤ E4, for some

known constant E > 0. Finally, we will need to assume that σ is reasonably well-behaved. In particular, we

will say that σ is L-continuous to mean that E[|σ(v · x)− σ(w · x)|2] ≤ L2‖v − w‖22, for v and w any unit

vectors and x a standard Gaussian. Under these assumptions, we state our main result.

Theorem 44. Let σ : R → R be a known L-continuous function, and F ∈ Cσ,m,k an unknown func-

tion with
∑k

i=1 ai ≤ 1. Assume that for some positive integer d that E[h2d(G)σ(G)] = c2d 6= 0 (where

h2d is the degree-2d Hermite polynomial and G a standard Gaussian), and that ‖σ(G)‖4 ≤ M . There

exists an algorithm that given E, d, ǫ > 0 and access to independent samples from a distribution (x, y),
where x ∈ Gm and y = F (x) + ξ with E[ξ|x] = 0 and Var(ξ) < E2, takes N = (m)4d(M +

E)2/(c22d)L
O(dk1/d)(2kmd/ǫ)O(d2k1/d) samples and runs in sample polynomial time and with probability

at least 2/3 returns a function F̂ with ‖F̂ (x)− F (x)‖2 ≤ ǫ.

We are not aware of prior work on this problem that leads to algorithms with sub-exponential depen-

dence on k.

We note that the non-vanishing even degree Fourier coefficient will be necessary for us. In particular,

this means that our algorithm will not work if σ is an odd function, like the logistic function. This difficulty

seems hard to circumvent as our algorithm will operate by trying to find a small cover of the set of possible

w’s that appear in the decomposition. Unfortunately, if σ is odd, we could have the function F (x) =
σ(w · x) + σ(−w · x) = 0, and it is information-theoretically impossible to recover w from F .

We can hope to circumvent these issues if our function is given as a mixture rather than a sum. In

particular if the ai’s sum to 1 one possibility we could have is that F (x) is equal to σ(wi ·x) with probability

ai. In this case, we note that for any function g that E[g(y)|x] = ∑k
i=1 aig(σ(x · wi)), and if we can find

a function g so that g ◦ σ has a non-vanishing even-degree Fourier coefficient, we can hope to make our

algorithm work. A specific example of this, with important practical relevance is given in the next section.

36



7.2 Moment Estimation

The necessary moment computation is relatively straightforward.

Lemma 45. Let T =
∑k

i=1 aiw
⊗2d
i . There exists an algorithm that given N = O(m)4d(M + E)2/(δ2c22d)

for some δ > 0, runs in sample polynomial time and returns an estimate of T that is accurate to error at

most δ with constant probability.

Proof. It is clear that the degree-2d Fourier moment tensor associated to σ(x · w) for unit vector w is

c2dw
⊗2d. Linearity implies that the corresponding Fourier moment tensor for F is c2dT . Therefore, we can

get an unbiased estimator for any given entry of T as E[yha(x)]/(c2d), where ha is the multivariate Hermite

polynomial
∏m

i=1 hai(xi), where ai is the number of occurrences of i in the index of the entry of T we are

trying to estimate.

If we estimate T by taking an empirical average of this for each entry over N entries, we will get

expected entry-wise error on the order of
√

Var(yha(x))/(
√
Nc2d). We can bound the variance us-

ing Holder’s Inequality by
√

E[y4]E[h4a(x)] = O(‖F‖24 + E2)O(1)d. Thus, we can learn T to error

O(m)2d(‖F‖4 + E)/(
√
Nc2d). We note that ‖F‖4 ≤ ∑k

i=1 ai|σ(wi · x)|4 ≤ M . Plugging in an ap-

propriate value of N gives our result.

7.3 Finishing the Proof

From here the argument is straightforward. For C a sufficiently large constant, we learn T as above to

accuracy δ = L−C(ǫ/(2kmd))Cd and then apply Proposition 26. This gives us a set C of size at most

(2kmd/ǫ)O(d2k1/d)LO(dk1/d) so that every wi with ai ≥ ǫ/(8k) is within ǫ/(4L) of some element of C. By

modifying the points of C slightly if necessary, we can assume that they all are unit vectors. We note that if

ŵi is an element of C with ‖wi − ŵi‖2 < ǫ/(4L) whenever ai ≥ ǫ/(8k), then

∥∥∥∥∥F (x)−
k∑

i=1

aiσ(x · ŵi)

∥∥∥∥∥
2

≤
k∑

i=1

ai‖σ(x · wi)− σ(x · ŵi)‖2

≤
k∑

i=1

max(ǫ/(4k), ai(ǫ/4))

≤
k∑

i=1

ǫ/(4k) +

k∑

i=1

aiǫ/4

= ǫ/2 .

Thus, letting V be the span of all functions of the form σ(x · v) for v ∈ C, we note that F is within L2-

distance ǫ/2 of some element of V . If we compute the dot product of F with each σ(x·v), for v ∈ C, to error

ǫ/(2|C|), this is sufficient to compute the L2-norm of F with every non-negative linear combination with

coefficients summing to at most 1 of these functions to error ǫ/2. Taking a minimizer over such functions,

which can be computed by a linear program in polynomial time, will give an appropriate answer.

To do this computation for each basis element b, we can use the empirical average of b(x)y, which gives

an unbiased estimator. The number of samples required to achieve error ǫ′ is O(1/ǫ′)2
√

Var(b(x)y). The

latter term, we can bound by Holder’s inequality as E[y4]1/4E[b(x)4]1/4. The former term is O(M+E) and

the latter is O(M). Thus, this computation can be done with an appropriate number of samples and time.

This completes our proof.
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8 Mixtures of Linear Regressions

8.1 Setup

Definition 46 (Mixtures of Linear Regressions). Given mixing weights wi ≥ 0 such that
∑k

i=1 wi = 1
and regression vector βi ∈ Rm, i ∈ [k], an m-dimensional k-mixture of linear regressions (k-MLR) is the

distribution on pairs (x, y) ∈ Rm × R, where x ∼ N(0, I) and y = βi · x + ν, where βi is sampled with

probability wi and ν ∼ N(0, σ2) is independent of x and σ ≥ 0 is known.

