
New Techniques for Proving Fine-Grained Average-Case Hardness

Mina Dalirrooyfard
MIT, minad@mit.edu

Andrea Lincoln
MIT, andreali@mit.edu

Virginia Vassilevska Williams
MIT, virgi@mit.edu

Abstract

The recent emergence of fine-grained cryptography strongly motivates developing an average-case
analogue of Fine-Grained Complexity (FGC).

Prior work [Goldreich-Rothblum 2018, Boix-Adserà et al. 2019, Ball et al. 2017] developed worst-
case to average-case fine-grained reductions (WCtoACFG) for certain algebraic and counting problems
over natural distributions and used them to obtain a limited set of cryptographic primitives. To ob-
tain stronger cryptographic primitives based on standard FGC assumptions, ideally, one would like to
develop WCtoACFG reductions from the core hard problems of FGC, Orthogonal Vectors (OV), CNF-
SAT, 3SUM, All-Pairs Shortest Paths (APSP) and zero-k-clique. Unfortunately, it is unclear whether
these problems actually are hard for any natural distribution. It is known, that e.g. OV can be solved
quickly for very natural distributions [Kane-Williams 2019], and in this paper we show that even count-
ing the number of OV pairs on average has a fast algorithm.

This paper defines new versions of OV, kSUM and zero-k-clique that are both worst-case and average-
case fine-grained hard assuming the core hypotheses of FGC. We then use these as a basis for fine-
grained hardness and average-case hardness of other problems. The new problems represent their inputs
in a certain “factored” form. We call them “factored”-OV, “factored”-zero-k-clique and “factored”-
3SUM. We show that factored-k-OV and factored kSUM are equivalent and are complete for a class of
problems defined over Boolean functions. Factored zero-k-clique is also complete, for a different class
of problems.

Our hard factored problems are also simple enough that we can reduce them to many other problems,
e.g. to edit distance, k-LCS and versions of Max-Flow. We further consider counting variants of the
factored problems and give WCtoACFG reductions for them for a natural distribution. Through FGC
reductions we then get average-case hardness for well-studied problems like regular expression matching
from standard worst-case FGC assumptions.

To obtain our WCtoACFG reductions, we formalize the framework of [Boix-Adserà et al. 2019]
that was used to give a WCtoACFG reduction for counting k-cliques. We define an explicit property
of problems such that if a problem has that property one can use the framework on the problem to
get a WCtoACFG self reduction. We then use the framework to slightly extend Boix-Adserà et al.’s
average-case counting k-cliques result to average-case hardness for counting arbitrary subgraph patterns
of constant size in k-partite graphs.

The fine-grained public-key encryption scheme of [LaVigne et al.’20] is based on an average-case
hardness hypothesis for the decision problem, zero-k-clique, and the known techniques for building such
schemes break down for algebraic/counting problems. Meanwhile, the WCtoACFG reductions so far
have only been for counting problems. To bridge this gap, we show that for a natural distribution, an
algorithm that detects a zero-k-clique with high enough probability also implies an algorithm that can
count zero-k-cliques with high probability. This gives hope that the FGC cryptoscheme of [LaVigne et
al.’20] can be based on standard FGC assumptions.
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1 Introduction

Fine-grained complexity (FGC) is an active research area that seeks to understand why many problems of
interest have particular running time bounds t(n) that are easy to achieve with known techniques, but have
not been improved upon significantly in decades, except by t(n)o(1) factors. FGC has produced a versatile
set of tools that have resulted in surprising fine-grained reductions that together with popular hardness
hypotheses explain the running time bottlenecks for a large variety of problems []. The reductions of
FGC have, for example, explained the difficulty of improving over the n2−o(1) time algorithms for Longest
Common Subsequence (LCS) by giving a tight reduction from k-SAT, and thus showing that an improved
LCS algorithm would violate the Strong Exponential Time Hypothesis (SETH) [].

There are three main problems, with associated hardness hypotheses about their running times, that FGC
primarily uses as sources of hardness reductions (see []). The three core hard problems are All Pairs
Shortest Paths (APSP), hypothesized to require n3−o(1) time in n-node graphs1, the 3SUM problem, hypoth-
esized to require n2−o(1) time on n integer inputs, and the Orthogonal Vectors (OV) problem, hypothesized
to require n2−o(1) time for n vector inputs of dimension ω(logn) (the OV hypothesis is implied by SETH
[]).

While it is unknown whether these three hypotheses are equivalent, some work suggests they might not
be [ +16]. There is a problem, Zero Triangle, on n node graphs that requires n3−o(1) time under both the
3SUM and the APSP hypothesis [,]. Zero Triangle asks if an n node graph with integer edge
weights contains a triangle whose three edge weights sum to 0. A natural extension of Zero Triangle, zero-k-
clique (where one wants to detect a k-clique with edge weight sum 0), is conjectured to require nk−o(1) time.
There are also some simple to define problems on n node graphs that require n3−o(1) time under three core
hardness hypotheses (SETH, APSP and 3SUM): Matching Triangles and Triangle Collection [].

Recently there has been increased interest in developing average-case fine-grained complexity (ACFGC),
with a new type of fine-grained cryptography as a main motivation [,,,,

BBB19]. The main goal is to identify a problem P that requires some t(n)1−o(1) time on average for an
easily sampled distribution, and then to build interesting cryptographic primitives from this problem, where
any honest party only needs to run a very fast algorithm, in some t ′(n)≤ O(t(n)c) time for c much smaller
than 1, while an adversary would need to run at least in t(n)1−o(1) time, unless problem P can be solved fast
on average.

To obtain average-case fine-grained hard problems, one would like to be able to obtain worst-case to
average-case fine-grained reductions for natural problems that are hypothesized to be fine-grained hard in
the worst-case2. This is what prior work does.

The problems for which fine-grained worst-case to average-case hardness reductions are known are
mostly algebraic or counting problems, such as counting k-cliques [,,,], or
some problems involving polynomials. Some limited cryptographic primitives have been obtained from such
problems, e.g. fine-grained proofs-of-work [,]. Building fine-grained one-way functions
or fine-grained public key cryptography based on any worst-case FGC hardness assumption is still an open
problem. Such primitives have been developed, based on plausible assumptions about the average-case
complexity of zero-k-clique []. This motivates the following question: Is there a fine-grained worst-
case to average-case reduction for zero-k-clique?

1All hypotheses are for the word-RAM model of computation with O(logn) bit words.
2Well, even more ideally, one would like to use problems that are provably unconditionally average-case hard, such as the

problems from the known time-hierarchy theorems, but these problems are difficult to work with and there are no known techniques
to build cryptography from them.
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As prior work showed worst-case to average-case case reductions for counting cliques, a natural ap-
proach to obtaining worst-case to average-case reductions for the detection variant of zero-k-clique is to
give a fine-grained reduction from counting to decision. A tight reduction is not known for the worst-case
version of the problem. It turns out that a fine-grained reduction from counting to decision for zero-k-clique
is possible in the average-case for a natural distribution with certain parameters, if the detection probability
is high enough. We prove this in Section. While the parameters are currently not good enough to imply
a worst-case to average-case reduction for (the decision version of) zero-k-clique, the reduction gives hope
that the fine-grained public-key scheme of [] can eventually be based on a standard FGC (worst-case)
hardness assumption.

