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Abstract

The coded trace reconstruction problem asks to construct a code C ⊂ {0, 1}n such that
any x ∈ C is recoverable from independent outputs (“traces”) of x from a binary deletion
channel (BDC). We present binary codes of rate 1 − ε that are efficiently recoverable from

exp(Oq(log
1/3(1ε ))) (a constant independent of n) traces of a BDCq for any constant deletion

probability q ∈ (0, 1). We also show that, for rate 1− ε binary codes, Ω̃(log5/2(1/ε)) traces are
required. The results follow from a pair of black-box reductions that show that average-case
trace reconstruction is essentially equivalent to coded trace reconstruction. We also show that
there exist codes of rate 1−ε over an Oε(1)-sized alphabet that are recoverable from O(log(1/ε))
traces, and that this is tight.
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1 Introduction

The trace reconstruction problem was first proposed in [Lev01a, Lev01b] and further developed in
[BKKM04]. In trace reconstruction, we wish to recover an unknown binary string x ∈ {0, 1}n given
a few random subsequences of x. Each subsequence, or trace, is generated by sending x through
the binary deletion channel with deletion probability q (BDCq), which independently deletes each
symbol of x with probability q ∈ (0, 1). In particular, the positions of the deleted bits are not
known. For example, deleting either the first or second bit of “110” gives the trace “10”.

Trace reconstruction has been primarily studied in two settings: worst-case, in which the input
string x is chosen adversarially, and average-case, when the input string x is chosen uniformly at
random over all possible n-bit strings. The fundamental question in both settings is to determine
the minimum number of traces T = T (n) needed in order to recover a length n string x correctly
with high probability. In both settings, there is currently an exponential gap (as a function of n)
for bounding T (n) – see Section 1.1 for the best known bounds.

In this work, we consider an emerging [HM14, CGMR20, AVDiF19] variant of the trace recon-
struction known as coded trace reconstruction. In this model, we want the smallest T such that
there exists a high rate code C ⊂ {0, 1}n such that, for an adversarially chosen x ∈ C, we can
recover x with high probability from T traces. This model is directly motivated by DNA stor-
age [YGM17, CGMR20], in which data is stored as multiple encoded strands of DNA. Besides
directly generalizing the trace reconstruction problem, coded trace reconstruction also generalizes
the well-studied problem of determining the capacity of the binary deletion channel.

In this coded setting, we wish to design codes for trace reconstruction with high rate, which is
defined1 to be log |C|/n. We consider the regime in which the rate is 1 − ε (i.e., |C| ≈ 2(1−ε)n),
where ε ∈ (0, 1) is a small constant or shrinking as a function of n. In particular, the key question
we study is as follows.

Question 1.1. For a given ε ∈ (0, 1) and positive integer n, what is the smallest T such that we
can construct a binary code of rate 1− ε and length n recoverable from T traces?

Contributions. We summarize the main contributions of our work below. See Section 1.2 for
formal theorem statements. In all these results, we consider any constant q ∈ (0, 1).

1. Binary codes with constant number of traces. For ε ∈ (0, 1), we construct an infinite
family of binary codes of rate 1 − ε efficiently recoverable from a constant number of traces
over the BDCq (independent of n). This follows as an immediate corollary (Corollary 1.5) of
the following more general result we prove.

2. Black-box upper bounds from average-case trace reconstruction. We show that, if
average-case trace reconstruction on length n strings succeeds with sufficiently high probabil-
ity in T (n) traces, then there exist rate 1−ε codes that are decodable from T (Õq(1/ε)) traces

over the BDCq (Theorem 1.4). In particular, by a result in [HPP18], exp(Oq(log
1/3(1ε ))) <

1
εo(1)

traces suffice (Corollary 1.5).

3. Black-box lower bounds from average-case trace reconstruction. Conversely, we
show that if average-case reconstruction on length n strings requires T (n) traces, then re-
construction of any binary code of rate 1 − ε requires T (Ω̃q(1/

√
ε)) traces over the BDCq

(Theorem 1.8). In particular, by a recent result [Cha19], Ω̃q(log
5/2(1/ε)) traces are required

(Corollary 1.9).

1All logs and exps are base 2 unless otherwise specified.
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4. Near-equivalence of average-case and coded trace reconstruction. The two black-
box reductions together imply that estimating the optimal number of traces for a code of rate
1−ε is equivalent to closing the lower and upper bounds within a polynomial for average-case
trace reconstruction on strings of length poly(1/ε) (Remark 1.11).

5. Optimal number of traces for constant-sized alphabet. We also consider the coded
trace reconstruction problem over larger alphabets than binary. In particular, we give rate2

1− ε codes over an alphabet of size Oε(1) that are efficiently encodable and decodable from
O(log1/q(1/ε)) traces (Theorem 1.12). We show this is optimal up to a constant factor (The-
orem 1.13). This shows that coded trace reconstruction is strictly easier for larger alphabets
than for binary alphabets. To the best of our knowledge, this is the first non-trivial tight
result in any model of trace reconstruction for the deletion channel.

1.1 Related work

We now discuss how our results are situated at the intersection of the trace reconstruction and
coding theory literature.

Classical trace reconstruction. One of the main motivations for trace reconstruction is the
application to DNA sequencing in computational biology [BKKM04]. When DNA is sequenced,
the results may have insertion, deletion, and substitution errors. The original goal of trace recon-
struction was to understand a simplified model of how an unknown piece of DNA can be recovered
from its sequences. Recently, sequencing has been used for DNA storage [YGM17, CGMR20], in
which data is encoded so that it can be stored in DNA. This code needs to be decodable using a
trace reconstruction-like process, while being high rate and using as few traces as possible.

The theoretical worst-case setting of trace reconstruction, recovering an arbitrary binary string,
was originally studied in [Lev01a, Lev01b, BKKM04, HMPW08]. The current state of the art was
derived independently in [DOS17] and [NP17], who show that exp(O(n1/3)) traces suffice for any
constant deletion probability q ∈ (0, 1). A very recent result [Cha20] shows that exp(O(n1/5)) traces
suffice for any q ∈ (0, 1/2]. Several works have also considered lower bounds for worst-case trace
reconstruction [BKKM04, HMPW08, MPV14a, HL+20, Cha19]. The best known lower bound is

Ω
(

n3/2

log16 n

)

traces [Cha19], which has an exponential gap compared to the best known upper bound.

Our work does not use or address worst-case trace reconstruction.
In the average-case setting studied by [HMPW08, MPV14a, PZ17, HPP18], the best upper

bound is given by [HPP18], who showed that, for all deletion probabilities q ∈ (0, 1), a subpolyno-
mial exp(O(log1/3 n)) traces suffice to recover a random string with high probability. Several works
have also considered lower bounds for average-case trace reconstruction [MPV14a, HL+20, Cha19].

The current best bound of Ω
(

logn5/2

(log logn)16

)

traces [Cha19] again has an exponential gap. Our work

shows that resolving the optimal number of traces up to a constant factor for coded trace recon-
struction is essentially equivalent to average-case reconstruction.

Trace reconstruction over a larger alphabet is less well studied. [MPV14b, DOS17] show that it
is possible to turn any trace reconstruction algorithm over a non-binary alphabet into a trace over
a binary alphabet and use binary trace reconstruction to solve the problem, at a small cost to the
failure probability. For coded trace reconstruction, we show that there is a substantial benefit to
using a non-binary alphabet. For constant-sized alphabets, we show a matching upper and lower
bound, determining the optimal number of traces up to a constant factor.

2The rate of a code |C| of length n over an alphabet Σ is
log|Σ| |C|

n
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Coded trace reconstruction. Coded trace reconstruction generalizes the classical questions
above about trace reconstruction. The worst-case trace reconstruction question over a binary
alphabet asks how many traces T (n) are needed to achieve error probability o(1) for the code
C = {0, 1}n. As we show in Section 2.2, average-case trace reconstruction is equivalent to asking
how many traces T (n) are needed to achieve error probability o(1) for a code C of size 2n(1−o(1)).
We use this connection to average-case trace reconstruction to construct much longer codes which
are recoverable from few traces.

Cheraghchi, Gabrys, Milenkovic, and Ribeiro [CGMR20] formulated the coded trace recon-
struction problem considered here. Among other constructions, they give explicit constructions of
binary codes of rate 1−O( 1

log logn) recoverable in exp(O(log log n)2/3) traces, and rate 1−O( 1
logn)

code recoverable in poly log n traces. Our work improves the number of traces and allows a wider
range of rates. For any ε ≥ n−o(1), we show that there exist binary codes of rate 1 − ε recov-
erable in exp(Oq(log

1/3(1ε ))) traces. Taking ε = Θ( 1
log logn) and ε = Θ( 1

logn) gives the respective
improvements to [CGMR20] in the number of traces. We emphasize that all the constructions of
[CGMR20] have polynomial time encoding and decoding, whereas our constructions have polyno-
mial time decoding in all considered parameter settings, but only polynomial time encoding when
ε ≥ Ω( log lognlogn ).

Although our work deals with a constant fraction of deletions, several prior works considered
coding for trace reconstruction for small numbers of deletions. Haeupler and Mitzenmacher [HM14]
showed that, for any fixed integer T , as the deletion probability q approaches 0, there exists a
binary code recoverable from T traces across the BDCq with rate 1 − O(H(qT )), where H is the
binary entropy function. By contrast, our codes handle deletion probabilities arbitrarily close to
1. We show, for example, that there exist binary codes of rate 0.99 recoverable from T = O(1)
traces of the BDC0.99. Abroshan, Venkataramanan, Dolecek, and Guillén [AVDiF19] consider
coding for channels applying a constant number of deletions. They concatenate ℓ Varshamov-
Tenengolts [VT65] codes of length m to construct a code of length mℓ and rate 1 − O( logmm ) for
any m, ℓ ≥ 1. They bound the error probability for recovering for a channel that applies exactly ℓ′

deletions, when ℓ′ < ℓ.

Other trace reconstruction variants. There has recently been a variety of work on other
problems related to trace reconstruction, which our work does not address. [GM19] considers the
problem of recovering a string from the multiset of all its length L substrings. [BCF+19] studies
population recovery under the deletion channel, an extension to trace reconstruction where we
recover an unknown distribution over input strings, rather than a single input string. In [KMMP19],
the authors consider the problems of reconstructing matrices and sparse strings from traces.

Codes for the deletion channel. The optimal rate for coded trace reconstruction with one
trace is also known as the capacity of the binary deletion channel, a well-studied and difficult
problem. The capacity of the binary deletion channel with deletion probability q is clearly at most
1 − q, the capacity of the simpler binary erasure channel. When q → 0, the capacity is known to
approach 1−H(q), where H(q) is the binary entropy function (see [DG01] for the lower bound and
[KM13, KMS10] for the upper bound). When q → 1, the capacity is known to be Θ(1 − q), but
the exact capacity is known only to be roughly between 0.11(1− q) [DM06, DM07], and 0.41(1− q)
[RD15]. A polynomial time encodable/decodable code meeting this up to a constant factor was
given in [GL19, CS20]. The current best capacity upper bounds for intermediate q (e.g., q = 0.5)
are given by [FD10, RD15, Che18]. We incorporate techniques used in constructing codes for the
binary deletion channel in our construction of Theorem 1.4. Our work shows that, at q = 1 − δ,
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if one is allowed to reconstruct from Oδ(1) traces of the BDCq rather than only one trace, the
capacity of the resulting channel improves from Θ(δ) to 0.99.

1.2 Main results

We now define the coded trace reconstruction problem formally and state our main theorems. For
q ∈ (0, 1) and x ∈ {0, 1}n, we let BDCq(x) denote the probability distribution of output of x across
the BDCq. We let {0, 1}∗ denote the set of binary strings of any length.

Definition 1.2. For q, δ ∈ (0, 1) and positive integers n and T , we say a code C ⊂ {0, 1}n is
(T, q, δ) trace reconstructible if there exists a decoding function Dec : ({0, 1}∗)T → C such that, for
all c ∈ C,

Pr
z1,...,zT∼BDCq(c)

[Dec(z1, . . . , zT ) 6= c] < δ.

Typically, we desire δ → 0 as n → ∞. We say C is decodable in time t if Dec can be computed
in time t. We say C is encodable in time t if there exists a bijection Enc : {1, . . . , |C|} → C that
can be evaluated in time t. The following notation, denoting the optimal number of traces for
average-case trace reconstruction, is used throughout the paper.

Definition 1.3. For m ≥ 1, q ∈ (0, 1), and β ≥ 0, let T
(avg)
q,β (m) denote the smallest integer T such

that there exists a trace reconstruction algorithm for the BDCq using T traces that, on a uniformly
random string x of length m, succeeds with probability (over the randomness of the string and
channel) at least 1− 1

3mβ . When β is omitted, we take β = 0.

By repetition of the reconstruction algorithm and subsequently taking a majority vote, we have

T
(avg)
q (m) ≤ T

(avg)
q,β (m) ≤ O(β logm) · T (avg)

q (m), so T
(avg)
q,β (m) and T

(avg)
q (m) are roughly the same

size for constant β.

