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Analysis of Two-variable Recurrence Relations

with Application to Parameterized Approximations

Ariel Kulik∗ Hadas Shachnai†

Abstract

In this paper we introduce randomized branching as a tool for parameterized approxi-
mation and develop the mathematical machinery for its analysis. Our algorithms improve
the best known running times of parameterized approximation algorithms for Vertex Cover
and 3-Hitting Set for a wide range of approximation ratios. One notable example is a sim-
ple parameterized random 1.5-approximation algorithm for Vertex Cover, whose running
time of O∗(1.01657k) substantially improves the best known runnning time of O∗(1.0883k)
[Brankovic and Fernau, 2013]. For 3-Hitting Set we present a parameterized random 2-
approximation algorithm with running time of O∗(1.0659k), improving the best known
O∗(1.29k) algorithm of [Brankovic and Fernau, 2012].

The running times of our algorithms are derived from an asymptotic analysis of a wide
class of two-variable recurrence relations of the form:

p(b, k) = min
1≤j≤N

rj
∑

i=1

γ̄j
i · p(b− b̄ji , k − k̄ji ),

where b̄j and k̄j are vectors of natural numbers, and γ̄j is a probability distribution over rj
elements, for 1 ≤ j ≤ N . Our main theorem asserts that for any α > 0,

lim
k→∞

1

k
log p(αk, k) = − max

1≤j≤N
Mj,

where Mj depends only on α, γ̄j, b̄j and k̄j , and can be efficiently calculated by solving a
simple numerical optimization problem. To this end, we show an equivalence between the
recurrence and a stochastic process. We analyze this process using the method of types, by
introducing an adaptation of Sanov’s theorem to our setting. We believe our novel analysis
of recurrence relations which is of independent interest is a main contribution of this paper.
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1 Introduction

In search of tools for deriving efficient parameterized approximations, we explore the power of
randomization in branching algorithms. Recall that a cover of an undirected graph G = (V,E)
is a subset S ⊆ V such that for any (u, v) ∈ E it holds that S ∩ {u, v} 6= ∅. The Vertex Cover
problem is to find a cover of minimum cardinality for G. In Vertex Cover parameterized by the
solution size, k, we are given an integer parameter k ≥ 1, and we wish to determine if G has a
vertex cover of size k in time O∗(f(k)), for some computable function f .1

Consider the following simple algorithm for the problem. Recursively pick a vertex v of
degree at least 3, and branch over the following two options: v is in the cover, or three of v’s
neighbors are in the cover. If the maximal degree is 2 or less then find a minimal vertex cover
in polynomial time. The algorithm has a running time O∗(1.4656k) (see Chapter 3 in [15] for
more details).

The randomized branching version of this algorithm replaces branching by a random selec-
tion with some probability γ ∈ (0, 1). In each recursive call the algorithm selects either v or
three of its neighbors into the solution, with probabilities γ and 1 − γ, respectively (see Algo-
rithm 1 for a formal description). If v is in a minimal cover then the algorithm has probability
γ to decrease the minimal cover size by one, and probability 1− γ to select three vertices into
the solution, possibly with no decrease in the minimal cover size. A similar argument holds in
case v is not in a minimal cover. This suggests that the function p(b, k) defined in equation (1)
lower bounds the probability the above algorithm returns a cover of size b, given a graph which
has a cover of size k.

p(b, k) = min

{

γ · p(b− 1, k − 1) + (1− γ) · p(b− 3, k)

γ · p(b− 1, k) + (1− γ) · p(b− 3, k − 3) k ≥ 3

p(b, k) = 0 ∀b < 0, k ∈ Z

p(b, k) = 1 ∀b ≥ 0, k ≤ 0

(1)

Thus, for any α > 1, we can obtain an α-approximation with constant probability by
repeating the randomized branching process 1

p(αk,k) times. While p(b, k) can be evaluated using

dynamic programming, for any b, k ≥ 0, finding the asymptotic behavior of 1
p(αk,k) as k → ∞,

which dominates the running time of our algorithm, is less trivial.

1.1 Our Results

In this paper we show that randomized branching is a highly efficient tool in the develop-
ment of parameterized approximation algorithms for Vertex Cover and 3-Hitting Set, leading to
significant improvements in running times over algorithms developed by using existing tools.2

One notable example is a simple parameterized random 1.5-approximation algorithm for Vertex
Cover, whose running time of O∗(1.01657k) substantially improves the currently best known
O∗(1.0883k) algorithm for the problem [10].

To evaluate the running times of our algorithms, we develop mathematical tools for analyzing
the asymptotic behavior of a wide class of two-variable recurrence relations generalizing the
relation in (1). To this end, we introduce an adaptation of Sanov’s theorem [31] (see also [13])
to our setting, which facilitates the use of method of types and information theory for the
first time in the analysis of branching algorithms. We believe our novel analysis of recurrence
relations which is of independent interest is a main contribution of this paper.
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Figure 1: Results for Vertex Cover and 3-Hitting Set. A dot at (α, c) means that the respective
algorithm outputs α-approximation in time O∗(ck) or O∗

(

(c+ ε)k
)

for any ε > 0.

1.1.1 Vertex Cover and 3-Hitting Set

We say that an algorithm A is a parameterized random α-approximation for Vertex Cover if,
given a graph G and a parameter k, such that G has a vertex cover of size k, A returns a
vertex cover S of G satisfying |S| ≤ αk with constant probability λ > 0, and has running time
O∗(f(k)). We refer the reader to [19, 9, 26] for similar and more general definitions.

Vertex Cover: Our results for Vertex Cover include two parameterized random α-approximation
algorithms, EnhancedVC3* and BetterVC (presented in Sections 2 and 4, respectively). Al-
gorithm EnhancedVC3* uses a single branching rule (either v or N(v) are in a minimal cover)
and has the best running times for approximation ratios greater than 1.4. We note that this
simple algorithm outputs a 1.5-approximation in time O∗(1.01657k).

Algorithm BetterVC is more complex. It is based on a parameterized O∗(1.33k) algo-
rithm for Vertex Cover presented in [29]. BetterVC achieves the best running times for
approximation ratios smaller than 1.4. This algorithm shows that applying randomization in
a sophisticated branching algorithm can result in an excellent tradeoff between approximation
and time complexity for approximation ratios approaching 1.

The table below compares the running time of the best algorithm presented in this paper
for a given approximation ratio to the previous best results due to Brankovic and Fernau [10].
A value of c for ratio α means that the respective algorithm yields an α-approximation with
running time O∗(ck). The set of values selected for α matches the set of approximation ratios
listed in [10].

ratio 1.1 1.2 1.3 1.4 1.5 1.666 1.75 1.8 1.9

BF [10] 1.235 1.197 1.160 1.1232 1.0883 1.0396 1.0243 1.0166 1.0051

This paper 1.160 1.096 1.058 1.0331 1.0166 1.0043 1.0016 1.00073 1.000083

Figure 1a shows a graphical comparison between our results and the previous best known
results [10, 19].

1The notation O∗ hides factors polynomial in the input size.
2See Section 1.1.1 for a formal definition of 3-Hitting Set.
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3-Hitting Set: The input for 3-Hitting Set is a hypergraph G = (V,E), where each hyperedge
e contains at most 3 vertices, i.e., |e| ≤ 3. We refer to such hypergraph as 3-hypergraph. We
say that a subset S ⊆ V is a hitting set if, for every e ∈ E, e ∩ S 6= ∅. The objective is to find
a hitting set of minimum cardinality. In the parameterized version, the goal is to determine if
the input graph has a hitting set of at most k vertices, where k ≥ 1 is the parameter.

We say that an algorithm A is a parameterized random α-approximation for 3-Hitting Set
if, given a 3-hypergraph G and a parameter k, such that G has a hitting set of size k, A returns
a hitting set S of G satisfying |S| ≤ αk with constant probability λ > 0, and has running time
O∗(f(k)).

In Section 3 we present a parameterized random α-approximation algorithm for 3-Hitting
Set for any 1 < α < 3. The algorithm, 3HS (Algorithm 5) can be viewed as an adaptation of
EnhancedVC3* to hypergraphs, using the following observation. For any v ∈ V we define the
neighbors graph of v as the hypergraph in which {u,w} (or {u}) is an edge if {u, v, w} ({u, v})
is an edge in the original hypergraph. It holds that for any hitting set S either v ∈ S or S
contains a hitting set of the neighbors graph of v. The actual branching rules of 3HS were
determined via computer-aided search tree generation, using the above observation.

While 3HS may not be the best for approximation ratios close to 1, it yields a significant
improvement over previous results for higher approximation ratios. For α = 2 the running time
is O∗(1.0659k), substantially improving the best known result of O∗(1.29k) due to [9]. Figure 1b
gives a graphical comparison between the running times achieved in this paper and the results
of [9] and [19].

We note that while our algorithms yield significant improvements in running times for both
Vertex Cover and 3-Hitting Set over the algorithms of [9, 10] and [19], the previous algorithms
are deterministic; our algorithms use randomization as a key tool.

1.1.2 Recurrence Relations

The objective of our algorithms is to find a cover of a graph under the restriction that this
cover must not exceed a given budget. The algorithms consist of a recursive application of
a random branching step. Each time the step is executed it adds vertices to the solution,
thereby decreasing the available budget, and possibly reducing the number of vertices required
to complete the solution. To analyze the running times of our algorithms, we need to evaluate
the probability of obtaining a cover satisfying the budget constraint.

Similar to branching algorithms, this property can be formulated using a recurrence relation.
In our case, the recurrence relation defines a function p : Z×N → [0, 1] satisfying the following
equations.3

p(b, k) = min
{1≤j≤N | k̄j≤k}

rj
∑

i=1

γ̄ji · p(b− b̄ji , k − k̄ji )

p(b, k) = 0 ∀b < 0, k ∈ N

p(b, 0) = 1 ∀b ≥ 0,

(2)

where N ∈ N, and for any 1 ≤ j ≤ N the following hold: b̄j ∈ N
rj
+ , k̄j ∈ Nrj and γ̄j ∈ R

rj
+ with

∑rj
i=1 γ̄

j
i = 1. We say that k̄j ≤ k if k̄ji ≤ k ∀1 ≤ i ≤ rj. We refer to the recurrence relation in

(2) as the composite recurrence of {(b̄j , k̄j , γ̄j)|1 ≤ j ≤ N}. Note that for the recurrence to
be properly defined, there must be 1 ≤ j ≤ N such that k̄j ≤ 1 (otherwise the min operation
in (2) may be taken over an empty set). Throughout this section we use the word term when
referring to triplets such as (b̄j, k̄j , γ̄j).

In the context of our randomized branching algorithms, the number of terms, N , corresponds
to the number of possible branching states (note, this is different than the number of branching

3 Throughout the paper we use N (resp. N+) to denote the non-negative (resp. positive) integers (N =
N+ ∪ {0}).
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rules). For example, in Algorithm 1 (See Section 2 and an informal outline at the beginning of
Section 1) there are two possible states: either v is in an optimal cover, or its neighbors are.
Indeed, the analysis of the algorithm utilizes a composite relation with N = 2 as appears in (1).

To evaluate the running times of our algorithms we need to analyze the asymptotic behavior
of p(αk, k) for a fixed α as k grows to infinity. With some surprise, we did not find an existing
analysis of this behavior, even for N = 1. The main technical contribution of this paper is
Theorem 2 that gives such analysis for any N ≥ 1. We emphasize that while the recurrence
relations we want to solve are derived from coverage problems, our solution is generic and can
be used for any composite recurrence.

We say that a vector q̄ ∈ Rr
≥0 is a distribution if

∑r
i=1 q̄i = 1 and use D (·‖·) to denote

Kullback-Leibler divergence [13].4 To state our main result we need the next definition.
For short, associate the term (b̄, k̄, γ̄) with the expression

∑r
i=1 γ̄i · p(b− b̄i, k − k̄i).

Definition 1. Let b̄ ∈ Nr
+, k̄ ∈ Nr and γ̄ ∈ Rr

≥0 with
∑r

i=1 γ̄i = 1. Then for α > 0, the α-
branching number of the term (b̄, k̄, γ̄) is the optimal value M∗ of the following minimization
problem over q̄ ∈ Rr

≥0:

M∗ = min

{

1
∑r

i=1 q̄i · k̄i
D (q̄‖γ̄)

∣

∣

∣

∣

∣

r
∑

i=1

q̄i · b̄i ≤ α
r
∑

i=1

q̄i · k̄i, q̄ is a distribution

}

(3)

If the optimization above does not have a feasible solution then M∗ = ∞.

Our main result is the following.

Theorem 2. Let p be the composite recurrence of {(b̄j , k̄j , γ̄j)| 1 ≤ j ≤ N}, and α > 0. Denote
by Mj the α-branching number of (b̄j, k̄j , γ̄j), and let M = max{Mj |1 ≤ j ≤ N}. If M < ∞
then5

lim
k→∞

log p (⌊αk⌋, k)

k
= −M.

Intuitively, Theorem 2 asserts that p(αk, k) ≈ exp(−M)k. Furthermore, it shows that the
asymptotics of p(αk, k) ≈ exp(−M)k is dominated by the “worst” term in p. We note that
the optimization problem (3) is quasiconvex. Furthermore, all of the numerical problems in
this paper arising as consequences of (3) and Theorem 2 are quasiconvex, and as such can be
solved efficiently using standard tools (these problems involve the optimization of γ̄j as well).
Moreover, most of these problems have a nearly closed form solution.

It is easy to show that for p as defined in (2) and every b, k, n ∈ N+ it holds that p(nb, nk) ≥
(p(b, k))n. This suggests that p can be lower bounded empirically by p(αk, k) = Ω(ck) where

c = (p(αk0, k0))
1
k0 for any fixed k0. Indeed, this simple approach can be used in practice to

derive a fairly good lower bound for p in simple cases such as (1). However, it lacks both the
scale and insight required to derive the algorithmic results presented in this paper. Furthermore,
Theorem 2 readily gives the desired solution, thus eliminating the need for an empirical approach
as described above.

The observation that the asymptotic behavior of p(b, k) is dominated by the highest α-
branching number of the terms in p served as a main guiding principle for designing the al-
gorithms in this paper. Most notably, the 1.5-approximation for Vertex Cover was explicitly
derived by this insight (see Section 2.2). In addition, Theorem 2 reduces the problem of op-
timizing the values of γ̄j of the terms of p (e.g., the selection of γ in (1)) to multiple simple
continuous quasiconvex optimization problems. In contrast, the empirical approach provides
no tools for optimizing the distributions γ̄j . This was crucial for deriving all of our algorith-
mic results, in particular the results for 3-Hitting Set (see Section 3) which involve multiple
(computer generated) branching rules.

4Formally, for c̄, d̄ ∈ Rk define D
(

c̄
∥

∥d̄
)

=
∑k

i=1 c̄i log
c̄i
d̄i
.

5Throughout the paper we refer by log to the natural logarithm.
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The proof of Theorem 2 is given in Section 6, which is written as a stand-alone part in this
paper (with the exception of Section 6.1, which gives some intuition to our proof technique).

We use in the proof of Theorem 2 several self-contained weaker results. The first of these
results, Lemma 12, states that lim infk→∞

1
k log p(⌊α(1 + ε)k⌋, k) ≥ −M(1 + ε) for any ε > 0.

While the proof of this lemma is relatively short, it suffices for deriving all the algorithmic
results presented in this paper.

We note that the requirement that the minimum operation in (2) is only taken over values
of j such that k̄j ≤ k is indeed important: the statement of Theorem 2 may not hold if the
requirement is removed due to several corner cases.6 Algorithmically, the condition k̄j ≤ k
represents the requirement that a branching step cannot lead to a negative size minimum cover
for the remaining graph. Therefore, the condition always holds.

1.2 Tools and Techniques for the Analysis of Recurrence Relations

In the following we give an informal introduction to the tools and ideas used in the proof of
Theorem 2 by studying “simpler” recurrence relations. In particular, we motivate the formula
in (3). Given (b̄j , k̄j , γ̄j) for 1 ≤ j ≤ N as in Theorem 2, define N “simpler” functions pj :
Z× Z → [0, 1] for 1 ≤ j ≤ N , satisfying

pj(b, k) =

rj
∑

i=1

γ̄ji · pj(b− b̄ji , k − k̄ji ), (4)

along with pj(b, k) = 1 for any b ≥ 0 and k ≤ 0, and pj(b, k) = 0 for b < 0. One can easily give

a probabilistic interpretation for pj . For 1 ≤ j ≤ N , let (Y j
n )∞n=1 be a series of i.i.d. random

variables such that Pr(Y j
n = i) = γ̄ji for any 1 ≤ i ≤ rj . It can be easily shown that

pj(b, k) = Pr

(

∃n :
n
∑

ℓ=1

b̄j
Y j
ℓ

≤ b and
n
∑

ℓ=1

k̄j
Y j
ℓ

≥ k

)

. (5)

In the context of Vertex Cover, we can interpret Y j
n = i as the event: “In the nth step of

the algorithm, b̄ji vertices were added to the cover and reduced the minimal vertex cover by

k̄ji ”. Within this interpretation, pj(b, k) is the probability that at some point in the algorithm
execution the size of the minimal vertex cover has decreased by k while at most b vertices were
added to the cover.

We utilize the method of types for analyzing the asymptotic behavior of pj. The type
T (a1, . . . , an) of (a1, . . . , an) ∈ {1, . . . , rj}

n is the relative frequency of each i ∈ {1, . . . , rj}

in (a1, . . . , an); that is, T (a1, . . . , an) = T ∈ R
rj
≥0, where Ti =

|{ℓ| aℓ=i}|
n . It follows that the type

of a sequence is a distribution.
One of the important results attributed to the method of types is Sanov’s theorem [31].

Given a set Q of distributions, i.e., Q ⊆ {q̄ ∈ R
rj
≥0| q̄ is a distribution}, the theorem states

(under a few technical conditions omitted here) that

lim
n→∞

1

n
log Pr

(

T (Y j
1 , . . . , Y

j
n ) ∈ Q

)

= −min
q̄∈Q

D
(

q̄
∥

∥γ̄j
)

. (6)

Informally, equation (6) implies that the probability the type of a random sequence is in Q is
dominated by the distribution in Q closest to the distribution γ̄j from which the sequence is
drawn, with the distance measured by D (·‖·), the Kullback-Leibler divergence.

6 Consider, for example, the redundant recurrence p(b, k) = p(b − 6, k − 4) with p(b, k) = 0 for b < 0 and
p(b, k) = 1 for k ≤ 0 ≤ b. In this case, limk→∞

1
k
log p(⌊1.5k⌋, k) does not exist.
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For β > 0 let Qj
β be the set of all distributions q̄ such that, if a random variable X is sampled

according to q̄ (i.e., Pr(X = i) = q̄i), then it holds that E[k̄jX ] ≥ β and E[b̄jX ] ≤ αβ. Formally,

Qj
β =

{

q̄

∣

∣

∣

∣

∣

rj
∑

i=1

q̄ib̄
j
i ≤ αβ,

rj
∑

i=1

q̄ik̄
j
i ≥ β, q̄ is a distribution

}

.

Therefore, T (a1, . . . , an) ∈ Qj
k
n

iff
∑n

ℓ=1 k̄
j
aℓ ≥

k
n · n = k and

∑n
ℓ=1 b̄

j
aℓ ≤ α k

n · n = αk. The sets

Qj
β can be used to write the event in (5) in terms of types.

pj(αk, k) = Pr

(

∃n :

n
∑

ℓ=1

b̄j
Y j
ℓ

≤ b,

n
∑

ℓ=1

k̄j
Y j
ℓ

≥ k

)

= Pr

(

∃n : T (Y j
1 , . . . , Y

j
n ) ∈ Qj

k
n

)

It follows from Sanov’s theorem that

Pr

(

T (Y j
1 , . . . , Y

j
k
β

) ∈ Qj
β

)

≈ exp

(

−
k

β
· min
q̄∈Qj

β

D
(

q̄
∥

∥γ̄j
)

)

.

Let βj,∗, q̄j,∗ = argmin
β,q̄∈Qj

β

1
βD

(

q̄
∥

∥γ̄j
)

. We can then lower bound pj(αk, k) by focusing on

sequences of length n = k
βj,∗ (we ignore integrality issues in this informal overview).

pj(αk, k) = Pr

(

∃n : T (Y j
1 , . . . , Y

j
n ) ∈ Qj

k
n

)

≥ Pr

(

T (Y j
1 , . . . , Y

j
k

βj,∗

) ∈ Qj
βj,∗

)

≈ exp

(

−k
1

βj,∗
D
(

q̄j,∗
∥

∥γ̄j
)

)

.