The next natural question is whether worst-case to average-case reductions are possible for the other
core problems of FGC, and in particular for OV (as it is as far as we know unrelated to zero-k-clique).
Consider the most natural distribution for OV: given a fixed probability p ∈ (0,1), one generates n vectors
of dimension d =ω(logn) by selecting for each vector v and i∈ [d] independently, vi to be 1 with probability
p and 0 otherwise. Kane and Williams [] showed that for every p, there is an εp > 0 and an O(n2−εp)
time algorithm that solves OV on instances generated from the above distribution with high probability.
Thus, for this distribution (if the OV conjecture is true), there can’t be a fine-grained (n2,n2)-worst-case to
average-case reduction for OV. In Section we also show that even the counting version of OV, in which
one wants to determine the number of pairs of orthogonal vectors, has a truly-subquadratic time algorithm
that works with high probability over the same distribution. Thus, even counting OV cannot be average-case
n2−o(1)-hard. (Though, it could be fine-grained average-case hard for a different time function. We leave
this to future work.)

The first key contribution of this paper is in defining a new type of problem, a “factored problem” that
is fine-grained hard from a core FGC assumption, whose counting version is average-case hard for a natural
distribution again under a core FGC assumption, and that is also simple enough so that one can reduce it to
well-studied problems and develop average-case hardness for them.

While developing worst-case to average-case reductions for our factored problems, we formalize the
worst-case to average-case fine-grained reductions framework of Boix et al. []. We identify a prop-
erty of problems (the existence of a “good polynomial”) that makes it possible for these problems to have
such a worst-case to average-case reduction. Originally, [] gave average-case hardness for counting
k-Cliques in Erdös-Renyi graphs using their framework. Along the way of generalizing their framework,
we also obtain a worst-case to average-case reduction for counting copies of H for any k-node H, where
the distribution for the average-case instance is again for Erdö-Renyi graphs. We achieve this using a new
technique we call Inclusion-Edgesclusion.

In the rest of the introduction we will present our results mentioned in the above two paragraphs.

1.1 The factored problems

We call the problems we introduce “factored problems” (a full formal definition is in Section). To define
them, let us first define a factored vector. Let b and g be positive integers. A (g,b)-factored vector, v, is
made up of g sets v[1], . . . ,v[g]. Each set is a subset v[i] ⊆ {0,1}b. Roughly speaking, a factored vector
v represents many b · g binary vectors, namely a concatenation x1,x2, . . . ,xg for each choice of a g-tuple of
vectors xi ∈ v[i] for all i. For example, for g = 2 and b = 3, let v be a factored vector where v[0] = {001,010}
and v[1] = {010,110}. A natural interpretation of v is that it is a set of the following 4 binary vectors, by
concatenating each member of v[0] with each member of v[1], that is {001010,001110,010010,010110}.

Now, consider a function f that takes a 2b-bit input x1, . . . ,xb,y1, . . . ,yb and returns a value in {0,1};
we can consider f as a Boolean function. Then, for two factored vectors v and v′ and a coordinate i ∈ [g],
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we can consider the number of pairs of b-bit vectors x∈ v[i],y∈ v′[i] that f accepts. This is accept f (v,v′, i) :=
∑x∈v[i],y∈v′[i] f (x1, . . . ,xb,y1, . . . ,yb), where x= x1 . . .xb and y= y1 . . .yb. If we take the product ∏

g
i=1 accept f (v,v′, i),

we would obtain the number of pairs of b ·g-length vectors represented by v and v′ that are accepted by f ,
where f is said to accept a pair of b ·g-length vectors if it accepts each of the g pairs of chunks of b-length
subvectors between positions (i−1)b+1 to ib for i ∈ [g].

Then we can define the factored problem for f , F2-f that given two sets S and T of n (g,b)-factored vec-
tors, computes the sum ∑v∈S,v′∈T ∏

g
i=1 accept f (v,v′, i), i.e. the total number of pairs of vectors represented by

vectors in S and T that are accepted by f . For technical reasons, we restrict the values g = o(lg(n)/ lg lg(n))
and b = o(lg(n)), so that each factored vector can be represented with at most gb2b bits (g sets of at most 2b

vectors of length b).
Depending on the function f , we get different versions of a factored problem. If f on b-length vectors

x and y, returns 1 iff x · y = 0, then we get the factored OV problem F2-OV. If f returns 1 if the XOR of x
and y is 0, we get the F2-XOR problem, and if f returns 1 iff x+ y = 0 when viewed as integers, we get the
F2-SUM problem.

More generally, f can be defined over k ·b-length vectors, for integer k ≥ 2, taking k-tuples of b-length
binary vectors to {0,1}. Then analogously we can define Fk-f to compute the number of k-tuples of vectors
represented by some k-tuple of factored vectors, one from each n-sized input set Si, i ∈ [k], so that f accepts
the k-tuple. This way we can define Fk-OV, Fk-XOR, Fk-SUM etc, the factored versions of k-OV, k-
XOR and k-SUM.

Similarly to these problems defined on k-tuples of sets of factored vectors, we define problems reminis-
cent to k-clique. Here f is a function that takes

(k
2

)
-tuples of b-length vectors to {0,1}, one is given a graph

whose edges are labeled by factored vectors and the factored f k-clique problem, FfkC, asks to compute the
number of

(k
2

)
-tuples of vectors that are accepted by f and are represented by the factored vectors labeling

the edges of a k-clique in the graph. We focus in particular on the factored zero-k-clique problem, FZkC, in
which f corresponds to returning whether the sum of

(k
2

)
b-bit numbers is 0.

1.2 Results for factored problems

We will summarize the results around our factored problems below. They appear in sections and. We
give a visual summary of our results in Figure. We use the shortened names for many of the problems in the
figure. The results will concern both counting and decision versions of our factored problems. The decision
versions ask whether the count is nonzero, whereas the counting versions ask for the exact count. When
we want the counting version, we will place # in front of the name of the problem. See the Preliminaries
(Section) for more details.

Summary. We first provide an overview summary of our results.
First we show that the factored versions of k-OV, k-SUM and k-XOR are all nk−o(1)-fine-grained hard

under SETH. We also show that the factored version of zero-3-clique (FZ3C) is n3−o(1)-fine-grained hard
based on any of the three core hypotheses of FGC (SETH, or the APSP or 3-SUM hypothesis). Additionally,
we show that the counting versions of these factored problems are as hard in their natural uniform average-
case as they are in the worst case. Moreover, we show that many natural problems, like counting regular
expression matchings, reduce from our factored problems. This even implies fine-grained average-case
hardness for these problems over some explicit distributions.

Thus our factored problems do three things simultaneously:

• Instead of trying to use the uniform average-case of the core problems of FGC as central problems

3



Fk-OV

Fk-SUM

k-OV SETH

FZkC ZkC

3-SUM

APSP
Z3C

AC#FZkC

AC#Fk-SUM

AC#Fk-OV

#FZkC

#Fk-SUM

#Fk-OV

k-LCS

(k + 1)L-MF#k-NLstC

#k-ELstC F2-OV

Edit Distance#RegEx

#F2-OV

#PMT #FZ3C

Fk-f

FfkC
Fk-XORAC#Fk-XOR #Fk-XOR

Figure 1: A summary of the reductions to and from factored problems in the paper. The problems in
diamonds are the core problems of FGC. The full lines are reductions from this paper, while doted lines are
pre-existing reductions. The problems in gray boxes are our factored problems. The problems in thick lined
boxes are the problems we reduce from factored problems. For the problems surrounded by a thick-lined
double box we have generated an explicit average case distributions on which they are hard (but it is not the
uniform distribution). These results appear in Sections and.

in a network of average-case reductions, we can use the factored versions of the core problems in
FGC. For example, the counting variant of factored OV (#F2-OV) is hard in its uniform average
case from the worst-case OV hypothesis. Generically, our factored problems serve as an alternative
central problem for average-case hardness. To demonstrate this, in Section, we give reductions from
counting factored problems to four problems in graph algorithms and sequence alignment (including
counting regular expression matchings).