Binary upper bound. We prove the following upper bound for coded trace reconstruction,
which allows bounds for average-case trace reconstruction to be turned into bounds for coded trace
reconstruction.

Theorem 1.4. For all q, ε ∈ (0, 1), there exists constants n0 = 1/εOq(1), β = Θq(1), nR =

Θq(
1
ε log

1
ε ), and δ = 2−εOq(1)n such that, for all n ≥ n0, there exists a code C ⊂ {0, 1}n of rate

1− ε that is (T
(avg)
q,β (nR), q, δ) trace reconstructible. Furthermore, the encoding can be done in time

polyε,q(n) and trace reconstruction can be done in time poly(n).

We can instantiate Theorem 1.4 using the state-of-the-art construction for average-case trace re-

construction of Holden, Pemantle, and Peres [HPP18], which states that T
(avg)
q (1ε ) ≤ exp(Oq(log

1/3 1
ε )).

Doing so gives the following.

Corollary 1.5. For all q, ε ∈ (0, 1), there exists constants n0 = 1/εOq(1), T = exp(Oq(log
1/3(1ε ))),

and δ = 2−εOq(1)n such that, for all n ≥ n0, there exist codes of length n and rate at least 1− ε that
are (T, q, δ) trace reconstructible.

Remark 1.6. In coding theory, we are sometimes interested in codes with rate quickly approaching
1, and our bounds on the number of traces hold in this setting as well. For every q ∈ (0, 1), Theo-
rem 1.4 and Corollary 1.5 holds for all integers n ≥ 1

εΩq(1)
. Thus, we obtain obtain similar results

for ε going to 0 with n so long as ε ≥ 1
nOq(1)

. Setting ε = O( 1
logn), we have codes of rate 1−O( 1

log n)
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recoverable from exp(Oq(log log n)
1/3) traces with failure probability 2−Õq(n), improving upon the

poly log n number of traces in [CGMR20] needed for the same ε. Our construction also gives a
better bound on the number of traces when ε = O( 1

log logn), improving from exp(Oq(log log n)
2/3)

traces to exp(Oq(log log log n)
1/3) traces.

Remark 1.7. While we improve on the number of traces in [CGMR20] and also give polynomial
time decoding like in [CGMR20], their codes are all polynomial time encodable, whereas ours
are only so when ε ≥ Ω( log lognlogn ): a careful look at our runtimes shows our code is encodable in

time tenc(Θ(1ε log
1
ε )) · polyn, where tenc(n

′) is the amount of time needed to encode a string of
length n′ used for average-case trace reconstruction, as in Lemma 2.7. Naively we upper bound
tenc(n

′) ≤ 2O(n′). Thus, when ε = O( 1
logn), while we improve on the number of traces from

[CGMR20] and also give polynomial time decoding, only [CGMR20] has codes with both encoding
and reconstruction in polynomial time. Furthermore, the constants in our code are quite large,
making them currently impractical. Still, we hope the ideas in our construction could be used for
future efficient constructions.

Binary lower bound. We also prove the following converse, showing that the number of traces
needed for rate 1 − ε trace reconstruction is at least the number of traces needed for average-case
trace reconstruction on length 1

ε1/2−o(1) strings with failure probability 1/3.

Theorem 1.8. For all q, δ ∈ (0, 1), for sufficiently small ε > 0, there exists m = Ω̃q(
1

ε1/2
) such

that, if T = T
(avg)
q (m), all rate 1 − ε codes of sufficiently large length are not (T − 1, q, δ)-trace

reconstructible.

Using Theorem 1.8, we can adapt the state-of-the-art lower bound for average case trace re-
construction into a lower bound for coded trace reconstruction. Recently Chase [Cha19], building

off work of Holden and Lyons [HL+20], showed that T
(avg)
q (m) ≥ Ω̃q((logm)5/2).3 Applying Theo-

rem 1.8 to this result gives us the following lower bound.

Corollary 1.9. For all q, δ ∈ (0, 1) and ε > 0 sufficiently small, there exists T = Ω̃q((log
1
ε )

5/2)
such that all rate 1− ε codes of sufficiently large length are not (T, q, δ)-trace reconstructible.

Remark 1.10. Theorem 1.8 holds when n ≥ Ω̃q(
1
ε2
). Hence, similar to Remark 1.6, the lower

bound of Theorem 1.8 holds for ε approaching 0 with n, so long as ε ≥ Ωq(
1

n1/2 ).

Remark 1.11. Theorem 1.4 and Theorem 1.8 together show that the optimal number of traces
for a code of rate 1 − ε is bounded above and below by the number of traces for average-case
trace reconstruction of a string of length poly(1/ε). More precisely, there exist m1 = Ω̃q(

1√
ε
) and

m2 = Õq(
1
ε ) such that the optimal number of traces for rate 1 − ε coded trace reconstruction

with failure probability 1
3 is between T

(avg)
q (m1) and Oq(log

1
ε ) · T

(avg)
q (m2). Hence any qualitative

improvement to the upper or lower bounds for coded trace reconstruction implies an analogous
improvement for average-case trace reconstruction and vice versa.

Large alphabet upper and lower bounds. So far, we have focused on codes for binary al-
phabets. By defining the deletion channel for strings over larger alphabets in the same way as the
binary deletion channel, one can ask questions for coded trace reconstruction over larger alphabets.

3Here, Ω̃(·) suppresses log log factors. In fact, they show something stronger: even achieving success probability
exp(m−0.15) requires that many traces.
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In this setting, our results are stronger in two ways. Firstly, we are able to show matching upper
and lower bounds for large alphabet trace reconstruction. Secondly, these constructions are simpler
and do not rely on average-case trace reconstruction results.

Theorem 1.12. For all q, ε ∈ (0, 1) and infinitely many n, there exists a rate 1 − ε code over an

alphabet of size 2O( 1
ε
log 1

ε
) that is (T, q, δ) trace reconstructible for T = O(log1/q

1
ε ) and δ = 2−Ω(n)

and which is encodable in time O(n) and decodable in time O(nT ).

And as the following lower bound shows, this is tight in terms of the number of traces.

Theorem 1.13. Any code (over any alphabet) of rate 1− ε is not (⌊log1/q 1
ε⌋, q, o(1)) trace recon-

structible.

We do not know if the dependence on ε for the alphabet size in Theorem 1.12 is optimal. We
leave understanding the trade-off between alphabet size and number of traces as an open question
for future work.

1.3 Techniques

In this section we describe our constructions. We first combine synchronization strings [HS17]
and erasure codes [GI05] to give our large alphabet construction (Theorem 1.12), and match this
construction with a simple lower bound (Theorem 1.13).

Extending these ideas to our binary code construction (Theorem 1.4) requires more work, and
we introduce a novel technique for binary code concatenation, turning our large alphabet code from
Theorem 1.12 into a binary code. This concatenation also leverages codes for the binary deletion
channel (e.g. [GL19]), and bounds for average-case trace reconstruction [HPP18].

We finish this section by describing our lower bound for coded trace reconstruction for the
binary alphabet (Theorem 1.8). Trace reconstruction lower bounds usually find a hard pair of
strings and prove that it takes many traces to distinguish these strings. Coded trace reconstruction
can simply avoid these hard pairs of strings, which makes applying prior results difficult. Using
techniques from information theory, we are able to transfer average-case trace reconstruction lower
bounds to the coded setting.

Large alphabet construction and lower bound. As a warm-up, first observe that any binary
code C ⊂ {0, 1}n can be turned into a code C ′ over an alphabet of size 2n by mapping each
codeword (r1, . . . , rn) to a codeword ((r1, 1), (r2, 2), . . . , (rn, n)) ∈ ({0, 1} × [n])n. This code has
very low rate, but has the useful property that the deletion channel is essentially turned into an
erasure channel: from a received string, we can always recover the indices of the received symbols,
and thus the corresponding ri. If C is a code of rate 1 − ε tolerating a δ = poly(ε) fraction of
erasures, C ′ is recoverable from O(log1/q

1
ε ) traces: with high probability at most qT < δ fraction

of symbols are never received, producing less than δn erasures, which can be corrected.
Our construction for large alphabets (Theorem 1.12) uses the above intuition, but relies on

synchronization strings to avoid ruining the rate of the resulting code. Instead of specifying the
exact position of each symbol, we include a symbol of a synchronization string [HS17] from a much
smaller alphabet of size poly

(
1
ε

)
. We take our starting code C to be over a large alphabet of size

2O( 1
ε
log 1

ε
) and tolerate a δ = poly(ε) fraction of erasures [GI05]. Increasing the size of the alphabet

beyond that of [GI05] helps ensure the correct rate when combining with the synchronization string.
At the cost of a few more erasures, we can convert the outputs on the deletion channel into outputs
with erasures and correct the erasures.
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For the lower bound (Theorem 1.13), any code of rate 1− ε recovering from T traces must also
be able to recover from the erasure channel with erasure probability qT , which has capacity at most
1− qT . Therefore, 1− ε < 1− qT so log1/q

1
ε traces are necessary for the erasure channel, and thus

the deletion channel.

Binary alphabet construction. Our construction for binary alphabets (Theorem 1.4) uses
additional ideas beyond those in the large alphabet construction. Again, we use a high rate error
correcting code with codewords (r1, . . . , rnout) ∈ C and a synchronization string (s1, . . . , snout).
Naively, one might “concatenate” the large alphabet construction with a high rate code of length
nin = O(1ε log

1
ε ) recoverable from a Oε(1) number of traces (which exists by [HPP18]), so that each

pair (ri, si) is encoded in a binary string ai of length nin, and the final codeword is the concatenation
a1|| · · · ||anout . Then, to recover the message, we first use the T traces of the codeword a1|| · · · ||anout

to recover T traces of each ai. As in [CGMR20], we can make sure we know where the traces of
the ai start and finish by adding buffers of long runs on the ends of each ai. From the traces of
each ai, we run the inner trace reconstruction to recover each ai, and thus recover the pair (ri, si).
We then run the outer error correction to fix any incorrectly decoded ri’s.

This construction does not work for a subtle reason. Because the length of each ai is a constant,
we expect a (very small) constant fraction of the ai’s buffers to be deleted, and we also expect a
(very small) constant fraction of ai’s to have deletions applied so that the interior of the ai looks
like a buffer (we call this a “spurious” buffer). From the T traces of the codeword, we try to
recover T traces of each of the ai’s using the buffers, but these T traces, supposedly of ai, might
contain some traces of, e.g., ai−5 or ai+3. Therefore, we need to know the synchronization symbols
si to determine which substrings of each of the T traces belong to which ai. Thus, recovering the
synchronization symbols must happen before running trace reconstruction on the ai’s. However,
the synchronization symbols si are encoded in the ai, so in this construction the synchronization
symbols cannot be recovered until after the trace reconstruction.

To avoid this issue, our construction crucially encodes the content symbol ri and the synchro-
nization symbol si separately. To our knowledge, this kind of concatenation has not appeared in
other constructions of deletion codes. Each content symbol ri is encoded using a high rate code of
length nR = Θ(1ε log

1
ε ) obtained from bounds on average-case trace reconstruction. Each synchro-

nization symbol is encoded in a code of length nS = Θ(log 1
ε ) decodable in, crucially, 1 trace from

the binary deletion channel. We can afford a very low rate code for the synchronization symbols
because they are over a much smaller alphabet than the content symbols. Furthermore, we struc-
ture the encoded content symbols and encoded synchronization symbols so that they are not easily
confused with each other.

For the final decoding algorithm, we first recover the synchronization symbols within each trace.
We then use the synchronization strings to determine the parts of each trace that corresponding
to traces of a particular ai. We then use these traces of ai in trace reconstruction to recover each
content symbol ri. Finally, we use the error correction of the outer code C to fix any mistakes in
this process.

Binary alphabet lower bound. Our binary lower bound (Theorem 1.8) reduces coded trace
reconstruction to constructing a code over an appropriately chosen memoryless channel, i.e. a
channel where each alphabet symbol is corrupted independently or the other symbols. In particular,
we partition the input string x ∈ {0, 1}n into n/m substrings of length m ≈ 1/

√
ε. We then upper

bound the rate of a code C ⊂ ({0, 1}m)n/m over alphabet {0, 1}m recovering a sequence x of length

m substrings from T = T
(avg)
q (m) independent traces of each of the n/m substrings. This is easier
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than recovering x from T independent traces of itself, so any rate upper bound for the code for
n/m substrings yields a rate upper bound for the original coded trace reconstruction problem.