It is easy to show that we can limit in (5) the values of n such that cj · b ≤ n ≤ b, where cj is

a constant (in fact, cj =
(

max1≤i≤rj b̄
j
i

)−1
). This can be used to establish a matching upper

bound.

pj(αk, k) = Pr

(

∃n : T (Y j
1 , . . . , Y

j
n ) ∈ Qj

k
n

)

= Pr

(

∃cjαk ≤ n ≤ αk : T (Y j
1 , . . . , Y

j
n ) ∈ Qj

k
n

)

≤
αk
∑

n=cjαk

Pr

(

T (Y j
1 , . . . , Y

j
n ) ∈ Qj

k
n

)

≈
αk
∑

n=cjαk

exp



−k ·
1
(

k
n

) · min
q̄∈Qj

k
n

D
(

q̄
∥

∥γ̄j
)





≤
αk
∑

n=cjαk

exp

(

−k
1

βj,∗
D
(

q̄j,∗
∥

∥γ̄j
)

)

= k · α(1− cj) exp

(

−k
1

βj,∗
D
(

q̄j,∗
∥

∥γ̄j
)

)

.

Hence, we can expect that limk→∞
1
k log pj(αk, k) =

1
βj,∗D

(

q̄j,∗
∥

∥γ̄j
)

. It can be easily shown that

βj,∗ =
∑rj

i=1 q̄
j,∗
i k̄ji (otherwise the values are not optimal, contradicting their definition). Thus,

we conclude that 1
βj,∗D

(

q̄j,∗
∥

∥γ̄j
)

= Mj , where Mj is the α-branching number of (b̄j , k̄j , γ̄j), as
given in Definition 1.

Using the ideas in the above discussion, it can be shown that for any ε > 0,

lim inf
k→∞

1

k
log pj((α+ ε)k, k) ≥ −Mj and lim sup

k→∞

1

k
log pj(αk, k) ≤ −Mj . (7)

While (7) provides a clear indication for the asymptotic behavior of pj(αk, k), it only makes a
little progress in understanding the asymptotics of p(αk, k). By definition, it is expected that
p ≤ pj for 1 ≤ j ≤ N . Thus, following (7) we expect that lim supk→∞

1
k log p(αk, k) ≤ −M ,
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where M = max1≤j≤N Mj . Our main result, stated in Theorem 2, asserts that the asymptotic
behavior of 1

k log p(αk, k) can also be lower bounded by −M .
Similar to the above sketch of analysis for pj, the proof of Theorem 2 uses a probabilistic

analysis based on the method of types. The stochastic process (Xn)
∞
n=1 used in the proof is

one in which Xn is drawn according to one of the distributions γ̄j , where j is selected by an
(arbitrary) function of X1, . . . ,Xn−1. Though the method of types is mostly used in the context
of i.i.d. random variables, we show that some of the basic properties of types (as defined above)
can be adapted to the process (Xn)

∞
n=1. These properties are used for proving Theorem 2.

We note that the proof of Theorem 2 is inspired by the proof of Sanov’s theorem. However,
there is a significant difference between the proofs. In Sanov’s theorem, properties of the set
Q are used to derive a series of types (T j

n)∞n=1 such that T j
n ∈ Q, T n

j is a type of a length n

sequence, and T j
n → q̄j,∗. Then, the probability the type of a length n sequence is in Q is lower

bounded by its probability to be T j
n. The above steps cannot be applied to the new process

(Xn)
∞
n=1, due to the arbitrary distribution by which Xn is drawn. Instead, we use a generative

approach which bears some similarity to the probabilistic method [2] (see Lemma 10).

1.3 Related Work

Vertex Cover is one of the fundamental problems in computer science, and a testbed for new tech-
niques in parameterized complexity. The problem admits a polynomial time 2-approximation,
which cannot be improved under the Unique Games Conjecture (UGC) [25]. Vertex Cover has
been widely studied from the viewpoint of parameterized complexity. We say that a problem
(with a particular parameter k) is fixed-parameter tractable (FPT) if it can be solved in time
f(k) ·poly(n), where f is some computable function depending only on k. Vertex Cover param-
eterized by the solution size is well known to be FPT (see, e.g., [29]). The fastest running time
of an FPT algorithm for the problem is O∗(1.273k) due to Chen et at. [12]. It is also known
that there is no 2o(k) ·poly(n) algorithm for the problem, under the exponential time hypothesis
(ETH).

In [7] it was shown that there is no (7/6− ε) approximation for Vertex Cover with running

timeO(2n
1−δ

) for any δ > 0 under ETH. In [28] Manurangsi and Trevisan showed a (2− 1/O(r))-
approximation for the problem with running time O∗(exp(n · 2−r2)), improving upon earlier
results of [4]. To the best of our knowledge, the existence of a (2− ε)-approximation for Vertex
Cover with running time 2o(n) is still open.

The above results suggest that for α < 7/6 subexponential α-approximation algorithms are
unlikely to exist, and even as the approximation ratio approaches 2 the barrier of exponential
running time remains unbreached. This motivates our study of parameterized α-approximation
algorithms for Vertex Cover, for 1 < α < 2, whose running times are exponential in the solution
size, k.

Brankovic and Fernau presented in [10] a branching algorithm that yields a parameterized
1.5-approximation for Vertex Cover with running time O∗(1.0883k). In [19] Fellows et at.
presented an α-approximation algorithm whose running time is O∗(1.273(2−α)k), for any 1 ≤
α ≤ 2. A similar result was obtained in [8] using a different technique.

Similar to Vertex Cover, 3-Hitting Set cannot be approximated within a constant factor
better than 3 under UGC [25], and there is no subexponential algorithm for the problem
under ETH. The best known parameterized algorithm for the problem has running time of
O∗(2.076k) [32]. Previous works on parameterized approximation for 3-Hitting Set resulted
in an α-approximation in time O∗(2.076k(3−α)/2) due to [19], for any 1 ≤ α ≤ 3, and a 2-
approximation in time O∗(1.29k) using a branching algorithm by Brankovic and Fernau [9].

Randomized branching is a well known approach for algorithm design (see, e.g, [5, 6, 27]).
Often, the analysis of such algorithms is narrowed to evaluating the probability that in every
branching step the algorithm makes a correct branching choice (in contrast, in our analysis the
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aim is to bound the number of incorrect steps). This leads to a one-variable recurrence which
can be simply solved. Randomized branching has been used for approximation in [4], along
with a tailored analysis for the approximation ratio.

The idea of sampling leaves from a branching tree was studied in the past from a different
perspective. Specifically, it was used in [16] to justify one-sided probabilistic polynomial al-
gorithms as a computational model for branching algorithms. Within this model, the authors
derived lower bounds for branching algorithms.

Previous works on parameterized approximations for both Vertex Cover and 3-Hitting Set
either considered approximative preprocessing [19] or used approximative (worsening) steps
within branching algorithms [9, 10]. While these techniques use the approximative step explicitly
at given stages of the algorithm execution, in randomized branching the approximative step
takes the form of an incorrect branching decision, which may add unnecessary vertices to the
solution. As incorrect branching is not restricted to a specific stage, a degree of freedom is
added to the number of good paths within the branching tree. This degree of freedom in turn
increases the probability of finding an approximate solution. This gives some intuition to the
improved performance of our algorithms.

1.3.1 Recurrence Relations and the Method of Types

The analysis of single variable recurrence relations (e.g., f(n) =
∑N

i=1 f(n−ai)) is a cornerstone
in the analysis of parameterized branching algorithms that is often included in introductory
textbooks on parameterized algorithms (see, e.g., [29, 15]).

In [18] Eppstein introduced a technique for computing the asymptotic behavior of multi-
variate recurrences of the form f(x) = maxi

∑

j f(x − δi,j), where f : Zd → Z and δi,j ∈ Nd.

For any t ∈ Nd, the technique shows how to compute a constant c such that f(nt) ≈ cn up to a
polynomial factor. The technique is based on a tight reduction of the multivariate recurrence to
a solvable single variable recurrence. A matching lower bound to the result of the quasiconvex
program is derived using a random walk, which bears some similarity to the reduction used in
this paper from a recurrence to a stochastic process. Nevertheless, the analysis in this paper is
significantly different.

The result in [18] is commonly used in the analysis parameterized algorithms, and specifically
within the context of Measure and Conquer [21]. To the best of our knowledge, these works
commonly utilize solutions for recurrences, in a wise and sophisticated manner, to derive running
times for algorithms, but do not deal with solving the recurrence relations themselves.

We emphasize that the recurrences considered in [18] are different from the recurrences
studied is this paper. The difference seems to be more than merely technical. The recurrences
in [18] commonly measure the size of a branching tree, while our recurrence relations are aimed
at bounding the number of leaves adhering to certain property within the tree. In fact, the size
of the branching trees considered in this paper can be easily evaluated using standard single
variable recurrence relations. We are not aware of other works relating to the analysis of similar
multivariate recurrences.

The method of types is a powerful technique developed mostly within the context of infor-
mation theory in a line of works, starting from the early works of Sanov [31] and Hoeffding [23].
The current form of the method is attributed to the works of Csiszar et al. [14]. Along with
Sanov’s theorem, the prominent results attained using the method of types are universal block
coding and hypothesis testing (we refer the reader to the survey in [14] and to Chapter 11 in
[13]). Though the method of types is considered a basic tool in information theory, it seems
much less known in theoretical computer science.
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1.4 Organization

Section 2 includes a technical introduction to randomized branching using several algorithms
for Vertex Cover which gradually reveal the main algorithmic ideas presented in this paper.
The algorithmic results for 3-Hitting Set and a more sophisticated algorithm for Vertex Cover
are given in Sections 3 and 4. An overview of the numerical tools used to calculate the running
times of our algorithms, based on Theorem 2, is given in Section 5. Section 6 gives the proof of
Theorem 2. Finally, in Section 7 we discuss open problems and some directions for future work.

2 Our Technique: Warm-up

We start by completing the analysis of the algorithm presented in Section 1. A formal description
of the algorithm, VC3γ , is given in Algorithm 1. While the performance of Algorithm 1 can
be significantly improved, as we show below, it demonstrates the main tools and concepts
developed in this paper, and its analysis involves only few technical details. Interestingly,
already this simple algorithm improves the previous state of the art results for a wide range of
approximation ratios. Sections 2.1 and 2.2 present variants of Algorithm 1, which perform even
better. Each section introduces some new ideas. The results of the algorithms presented in this
section are depicted in Figure 2.

Clearly, Algorithm 1 has a polynomial running time. Also, it always returns a vertex cover
of the input graph G. Let Gk be the set of graphs with a vertex cover of size k or less. Also, let
Pγ(b, k) be the minimal probability that Algorithm 1 returns a solution of size at most b, given
a graph G ∈ Gk. That is, Pγ(b, k) = minG∈Gk

Pr [ |VC3γ(G)| ≤ b ]. By the arguments given in
Section 1, it is easy to prove that P (b, k) ≥ pγ(b, k), where pγ(b, k) is defined by the following
recurrence relation.

pγ(b, k) = min

{

γpγ(b− 1, k − 1) + (1− γ)pγ(b− 3, k) k ≥ 1

γpγ(b− 1, k) + (1− γ)pγ(b− 3, k − 3) k ≥ 3

pγ(b, k) = 0 ∀b < 0

pγ(b, k) = 1 ∀b ≥ 0, k = 0

(8)

That is, pγ is the composite recurrence of
{

(b̄j , k̄j , γj)| j = 1, 2
}

with b̄1 = b̄2 = (1, 3), γ̄1 =
γ̄2 = (γ, 1−γ), k̄1 = (1, 0) and k̄2 = (0, 3). Note that in this case N = 2 and r1 = r2 = 2 (recall
that a composite recurrence is defined in Section 1.1.2).

Hence, by repeating the execution of Algorithm 1 pγ(b, k)
−1 times, we have a constant

probability to find a cover of size b or less, for any G ∈ Gk. This is achieved by using Algorithm
2, taking Algorithm 1 as A and p = pγ . We call the resulting algorithm α-VC3.

Algorithm 1 VC3γ

Input: An undirected graph G

1: if G has a vertex v with degree 3 or more then

2: Let u1, u2, u3 be 3 of v’s neighbors.
3: With probability γ set S = {v} and S = {u1, u2, u3} with probability 1− γ.
4: Use a recursive call to evaluate R = VC3γ(G \ S), and return R ∪ S.
5: else the maximal degree in G is not greater than 2
6: Find an optimal cover S of G in polynomial time and return it.

We note that if G ∈ Gk then α-VC3 returns a cover of size at most αk with constant
probability. Clearly, the running time of the algorithm is O∗((pγ(αk, k))

−1). We resort to
Theorem 2 to obtain a better understanding of the running time.
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Algorithm 2 α-Approx

Input: An undirected graph G, a parameter k, an algorithm A and a recurrence relation p.

1: Evaluate r = p(αk, k) using dynamic programming.
2: Execute A(G) for r−1 times. Return the minimal cover found.

For any α > 1 and γ ∈ (0, 1), we can calculate the α-branching numbers Mα,γ
1 ,Mα,γ

2 of
(b̄1, k̄1, γ̄1), (b̄2, k̄2, γ̄2), respectively, by numerically solving the optimization problem (3). Let

Mα,γ = max{Mα,γ
1 ,Mα,γ

2 }. Therefore, by Theorem 2 we have limk→∞
log pγ(αk,k)

k = −Mα,γ .

Thus, for any ε > 0 and large enough k, it holds that
log pγ(αk,k)

k > −Mα,γ − ε, and equiv-
alently (pγ(αk, k))

−1 < exp(Mα,γ + ε)k. We conclude that the running time of α-VC3 is
O∗((pγ(αk, k))

−1) = O∗(exp(Mα,γ + ε)k) for any ε > 0.
For any α > 1, we can numerically find the value of γ for which Mα,γ is minimal. Let γα be

this value. Then, for any α > 1 algorithm α-VC3 is a parameterized random α-approximation
for Vertex Cover with running time O∗(exp(Mα,γα + ε)k) (for any ε > 0). For example, for
α = 1.5 we get that α-VC3 has a running time of O∗(1.043642k). In Figure 2 the value of
exp(Mα,γα) is presented as a function of α. An overview of the methods used for the numerical
optimizations is given in Section 5.

2.1 A Refined Analysis of Incorrect Branching

Standard branching algorithms derive several simpler sub-instances from a given instance with
a guarantee that an optimal solution to one (specific yet unknown) of the sub-instances leads to
an optimal solution. Therefore, the analysis is focused on this specific sub-instance and ignores
the effect of other sub-instances on the optimum. This is not the case when using randomized
branching for approximation, where the reduction in the minimal cover size by an incorrect
branching can lead to an improved running time, as we demonstrate below.

Consider the following observation. If v is a vertex of degree exactly 3 and the algorithm
(e.g., Algorithm 1) selects its three neighbors {u1, u2, u3} to the cover, then even if none of
{u1, u2, u3} belongs to an optimal cover, the size of the optimal cover decreases by one (as v is
a part of an optimal cover, but is no more required). This observation can be extended to any
fixed degree of v.

Algorithm 3 takes advantage of this property by using a different probability for selecting v
or its neighbors depending on its degree, as well as selecting all the neighbors of v in case the
degree of v is smaller than ∆, for some fixed ∆ ∈ N.

Algorithm 3 VC3*γ3,γ4,...,γ∆

Input: An undirected graph G

1: if G has a vertex v with degree 3 or more then

2: If d < ∆ let U = N(v), otherwise let U be a subset of N(v) of size exactly ∆.
3: With probability γd set S = {v} and S = U with probability 1− γd.
4: Use a recursive call to evaluate R = VC3*γ3,γ4,...,γ∆(G \ S), and return R ∪ S.
5: else the maximal degree in G is 2
6: Find an optimal cover S of G in polynomial time and return S.

Clearly, Algorithm 3 is polynomial and always returns a cover of G. Similar to Algorithm
1, it can be shown that the probability Algorithm 3 returns a solution of size b, given a graph
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G ∈ Gk, is at least pγ3,γ4,...,γ∆(b, k), where pγ3,γ4,...,γ∆ is given by

pγ3,γ4,...,γ∆(b, k) = min























γd · p(b− 1, k − 1) + (1− γd) · p(b− d, k − 1) 3 ≤ d < ∆

γd · p(b− 1, k) + (1− γd) · p(b− d, k − d) 3 ≤ d < ∆, k ≥ d

γ∆ · p(b− 1, k − 1) + (1− γ∆) · p(b−∆, k)

γ∆ · p(b− 1, k) + (1− γ∆) · p(b−∆, k −∆) k ≥ ∆

(9)
with pγ3,γ4,...,γ∆(b, k) = 0 for b < 0 and pγ3,γ4,...,γ∆(b, k) = 1 for b ≥ 0 and k = 0. Clearly,
pγ3,γ4,...,γ∆ is a composite recurrence relation of the N = 2(∆ − 2) triplets

{ ((1, d), (1, 1), (γd , 1− γd)) | 3 ≤ d < ∆ } ∪

{ ((1, d), (0, d), (γd , 1− γd)) | 3 ≤ d < ∆ } ∪

{ ((1,∆), (1, 0), (γ∆ , 1− γ∆)), ((1,∆), (0,∆), (γ∆ , 1− γ∆)) }.

And as before, we can derive an approximation algorithm by using Algorithm 2 with Algo-
rithm 3 as A and p = pγ3,γ4,...,γ∆ . Let α-VC3* be this algorithm. Clearly, α-VC3* is a random
parameterized α-approximations algorithm for Vertex Cover.

Arbitrarily, we select ∆ = 100. As before, for every 1 < α < 2 and 1 ≤ d < ∆ we can
find the value γα,d such that the maximal α-branching number of ((1, d), (1, 1), (γα,d , 1− γα,d))
and ((1, d), (0, d), (γα,d , 1 − γα,d)) is minimal. Let Mα,d be this value. Also, we can find the
value γα,∆ such that the maximal α-branching number of ((1,∆), (1, 0), (γα,∆ , 1 − γα,∆)) and
((1,∆), (0,∆), (γα,∆ , 1− γα,∆)) is minimal and let Mα,∆ be this value. Let Mα be the maximal
branching number of these triplets for a given value of α (Mα = max1≤d≤∆ Mα,d). Then by
Theorem 2, for any ε > 0 and large enough k, it holds that p(αk, k) ≥ exp (−Mα − ε), and

therefore the running time of α-VC3* is O∗
(

exp (Mα + ε)k
)

. For α = 1.5 the running time is

O∗(1.0172k). Figure 2 shows exp(Mα) as a function of α.

2.2 Further Insights from using α-Branching Numbers

In the context of classic branching algorithms, the running time of an algorithm is dominated by
the highest branching number of the branching rules used by the algorithm (see, e.g., [29, 15]).
This observation is commonly used in the design of (exact) branching algorithms. Theorem
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2 asserts that essentially the same holds for parameterized approximation using randomized
branching. In the following we show how to use it to improve the running time of VC*. With
some surprise, we were unable to find a similar result referring to the recurrence relations in
[18].

Consider algorithm α-VC3* of Section 2.1, whose time complexity is the inverse of the
function in (9). As an example, for α = 1.5 we can sort the values Mα,d to understand which
value of d dominates the running time. We show the nine highest values in the table below.

d 5 6 4 7 8 9 10 11 3

exp (M1.5,d) 1.0171 1.0165 1.0164 1.0156 1.0146 1.0136 1.0128 1.0120 1.0118

This suggests that avoiding branching over degree 5 vertices leads to an O∗(1.0165k) algo-
rithm. In fact, tools to do so have already been used in previous works, such as [30]. The basic
idea is that as long as there is a vertex v in the graph of degree different than 5 the algorithm
branches on it. If all vertices in the graph are of degree 5 the algorithm has to perform a
branching on a degree 5 vertex; however, such event cannot happen more than once along a
branching path. Therefore, the algorithm can use non-randomized branching in this case while
maintaining a polynomial running time.

Algorithm 4 EnhancedVC3*

Input: An undirected graph G = (V,E)
Configuration Parameters: The algorithm depends on several parameters that should be
configured. These include ∆ ∈ N, δ ∈ N, 2 ≤ δ < ∆, and γ2, . . . , γδ−1, γδ+1, . . . , γ∆ ∈ (0, 1).

1: If the empty set is a cover of G return ∅.
2: if G is not connected then

3: Let C be a component of G. Return EnhancedVC3*(C) ∪ EnhancedVC*(G− C).

4: IfG has a vertex v of degree 1, let u be its neighbor. Return EnhancedVC3*(G\{u})∪{u}.
5: if G has a vertex v of degree d 6= δ then

6: Let U = N(v) if d < ∆ and U ⊆ N(v) with |U | = ∆ otherwise.
7: Let S = {v} with probability γd and S = U otherwise.
8: Return EnhancedVC3*(G \ S) ∪ S

9: If G is a regular graph (of degree δ), select an arbitrary edge (v1, v2) ∈ E. Evaluate
S1 = EnhancedVC3*(G \ v1) ∪ v1 and S2 = EnhancedVC3*(G \ v2) ∪ v2. Return the
smaller set between S1 and S2.