We study both density estimation and parameter estimation for k-MLRs. We will assume an upper

bound R on the maxi ‖β(i)‖2. It will be convenient to assume that there is some known value pmin so that

wi ≥ pmin for all i ∈ [k].
For density estimation, we prove:

Theorem 47 (Density Estimation for k-MLR). For a known minimum weight pmin, degrees d, d′ ∈ Z+,

error parameter ǫ > 0 and upper bound R > 0, there is an algorithm that draws

N =
(
m2poly(k/pmin) + (2kd/pmin)

O(d)
)
log(R/σ) log log(R/σ) + (2kd′/(ǫpmin))

O((d′)2k1/d
′

))

samples from a k-MLR Z on Rm × R, runs in time poly
(
N, (2kd/pmin)

d2k1/d
)

, and outputs a hypothesis

H that with high probability satisfies dTV(H,Z) ≤ ǫ.

For parameter estimation without noise (σ = 0), we show:

Theorem 48 (Parameter Estimation for k-MLR, Noiseless Case). For a known minimum weight pmin,

degree-d, error ǫ, upper bound R, and separation ∆, there is an algorithm that learns the βi’s exactly

using sample complexity

N =
(
m2poly(k/pmin) + (2kd/pmin)

O(d)
)
log(R log(m)/(pmin∆)) log log(R log(m)/(pmin∆))

and runtime poly
(
N, (2kd/pmin)

d2k1/d
)

.

For parameter estimation with noise, we show:

Theorem 49 (Parameter Estimation for k-MLR, Noisy Case). For a known weights k-MLR with minimum

weight pmin, degree-d, error ǫ, upper bound R and separation ∆/σ at least a sufficiently large polynomial in

log(m)/pmin, there exists an algorithm that solves parameter estimation to error ǫ with sample complexity

N =
(
m2poly(k/pmin) + (2kd/pmin)

O(d)
)
log(R log(m)/(pmin∆)) log log(R log(m)/(pmin∆))+Õ(m)poly(k/ǫ)

and runtime poly
(
N, (2kd/pmin)

d2k1/d
)

.

The structure of this section is as follows: Once we determine how to compute appropriate moment

bounds (Section 8.2), this will immediately provide a straightforward algorithm to solve these problems.

First compute second moments and use Proposition 27 to reduce the problem to a k dimensional one. Then

in those k-dimensions, compute the first d moments to get a cover, and use that cover either in conjunction

with Proposition 28 to do density estimation or some relatively straightforward clustering in order to do

parameter learning.

Unfortunately, this simple technique will not be sufficient to obtain the efficiency that we desire. This

is because our sample complexity and runtime will be polynomial in Rd and Rd2k1/d , respectively, when
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we would like a poly-logarithmic dependence. This is actually a relatively common problem with linear

regression problems. Learning the parameters in one-go will introduce too much error or require too high

sample complexity. Instead, the situation can be improved by learning only a rough approximation to the

β’s and using this approximation to learn iteratively better ones. A similar idea was used in [DKS19].

So, our refined overall strategy will be to learn a cover with relatively large error. Using some ele-

mentary techniques, we can refine this cover to a relatively small list of potential hypotheses. Now if these

hypotheses are far enough apart (relative to σ and the approximation error), we will be able to figure out

which hypothesis the mixing component of most samples is close to. However, it will be hard to tell whether

y approximates βi · x or βj · x, when |(βi − βj) · x| is small. This means that we will only be able to

successfully cluster most points, and will need our moment computation algorithm to work even if we have

conditioned on only seeing the samples that we can reliably cluster (which, fortunately, is determined by

some known condition on x alone).

As we will be needing to make use of several clusterings throughout this algorithm, the following

definition will be convenient.

Definition 50. An (s, r)-cover is a set C of size at most s such that for each 1 ≤ i ≤ k there exists a c ∈ C
with ‖c− βi‖2 ≤ r.

Note that we initially have a (1, R)-cover.

8.2 Moment Computation

The first step in our algorithm is to compute the moment tensor T =
∑k

i=1wiβ
⊗2d
i to error δ. To do so, it

suffices for every |α| = 2d to compute
∑k

i=1wiβ
α
i to error δ/md. We can do this given iid samples from

(x, y). However, we will also want to be able to do it just given iid samples from (x, y) conditional on some

known event E on x with probability at least 1/2.

Lemma 51. Suppose that we have sample access to a k-MLR X with parameters (wi, βi), i ∈ [k], where

maxi ‖βi‖2 ≤ R, for a parameter R > 0. There is an algorithm that, given δ > 0, d ∈ Z+, and a multi-

index i ∈ [m]2d, draws dO(d)(R + σ)4d/δ2 conditional samples (x, y) from any event E(x) depending on

only the first ℓ coordinates and for which the algorithm is given oracle access with Pr[E] ≥ 1/2, runs

in sample-polynomial plus poly((ℓd)d/δ) time, and outputs an approximation Ti of (
∑k

i=1 wiβ
⊗2d
i )i with

expected squared error O(δ2).

Proof. Since y = β · x+ ν, we can write

y2d =
2d∑

t=0

∑

|α|=t

(
2d

t

) |α|!
α!

βαxαν2d−t .

We would like to find a degree-2d polynomial pα, such that for any polynomial q of degree at most 2d the

xα-coefficient of q equals Ex∼N(0,I) [pα(x)q(x)|E(x)].

Recall the normalized Hermite polynomials hn(x) = Hen(x)/
√
n! and define hα(x) =

∏m
i=1 hαi(xi).

Note that we can write q(x) =
∑

|α|≤2d cαhα and that the xα-coefficient of q is exactly α!cα.

For a vector a whose entries are indexed by the α with |α| ≤ 2d, we define pa(x) :=
∑

|α|≤2d aαhα(x).
Let A be the symmetric matrix given by the quadratic form

aTAb := Ex∼N(0,I) [pa(x)pb(x)|E(x)] .

Note that without the conditioning, A would just be the identity matrix. We claim that with the conditioning,

A still has eigenvalues bounded away from 0.
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In particular, we have that aTAa = E[p2a(x)|E(x)]. We note that ‖pa‖2 = ‖a‖2. We also note that, by

anti-concentration of Gaussian polynomials (Theorem 14), except with probability at most 1/4, |pa(x)| ≥
d−O(d)‖pa‖2. In particular, even conditioned on E(x), there is at least a 1/2 probability that |pa(x)| ≥
d−O(d)‖pa‖2. This implies that

aTAa = E[p2a(x)|E(x)] ≫ d−O(d)‖pa‖22 = d−O(d)‖a‖22 .

Thus, the smallest singular vector of A is at least d−O(d). Finally, we consider p(x) := pb(x), where

b = α!A−1eα and eα is the unit vector whose α-entry is 1 and whose other entries are 0. Then noting that

q = pc, we have that

E[p(x)q(x)|E(x)] = E[pb(x)pc(x)|E(x)] = bTAc = α!eTαA
−1Ac = α!cα ,

which is exactly the xα-coefficient of q. By our bounds on the singular values of A, we have that ‖b‖2 ≤
dO(d).