• The factored versions of the core problems are sufficiently expressive that they are complete for the
large class of factored problems. In particular, Fk-OV, Fk-XOR, and Fk-SUM are complete for
the class of problems of the form Fk-f over all f , while FZkC is complete for the class of problems
FfkC over all f . Despite this expressiveness we are still able to reduce our factored problems to many
natural problems. In section we give fine-grained reductions from our factored problems to k-LCS,
Edit Distance and a labeled version of Max Flow.

• Abboud et al. [] gave two problems, Triangle Collection and Matching Triangles that are hard
from all three core assumptions in FGC. They also showed that one can reduce Triangle Collection 3

to several natural problems in graph algorithms. Unfortunately, however, neither Triangle Collection,
nor Matching Triangles are known to be hard on average. One of our factored problems, FZ3C is also
hard from all three core assumptions. Moreover, the counting version of FZ3C is additionally n3−o(1)

hard in the average-case from all three core assumptions of FGC. Thus, problems that reduce from
counting FZ3C get average-case hardness for some explicit average-case distribution. We give two
examples of problems that reduce from counting FZ3C in Section. Hence if you are interested in

3Actually a version of the problem that is still hard under all three assumptions.

4



average-case hardness then counting FZ3C might be a better source for reductions than, say Matching
Triangles or Triangle Collection.

Fine-grained hardness for factored problems. Here we show that our factored problems are fine-grained
hard under standard FGC hypotheses.

We first show that a single call to a factored problem solves its non-factored counterpoint.

Theorem 1.1. In O(n) time, one can reduce an instance of size n of k-OV, k-XOR, k-SUM and ZkC to a
single call to an instance of size Õ(n) of Fk-OV, Fk-XOR, Fk-SUM and FZkC, respectively.

The above theorem holds both in the decision and counting context. It gives fine-grained hardness for
the factored variants of all our problems, under the hypothesis that the original variants are hard. Note that
k-XOR, k-SUM have Õ(ndk/2e) time algorithms. However, we have nk−o(1) conditional lower bounds for
all of Fk-OV, Fk-XOR, Fk-SUM and FZkC. So, while we do get fine-grained hardness from the k-XOR
and k-SUM hypotheses, this hardness is not tight. The hardness is tight from the k-OV and ZkC hypotheses
however.

Now we give fine-grained hardness for FZ3C under all three core hypotheses from FGC.

Theorem 1.2. If FZ3C (even for b = o(logn) and g = o(log(n)/ log log(n))) can be solved in O(n3−ε) time
for some constant ε > 0, then SETH is false, and there exists a constant ε ′ > 0 such that 3-SUM can be
solved in O(n2−ε ′) time and APSP can be solved in O(n3−ε ′) time.

Worst-case to average-case reductions for factored problems. We show that our factored problems
admit fine-grained worst-case to average-case reductions. Our first theorem about this is a worst-case to
average-case fine-grained reduction for the counting version of Fk-f for a natural distribution (defined in
Definition). The proof appears in Section.

Theorem 1.3. Let µ be a constant such that 0 < µ < 1. Suppose that average-case #Fk-fµ (see definition

18, this is an iid distribution which has ones with probability µ) can be solved in time T (n) with probability
at least 1−1/(lg(n)kg lg lg(n)kg). Then worst-case #Fk-f can be solved in time Õ(T (n)) 4.

When µ = 1/2 average-case #Fk-fµ is average-case #Fk-f.

Thus, if we have worst-case fine-grained hardness for #Fk-f for some f , then we get average-case hard-
ness for the same problem over a natural distribution. In particular, in the corollary below we obtain average-
case hardness for #Fk-OV, # Fk-SUM , #Fk-XOR, based on the standard FGC hardness of k-OV, k-SUM,
k-XOR (as implied by Theorem).

Corollary 1.4. If average-case #Fk-OV can be solved in time T (n) with probability 1−1/(lg(n)gk lg lg(n)gk)
then worst-case #Fk-OV can be solved in time Õ(T (n)) 4.

If average-case # Fk-SUM can be solved in time T (n) with probability 1− 1/(lg(n)gk lg lg(n)gk) then
worst-case # Fk-SUM can be solved in time Õ(T (n)) 4.

If average-case #Fk-XOR can be solved in time T (n) with probability 1− 1/(lg(n)gk lg lg(n)gk) then
worst-case #Fk-XOR can be solved in time Õ(T (n)) 4.

Similarly, we obtain fine-grained average-case hardness for #FfkC, based on the fine-grained worst-case
hardness of #FfkC.

4Note that given that g = o(lg(n)/ lg lg(n)) then a probability of 1−1/nε will be high enough for any ε > 0.
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Theorem 1.5. Let µ be a constant and 0 < µ < 1. If average-case #FfkCµ (see Definition, this is
an iid distribution which has ones with probability µ) can be solved in time T (n) with probability 1−
1/(lg(n)k2g lg lg(n)k2g) then worst-case #FfkC can be solved in time Õ(T (n)) 4.

When µ = 1/2 average-case #FfkCµ is average-case #FfkC.

By Theorem, we have the following result for #FZ kC in particular.

Corollary 1.6. If average-case #FZkC can be solved in time T (n) with probability 1−1/(lg(n)k2g lg lg(n)k2g)
then worst-case #FZkC can be solved in time Õ(T (n)) 4.

Thus in particular we obtain fine-grained average-case hardness for counting factored zero-3-cliques,
based on the hardness of zero-3-clique, and thus based on the APSP and 3-SUM hypotheses.

Completeness for Fk-OV, Fk-SUM , Fk-XOR and FZkC. Let k≥ 2 be a fixed integer. Consider the class
of problems Fk-f defined over all boolean functions f on kb-length inputs. Our first sequence of results show
that Fk-OV, Fk-SUM and Fk-XOR are complete for the class, so that a T (n) time algorithm for any of these
problems would imply an Õ(T (n)) time algorithm for Fk-f for any f .

To prove this, we first show that Fk-XOR is complete for the class:

Theorem 1.7. If we can solve #Fk-XOR with g sets of k3b length vectors in time T (n) then, for any f , we
can solve a #Fk-f instance with g sets of b length vectors in time T (n)+ Õ(n) time.

We then show that Fk-OV, Fk-SUM and Fk-XOR are equivalent.

Theorem 1.8. If any of #Fk-OV, # Fk-SUM , or #Fk-XOR can be solved in T (n) time then all of #Fk-OV, #
Fk-SUM , and #Fk-XOR can be solved in Õ(T (n)) time.

The above two theorems imply the final completeness theorem:

Theorem 1.9. If any of #Fk-OV, # Fk-SUM , or #Fk-XOR can be solved in T (n) time then #Fk-f can be
solved in Õ(T (n)) time.

We also consider the class of problems (#)FfkC defined by Boolean functions f on
(k

2

)
b-length inputs.

We show that (#)FZkC is complete for this class.