Consider Algorithm 4. It can be shown that its running time is polynomial (similar to the
proof of Lemma 4 in Section 4), and the probability that the algorithm returns a solution of
size b, given G ∈ Gk, is at least

p(b, k) = min























γd · p(b− 1, k − 1) + (1− γd) · p(b− d, k − 1) 3 ≤ d < ∆, d 6= δ

γd · p(b− 1, k) + (1− γd) · p(b− d, k − d) 3 ≤ d < ∆, d 6= δ, k ≥ d

γ∆ · p(b− 1, k − 1) + (1− γ∆) · p(b−∆, k)

γ∆ · p(b− 1, k) + (1− γ∆) · p(b−∆, k −∆) k ≥ d

(10)

As before, we use the lower bound derived from the recurrence relation to obtain a random

parameterized α-approximation algorithm as with running time O∗
(

1
p(αk,k)

)

by using Algorithm

2 with Algorithm 4 as A and the recurrence relation p as given in (10). Let α-EnhancedVC3*

be this algorithm.
For any 1 < α < 2 and 2 ≤ d ≤ ∆ we can find the value Mα,d as in Section 2.1. If

δ′ = argmax2≤d≤N Mα,d 6= ∆ we can set δ = δ′; therefore, the run time of α-EnhancedVC3*

is O∗(exp(Mα + ε)k) when M is the second largest number of Mα,2, . . . ,Mα,∆−1 (or Mα,∆ if
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Figure 3: An example of a neighbors graph. A hypergraph H is illustrated in 3a. The neighbors
graph of v1, NG(v1), is given in 3b.

δ′ = ∆). The value of exp(Mα) as a function of α is shown in Figure 2. For α = 1.5 the run time
of the algorithm is O∗(1.01657k). This is the best running time for the given approximation ratio
presented in this paper. The following table compares the running times of α-EnhanvedVC3*

and α-VC3* for several values of α.

α 1.2 1.3 1.4 1.5 1.6 1.7

α-VC3* 1.12548k 1.06804k 1.03501k 1.01713k 1.00754k 1.00280k

α-EnhancedVC3* 1.12386k 1.06420k 1.03320k 1.01657k 1.00751k 1.00277k

3 Application for 3-Hitting Set

In this section we present a parameterized approximation algorithm for 3-Hitting Set. The
algorithm draws some ideas from VC3* (see Section 2.1), which relies on two basic observations.
The first is that for any vertex v of a graph G and a vertex cover S, either v ∈ S or N(v) ⊆ S.
The second observation is that, even if v is in a minimum vertex cover, removing N(v) from
the graph decreases the size of a minimum cover at least by one.

Consider the following analog of the above statement for 3-Hitting Set. Given a 3-hypergraph
H = (V,E), for any v ∈ V define the neighbors graph of v as the hypergraph NG(v) = (Vv, Ev)
with Vv = {u| ∃e ∈ E : u, v ∈ e} and Ev = {e \ {v}| e ∈ E, v ∈ e} (see an example in Figure 3).
Clearly, for every e ∈ NG(v) it holds that |e| ≤ 2 (the neighbors graph is essentially a standard
undirected graph with the addition of single node edges). Similar to the case of Vertex Cover,
for any v ∈ V and a hitting set S of H, either v ∈ S or there is a minimal hitting set T of NG(v)
such that T ⊆ S.7 Also, if v belongs to a minimum hitting set of H then removing a minimal
hitting set of NG(v) from H decreases the minimum hitting set size at least by 1.

Let v ∈ V such that {v} /∈ E, then the neighbors graph of v admits a specific structure. It
has up to 2 ·deg(v) vertices, exactly deg(v) edges (there may be edges with a single vertex) and
no isolated vertices. Therefore, the number of possible graphs NG(v) for vertices of bounded
degree is finite up to isomorphism.

For some fixed ∆ ∈ N, we construct a set G∆ of hypergraphs, such that NG(v) is isomorphic
to a hypergraph in G∆ for any v with deg(v) ≤ ∆. Let G′

∆ be the set of hypergraphs (V,E) with
no isolated vertices, such that V ⊆ {1, 2, . . . , 2∆}, |E| ≤ ∆, and |e| ≤ 2 ∀e ∈ E. Let G∆ ⊆ G′

∆

be a minimal set of hypergraphs such that for any G′ ∈ G′
∆ there is G ∈ G∆ that is isomorphic

to G′. Thus, G∆ can be derived from G′
∆ by removing isomorphic hypergraphs. It is easy to see

that the set G∆ is finite. Also, for every G ∈ G∆ let CG
1 , . . . , C

G
mG be all the minimal hitting

sets of G. Clearly, the set {CG
i | G ∈ G∆, 1 ≤ i ≤ mG} has a finite cardinality.

7A set T is a minimal hitting set of a hypergraph H if T is a hitting set and no strict subset T ′ ( T is also a
hitting set of H .
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We need one more technical definition before introducing our algorithm. Given a 3-hypergraph
H = (V,E), a vertex v ∈ V and F ⊆ E such that v ∈ e for any e ∈ F , define the induced graph
of v and F as the hypergraph Ind(v, F ) = (Vv,F , Ev,F ) with Vv,F = {u| ∃e ∈ F : u ∈ e \ {v}} and
Ev,F = {e \ {v}| e ∈ F}. By definition, it also holds that the cardinality of edges in Ind(v, F ) is
at most 2 and Ind(v, F ) has no isolated vertices. It follows that NG(v) = Ind(v, {e ∈ E| v ∈ e}).
Our algorithm uses induced graphs to handle vertices of degree larger than ∆. Similar to the
neighbors graph, the induced graph Ind(v, F ) satisfies the following. Let S be a hiting set of
the hypergraph H, then either v ∈ S or there is a hitting set T of Ind(v, F ) such that T ⊆ S.

Algorithm 5 3HS

Input: A 3-hypergraph H = (V,E)

Configuration Parameters: γ̄G ∈ RmG+1
≥0 with

∑mG+1
i=1 γ̄Gi = 1 for any G ∈ G∆.

Notation: Define H \ U = (V ′, E′) with V ′ = V \ U and E′ = {e ∈ E| e ∩ U = ∅}

1: If the empty set is a hitting set of H return ∅.
2: If there is {v} ∈ E then return 3HS(H \ {v}) ∪ {v}.
3: Pick an arbitrary vertex v. If deg(v) ≤ ∆ set N = NG(v). Otherwise, set N = Ind(v, F )

with an arbitrary set F ⊆ E of ∆ edges such that ∀e ∈ F : v ∈ e.
4: Find a hypergraph G ∈ G∆ such that N and G are isomorphic. Let ϕ be the vertex

isomorphism function from G to N .
5: Select S = {v} with probability γ̄G

mG+1
and S = ϕ(CG

i ) with probability γ̄Gi for 1 ≤ i ≤ mG.
Return 3HS(H \ S) ∪ S.

The above observations are used to derive Algorithm 5. It is easy to see that the algorithm
always returns a hitting set of the input hypergraph H. Also, the size of H strictly decreases
between recursive calls, and the processing time of each recursive call is polynomial. Therefore,
the algorithm has polynomial running time (note that since ∆ is a fixed constant, finding a
graph G isomorphic to N takes constant time). It is also easy to verify the algorithm indeed
always finds an hypergraph G ∈ G∆ isomorphic to N in Line 4.

Consider the following recurrence relation:

p(b, k) =

min



































γ̄G
mG+1

· p (b− 1, k) +

+
∑mG

i=1 γ̄
G
i · p

(

b− |CG
i |, k − |CG

i ∩ CG
j |
)

∀G ∈ G∆, 1 ≤ j ≤ mG : |CG
j | ≤ k

γ̄G
mG+1

· p (b− 1, k − 1)+

+
∑mG

i=1 γ̄
G
i · p

(

b− |CG
i |, k − 1‖G‖<∆

)

∀G ∈ G∆, 1 ≤ j ≤ mG

p(b− 1, k − 1)

(11)

Also, p(b, k) = 0 for b < 0, and p(b, 0) = 1 for b ≥ 0. Let ‖G‖ be the number of edges in G.
We set 1‖G‖<∆ = 1 if ‖G‖ < ∆ and 1‖G‖<∆ = 0 otherwise. Let P (b,H) be the probability that
Algorithm 5 returns a hitting set of size b or less, given the 3-hypergraph H. With a slight abuse
of notation, let P (b, k) the minimal (infimum) value of P (b,H) for a 3-hypergraph H which has
a hitting set of size k or less. The next lemma follows easily from the above discussion. We give
a formal proof for completeness.

Lemma 3. For every b ∈ Z and k ∈ N, P (b, k) ≥ p(b, k).

Proof. We prove the claim by induction on b. For b < 0 we have P (b, k) = 0 = p(b, k), therefore
the claim holds. For b ∈ N, assume the claim holds for any smaller value of b. Let k ∈ N,
and H a 3-hypergraph with a hitting set T , |T | ≤ k. If the algorithm returns ∅ (Line 2 of the
algorithm) then P (b,H) = 1 ≥ p(b, k). Also, if there is an edge {v} ∈ E then v ∈ T (otherwise
it is not an hitting set), and therefore T \ {v} is a hitting set of H \ {v}. Thus,

P (b,H) ≥ P (b− 1,H \ {v}) ≥ P (b− 1, k − 1) ≥ p(b− 1, k − 1) ≥ p(b, k).
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Otherwise, let v be the vertex selected in Line 3 of the algorithm, let N be the selected
hypergraph, G ∈ G∆ the hypergraph isomorphic to N , ϕ the vertex isomorphism from G to N ,
and S the randomly selected set in Line 5.

If v ∈ T , note that the set T \ {v} is a hitting set of H \ {v}; thus, H \ {v} has a hitting
set of size k − 1 (or less). Also, if it further holds that ‖G‖ < ∆ then N = NG(v). In this
case, we have that T \ {v} is a hitting set of H \ ϕ(CG

i ) for all 1 ≤ i ≤ mG. Let e be an edge
in H \ ϕ(CG

i ). If v ∈ e then e \ {v} is an edge in N . As ϕ(CG
i ) is a hitting set of N we have

e ∩ ϕ(CG
i ) 6= ∅; thus, e cannot be an edge in H \ ϕ(CG

i ). If v /∈ e then since e ∩ T 6= ∅, we also
have e ∩ (T \ {v}) 6= ∅. It follows that the probability Algorithm 5 returns a hitting set of size
b or less given H is at least

P (b,H) ≥γ̄GmG+1P (b− 1,H \ {v}) +
mG
∑

i=1

γ̄Gi P
(

b− |CG
i |,H \ ϕ(CG

i )
)

≥γ̄GmG+1P (b− 1, k − 1) +

mG
∑

i=1

γ̄Gi P
(

b− |CG
i |, k − 1‖G‖<∆

)

≥γ̄GmG+1p(b− 1, k − 1) +
mG
∑

i=1

γ̄Gi p
(

b− |CG
i |, k − 1‖G‖<∆

)

≥ p(b, k).

It remains to handle the case where v /∈ T . Let F be the set of edges selected in Line 3 of
the algorithm if deg(v) > ∆, and F = {e ∈ E|v ∈ e} if deg(v) ≤ ∆ . Then N = Ind(v, F ) =
(Vv,F , Ev,F ). For any e ∈ Ev,F it holds that e ∪ {v} ∈ F ; therefore, e ∩ T = (e ∪ {v}) ∩ T 6= ∅.
Thus, T contains a set Tv ⊆ T such that Tv is a hitting set of N . W.l.o.g., we may assume
that Tv is a minimal hitting set. Then ϕ−1(Tv) is a minimal vertex cover of G. Hence, there is
1 ≤ j ≤ mG such that ϕ−1(Tv) = CG

j , and equivalently Tv = ϕ(CG
j ).

The hypergraph H \ S has a hitting set of size |T \ (T ∩ S)| ≤ k − |T ∩ S|. For S = {v} we
have |T ∩ S| = |∅| = 0, and for S = ϕ(CG

i ),

|T ∩ S| ≥ |Tv ∩ S| = |ϕ(CG
j ) ∩ ϕ(CG

i )| = |CG
j ∩ CG

i |.

Therefore,

P (b,H) ≥γ̄GmG+1P (b− 1,H \ {v}) +
mG
∑

i=1

γ̄Gi P
(

b− |CG
i |,H \ ϕ(CG

i )
)

≥γ̄GmG+1 · P (b− 1, k) +

mG
∑

i=1

γ̄Gi · P
(

b− |CG
i |, k − |CG

i ∩ CG
j |
)

≥γ̄GmG+1 · p (b− 1, k) +

mG
∑

i=1

γ̄Gi · p
(

b− |CG
i |, k − |CG

i ∩CG
j |
)

≥ p(b, k)

Hence, P (b,H) ≥ p(b, k) for any 3-hypergraph H with a hitting set of size k or less. We
conclude that P (b, k) ≥ p(b, k).

Following the above analysis, an α-approximation algorithm for 3-Hitting Set can be derived
by the same approach used for Vertex Cover. This leads to Algorithm 6.

It follows from Lemma 3 that Algorithm 6 yields an α-approximation for 3-Hitting Set with
running time of 1

p(αk,k) . For any value of α, it is possible to optimize the value of γ̄G for each

G ∈ G∆ and evaluate the asymptotic behavior of p(αk, k) as k goes to infinity using Theorem
2.

15



Algorithm 6 α-HS

Input: A 3-hypergraph H, a parameter k

1: Evaluate r = p(αk, k) using dynamic programming (p is defined in (11)).
2: loop r−1 times
3: Execute 3HS(H).

4: Return the minimal hitting set found.

However, the size of G∆ grows rapidly as ∆ increases, rendering the above computation
less and less practical. With a little technical sophistication we were able to evaluate the
running time of the algorithm with ∆ = 7 for various approximation ratios. Figure 1 shows the
running times of the algorithm with ∆ = 7 as function of α. A list of running times for several
approximation ratios is given in the table below. For α = 2 the running time is O∗(1.0659k),
yielding a significant improvement over the previous best result of O∗(1.29k) due to [9].

α 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

α−HS 1.59k 1.29k 1.18k 1.11k 1.0659k 1.039k 1.021k 1.0085k 1.0026k

4 Advanced Randomized Branching for Vertex Cover

In this section we give a parameterized approximation algorithm for Vertex Cover building on
the exact O∗(1.33k) algorithm presented in [29]. That is, we analyze below a variant of the
algorithm in which branching is replaced by selection of one of the branches randomly. The
analysis shows that randomized branching in conjunction with faster parameterized algorithms
can lead to faster parameterized approximation algorithms. We use below ideas presented in
Section 2 and give the technical details for their implementation in a more advanced settings.

Consider Algorithm 7. It is easy to see that the algorithm always returns a cover of the
input graph G.

Lemma 4. Algorithm 7 has a polynomial running time.

The following lemma lower bounds the probability that the algorithm returns a small cover.

Lemma 5. Let G ∈ Gk (Gk is the set of graphs with vertex cover of size k or less), then the
probability that Algorithm 7 returns a cover of size b or less is greater or equal to p(b, k), where

p(b, k) = min






























































































































p(b− 1, k − 1)

p(b− 2, k − 2) k ≥ 2

γd · p(b− 1, k − 1) + (1 − γd) · p(b− d, k − 1) 5 ≤ d < ∆

γd · p(b− 1, k) + (1 − γd) · p(b− d, k − d) 5 ≤ d ≤ ∆, k ≥ d

γ∆ · p(b− 1, k − 1) + (1 − γ∆) · p(b −∆, k)

λ1,r · p(b− 2, k − 2) + (1− λ1,r) · p(b− r, k − 2) 3 ≤ r ≤ 7, k ≥ 2

λ1,r · p(b− 2, k − 1) + (1− λ1,r) · p(b− r, k − r) 3 ≤ r ≤ 7, k ≥ r

λ2,r · p(b− 3, k − 3) + (1− λ2,r) · p (b− r, k − 1) 3 ≤ r ≤ 4, k ≥ 3

λ2,r · p(b− 3, k − 1) + (1− λ2,r) · p (b− r, k − r) 3 ≤ r ≤ 4, k ≥ r

λ3 · p(b− 3, k − 3) + (1− λ3) · p(b− 2, k) k ≥ 3

λ3 · p(b− 3, k − 1) + (1− λ3) · p(b− 2, k − 2) k ≥ 2

δr,1 · p(b− 3, k − 3) + δr,2 · p(b− 4, k − 1) + δr,3 · p(b− r − 1, k − 3) 5 ≤ r ≤ 7, k ≥ 4

δr,1 · p(b− 3, k − 1) + δr,2 · p(b− 4, k − 4) + δr,3 · p(b− r − 1, k − r) 5 ≤ r ≤ 7, k ≥ r

δr,1 · p(b− 3, k − 2) + δr,2 · p(b− 4, k − 4) + δr,3 · p
(

b− r − 1, k − 1−
⌈

r
2

⌉)

5 ≤ r ≤ 7, k ≥ 1 +
⌈

r
2

⌉

δr,1 · p(b− 3, k − 2) + δr,2 · p(b− 4, k − 2) + δr,3 · p(b− r − 1, k − r − 1) 5 ≤ r ≤ 7, k ≥ r − 1

(12)
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Algorithm 7 BetterVC

Input: An undirected graph G = (V,E)
Configuration Parameters: The algorithm uses several parameters that should be config-

ured. These include ∆ ∈ N, γ5, γ6, . . . , γ∆ ∈ (0, 1), λ1,r ∈ (0, 1) for every 3 ≤ r ≤ 7, λ2,r ∈ (0, 1)
for 3 ≤ r ≤ 4, λ3 ∈ (0, 1) and δr,1, δr,2, δr,3 ∈ R≥0 with δr,1 + δr,2 + δr,3 = 1 for r ∈ {5, 6, 7}.

Notation. We use the term branch over U1, . . . , Ur with probability p1, . . . , pr to denote
the operation of returning BetterVC(G \ Ui) ∪ Ui with probability pi. The term select U
denotes the operation of returning BetterVC(G \ U) ∪ U .

1: If the empty set is a cover of G return ∅.
2: If G is not connected, let G′ be a connected component of G and G′′ = G − G′. Return

BetterVC(G′) ∪BetterVC(G′′).
3: If G has a vertex v of degree 1, let u be its neighbor. Select u to the cover.
4: If G has a vertex v of degree d ≥ 5 or more, let U = N(v) if d < ∆, and U ⊆ N(v) with

|U | = ∆ otherwise. Branch over {v}, U with probabilities γd, 1− γd (γ∆, 1− γ∆ if d ≥ ∆).
5: If G is a regular graph, select an arbitrary edge (v1, v2) ∈ E. Evaluate S1 = BetterVC(G\

{v1})∪{v1} and S2 = BetterVC(G\{v2})∪{v2}. Return the smaller set between S1 and
S2.

6: if G has a vertex v of degree 2, N(v) = {x, y} such that:
7: (x, y) ∈ E then select {x, y} to the cover.
8: deg(x) = deg(y) = 2 and N(x) = N(y) = {z, v} then select {z, v} to the cover.
9: None of the above holds. Then let r = |N(x)∪N(y)| and branch over N(v), N(x)∪N(y)

with probabilities λ1,r, 1 − λ1,r

10: if G has a vertex v of degree 3, N(v) = {x, y, z} such that:
11: (x, y) ∈ E then let r = |N(z)| and branch over N(v), N(z) with probability λ2,r, 1−λ2,r.

12: There is a vertex w, w /∈ N(v) ∪ {v}, x, y ∈ N(w) then branch over N(v), {v,w} with
probabilities λ3, 1− λ3.

13: deg(x) = 4 then let r = |N(y)∪N(z)| and branch over N(v), N(x) and {x}∪N(y)∪N(z)
with probabilities δr,1, δr,2, δr,3.
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Figure 4: The performance of BetterVC. A dot at (α, c) means that the respective algorithm
yields α-approximation with running time O∗(ck) or O∗

(

(c+ ε)k
)

for any ε > 0.

and p(b, k) = 0 for b < 0, and p(b, k) = 1 for b ≥ 0 and k ≤ 0.

The proofs of Lemmas 4 and 5 are given at the end of this section. The proof of Lemma
5 is a case by case analysis similar to the one done in [29]. The main difference between the
analysis presented here and the analysis in [29] is that here we also count the reduction in the
minimal cover size in a non-optimal branching step.