We note that in order to run this algorithm, we will need to compute b to sufficient accuracy. This

requires computing A to some accuracy, which we can do by sampling (conditioned on E). Fortunately, we

only need to compute the entries of A corresponding to monomials in the coordinates on which E and α
depend. This can be done to sufficient accuracy with poly((ℓd/R)d/δ) samples to x conditioned on E.

Therefore, by linearity,

E

[
y2dpα(x)

α!

(2d)!
| E(x)

]
=

k∑

i=1

wiβ
α
i .

We can attempt to approximate this empirically given conditional samples. The rate of convergence will

depend on the variance, which we can bound from above as

2Ex∼N(0,I)[y
4dp2α(x)] ≤ dO(d)‖y‖4d2 ‖pα‖22 ≤ dO(d)(R+ σ)4d .

Thus, we can approximate our tensor T to error δ in dO(d)(R + σ)4dmd/δ2 samples.

Using Lemma 51 to approximate each entry of
∑k

i=1wiβ
⊗2d
i to appropriately high accuracy, we can

approximate the entire tensor
∑k

i=1wiβ
⊗2d
i within small ℓ2-error.

Corollary 52. Given an ℓ-dimensional subspace H and N = dO(d)(R + σ)4dℓ2d/δ2 conditional samples

from a k-MLR X, conditioned on an E with Pr(E(x)) ≥ 1/2 and E depending only on ℓ linear functions

of X, we can in time poly(N, ℓd) compute a tensor T such that with high constant probability it holds

‖T −∑k
i=1 wiπH(βi)

⊗2d‖22 ≤ δ2.

Proof. By performing an appropriate rotation, we can assume that E depends only on the first ℓ coordinates

and H ⊂ R2ℓ. We take N = dO(d)R2dℓ2d/δ2 noisy samples from X, and consider the tensor T = (Ti),
i ∈ [ℓ]2d, as our approximation to

∑k
i=1wiπH(βi)

⊗2d. By Lemma 51, we have that

E

[∥∥∥∥T −
k∑

i=1
wiπH(βi)

⊗2d

∥∥∥∥
2

2

]
≤ ℓ2d(δ/ℓd)2 = O(δ2) .

The corollary follows from Markov’s inequality.

As we will need to be doing this many times in the several rounds of our algorithm, we will want to

ensure that the above guarantee holds with high probability rather than constant probability. This is easy to

do with independent repetition.
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Corollary 53. Given an ℓ-dimensional subspace H and N = dO(d)(R + σ)4d log(1/τ)ℓ2d/δ2 conditional

samples from a k-MLR X, conditioned on an E with Pr(E(x)) ≥ 1/2 and E depending only on ℓ linear

functions of X, we can in time poly(N, ℓd) compute a tensor T such that with probability at least 1 − τ
it holds ‖T −∑k

i=1wiπH(βi)
⊗2d‖22 ≤ δ2. Furthermore, this works even if a sample is erroneous with

probability N/(10 log(1/τ)).

Proof. We run the algorithm from Corollary 52 100 log(1/τ) times with error δ/3. With probability at least

1 − τ , a majority of the tensors Ti computed are within δ/3 of T0 :=
∑k

i=1wiβ
⊗2d
i in L2-norm. Note that

the erroneous samples will only affect one tenth of our trials, and so will not change this. If this is the case,

our algorithm can return any Ti that is within 2δ/3 of at least half of the other Ti’s.

Such a Ti must exist because any close Ti will be at most this far from any other close Ti. Additionally,

any Ti that is this close to a majority, will be distance at most 2δ/3 from some Ti at distance at most δ/3
from T0. Therefore, by the triangle inequality, any such Ti will have error at most δ.

8.3 Iteration

Our overall algorithm will depend on obtaining iteratively better covers of our βi’s. The goal of the next few

sections will be to show that if we have a (k, r)-cover, with r substantially larger than σ, we can (with tiny

probability of failure) use this to compute a (k, r/2)-cover. This procedure will break down further into the

following steps:

1. Clustering: We will have an algorithm that assigns to most sample points a cluster, so that almost all

samples from the same mixing component are assigned to the same cluster, and so that each cluster

has an associated center that is not too far from the corresponding βi. If we then subtract from the

y-value of such a sample, the expected y-value based on its cluster center, we can reduce ourselves to

considering samples from a mixture of linear regressions with parameters not too much larger than r.

2. Dimension Reduction: Taking samples from this simulated mixture, we can use Proposition 27 to

reduce to a k-dimensional subspace.

3. Rough Cover: Computing more moments within this subspace, we can use Proposition 26 to compute

an (s, r′)-cover for r′ = r/poly(k). Unfortunately, s will usually be substantially larger than k here.

4. Cover Refinement: We can throw away many of the points in this cover for which there are not enough

samples with y ≈ c · x. The remaining points can be grouped into at most k groups each with radius

at most r/2, giving our final new cover.

In the end we will prove the following lemma:

Lemma 54. There is an algorithm that given a (k, r)-cover for some known r ≫ kσ/pmin (with a suffi-

ciently large implied constant) and a τ > 0, takes at most N = (m2poly(k/pmin)+(2kd/pmin)
O(d)) log(1/τ)

samples and poly(N, (2kd/pmin)
d2k1/d) time and with probability at least 1− τ returns a (k, r/2)-cover.

Applying this repeatedly gives the following:

Corollary 55. Given sample access to a mixture of linear regressions X with wi ≥ pmin and ‖βi‖2 ≤ R
for all i ∈ [k], and r at least a sufficiently large multiple of kσ/pmin, there exists an algorithm that takes N =(
m2poly(k/pmin) + (2kd/pmin)

O(d)
)
log(R/r) log log(R/r) samples and poly(N, (2kd/pmin)

d2k1/d) time,

and with large constant probability computes a (k, r)-cover.
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8.4 Clustering

Here we show that given a cover, we can use this to compute a clustering on most of the points.

Lemma 56. Given a (k, r)-cover C and a sufficiently small parameter η > 0, there exists a polynomial

time computable condition E(x) with probability at most 1/2, a polynomial time computable function f :
Rm+1 → C and an (unknown) function g : [k] → C such that

1. For all i ∈ [k], ‖βi − g(i)‖2 < O(k3(r + σ) log(1/η)).

2. If (x, y) ∼ X, then conditioned on E(x), we have that (x, y− f(x, y) ·x) is η-close in total variation

distance to (x, y′) conditioned on E(x), where (x, y′) is the mixture of linear regressions that has

y′ = x · (βi − g(i)) + ν with probability wi, for each i ∈ [k].