Now, we can view the problem as coding over a discrete memoryless channel: we view our binary
code as a code of length n/m over the input alphabet X = {0, 1}m and the channel produces outputs
in Y = ({0, 1}∗)T , corresponding to T independent traces of the elements of X . By Shannon’s noisy
channel coding theorem [Sha48], the capacity of this channel equals the maximum, over distributions
λ on X , of the mutual information I(Xλ, Yλ), where Xλ ∈ X is sampled from λ and Yλ ∈ Y is a
tuple of T strings each sampled as an independent trace of Xλ. Thus, to upper bound the rate of
C, it suffices to upper bound the mutual information I(Xλ, Yλ) for all distributions λ on X . If the
distribution λ is “far” from the uniform distribution, we can upper bound the mutual information
by the entropy of Xλ ∼ λ. Otherwise, if λ is “close” to the uniform distribution, the mutual
information is limited by the performance of average-case trace reconstruction. In either case, we
get an upper bound on the mutual information which implies an upper bound on the rate of a code
correctable from T traces.

1.4 Paper organization

In Section 2, we define a few building blocks for our work. These include synchronization strings,
codes for the binary deletion channel, and high rate error correcting codes. In Section 3, we
present the proofs of our coded trace reconstruction results over large alphabets in Theorems 1.12
and Theorem 1.13. These proofs are simpler and serve as warm-ups for our results over binary
alphabets, which require additional ideas. In Section 4.1, we sketch the proof of Theorem 1.4,
showing how to convert upper bounds for average-case trace reconstruction into upper bounds
for coded trace reconstruction. In the remainder of Section 4, we formally prove Theorem 1.4. In
Section 5, we prove Theorem 1.8, giving a black-block reduction from lower bounds for average-case
trace reconstruction to lower bounds for coded trace reconstruction. Appendix A fills in various
technical details omitted from the main body.

2 Preliminaries

2.1 Basics

All logs and exps are base 2 unless otherwise specified. For an alphabet Σ, we let Σ∗ denote the
set of strings over Σ of any length. For strings w,w′, we let ww′ denote the concatenation of
strings w and w′. We may also denote the concatenation by w||w′ for clarity. For a string w and
integer i, let wi denote the string ww · · ·w with w repeated i times. A substring is a sequence of
consecutive characters in a string. A run is a maximal substring of a string all of whose bits are
the same. A partial function f : A 9 B is a function from a subset of A to B. For x ∈ (0, 1), let
H(x) = −x log x− (1− x) log(1− x) denote the binary entropy function.

A code C of length n over an alphabet Σ is a subset of Σn. The elements of C are called
codewords, and n is called the length of the code. If |Σ| = 2, we say C is a binary code. The rate

of a code C is defined to be log |C|
n log |Σ| . A code may have an associated message set M and encoding

function Enc : M → C, which is an injective map from messages to codewords. By default,
M = {1, . . . , |C|}. A code is decodable under the BDCq with failure probability δ if it is (1, q, δ)
trace reconstructible. To construct a code means to produce a description of its encoding and
decoding functions. Given two codes C1 ⊂ Σn1

1 and C2 ⊂ Σn2
2 with |Σ1| ≤ |C2|, a concatenation of

C1 and C2 is a code C ⊂ Σn1n2
2 whose codewords are Enc2(c1)|| . . . ||Enc2(cn1) where c1 · · · cn1 ∈ C1,

and where Enc2 : Σ1 → C2 is a fixed injective map.

8



We use the following forms of the Chernoff bound (e.g., [DP09])

Lemma 2.1 (Chernoff bound – discrete). Let X1, . . . ,Xn be independent and identically distributed
random variables with mean µ supported on {0, 1} Then, for δ ≥ 0,

Pr[X1 + · · ·+Xn ≤ (1− δ) · nµ] ≤ e−
δ2

2
·nµ (1)

Pr[X1 + · · ·+Xn ≥ (1 + δ) · nµ] ≤ e−
δ2

2+δ
·nµ. (2)

Lemma 2.2 (Chernoff bound – continuous). Let X1, . . . ,Xn be independent and identically dis-
tributed random variables with mean µ supported on [0, 1] Then, for δ ≥ 0,

Pr[X1 + · · · +Xn ≥ (1 + δ) · nµ] ≤ e−2δ2·µ2n. (3)

2.2 Short codes from average-case trace reconstruction

In this section, we show a connection between short codes for trace reconstruction and average-case
trace reconstruction. We use this connection to construct short, high-rate, trace reconstructible
codes, which are building blocks in our main result.

The current state of the art for the optimal number of traces for average-case trace reconstruc-

tion is due to Holden, Pemantle, and Peres [HPP18], who show the following bound on T
(avg)
q,β (n).

Theorem 2.3 ([HPP18]). For all q ∈ (0, 1) and β ≥ 1, we have T
(avg)
q,β (n) ≤ exp(Oq,β(log

1/3 n)).

Note that the paper [HPP18] only states Theorem 2.3 for failure probability 1/n, but their proof
works in the same way for any polynomial failure probability 1/nβ . There is also a slick way to
amplify the failure probability in average-case trace reconstruction: with polynomially more traces,
we can turn failure probability 1/n into 1/nβ , by appending random bits to each trace and running
trace reconstruction for n′ = nβ (see e.g., Theorem 3.2 of [BCSS19]).

We now have the following two simple observations that results for average-case trace recon-
struction show the existence of codes for coded trace reconstruction and vice versa.

Claim 2.4. If there exists a code of size 2n(1− o(1)) that is (T, q, o(1)) trace reconstructible, then
average case trace reconstruction can be done in T traces with failure probability o(1).

Proof. The probability that a random string is both in the code and is decoded correctly from T
traces is at least 1− o(1).

And conversely,

Lemma 2.5. Let β > 1, q ∈ (0, 1), and T = T
(avg)
q,2β (n). For all positive integers n, there exists a

code C with |C| ≥ (1− n−β)2n that is (T, q, n−β) trace reconstructible.

Proof. For any string x ∈ {0, 1}n, let δx denote the probability that x is recovered incorrectly
using the algorithm solving trace reconstruction for random traces on the BDCq in T traces with

failure probability n−2β. By definition of T = T
(avg)
q,2β (n), we have Ex[δx] ≤ 1

3n
−2β, so, by Markov’s

inequality, Prx[δx ≥ n−β] < n−β. Setting C to be the set of all x with δx ≤ n−β and using the
same trace reconstruction algorithm gives that C is (T, q, n−β)-trace reconstructible, and has at
least (1− n−β)2n codewords.
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We need to combine these short trace reconstruction codes into a longer one in Theorem 1.4.
The following notion helps prevent these short codes from being confused with the other components
of our construction.

Definition 2.6. A string w is m-protected if it can be written as w = 0mw◦1m, where w◦ starts
with a 1, ends with a 0, and every substring of w◦ of length m′ ≥ m/4 has between m′

4 and 3m′

4 1s
(inclusive). In any m-protected string w, we let w◦ denote the string w with the leading m 0s and
the trailing m 1s deleted. We refer to w◦ as the interior of w. A code is m-protected if all of its
codewords are m-protected.

We use short codes which are both m-protected and trace reconstructible in our construction.
The following Lemma (see Appendix A.1 for details) shows that these codes exist.

Lemma 2.7. For all q ∈ (0, 1) and β ≥ 150, there exists an absolute constant ε0 = ε0(β, q) > 0 such

that the following holds. For all ε ∈ (0, ε0) and n ≥ 8β 1
ε log

1
ε , if m = ⌊β log n⌋ and T = T

(avg)
q,6β (n),

there exist codes of length n and rate at least 1 − ε
2 that are m-protected and (T, q, n−3β) trace

reconstructible.

2.3 Synchronization strings

Synchronization strings [HS17] are useful tools for turning synchronization errors (insertions and
deletions) into erasures (replacing symbol with the symbol ‘?’) and substitution errors (replacing
symbol with another symbol). Here, we state the construction of synchronization strings that we
use and a few useful properties.

Definition 2.8 (Insertion-deletion distance). Given two strings S ∈ Σn and T ∈ Σm, the insertion-
deletion distance between S and T , denoted ID(S, T ) is the minimum number of characters that
needed to be inserted into S and deleted from S to produce T .

Insertion-deletion distance is similar to edit distance which allows for substitutions at a cost of
1. Observe that if S and T have disjoint character sets, then ID(S, T ) is the sum of their lengths.

Definition 2.9 (η-synchronization string). String S ∈ Σn is an η-synchronization string if for every
1 ≤ i < j < k ≤ n+ 1, we have that ID(S[i, j), S[j, k)) > (1− η)(k − i).

Theorem 2.10 (Theorems 4.5 and 4.7 of [HS18]). For any η ∈ (0, 1) and all n, one can construct
an η-synchronization string of length n in time poly(n) over an alphabet of size 6000η−4.

We now describe some useful properties of synchronization strings. Informally, a string matching
between two strings describes how to transform one string into the other via insertions and deletions.
We use a definition of string matching equivalent to the one introduced in [HS17].

Definition 2.11 (String matching). For strings c and c′ of length n and n′, respectively, a string
matching is a strictly increasing partial function i∗ : [n′] 9 [n] such that, for all j in the domain of
i∗, we have ci∗(j) = c′j. Given a string matching, an index j ∈ [n′] is called successfully transmitted
if it is in the domain of i∗, and is called an insertion otherwise. An element i ∈ [n] is called a
deletion if it is not in the codomain of i∗.

A (n, δ)-indexing algorithm for a string S takes as input a string S′ of length n′ with an unknown
string matching i∗ : [n′] 9 [n] having at most nδ insertions and deletions and outputs an index
in [n] ∪ {⊥} for every index in [n′]. We say the algorithm decodes index j ∈ [n′] correctly under a
string matching i∗ if it outputs i∗(j) for index j when i∗(j) exists and outputs ⊥ if it does not exist.
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A misdecoding of an algorithm is a successfully transmitted, incorrectly decoded index j ∈ [n′]. An
indexing algorithm is error free if every j ∈ [n′] is correctly decoded or is assigned ⊥.

Haeupler and Shahrasbi proved many results showing that synchronization strings yield indexing
algorithms with few misdecodings. In this work, we use the following two results.

Theorem 2.12 (Theorem 5.10 of [HS17]). Let S be an η-synchronization string of length n. Then
there exists an (n, δ)-indexing algorithm for S guaranteeing at most 2nδ

1−η misdecodings. Furthermore,

this algorithm runs in time O(n4)

Theorem 2.13 (Theorem 6.18 of [HS17]). Let S be an η-synchronization string of length n. There
exists a linear time error-free deletion-only (n, δ)-indexing algorithm for S guaranteeing at most
η

1−η · nδ misdecodings.

2.4 Binary deletion channel codes

The following lemma gives codes for the BDCq with failure probability at most δ and length
O(log δ−1). In our application, we take δ = poly 1

ε , where 1 − ε is the rate of our code. A similar
construction appears in [GL19] (Proof of Theorem 1). We provide a proof in Appendix A.2 for
completeness.

Lemma 2.14. For all q ∈ (0, 1) and positive integers K and m, there exists a binary code C :
[2K ] → {0, 1}3Km where every codeword has exactly 2K runs, all of which have length either m or
2m and decodable in linear time under the BDCq with failure probability at most 6K · 2−(1−q)m/20.

Remark 2.15. The code above has rate 1
3m , which approaches 0 as m grows. Using a construction

similar to [GL19], if we drop the requirement of runs having length exactly m or 2m, it is possible
to achieve a failure probability 2−Ω(m) with a code of rate c(1− q) for some absolute c > 0. We use
the result in Lemma 2.14 as the proof is simpler and the result is sufficient.

2.5 High rate error correcting codes

Our constructions leverage high rate (rate 1 − ε) error correcting codes that are polynomial time
encodable and decodable from a poly(ε) fraction of worst-case substitution errors. For the details
of these constructions and their parameters, see Appendix A.3.

For our binary upper bound, it suffices to use the following variant of a construction by Justesen
[Jus72]. Conveniently, it gives codes for all sufficiently large n, rather than only infinitely many n.
This property is necessary for Remark 1.6, where we wish to take ε → 0 as n → ∞ in our binary
upper bound construction.

Proposition 2.16. For every ε ∈ (0, 12) and Σ whose size is a power of 2, there exists an n0 = Θ̃( 1
ε2
)

such that, for all n ≥ n0, there exists a code of length n over alphabet Σ of rate 1−ε that is encodable
and decodable in time Oε(n

2) from up to a fraction ε2

500 log 1
ε

of worst-case substitution errors.

It would suffice to use Proposition 2.16 for our large alphabet construction (Theorem 1.12) as
well. However, using the following error correcting code of Guruswami and Indyk [GI05] allows
linear time encoding/decoding of our large alphabet construction.

Proposition 2.17. For every ε ∈ (0, 12) and Σ whose size is a power of 2, there exist an infinite
family of codes over Σ of rate 1− ε encodable in linear time and decodable in linear time from up
to a fraction 1

40ε
3 of worst-case substitution errors.
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3 Optimal number of traces for large alphabet codes

We begin by describing the upper and lower bounds for coded trace reconstruction over a large
alphabet. Many of the tools used in this section are important building blocks for the analysis of
coded trace reconstruction over a binary alphabet.