Let α-BetterVC be the algorithm which executes Algorithm 2 with Algorithm 7 as A, and
with p as the recurrence in Lemma 5. It follows from Lemma 5 that α-BetterVC is a random

parameterized α-approximation algorithm for Vertex Cover, with running time O∗
(

1
p(αk,k)

)

.

As before, we arbitrarily select ∆ = 100. For every 1 < α < 2 and a set of configuration
parameters, by Theorem 2 we can numerically evaluate (see Section 5 for details regarding the
evaluation) a value Mα such that p(αk, k) > exp(−Mα − ε) for any ε > 0 and large enough k.
Similarly, for every 1 < α < 2 we can optimize the configuration parameters so this value is
minimized. Therefore, the running time of Algorithm α-BetterVC is O∗(exp(Mα + ε)k) for
any ε > 0. Figure 4 shows exp(Mα) as a function of α.

Note that the algorithm in [30] can be used along with our framework of randomized branch-
ing. However, due to its technical complexity, we preferred to use the algorithm in [29], which
can be viewed as a simplified version of the same algorithm. In the discussion we describe the
obstacles we encountered while attempting to obtain a randomized branching variants of faster
algorithms.

4.1 Proofs

Proof of Lemma 4. To show the algorithm is polynomial, it suffices to show that the number
of recursive calls is polynomial. We note that the only non-trivial part of the proof is the
handling of regular graphs in Line 5. We use a simple potential function to handle this case.
For i = 2, 3, 4, define Φi(G) = 1 if G has a non-empty i-regular vertex induced subgraph and
Φi(G) = 0 otherwise. Also, define Φ(G) = Φ2(G) + Φ3(G) + Φ4(G).

We now prove by induction (on |V |) that the number of recursive calls initiated by the
algorithm is at most 2(|V | − 1) · 2Φ(G). If |V | ≤ 1 the algorithm does not initiate recursive calls,
and the claim holds. Each time a Branch or Select is used the size of |V | decreases by at least
one, Φ(G) does not increase, and only one recursive call is initiated, therefore the claim holds
in these cases.
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If G is not connected (Line 2) and is split into G′ = (V ′, E′) and G′′ = (V ′′, E′′) we note
that Φ(G) ≥ Φ(G′),Φ(G′′); therefore, the number of recursive calls is bounded by

2 + 2(|V ′| − 1) · 2Φ(G′) + 2(|V ′′| − 1) · 2Φ(G′′) ≤ 2(|V | − 1) · 2Φ(G).

Finally, we need to handle the case in which G is an i-regular graph (Line 5). By the code
structure, i ∈ {2, 3, 4} and G is connected. In this case, two recursive calls are initiated, with
G1 = (V1, E1) and G2 = (V2, E2) which are strict subgraphs of G. Since G is a connected
i-regular graph, no vertex induced subgraph of G is also i-regular, thus Φi(G1) = Φi(G2) = 0
while Φi(G) = 1. Thus, Φ(G1),Φ(G2) ≤ Φ(G)− 1. It follows that the number of recursive calls
is bounded by

2 + 2(|V1| − 1)·2Φ(G1) + 2(|V2| − 1) · 2Φ(G2)

≤ 2 + 2(|V | − 2) · 2Φ(G)−1 + 2(|V | − 2) · 2Φ(G)−1 ≤ 2(|V | − 1) · 2Φ(G).

Proof of Lemma 5. To prove the lemma we show by induction a slightly stronger claim. Given
a collection of graphs G1, . . . , Gt, let P (b, (G1, . . . , Gt)) denote the probability that
∑t

i=1 |BetterVC(Gi)| ≤ b. Now, we claim that if the total size of minimal vertex covers of
the graphs is at most k (formally, there are S1, . . . , St where Si is a vertex cover of Gi and
∑t

i=1 |Si| ≤ k) then P (b, (G1, . . . , Gt)) ≥ p(b, k). We prove the claim by induction over the
lexicographical order of (b,M, ℓ), where M is the maximal number of vertices of a graph in
G1, . . . , Gt, and ℓ is the number of graphs of maximal size.
Base Case 1: If b < 0 then clearly P (b, (G1, . . . , Gt)) = 0 = p(b, k).
Base Case 2: For any b ∈ N, if M ≤ 1, then clearly P (b, (G1, . . . , Gt)) = 1 ≥ p(b, k).
Induction Step: Let b ∈ N and G1, . . . , Gt with ℓ graphs of maximal size M and assume the
claim holds for every (b′,M ′, ℓ′) lexicographically smaller than (b,M, ℓ). W.l.o.g assume that
G1 = (V1, E1) and |V1| = M . We consider the execution of BetterVC(G1) and divide the
analysis into cases depending on its execution path. We use two simple properties along the
proof. If BetterVC(G1) uses branch over U1, . . . , Ur with probabilities µ1, . . . , µr then

P (b, (G1, . . . , Gt)) =

r
∑

j=1

µjP (b− |Uj |, (G1 \ Uj, G2, . . . , Gt))

And if the algorithm selects U into the cover then

P (b, (G1, . . . , Gt)) = P (b− |U |, (G1 \ U,G2, . . . , Gt))

Case 1: The empty set is a cover of G1. Therefore |BetterVC(G1)| = 0 and thus

Pr

[

t
∑

i=1

|BetterVC(Gi)| ≤ b

]

= Pr

[

t
∑

i=2

|BetterVC(Gi)| ≤ b

]

= P (b, (G2, . . . , Gt)) ≥ p(b, k)

Where the last inequality follows from the induction claim, as either the maximal graph size in
G2, . . . , Gt is smaller than M , or the number of graphs of maximal size is less than ℓ.
Case 2: G1 is not connected, then let G′

1 and G′′
1 be the two graphs considered in Line 2.

Therefore,

Pr

[

t
∑

i=1

|BetterVC(Gi)| ≤ b

]

=Pr

[

|BetterVC(G′
1)|+ |BetterVC(G′′

1)|+
t
∑

i=2

|BetterVC(Gi)| ≤ b

]

=P (b, (G′
1, G

′′
1 , G2, . . . , Gt)) ≥ p(b, k)
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Note that since the number of vertices in both G′
1 and G′′

1 is strictly smaller than M the
induction claim holds for b and (G′

1, G
′′
1 , G2, . . . , Gt) from which the last inequality follows.

Case 3: The selection in Line 3 is executed. Then, G1 has a vertex v of degree 1, and
N(v) = {u}, and u is selected into the cover. Clearly, if G1 has a vertex cover of size k1 then
G1 \ {u} has a vertex cover of size k1 − 1. Therefore,

P (b, (G1, . . . , Gt)) = P (b− 1, (G1 \ {u}, G2, . . . , Gt)) ≥ p(b− 1, k − 1) ≥ p(b, k)

the first inequality holds by the induction claim, the second inequality follows from (12).
Case 4: The algorithm uses the branching in Line 4. Let S1 be a minimal cover of G1. If
v ∈ S1, then S1 \ {v} is a vertex cover of G1 \ {v}. Also, if d < ∆, then S1 \ {v} is also a vertex
cover of G1 \ U . Therefore,

P (b, (G1, . . . , Gt))

=γd · P (b− 1, (G1 \ {u}, G2, . . . , Gt)) + (1− γd) · P (b− d, (G1 \ U,G2, . . . , Gt))

≥γd · p(b− 1, k − 1) + (1− γd) · p

(

b− d, k −

{

1 if d < ∆

0 if d = ∆

)

≥ p(b, k)

The first inequality follows from the induction claim, the second is due to (12).
Otherwise, if v /∈ S1, then U ⊆ S. Clearly, S1 \ U is a vertex cover of G1 \ U . Thus we get,

P (b, (G1, . . . , Gt))

=γd · P (b− 1, (G1 \ {u}, G2, . . . , Gt)) + (1− γd) · P (b− d, (G1 \ U,G2, . . . , Gt))

≥γd · p(b− 1, k) + (1− γd) · p (b− d, k − d) ≥ p(b, k)

As before, the first inequality is by the induction claim, and the second is due to (12).
As the claim holds whether v ∈ S1 or v /∈ S1 we get that the induction claim hold for this

case.
Case 5: Line 5 takes place. Let S1 be a minimal vertex cover of G1. As S1 is a cover we have
v1 ∈ S1 or v2 ∈ S1. W.l.o.g we can assume v1 ∈ S1. Clearly, S1 \ {v1} is a cover of G1 \ {v1}.
Now,

Pr

[

t
∑

i=1

|BetterVC(Gi)| ≤ b

]

=Pr

[

1 + min
j=1,2

|BetterVC(G1 \ {vj})| +
t
∑

i=2

|BetterVC(Gi)| ≤ b

]

≥Pr

[

1 + |BetterVC(G1 \ {v1})|+
t
∑

i=2

|BetterVC(Gi)| ≤ b

]

=P (b− 1, (G1 \ {v1}, G2, . . . , Gt)) ≥ p(b− 1, k − 1)

The first inequality is since the event set in the third term is a subset of the event set of the
second term. The second inequality follows from the induction claim, and the last inequality is
due to (12).
Case 6: The algorithm executes Line 7. Let S1 be an minimal vertex cover of G1. Note that
|S1 ∩ {x, y, v}| ≥ 2 and S1 \ {x, y, v} is a vertex cover of G1 \ {x, y}. Therefore,

P (b, (G1, . . . , Gt)) = P (b− 2, (G1 \ {x, y}, G2, . . . , Gt)) ≥ p(b− 2, k − 2) ≥ p(b, k)

The first inequality follows from the induction claim, the second from (12).
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Case 7: Line 8 is executed. Let S1 be a minimal vertex cover ofG1. Clearly, |S1∩{v, x, y, z}| ≥ 2
and S1 \ {x, a, b, d} is a vertex cover of G1 \ {z, v}. Therefore, as in the previous case,

P (b, (G1, . . . , Gt)) = P (b− 2, (G1 \ {z, v}, G2, . . . , Gt)) ≥ p(b− 2, k − 2) ≥ p(b, k)

Case 8: Line 9 is executed. Since the conditions are not met for Lines 7 and 8 then (x, y) /∈ E1

and |N(x) ∪N(y)| ≥ 3. As the graph does not have vertices of degree 5 or more, we also have
deg(x),deg(y) ≤ 4. We can now conclude 3 ≤ r ≤ 7 (recall that r = |N(x) ∪N(y)|).

If there is a minimal vertex cover S1 of G1 such that v /∈ S1, then x, y ∈ S1. Clearly,
S1 \ {x, y} is a vertex cover of G1 \ {x, y} = G1 \N(v). Also, it is easy to see that S1 \ {x, y}
is also a vertex cover of G1 \ (N(x) ∪ N(y)) (we remove vertices which do not belong to the
graph). Therefore,

P (b, (G1, . . . , Gt))

=λ1,r · P (b− 2, (G1 \N(v), G2, . . . , Gt)) + (1− λ1,r) · P (b− r, (G1 \ (N(x) ∪N(y)), G2, . . . , Gt))

≥λ1,r · p(b− 2, k − 2) + (1− λ1,r) · p (b− r, k − 2) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
Otherwise, every minimal vertex cover of G1 includes v. Let S1 be a vertex cover of G1.

Clearly, v ∈ S1. We note that x, y /∈ S1, since otherwise S1 \ {v} ∪ {x, y} is a vertex cover of G1

of the same size as S1, in contradiction to our case. Therefore, N(x) ∪ N(y) ⊆ S1. Obviously
S1 \ (N(x)∪N(y)) is a vertex cover of G1 \ (N(x)∪N(y)). We also note that S1 \{v} is a cover
of G1 \N(v). Therefore,

P (b, (G1, . . . , Gt))

=λ1,r · P (b− 2, (G1 \N(v), G2, . . . , Gt)) + (1− λ1,r) · P (b− r, (G1 \ (N(x) ∪N(y)), G2, . . . , Gt))

≥λ1,r · p(b− 2, k − 1) + (1− λ1,r) · p (b− r, k − r) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
Case 9: Line 11 is executed. Since this line of code has been reached, then G1 has only vertices
of degree 3 and 4. Therefore r = |N(z)| ∈ {3, 4}.

If there is a minimal vertex cover S1 of G1 such that v /∈ S1, then N(v) ⊆ S1, and S1 \N(v)
is a vertex cover of G \N(v). Also, it is easy to see that S1 \ {z} is a vertex cover of G \N(z)
(after removing vertices which no longer belong to the graph). Therefore,

P (b, (G1, . . . , Gt))

=λ2,r · P (b− 3, (G1 \N(v), G2, . . . , Gt)) + (1− λ2,r) · P (b− r, (G1 \ (N(z)), G2, . . . , Gt))

≥λ2,r · p(b− 3, k − 3) + (1− λ2,r) · p (b− r, k − 1) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
Otherwise, every minimal vertex cover S1 of G1 has v in it. Let S1 be a minimal vertex

cover of G1. Clearly, v ∈ S1. If |S1 ∩ {x, y, z}| ≥ 2 then S1 ∪ {x, y, z} \ {v} is a vertex cover of
G1 of the same size, contradicting our assumption. Therefore, |S1 ∩{x, y, z}| ≤ 1. Since x ∈ S1

or y ∈ S1 (since (x, y) ∈ E1) we have z /∈ S1, and N(z) ⊆ S1. Also, note that S1 \ {v} is a cover
of G \N(v) and |S1 \ {v}| ≤ |S1| − 1. Therefore,

P (b, (G1, . . . , Gt))

=λ2,r · P (b− 3, (G1 \N(v), G2, . . . , Gt)) + (1− λ2,r) · P (b− r, (G1 \ (N(z)), G2, . . . , Gt))

≥λ2,r · p(b− 3, k − 1) + (1− λ2,r) · p (b− r, k − r) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
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Case 10: Line 12 is executed.
If there is a minimal vertex cover S1 such that v /∈ S1, then,

P (b, (G1, . . . , Gt))

=λ3 · P (b− 3, (G1 \N(v), G2, . . . , Gt)) + (1− λ3) · P (b− 2, (G1 \ {v,w}, G2 , . . . , Gt))

≥λ3 · p(b− 3, k − 3) + (1− λ3) · p(b− 2, k) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
Otherwise, every minimal vertex cover S1 has v in it. Let S1 be a minimal vertex cover of

G1. If |S1 ∩ {x, y, z}| ≥ 2 we get get a contradiction to the assumption by removing v from S1

and adding a vertex from x, y, z into it. Therefore |S1 ∩ {x, y, z}| ≤ 1 and surely w ∈ S1 (if
w /∈ S1 then x, y ∈ S1). We also note that S1 \ {v} is a vertex cover of G \N(v). Therefore,

P (b, (G1, . . . , Gt))

=λ3 · P (b− 3, (G1 \N(v), G2, . . . , Gt)) + (1− λ3) · P (b− 2, (G1 \ {v,w}, G2 , . . . , Gt))

≥λ3 · p(b− 3, k − 1) + (1− λ3) · p(b− 2, k − 2) ≥ p(b, k)

The first inequality follows from the induction claim. The second one is due to (12).
Case 11: Line 13 is executed. Since there are no edges between x, y, z and the vertices has no
common neighbor beside v we have r ∈ {5, 6, 7}. We will further divide into sub-cases.

1. If there is a minimal vertex cover S1 of G1 such that v /∈ S1, then N(v) ∈ S1. Clearly,
S1 \ N(v) is a vertex cover of G1 \ N(v). Also, S1 \ {x} is a vertex cover of G1 \ N(x),
and S1 \N(v) is a vertex cover of G \ ({x} ∪N(y) ∪N(z)). Therefore

P (b, (G1, . . . , Gt))

=δr,1 · P (b− 3, (G1 \N(v), G2, . . . , Gt))+

δr,2 · P (b− 4, (G1 \N(x), G2, . . . , Gt))+

δr,3 · P (b− r − 1, (G1 \ ({x} ∪N(y) ∪N(z)), G2, . . . , Gt))

≥δr,1 · p(b− 3, k − 3) + δr,2 · p(b− 4, k − 1) + δr,3 · p(b− r − 1, k − 3) ≥ p(b, k)

Therefore, we may assume that v is in every minimal cover.

2. If there is a minimal cover S1 of G1 such that x, y, z /∈ S1. Then N(x), N(y), N(z) ⊆ S1.
Now, S1 \N(x) is a vertex cover of G1 \N(x), S1 \ {v} is a vertex cover of G1 \N(v) and
S1 \ (N(y) ∪N(z)) is a vertex cover of G1 \ ({x} ∪N(y) ∪N(z)). Therefore,

P (b, (G1, . . . , Gt))

=δr,1 · P (b− 3, (G1 \N(v), G2, . . . , Gt))+

δr,2 · P (b− 4, (G1 \N(x), G2, . . . , Gt))+

δr,3 · P (b− r − 1, (G1 \ ({x} ∪N(y) ∪N(z)), G2, . . . , Gt))

≥δr,1 · p(b− 3, k − 1) + δr,2 · p(b− 4, k − 4) + δr,3 · p(b− r − 1, k − r) ≥ p(b, k)

3. If there is a minimal cover S1 of G1 such that x /∈ S1, but one of y, z is in S1, w.l.o.g
y ∈ S1. Therefore N(x), N(z) ⊆ S1, and we can tell that S1 \ N(x) is a vertex cover of
G1 \N(x), S1 \ {v, y} is a vertex cover of G1 \N(v) and S1 \N(z) \ {y} is a vertex cover
of G1 \ ({x} ∪N(y) ∪N(z)). Note that N(z) ≥

⌈

r
2

⌉

. Therefore

P (b, (G1, . . . , Gt))

=δr,1 · P (b− 3, (G1 \N(v), G2, . . . , Gt))+

δr,2 · P (b− 4, (G1 \N(x), G2, . . . , Gt))+

δr,3 · P (b− r − 1, (G1 \ ({x} ∪N(y) ∪N(z)), G2, . . . , Gt))

≥δr,1 · p(b− 3, k − 2) + δr,2 · p(b− 4, k − 4) + δr,3 · p
(

b− r − 1, k − 1−
⌈r

2

⌉)

≥ p(b, k)
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4. If there is a minimal cover S1 such that x /∈ S1 and y, z ∈ S1, then S1 ∪ {x} \ {v} is a
minimal cover without v, and therefore the claim holds due to sub-case 1.

5. There is a minimal vertex cover S1 such that x, v ∈ S1. If y ∈ S1 or z ∈ S1, w.l.o.g
y ∈ S1, then S1 ∪ {z} \ {v} is a minimal vertex cove of G1 which does not include v. As
this situation is already handled in sub-case 1, we can assume y, z /∈ S1 and therefore
N(y), N(z) ⊆ S1. Now, note that S1 \ {x, v} is a vertex cover of both G1 \ N(v) and
G1 \N(x). Therefore,

P (b, (G1, . . . , Gt))

=δr,1 · P (b− 3, (G1 \N(v), G2, . . . , Gt))+

δr,2 · P (b− 4, (G1 \N(x), G2, . . . , Gt))+

δr,3 · P (b− r − 1, (G1 \ ({x} ∪N(y) ∪N(z)), G2, . . . , Gt))

≥δr,1 · p(b− 3, k − 2) + δr,2 · p(b− 4, k − 2) + δr,3 · p(b− r − 1, k − r − 1) ≥ p(b, k)

5 Numerical Methods

While our main contributions are theoretical, optimizing the parameter values and evaluat-
ing the running times of our algorithms required some numerical analysis. In this section we
overview the methods and tools used for obtaining the numerical results.

Each of our algorithms consists of R ∈ N+ branching rules, where rule ℓ, 1 ≤ ℓ ≤ R, has
rℓ branching options and hℓ branching states (mostly rℓ = hℓ, with the exception of Algorithm
BetterVC of Section 4). For each rule, the algorithm uses a distribution γ̄ℓ ∈ Rrℓ to randomly
select a branching option. The vector b̄ℓ ∈ N

rℓ
+ is the budget decrease incurred by selecting each

option. Each rule is also associated with hℓ vectors k̄ℓ,1, . . . , k̄ℓ,hℓ ∈ Nrℓ where the value k̄ℓ,ji

is the decrease in the parameter (coverage) when selecting the i-th option of rule ℓ while in
state j. Using the above notation, the composite recurrence used to lower bound the success
probability of the algorithm is the function pγ̄1,...,γ̄R(b, k) defined by

pγ̄1,...,γ̄R(b, k) = min
1≤ℓ≤R

min
1≤j≤hℓ s.t. k̄ℓ,j≤k

rj
∑

i=1

γ̄ℓi · pγ̄1,...,γ̄R(b− b̄ℓi , k − k̄ℓ,ji ), (13)

with the same initial conditions as in (2).
Consider, for example, VC3 (Algorithm 1). In this algorithm we have R = 1, r1 = h1 =

2; the algorithm has a single rule with two branching options: selecting the vertex v or its
neighbors. The vectors b̄1 = (1, 3) represents the budget decrease for each option. The vector
k̄1,1 = (1, 0) indicates the decrease in the minimal cover size in the state: “v is in an optimal
cover”. Similarly, k̄1,2 = (0, 3) is the coverage decrease in the state: “v is not not in an optimal
cover”. Indeed, by using the above values in (13), we obtain the same recurrence as in (8).