Theorem 1.10. If (#)FZkC can be solved in T (n) time then (#)FfkC for any f , can be solved in Õ(T (n)+n2)
time.

Thus our factored problems corresponding to core problems in FGC, are the hard problems for natural
classes of factored problems.

Fine-grained hardness for well-studied problems, based on the hardness of factored problems. The
results we mention here appear in Section. The main upshot is that the factored problems are both hard
and also simple enough to imply hardness for basic problems in graph and string algorithms. Some of the
results are based on the hardness of FZ3C which implies hardness from all of SETH, 3-SUM and APSP.
Some come from Fk-f which implies hardness from SETH.
Partitioned Matching Triangles. First we define the Partitioned Matching Triangles problem (PMT) as
follows: Given g disjoint n-node graphs with node colors, is there a triple of colors a,b,c so that every one
of the g graphs contains a triangle whose nodes are colored by a,b,c? The counting variant of PMT is to
count the total number of such g-tuples of colored triangles.

6



Abboud et al. [] consider the related Matching Triangles problem mentioned earlier in the intro-
duction, and show that it is hard from all three core FGC hypotheses. In the Matching Triangles problem
one is given an integer T and a node-colored graph G and one wants to know if there is a triple of colors
a,b,c so that there are at least T triangles in G colored by a,b,c.

We observe first that for the particular parameters for which Matching Triangles is shown to be hard
in [], one can actually reduce Matching Triangles in a fine-grained way to Partitioned Matching
Triangles (PMT), so that the latter problem is also hard from all three hypothesis. Furthermore, we give a
powerful reduction to PMT from FZ3C. Moreover, our reduction also holds between the counting versions of
the problems, so that we get fine-grained average-case hardness for counting PMT under all three hypotheses
as well.

Theorem 1.11. If (#)Partitioned Matching Triangles can be solved in T (n) time, then we can solve (#)FZ3C in
time Õ(T (n)+n2).

kkk-color Node Labeled st Connectivity. In the k-color Node Labeled st Connectivity Problem (k-NLstC) one
is given an acyclic graph G = (V,E) with two designated nodes s, t ∈V , and colors on all nodes in V \{s, t}
from a set of colors C. One is then asked whether there is a path from s to t in G using at most k node colors.

We give a fine-grained reduction from FZkC to k-NLstC that also holds between the counting versions.
Here in the counting version of k-NLstC we want to output the number of s-t paths through at most k colors,
mod d22k lg2(n)e.

Theorem 1.12. If a O(|C|k−2|E|1−ε/2) or O(|C|k−2−ε |E|) time algorithm exists for (counting mod 22k lg2(n))
k-NLstC then a O(nk−ε) algorithm exists for (#)FZkC.

The conditional lower bound of (|C|k−2|E|)1−o(1) resulting from the above theorem is tight. In Appendix

A we give the corresponding algorithm.
kkk-color Edge Labeled st Connectivity. The k-color Edge Labeled st Connectivity problem (k-ELstC) asks
for a given acyclic graph with colored edges and given source s and target t, if there is a path from s to t that
uses only k colors of edges.

We give conditional hardness for both the decision and counting version of the problem (where the
counts are mod a small R). This also implies average-case hardness for the counting mod R problem under
all three hardness hypotheses of FGC.

Theorem 1.13. If a Õ(|E||C|k−1−ε) or Õ(|E|1−ε |C|k−1) time algorithm exists for (counting mod 22k lg2(n))
k-ELstC, then a Õ(nk−ε) algorithm exists for (#)Fk-f.

This is tight. Note this algorithm is slower (by a factor of |C|) than the node-labeled version, however it
is optimal. The corresponding algorithm is in a theorem from Appendix.
(((kkk+++ 111))) Labeled Max Flow. The (k+ 1) Labeled Max Flow problem studied in [] asks, given a
capacitated graph G = (V,E) where the edges have colors, and s, t ∈V , if there is a maximum flow from the
source s to the sink t where number of distinct colors of the edges with non-zero flow is at most k+1.

Theorem 1.14. If (k+1)L-MF can be solved in T (n) time, then we can solve FZkC in time Õ(T (n)+n2).

This implies an nk−1−o(1) lower bound for kL-MF under all three FGC hypotheses. We also show that
for the particular structured version of the problem given in our reduction, this lower bound is tight.
Regular Expression Matching. The Regular Expression Matching problem (studied e.g. in []) takes
as input a regular expression (pattern) p of size m and a sequence of symbols (text) t of length n, and asks
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if there is a substring of t that can be derived from p. The counting version of the problem, #Regular
Expression Matching asks for the number of subset alignments of the pattern in the text mod an integer
R, where R = no(1). A classic algorithm constructs and simulates a non-deterministic finite automaton
corresponding to the expression, resulting in the rectangular O(mn) running time for the detection version
of the problem.

We give hardness from #F2-OV (mod R) which in turn implies average-case fine-grained hardness for
counting regular expression matchings mod R, from SETH.

Theorem 1.15. Let R be an integer where lg(R) is subpolynomial. If you can solve (# mod R) regular
expression matching in T (n) time, then you can solve (# mod R) F2-OV in Õ(T (n)+n) time

Again, we show in Appendix that for the particular “type” of pattern used in our reduction, this lower
bound is tight.
LCS and Edit Distance. The k-LCS problem is a basic problem in sequence alignment. Given k sequences
s1, . . . ,sk of length n, one is asked to find the longest sequence that appears in every si as a subsequence.
k-LCS can be solved in O(nk) time with dynamic programming and requires nk−o(1) time under SETH, via
a reduction from k-OV []. Here we show that k-LCS is also fine-grained hard via a reduction from
Fk-OV.

Theorem 1.16. A T (n) time algorithm for k-LCS with alphabet size O(k) implies a Õ(T (n)) algorithm for
Fk-OV.

The Edit Distance problem is another famous sequence alignment problem. Here one is given two n
length sequences a and b and one needs to compute the minimum number of symbol insertions, deletions
and substitutions needed to transform a into b. Edit Distance can be solved in O(n2) time via dynamic
programming, and requires n2−o(1) time under SETH, via a reduction from OV [,].

In section we show that edit distance is also fine-grained hard from F2-OV.

Theorem 1.17. A T (n) time algorithm for Edit Distance implies a Õ(T (n)) algorithm for F2-OV.

1.2.1 Counting OV is Easy on Average

As mentioned earlier in the introduction we show that counting orthogonal vectors over the uniform distri-
bution is easy in the average-case. Let #OVµ,d be the problem of solving orthogonal vectors on instances
generated by sampling n vectors iid from the distribution over d bit vectors where every bit in the vector is
sampled iid from the distribution that returns 1 with probability µ and returns 0 with probability 1−µ .

Theorem 1.18. For all constant values of µ and all values of d there exists constants ε > 0 and δ > 0 such
that there is an algorithm for #OVµ,d that runs in time Õ(n2−δ ) with probability at least 1−n−ε .

1.2.2 Counting to Detection for ZkC

Our worst-case to average-case reductions show hardness for counting problems. We mentioned earlier in
the introduction that stronger cryptographic primitives have been built from detection problems than from
counting problems. In this paper we show that in the sufficiently low error regime there is a counting to
detection reduction for the zero-k-clique problem. Unfortunately, this does not give a fine-grained one-way
function from worst-case assumptions. However, it makes progress towards bridging the gap between the
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problems we can show hard from the worst-case and those we can build powerful cryptographic primitives
from.