3.1 Upper bound

Proof of Theorem 1.12. We start by defining a few parameters for our construction.
Parameters. Let T = ⌈log1/q 160

ε3
⌉. Let q′ = 1+q

2 and η = ε3

160T . Let ΣS be an alphabet such
that there exist η-synchronization strings over ΣS, and assume |ΣS | is a power of 2. We may take
|ΣS | = Oq(poly

1
ε ) by Theorem 2.10.

Code. Let C1 be a length n erasure code over an alphabet ΣC of size |ΣS|⌈2/ε⌉, rate at least 1− ε
2 ,

and decodable from a ε3

40 fraction of worst-case substitution errors, given by Proposition 2.17. Let
s1, s2, . . . , sn be an η-synchronization string over alphabet ΣS . Let Σ = ΣC ×ΣS . Let C be a code
with encoding M → Σn whose codewords are (c1, s1), . . . , (cn, sn) for codewords (c1, . . . , cn) ∈ C.

Decoding algorithm. For t ∈ [T ], let z(t) = (x
(t)
1 , y

(t)
1 ), . . . , (x

(t)

n(t) , y
(t)

n(t)) be the tth trace, which

has length n(t). Call a trace z(t) for t ∈ [T ] useful if n(t) ≥ (1− q′) · n.
1. For every useful trace z(t), run the error-free deletion-only (n, q′)-indexing algorithm in The-

orem 2.13 to obtain indices i
(t)
1 , . . . , i

(t)

n(t) ∈ [n] ∪ {⊥}.

2. For i = 1, . . . , n, if there exists a useful t ∈ [T ] and index j ∈ [n(t)] such that i
(t)
j = i, then let

ĉi = x
(t)
j . Otherwise, let ĉi =⊥.

3. Run the erasure decoding for C1 on the string (ĉ1, . . . , ĉn) to obtain a message in M.

Efficiency. The code C1 and synchronization string can each be constructed in polynomial
time. Since C1 has linear time encoding, so does our code. Decoding takes time O(n log 1

ε ): the
indexing algorithm for synchronization strings takes linear time by Theorem 2.10 and we run it T
times, and decoding the code C1 from the resulting erasures takes linear time by Proposition 2.17.

Rate. The rate of the code C1 is at least 1 − ε
2 , so there are |ΣC |n(1−

ε
2
) = |Σ|n(1−

ε
2
)· log |ΣC |

log |Σ| ≥
|Σ|n(1−ε) codewords. The inequality follows as log |ΣC |

log |Σ| > 1− ε
2 Hence, the rate of C is at least 1− ε.

Analysis. First, the probability that some trace is not useful is equal to the probability that
a binomial B(n, 1 − q) is at most (1 − q′)n = 1−q

2 n, which, by the Chernoff bound, is at most

e−(1−q)n/8. Thus, the probability that there exists a trace that is not useful is, by the union bound,
at most T · e−(1−q)n/8 ≤ 2−Ω(n).

For all useful t ∈ [T ], z(t) is obtained from applying at most q′n deletions to c. Thus, the
(n, q′) indexing-algorithm in Theorem 2.13 succeeds with at most η

1−η · nq′ < 2ηn misdecodings.

Hence, for all j ∈ [n(t)], we either have i
(t)
j =⊥ or j is correctly decoded, in which case x

(t)
j = cij .

We conclude that, for all i = 1, . . . , n, we either have ĉi = ci or ĉi =⊥. We now simply need to
lower bound the number of ĉi that are not ⊥. If every trace is useful, for each index i with ĉi =⊥,
either (ci, si) is deleted in every trace or some trace has a misdecoding at the image of (ci, si). The
expected number of symbols (ci, si) deleted in every trace is qTn, so by the Chernoff bound 2, the
probability that there are more than 2qTn symbols deleted in every trace is 2−Ωq(n). Across all
traces, the total number of misdecodings is at most T · 2ηn by above. Thus, with probability at
least 1 − 2−Ωq(n), there are at most 2qTn + 2Tηn < ε3

40n indices i with ĉi =⊥. Hence, as the code

C1 tolerates ε3

40 · n errors (and thus erasures), we decode our message correctly.

12



3.2 Lower bound

Proof of Theorem 1.13. For brevity, let DCq denote the deletion channel with deletion probability
q. Let ECq denote the erasure channel with erasure probability q. That is ECq takes an input
string and independently with probability q replaces each symbol with the symbol ‘?’.

We show that a (T, q, o(1)) trace reconstructible code over the DCq is a code for ECqT with block
error probability o(1). To do this, we show that we can turn an output of ECqT into T independent
outputs of DCq. From a single symbol sent over ECqT , one can produce T independent copies of
the symbol sent across ECq: if the output is an erasure, return T erasures, and if the output is the
original symbol, return the output of T independent copies of the symbol over ECq, conditioned
on not all outputs being erasures. Using the above, from a single output from ECqT , one symbol
at a time, produce T independent outputs over ECq, and replace the erasures with deletions to
obtain T independent outputs over DCq, as desired. Since the capacity of ECqT is 1− qT (see e.g.

[Sha48]), we have that our code cannot be (T, q, o(1)) trace reconstructible when 1 − ε > 1 − qT ,
i.e. T < log1/q

1
ε .

4 Upper bound on traces for binary codes

In this section, we prove Theorem 1.4.

4.1 Proof sketch

As the proof of Theorem 1.4 is involved, we start with a sketch of the proof. Throughout this proof
sketch, fix q to be some constant between 0 and 1. We prove Theorem 1.4 when n is any sufficiently
large multiple of a constant (the constant is nR + nS = Θq(

1
ε log

1
ε ) in the proof). To extend to all

sufficiently large n we simply pad the beginning of codewords in an existing code with 0s.
The proof uses concatenation on top of the construction for Theorem 1.12. Recall that the

code in Theorem 1.12 is obtained by “zipping” codewords r1, . . . , rn ∈ Σn
R from a high-rate error

correcting code with a fixed synchronization string s1, . . . , sn ∈ Σn
S , where |ΣR| ≥ |ΣS|Ω(1/ε). We

call the elements of ΣR content symbols and the elements of ΣS synchronization symbols.
A first attempt. Naively, we could concatenate the code in Theorem 1.12 of rate 1 − Θ(ε)

over the large alphabet ΣR × ΣS with binary code CR with encoding EncR : ΣR × ΣS → {0, 1}nR

of length nR = Θ̃(1ε ) and rate 1−Θ(ε) that is decodable from T = exp(O(log1/3 1
ε )) traces, giving

a concatenated code of rate 1 − Θ(ε) (such a code exists by [HPP18]). In this way, the binary
codewords are of the form EncR(r1, s1)|| · · · ||EncR(rn, sn). Then, perhaps, from T traces, we could
run the trace reconstruction algorithm for CR to recover guesses (r̂i, ŝi) for (ri, si), and then run
the outer decoding to correct any errors/insertions/deletions.

The problem and the fix. The problem with the above approach is that we need to recover
the synchronization information of the inner codewords before we run the inner trace reconstruc-
tion algorithm: we do not know, for instance, where the trace of EncR(r1, s1) ends and the trace
of EncR(r2, s2) starts. To fix this, we need the following key idea: separately encode the content
symbol ri and the synchronization symbol si. Further, in order to ensure that the encoded content
bits and the encoded synchronization bits are not confused, we ensure that (1) the encoded syn-
chronization bits only have long runs and (2) the encoded content bits are relatively dense in both
0s and 1s in every small interval (with the exception of one long run at the beginning and end of
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the string). This yields the encoding of (r1, s1), . . . , (rn, sn) depicted below.

0 . . . 0
︸ ︷︷ ︸

m-bit buffer

interior of a1
︸ ︷︷ ︸

nR−2m bits

1 . . . 1
︸ ︷︷ ︸

m-bit buffer
︸ ︷︷ ︸

a1=EncR(r1)

∣
∣
∣

∣
∣
∣ 0 . . . 0

︸ ︷︷ ︸

k1∈{m,2m}
1 . . . 1
︸ ︷︷ ︸

ℓ1

· · · 0 . . . 0
︸ ︷︷ ︸

kK

1 . . . 1
︸ ︷︷ ︸

ℓK
︸ ︷︷ ︸

b1 = EncS(s1): 2K long runs

∣
∣
∣

∣
∣
∣ · · ·

∣
∣
∣

∣
∣
∣ EncR(rn)

∣
∣
∣

∣
∣
∣ EncS(sn)

Code construction sketch. We take our outer error correcting code Cout to have length
nout, rate 1 − Θ(ε), tolerate a Θ(ε3) fraction of worst-case substitution errors, and with alphabet
ΣR equal in size to the number of codewords in CR, which we may take to be a power of two by
arbitrarily throwing out at most half of the codewords. Such a code exists by Proposition 2.17.
We think of nout as growing and all other parameters as fixed. We take a synchronization string
s1, . . . , snout with constant synchronization parameter η = Θ(1). We take the length of the encoding
EncR(ri) of ri to be Θ(1ε log

1
ε ), and the length of the encoding EncS(si) to be Θ(log 1

ε ), so the rate
is at least 1 − ε. We ensure that the encoding of ri is recoverable from T traces with failure
probability at most O(ε100). We also ensure that each encoded word of ri is m-protected in the
sense of Definition 2.6. The average-case trace reconstruction results of Holden, Pemantle, and
Peres [HPP18] implies that such a code exists (see Lemma 2.7). We also ensure that the encoding
of si is recoverable from one trace of the BDCq with failure probability ε100. Note that, since the
synchronization parameter η is a constant, we have that |ΣS | is a constant, so such a code CS with
encoding EncS : ΣS → {0, 1}Θ(log(1/ε)) for the BDCq exists (see Lemma 2.14).

Decoding algorithm sketch. Our decoding algorithm is depicted in Figure 4.1 and divides
into three steps.

1. (Trace alignment) For each t ∈ [T ], for all i ∈ [nout], determine an estimate ̂τ (t)(ai) for the
bits from the ith content symbol

2. (Inner trace reconstruction) For i ∈ [nout], run the trace reconstruction for the code CR on
̂τ (1)(ai), . . . ,

̂τ (T )(ai) to recover an estimate for r̂i.

3. (Outer error correction) Run the error correction for Cout on the estimates r̂1, . . . , r̂nout .

Decoding analysis sketch. Let ai = EncR(ri) and bi = EncS(si) be the binary encodings
of the ith content symbol and ith synchronization symbol, respectively. We call ai a content block
and bi a synchronization block. For t ∈ [T ] and i ∈ [nout], let τ

(t)(ai) and τ (t)(bi) denote the images
of the ith content symbol and ith synchronization symbol, respectively, in the tth trace.

The key to the analysis is that, by using the indexing algorithm for synchronization strings, with

high probability for every trace t, the estimates of all but a O(ε100) fraction of the images ̂τ (t)(ai) are

exactly correct, i.e. satisfy τ (t)(ai) =
̂τ (t)(ai). This is because, with high probability, in each trace,

we can find (1 −O(ε100))nout pairs of strings (x
(t)
j , y

(t)
j ) equal to some (τ (t)(ai), τ

(t)(bi)) by simply

scanning the trace. Then, from the substrings τ (t)(bi), we can recover a 1−O(ε100) fraction of the
synchronization symbols si. Using the synchronization symbols, we run the indexing algorithm for

the synchronization string to match the pairs (x
(t)
j , y

(t)
j ) to the correct index i ∈ [nout], so that, in

each trace, 1−O(ε100) fraction of the pairs are indexed correctly. This produces (1−O(ε100))nout

accurate estimates ̂τ (t)(ai) in every trace.
If the above holds, by the union bound, for all but a O(T · ε100) ≤ O(ε99) (recall T =

exp(Oq(log
1/3(1ε ))) = ε−o(1), and assume ε is sufficiently small) fraction of indices i ∈ [nout], the im-

age of the inner codeword ai is correctly determined in every trace. Among these indices i ∈ [nout],
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Step 1 (t = 1): ̂τ (1)(a1) ̂τ (1)(a2) · · · ̂τ (1)(ai) · · · ̂τ (1)(anout
)

Step 1 (t = 2): ̂τ (2)(a1) ̂τ (2)(a2) · · · ̂τ (2)(ai) · · · ̂τ (2)(anout
)

Step 1 (t = 2): ̂τ (3)(a1) ̂τ (3)(a2) · · · ̂τ (3)(ai) · · · ̂τ (3)(anout
)

...
...

...
...

...
...

Step 1 (t = T ): ̂τ (T )(a1) ̂τ (T )(a2) · · · ̂τ (T )(ai) · · · ̂τ (T )(anout
)

Step 2: r̂1 r̂2 · · · r̂i · · · r̂nout

Step 3: Output in M

Figure 1: Decoding: Inner trace reconstruction and outer error correction. Index i is incorrect
only if (i) some trace t incorrectly guesses the image of ai (shaded red), or (ii) the inner trace
reconstruction procedure DecR fails (X-ed out blue).

we expect the inner trace reconstruction algorithm to fail on a O(δR) fraction, and for the rest of
these indices,

r̂i = Decin(
̂τ (1)(ai), . . . ,

̂τ (T )(ai)) = Decin(τ
(1)(ai), . . . , τ

(T )(ai)) = ri.