For each of our algorithms and a given approximation ratio α, to obtain an optimal running
time, we seek distributions γ̄1, . . . , γ̄R that maximize limk→∞

1
k log pγ̄1,...,γ̄R(αk, k). It follows

from Theorem 2 that

23



max

{

lim
k→∞

1

k
log pγ̄1,...,γ̄R(αk, k)

∣

∣

∣

∣

∀1 ≤ ℓ ≤ R : γ̄ℓ ∈ Rrℓ

γ̄1, . . . , γ̄R are distributions

}

(14)

=max







− max
1≤ℓ≤R

max
1≤j≤hℓ

M ℓ,j

∣

∣

∣

∣

∣

∣

∀1 ≤ ℓ ≤ R : γ̄ℓ ∈ Rrℓ

γ̄1, . . . , γ̄R are distributions
M ℓ,j is the α-branching number of (b̄ℓ, k̄ℓ,j , γ̄ℓ)







=− max
1≤ℓ≤R

min

{

max
1≤j≤hℓ

D
(

q̄j
∥

∥γ̄
)

k̄ℓ,j · q̄j

∣

∣

∣

∣

∣

γ̄, q̄1, . . . , q̄hℓ ∈ Rrℓ and are all distributions
∀1 ≤ j ≤ hℓ : αq̄

j · k̄ℓ,j ≥ q̄j · b̄ℓ

}

(15)

Define a rule opimization problem as follows. The input is α ∈ R+, r, h ∈ N, b̄ ∈ Nr
+ and h

vectors k̄1, . . . , k̄h ∈ Nr. The objective is to find distributions γ̄, q̄1, . . . , q̄h ∈ Rr
≥0 such that, for

any 1 ≤ j ≤ h, it holds that αq̄h · k̄h ≥ q̄h · b̄, and max1≤j≤h
D(q̄j‖γ̄)
q̄j ·k̄j

is minimized. Thus, the

problem of optimizing the parameters γ̄1, . . . , γ̄R of a given algorithm, as given in (14), can be
reduced to R separate rule optimization problems as in (15).

In the following we show how these rules optimization problems were solved. We first show
that each of these problems is quasiconvex and discuss the methods used to solve the problems
as such. We then consider a common special case which has a nearly closed form solution.

5.1 Quasiconvex Programming

A function f : C → R is quasiconvex if C is convex and, for any β ∈ R, the level-set {x ∈
C|f(x) ≤ β} is convex. A quasiconvex program is the problem of finding the minimum of a
quasiconvex function f over a convex set D (that is, minx∈D f(x)). Quasiconvex programming
was first defined by Amenta et. al. [3], and was already used in the context of multivariate
recurrences in [18].

We now show that the rule optimization problem is a quasicovex programming. It is well
known that Kullback-Leibler divergence is convex (Theorem 2.7.2 cf. [13]); therefore, by The-

orem 1 in [1], the functions fj(γ̄, q̄
1, . . . , q̄h) =

D(qj‖γ)
k̄j ·q̄j

, ∀1 ≤ j ≤ h, are quasiconvex. Thus,

f(γ̄, q̄1, . . . , q̄h) = max1≤j≤h fj(γ̄, q̄
1, . . . , q̄h) is also quasiconvex. Furthermore, the constraints

over γ̄, q̄1, . . . , q̄h defining the rule optimization problem are all linear; thus, the feasible region
is convex.

We used the disciplined quasiconvex programming module of cvxpy [1], an open source
python optimization package, to solve the rule optimization problems which did not fall into
the category of simple rules (see Section 5.2). Specifically, the results for 3-Hitting Set (Section
3) were evaluated using this method. We encountered numerical accuracy issues when using
cvxpy. In such cases, the returned solution was modified to make it a feasible solution. While
such changes may harm the optimality of the solution, they can only increase the running times
of our algorithms.

5.2 Simple Branching Rules

Many of the branching rules used for Vertex Cover have a specific structure that we call simple.
We say a rule optimization problem is simple if α > 1, r = h = 2, b̄ = (b1, b2), k̄

1 = (b1, s2) and
k̄2 = (s1, b2) for s1 < b1 and s2 < b2. The single rule of VC3 is simple, and so are all the rules
in the algorithms of Section 2. Also, many of the rules of BetterVC (in Section 4) are simple.

As the case is two-dimensional, we use the notation γ̄ = (γ, 1 − γ), q̄1 = (q(1), 1 − q(1)) and
q̄2 = (1 − q(2), q(2)). Let

C1 =
{

q(1) ∈ [0, 1]
∣

∣

∣
α · (q(1)b1 + (1− q(1))s2) ≥ q(1)b1 + (1− q(1))b2

}

C2 =
{

q(2) ∈ [0, 1]
∣

∣

∣
α · (q(2)b2 + (1− q(2))s1) ≥ q(2)b2 + (1− q(2))b1

}
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and

f1(γ) = min
q(1)∈C1

D
(

q(1)
∥

∥γ
)

q(1)b1 + (1− q(1))s2
, f2(γ) = min

q(2)∈C2

D
(

q(2)
∥

∥1− γ
)

q(2)b2 + (1− q(2))s1
.

We use the common notation D (x‖y) = D ((x, 1− x)‖(y, 1− y)) when x and y are numbers.
Thus, the rule optimization problem is

min
γ∈[0,1]

max {f1(γ), f2(γ)} . (16)

In the following we show that f1 is monotonically decreasing, f2 is monotonically increasing,
and both can be evaluated exactly by a closed formula. Thus, the solution of (16) is at the
point γ where f1(γ) = f2(γ), which can be found using a binary search over the monotonic
function f1(γ)− f2(γ).

It can be easily observed that C1 = [c1, 1] for c1 that can be calculated exactly. For any
γ ≥ c1 we have that q(1) = γ is a solution for the optimization problem of f1, and therefore
f1(γ) = 0. Consider the case where γ < c1. As shown in Section 5.1, the function hγ(q

(1)) =
D(q(1)‖γ)

q(1)b1+(1−q(1))s2
is quasiconvex. Furthermore, h has a minimum at q(1) = γ. Thus, the function

is increasing in [γ, 1] ⊇ C1 = [c1, 1]. We get that

f1(γ) = min
q(1)∈C1

D
(

q(1)
∥

∥γ
)

q(1)b1 + (1− q(1))s2
= min

q(1)∈C1

hγ(q
(1)) = hγ(c1) =

D (c1‖γ)

c1b1 + (1− c1)s2
.

A symmetric closed formula can be obtained for f2.
It follows from the above that f1(γ) = 0 for γ ≥ c1. For any fixed q(1) ∈ C1 the function

gq(1)(γ) =
D(q(1)‖γ)

q(1)b1+(1−q(1))s2
is convex with a minimum at gq(1)(q

(1)) = 0, and therefore decreasing

in [0, q(1)] ⊇ [0, c1] . Hence, for any γ1 < γ2 ≤ c1, we have

f1(γ1) = min
q(1)∈C1

gq(1)(γ1) ≥ min
q(1)∈C1

gq(1)(γ2) = f(γ2) ≥ 0.

Thus, f1 is decreasing. A symmetric argument can be used to show that f2 is increasing. This
implies that a binary search can be used to solve the rule optimization problem.

We note that some of the calculations outlined in this section could be replaced by a prob-
abilistic interpretation of the rule and its states as negative binomial distributions.

6 Proof of Theorem 2

In this section we give a formal proof of Theorem 2. We first define the stochastic process used
in the proof, and show its connection to the recurrence relation p in (2). While the definition of
the process is abstract, it is driven from an intuitive interpretation of the algorithms presented
in this paper, as demonstrated in Section 6.1.

6.1 Recurrence as a Random Process: an Example

Recall that in each recursive call of VC3 (Algorithm 1) either a vertex v or three of its neighbors
are added to the cover. Given a graph G and a minimum size vertex cover S of G, the execution
of VC3 can be associated with the following stochastic process X̃n.

Let vn be the vertex considered by the algorithm in the n-th recursive call (while the
algorithm is finite, we assume it is infinite for this intuitive interpretation). In case vn ∈ S,
set X̃n = 1 if vn is selected by the algorithm, and X̃n = 2 if the neighbors of vn are selected.
Similarly, in case vn /∈ S, set X̃n = 3 if vn is selected by the algorithm, and X̃n = 4 otherwise.
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We note that the algorithm “does not know” the values of X̃n; nevertheless, we can use these
values for the analysis.

Given b ∈ Z and k ∈ N, we want to compute the probability that VC3 selects k vertices from
the minimal cover S before it adds b vertices to the cover. This is equivalent to the probability
that there is n ∈ N such that

∑n
ℓ=1KX̃ℓ

≥ k and
∑n

ℓ=1BX̃ℓ
≤ b, where B = (1, 3, 1, 3) and

K = (1, 0, 0, 3).
We note that X̃n is either drawn from X1 = {1, 2} or from X2 = {3, 4}. The set from which

X̃n is drawn depends on whether vn is in S. The latter depends on the input graph G and the
selections of VC3, X̃1, . . . , X̃n−1 (we assume a specific minimal size vertex cover S is arbitrarily
associated with every graph G).

Therefore, we can associate the graph G with a function R : (X1 ∪ X2)
∗ → {1, 2}. For any

(a1, . . . , an−1) ∈ X ∗ set R(a1, . . . , an−1) = 1 if vn ∈ S given X̃1 = a1, . . . , X̃n−1 = an−1, and
R(a1, . . . , an−1) = 2 otherwise (these includes also infeasible execution paths for the algorithm).
That is, X̃n is drawn from Xj , where j = R(X̃1, . . . , X̃n−1).

Given R, we now define a stochastic process (Xn)
∞
n=1 which has the same distribution as

(X̃n)
∞
n=1. Let (Y 1

n )
∞
n=1 and (Y 2

n )
∞
n=1 be a two sequences of i.i.d. random variables such that

Pr(Y 1
n = 1) = γ, Pr(Y 1

n = 2) = 1− γ, Pr(Y 2
n = 3) = γ and Pr(Y 2

n = 4) = 1− γ (γ ∈ (0, 1) is the
probability VC3 selects v). Now, set Xn = Y 1

n if R(X1, . . . ,Xn−1) = 1 and Xn = Y 2
n otherwise.

It can be easily verified that indeed (X̃n)
∞
n=1 and (Xn)

∞
n=1 have the same distribution.

As we do not know R, our objective is to lower bound the probability there is n ∈ N such
that

∑n
ℓ=1 KXℓ

≥ k and
∑n

ℓ=1BXℓ
≤ b, over a large set of functions R, which includes all the

possible functions derived from graphs.

6.2 Proof the Theorem

Let α > 0, N ∈ N+ and rj ∈ N+ for 1 ≤ j ≤ N . Also, let b̄j ∈ N
rj
+ , k̄j ∈ Nrj and γ̄j ∈ R

rj
+

for 1 ≤ j ≤ N . We assume that γ̄j is a distribution for any j, and there is 1 ≤ j ≤ N such
that k̄j ≤ 1. Let p be the composite recurrence of {(b̄j , k̄j , γ̄j)| 1 ≤ j ≤ N} as defined in (2).
Finally, let Mj be the α-branching number of (b̄j, k̄j , γ̄j) and M = max1≤j≤N Mj . We assume
that M < ∞.

We start with a few technical definitions. Let B (K, Γ) be the result of concatenating
the vectors b̄1, b̄2, . . . , b̄N ( k̄1, k̄2, . . . , k̄N and γ̄1, γ̄2, . . . , γ̄N , respectively). Formally, set sj =
∑j

k=1 rk (therefore, s0 = 0) and r = sN . For any 1 ≤ j ≤ N and 1 ≤ i ≤ rj set Bsj−1+i = b̄ji ,

Ksj−1+i = k̄ji and Γsj−1+i = γ̄ji . Also, define Xj = {i ∈ N| sj−1 < i ≤ sj} and X =
⋃N

j=1Xj =
{1, 2, . . . , r}.

We say that Υ ∈ Rr
≥0 is an extended distribution if for any 1 ≤ j ≤ N it holds that

∑

i∈Xj
Υi = 1; for example, Γ is an extended distribution. A rules mapping is a function8

R : X ∗ → {1, 2, . . . , N}.
Given an extended distribution Υ and a rules mapping R, we define a stochastic process

(Xn)
∞
n=1 where Xn ∈ X for any n ∈ N. For 1 ≤ j ≤ N , let (Y j

n )∞n=1 be i.i.d. random variables
where Pr(Y j

n = i) = Υi for i ∈ Xj . We set Xn = Y j
n where j = R(X1, . . . ,Xn−1). We use PrR,Υ

to denote the probability distribution function (formally, this is a probability measure) of the
process defined by R and Υ. In particular, we use this distribution function with respect to two
specific extended distributions: Γ and Q. We use Υ for showing generic results which apply to
both Γ and Q.

Define κ(a1, . . . , an) =
∑n

ℓ=1 Kaℓ and µ(a1, . . . , an) =
∑n

ℓ=1Baℓ to be the coverage and cost
of (a1, . . . , an) ∈ X n.

8For a set A we use A∗ to denote all vectors of elements in A. That is, A =
⋃∞

n=0 A
n. We use ǫ to denote the

vector of dimension 0 (ǫ ∈ A0).
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For b, k ∈ R≥0 define the event9

Sb,k = {∃n ∈ N : µ(X1, . . . ,Xn) ≤ b and κ(X1, . . . ,Xn) ≥ k}. (17)

Finally, we say that a rules mapping R is k-consistent for k ∈ N if for any ā ∈ X ∗ such
that κ(ā) < k it holds that Ki ≤ k − κ(ā) for any i ∈ XR(ā) (equivalently, k̄

R(ā) ≤ k − κ(ā)).
The notion of k-consistent mapping corresponds to the requirement that the minimum in (2)
is only taken over j such that k̄j ≤ k. Let R be the set of all mappings and R(k) be the set of
all k-consistent mappings.

The next lemma shows a strong connection between the process (Xn)
∞
n=1 and p.

Lemma 6. For any b ∈ Z and k ∈ N it holds that p(b, k) = infR∈R(k) PrR,Γ

(

Sb,k
)

.

While the proof of the lemma is fairly straightforward, it requires multiple technical steps.
We give the proof in Section 6.3.1. By Lemma 6, in order to evaluate the asymptotic behavior
of p(αk, k), we can focus on the asymptotics of infR∈R(k) PrR,Γ(S

αk,k).

Denote the type of (a1, . . . , an) ∈ X n by T (a1, . . . , an) = T ∈ Rr
≥0, where Ti =

|{ℓ|aℓ=i}|
n is

the frequency of each i ∈ X in (a1, . . . , an). Equivalently, T (a1, . . . , an) = 1
n

∑n
ℓ=1 ē

aℓ , where
ēd ∈ Rr is the d-th unit vector.10 It can be easily verified that κ(a1, . . . , an) = n·T (a1, . . . , an)·K
and µ(a1, . . . , an) = n · T (a1, . . . , an) · B for any (a1, . . . , an) ∈ X n, where · is the standard dot
product of two vectors. While (Xn)

∞
n=1 is not a sequence of i.i.d. random variables, several

properties of types (see [13]) are preserved.
Recall that for two distributions c̄, d̄ ∈ Rt, the classic Kullback-Leibler divergence is given

by D
(

c̄
∥

∥d̄
)

=
∑t

i=1 c̄i log
c̄i
d̄i

(we follow the standard convention 0 = 0 log 0 = 0 log 0
0). We define

the extended Kullback-Leibler divergence for any Υ1,Υ2 ∈ Rr
≥0 by

De

(

Υ1
∥

∥Υ2
)

=
∑

i∈X

Υ1
i log

Υ1
i

Υ2
i

−
N
∑

j=1

λj log λj where λj =
∑

i∈Xj

Υ1
i .

There is a simple interpretation for De

(

Υ1
∥

∥Υ2
)

when Υ1 is a type and Υ2 is an extend distribu-

tion. In this case, De

(

Υ1
∥

∥Υ2
)

=
∑N

j=1 λj ·Dj+H(λ1, . . . , λN ), whereDj is the Kullback-Liebler

divergence between the distributions
(

Υ1
i

λj

)

i∈Xj

and
(

Υ2
i

)

i∈Xj
for 1 ≤ j ≤ N , and H is the en-

tropy function.

Lemma 7. For any R ∈ R and extended distribution Υ the following hold.

1. Let (a1, . . . an) ∈ X n and T = T (a1, . . . , an). If PrR,Υ (∀1 ≤ ℓ ≤ n : Xℓ = aℓ) > 0 then

PrR,Υ (∀1 ≤ ℓ ≤ n : Xℓ = aℓ) = exp

(

−n
∑

i∈X

Ti log
1

Υi

)

.

2. Let Kn =
{(

n1
n , . . . , nr

n

)∣

∣ ∀1 ≤ i ≤ r : ni ∈ N and
∑r

i=1 ni = n
}

. Then, for any ā ∈ X n,
T (ā) ∈ Kn. In particular, |Kn| ≤ (n+ 1)r.

3. Let T ∈ Kn, then

PrR,Υ (T (X1, . . . ,Xn) = T ) ≤ exp(−nDe (T‖Υ)).

9Our definitions implicitly assume the existence of a measurable space (Ω,F), such that Y j
n and Xn are

random variables with respect to (Ω,F) for any n ≥ 1 and 1 ≤ j ≤ N . In this terminology, Sb,k ∈ F .
10ēdi = 0 for i 6= d and ēdd = 1.
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The proof of the lemma uses standard techniques in the method of types. A complete proof
is given in Section 6.3.2.

Let q̄j be the vector which solves (3) with respect to (b̄j , k̄j , γ̄j). That is,

q̄j = argmin
q̄·b̄j≤αq̄·k̄j, q̄ is a distribution

1

q̄ · k̄j
D
(

q̄
∥

∥γ̄j
)

. (18)

Therefore, 1
q̄j ·b̄j

D
(

q̄j
∥

∥γ̄j
)

= Mj . As before, let Q be the concatenation of q̄1, q̄2, . . . , q̄N . For-

mally, define Q ∈ Rr
≥0 with Qsj−1+i = q̄ji for any 1 ≤ j ≤ N and 1 ≤ i ≤ rj.

The next lemma shows that a lower bound on the probability of events in PrR,Γ can be
derived using a lower bound on the probability of the same events in PrR,Q.

Lemma 8. Let A ⊆ X n such that T (ā) = T for any ā ∈ A. Then, for any R ∈ R,

log PrR,Γ((X1, . . . Xn) ∈ A) ≥ log PrR,Q(X1, . . . Xn ∈ A)− n
∑

i∈X

Ti log
Qi

Γi
. (19)

Note that the distribution function in (19) is PrR,Γ in the LHS and PrR,Q in the RHS.

Proof. Let A′ = {(a1, . . . , an) ∈ A| PrR,Q(∀1 ≤ ℓ ≤ n : Xℓ = aℓ) > 0}. Clearly,

PrR,Q((X1, . . . ,Xn) ∈ A) = PrR,Q((X1, . . . ,Xn) ∈ A′).

For any (a1, . . . , an) ∈ A′, since PrR,Q(∀1 ≤ ℓ ≤ n : Xℓ = aℓ) > 0, it holds that aℓ ∈ XR(a1,...,aℓ−1)

and therefore PrR,Γ(∀1 ≤ ℓ ≤ n : Xℓ = aℓ) =
∏n

ℓ=1 Γaℓ > 0. By Lemma 7,

log PrR,Γ((X1, . . . ,Xn) ∈ A) ≥ log PrR,Γ((X1, . . . ,Xn) ∈ A′)

= log





∑

(a1,...,an)∈A′

PrR,Γ(∀1 ≤ ℓ ≤ n : Xℓ = aℓ)





= log





∑

(a1,...an)∈A′

exp

(

−n
∑

i∈X

Ti log
1

Γi

)





= log





∑

(a1,...an)∈A′

exp

(

−n
∑

i∈X

Ti

(

log
1

Qi
+ log

Qi

Γi

)

)





= log





∑

(a1,...an)∈A′

exp

(

−n
∑

i∈X

Ti log
1

Qi

)



− n
∑

i∈X

Ti log
Qi

γ̄i

= log





∑

(a1,...an)∈A′

PrR,Q(∀1 ≤ ℓ ≤ n : Xℓ = aℓ)



− n
∑

i∈X

Ti log
Qi

Γi

= log (PrR,Q((X1, . . . ,Xn) ∈ A))− n
∑

i∈X

Ti log
Qi

Γi

The next technical result will be used in the proof of the subsequent lemma

Lemma 9. For any type T and extended probability Υ, let λj =
∑

i∈Xj
Ti for 1 ≤ j ≤ N . Then

it holds that
N
∑

j=1

∑

i∈Xj

|Ti − λjΥi| ≤ 2
√

De (T‖Υ)
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The lemma follows from a simple application of a known inequality relating ℓ1-norms and
Kullback-Leibler divergence along with Jensen’s inequality. The proof is given in Section 6.3.2.