Definition 1. An average case instance of ZkC (ACZkC) with range R takes as input a complete k-partite
graph with n nodes in each partition. Every edge has a weight chosen iid from [0,R− 1]. A clique is
considered a zero k clique if the sum of the edges is zero mod R.

Theorem 1.19. Given a decision algorithm for ACZkC that runs in time O(nk−ε) for some ε > 0 and
succeeds with probability at least 1− n−ω(1), there is a counting algorithm that runs in O(nk−ε ′) time for
some ε ′ > 0 and succeeds with probability at least 1−n−ω(1), where ω(1) here means any function that is
asymptotically larger than constant.

1.2.3 Worst-Case to Average-Case Reductions

We define the notion of a good low-degree polynomial for the problem P (a GLDP(P)). We define the
properties of a good low-degree polynomial in Definition. Intuitively these properties are that the function
must be low degree, count the output of the problem, and have well structured monomials. We show that any
problem P that has a GLDP(P) is hard in its uniform average case in appendix. We do this using techniques
from Boix-Adserà et al []. We use the GLDP( ·) framework to show uniform average-case hardness
for our counting factored problems (in section). We give the framework theorem statement below.

Theorem 1.20. Let µ be a constant such that 0 < µ < 1. Let P be a problem such that a function f exists
that is a GLDP(P), and let d be the degree of f . Let A be an algorithm that runs in time T (n) such that when
~I is formed by n bits each chosen iid from Ber[µ]:

Pr[A(~I) = P(~I)]≥ 1−1/ω

(
lgd(n) lg lgd(n)

)
.

Then there is a randomized algorithm B that runs in time Õ(n+T (n)) such that for any for~I ∈ {0,1}n:

Pr[B(~I) = P(~I)]≥ 1−O
(

2− lg2(n)
)
.

Boix-Adserà et al show that counting k cliques is as hard in Erdős-Rényi graphs as it is in the worst
case. We use the GLDP(·) framework a second time to slightly generalize their result to show that counting
any subgraph H in an Erdős-Rényi graph is at least as hard as counting subgraphs H in worst case k-partite
graphs (in section).

Theorem 1.21. Let H have e edges and k vertices where k = o(
√

lg(n)). Let A be an average-case algorithm
for counting subgraphs H in Erdős-Rényi graphs with edge probability 1/b which takes T (n) time with
probability 1−2−2k ·b−k2 · (lg(e) lg lg(e))−ω(1).

Then an algorithm exists to count subgraphs H in k-partite graphs in time Õ(T (n)) with probability at
least 1− Õ(2− lg2(n)).

1.3 Organization of the Paper

In the preliminaries section we give a formal definition of our factored problems. We also define the
problems that we use throughout the paper, and we give an introduction of the average-case framework
which is defined formally in Appendix. We show that the factored problems are hard, and give the worst-
case to average-case reductions for the factored problems in section. In section, we show that our
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factored problems can show hardness for many natural non-factored problems. We use the same framework
that gives average-case hardness for the factored problems to show that counting arbitrary subgraphs in
random graphs is hard in section. We give a fast algorithm for counting OV over the uniform average-case
in section. We give counting to detection reduction for average-case zero- k-clique with high probability
in section. Finally, we list problems that seem like promising future work in section.

We give the efficient algorithms for our factored problems and the problems that reduce from our fac-
tored problems in appendix. We give the framework that generalizes the techniques of Boix-Adser à et al.
in appendix.

2 Preliminaries

We cover useful preliminaries for sections and in this section. We include preliminaries for Section,
Appendix, and proofs of algorithm running times in Appendix.

2.1 Hypotheses about Core Problems of Fine-Grained Complexity

Definition 1. The 3-SUM Hypothesis [] In the k-SUM problem, we are given an unsorted list L of
n values (over Z or R) and want to determine if there are a1, . . . ,ak ∈ L such that ∑

k
i=1 ai = 0. The counting

version of k-SUM asks how many sets of k numbers a1, . . . ,ak ∈ L sum to zero.
The k-SUM hypothesis states that that the k-SUM problem requires ndk/2e−o(1) time [].
This is equivalent to saying no ndk/2e−ε time algorithm exists for k-SUM for constant ε > 0.

Definition 2. APSP Hypothesis [] APSP takes as input a graph G with n nodes (vertices), V and m
edges, E. These edges are given weights in [−R,R] where R = O(nc) for some constant c. We must return
the shortest path length for every pair of vertices u,v∈V . The length of a path is the sum of the edge weights
for all edges on that path.

The APSP Hypothesis states that the APSP problem requires n3−o(1) time when m = Ω(n2).

Definition 3. Strong Exponential Time Hypothesis (SETH) [] Let ck be the smallest constant such
that there is an algorithm for k-CNF SAT that runs in O(2ckn+o(n)) time.

SETH states that there is no constant ε > 0 such that ck ≤ 1− ε for all constant k.

Intuitively SETH states that there is no constant ε > 0 such that there is a O(2n(1−ε)) time algorithm for
k-CNF SAT for all constant values of k.

Definition 4. The k-OV Hypothesis [] In the k-OV problem, we are given k unsorted lists L1, . . . ,Lk
of n zero-one vectors of length d as input. If there are k vectors v1 ∈ L1, . . . ,vk ∈ Lk such that for ∀i ∈
[1,d] ∃ j ∈ [1,k] such that vi[ j] = 0 we call these k vectors an orthogonal k-tuple. One should return true if
there is an orthogonal k-tuple in the input. The counting version of k-OV (#k-OV) asks for the number of
orthogonal k-tuples.

The k-OV hypothesis states that that the k-OV problem requires nk−o(1) time [].
This is equivalent to saying no O(nk−ε) time algorithm exists for k-OVfor constant ε > 0.

10



2.2 Graphs

Definition 5. Let H = (VH ,EH) be a k-node graph with VH = {x1, . . . ,xk}.
An H-partite graph is a graph with k partitions V1, . . . ,Vk. This graph must only have edges between

nodes vi ∈Vi and v j ∈Vj if e (xi,x j) ∈ EH . (See Figure)

H H-partite H ′ H ′-partite

Figure 2: An example of the corresponding H-partite graphs.

2.3 Good Low-Degree Polynomials

We define the good low-degree polynomial for a problem P (GLDP(P)). In Appendix we provide a
framework which shows that if a problem P has a GLDP(P) then P is hard over the uniform average case.
The proof of this framework is a generalization of the proof in Boix et al. []. We use this to show
average-case hardness for counting versions of factored problems and counting subgraphs in sections and5 respectively.

Definition 6. Let the polynomial f have n inputs x1, . . . ,xn. We say f is strongly d-partite if one can
partition the inputs into d sets S1, . . . ,Sd such that f can be written as a sum of monomials ∑i x1,i · · ·xd,i,
where every variable x j,i is from the partition S j. That is, if there is a monomial xc1

i1 · · ·x
ck
ik in f then it must

be that c j = 1 and for all j 6= ` if xi j ∈ Sm then xi` /∈ Sm.

Definition 7. Let P(~I) be the correct output for problem P given input~I.

Definition 8. Let n be the input size of the problem P, let P return an integer in the range [0, p−1] where
p is a prime and p < nc for some constant c. A good low-degree polynomial for problem P (GLDP(P)) is a
polynomial f over a prime finite field Fp where:

• If~I = b1, . . . ,bn, then f (b1, . . . ,bn) = f (~I) = P(~I) where bi maps to either a zero or a one in the prime
finite field.