Thus, the fraction of indices i ∈ [nout] for which r̂i 6= ri is O(γT + δR) = O(ε99) with high
probability, which, by our choice of parameters, is less than the fraction of substitution errors
tolerated by our outer code. Hence, the outer error correction succeeds with high probability, as
desired. We point out that all of the big-Os in the outer error fractions do not have a dependence
on q, so the parameters of the outer code do not need to depend on q.

4.2 Construction

First we define the code.
Parameters.4 Let β = 104

(1−q)3
, let ε̃0 = ε̃0(β, q) be given by Lemma 2.7. Let nR

def
= ⌊104β 1

ε log(
1
ε )⌋.

This is the length of our inner codeword (“R” for “reconstruction”). Let T
def
= T

(avg)
q,6β (nR). This is

the number of traces we use. Let δR
def
= n−3β

R . This is an upper bound on the failure probability of

the inner code’s reconstruction algorithm. By Theorem 2.3, T ≤ exp(O(log1/3 nR)) < εo(1). Thus,
for ε sufficiently small, we have (i) T < 1

ε , (ii) ε < β−1, and (iii) ε < ε̃0. For the rest of the proof,
assume ε is such that all three items hold.

Letm
def
= ⌊β log nR⌋. This is the size of a “buffer”. Let m′ def= 1

2(1−q)m. This is the threshold for

deciding whether a run in a trace is interpreted as a buffer or not. Let η
def
= 1

3 be the synchronization

parameter. Let K
def
= 20. This is the number of bits in a synchronization symbol. Let nS

def
= 60m.

This is the number of bits in an encoded synchronization symbol. Let δS
def
= 6K · 2−(1−q)m/40.

This is an upper bound on the probability a synchronization symbol is decoded correctly. Let

4We make no attempt to optimize the constants in the proof.
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Parameter Value limε→0 Description

q Deletion probability

ε Constructed code has rate 1− ε

β 104

(1−q)3
Θq(1) Large constant

nR ⌊104β 1
ε log(

1
ε )⌋ Θ̃q(

1
ε ) Content block length

T T
(avg)
q,6β (nR) ε−oq(1) Number of traces used

δR n−3β
R O(ε100) Upper bound on inner code CR’s trace reconstruction

failure probability

m ⌊β log nR⌋ Θq(log
1
ε ) Size of a buffer

m′ 1
2(1− q)m Θq(log

1
ε ) Threshold for interpreting an output run as a buffer

η 1
3 Θ(1) Synchronization parameter

K 20 Θ(1) Number of bits in synchronization symbol: |ΣS | = 2K

nS 60m Θq(log
1
ε ) Number of bits in encoded synchronization symbol

δS 6K · 2−(1−q)m/40 O(ε100) Upper bound on inner code CS’s decoding failure
probability

γ 2−(1−q)m/80 O(ε100) Upper bound on probability content block is “incor-
rectly parsed”

nout → ∞ → ∞ Outer code length

δout
1

50000ε
3 Ω(ε3) Lower bound on the outer code’s error tolerance

γ
def
= 2−(1−q)m/80. This is an upper bound on the probability an inner codeword is “incorrectly

parsed” (defined below). In this way, γT < ε100. Let δout =
1

50000ε
3 be a bound on the outer code’s

error tolerance. Throughout this analysis we think of q, ε, β,m,m′,K, nR, nS , δR, δS , δout, T, γ, η as
fixed, and nout, the length of the outer code defined below, as growing.

Inner codes. By our choice of parameters, β ≥ 150, ε < ε̃0, nR ≥ 8β 1
ε log

1
ε , and T =

T
(avg)
q,6β (nR). By Lemma 2.7 there exists a code CR of length nR and rate 1 − ε

2 with message
set ΣR and encoding function EncR : ΣR → {0, 1}nR all of whose codewords are m-protected (as
m = ⌊β log nR⌋), and that is (T, q, δR) trace reconstructible. By removing at most half of the
codewords (arbitrarily), we may assume the alphabet size |ΣR| is a power of 2, and the rate is at
least 1− ε

2 − 1
nR

. Let the corresponding decoding function be DecR : ({0, 1}∗)T → ΣR.

Let η = 1
3 , and let s1, . . . , sn be an η-synchronization string of length n over alphabet ΣS

of size 2K : such strings exist by Theorem 2.10 and are constructible in polynomial time. By
Lemma 2.14, there exists a code CS with encoding function EncS : ΣS → {0, 1}nS and decoding
function DecS : {0, 1}∗ → ΣS that is decodable under the BDCq with failure probability at most
δS , all of whose codewords start with a 0, end with a 1, and have runs of length exactly m or 2m.

Outer code. Let Cout : M → Σnout
R be a code of length nout and rate 1− ε

10 over the alphabet

ΣR correcting a
( ε
10

)2

500 log 10
ε

> δout fraction of worst-case errors, given by Proposition 2.16.

Encoding. Our encoding is as follows.

1. Take a message and encode it with Cout to obtain symbols r1, . . . , rn ∈ ΣR.

2. Let ai = EncR(ri) and bi = EncS(si). We call ai a content block and bi a synchronization
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block.

3. Concatenate c = a1||b1||a2||b2|| · · · ||an||bn.

0 . . . 0
︸ ︷︷ ︸

m-bit buffer

interior of a1
︸ ︷︷ ︸

nR−2m bits

1 . . . 1
︸ ︷︷ ︸

m-bit buffer
︸ ︷︷ ︸

a1=EncR(r1)

∣
∣
∣

∣
∣
∣ 0 . . . 0

︸ ︷︷ ︸

k1∈{m,2m}
1 . . . 1
︸ ︷︷ ︸

ℓ1

· · · 0 . . . 0
︸ ︷︷ ︸

kK

1 . . . 1
︸ ︷︷ ︸

ℓK
︸ ︷︷ ︸

b1 = EncS(s1): 2K long runs

∣
∣
∣

∣
∣
∣ · · ·

∣
∣
∣

∣
∣
∣ EncR(rn)

∣
∣
∣

∣
∣
∣ EncS(sn)

Length and Rate. The length is nout · (nR + nS). The outer code rate is (1 − ε
10 ), the inner

code CR rate is 1 − ε
2 − 1

nR
, and the synchronization symbols multiply the rate by 1 − nS

nR+nS
>

1− 60β lognR

104β 1
ε
log 1

ε

= 1− ε
10 . The total rate is thus at least (1− ε

10 )(1− ε
2 − 1

nR
)(1 − ε

10) > 1− ε.

Decoding. Let z(1), . . . , z(T ) be the traces. We use the following notation for the “Trace
Alignment” step of the decoding below. The crucial elements of the Trace Alignment step’s analysis
are given in Definition 4.2, Lemma 4.3, and Lemma 4.6. For every trace, call a (maximal) run of
length greater than m′ a decoded buffer. Call every bit in a decoded buffer a decoded buffer bit,
and call all other bits decoded content bits. For every trace, define a decoded content block to be a
substring of the form 0t0w1t1 , where the first t0 0s and the last t1 1s each form a decoded buffer,
and w is a nonempty string of decoded content bits. Note in particular that w must start with a 1
and end with a 0. If two decoded content blocks overlapped, say 0t0w1t1 and 0t

′
0w′1t

′
1 , then 0t0 is

the same run of bits as 0t
′
0 , because w does not consist of any decoded buffers. Likewise, 1t1 is the

same run of bits as 1t
′
1 so w = w′. Therefore, any two decoded content blocks are disjoint.

We can thus enumerate the decoded content blocks of a trace t in order x
(t)
1 , . . . , x

(t)

n(t) , where

n(t) is the number of decoded content blocks in trace t. For each decoded content block x
(t)
j , we

define the associated decoded synchronization block y
(t)
j as the substring between x

(t)
j and x

(t)
j+1 (or

the end of the string, if k = n(t)).5 Our decoding algorithm is as follows.

1. (Trace alignment) For each trace t ∈ [T ], compute ̂τ (t)(a1), . . . ,
̂τ (t)(anout) as follows:

(a) Compute the decoded content blocks x
(t)
1 , . . . , x

(t)

n(t) of z(t) along with their associated

decoded synchronization blocks y
(t)
1 , . . . , y

(t)

n(t) .

(b) For all j ∈ [n(t)], decode a synchronization symbol ŝ
(t)
j

def
= DecS(y

(t)
j ) ∈ ΣS from the

decoded synchronization block.

(c) From the string ŝ1 . . . ŝn(t), obtain indices î
(t)
1 , . . . , î

(t)

n(t) using the (n, 13γ) indexing algo-
rithm in Theorem 2.12.

(d) For j = 1, . . . , n(t), let ̂τ (t)(aîj )
def
= x

(t)
j , and let ̂τ (t)(ai) =⊥ for i /∈ {̂i1, . . . , în(t)}. Here,

̂τ (t)(ai) is a string denoting our guess for the image of ai in the tth trace.

2. (Inner trace reconstruction) For i = 1, . . . , n, let r̂i = DecR(
̂τ (1)(ai), . . . ,

̂τ (T )(ai)) ∈ ΣR.

3. (Outer error correction) Run Decout(r̂1, . . . , r̂n) to obtain a message in M.

5Note that there may be some bits at the beginning of the string that are neither in decoded content blocks nor
in decoded synchronization blocks.
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tth trace: z(t)

Step 1(a): x
(t)
1 , y

(t)
1 x

(t)
2 , y

(t)
2

· · · x
(t)
j , y

(t)
j

· · · x
(t)

n(t), y
(t)

n(t)

Step 1(b): x
(t)
1 , ŝ

(t)
1 x

(t)
2 , ŝ

(t)
2

· · · x
(t)
j , ŝ

(t)
j

· · · x
(t)

n(t), ŝ
(t)

n(t)

Step 1(c): x
(t)
1 , î

(t)
1 x

(t)
2 , î

(t)
2

· · · x
(t)
j , î

(t)
j

· · · x
(t)

n(t), î
(t)

n(t)

Step 1(d): ̂τ (t)(a
î
(t)
1
) ̂τ (t)(a

î
(t)
2
) · · · ̂τ (t)(a

î
(t)
j

) · · · ̂τ (t)(a
î
(t)

n(t)

)

Figure 2: Decoding: Trace alignment

Run time. The encoding runs in time O(n2): the outer encoding runs in time O(n2), and each
of the O(n) inner encodings runs in time Oε(1).

The decoding runs in Oε(n
4) time. Determining the decoded content blocks and decoded

synchronization blocks can be done in linear time O(T · nout) = O(nR · nout) ≤ O(n). Here, we
used that T < nR as ε is sufficiently small, so in particular, this decoding time has no dependence
on q. The code CS is decodable from deletions in linear time by Lemma 2.14, so computing all

synchronization symbols s̃
(t)
j takes O(n) time. The indexing step for the synchronization string

takes time O(n4
out) in each trace, so all indexing steps take time O(T · n4

out) ≤ O(n4). Thus, the

entire trace alignment step takes time O(n4). Each inner trace reconstruction step takes n
1+o(1)
R

time [HPP18], so the entire inner trace reconstruction step (Step 2) takes n
1+o(1)
R · nout ≤ n1+o(1)

time by running the decoder for [HPP18]. The outer error correction (Step 3) runs in time O(n2).
The total decoding time is thus O(n4).

4.3 Analysis

4.3.1 Notation

Throughout this analysis, we think of all the bits of c, z(1), . . . , z(t) as distinct. We may informally
refer to z(t) as “trace t”. Let τ (t) denote the tth deletion pattern, i.e. a map from bits in the
codeword c to bits in tth trace z(t).6 In this way, τ (t)(c) = z(t), and if c′ is a substring of c, then
τ (t)(c′) is a substring of z(t). Throughout the analysis, if w and w′ are substrings of a trace z(t), we
write w =(t) w′ to indicate that they are the same substring of trace z(t).

4.3.2 Correctly parsed indices

Definition 4.1 (Spurious buffer). We say that a spurious buffer of a trace z(t) is a decoded buffer
that is a substring of the image of a content block’s interior, i.e. a substring of τ (t)(a◦i ) for some i.

6Formally, τ (t) is an injective and surjective partial function from the bits of c to the bits of z(t), such that the
undeleted bits of c form the domain of τ (t), and these bits are mapped in order to the bits of z(t).
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Definition 4.2. For t ∈ [T ], i ∈ {0, . . . , nout + 1}, we say index i is intact in trace t if i = 0,
i = n+ 1, or all of the following hold:

1. At least m′ of the m leading 0s of ai are not deleted in τ (t)

2. At least m′ of the m trailing 1s of ai are not deleted in τ (t)

3. τ (t)(ai) has no spurious buffers.