To utilize Lemma 8 we need to specify a subset A ⊆ Sαk,k such that all the elements in A
have the same type and A has high probability. The next lemma shows a slightly relaxed claim.

Lemma 10. For any ε > 0 there is L > 0 such that for any k > L and rules mapping R ∈ R,
there is a length nk,R ∈ N and a type T k,R such that:

1.

lim
k→∞

inf
R∈R

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

= 0

2. For any k > L, R ∈ R and 1 ≤ j ≤ N set λk,R
j =

∑

i∈Xj
T k,R
i . Then,

lim
k→∞

sup
R∈R

N
∑

j=1

∑

i∈Xj

∣

∣

∣T
k,R
i − λk,R

j Qi

∣

∣

∣ = 0.

3. For any k ≥ L and R ∈ R it holds that nk,R · (K · T k,R) ≥ k, nk,R · (B · T k,R) ≤ α(1 + ε)k
and nk,R ≤ α(1 + ε)k.

Proof. Let ε > 0, k ∈ N and R ∈ R. Also, let s = ⌈kα(1 + ε)⌉. We note that
µ(X1, . . . ,Xs+1) > α(1 + ε)k (since Bi ≥ 1 for i ∈ X ). Thus,

1 =

s
∑

n=1

PrR,Q (µ(X1, . . . ,Xn) ≤ α(1 + ε)k and µ(X1, . . . ,Xn+1) > α(1 + ε)k) .

Hence, there is nk,R ≤ s such that

PrR,Q

(

µ(X1, . . . ,Xnk,R) ≤ α(1 + ε)k and µ(X1, . . . ,Xnk,R+1) > α(1 + ε)k
)

≥
1

s+ 1
.

Since the type of X1, . . . ,Xn is in Kn (see Lemma 7), we also have

1

s+ 1
≤

∑

T∈K
nk,R

PrR,Q





µ(X1, . . . ,Xnk,R) ≤ α(1 + ε)k and
µ(X1, . . . ,Xnk,R+1) > α(1 + ε)k and
T (X1, . . . ,Xnk,R) = T





Since |Knk,R | ≤ (s + 1)r, there is T k,R ∈ Knk,R such that

(α(1 + ε)k + 2)−(r+1) ≤
1

(s+ 1)r+1
≤ PrR,Q





µ(X1, . . . ,Xnk,R) ≤ α(1 + ε)k and
µ(X1, . . . ,Xnk,R+1) > α(1 + ε)k and
T (X1, . . . ,Xnk,R) = T k,R



 (20)

Once we established how nk,R and T k,R are selected, it remains to show the properties
in the lemma. The idea is that by our selection of the vectors T k,R, the normalized vectors
(

T k,R
i

∑

i′∈Xj
T k,R

i′

)

i∈Xj

cannot deviate significantly from (Qi)i∈Xj
= q̄j. This observation is used to

derive the properties below. From equation (20) we have

0 ≥ inf
R∈R

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

≥ inf
R∈R

1

k
log (α(1 + ε)k + 2)−(r+1)

=
−(r + 1) log (α(1 + ε)k + 2)

k
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As the last term goes to 0 as k goes to infinity, it follows from the squeeze theorem that

lim
k→∞

inf
R∈R

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

= 0.

Thus, we have shown Property 1.
For any k ∈ N and R ∈ R, by Lemma 7 we have

(α(1 + ε)k + 1)−(r+1) ≤ PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

≤ exp
(

−nk,RDe

(

T k,R
∥

∥

∥
Q
))

.

Therefore,

De

(

T k,R
∥

∥

∥Q
)

≤
(r + 1) log(α(1 + ε)k + 2)

nk,R
.

Set bmax = maxi∈X Bi, It follows from the definition of nk,R that nk,R ≥ αk
bmax

. Thus,

De

(

T k,R
∥

∥

∥
Q
)

≤
bmax(r + 1) log((α+ ε)k + 2)

αk
.

Define λk,R
j =

∑

i∈Xj
T k,R
i for 1 ≤ j ≤ N . It follows from Lemma 9 that

N
∑

j=1

∑

i∈Xj

∣

∣

∣T
k,R
i − λk,RQi

∣

∣

∣ ≤ 2 ·
√

De (T k,R‖Q) ≤ 2 ·

√

bmax(r + 1) log(α(1 + ε)k + 2)

αk
.

The right term approaches 0 as k goes to infinity, thus

lim
k→∞

sup
R∈R

N
∑

j=1

∑

i∈Xj

∣

∣

∣
T k,R
i − λk,R

j Qi

∣

∣

∣
= 0. (21)

Hence, we have shown Property 2. We use (21) to prove Property 3. For any k ∈ N and R ∈ R,
we have

α
N
∑

j=1

λk,R
j

∑

i∈Xj

QiKi =
N
∑

j=1

λk,R
j α

rj
∑

i=1

q̄ji k̄
j
i ≥

N
∑

j=1

λk,R
j

rj
∑

i=1

q̄ji b̄
j
i =

N
∑

j=1

λk,R
j

∑

i∈Xj

QiBi.

The inequality holds since αq̄j · k̄j ≥ q̄j · b̄j for any 1 ≤ j ≤ N , which follows from the definition
of q̄j in (18).

Hence, we have
N
∑

j=1

λk,R
j

∑

i∈Xj

Qi(αKi −Bi) ≥ 0.

Therefore,

nk,RT k,R · (αK −B) = nk,R
N
∑

j=1

∑

i∈Xj

T k,R
i · (αKi −Bi)

= nk,R
N
∑

j=1

λk,R
j

∑

i∈Xj

Qi · (αKi −Bi) + nk,R
N
∑

j=1

∑

i∈Xj

(T k,R
i − λk,R

j Qi) · (αKi −Bi)

≥ −k · (α(1 + ε) + 1)

(

max
i∈X

|(αKi −Bi)|

) N
∑

j=1

∑

i∈Xj

|T k,R
i − λk,R

j Qi|
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It follows from (21) that there is L > 0 such that for any k > L and R ∈ R,

(α(1 + ε) + 1)

(

max
i∈X

|(αKi −Bi)|

) N
∑

j=1

∑

i∈Xj

|T k,R
i − λk,R

j Qi| <
εα

2
.

Also, for any k ∈ N and R ∈ R it follows from the definition of nk,R and T k,R that

α(1 + ε)k − bmax < nk,R · T k,R ·B ≤ α(1 + ε)k.

Combining the above we have

nk,RT k,R ·K ≥
1

α

(

nk,RT k,R ·B + nk,RT k,R · (αK −B)
)

≥
α(1 + ε)

α
k −

bmax

α
−

εα

2α
k = k +

ε

2
k −

bmax

α
≥ k,

where the last inequality holds for k > 2·bmax
αε .

The following lemma is derived by combining the results of Lemmas 8 and 10.

Lemma 11. For any ε > 0,

lim inf
k→∞

inf
R∈R

1

k
log PrR,Γ

(

Sα(1+ε)k,k
)

≥ −M(1 + ε)

Proof. Let ε > 0. Also, let (nk,R)k∈N,R∈R and (T k,R)k∈N,R∈R be the numbers and types derived

from Lemma 10. Define λk,R
j =

∑

i∈Xj
T k,R
i . By Lemma 8, for any k ∈ N and R ∈ R, it holds

that

1

k
log PrR,Γ

(

Sα(1+ε)k,k
)

≥
1

k
log PrR,Γ(T (X1, . . . ,Xnk,R) = T k,R)

≥
1

k
log PrR,Q(T (X1, . . . ,Xnk,R) = T k,R)−

1

k
nk,R

∑

i∈X

T k,R
i log

Qi

Γi

.

By Lemma 10, the first term converges to 0 as k goes to infinity. Therefore,

lim inf
k→∞

inf
R∈R

1

k
log PrR,Γ

(

Sα(1+ε)k,k
)

≥ − lim sup
k→∞

sup
R∈R

1

k
nk,R

∑

i∈X

T k,R
i log

Qi

Γi

≥− lim sup
k→∞

sup
R∈R

1

k
nk,R

N
∑

j=1

∑

i∈Xj

(

λk,R
j Qi + T k,R

i − λk,R
j Qi

)

log
Qi

Γi

≥− lim sup
k→∞

sup
R∈R

1

k
nk,R

N
∑

j=1

∑

i∈Xj

λk,R
j Qi log

Qi

Γi

− lim sup
k→∞

sup
R∈R

1

k
nk,R

N
∑

j=1

∑

i∈Xj

∣

∣

∣T
k,R
i − λk,R

j Qi

∣

∣

∣ max
i∈X ,Qi>0

∣

∣

∣

∣

log
Qi

Γi

∣

∣

∣

∣

≥− lim sup
k→∞

sup
R∈R

1

k
nk,R

N
∑

j=1

λk,R
j

∑

i∈Xj

Qi log
Qi

Γi
.

The third inequality uses the observation that, for large enough k, if Qi = 0 then T k,R
i = 0

(otherwise PrR,Q(T (X1, . . . Xnk,R) = T k,R) = 0). The last inequality follows from nk,R ≤
α(1 + ε)k and Property 2 in Lemma 10.
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Recall that q̄j is found by solving the constrained optimization problem in (18). Therefore,
by Kuhn-Tucker conditions, for any 1 ≤ j ≤ N , either αk̄j · q̄j = b̄j · q̄j , or q̄j is a local minima

of h(q̄) =
D(q̄‖γ̄j)

k̄j ·q̄
. It follows from [1] that h is quasiconvex (see also Section 5) and therefore

its only local minimum is at q̄ = γ̄j . Hence, for any 1 ≤ j ≤ N , either αk̄j · q̄j = b̄j · q̄j or
D
(

q̄j
∥

∥γ̄j
)

= 0. We get that

1

k
nk,R

N
∑

j=1

∑

i∈Xj

λk,R
j Qi log

Qi

Γi
=

1

k
nk,R

N
∑

j=1

λk,R
j D

(

q̄j
∥

∥γ̄j
)

=
1

k
nk,R

N
∑

j=1

λk,R
j

q̄j · b̄j

αq̄j · k̄j
D
(

q̄j
∥

∥γ̄j
)

≤
1

αk
nk,R

N
∑

j=1

λk,R
j q̄j · b̄jM

=M
1

kα
nk,R

N
∑

j=1

∑

i∈Xj

λk,R
j QiBi

=M
1

kα
nk,R

N
∑

j=1

∑

i∈Xj

T k,R
i · Bi +M

1

αk
nk,R

N
∑

j=1

∑

i∈Xj

(

(λk,R
j Qi − T k,R

i ) · Bi

)

≤M
nk,RT k,R ·B

αk
+

nk,R

αk
max
i∈X

|Bi|
N
∑

j=1

∑

i∈Xj

∣

∣

∣λ
k,R
j Qi − T k,R

i

∣

∣

∣

≤M(1 + ε) +
α(1 + ε)

α
max
i∈X

|Bi|
N
∑

j=1

∑

i∈Xj

∣

∣

∣λ
k,R
j Qi − T k,R

i

∣

∣

∣ .

(22)

The first inequality follows from the definitions of α-branching numbers and M . The last
inequality uses Property 3 in Lemma 10. In particular, nk,R ≤ α(1 + ε)k and nk,R · T k,R · B ≤
α(1 + ε)k. Combining the above, and using Property 2 in Lemma 10, we have,

lim inf
k→∞

inf
R∈R

1

k
log PrR,Γ

(

S(α+ε)k,k
)

≥ −M(1 + ε).

Combining Lemma 11 with Lemma 6, we obtain the following (note that, by the definition
of Sb,k, Sb,k = S⌊b⌋,k).

Lemma 12. For any ε > 0, lim infk→∞
1
k log p(⌊α(1 + ε)k⌋, k) ≥ −M(1 + ε).

While this claim is strictly weaker than the statement of Theorem 2, it suffices for deriving
all of our algorithmic results.

To complete the proof of the theorem, we need to slightly improve the lower bound stated
above to be independent of ε, and to derive a matching upper bound.

The claim in Lemma 10 can be strengthened to yield types T k,R and length nk,R such that
nk,R · T k,R · B ≤ αk (omitting the ε term from Lemma 10). This stronger property, however,
requires restricting the rules mappings considered to be k-consistent.

Lemma 13. There is L > 0 such that, for any k > L and rules mapping R ∈ R(k), there is a
length nk,R ∈ N and a type T k,R satisfying

1.

lim
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

= 0
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2. For any k > L, R ∈ R(k) and 1 ≤ j ≤ N set λk,R
j =

∑

i∈Xj
T k,R
i . Then

lim
k→∞

sup
R∈R(k)

N
∑

j=1

∑

i∈Xj

∣

∣

∣
T k,R
i − λk,R

j Qi

∣

∣

∣
= 0.

3. For any k ≥ L and R ∈ R(k) it holds that nk,R · (K · T k,R) ≥ k, nk,R · (B · T k,R) ≤ αk
and nk,R = O(k).

The proof of Lemma 13 is highly technical and therefore deferred to Section 6.3.3. Using
Lemma 13 we obtain the following.

Lemma 14.

lim inf
k→∞

1

k
log inf

R∈R(k)
PrR,Γ

(

Sαk,k
)

≥ −M

The proof of Lemma 14 is essentially identical to the proof of Lemma 11. The main difference
is in using the lengths and types (nk,R and T k,R) generated by Lemma 13 instead of those of
Lemma 10. Thus, we omit the proof.

An upper bound over infR∈R PrR,Γ(S
b,k) can be easily derived using standard method of

types arguments, as shown in Lemma 15. However, as we want to provide an upper bound on
p(αk, k), it follows from Lemma 6 that an upper bound should be given for infR∈R(k) PrR,Γ(S

b,k).
Although this small difference is fairly easy to overcome, it renders the proof more technically
involved.

Let 1 ≤ j∗ ≤ N be the index satisfying Mj∗ = M , and define a function F (β) such that F (β)
is the β-branching number of (b̄j

∗
, k̄j

∗
, γ̄j

∗
). Clearly, F (α) = M , and it follows from standard

calculus arguments that F is continuous on [α,∞).

Lemma 15. For any β ≥ α and k ∈ N it holds that

inf
R∈R

PrR,Γ

(

Sβk,k
)

≤ (βk + 1)r+1 · exp(−F (β) · k).

Proof. Define R∗ ∈ R by R∗(ā) = j∗ for any ā ∈ X ∗. Then,

PrR∗,Γ

(

Sβk,k
)

= PrR∗,Γ (∃n : µ(X1, . . . ,Xn) ≤ βk and κ(X1, . . . ,Xn) ≥ k)

= PrR∗,Γ (∃1 ≤ n ≤ βk : µ(X1, . . . ,Xn) ≤ βk and κ(X1, . . . ,Xn) ≥ k)

≤

⌊βk⌋
∑

n=1

PrR∗,Γ (µ(X1, . . . ,Xn) ≤ βk and κ(X1, . . . ,Xn) ≥ k)

≤

⌊βk⌋
∑

n=1

PrR∗,Γ (n ·B · T (X1, . . . ,Xn) ≤ βk and n ·K · T (X1, . . . ,Xn) ≥ k)

=

⌊βk⌋
∑

n=1

∑

T ∈ {T ′ ∈ Kn|n ·B · T ′ ≤ βk, n ·K · T ′ ≥ k}

PrR∗,Γ (T (X1, . . . ,Xn) = T )

(23)
The second equality holds since µ(a1, . . . , an) ≥ n for any (a1, . . . , an) ∈ X n. The second
property of Lemma 7 is used in the last equality.

Now, let 1 ≤ n ≤ βk, and consider T ∈ {T ′ ∈ Kn| n ·B · T ′ ≤ βk, n ·K · T ′ ≥ k}. If there is
i ∈ X \ Xj∗ such that Ti > 0, then

PrR∗,Γ (T (X1, . . . ,Xn) = T ) ≤ PrR∗,Γ

(

∃1 ≤ ℓ ≤ n : Y j∗

ℓ = i
)

= 0. (24)
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Now, consider the case where Ti = 0 for all i ∈ X \Xj∗ . Let t̄ ∈ Rrj∗ be defined by t̄i = Tsj∗−1+i

for 1 ≤ i ≤ rj∗ (recall that Xj∗ = {sj∗−1 + 1, . . . , sj∗ + rj∗}). Also, let λj =
∑

i∈Xj
Ti for

1 ≤ j ≤ N . It follows that λj∗ = 1 and λj = 0 for any j 6= j∗. By Lemma 7 we have,

PrR∗,Γ (T (X1, . . . ,Xn) = T ) ≤ exp(−nDe (T‖Γ))

= exp



−n





∑

i∈X

Ti log
Ti

Γi
−

N
∑

j=1

λj log λj









= exp

(

−n

(

∑

i∈X

Ti log
Ti

Γi

))

= exp

(

−n

( rj∗
∑

i=1

t̄i log
t̄i

γ̄j
∗

i

))

= exp
(

−nD
(

t̄
∥

∥

∥
γ̄j

∗
))

≤ exp

(

−k
1

t̄j∗ · k̄j∗
D
(

t̄
∥

∥

∥γ̄j
∗
)

)

≤ exp (−k · F (β))

(25)

The second equality follows from λj∗ = 1 and λj = 0 for j 6= j∗. The third equality follows
from the definitions t̄ and Γ, and the forth from the definition of Kullback-Leibler divergence.
The second inequality follows from n · t̄ · k̄j

∗
= n · T · K ≥ k (note that the divergence is a

non-negative function). For the last inequality a more involved argument is used. Note that

βn · t̄ · k̄j
∗

= βn · T ·K ≤ βk ≤ n · T · B = n · t̄ · b̄j
∗

.

Therefore, t̄ · b̄j
∗
≤ βt̄ · k̄j

∗
. As t̄ is a distribution, it follows from the definition of branching

numbers (Definition 1) that F (β) ≤ 1
t̄j∗ ·k̄j∗

D
(

t̄
∥

∥γ̄j
∗)

.
Using (23), (24) and (25) together we obtain the following.

PrR∗,Γ

(

Sβk,k
)

≤

⌊βk⌋
∑

n=1

∑

T∈







T ′∈Kn

∣

∣

∣

∣

∣

∣

n · B · T ′ ≤ βk,
n ·K · T ′ ≥ k







PrR∗,Γ (T (X1, . . . ,Xn) = T )

≤

⌊βk⌋
∑

n=1

∑

T∈







T ′∈Kn

∣

∣

∣

∣

∣

∣

n · B · T ′ ≤ βk,
n ·K · T ′ ≥ k







exp (−kF (β))

≤ (βk + 1)r+1 exp(−k · F (β)).

The last inequality follows from |Kn| ≤ (n+ 1)r (Lemma 7).

The next lemma shows how an upper bounds over infR∈R PrR,Γ(S
b,k) can be used to derive

an upper bound over infR∈R(k) PrR,Γ(S
b,k).

Lemma 16. For any b ∈ Z and k ∈ N, it holds that

inf
R∈R(k)

PrR,Γ

(

Sb,k
)

≤ inf
R∈R

PrR,Γ

(

Sb,k−kmax

)

,

where kmax = maxi∈X Ki.
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The proof of Lemma 16 is given in Section 6.3.1. We use the above lemmas to obtain an
upper bound on lim supk→∞ infR∈R(k) PrR,Γ(S

αk,k).

Lemma 17.

lim sup
k→∞

1

k
log inf

R∈R(k)
PrR,Γ(S

αk,k) ≤ −M

Proof. Using Lemmas 16 and 15.

lim sup
k→∞

1

k
log inf

R∈R(k)
PrR,Γ(S

αk,k) = lim sup
k→∞

1

k
log inf

R∈R(k)
PrR,Γ(S

⌊αk⌋,k)

≤ lim sup
k→∞

1

k
log inf

R∈R
PrR,Γ(S

⌊αk⌋,k−kmax)

= lim sup
k→∞

1

k
log inf

R∈R
PrR,Γ(S

αk,k−kmax)

≤ lim sup
k→∞

1

k
log

(

(αk + 1)r+1 · exp

(

−F

(

αk

k − kmax

)

· k

))

= lim sup
k→∞

−F

(

αk

k − kmax

)

= −F (α)

= −M

The first and second equalities use the observation that S⌊b⌋,k = Sb,k by definition. The forth
equality uses the continuity of F .