Furthermore, E(x) depends only on the inner products of x with the elements of C.

The basic idea of the proof is that if (x, y) comes from a component with β ≈ c ∈ C, then y ought to be

(with high probability) close to c · x. This should give us a unique possible c that y came from, unless either

there is another c′ ∈ C close to c, or if x is unusually close to being to orthogonal to c − c′. In the former

case, we declare that such c and c′ are in the same cluster and don’t distinguish between points close to one

and points close to the other. For the latter case, we note that x · (c− c′) is small for c, c′ ∈ C with ‖c− c′‖2
large only with small probability, and we define our event E to exclude such values of x.

Proof. Call two elements a, b ∈ C close if ‖a − b‖2 ≤ 10k2(r + σ) log(1/η). Declare that two elements

of C are in the same cluster if we can reach one from the other by a chain of close pairs. Since this chain

can have length at most k, we know that each cluster has diameter at most O(k3(r + σ) log(1/η)). To each

cluster we designate one of the elements of C in that cluster to be the representative of that cluster.

We now let E(x) be the set of x values such that for all pairs a, b ∈ C, either a and b are close or

|x · (a − b)| > 2(r + σ) log(1/η). We note that for any not-close pair, the probability of this happening is

at most 1/(2k2), and therefore, the probability of E(x) is at most 1/2.
The function f(x, y) is defined by first finding the element a ∈ C minimizing |y − a · x|, and letting f

be the representative of the cluster of a. For each i, we will let g(i) be the representative of the cluster of the

element a ∈ C with ‖βi − a‖2 as small as possible. Note that since ‖βi − a‖2 ≤ r and since clusters have

bounded diameter, this implies that ‖βi − g(i)‖2 ≤ O(k3(r + σ) log(1/η)) by the triangle inequality.

It remains to prove our second statement about the distribution of (x, y − f(x, y) · x). This will follow

from the claim that if (x, y) is drawn from the i-th component of the mixture, then conditioned on E(x) the

probability that f(x, y) 6= g(i) is at most η. To show this, we will show unconditionally that if y = βi ·x+ν,

then the probability that E(x) holds and f(x, y) 6= g(i) is at most η/2.

Let a be the closest element of C to βi, so that in particular ‖βi − a‖2 < r. We note that y − a · x =
(βi − a) · x+ ν is a Gaussian with standard deviation less than r+ σ, and thus except with probability η/2
we have that |y− a · x| ≤ (r+ σ) log(1/η). We claim that if this is the case and if E(x) holds, then f(x, y)
will be g(i). In particular, we need to show that if this holds and if E(x) also does, then |y − a · x| will be

less than |y − b · x|, for all b ∈ C not close to a (note that this is sufficient, as it will imply that the best b
must either be a or in the same cluster). However, for b not close to a, since E(x) holds, we have that

|(y − b · x)− (y − a · x)| = |(b− a) · x| > 2(r + σ) log(1/η) .

Thus, by the triangle inequality

|y − b · x| > 2(r + σ) log(1/η) − |y − a · x| > (r + σ) log(1/η) ≥ |y − a · x| .

This completes our proof.
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8.5 Dimension Reduction

Here we prove the following lemma:

Lemma 57. Given an explicit event E with probability at least 1/2 and sample access to a mixture of linear

regressions conditioned on E(x) with maxi ‖βi‖2 ≤ r and wi ≥ pmin for all i ∈ [k], there is an algorithm

that given parameters r + σ > ǫ > 0, 1/2 > τ > 0, uses N = O(((r + σ)/ǫ)4m2p−2
min log(1/τ)) samples

and poly(N) time and computes a dimension at most k subspace H , such that with probability at least 1−τ
every βi is within ℓ2-distance ǫ of H . Furthermore, this works even if a sample is erroneous with probability

N/(10 log(1/τ)).

Proof. We use Corollary 53 to compute with probability at least 1 − τ an estimate to the tensor T =∑k
i=1wiβ

⊗2
i with error at most δ < ǫ2pmin. Then, we use Proposition 27 to compute H .

8.6 Cover

Here we use our technology to get a cover.

Lemma 58. Given an explicit event E with probability at least 1/2 and sample access to a mixture of linear

regressions conditioned on E(x) with maxi ‖βi‖2 ≤ r and wi ≥ pmin for all i ∈ [k], and an ℓ-dimensional

subspace H , there is an algorithm that given parameters d and r + σ > ǫ > 0, 1/2 > τ > 0, uses

N = (2kℓd(r + σ)/ǫ)O(d)poly(1/pmin) log(1/τ) samples and computes with probability at least 1 − δ an

(s, ǫ)-cover of the set of πH(βi) with s = (2kdℓ((r+σ)/ǫ)/pmin)
O(d2k1/d) in poly(N, s) time. Furthermore,

this works even if a sample is erroneous with probability N/(10 log(1/τ)).

Proof. Using Corollary 53, we can with probability 1 − τ compute an approximation to the tensor T =∑k
i=1wiπH(βi)

⊗2d with error at most (kℓ(r + σ)/ǫ)−Ω(d)poly(pmin) with sufficiently large constants in

the exponent. Applying Proposition 26 yields our result.

8.7 Cover Refinement

Here we show that, given a cover, we can use a small number of samples reduce it to a smaller cover.

The basic idea will be to come up with a smaller set of plausible hypotheses (those for which y ≈ c · x
for a reasonable fraction of samples). It is not hard to show that given a large enough sample set, with high

probability all plausible hypotheses will be close to some βi. From there one can cluster together hypotheses

that are nearby. Formally, we show:

Lemma 59. Suppose that we have a mixture of linear regressions X with parameters wi, βi for 1 ≤ i ≤ k
and wi ≥ pmin. Suppose furthermore that we are given an (s, r)-cover C of X. Then there is an algorithm

which takes N = O(log(s/τ)/pmin) samples from X, runs in poly(N, s,m, k) time, and with probability

1− τ computes a (k,O(k(r + σ)/pmin)) cover of X.

Proof. Take N = O(log(s/τ)/pmin) samples with a sufficiently large implied constant.

Call a hypothesis c ∈ C good if at least a pmin/4-fraction of our N samples satisfy |y−c ·x| ≤ 2(r+σ).
We note that if ‖βi − c‖2 ≤ r for some i, then with probability at least pmin/2 over samples from X, we

have that the sample is from the i-th component and |y − c · x| ≤ 2(r + σ). Therefore, with probability at

least 1− η/2, every such hypothesis is good.