4. The image of all runs of bi under τ
(t) have length at least m′.

5. DecS(τ
(t)(bi)) 6= si

For t ∈ [T ], call an index i ∈ {1, . . . , nout} correctly parsed in trace t if indices i− 1, i, and i+1 are
all intact in trace t, and incorrectly parsed in trace t otherwise.

Note that the event “i is intact in trace t” depends only on the images of ai and bi under
τ (t), and hence all such events are independent. The following lemma justifies the terminology in
Definition 4.2.

Lemma 4.3. If index i ∈ [nout] is correctly parsed in trace t ∈ [T ], there exists an index j ∈ [n(t)]

such that τ (t)(ai) =
(t) x

(t)
j , and τ (t)(bi) =

(t) y
(t)
j .

Proof. First, we show that, since indices i − 1 and i are intact in trace t, the image τ (t)(ai) of
content block ai forms a decoded content block in z(t). The image of the substring bi−1||ai||bi
of our codeword c under the th deletion pattern τ (t) is τ (t)(bi−1)||τ (t)(ai)||τ (t)(bi). Further, the
substring τ (t)(bi−1) ends in a 1 (property 2), the substring τ (t)(ai) begins with a 0 and ends with a
1 (properties 1 and 2), and the substring τ (t)(bi) starts with a 0 (property 1). Hence τ (t)(ai) starts
with a decoded buffer of 0s (property 1), ends with a decoded buffer of 1s (property 2), and has no
other decoded buffers (property 3), so τ (t)(ai) is a decoded content block. Thus, there exists some

j ∈ [n(t)] such that τ (t)(ai) =
(t) x

(t)
j .

Similarly, since indices i and i + 1 are intact in trace t, the substring τ (t)(ai+1) is a decoded
content block by the same reasoning. Since index i is intact in trace t, all the bits in the image
of bi under τ

(t) are decoded buffer bits (property 4), so there are no decoded content bits between
τ (t)(ai) and τ (t)(ai+1). Thus, τ (t)(ai) and τ (t)(ai+1) are consecutive decoded content blocks, so

τ (t)(bi) =
(t) y

(t)
j , as desired.

As an immediate corollary, we have the following lemma.

Lemma 4.4. Let t ∈ [T ]. If there are at least k indices i ∈ [nout] that are correctly parsed in trace

t, then the sequences of pairs (τ (t)(a1), s1), . . . , (τ
(t)(an), sn) and (x

(t)
1 , ŝ

(t)
1 ), . . . , (x

(t)

n(t) , ŝ
(t)

n(t)) have a
common subsequence of length k.

Proof. By Lemma 4.3, the sequences of pairs of strings (τ (t)(a1), τ
(t)(b1)), . . . , (τ

(t)(an), τ
(t)(bn)) and

(x
(t)
1 , y

(t)
1 ), . . . , (x

(t)

n(t) , y
(t)

n(t)) have a common subsequence of length k, namely the subsequence corre-

sponding to the k correctly parsed pairs (τ (t)(ai), τ
(t)(bi)). The result follows as Decin(τ

(t)(bi)) = si

and Decin(y
(t)
j ) = ŝ

(t)
j , so we can apply the Decin operator to the second element in each pair of

each sequence to obtain the desired result.
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4.3.3 Bounding incorrectly parsed indices

The following lemma guarantees that for all t ∈ [T ] and i ∈ [nout], the string τ
(t)(ai) has no spurious

buffers with high probability.

Lemma 4.5. For any t ∈ [T ], i ∈ [nout], the expected number of spurious buffers in τ (t)(ai) is at
most e−(1−q)m/40.

Proof. Call a substring of a content block’s interior a◦i spurious buffer indicator if it has length
exactly ⌊m4 ⌋ and at least one of the following occur:

1. All of the 0s are deleted.

2. All of the 1s are deleted.

3. At least m′ of the 0s are not deleted.

4. At least m′ of the 1s are not deleted.

Consider a spurious buffer of 0s. Let c′ denote the minimal substring of c containing the spurious
buffer’s preimage. In c′, all the 1s are deleted and at least m′ of the 0s are not deleted. Hence,
any substring or superstring of this preimage c′ of length ⌊m4 ⌋ is a spurious buffer indicator. The
same holds for the preimage of a spurious buffer of 1s. Hence, we may identify each spurious
buffer with a corresponding spurious buffer indicator of a◦i of length m

4 (breaking ties arbitrarily).
Because distinct spurious buffers are disjoint, the spurious buffer indicator are distinct. Thus, the
number of runs of decoded buffer bits is bounded above by the number of spurious buffer indicator.
Since ai is m-protected, every substring of length ⌊m4 ⌋ has at least ⌊m

16⌋ 0s and at least ⌊m
16⌋ 1s.

Thus, the probability all the 0s are deleted is at most q−⌊m/16⌋ < e−(1−q)m/20, and the probability
all the 1s are deleted is also at most e−(1−q)m/20. Any run of ⌊m4 ⌋ bits has at most ⌊m4 ⌋ 0s, and
the probability that at least m′ 0s are not deleted is bounded above by the probability that the
binomial random variable B(⌊m4 ⌋, 1− q) is at least m′ = m(1−q)

2 , which, by the Chernoff bound (2)

is at most e−(1−q)⌊m/12⌋. The same probability holds for the 1s. Hence, the probability that any
run of ⌊m4 ⌋ bits is a spurious buffer indicator is at most 4e−(1−q)m/20 , so the expected number of

spurious buffer indicator, and thus the number of spurious buffers, is at most 4nR · e−(1−q)m/20 by
linearity of expectation, which, by definition of m and nR, is at most e−(1−q)m/40.

Lemma 4.6. For t ∈ [T ], i ∈ [nout], the probability index i is intact is at least 1− γ.

Proof. We bound the probability each property in Definition 4.2 fails.

1. Since ai begins with m = 2m′

1−q leading 0s, the expected number of undeleted 0s among the

leading 0s is distributed as the binomial B(m, 1 − q), which has mean 2m′. Hence, the
probability that property 1 fails is at most probability that this binomial is less than m′,
which, by the Chernoff bound (1), is at most e−m′/4.

2. By the same reasoning, the probability that property 2 fails is at most e−m′/4.

3. If property 3 fails, τ (t)(ai) has a spurious buffer. Since Pr[X > 0] ≤ E[X] for all nonnegative
integer random variables X, the probability τ (t)(ai) has a spurious buffer is at most e−(1−q)/40

by Lemma 4.5.

20



4. By construction, bj has 2K runs of length at least m. Property 4 fails if some run has less
than m′ non-deleted bits. The number of non-deleted bits in a run is distributed as one of the
binomials B(m, 1− q) or B(2m, 1− q). Hence, by the Chernoff bound (1) and union bound,
property 4 fails with probability at most 2K · e−m′/4.

5. Property 5 fails with probability at most δS ≤ 6K · 2−(1−q)m/40 by the definition of code CS .

By the union bound, the probability that index i is not intact in trace t is at most

e−m′/4
︸ ︷︷ ︸

property 1

+ e−m′/4
︸ ︷︷ ︸

property 2

+4nR · e−(1−q)m/12

︸ ︷︷ ︸

property 3

+ 2K · e−m′/4
︸ ︷︷ ︸

property 4

+6K · 2−(1−q)m/40
︸ ︷︷ ︸

property 5

≤ (2 + 4nR + 8K)2−(1−q)m/40.

For our choice of nR, we have 2 + 4nR + 8K < 2(1−q)m/80, so the probability index i is not intact
in trace t is at most 2−(1−q)m/80 = γ.

A simple Chernoff bound gives the following corollary.

Corollary 4.7. The probability that there exists a t ∈ [T ] with more than 6γnout incorrectly parsed
indices is at most 2−Ω(nout).

Proof. For t ∈ [T ] and i ∈ [nout], let Et,i denote the event that index i is not intact in trace t.
The events Et,i are all independent, and any such event happens with probability at most γ by
Lemma 4.6. Hence, by the Chernoff bound (2) and the union bound, the probability there exists a
t ∈ [T ] with more than 2γnout events Et,i occurring is at most T · 2−γnout/3. Hence, as the number
of incorrectly parsed indices i in a trace t is at most 3 times the number of non-intact pairs, the
probability that there exists a t with more than 6γnout incorrectly parsed pairs is also at most
T · 2−γnout/3 = 2−Ω(nout).

4.3.4 Most traces of content bits are recovered

Note that a trace may have more than nout decoded content blocks if there are spurious buffers.
The next lemma shows that, with high probability, this does not happen too much.

Lemma 4.8. For any t, with probability 1− exp(−Ω(nout)), we have n(t) ≤ (1 + γ)nout.

Proof. The number of decoded blocks is bounded above by nout plus the number of spurious buffers.
Let Xi denote the number of spurious buffers in block τ (t)(ai). By the definition of spurious buffer,
X1, . . . ,Xnout are all independent. Additionally, each block has at most nR bits, so it certainly has at

most nR spurious buffers. Hence, Xi
nR

∈ [0, 1] for all i. By the Lemma 4.5, E[Xi
nR

] ≤ e−(1−q)m/40

nR
= γ2

nR

for all i = 1, . . . , n. Thus, by the Chernoff bound (3) on the variables X1
nR

, . . . ,
Xnout
nR

, the probability

that X1 + · · ·+Xnout ≥ γnout is at most 2−γ2nout/3 ≤ 2−Ω(nout).

Lemma 4.9. Let t ∈ [T ]. If there are at least (1 − 6γ)nout correctly parsed indices in trace t and

if n(t) ≤ (1 + γ)nout, then there are at least (1− 46γ)nout indices i such that τ (t)(ai) =
̂τ (t)(ai).

Proof. Suppose there are at most γnout incorrectly parsed indices in trace t and also that n(t) ≤
(1 + γ)n. By Lemma 4.4, there is a common subsequence between (τ (t)(a1), s1), . . . , (τ

(t)(an), sn)

and (x
(t)
1 , ŝ

(t)
1 ), . . . , (x

(t)

n(t) , ŝn(t)) of length at least (1 − 6γ)n. Since n(t) ≤ (1 + γ)n, there exists a

string matching between (τ (t)(a1), s1), . . . , (τ
(t)(an), sn) and (x

(t)
1 , ŝ

(t)
1 ), . . . , (x

(t)

n(t) , ŝn(t)) with at most
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6γn deletions and at most 7γn insertions, for a total of at most 13γn insertions or deletions. In
particular, there are at least (1−6γ)nout correctly transmitted indices. This string matching gives a

corresponding string matching between s1, . . . , sn and ŝ
(t)
1 , . . . , ŝ

(t)

n(t) . In this string matching, for the

correctly transmitted symbols j ∈ [n(t)], let i
(t)
j be such that ŝj = s

i
(t)
j

, so that x
(t)
j = τ (t)(a

i
(t)
j

). By

Theorem 2.12, the (n, 13γ)-indexing algorithm for the η-synchronization string s1, . . . , sn guarantees
that there are at most 2

1−η · 13γn < 40γn misdecodings. That is, there are at most 40γn correctly

transmitted indices j = 1, . . . , n(t) such that î
(t)
j 6= i

(t)
j . For the other correctly transmitted indices

j ∈ n(t), we have τ (t)(a
i
(t)
j

) = x
(t)
j = ̂τ (t)(a

î
(t)
j

). Hence, there are at least (1−6γ)n−40γn = (1−46γ)n

indices i such that τ (t)(ai) =
̂τ (t)(ai).

4.3.5 Finishing the proof

We now complete the proof. The next lemma shows that, with high probability, most of the inner
trace reconstructions succeed “in theory”. That is, they succeed assuming the trace alignment
steps recovered the images of the ai’s successfully in all traces.

Lemma 4.10. , With probability 1 − exp(−Ω(nout)), for all but at most 2δR fraction of indices
i ∈ [nout], we have DecR(τ

(1)(ai), . . . , τ
(T )(ai)) = ri.

Proof. Call an index i incorrect if DecR(τ
(1)(ai), . . . , τ

(T )(ai)) 6= ri. The probability an index i
is incorrect is at most δR as CR is (T, q, δR) trace reconstructible and τ (1)(ai), . . . , τ

(T )(ai) are
independent traces of ai. Furthermore, for all i, the events that i is incorrect are independent of
each other. The expected number of incorrect i is at most δRn, so by the Chernoff bound (2), the
probability the number of incorrect i is larger than 2δRn is at most 2−δRn/3, as desired.

Now we can prove Theorem 1.4.

Proof of Theorem 1.4. By Corollary 4.7, Lemma 4.8, and Lemma 4.10, with probability 1−2−Ω(n),
all the following occur:

1. Every trace has at most 6γnout incorrectly parsed indices.

2. For all t ∈ [T ], we have n(t) ≤ (1 + γ)nout.

3. All but at most 2δRnout indices i ∈ [nout] satisfy DecR(τ
(1)(ai), . . . , τ

(T )(ai)) = ri.