By Lemmas 17 and 14, it follows that

lim
k→∞

1

k
log inf

R∈R(k)
PrR,Γ(S

αk,k) = −M.

Therefore, using Lemma 6, we have

lim
k→∞

1

k
log p(⌊αk⌋, k) = lim

k→∞

1

k
log inf

R∈R(k)
PrR,Γ(S

αk,k) = −M.

This completes the proof of Theorem 2.

6.3 Deferred Proofs

6.3.1 The Stochastic Process and Recurrence Relations

In this section we prove Lemmas 6 and 16. We start with some technical definitions and
observations.

For any b, k ∈ R define Ab,k = ∅ if b < 0, Ab,k = {ǫ} if k ≤ 0 and b ≥ 0 ({ǫ} is the set which
only includes the 0-dimensional vector), and in all other cases,

Ab,k =







(a1, . . . , an) ∈ X ∗

∣

∣

∣

∣

∣

∣

µ(a1, . . . , an) ≤ b
κ(a1, . . . , an) ≥ k
κ(a1, . . . , an−1) < k







. (26)

It follows from the definitions that

Sb,k = {∃(a1, . . . , an) ∈ Ab,k : (X1, . . . Xn) = (a1, . . . , an)}. (27)

The definition of Sb,k using Ab,k is useful because of the following properties. For any two
vectors (a1, . . . , an), (c1, . . . , cm) ∈ Ab,k, such that (a1, . . . , an) 6= (c1, . . . , cm), it holds that,

{(X1, . . . ,Xn) = (a1, . . . , an)} ∩ {(X1, . . . ,Xm) = (c1, . . . , cm)} = ∅.
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Note that the sets above are events (element in F). As for any a1, . . . an ∈ Xn with n > b
it holds that µ(a1, . . . , an) > b, we conclude that all the vectors in Ab,k are of dimension not
greater than b. Therefore the sets Ab,k are all finite. Finally, it is easy to verify the sets have a
recursive structure. For any k > 0 and b ∈ R, it follows from the definition that

Ab,k =
{

(a1, . . . , an) ∈ X ∗
∣

∣

∣
n ≥ 1, (a2, . . . , an) ∈ Ab−Ba1 ,k−Ka1

}

. (28)

The following technical lemmas will be useful in obtaining later results. For any R ∈ R and
i ∈ X define Ri ∈ R by Ri(a1, . . . , an) = R(i, a1, a2, . . . , an).

Lemma 18. For any extended distribution Υ, R ∈ R and (a1, . . . an) ∈ X n such that n ≥ 1, it
holds that

PrR,Υ ((X1, . . . Xn) = (a1, . . . , an)) = PrR,Υ(X1 = a1) · PrRa1 ,Υ
((X1, . . . ,Xn−1) = (a2, . . . , an))

Proof. It follows from the definition of the stochastic process (Xn)
∞
n=1 that

PrR,Υ ((X1, . . . Xn) = (a1, . . . , an)) = PrR,Υ

(

∀1 ≤ ℓ ≤ n : Y
R(a1,...,aℓ−1)
ℓ = aℓ

)

= PrR,Υ

(

Y
R(ǫ)
1 = a1

)

· PrR,Υ

(

∀2 ≤ ℓ ≤ n : Y
R(a1,...,aℓ−1)
ℓ = aℓ

)

= PrR,Υ (X1 = a1) ·
n
∏

ℓ=2

{

Υaℓ aℓ ∈ XRa1 (a2,...,aℓ−1)

0 otherwise

= PrR,Υ (X1 = a1) · PrRa1 ,Υ

(

∀1 ≤ ℓ ≤ n− 1 : Y
Ra1 (a2,...,aℓ)

ℓ = aℓ+1

)

= PrR,Υ (X1 = a1) · PrRa1 ,Υ
((X1, . . . ,Xn−1) = (a2, . . . , an))

This leads to the next lemma.

Lemma 19. Let Υ be an extended distribution, R ∈ R, b ∈ Z and k ∈ N+. Set j = R(ǫ).
Then,

PrR,Υ

(

Sb,k
)

=
∑

i∈Xj

Υi · PrR,Υ

(

Sb−Bi,k−Ki

)

Proof.

PrR,Υ

(

Sb,k
)

= PrR,Υ

(

∃(a1, . . . , an) ∈ Ab,k : (X1, . . . Xn) = (a1, . . . an)
)

=
∑

(a1,...,an)∈Ab,k

PrR,Υ ((X1, . . . ,Xn) = (a1, . . . an))

=
∑

(a1,...,an)∈Ab,k

PrR,Υ(X1 = a1) · PrRa1 ,Υ
((X1, . . . ,Xn−1) = (a2, . . . an))

=
∑

i∈X

∑

(a1,...,an)∈Ab−Bi,k−Ki

PrR,Υ(X1 = i) · PrRi,Υ ((X1, . . . ,Xn) = (a1, . . . an))

=
∑

i∈X

PrR,Υ(X1 = i) ·
∑

(a1,...,an)∈Ab−Bi,k−Ki

PrRi,Υ ((X1, . . . ,Xn) = (a1, . . . an))

=
∑

i∈X

PrR,Υ(Y
j
1 = i) · PrRi,Υ

(

∃(a1, . . . , an) ∈ Ab−Bi,k−Ki : (X1, . . . ,Xn) = (a1, . . . , an)
)

=
∑

i∈Xj

Υi · PrRi,Γ

(

Sb−Bi,k−Ki

)

The first and last equalities follow from (27). The second and sixth equalities uses the obser-
vation that Ab,k is finite. The third equality is due to Lemma 18. The forth equality is derived
from (28). The last equality also uses the definition of Y j

1 .
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Now we are ready for proving Lemmas 6 and 16.

Proof of Lemma 6. We prove the claim by induction on b. For b < 0, for any R ∈ R we have
PrR,Γ(S

b,k) = 0; therefore, infR∈R(k) PrR,Γ(S
b,k) = 0 = p(b, k).

Let b ∈ N and assume the induction hypothesis holds for any smaller value of b. If k = 0
then for any R ∈ R(k) we have PrR,Γ(S

b,k) = 1; therefore, infR∈R(k) PrR,Γ(S
b,k) = 1 = p(b, k).

It remains to handle the case where k > 0. For any 1 ≤ j ≤ N for which k̄j ≤ k (re-
call that k̄j ≤ k if, for all 1 ≤ i ≤ rj, k̄ji ≤ k) define Rj ∈ R(k) such that Rj(ǫ) = j
and PrRj ,Γ(S

b,k) = infR∈R(k),R(ǫ)=j PrR,Γ(S
b,k). As for any R ∈ R(k) k̄R(ǫ) ≤ k, we have

infR∈R(k) PrR,Γ(S
b,k) = min1≤j≤N,k̄j≤k PrRj ,Γ(S

b,k). By the definition of Rj , it also holds that,

for any i ∈ Xj, PrRj
i ,Γ

(Sb−Bi,k−Ki) = infR∈R(k−Ki) PrR,Γ(S
b−Bi,k−Ki) (for any 1 ≤ j ≤ N such

that k̄j ≤ k).
We use the above in the following equalities.

inf
R∈R(k)

PrR,Γ

(

Sb,k
)

= min
1≤j≤N,k̄j≤k

PrRj ,Γ(S
b,k)

= min
1≤j≤N,k̄j≤k

∑

i∈Xj

Γi · PrRj
i ,Γ

(Sb−Bi,k−Ki) By Lemma 19

= min
1≤j≤N,k̄j≤k

∑

i∈Xj

Γi · inf
R∈R(k−Ki)

PrR,Γ(S
b−Bi,k−Ki)

= min
1≤j≤N,k̄j≤k

∑

i∈Xj

Γi · p(b−Bi, k −Ki) Induction Hypothesis

= min
1≤j≤N,k̄j≤k

rj
∑

i=1

γ̄ji · p(b− b̄ji , k − k̄ji ) = p(b, k)

The fifth equality follows from the definitions of Γ, B and K.

Proof of Lemma 16. We prove the Lemma by induction on b. For b < 0 it holds that

inf
R∈R(k)

PrR,Γ

(

Sb,k
)

= 0 = inf
R∈R

PrR,Γ

(

Sb,k−kmax

)

.

Let b ≥ 0 and assume the claim holds for smaller values of b. If k ≤ kmax then

inf
R∈R(k)

PrR,Γ

(

Sb,k
)

≤ 1 = inf
R∈R

PrR,Γ

(

Sb,k−kmax

)

,

and the claim holds.
We are left with the case where k > kmax. Let R

∗ ∈ R such that

PrR∗,Γ

(

Sb,k−kmax

)

= inf
R∈R

PrR,Γ

(

Sb,k−kmax

)

and set j = R∗(ǫ). We also note that by the definition of R∗, for any i ∈ Xj ,

PrR∗
i ,Γ

(

Sb−Bi,k−kmax−Ki

)

= inf
R∈R

PrR,Γ

(

Sb−Bi,k−kmax−Ki

)

. (29)

Let Rc ∈ R(k) such that Rc(ǫ) = j, and

PrRc,Γ

(

Sb,k
)

= inf
R∈R(k),R(ǫ)=j

PrR,Γ

(

Sb,k
)

.

Note that since k > kmax such Rc exists. It follows from the definition of Rc that for any
i ∈ Xj ,

PrRc
i ,Γ

(

Sb−Bi,k−Ki

)

= inf
R∈R(k−Ki)

PrR,Γ

(

Sb−Bi,k−kmax−Ki

)

. (30)
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This leads to the following inequalities.

inf
R∈R(k)

PrR,Γ

(

Sb,k
)

≤ PrRc,Γ

(

Sb,k
)

=
∑

i∈Xj

Γi · PrRc
i ,Γ

(

Sb−Bi,k−Ki

)

Lemma 19

=
∑

i∈Xj

Γi · inf
R∈R(k−Ki)

PrR,Γ

(

Sb−Bi,k−Ki

)

Eq. (30)

≤
∑

i∈Xj

Γi · inf
R∈R

PrR,Γ

(

Sb−Bi,k−Ki−kmax

)

Induction Hypothesis

≤
∑

i∈Xj

Γi · PrR∗
i ,Γ

(

Sb−Bi,k−Ki−kmax

)

Eq. (29)

= PrR∗,Γ(S
b,k−kmax) Lemma 19

= inf
R∈R

PrR,Γ(S
b,k−kmax)

(31)

Hence, we proved the induction step for this case.

6.3.2 Properties of Types

Proof of Lemma 7.

1. Since PrR,Υ(∀1 ≤ ℓ ≤ n : Xℓ = aℓ) > 0 we have that for any 1 ≤ ℓ ≤ n it holds that
aℓ ∈ Xj with j = R(a1, . . . , aℓ−1). Therefore, by the definitions of the random process
Xn) and types, we have the following.

PrR,Υ(∀1 ≤ ℓ ≤ n : Xℓ = aℓ) = PrR,Υ

(

∀1 ≤ ℓ ≤ n : Y
R(a1,...,aℓ−1)
ℓ = aℓ

)

= Πn
ℓ=1Υaℓ

= exp

(

∑

i∈X

n · Ti log Υi

)

= exp

(

−n
∑

i∈X

·Ti log
1

Υi

)

2. We note that the claim is essentially trivial. We give the detailed proof for completeness.

It follows from the definition of types that for any (a1, . . . , an) ∈ X n and T = T (a1, . . . , an)

it holds that Ti =
|{ℓ|aℓ=i}|

n for any i ∈ X . Since
∑

i∈X |{ℓ| aℓ = i}| = n, we have T ∈ Kn

as required.

Let φ : Kn → {0, . . . , n}r defined by φ(T ) = nT . It is easy to see that the image
of φ is indeed a subset of {0, . . . , n}r and that φ is a one-to-one function. Therefore
|Kn| ≤ |{0, . . . , n}r| = (n+ 1)r.

3. Let

A = {(a1, . . . , an) ∈ X n|T (a1, . . . , an) = T, ∀1 ≤ ℓ ≤ n : aℓ ∈ XR(a1,...,aℓ−1)}.

We now start proving an upper bound for |A|. For 1 ≤ j ≤ N let ϕj(a1, . . . , an) be
the result of removing from (a1, . . . , an) all entries which do not belong to Xj . Formally,
ϕj : A → Xj is defined by ϕj(a1, . . . , an) = (aℓ1 , . . . , aℓh), where {ℓ1, . . . , ℓh} = {ℓ|1 ≤ ℓ ≤
n, aℓ ∈ Xj} and ℓ1 < ℓ2 < . . . < ℓh. We further define ϕ(ā) =

(

ϕ1(ā), ϕ2(ā), . . . , ϕN (ā)
)
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with ϕ : A → X ∗
1 × X ∗

2 × . . .×X ∗
N . In the following we bound image size of ϕ, and prove

it is an injective function.11

Bounding the image. For 1 ≤ j ≤ N define λj =
∑

i∈Xj
Ti. The value λj can be

viewed as the frequency of elements in Xj in a vector ā ∈ X n such that T (ā) = T .
Following part 2 of the lemma, it holds that nλj is integral, and it can be easily observed

that ϕj(ā) ∈ X
λjn
j for any 1 ≤ j ≤ N .

For 1 ≤ j ≤ N such that λj 6= 0 define T j ∈ Rr
≥0 by T j

i = 1
λj
Ti for i ∈ Xj and T j

i = 0 for

i ∈ X \ Xj. For 1 ≤ j ≤ N such that λj = 0 define T j = 0̄ ∈ Rr
≥0 . It is easy to verify

that if λj 6= 0 then T (ϕj(ā)) = T j for any ā ∈ A. Define Cj =
{

c̄ ∈ X
λjn
j |T (c̄) = T j

}

. It

follows that Im(ϕj) ⊆ Cj, and Im(ϕ) ⊆ C1×C2× . . .×CN . It is known that the number
of vectors in X n′

of a given type T ′ is not greater than exp
(

−n′
∑

i∈X T ′
i log T

′
i

)

(Theorem

11.1.3 cf. [13]). Therefore |Cj | ≤ exp
(

−λjn
∑

i∈X T j
i log T

j
i

)

. Hence,

| Im(ϕ)| ≤ |C1| · |C2| · . . . · |CN | ≤ exp



−n

n
∑

j=1

λj

∑

i∈X

T j
i log T

j
i



 . (32)

ϕ is an injection. Let (a1, . . . , an), (d1, . . . , dn) ∈ A with ϕ(a1, . . . , an) = ϕ(d1, . . . , dn).
Assume by negation that (a1, . . . , an) 6= (d1, . . . , dn). Let ℓ be the minimal index such
that aℓ 6= dℓ. By the definition of A and the choice of ℓ we have aℓ, dℓ ∈ Xj with
j = R(a1, . . . , aℓ−1) = R(d1, . . . , dℓ−1). By the definitions of ϕ and ϕj it holds that
(aℓ1 , . . . , aℓh) = ϕj(a1, . . . , an) = ϕ(d1, . . . , dn) = (dℓ′1 , . . . , dℓ′h′

) where ℓ1, . . . , ℓh and

ℓ′1, . . . , ℓ
′
h′ are two monotonically increasing series. Since (a1, . . . , an) and (d1, . . . , dn)

are identical up to the ℓ− 1 position and aℓ, dℓ ∈ Xj , for some 1 ≤ w ≤ ℓ it it holds that
ℓq = ℓ′q for q < w and ℓw = ℓ′w = ℓ Therefore aℓ = aℓw = dℓ′w = dℓ. A contradiction. Thus
ϕ is an injection.

Since ϕ is an injective function and by (32) we obtain the following.

|A| ≤ exp



−n
n
∑

j=1

λj

∑

i∈X

T j
i log T

j
i



 = exp



−n





∑

i∈X

Ti log Ti −
N
∑

j=1

λj log λj







 ,

where the last transition follows from the definitions of λj and T j
i .

11The image of a function f : X → Y is {f(x)| x ∈ X} and denoted Im(f).
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Using the first property of the lemma and the definition of A we have,

PrR,Υ(T (X1, . . . ,Xn) = T ) = PrR,Υ((X1, . . . ,Xn) ∈ A)

=
∑

(a1,...,an)∈A

PrR,Υ (∀1 ≤ ℓ ≤ n : Xℓ = aℓ)

≤
∑

(a1,...,an)∈A

exp

(

−n
∑

i∈X

Ti log
1

Υi

)

= |A| · exp

(

−n
∑

i∈X

Ti log
1

Υi

)

≤ exp



−n





∑

i∈X

Ti log Ti −
N
∑

j=1

λj log λj







 · exp

(

−n
∑

i∈X

Ti log
1

Υi

)

= exp



−n
∑

i∈X

Ti log
Ti

Υi
+ n

N
∑

j=1

λj log λj



 = exp(−nDe (T‖Υ))

For the proof of Lemma 9 we use the next result (Lemma 11.6.1 cf. [13]).

Lemma 20. For two distributions ῡ1, ῡ2 ∈ Rn
≥0, it holds that

1

2
·

(

n
∑

i=1

|ῡ1i − ῡ2i |

)2

≤ D
(

ῡ1
∥

∥ῡ2
)

.

Proof of Lemma 9. We first define vectors t̄1, . . . , t̄N and ῡ1, . . . , ῡN , such that t̄j, ῡj ∈ R
rj
≥0, all

the vectors are distributions, T is the concatenation of λ1t̄
1, . . . , λN t̄N , and Υ is the concatena-

tion of ῡ1, . . . , ῡN .
Formally, for 1 ≤ j ≤ N and 1 ≤ i ≤ rj set ῡji = Υsj−1+i (recall that sj =

∑j
k=1 rk). For

1 ≤ j ≤ N such that λj 6= 0 set t̄ji = 1
λj
Tsj−1+i for any 1 ≤ i ≤ rj . For 1 ≤ j ≤ N such that

λj = 0 set t̄j to be an arbitrary distribution. By definition, for any 1 ≤ j ≤ N and 1 ≤ i ≤ rj
it holds that λj t̄

j
i = Tsj−1+i and ῡji = Υsj−1+i.

Using the above notation we have the following.

De (T‖Υ) =
∑

i∈X

Ti log
Ti

Υi
−

N
∑

j=1

λj log λj

=

N
∑

j=1

rj
∑

i=1

λj t̄
j
i log

λj t̄
j
i

ῡji
−

N
∑

j=1

λj

( rj
∑

i=1

t̄ji

)

log λj

=

N
∑

j=1

λj

rj
∑

i=1

t̄ji log
t̄ji
ῡji

=
N
∑

j=1

λjD
(

t̄j
∥

∥ῡj
)

≥
N
∑

j=1

λj
1

2

( rj
∑

i=1

∣

∣

∣
t̄ji − ῡji

∣

∣

∣

)2

(33)
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Also, by Jensen’s inequality (see, e.g., Theorem 2.6.2 in [13]), we have

N
∑

j=1

λj

( rj
∑

i=1

∣

∣

∣t̄
j
i − ῡji

∣

∣

∣

)2

≥





N
∑

j=1

λj

rj
∑

i=1

∣

∣

∣t̄
j
i − ῡji

∣

∣

∣





2

(34)

Indeed, let zj =
∑rj

i=1 |t̄
j
i − ῡji |, and consider W,Z to be random variables such that Pr(W =

j) = λj and Z = zW . Then

N
∑

j=1

λj

( rj
∑

i=1

∣

∣

∣
t̄ji − ῡji

∣

∣

∣

)2

= E[Z2] ≥ (E[Z])2 =





N
∑

j=1

λj

rj
∑

i=1

∣

∣

∣
t̄ji − ῡji

∣

∣

∣





2

.

Using inequalities (33) and (34) we have

N
∑

j=1

∑

i∈Xj

|Ti − λjΥi| =
N
∑

j=1

rj
∑

i=1

|λj t̄
j
i − λj ῡ

j
i |

=

N
∑

j=1

λj

rj
∑

i=1

|t̄ji − ῡji |

≤

√

√

√

√

√

N
∑

j=1

λj

( rj
∑

i=1

|t̄ji − ῡji |

)2

≤ 2
√

De (T‖Υ)

6.3.3 Proof of Lemma 13

In this section we give the proof for Lemma 13. Most of the proof is dedicated to showing the
following limit.

lim
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

= 0. (35)

Once the above limit is established, arguments similar to those in the proof of Lemma 10 are
used to complete the proof.