On the other hand, suppose that we have a hypothesis vector c for which ‖βi − c‖2 > 10(r + σ)/pmin

for all i ∈ [k]. Then no matter which part of the mixture we are drawing from, y − c · x is distributed as

a normal distribution with standard deviation at least ‖βi − c‖2 > 10(r + σ)/pmin. This means that the
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probability of it being less than 2(r + σ) is at most pmin/5. Therefore, with probability at least 1− η/2, no

such hypothesis c is good.

Hence, with probability at least 1 − η we have that every hypothesis c that is within distance 2(r + σ)
of some βi is good, and all good hypotheses are within 10(r + σ)/pmin of some βi. We declare two good

hypotheses to be close if they are within 20(r + σ)/pmin of each other, and in the same cluster if they are

connected by some chain of close hypotheses. Note that since any two hypotheses within 10(r + σ)/pmin

of the same βi are close, these chains can have length at most k, and so each cluster has diameter O(k(r +
σ)/pmin). This also implies that there are at most k clusters.

We return as our cover one representative hypothesis from each cluster (plus a number of other random

elements to pad the size out to k). We note that every βi by assumption is r-close to some good hypothesis,

and thus must be within distance O(k(r + σ)/pmin) of one of our representatives. This completes the

proof.

8.8 Proof of Lemma 54

The proof now follows from the machinery that we have built up.

Proof. Let our cover be C.

We begin by applying Lemma 56 with η a sufficiently small polynomial in (pmin/m)(2kd)−d to produce

an event E(x) with probability at least 1/2 and a method for simulating samples of (x, y′) conditioned on

E (up to η error in total variation distance), where y′ is a mixture of linear regressions with mixing weights

wi and parameters βi − ci, for some ci ∈ C. We then use these samples with Lemma 57 to compute (with

probability at least 1− τ/10) a k-dimensional subspace H , such that all of the βi − ci are within distance ǫ
of H , for ǫ a sufficiently small multiple of rpmin/k. We use more simulated samples along with Lemma 58

to compute a ((2kd/pmin)
O(d2k1/d), ǫ)-cover of the πH(βi − ci), which will be a ((2kd/pmin)

O(d2k1/d), 2ǫ)-
cover of the βi − ci. If we call this cover C′, then the set of points a + b, for a ∈ C, b ∈ C′ will be a

((2kd/pmin)
O(d2k1/d), 2ǫ)-cover of the βi’s. Finally, we apply Lemma 59 to get a (k,O(k(ǫ + σ)/pmin))-

cover (which is a (k, r/2)-cover) with probability at least 1− τ/10.

It is straightforward to verify that this procedure fits within our bounds for runtime, sample complexity

and probability of error, completing the proof.

8.9 Density Estimation

Here we prove Theorem 47.

Proof. We begin by applying Corollary 55 to obtain a (k,O(kσ/pmin))-cover. As in the proof of Lemma 54,

we use (2k/(ǫpmin))
O(d′) additional samples to compute an (s, ǫσ)-cover with s = (2kd′/(ǫpmin))/pmin)

O((d′)2k1/d
′

)

in poly(s) time. We then have that X is O(ǫ)-close in total variation distance to a mixture of the lin-

ear regressions with parameters given by the terms of this cover. Using Proposition 28, we can learn an

O(
√

ǫ log(s/ǫ))-approximation to X.

Substituting ǫ2/(d′ log(2kd′/(ǫpmin))) for ǫ yields the result.

8.10 Parameter Estimation

Here we prove Theorems 49 and 48.

Proof. We begin by applying Corollary 55 to obtain a (k, c∆/(k3 log(mk/pmin))-cover, for a sufficiently

small constant c > 0. We then apply Lemma 56, with η a sufficiently small polynomial in mk/pmin. We note

that since the βi’s are separated by at least ∆, while each sample in which E(x) holds (ignoring probability η
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events) has ‖βi−f(x, y)‖2 < ∆/3. This implies that any two samples (again ignoring probability η events)

will have f(x, y)-values within 2∆/3 of each other if and only if they come from the same component of

the mixture.

Taking m2poly(k/pmin) samples (and noting that this probability η of error likely never happens), and

this ability to sort the samples for which E(x) holds by component, we can use Corollary 52 to estimate

each βi to ℓ2-error ∆/k. From this warm start, we can use the algorithm of [KC19] to improve this to error

ǫ.
Alternatively, if σ = 0, m samples from each component correctly identified can be used along with

linear algebra to solve exactly for the βi’s.

8.11 Sample Complexity Lower Bound for Mixtures of Linear Regressions

In this subsection, we show that if the pairwise separation ∆ is sufficiently small, the problem of parameter

estimation for MLRs with noise requires a sub-exponential in k number of samples.

We consider the m = 1 case of a linear regression. Let a ν-sparse σ2-variance Gaussian be a pseudo-

distribution supported on points x ≡ θ (mod ν) for some constant θ assigning probability mass to x equal

to g(x/σ)ν where g(x) = 1√
2π
e−x2/2 is the Gaussian density. Note that this will not in general be a

normalized probability distribution.

Lemma 60. Let X be a ν-sparse variance-σ2
1 Gaussian and Y = N(0, σ2

2) for ν ≪ min(σ1, σ2). Then the

convolution X ∗ Y is exp(−Ω(min(σ1, σ2)/ν)
2))-close to N(0, σ2

1 + σ2
2) in L1.

Proof. We begin by considering the Fourier transforms. We have that ̂(X ∗ Y ) = X̂Ŷ . Now Ŷ (ξ) =
e−σ2

2ξ
2/2. Now X(x) = Xν(x)g(x) where Xν(x) =

∑
y≡θ (mod ν) νδ(x− y). This tells us that

X̂ = X̂ν∗ĝ =


 ∑

y≡0 (mod 1/ν)

δ(ξ − y)e2πiθy


∗
(
e−σ2

1ξ
2/2
)
=

∑

y≡ξ (mod 1/ν)

e−σ2
1y

2/2e2πi(ξ−y)θ. (14)

Now assuming that ν ≪ σ1, we have that the sum on the right of Equation (14) has at most one term

more than exp(−Ω(σ1/ν)
2), and that all remaining terms together contribute at most exp(−Ω(σ1/ν)

2).
Therefore we have that

X̂(ξ) = exp(−σ2
1 [ξ]

2/2) exp(2πi(ξ − [ξ])θ)± exp(−Ω(σ1/ν)
2),

where [ξ] is the nearest multiple of 1/ν to ξ. Plugging in ξ = 0, we find that the total mass of X is

1± exp(−Ω(σ1/ν)
2). Returning to our original X ∗ Y we have that

̂(X ∗ Y ) = exp(−σ2
2ξ

2/2) exp(−σ2
1[ξ]

2/2) exp(2πi(ξ − [ξ])θ)± exp(−Ω(σ1/ν)
2).