We show that, when all of the above occur, the decoding succeeds. By Lemma 4.9 and properties 1

and 2 above, there are at least (1− 46γ)nout indices i such that τ (t)(ai) =
̂τ (t)(ai). Thus, there are

at least (1 − 46γT )nout indices i such that τ (t)(ai) =
̂τ (t)(ai) for all t ∈ [T ]. Hence, by property 3

above, there are at least (1− 46γT − 2δR)nout > (1− δout)nout indices i such that τ (t)(ai) =
̂τ (t)(ai)

for all t ∈ [T ] and DecR(τ
(1)(ai), . . . , τ

(T )(ai)) = ri. For all such indices i, we have

r̂i = DecR

(
̂τ (1)(ai), . . . ,

̂τ (T )(ai)
)

= DecR

(

τ (1)(ai), . . . , τ
(T )(ai)

)

= ri.

As Cout tolerates δoutnout errors, the outer decoding finds the correct message in M, as desired.
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4.4 Extending to all sufficiently large n

For some n0 = poly 1
ε , the above construction gives error probability δ < 1

3 for all n ≥ n0 that
are multiples of nR + nS = Θ(1ε log

1
ε ): synchronization strings exist for all lengths nout, the codes

in Proposition 2.16 exist for all lengths nout at least Ω( 1
ε3 ), and the overall error probability is

bounded by 2−Ω(γ2n), so it suffices to take n ≫ Ω( 1
γ2 ) = poly 1

ε .

To extend to larger values of n, we take our constructed code of length n− (n mod (nR +nS))
and pad the beginning of all codewords with (n mod (nR + nS)) 0s. This multiplies the rate by
at least 1− nR+nS

n < 1− o(ε), so the rate is still at least 1− ε. Lemma 4.3 still holds for all indices

i ∈ [nout] except possibly the first (x
(t)
1 may have some extra 0s padded to τ (t)(a1)), so the number

of incorrect parsed indices is now bounded by 6γnout +1. For n (and thus nout) a sufficiently large
polynomial in 1

ε , the total fraction of incorrect (outer) content symbols r̂i 6= ri is still less than δout
with high probability, so the decoding still succeeds with high probability.

5 Lower bound on traces for binary codes

In this section, we prove the following theorem, which implies Theorem 1.8.

Theorem 5.1. Let q ∈ (0, 1) and ε < 1
4 . Let m = ⌊

√
1/ε

128 log(1/ε)⌋ and T = T
(avg)
q,0 (m) − 1. Then,

for all δ ∈ (0, 1), there exists n0 = Oδ(1/ε
2) such that all rate 1− ε codes of length at least n0 are

not (T, q, δ)-trace reconstructible.

5.1 Mutual information and Shannon’s theorem

Recall that the entropy of a random variable X is H(X)
def
= −

∑

xPr[X = x] logPr[X = x]. For

two random variables X and Y their conditional entropy of Y given X is defined to be H(X|Y )
def
=

∑

y Pr[Y = y] · H(X|Y = y), where H(X|Y = y) is the entropy of the random variable X

given that Y = y. From this, we can define their mutual information I(X,Y ) to be I(X,Y )
def
=

H(X) − H(X|Y ). A discrete memoryless channel has finite input alphabet X and finite output
alphabet Y, and is given by a matrix w(y|x), denoting, for each x ∈ X , a distribution over received
symbols y ∈ Y. With w, any probability distribution over X gives a joint distribution on X ,Y.

Given a discrete memoryless channel w, we say a code C ⊂ X n is decodable with failure proba-
bility at most δ if there exists a map f : Yn → X n such that, for all x1 · · · xn ∈ C, we have

Pr
yi∼w(·|xi)

[f(y1, . . . , yn) 6= x1 · · · xn] ≤ δ.

We need the following result, which provides a strong converse to Shannon’s noisy channel coding
theorem [Sha48].

Theorem 5.2 (e.g. Theorem 3.3.1 of [Wol78]). Let w(·|·) define a discrete memoryless channel
with inputs X and outputs Y. Let

Rcap
def
= max

p(x)
I(X,Y ), (4)

where the maximum is taken over probability distributions on X , and let γ > 0. Then, for all
δ ∈ (0, 1), there exists n0 = Oδ(

1
γ2 ) such that, for all n ≥ n0 there do not exist codes of rate

Rcap+γ
log |X |
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decodable with failure probability at most δ under the channel w(·|·).78

A classic result known as Fano’s inequality can be used to lower bound the mutual information
I(X,Y ) in (4) with a quantity involving the probability of error. The following result by Tebbe
and Dwyer [TI68] helps bound the mutual information I(X,Y ) in the other direction, and is useful
in our proof.

Lemma 5.3 ([TI68]). Let δ ∈ (0, 1). Suppose we are given a probability distribution D over X ×Y
such that, for all maps f : Y → X , we have PrX,Y [f(Y ) 6= X] ≥ δ. Then H(X|Y ) ≥ δ

2 .

5.2 Random to coded lower bound

Let Xm
def
= {0, 1}m and Ym,T

def
= ({0, 1}≤m)T . For all q, m and T , there is a natural channel with

inputs Xm and outputs Ym,T . We induce a joint probability distribution on Xm,Ym,T as follows.
Let λ be a probability density function on Xm. Let Xλ ∼ Xm be the distribution where x is sampled
with probability λ(x). We let Yλ be the output of T independent traces of the sampled x ∼ Xλ

across the BDCq.
Note that since H(Xλ) ≤ m, for any distribution Xλ ∼ Xm, we have that I(Xλ, Yλ) ≤ m. We

show in Lemma 5.4 that if T ≈ T
(avg)
q,0 (m), then this upper bound can be improved by a significant

amount. This upper bound is subsequently used in Theorem 5.1 to show a limitation of the capacity
of coded trace reconstruction.

Lemma 5.4. Let β ≥ 1. Suppose T = T
(avg)
q,0 (m) − 1 for m ≥ 32. For all probability distributions

Xλ on Xm, if Yλ ∈ Ym,T is distributed as T independent traces of Xλ, then

I(Xλ, Yλ) ≤ m− 1

32m logm
.

Proof. Let X ′ be the elements of X with λ(x) ≥ 1
(m logm)2m . We consider two cases.

Case 1: |X ′| ≤ 2m−1/3. We have

I(Xλ, Yλ) ≤ H(Xλ)

=
∑

x∈X ′

λ(x) log
1

λ(x)
+

∑

x/∈X ′

λ(x) log
1

λ(x)

≤ log |X ′|+
∑

x/∈X ′

λ(x) log
1

λ(x)
(5)

≤ log |X ′|+
∑

x/∈X ′

1

(m logm)2m
· log((m logm)2m) (6)

≤ log |X ′|+ 2m · 1

m(logm)2m
log(m(logm)2m)

= m− 1

3
+

m+ logm+ log logm

m logm
< m− 1

3
+

1

4
< m− 1

32m logm
. (7)

In (5) we used that
∑

x∈X λ(x) ≤ 1 and that z log 1
z is concave. In (6) we used that z log 1

z is
increasing for z < 1/3. In (7) we used that m is sufficiently large.

7The quantity R is often referred to as the capacity of the channel
8Typically the normalizing term 1

log |X|
is not present when stating Shannon’s capacity theorem. This is because

the “rate” used in Shannon capacity is often defined as log |C|
n

, whereas the rate for us is defined as log |C|
n log |X|

.
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Case 2: |X ′| ≥ 2m−1/3.

For this case, a similar argument appears in [HL+20] (Proposition 4.1). Let σ(x) be the uniform
distribution on the elements of X . Let µ(x) be the uniform distribution on the elements of X ′.
Consider any trace reconstruction algorithm f : Ym,T → Xm. Note that

Pr[f(Yσ) 6= Xσ] ≤
|X \ X ′|

|X | +
|X ′|
|X | Pr[f(Yµ) 6= Xµ].

By definition, T
def
= T

(avg)
q,0 (m)− 1 and |X ′| ≥ 2−1/3|X |, so

Pr[f(Yµ) 6= Xµ] ≥ 2−1/3 Pr[f(Yσ) 6= Xσ]− (1− 2−1/3) ≥ 2−1/3

3
− 1 + 2−1/3 >

1

8
.

Let ν(x) be the probability distribution on X given by

ν(x)
def
=

λ(x)− 1
2m logmµ(x)

1− 1
2m logm

.

We have |X ′| ≥ 1
2 |X |, so µ assigns probability at most 2

2m to each element of X ′. Since λ assigns
probability at least 1

(m logm)2m to each element of X ′, ν(x) ≥ 0 for all x. Furthermore, it is easy to

check that
∑

x∈X ν(x) = 1, so ν(x) is a legitimate probability distribution. We can sample from
λ as follows: with probability 1

2m logm sample from µ, otherwise, sample from ν. Thus, for any
recovery algorithm f : Ym,T → Xm.

Pr[f(Yλ) 6= Xλ] =
1

2m logm
Pr[f(Yµ) 6= Xµ] +

(

1− 1

2m logm

)

Pr[f(Yν) 6= Xν ]

≥ 1

2m logm
·Pr[f(Yµ) 6= Xµ]

≥ 1

2m logm
· 1
8
=

1

16m logm
.

The last inequality is uses (5.2). Thus, H(Xλ|Yλ) ≥ 1
32m logm by Lemma 5.3. We thus may bound

I(Xλ, Yλ) = H(Xλ)−H(Xλ|Yλ) ≤ log |X | −H(Xλ|Yλ) ≤ m− 1

32m logm
.

This covers all cases, completing the proof.

Proof of Theorem 5.1. Recall m = ⌊
√

1/ε
128 log(1/ε)⌋ and T = T

(avg)
q,0 (m) − 1. Let n′

0 be the constant

given by Theorem 5.2 with the parameter γ
def
= εm. Let n0

def
= m · n′

0 ≤ O( 1
ε2
).

We first prove that codes of rate 1 − 2ε are not (T, q, δ) trace reconstructible when n is any
sufficiently large multiple of m. Let C be a code that is (T, q, δ) trace reconstructible when n ≥ n0

is a multiple of m. We show C must have rate less than 1− 2ε. Let nout
def
= n

m . For each i ∈ [nout],
given a codeword c = (c1, . . . , cn) ∈ C, let Xi denote the string

Xi
def
= c(i−1)m+1, c(i−1)m+2, . . . , cim.

Let Yi ∈ Ym,T be a tuple of T of strings distributed as independent traces of Xi under the BDCq. By
assumption of our code, it is possible to recover c from Y1, . . . , Ynout with failure probability at most
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δ: take the trace-wise concatenation of Y1, . . . , Ynout and use the trace reconstruction algorithm that
is assumed. Hence, the code C, when interpreted as a code in X nout, achieves failure probability δ
on the memoryless channel w(·|·) with inputs Xm and outputs Ym,T where Y is distributed as T
independent traces of X. By Lemma 5.4, we have

max
λ on Xm

I(Xλ, Yλ) ≤ m

(

1− 1

32m2 logm

)

≤ m(1− 4ε),

since ε sufficiently small. By Theorem 5.2, since γ
def
= εm and nout ≥ n′

0, our code C, when
interpreted as a code in X nout, must have rate less than

1

log |X |

(

max
λ on Xm

I(Xλ, Yλ) + γ

)

< 1− 2ε,

as desired.
Now suppose n is not a multiple of m. Then, suppose for contradiction that C ⊂ {0, 1}n is a

code of length n and rate 1−ε that is (T, q, δ) trace reconstructible. By a simple counting argument,
there exists a code C ′ ⊂ {0, 1}n′

of rate 1 − ε− εn′

n−n′ > 1− 2ε and a string w such that c′||w ∈ C
for all c′ ∈ C ′. Furthermore, recovering all codewords of C requires recovering all codewords of
the form c′||w for c′ ∈ C ′. The failure probability of recovering c′ from T traces of c′||w is at least
the failure probability of recovering c′ from T traces of c′, which, as we showed, is more than δ, a
contradiction.

6 Conclusion and Open Problems

In this paper, we considered the coded trace reconstruction problem. We obtain lower and upper
bounds on the problem which show that the average-case trace reconstruction problem is essentially
equivalent to the coded trace reconstruction problem. Even with this contribution, there are still
many questions left unanswered.

1. The most fundamental open question in this space is closing the exponential gaps for the
worst-case trace reconstruction and average-case trace-reconstruction. For worst-case trace re-
construction, the optimal number of traces is between Ω̃(n3/2) and exp(O(n1/3)) (or exp(O(n1/5))
for q ≤ 1/2), and for average-case trace reconstruction, the optimal number of traces is be-
tween Ω̃(log5/2 n) and exp(O(log1/3 n)).

2. One way to generalize the coded trace reconstruction model considered in this paper to con-
sider a more general synchronization channel, such as with insertions and deletions. For
example, such a model could insert k random bits between xi and xi+1 with probability
(1 − q)qk and then apply i.i.d. deletions with probability q. See the recent survey by Cher-
aghchi and Ribeiro [CR20] for an overview of various models for random insertions, deletions,
substitutions and replications. The authors suspect that similar primitives to those used in
this paper could be useful in these more general settings.