• The function f has degree d = o(lg(n)/ lg lg(n)).

• The function f is strongly d-partite.

2.4 Factored Problems

We introduce a more expressive extension of k-SUM, k-OV, k-XOR, and ZkC. At a high level this extension
takes every number or vector from the original problems and splits them up into g= o(lg(n)/ lg lg(n)) groups
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of numbers or vectors with bit representations of size b = o(lg(n)). If the original numbers had length `,
then `≈ b ·g. Then, we allow each group to contain multiple numbers or vectors.

We start by giving a definition of Fk-OV, then we give a small example of F2-OV. Next, we follow up
with the analogously defined Fk-SUM ,Fk-XOR, and FZT. Finally, we give algorithms for these problems
in the Appendix.

2.4.1 Fk-OV, Intuition and Examples

Definition 9. A (g,b)-factored vector v is defined by g sets (v[1], . . . ,v[g]) where each v[i]⊆ {0,1}b is a set
of b-dimensional binary vectors.

For a set of vectors ~w1, . . . , ~wk of the same dimension d, let isOrthogonalTuple(~w1, . . . , ~wk) return 1 iff
~w1, . . . , ~wk are orthogonal, i.e. iff ∑

d
a=1 ∏

k
j=1 w j[a] = 0, where w j[a] is the ath bit of the vector w j.

Now we define a useful operator, ◦ for a set {Z1, . . . ,Zk} where each Zi is a set of d-dimensional binary
vectors as follows.

◦(Z1, . . . ,Zk) := ∑
~w1∈Z1,...,~wk∈Zk

isOrthogonalTuple(~w1, . . . , ~wk).

Now, given k (g,b)-factored vectors v1, . . . ,vk the number of orthogonal vectors within those factored
vectors is }(v1, . . . ,vk) := Π

g−1
i=0 ◦ (v1[i], . . . ,vk[i]).

The input to Fk-OV is V1, . . . ,Vk, where each Vj is a set of n (g,b)-factored vectors, where g= o(lg(n)/ lg lg(n))
and b = o(lg(n)). The total number of orthogonal vectors in a given Fk-OV instance is

∑
v1,...,vk∈V1,...,Vk

}(v1, . . . ,vk).

The Fk-OV problem asks to determine whether ∑v1,...,vk∈V1,...,Vk
}(v1, . . . ,vk)> 0.

An Example: We give a small example bellow. Consider F2-OV where g = 2 and b = 3. We give an
example of factored vectors u, v and w:

u[0] = {001,010} u[1] = {001,010}
v[0] = {000,010,110} v[1] = {110,101}
w[0] = {} w[1] = {000,011,100,111}

First, note that }(w,u) = }(w,v) = 0 trivially because w[0] is the empty set. Empty sets are valid in
this factored representation, but, rather degenerate. Next, note that }(v,u) is 4 · 2 = 8. For ◦(u[0],v[0]) all
of (001,000),(001,010),(001,110), and (010,000) are orthogonal. For ◦(u[1],v[1]) both (001,110), and
(010,101) are orthogonal.

A Natural Interpretation: We can generate a k−OV instance by interpreting a factored vector as rep-
resenting |v1| · . . . · |vk| vectors. For example u in the above example would represent the following list of
vectors:

001001,001010,010001,010010.

As another example v would represent the following list of vectors:

000110,000101,010110,010101,110110,110101.
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Finally, W represents no vectors, because w[0] is the empty set.
However, the number of vectors that can be represented by a single factored vector that has a g2b sized

representation is 2bg. While g2b is sub-polynomial, 2bg can be super polynomial (e.g. if b = g = lg(n)3/2)!

2.4.2 Definitions for Fk-f, Fk-SUM, Fk-XOR, and FZT

Definition 10. Let f : ({0,1}b)×k → {0,1} be a function taking k b-dimensional binary vectors to {0,1}.
We can view f as a Boolean function.

Let us define an operator for f , ◦ f , that takes k factored vectors a1, . . . ,ak and computes the number of
k-tuples of vectors, one in each ai, that f accepts:

◦ f (a1, . . . ,ak) = ∑
~w1∈a1...~wk∈ak

f (~w1, . . . , ~wk).

If v is a (g,b)-factored vector let, for i ∈ [g], v[i] be the ith set of vectors in v.
Given (g,b)-factored vectors v1, . . . ,vk the number of k-tuples of vectors accepted by f within those

factored vectors is } f (v1, . . . ,vk) = Π
g−1
i=0 ◦ f (v1[i], . . . ,vk[i]).

For each f , we define a problem Fk-f. The input to Fk-f is k sets, V1, . . . ,Vk, of n (g,b)-factored vectors
each, where g = o(lg(n)/ lg lg(n)) and b = o(lg(n)).

The total number k-tuples of vectors accepted by f in a given Fk-f instance is

Fk- f (V1, . . . ,Vk) := ∑
v1,...,vk∈V1,...,Vk

} f (v1, . . . ,vk).

The Fk-f problem returns true iff Fk- f (V1, . . . ,Vk) > 0. More generally, the counting version #Fk-f of
Fk-f asks to compute the quantity Fk- f (V1, . . . ,Vk).

Definition 11. Fk-XOR is the problem Fk-f where f is 1 if the componentwise XOR of the k given vectors
is the 0 vector:

f (v1, . . . ,vk) =

{
1, if v1⊕ . . .⊕ vk =~0
0, else

.

Definition 12. Fk-SUM is the problem Fk-f where f that checks if the sum of the k vectors is the 0 vector:

f (v1, . . . ,vk) =

{
1, if v1 + . . .+ vk = 0
0, else

.

Definition 13. For an integer k, ` =
(k

2

)
and a given function f : {0,1}b` → {0,1}, construed as taking

`-tuples of b-length binary vectors to {0,1}, let #FfkC be the problem of counting cliques in a graph whose
edges are labeled with factored vectors, where a clique is counted with multiplicity the number of `-tuples
of vectors that f accepts and that appear in the ` factored vectors labeling the edges.

More formally, we change the definition of the operation } f (·) to take as input k vertices v1, . . . ,vk of a
given graph G = (V,E) whose edges (x,y) ∈ E are labeled by (g,b)-factored vectors ex,y:

}′f (v1, . . . ,vk) = isClique(v1, . . . ,vk) ·Πg−1
i=0 ◦ f (ev1,v2 [i],ev1,v3 [i], . . . ,evk−1,vk [i]).
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Above isClique(v1, . . . ,vk) outputs 1 if v1, . . . ,vk form a k-clique in G, and otherwise outputs 0.
We keep the definition of ◦ f (·) the same as before, but now its input is a list of ` sets of vectors that are

the ith group of vectors of the factored vectors labeling the clique edges:

◦ f (e1[i], . . . ,e`[i]) = ∑
~w1∈e1[i] ...~w`∈e`[i]

f (~w1, . . . , ~w`).

Finally, we let #FfkCbe the problem of computing

F f kC(G) := ∑
v1,...,vk∈V

}′f (v1, . . . ,vk).

Here, unlike for #F`-f, we are only counting the sums of factored vectors when those factored vectors
are on a set of ` =

(k
2

)
edges that form a k clique. Let FfkCbe the detection version of the problem that

returns 1 if F f kC(G)> 0 and 0 otherwise.