Now [ξ] = ξ unless |ξ| ≥ 1/(2ν). In that case, exp(−σ2
2ξ

2/2) = exp(−Ω(σ2/ν)
2). Therefore, we have

that for all ξ,

̂(X ∗ Y ) = exp(−(σ2
1 + σ2

2)ξ
2/2)±

{
exp(−Ω(σ1/ν)

2) if |ξ| ≤ 1/(2ν)

exp(−Ω(σ2ξ)
2) else

.

Note that the first term is just the Fourier transform of N(0, σ2
1+σ2

2). The latter term can be seen to have total

integral at most (1/ν) exp(−Ω(min(σ1, σ2)/ν)
2). This means that X∗Y is (1/ν) exp(−Ω(min(σ1, σ2)/ν)

2)-
close to N(0, σ2

1 + σ2
2) in L∞.

45



However, since X is nearly normalized by the above, the normalized version of X ∗ Y (namely X ∗
Y/|X ∗ Y |1) is also (1/ν) exp(−Ω(min(σ1, σ2)/ν)

2)-close to N(0, σ2
1 + σ2

2) in L∞. However, the L1

distance between two distributions is equally divided between the amount that one is bigger than the second

and the amount that the second is bigger than the first. Therefore, if f(x) = 1√
2πσ2

2

exp(−x2/(2σ2
2)) is the

probability density function of N(0, σ2
1 + σ2

2), we have that the L1 distance between it and X ∗ Y/|X ∗ Y |1
is at most ∫

min(f(x), (1/ν) exp(−Ω(min(σ1, σ2)/ν)
2))dx.

This is easily seen to be exp(−Ω(min(σ1, σ2)/ν)
2)), completing our theorem.

Next consider the pseudodistribution where X ∼ N(0, 1) and y = σsx + N(0, σ) where for some ν
and θ, s is taken to be nν + θ (for integer n) with probability ν√

2π
e−(nν+θ)2/2 (namely s is distributed as a

ν-sparse variance-1 Gaussian). We note that for given x, σ · s · x is distributed as a νσx-sparse variance-

(σx)2 Gaussian. Therefore, by our Lemma, if |x| ≪ 1/ν, then the distribution of y conditioned on that

value of x is exp(−Ω(min(1/ν, 1/(νx)))2)-close in L1 to N(0, σ2
1x

2 + σ2
2). Therefore, integrating over x,

the distribution (x, y) is close to the distribution where (y|x) ∼ N(0, σ2x2+σ2) with total L1 error at most

exp(−Ω(1/ν)).
Now, you can think of this pseudodistribution as a mixture of linear regressions, except that the number

of mixing terms in infinite and that it is not normalized. However, it assigns s to be a value bigger than

1/
√
ν with probability only exp(−Ω(1/ν)). Therefore, removing these out and renormalizing, we get an

honest mixture of O(ν−3/2) linear regressions that is exp(−Ω(1/ν))-close to (y|x) ∼ N(0, σ2x2 + σ2) in

total variational distance.

However, if we do this with θ = 0 vs. θ = ν/2, no two parameters in the supports of these mixtures

are closer than ν/2 of each other. Letting ν = k−2/3, this shows that it is impossible to learn the individual

parameters of a mixture of k linear regressions to error better than σ/k2/3 with only exp(o(k2/3)) samples.

9 Mixtures of Hyperplanes

9.1 Setup

Definition 61 (Mixtures of Hyperplanes). An m-dimensional k-mixture of hyperplanes is a distribution

X on Rm with density function F (x) =
∑k

j=1wjN(0,Σj), where for j ∈ [k], we have that wj ≥ 0,
∑k

j=1wj = 1, and Σj = I − vjv
T
j with vj ∈ Rm and ‖vj‖2 = 1.

We study parameter estimation under ∆ pairwise separation for the vi’s. Specifically, we will assume

that we know some ∆ > 0 such that for all i 6= j and σi, σj ∈ {±1}, we have that ‖σivi − σjvj‖2 ≥ ∆.

Note that the vi’s are only identifiably up to sign, which motivates this definition.

For simplicity of the exposition, we will assume uniform weights in this section, i.e., that all the wi’s

are 1/k. The goal of parameter learning in this context is to output a list of unit vectors {ṽj}kj=1 such that

there is a permutation π ∈ Sk and a list of signs σj ∈ {±1} for which vj = σj ṽπ(j) for all j ∈ [k].
Our main result in this section is the following theorem:

Theorem 62 (Parameter Estimation for k-mixtures of Hyperplanes). There is an algorithm that on input

d ∈ Z+, with d = O(log(k)), and sample access to a uniform k-mixture of hyperplanes on Rm with

pairwise separation ∆ > 0, the algorithm outputs the target parameter vectors using N = O(k/∆)O(d) +

O(m2)poly(k log(m)/∆) samples and poly(N) +m2 log(log(m)/∆)(kd)O(d2k1/d) time.

9.2 Moment Computation

The following lemma shows that we can efficiently approximate the tensor
∑k

i=1wiv
⊗2d
i to small error:
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Lemma 63. Suppose that we have sample access to X =
∑k

i=1wiN(0, I − viv
T
i ). There is an algorithm

that, given δ > 0, and d ∈ Z+, draws (md)O(d)/δ2 samples from X, runs in sample-polynomial time, and

outputs an approximation T of the tensor
∑k

i=1wiv
⊗2d
i with expected squared error O(δ2).

Proof. For this section, it suffices to assume that each vi, i ∈ [k] is a vector with ‖vi‖2 ≤ 1 and not

necessarily equal to 1. We note that the 2dth moment tensor of N(0,Σ) is given by

EX∼N(0,Σ)[X
⊗2d] = (2d− 1)!!Sym(Σ⊗d),

where Sym(T )a1,...,a2d is the symmetrization 1
(2d)!

∑
π∈S2d

Taπ(1),aπ(2),...,aπ(2d)
.