3. Another combinatorial variant of this question is necklace reconstruction. This question is
similar to ordinary trace reconstruction, except a random cyclic shift is also applied to each
trace, and the original string needs to be recovered up to an arbitrary cyclic shift. Many
protocols for the traditional trace reconstruction problem exploit that the initial prefix of the
trace can be easily determined by looking at the prefixes of the traces. For necklace recon-
struction, this strategy would no longer work (due to the random shift), so new techniques
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need to be developed. Even beating O((1 − q)−n) traces, the probability of receiving the
whole necklace as a trace, seems nontrivial. A recent paper [NR20] studies this problem.

4. A challenging question in the context of coded trace reconstruction is formulating other
interesting models beyond i.i.d. deletions. Adversarial deletions is not an interesting model
because the adversary could delete the same bits on each trace, reducing the problem to the
deletion code problem. One possibility of such a model would be adversarial deletions subject
to some global constraints–such as the distribution of deletions being approximately k-wise
independent.

5. Another challenge is coming up with deletion models and codes that more accurately cor-
respond to practical use cases and string lengths. Trace reconstruction as used in DNA
computing often considers string of approximately length 100 (e.g., [OAC+18]). Constructing
such codes may require different techniques than those used in this paper.

6. We do not know if Theorem 1.12 achieves the smallest alphabet size for O(log1/q
1
ε ) traces. It

would be interesting to determine the trade-off between alphabet size and number of traces.
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A Omitted Details

A.1 Proof of Lemma 2.7

The following lemma shows that a significant fraction of strings of length n are m-protected for
m ≥ Ω(log n).

Lemma A.1. Let m ≥ 103 be an integer and n ∈ [3m, 2m/150], the number of m-protected codewords
is at least 2n−2m−3.

Proof. There are 2n−2m−2 strings of the form s = 0ms◦1m. Choose one such string at random,
so that s◦ is a uniformly random string in 1||{0, 1}n−2m−2 ||0. For a substring of length m′, the
probability it has at least 3/4 or at most 1/4 fraction of 1s is, by the Chernoff bound (1), at most
2 ·2−m′/16. Since m′ ≥ m/4, this is at most 2 ·2−m/64. Since there are at most n2 substrings of s◦ of
length at least m/4, by the union bound, the resulting string is not m-protected with probability
at most

2n2 · 2−m/64 ≤ 2 · 22m/150−m/64 = 2 · 2−m/300 <
1

2
.

Hence, at least half of all strings of the form 0ms◦1m are m-protected, as desired.

With the protected strings from Lemma A.1 and the codes for trace reconstruction from
Lemma 2.5, we can prove Lemma 2.7. Intuitively, both the codes with protected codewords and
codes which are efficiently trace reconstructible are both very large, so we can find the desired code
in their intersection.

Proof of Lemma 2.7. By Lemma 2.5 with parameter β′ = 3β, there exists a code C1 with |C1| ≥
(1− n−3β)2n = 2n − 2n−3m that is (T, q, n−3β) trace reconstructible.

30



Let C2 be the set of length n strings that are m-protected. Assume ε is sufficiently small so
that n ≥ 61

εm > 3m. Note also that by our choice of n,

2m/150 = 2⌊β logn⌋/150 ≥ 2logn = n.

Then, by Lemma A.1, we have |C2| ≥ 2n−2m−3.
Let C = C1 ∩C2. We have |C| = |C1 ∩C2| ≥ 2n−2m−3 − 2n−3m > 2n−3m, so C has rate at least

1− 3m
n > 1− ε

2 . Furthermore, since C1 is (T, q, n−3β) trace reconstructible, C is as well.

A.2 Proof of Lemma 2.14

In this section, we show how to construct codes for the binary deletion channel of length O(log 1
δ )

and failure probability at most δ.

Proof of Lemma 2.14. Encoding. Map every element σ ∈ [2K ] to a string c̃σ ∈ {0, 1}3K that
starts with a 0, ends with a 1, has K runs are length 1, and has K runs are length 2. There are
(2K
K

)
≥ 2K such strings as each string is uniquely determined by its sequence of run lengths, so

each σ can be assigned to a distinct string. Let cσ be c̃σ with every symbol duplicated m times.
Decoding. To decode a received word s under the BDCq, we first recover c̃σ, and then recover

σ. To recover c̃σ, suppose s is of the form 0k
′
11ℓ

′
1 · · · 0k′K1ℓ′K where k′i, ℓ

′
i ≥ 1 for all i. If s is not of

this form, return an arbitrary symbol in [2K ] (give up). For each i = 1, . . . ,K, if k′i ≥ 1.4(1− q)m,
let x′i = 2, and otherwise let x′i = 1. Similarly, if ℓ′i ≥ 1.4(1 − q)m, let y′i = 2, and otherwise let
y′i = 1. The decoding returns the symbol σ′ such that

c̃σ′ = 0x
′
11y

′
1 · · · 0x′

K1y
′
K .

Analysis. The decoding is clearly linear time. To prove correctness, suppose our input symbol
σ satisfies cσ = 0x11y1 · · · 0xK1yK , where xi, yi ∈ {1, 2} for all i. Let k1, ℓ1, . . . , kK , ℓK denote the
number of bits not deleted in the corresponding runs 0x1 , 1y1 , . . . , 1yK . We bound the probability
each of the following happen.

1. There exists some i such that ki = 0 (ℓi = 0)

2. There exists some i with xi = 1 (yi = 1) such that ki ≥ 1.4(1 − q)m (ℓi ≥ 1.4(1 − q)m).

3. There exists some i with xi = 2 (yi = 2) such that ki < 1.4(1 − q)m (ℓi < 1.4(1 − q)m).

If xi = 1, then ki is distributed as the binomial distribution B(m, 1 − q). If xi = 2, then ki is
distributed as the binomial distribution B(2m, 1− q). In either case, we have

Pr[ki = 0] = Pr[ℓi = 0] ≤ qm < e−(1−q)m < 2−(1−q)m/20

By the Chernoff bound (2), for i such that xi = 1, we have

Pr[xi 6= x′i] = Pr[ki ≥ 1.4(1 − q)m] ≤ e−
0.42

2+0.4
(1−q)m < 2−(1−q)m/20

On the other hand, for i such that xi = 2, we have, by the Chernoff bound (1),

Pr[xi 6= x′i] = Pr[ki < 1.4(1 − q)m] ≤ e−
0.32

2
(1−q)m. < 2−(1−q)m/20

The same probabilities hold for yi’s. Hence the probability any of events 1, 2, or 3 happen is at most
6K · 2−(1−q)m/20, as desired. However, if event 1 does not happen then the decoding guarantees
that k′i = ki and ℓ′i = ℓi for all i. If additionally, events 2 and 3 do not happen, the decoding
guarantees that x′i = xi and y′i = yi, and hence σ′ = σ. Thus, the decoding fails with probability
at most 6K · 2−(1−q)m/40, as desired.
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A.3 High rate error correcting codes

In this section, we show how Proposition 2.17 follows from the construction of Guruswami and
Indyk [GI05]. Guruswami and Indyk prove the following.

Theorem A.2 (Theorem 5 of [GI05]). For every ε > 0 and any R ∈ (0, 1), there exists a family of
binary codes of rate R encodable in linear time and decodable in linear time from up to a fraction
δ of substitution errors, where

δ ≥ max
R<r<1

(1− r − ε)H−1(1−R/r))

2
.

By setting R = 1− ε′ and ε = ε′

10 , and taking r = 1− ε′

2 , we have

δ ≥ 2ε′

5
·H−1

(
ε′

2(1− ε′/2)

)

≥ 2ε′

20
·
(

ε′

2(1− ε′/2)

)2

≥ 2ε′

20
·
(
ε′

2

)2

≥ (ε′)3

40
.

Here we used that H−1(x) ≥ x2

4 for all x ∈ (0, 1).
Further for every Σ whose size is 2ℓ a power of 2, every family binary codes of rate R and

tolerating a δ fraction of worst-case substitution errors can be made into a family of codes over
Σ with the same asymptotic rate and error tolerance: pad each codeword so that its length is a
multiple of ℓ (this has a negligible effect on the asymptotic rate and error tolerance), then map
each length ℓ string b1, . . . , bℓ to a unique element of Σ. For a codeword c = (c1, . . . , cn) ∈ {0, 1}n,
create a codeword over Σn/ℓ whose ith symbol is the image of c(i−1)ℓ+1, c(i−1)ℓ+2, . . . , ciℓ under this

mapping. Then to correct a string in Σn/ℓ, interpret it as a binary string of length n: δ fraction
of substitution errors in a codeword in Σn/ℓ yields at most a δ fraction of worst-case substitution
errors over the underlying binary codeword, which can be corrected by assumption.

We now prove Proposition 2.16. [Jus72]

Lemma A.3. For all positive integers s ≤ m, there exists a linear code C : F2m → F
m+s
2 of

dimension m and length m+ s tolerating 1
2⌊(m+ s) ·H−1( s

m+s)⌋ errors. Furthermore, such a code

can be found in time Õ(22m).

Proof. Since F2m is a F2 vector space, there exists a linear bijection σ : F2m → Fm
2 . Let σ′ : F2m →

Fs
2 be given by taking the first s bits of σ(x). Let e

def
= ⌊(m+ s) ·H−1( s

m+s)⌋.
For α ∈ F2m, let Cα be the code given by the encoding Encα : Fm

2 → F
m+s
2 with

x 7→ (x, σ′(α · σ−1(x))).

Since multiplication by α is bijective and F2 linear, and σ and σ′ are linear, all such codes Cα are
linear. For any x ∈ Fm

2 , for a random α ∈ F2m , we have ασ−1(x) is uniform on Fs
2, so σ′(ασ−1(x))

is uniform on Fs
2. Thus, each element of Fm+s

2 appears exactly 2m−s times in {Cα : α ∈ Fq} Let
Xbad denote the set of nonzero element of Fm+s

2 with Hamming weight at most e. This set has size

at most
∑e

i=1

(
m+s
i

)
< 2(m+s)H( e

m+s
). Thus, for a uniformly random α ∈ Fm

2 , the probability that
there exists a nonzero element of Xbad in Cα

|Xbad| · 2m−s

2m
<

2(m+s)H( e
m+s

)

2s
≤ 1

Hence, there exists some α such that Cα has no elements in Xbad. We can find such an α by brute
force in time Õ(22m): each α takes time Õ(2m) to compute all codewords and check their hamming
weight, and there are 2m such α. In Cα, any two codewords have Hamming distance at least e, so
it tolerates up to e

2 errors.
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Proof or Proposition 2.16. Let m be the smallest integer larger than 12
ε such that m · 2m ≥ n. Let

s be the largest integer such that m
m+s ≥ 1− ε

3 , so that s
m+s ≥ ε

4 .

By Lemma A.3, there exists a code Cin : F2m → F
m+s
2 of dimension m and length m+ s with

minimum distance ⌊(m+ s)H−1( s
m+s)⌋. Let Cout : be a Reed Solomon code over F2m of length

n′ def
= ⌊n/(m+ s)⌋ and dimension k′ = ⌈n′(1− ε

3 )⌉. Let C ⊂ {0, 1}n be the concatenation of Cin

and Cout with n− n′m 0s padded on the end. The code Cin has rate m
m+s > 1− ε

3 . The code Cout

has rate at least 1− ε
3 . The padding of 0s multiplies the rate by n′(m+s)

n ≥ 1− m+s
n > 1− ε

3 . Thus,
the total rate is at least (1− ε

3)
3 > 1− ε.

To decode a received word c1, . . . , cn, we first run the inner decoding to obtain symbols αi ∈ F2m

for i = 1, . . . , n′, where αi is the decoding of c(i−1)(m+s)+1, . . . , ci(m+s) under Cin. Then, we run
the outer decoding on α1, . . . , αn′ to obtain the message. The inner decoding can be computed by
brute force in time O(m2m) < Oε(n). The outer decoding can be computed in time O(n2) using
the Berlekamp-Massey algorithm. Thus, the total decoding run time is Oε(n

2). The encoding takes
time Oε(n

2), and construction takes time Õ(22m) = Oε(n
2) because we need to construct the inner

code.
The outer code tolerates n′−k′ > εn′

4 errors. The inner code tolerates up to 1
2⌊(m+ s)H−1( s

m+s)⌋
errors, and thus every incorrect αi accounts for at least 1

2(m + s)H−1( s
m+s) > 1

2(m + s)H−1( ε4 )

errors. Thus, for the outer decoding to fail, we need at least εn′

4 · 12 (m+s) ·H−1( ε4 ) >
ε2n

500 log 1
ε

errors.

Here, we used that (m+ s)n′ > 0.9n and that H−1(x) > x
2 log(6/x) , so H−1( ε4) >

ε
48 log(1/ε) .
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