One implications of Lemma 10 is that for any ε > 0 it holds that

lim
k→∞

inf
R∈R

1

k
log PrR,Q

(

Sα(1+ε)k,k
)

= 0. (36)

Our approach to show (35) uses the above limit. Conceptually, we focus in the analysis on
events in which some fixed size prefix of the process provides a good cost to coverage ratio,
namely, µ(X1,...,Xm)

κ(X1,...,Xm) ≤ (α − η) for some η > 0. Conditioned on such events, the event Sαk,k

becomes equivalent to S(α+ε)k′,k′ with respect to the process (Xn)
∞
n=m+1. This allows us to use

(36). While the proof is based on the above intuition, it is more involved, as we need to handle
several corner cases.

We first partition the possible values of j, 1 ≤ j ≤ N , as follows. Define the strict values by

S = {1 ≤ j ≤ N | ∀i ∈ Xj : if Qi > 0 then αKi = Bi}

and the non-strict values by

N = {1, . . . , N} \ S = {1 ≤ j ≤ N | ∃i ∈ Xj : Qi > 0 and αKi > Bi}.
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The last equality follows from the definition of q̄j in (18), as well as Qsj−1+i = q̄ji for 1 ≤ j ≤ N
and 1 ≤ i ≤ rj.

With a slight abuse of notation, we also use N as a function from X ∗ to
(

⋃

j∈N Xj

)∗
. Given

(a1, . . . , an) ∈ X ∗, we define N (a1, . . . , an) to be (a1, . . . , an) after removing entries in
⋃

j∈S Xj.
Formally, N (a1, . . . , an) = (aℓ1 , . . . , aℓm), where ℓ1 < ℓ2 < . . . < ℓm and {ℓ| aℓ ∈

⋃

j∈N Xj} =
{ℓ1, . . . , ℓm}.

For every j ∈ N set dj ∈ Xj such that αKdj > Bdj and Qdj > 0. For j ∈ S set dj ∈ Xj

such that Qdj > 0. It follows from the above that there is η > 0 such that Bdj ≤ (α − η)Kdj

for every j ∈ N .
Our analysis focuses on events in which (X1, . . . ,Xn) (for some n) are in the following sets.

For k, ν ∈ N+ define

Mν,k =























(a1, . . . , an) ∈ X ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀1 ≤ ℓ ≤ n : Qaℓ > 0 and
N (a1, . . . , an) ⊆ {dj |j ∈ N}∗ and
κ(a1, . . . , an−1) < k and
κ(N (a1, . . . , an−1)) < ν and
(κ(a1, . . . , an) ≥ k or κ(N (a1, . . . , an)) ≥ ν)























Further, define Mν,k = {ǫ} for ν ∈ Z if ν ≤ 0 or k ≤ 0. It is easy to show that for every
(a1, . . . , an) ∈ Mν,k it holds that n ≤ k; therefore, Mν,k is always finite. A useful property of
vectors in Mv,k is that their costs can be bounded by their coverage. That is, for every ā ∈ M b,k

it holds that
µ(ā) ≤ ακ(ā)− ηκ(N (ā)) (37)

Similar to the sets Ab,k (see Section 6.3.1), the sets Mν,k admit a recursive structure. It
follows from the definitions that, for every ν, k ∈ N+,

Mν,k =
{

(dj , a1, . . . , an)
∣

∣

∣ j ∈ N , (a1, . . . , an) ∈ M
ν−Kdj

,k−Kdj

}

∪
{

(i, a1, . . . , an)
∣

∣

∣ j ∈ S, i ∈ Xj, Qi > 0, (a1, . . . , an) ∈ Mν,k−Ki

}

.
(38)

Also, similar to Ab,k, for any two vectors (a1, . . . , an), (c1, . . . , cm) ∈ Mν,k such that
(a1, . . . , an) 6= (c1, . . . , cm), we have that

{(X1, . . . ,Xn) = (a1, . . . , an)} ∩ {(X1, . . . ,Xm) = (c1, . . . , cm)} = ∅. (39)

Let Qmin = mini∈X :Qi>0Qi.

Lemma 21. For every k ∈ Z, ν ∈ Z and R ∈ R it holds that

∑

(a1,...,an)∈Mν,k

PrR,Q((X1, . . . ,Xn) = (a1, . . . , an)) ≥ (Qmin)
max{ν,0} .

Proof. We prove the claim by induction on k. For k ≤ 0 it holds that Mν,k = {ǫ}, therefore

∑

(a1,...,an)∈Mν,k

PrR,Q((X1, . . . ,Xn) = (a1, . . . , an)) = 1 ≥ (Qmin)
max{ν,0} .

For k > 0, let ν ∈ Z and R ∈ R. Assume ν > 0 and let j = R(ǫ). If j ∈ N then, following
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(38) and Lemma 18, we have
∑

(a1,...,an)∈Mν,k

PrR,Q((X1, . . . ,Xn) = (a1, . . . , an))

≥
∑

(a1,...,an)∈M
ν−Kdj

,k−Kdj

PrR,Q((X1, . . . ,Xn+1) = (dj , a1, . . . , an))

= Qdj

∑

(a1,...,an)∈M
ν−Kdj

,k−Kdj

PrRdj
,Q((X1, . . . ,Xn) = (a1, . . . , an))

≥ Qdj ·Q
max{ν−Kdj

,0}

min ≥ Q
max{ν,0}
min

The second inequality uses the induction hypothesis. By the definition of dj , it holds that
Kdj ≥ 1.

If j ∈ S then, using again (38) and Lemma 19, we have
∑

(a1,...,an)∈Mν,k

PrR,Q((X1, . . . ,Xn) = (a1, . . . , an))

≥
∑

i∈Xj : Qi>0

∑

(a1,...,an)∈Mν,k−Ki

PrR,Q((X1, . . . ,Xn+1) = (i, a1, . . . , an))

=
∑

i∈Xj : Qi>0

Qi

∑

(a1,...,an)∈Mν,k−Ki

PrRi,Q((X1, . . . ,Xn) = (a1, . . . , an))

≥
∑

i∈Xj : Qi>0

Qi ·Q
max{ν,0}
min ≥ Q

max{ν,0}
min

The second inequality uses the induction hypothesis. The last equality uses the fact that
∑

i∈Xj : Qi>0 Qi =
∑

i∈Xj
Qi = 1.

It remains to handle the case where ν ≤ 0. However, in this case Mν,k = {ǫ}; thus,
∑

(a1,...,an)∈Mν,k

PrR,Q((X1, . . . ,Xn) = (a1, . . . , an)) = 1 ≥ (Qmin)
max{ν},0 .

Lemma 22. For every k ∈ N and R ∈ R(k) it holds that PrR,Q(S
αk,k) ≥ Qk

min.

Proof. Let (a1, . . . , an) ∈ Mk,k. It follows from the definition of Mν,k that κ(a1, . . . , an) ≥ k and
κ(a1, . . . , an−1) < k. Let j = R(a1, . . . , an−1) and assume PrR,Q((X1, . . . ,Xn) = (a1, . . . , an)) >
0. Then, an ∈ Xj. As R is k-consistent, it follows that Kan ≤ k − κ(a1, . . . , an−1). Hence,

κ(a1, . . . , an) = κ(a1, . . . , an−1) +Kan ≤ k.

Thus, we have that
κ(a1, . . . , an) = k.

Using (37), we also have

µ(a1, . . . , an) ≤ αµ(a1, . . . , an) = αk.

.
We conclude that if (a1, . . . , an) ∈ Mk,k and PrR,Q((X1, . . . ,Xn) = (a1, . . . , an)) > 0 then

µ(a1, . . . , an) ≤ αk and κ(a1, . . . , an) ≥ k. It follows that

PrR,Q(S
αk,k) ≥

∑

(a1,...,an)∈Mk,k

PrR,Q ((X1, . . . Xn) = (a1, . . . , an)) ≥ (Qmin)
k ,

where the last inequality is due to Lemma 21.
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Lemma 23.

lim inf
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

= 0

Proof. We use a more compact notation for the proof of the lemma. Given ā = (a1, . . . , an) ∈ X n

define |ā| = n. We use ā⊕ c̄ to denote the concatenation of two vectors ā = (a1, . . . , an) ∈ X n

and c̄ = (c1, . . . , cm) ∈ Xm. That is, ā⊕ c̄ = (a1, . . . , an, c1, . . . , cm).
We generalize the definition of Ri for R ∈ R as given in Section 6.3.1. Given c̄ ∈ X ∗, define

Rc̄ ∈ R by Rc̄(ā) = R(c̄ ⊕ ā). It is easy to verify that if R ∈ R(k) then Rc̄ ∈ R(k − κ(c̄)). By
iteratively applying Lemma 19, it is easy to show that for any ā, c̄ ∈ X ∗ and R ∈ R,

PrR,Q((X1, . . . ,X|ā⊕c̄|) = c̄⊕ ā) = PrR,Q((X1, . . . ,X|c̄|) = c̄) · PrRc̄,Q((X1, . . . ,X|ā|) = ā). (40)

Let ε > 0. We use the sets Ab,k as defined in Section 6.3.1 (see (26)). We first show that,
for k ∈ N,

{

c̄⊕ ā
∣

∣ c̄ ∈ M εk,k, κ(c) ≤ k, ā ∈ A(α+εη)(k−κ(c̄)),k−κ(c̄)
}

⊆ Aαk,k (41)

Let c̄ = (c1, . . . , cm) ∈ M εk,k with κ(c̄) ≤ k and ā = (a1, . . . , an) ∈ A(α+εη)(k−κ(c̄)),k−κ(c̄).
If κ(c̄) ≥ k then κ(c̄) = k and ā = ǫ. By (37) it holds that µ(c̄) ≤ αk, and by the definition

of M εk,k, κ(c1, . . . , cm−1) < k. Therefore, c̄ = c̄⊕ ā ∈ Aαk,k.
If κ(c̄) < k then κ(N (c̄)) ≥ εk. Therefore, using (37), it holds that

µ(c̄) ≤ ακ(c̄)− ηκ(N (c̄)) ≤ ακ(c̄)− ηεk.

Hence,
µ(c̄⊕ ā) ≤ ακ(c̄)− ηεk + (α+ εη)(k − κ(c̄)) ≤ αk.

Also, by the definitions, we have that κ(c̄⊕ā) ≥ k and κ(c1, . . . , cm, a1, . . . , an−1) < k. Therefore
(41) holds.

Finally, we note that if (c1, . . . , cm) = c̄ ∈ M εk,k, κ(c̄) ≥ k and PrR,Q((X1, . . . ,X|c|) =
c̄) > 0, for some R ∈ R(k), then κ(c̄) = k. If the conditions for the claim hold then we have
κ(c1, . . . , cm−1) < k and cm ∈ Xj for j = R(c1, . . . , cm−1). As R is k-consistent, we have that
Kcm ≤ k − κ(c1, . . . , cm−1); therefore, κ(c1, . . . , cm) ≤ k.

It follows that, for any k ∈ N and R ∈ R(k),

PrR,Q

(

Sαk,k
)

= PrR,Q

(

∃ā ∈ Aαk,k : (X1, . . . ,X|ā|) = ā
)

≥PrR,Q

(

∃
c̄ ∈ M εk,k, κ(c̄) ≤ k

ā ∈ A(α+εη)(k−κ(c̄)),k−κ(c̄) :
(X1, . . . ,X|c̄|) = c̄

(X|c̄|+1, . . . ,X|c̄|+|ā|) = ā

)

=
∑

c̄∈Mεk,k,κ(c̄)≤k

∑

ā∈A(α+εη)(k−κ(c̄)),k−κ(c̄)

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)

PrRc̄,Q

(

(X1, . . . ,X|ā|) = ā
)

=
∑

c̄∈Mεk,k,κ(c̄)≤k

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)

∑

ā∈A(α+εη)(k−κ(c̄)),k−κ(c̄)

PrRc̄,Q

(

(X1, . . . ,X|ā|) = ā
)

=
∑

c̄∈Mεk,k

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)

· PrRc̄,Q

(

S(α+εη)(k−κ(c̄)),k−κ(c̄)
)

The first and last equality use (27). The second equality is by (40) and the observation that the
events considered are disjoint. By (36), there is L > 0 such that, for any k > L and R′ ∈ R,

PrR′,Q

(

S(α+εη)k,k
)

≥ exp(−kε).

Also, by Lemma 22, for any k ∈ N, k ≤ L and R′ ∈ R(k), it holds that

PrR′,Q

(

S(α+εη)k,k
)

≥ PrR′,Q

(

Sαk,k
)

≥ exp (L logQmin) .
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Combining the above, we have that

lim inf
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

≥ lim inf
k→∞

inf
R∈R(k)

1

k
log





∑

c̄∈Mεk,k

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)

· PrRc̄,Q

(

S(α+εη)(k−κ(c̄)),k−κ(c̄)
)





≥ lim inf
k→∞

inf
R∈R(k)

1

k
log





∑

c̄∈Mεk,k

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)

· exp(−εk)





=− ε+ lim inf
k→∞

inf
R∈R(k)

1

k
log





∑

c̄∈Mεk,k

PrR,Q

(

(X1, . . . ,X|c̄|) = c̄
)





≥− ε+ lim inf
k→∞

inf
R∈R(k)

1

k
log
(

Qεk
min

)

= −ε− ε log
1

Qmin
.

Since the last inequality holds for any ε > 0, we have

lim inf
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

≥ 0.

Also, as

lim sup
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

≤ 0,

we conclude that

lim
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

Sαk,k
)

= 0.

Proof of Lemma 13. Let k ∈ N+ andR ∈ R(k). By the definition of Sαk,k, and since µ(a1, . . . , an) ≥
n for any (a1, . . . , an) ∈ X n, we have

PrR,Q

(

Sαk,k
)

≤

⌊αk⌋
∑

n=1

PrR,Q (µ(X1, . . . ,Xn) ≤ αk and κ(X1, . . . ,Xn) ≥ k) .

Therefore, there is 1 ≤ nk,R ≤ αk for which

PrR,Q

(

Sαk,k
)

αk
≤ PrR,Q (µ(X1, . . . ,Xnk,R) ≤ αk and κ(X1, . . . ,Xnk,R) ≥ k) .

We can write the above in terms of types:

PrR,Q

(

Sαk,k
)

αk
≤ PrR,Q (µ(X1, . . . ,Xnk,R) ≤ αk and κ(X1, . . . ,Xnk,R) ≥ k)

= PrR,Q (n · T (X1, . . . ,Xnk,R) ·B ≤ αk and n · T (X1, . . . ,Xnk,R) ·K ≥ k)

=
∑

T ∈ Knk,R :
nk,RT ·K ≥ k,
nk,RT ·B ≤ αk

PrR,Q (T (X1, . . . ,Xnk,R) = T ) .

Since |Knk,R | ≤ (nk,R + 1)r ≤ (αk + 1)r and PrR,Q

(

Sαk,k
)

> 0 (by Lemma 22), there is
T k,R ∈ Knk,R such that nk,RT k,R ·K ≥ k , nk,RT k,R · B ≤ αk, and

PrR,Q

(

Sαk,k
)

(αk + 1)r+1
≤ PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

.
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Once nk,R and T k,R are defined, it remains to show the three properties in the lemma.
Property 3 holds by the definition.

From Lemma 23, we have

lim inf
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

≥ lim inf
k→∞

inf
R∈R(k)

1

k
log

(

PrR,Q(S
αk,k)

(αk + 1)r+1

)

= 0.

To show Property 1, we note that since

lim sup
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

≤ 0

we have

lim
k→∞

inf
R∈R(k)

1

k
log PrR,Q

(

T (X1, . . . ,Xnk,R) = T k,R
)

= 0, (42)

as required.
We now show Proerty 2. For any 1 ≤ j ≤ N , k ∈ N and R ∈ R(k), define λk,R

j =
∑

i∈Xj
T k,R
i .

Then using Lemmas 9 and 7, we have

lim sup
k→∞

sup
R∈R(k)

N
∑

j=1

∑

i∈Xj

∣

∣

∣
T k,R
i − λk,R

j Qi

∣

∣

∣
≤ lim sup

k→∞
sup

R∈R(k)
2
√

De (T k,R‖Q)

≤ lim sup
k→∞

sup
R∈R(k)

2

√

1

nk,R
· log (PrR,Q (T (X1, . . . ,Xnk,R) = T k,R))

≤ lim sup
k→∞

sup
R∈R(k)

2

√

−
kmax

k
· log (PrR,Q (T (X1, . . . ,Xnk,R) = T k,R)) = 0,

where the last equality is since nk,RT · K ≥ k. It follows that nk,R ≥ k
kmax

(recall kmax =
maxi∈X Ki). The last equality is by (42). This completes the proof of the lemma.

7 Discussion

In this paper we introduced a new technique for obtaining parameterized approximation al-
gorithms leading to significant improvements in running times over existing algorithms. The
analysis of our algorithms required the development of a mathematical machinery for the anal-
ysis of a wide class of two-variable recurrence relations. Following the above results, several
issues remain open:

• From theoretical perspective, it is desirable to obtain deterministic variants of our algo-
rithms. Derandomizing our technique is left for future work.

• Sanov’s theorem also falls into the category of Large Deviation Theory. The theorem has
multiple extensions and variations from the viewpoint of theoretical probability theory.
One of the most general of these is Gartner-Ellis theorem [22, 17] (see a unified claim in
[24]). By using this theorem, some specific steps within the proof of Theorem 2 may be
skipped. We keep these steps to make the proof clearer and more accessible to readers
outside the above areas.

• The most similar work we found on recurrence relations with two or more variables is
due to Eppstein [18]. The recurrence relations considered in [18] are different from the
relations considered in this paper. However, intuitively, the two classes of recurrences
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seem to be related. It would be interesting to establish such a relation, which may lead
to a statement similar to the one of Theorem 2 for the recurrence relations considered
in [18].

• We considered a family of two-variable recurrence relations. It seems possible to extend
the results to multivariate relations, such as

p(b1, . . . , bm, k) = min
1≤j≤N :k̄j≤k

rj
∑

i=1

γ̄ji · p(b1 −Bj
i,1, . . . , bm −Bj

i,m, k − k̄
j

i ),

with the initial conditions p(b1, . . . , bm, k) = 0 if bℓ < 0 for some 1 ≤ ℓ ≤ m, and
p(b1, . . . , bm, 0) = 1 if b1, . . . , bm ≥ 0. However, we are not aware of any interesting
applications for such generalizations.

• In the definition of composite recurrence as given in (2), only values of j such that k̄j ≤ k
are considered in the min operation. One way to eliminate this requirement is to define a
relation q : Z× Z → [0, 1] by,

q(b, k) = min
1≤j≤N

rj
∑

i=1

γ̄ji · q(b− b̄ji , k − k̄ji )

q(b, k) = 0 ∀b < 0, k ∈ Z

q(b, 0) = 1 ∀b ≥ 0, k ≥ 0

An analog of Theorem 2 can be established for q stating that

∀ε > 0 : lim inf
k→∞

1

k
log q((α+ ε)k, k) ≥ −M and lim sup

k→∞

1

k
log q(αk, k) ≤ −M,

where M = max1≤j≤N Mj, and Mj is the α-branching number of (b̄j , k̄j , γ̄j) (as in Defi-
nition 1).

• Often the analysis of branching algorithms uses complex recurrence relations which involve
two functions or more to obtain improved bounds on running times. Examples for such
analyses can be found in [11] and [20]. When transformed to the context of randomized
branching, the analyses yield recurrence relations in two functions, such as

p(b, k) =min

{

0.5 · p(b− 1, k − 1) + 0.5 · q(b− 2, k)

0.5 · p(b− 1, k) + 0.25 · q(b− 2, k) + 0.25 · q(b− 2, k − 2)

q(b, k) =min

{

0.5 · p(b− 1, k − 1) + 0.5 · q(b− 3, k)

0.5 · p(b− 1, k) + 0.25 · q(b− 3, k) + 0.25 · q(b− 3, k − 3)

We are currently unable to analyze the asymptotic behavior of such relations. Such an
analysis however, is likely to lead to an improved parameterized approximation for small
values of α (for both Vertex Cover and 3-Hitting Set), as the algorithms in [11] and
[20] have better running times as exact algorithms, compared to the running time of our
algorithms for approximation ratios approaching 1.

Currently, the parameterized algorithm for Vertex Cover with the best running time is due
to [12]. We were unable to obtain a randomized branching variant for this algorithm. One
reason is that an incorrect branching can lead to an unbounded increase in the mininmal
vertex cover size.
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• We showed the application of randomized branching to Vertex Cover and to 3-Hitting
Set. While we believe that the technique can be used for other problems, such as Feedback
Vertex Set, Total Vertex Cover and Edge Dominating Set, we leave such results for future
works.

Initial experiments for Feedback Vertex Set led to a parameterized random 1.5-approximation

with running time O∗
(

(

16
9

)k
)

= O∗(1.778k). The algorithm is a fairly naive and builds

on the randomized O∗(4k) algorithm of [5].
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