Definition 14. Factored Zero k-Clique, FZkC is the FfkC problem where f is the sum function for
(k

2

)
variables defined in the definition of Fk-SUM .

Definition 15. Factored Zero Triangle, FZT is FZ3C.

2.4.3 Hypotheses for Factored Problems

First we will define the hypotheses for our factored list problems.
In many lemma, theorem and definition statements we will use a structure where we put (#) before

several problem or hypothesis names. This structure means that the statement is true for all non counting
versions, or for all counting versions. For example, in the first line below the two implies statements are:
“The Fk-OV hypothesis (i.e.Fk-OVH) states that Fk-OV requires nk−o(1) time.”
and “The #Fk-OV hypothesis (i.e.#Fk-OVH) states that #Fk-OV requires nk−o(1) time.”.

Definition 16. The (#)Fk-OV hypothesis (i.e.(#)Fk-OVH) states that (#) Fk-OV requires nk−o(1) time.
The (#) Fk-SUM hypothesis (i.e.(#)Fk-SUMH) states that (#) Fk-SUM requires nk−o(1) time.
The (#)Fk-XOR hypothesis (i.e.(#)Fk-XORH) states that (#)Fk-XOR requires nk−o(1) time.
The (#)Fk-f hypothesis (i.e.(#)Fk-fH) states that (#)Fk-f requires nk−o(1) time.

Now we will define the hypotheses for our factored clique problems.

Definition 17. The (#)FZkC hypothesis (i.e.(#)FZkCH) states that (#) FZkC requires nk−o(1) time.
The (#)FfkC hypothesis (i.e.(#)FfkCH) states that (#) FfkC requires nk−o(1) time.

2.4.4 Average-Case for Factored Problems

We will separate the average-case distribution of factored problems into the normal case and a more-general
parameterized case.

Definition 18. More General Average-Case Let Sb,µ be a distribution over sets of vectors from {0,1}b. A
set drawn from Sb,µ includes every vector w ∈ {0,1}b with probability µ .

Let Dg,b,µ be a distribution over factored vectors v where all g sets of v[i] are sampled iid from Sb,µ .
The average-case distribution for #Fk-fµ samples every factored vector in its input iid from Dg,b,µ .
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The average-case distribution for #FfkCµ samples every factored vector in its input iid from Dg,b,µ .

For the average-case we use in this paper we use µ = 1/2. We feel this is the most natural distribution
for our problem. We will occasionally call this the “uniform average-case” to emphasize that every set v[i]
in every factored vector is chosen uniformly at random from all possible subsets of {0,1}b.

Definition 19. The average-case distribution for #Fk-f samples every factored vector in its input iid from
Dg,b,1/2.

The average-case distribution for #FfkC samples every factored vector in its input iid from Dg,b,1/2.

2.5 Problems harder than factored problems

Here we define problems that later are shown to be hard via reductions from the factored problems. We state
the known results for each, and a simple algorithm for each is given in Appendix that matches the lower
bound we prove later.

Definition 20. The Partitioned Matching Triangles (PMT) problem takes as input g = O(logn/ log logn)
disjoint n-node graphs with node colors, and asks if there is a triple of colors with a triangle of that color
triple in each of the g graphs. The counting version of the problem, #PMT, asks for the number of such
g-tuples of colored triangle.

This problem is very similar to the ∆ Matching Triangles problem defined in [], where given an
n-node graph G with node colors, the problems asks if there is a triple color with ∆ triangles of that color
triple in G.

In [], 3SUM, APSP and SETH are reduced to ∆ Matching Triangles where the instances pro-
duced can be represented as instances of Partitioned Matching Triangles instance for g = ∆. So Partitioned
Matching Triangles is hard from 3SUM, APSP and SETH. A related problem to PMT is the node disjoint
triangle packing problem which asks to find a maximum size node-disjoint triangle packing in a given graph
(see for example []). PMT is a natural mix of the ∆-matching-triangle and the node disjoint triangle
packing problems.

Definition 21. Node Labeled k-Color st Connectivity (k-NLstC) takes as input a directed graph G with
edge set E and vertex set V , two special nodes s and t, and a proper coloring of the vertices c : V \{s, t}→C,
where C is a set of colors, so that the endpoints of every edge have different colors and s and t have all
their neighbors colored distinctly. The input graph G is a layered graph, the vertex set V is partitioned
into V0,V1, . . . ,V`, such that every directed edge goes from a node in set Vi to a node in set Vi+1 for some
i ∈ {0, . . . , `− 1}. The k-NLstC problem asks if there is a path from s to t that uses only k colors of nodes
(where s and t are not counted for colors).

We also consider the problem of Counting k-NLstC mod R, in which we ask for the total number of
paths from s to t that use at most k colors of nodes. We will generally use values of R such that lg(R) is
subpolynomial, as this allows us to represent the count with a subpolynomial number of bits.

Definition 22. The k Edge Labeled (directed/undirected) st Connectivity (k-ELstC) problem takes as
input a directed acyclic graph G = (V,E), two special vertices s and t and a coloring of the edges c : E→C,
where C is a set of colors.

k-ELstC asks, given this input can you pick k colors such that there is a path from s to t using only edges
that are colored by one of those k colors? The counting version of k-ELstC, #k-ELstC asks for the number
of paths from s to t mod R that use only k colors, where lg(R) = no(1).
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Definition 23. The Bounded Labeled Maximum Flow (BL-MF) problem [] takes as input a
directed, capacitated, and edge-labeled graph G = (V,E) with a source node s ∈ V , a sink node t ∈ V , and
a positive integer k, and asks if there is a maximum flow x from s to t in G such that the total number of
different labels corresponding to arcs (i, j) ∈ E with non-zero flow is less than or equal to k. For fixed
constant k, we refer to the problem as kL-MF.

BL-MF is the decision version of the maximum flow with the minimum number of labels (MF-ML)
problem where we seek a maximum flow from s to t that uses the minimum number of labels. []
uses this problem to model the purification of water during the distribution process. They show that BL-MF
is NP-complete. Let BL-MF* be a slightly more restricted version of BL-MF where the number of edges of
each label is o(n) and the edges attached to the sink and source have a special label l∗. We show a lower
bound of O(nk−1) for kL-MF* (and thus kL-MF) for fixed k, and show that it has a matching algorithm as
well.

Definition 24. The Regular Expression Matching problem [] takes as input a regular expression
(pattern) p of size m and a sequence of symbols (text) t of length n, and asks if there is a substring of t that
can be derived from p. The counting version of the problem, #Regular Expression Matching asks for the
number of subset alignments of the pattern of the pattern in the text mod an integer R, where R = no(1).

A classic algorithm constructs and simulates a non-deterministic finite automaton corresponding to the
expression, resulting in the rectangular O(mn) running time.

Definition 25. The (counting) k-Longest Common Subsequence ((#)k-LCS) problem (see for example
[]) takes as input k sequences P1, . . . ,Pk of length n over an alphabet Σ. Let ` be the length of the longest
sequence X such that X appears in all of P1, . . . ,Pk (in the same order).

k-LCS asks for the value of `, while #k-LCS asks to compute ` and also the total number of common
subsequences of length `.

More formally, define C#(Xi) to be the total number k-tuples of ` sequence locations in each of our
k strings such that those locations map onto the sequence Xi for all k strings when Xi is of length `. Let
X1,X2, . . .X j be all possible sequences of length ` that appear in all of P1, . . . ,Pk. For the #k-LCS problem
we ask for the value of ` and the value of Π

j
i=1C#(Xi).