From here, it is easy to see that if X ∼ N(0, I − vvT ) that

v⊗2d =

d∑

t=0

(
d

t

)
Sym

(
(I − vvT )⊗t ⊗ I⊗(d−t)

)
=

d∑

t=0

(
d

t

)
1

(2t− 1)!!
Sym

(
E[X⊗2t]⊗ I⊗(d−t)

)
.

Thus, by linearity,

k∑

i=1

wiv
⊗2d
i =

d∑

t=0

(
d

t

)
1

(2t− 1)!!
Sym

(
E[X⊗2t]⊗ I⊗(d−t)

)
.

Using the same arguments as in previous subsections to bound the variance of the relevant term, this quantity

can be efficiently computed to ℓ2-error δ empirically using (dm)O(d)/δ2 samples.

9.3 Dimension Reduction

By Proposition 27, if we compute this for d = 1 and δ a sufficiently small multiple of η2/k (which can be

done in O(m2k2η−4) samples), we can compute a subspace U so that all vi’s are within η/2 of U . Taking

the projection of X onto U , we are left with

k∑

i=1

wiN(0, I − πU (vi)πU (vi)
T ).

9.4 Cover

Next, we can take (2dk/η)O(d) samples and compute an approximation to
∑

πU (vi)
⊗2d with error at most

(η/(2dk))Cd . We could then use Proposition 26 to produce a set of size (2dk/η)O(d2k1/d) so that each vi is

guaranteed to be within η of some hypothesis. However, this will prove to be more expensive than necessary.

Instead for some ǫ > η, we can in compute a cover of size S = (2dk/ǫ)O(d2k1/d) in poly(S) time.

9.5 Clustering

Given what we have so far, we could just take η substantially smaller than ∆, and get a cover at enough

granularity to distinguish our components. However, this will require ∆−d2k1/d time, which we would like

to avoid. Instead, we will have an iterative process by which we locate which hypotheses are actually close

to our parameters and use this to iteratively refine our clusters. In particular, by seeing which hypotheses

are nearly orthogonal to many samples, we can figure out which ones are plausible. By naively clustering

the plausible hypotheses, we can find a size k cover of substantially larger radius. We can then use our

existing approximation to the higher moments to get more precise covers only near these few hypotheses.
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By iterating this technique, we can eventually find a small cover of radius less than ∆/ log(m). This can be

used to reliably classify which component various samples actually came from, and if we find m samples

from the same component, linear algebra can be used to exactly compute the corresponding v up to sign.

Suppose that we have a set C of S samples with the guarantee that each vi is within distance ǫ of some

element of C. We can take N = Ck log(S) samples, for C a sufficiently large constant. We then call a

hypothesis c ∈ C good if, for at least a 1/(2k)-fraction of these samples, we have that |c · x| ≤ 10
√
ǫ. Note

that if c is within distance ǫ of some vi, then it will be good with high probability, because the samples from

that part of the mixture will mostly satisfy the necessary condition. Furthermore, if c is not within O(k
√
ǫ)

of any vi, then with high probability this will hold for at most a 1/(10k) fraction of the samples from each

component, and hence c will not be good. Thus, with high probability, all c within ǫ of some vi are good,

while all good ci are within O(kǫ) of some vi.
We call two hypotheses close if they are within O(kǫ) of each other, and split the good hypotheses into

clusters given by the connected components of the closeness operation. Note that if the high probability

events mentioned above hold, each cluster will have diameter O(k2ǫ), because each good hypothesis must

be within O(kǫ) of some vi, and thus the longest chain of close hypothesis we will need to deal with will

have length O(k).
Next, for each cluster centered at some vector u, since we know an (η/(2dk))Cd approximation to the

tensor
∑

wiπU∩u⊥(vi)
⊗2d, by Proposition 26, as long as ǫ > η, we can compute a set C of size at most

S = (((kǫ)/(ǫ/2))2kd)O(d2k1/d) = (2kd)O(d2k1/d), such that every vi with |πU∩u⊥(vi)| = O(kǫ) has a

hypothesis in c ∈ C within ǫ/4 of πU∩u⊥(vi). Recalling that vi has unit length and is within η/2 of U , if

this were the case, then v will be within distance ǫ/2 of c+ u
√

1− ‖c‖22.

Thus, in time poly(S), we can compute a set of at most S hypotheses, such that every vi within O(kǫ)
of u is within distance ǫ/2 of some hypothesis in our set. By applying this to every cluster, we can compute

a set of size (2kd)O(d2k1/d), such that every vi is within distance ǫ/2 of some element of our set.

Note that what we did here was that given a set of size S, where each vi was within distance ǫ of some

element, we produced another such set, but where each vi was within distance ǫ/2. Repeating this procedure

O(log(1/η)) times, we get a set of size S, where each vi is within distance η of some element of our set.

Next suppose that mini 6=j ‖vi−vj‖2 ≥ ∆ > Ck4 log(km)η, for C sufficiently large. Note that with our

final set of hypotheses, if we compute clusters as described above, the good hypotheses in a given cluster

will be close to one and only one of the vi’s.

Take an additional Cmk samples. For each of these samples, associate it with a cluster if |c · x| ≤√
k log(km)ǫ, for c the representative of that cluster but not for the representative of any other cluster. Note

that, with high probability, all samples x coming from the i-th component satisfy |c · x| ≤
√

k log(km)ǫ,
when c is the representative of their cluster. But this holds with probability at most 1/(2k) when c is the

representative of any other cluster. Thus, with high probability, the set of samples associated with a given

cluster consists of at least m samples coming only from that component of the mixture. Almost certainly

such samples span v⊥i . Thus, from these samples we can recover the components N(0, I − viv
T
i ) with high

probability.

Thus, if we assume that min ‖vi − vj‖2 ≥ ∆ for some known ∆ > 0, we can learn the vi’s with N =

O(kd log(m)/∆)O(d)+O(m2)poly(k log(m)/∆) samples and poly(N)+m2 log(log(m)/∆)(kd)O(d2k1/d)

time.

Given the assumption that d = O(log(k)), this expression can be simplified. In particular, N can be

rewritten as N = (k/∆)O(d) + (log(m))O(d) + O(m2)poly(k log(m)/∆). We note that if k ≫ log(m),
the (log(m))O(d) term is dominated by the (k/∆)O(d) term and can be removed. However, if log(m) ≫ k,

we have that d ≪ log log(m) and the (log(m))O(d) term is dominated by the O(m2) term and can again be

removed. Thus, we can bound N by (k/∆)O(d) +O(m2)poly(k log(m)/∆).
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APPENDIX

A Omitted Proofs and Facts

A.1 Proof of Fact 9

We note that Fact 9 is standard and we include a proof for the sake of completeness. If A ⊆ B ⊆ C are

finite dimensional vector spaces, by the definition of the codimension we have that

codimC(A) = codimB(A) + codimC(B) . (15)

By the subadditivity property of codimension under intersectionwe have that

codimW (V ∩ U) ≤ codimW (V ) + codimW (U) . (16)

An application of (15) for A = U ∩ V , B = U , and C = W gives that

codimU (V ∩ U) = codimW (V ∩ U)− codimW (U) .

Therefore,

codimU (V ∩ U) ≤ codimW (V ) ,

as desired.

A.2 Proof of Lemma 11

Note that a degree-d homogeneous polynomial p on Rn can be expressed as p(x) = 〈A, x⊗d〉, where A is a

real symmetric tensor of dimension n and order d. An application of the Cauchy-Schwarz inequality gives

that |p(x)| ≤ ‖A‖2 ‖x⊗d‖2 for any x ∈ Rn. By definition, we have that ‖p‖ℓ2 = ‖A‖2 and ‖x⊗d‖2 = ‖x‖d2,

giving statement (i).

To prove (ii), we similarly note that |p(x)−p(y)| =
∣∣〈A, x⊗d − y⊗d〉

∣∣ ≤ ‖A‖2 ‖x⊗d−y⊗d‖2, where the

inequality is Cauchy-Schwarz. Recalling that ‖p‖ℓ2 = ‖A‖2, it suffices to bound from above ‖x⊗d−y⊗d‖2.

Note that

x⊗d − y⊗d =

d−1∑

i=0

(
y⊗i ⊗ x⊗(d−i) − y⊗(i+1) ⊗ x⊗(d−i−1)

)
=

d−1∑

i=0

(
y⊗i ⊗ (x− y)⊗ x⊗(d−i−1)

)
.

For all x 6= y ∈ Rn, we can thus write:

‖x⊗d − y⊗d‖2 ≤
d−1∑

i=0

∥∥∥(y⊗i ⊗ (x− y)⊗ x⊗(d−i−1))
∥∥∥
2

=

d−1∑

i=0

‖y‖i2 ‖x− y‖2 ‖x‖d−i−1
2

≤ d ‖x− y‖2 max{‖x‖2, ‖y‖2}d−1 .

This gives (ii) and completes the proof of Lemma 11.
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A.3 Proof of Claim 23

For i ∈ {1, 2} we have that qi(x) =
∑

α:|α|=1 q̂
(α)
i xα and pi(y) =

∑
β:|β|=d−1 p̂

(β)
i yβ , for some q̂

(α)
i , p̂

(β)
i ∈

R. By linearity of the inner product and orthogonality of monomials (Fact 10), it suffices to prove the claim

for the case that the qi’s and pi’s are monomials. Specifically, it suffices to show that 〈xα yβ, xα yβ〉 =
(1/d) 〈xα, xα〉 〈yβ , yβ〉. By viewing α, β as m-dimensional multi-indices with zero coordinates on the

variables corresponding to y and x respectively, we have that

〈xα yβ, xα yβ〉 = (α+ β)!

|α+ β|! =
α!β!

d!
=

β!

d!
=

β!

d|β|! = (1/d) 〈xα, xα〉 〈yβ , yβ〉 ,

where the first equality uses (the second branch of) Fact 10, the second equality uses that α and β have

disjoint supports, the third and fourth use that |α| = 1 and |β| = d− 1 respectively, and the last one follows

from Fact 10. Furthermore, it is clear that if α 6= α′ or β 6= β′ then

〈xαyβ, xα′

yβ
′〉 = 0 = 〈xα, xα′〉〈yβ , yβ′〉 .

This completes the proof of Claim 23.

A.4 Additional Probabilistic Tools

Here we record a few additional useful facts from analysis and probability.

KL Divergence and Pinsker’s Inequality. The KL divergence between P and Q, denoted dKL(P‖Q), is

defined as dKL(P‖Q) =
∫
Rm log dP

dQdP . The following inequality relates this to the total variation distance.

Fact 64 (Pinsker’s inequality). Let P,Q be two probability distributions over Rm. Then dTV(P,Q) ≤√
1
2dKL(P‖Q).

VC Inequality. We will require the VC inequality, a standard result from empirical process theory. To

state this theorem, we will need the classical definition of VC dimension:

Definition 65 (VC dimension). A collection of sets A is said to shatter a set S if for all S′ ⊆ S, there is

an A ∈ A such that A ∩ S = S′. The VC dimension of A, denoted VC(A), is the largest d such that there

exists a S with |S| = d that A shatters S.

For any collection A of measurable subsets in Rm, we define the A-norm, denoted ‖ · ‖A, on measurable

real-valued functions on Rm, to be ‖f‖A = supA∈A |f(A)|.
We are now ready to state the classical version of the VC theorem:

Theorem 66 (c.f. Devroye & Lugosi Theorems 4.3 and 3.2). Let f : Rm → R be a probability measure,

and let f̂n denote the empirical distribution after n independent draws from f . Then

E

[
‖f − f̂n‖A

]
≤
√

VC(A)

n
.

By standard uniform deviation arguments (e.g., McDiarmid’s inequality), Theorem 66 has the following

simple corollary:

Corollary 67. Let f, f̂n,A be as in Theorem 66. Then, for all δ > 0, we have

Pr

[
‖f − f̂n‖A ≥

√
VC(A) + log 1/δ

n

]
≤ δ .
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Basics of Hermite Analysis and Concentration We review the basics of Hermite analysis over Rn under

the standard n-dimensional Gaussian distribution N(0, I). Consider L2(R
n, N(0, I)), the vector space of

all functions f : Rn → R such that Ex∼N(0,I)[f(x)
2] < ∞. This is an inner product space under the inner

product

〈f, g〉 = Ex∼N(0,I)[f(x)g(x)] .

This inner product space has a complete orthogonal basis given by the Hermite polynomials. For univari-

ate degree-i Hermite polynomials, i ∈ N, we will use the probabilist’s Hermite polynomials, denoted by

Hei(x), x ∈ R, which are scaled to be monic, i.e., the lead term of Hei(x) is xi. For a ∈ Nn, the n-

variate Hermite polynomial Hea(x), x = (x1, . . . , xn) ∈ Rn, is of the form
∏n

i=1 Heai(xi), and has degree

‖a‖1 =
∑

ai. These polynomials form a basis for the vector space of all polynomials which is orthogonal

under this inner product. We will use various well-known properties of these polynomials in our proofs.
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