Definition 26. The Edit Distance problem (see for example []) takes as input two sequences x and y
over an alphabet Σ, and asks to output the edit distance EDIT (x,y) which is equal to the minimum number
of symbol insertions, symbol deletions or symbol substitutions needed to transform x into y.

3 Factored Problems are Hard

In this section we will first show the simple result that Fk-OV, Fk-SUM , Fk-XOR, and FZT are all at least
as hard as their non-factored variants. Second, we will show a worst-case to average-case reduction from
Fk-OV to itself. We will also show the corresponding worst-case to average-case reductions for Fk-SUM
, Fk-XOR, and FZT. Third, we will show many worst-case reductions between these factored problems.
Notably, Fk-OV, Fk-SUM , and Fk-XOR are all equivalent up to sub-polynomial factors. Additionally,
FZT is n3−o(1) hard from F3-OV (and thus equivalently hard from F3-SUM , and F3-XOR). Notably this
means that the Ff3CH is implied by SETH, the 3-SUM hypothesis, and the APSP hypothesis. Figure
summarized the reductions of this section.

Remember that algorithms for these problems are given in Appendix. We give O(nk+o(1)) algorithms
for Fk-OV, Fk-SUM , FZkC and Fk-XOR.
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Fk-OV

Fk-XORFk-SUMFZkC Fk-f

FfkC

Figure 3: Map of the reductions

3.1 Factored Versions are Harder

Consider any problem where we have k sets of vectors V1, . . . ,Vk and we want to compute the number of
k-tuples of vectors v1 ∈ V1, . . . ,vk ∈ Vk of length l = bg, such that f̂ (v1, . . . ,vk) = 1, for some function
f̂ : {0,1}l×k → {0,1}. Call this problem k- f̂ . Note that k-SUM, kXOR, and kOV are examples of such
problems. We show that these problems can be solved using their factored version.

For any vector v of length bg and for any j = 1, . . . ,g, let v j be the subvector of v that starts at the
( j−1)b+1th bit and ends at the jbth bit. Suppose that there is a function f : {0,1}b×k→ {0,1} such that
f̂ (v1, . . . ,vk) = 1 if and only if Π

g
j=1 f (v j

1, . . . ,v
j
k) = 1. We call f the factored version of f̂ . In other words,

the function f̂ can be applied more locally, on subvectors of length g. Note that for most problems including
the problems we work with, this property holds.

Now we can easily reduce k- f̂ to Fk-f. Let the resulting Fk-f instance be the following: For any bg length
vector v in the k- f̂ instance, let the factored version of v have sets v[ j] = {v j}. By the property mentioned,
it is straightforward to see that this instance of Fk-f is equivalent to k- f̂ .

For the k-SUM problem it is less obvious how to solve it with Fk-SUM . For the k-SUM problem we
can use the nearly linear hash functions to reduce all numbers to the range [−nk,nk] []. Additionally,
we can reduce k-SUM in the range [−nk,nk] to a version where every number is instead a vector with g
numbers with b bits each [], where g ·b = k lg(n). We consider a sum of k vectors to be a zero sum
if the vectors sum to the zero vector. To ask if k numbers of length k lg(n) sum to zero, we can instead ask
if k vectors sum to the zero vector where the vectors have length g and the numbers are each b bits. But, we
need to guess the g−1 carries, this is a total of O(kg) guesses. If g = o(lg(n)) this is sub-polynomial, and so
we can go through all these guesses. This vectorized version of the k-SUM problem can be directly solved
by Fk-SUM as mentioned above.

Similar to the approach for solving k- f̂ problems using Fk-f, we can reduce ZkC to FZkC. Here the
function f̂ (which is the sum function) gets

(k
2

)
vectors as input instead of k vectors, and these vectors should

have the property that they form the edges of a k-clique in the graph. If f is the factored version of f̂ , then we
have that f̂ (e1, . . . ,e(k

2)
) = 1 and e1, . . . ,e(k

2)
are the edges of a k-clique if and only if Π

g
j=1 f (e j

1, . . . ,e
j
(k

2)
) = 1

and e1, . . .e(k
2)

are edges of a k-clique. So again, the FZkC instance that is equivalent to the ZkC instance

is that for each vector e of an edge, we let e[ j] = {e j}. So we have the following theorem. Note that our
reductions form a one-to-one correspondence between each solution in a k- f̂ instance and the corresponding
Fk-f instance, and hence they work for the counging version of our problems as well.
REMINDER OF THEOREM 1.1 In O(n) time, one can reduce an instance of size n of k-OV, k-XOR, k-SUM
and ZkC to a single call to an instance of size Õ(n) of Fk-OV, Fk-XOR, Fk-SUM and FZkC respectively.

Proof. We can split a number or vector in the original problem into a vector with g numbers of length b.
This reduction step is trivial for k-OV, ZkC, and k-XOR. To be explicit:

• k-OV: Let d = o(lg2(n)) be the dimension. Given k lists of n vectors L1, . . . ,Lk we will produce k lists
of factored vectors L′1, . . . ,L

′
k. Let v[x : y] be a vector formed by taking all the bits from xth bit to the
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yth bit. For every vector vi ∈ Li take the vector vi[b j+ 1,b( j+ 1)] = v j
i where b =

√
d and j ∈ [1,g]

where g =
√

d. We create a factored vector v′i from vi by creating a vector where the jth subset of
{0,1}b is just a set with the single vector v j

i .

• k-XOR: There is a random reduction for k-XOR which shrinks the vectors to length d = k lg(n) bits.
Given two lists of n vectors L1 and L2 we will produce two lists of factored vectors L′1 and L′2. Let
v[x : y] be a vector formed by taking all the bits from xth bit to the yth bit. For every vector vi ∈ Li take
the vector vi[b j+1,b( j+1)] = v j

i where b =
√

d and j ∈ [1,g] where g =
√

d. We create a factored
vector v′i from vi by creating a vector where the jth subset of {0,1}b is just a set with the single vector
v j

i .

• ZkC and k-SUM: We reduce the range of numbers with linear hash functions to the range [−nk,nk].
We want to split each k lg(n) bit number into g =

√
k lg(n) numbers length b =

√
k lg(n) bits. If we

guess all g caries then we can replace the question of if k (
(k

2

)
) numbers sum to zero to if g sets of k

(
(k

2

)
) numbers each sum to zero (see []). So, for all O(kg) possible guesses of carries we form

a factored vector for an edge by having g subsets of {0,1}b that each have one number. The jth set has
the jth number created by splitting the original number (possibly updated by our guess of the carry).

3.2 Worst-Case to Average-Case Reductions for Factored Problems

We will use our framework from Section to show that these factored versions are as hard on average as
they are in the worst case.

#Fk-f We give a polynomial for #Fk-f. We represent every factored vector v with g2b variables. The
variable xv[i](~s) is a 1 if s ∈ v[i] and 0 otherwise. We create such a variable for all i ∈ [0,g− 1] and all
s ∈ {0,1}b. Let S f be the subset of k tuples of vectors in {0,1}b such that f (s1, . . . ,sk) = 1.

fck f unc(~X) = ∑
v1∈V1,...,vk∈Vk

 ∏
i∈[0,g−1]

 ∑
(s1,...,sk)∈S f

xv1[i](~s1) · · ·xvk[i](~sk)

 .

Lemma 3.1. fck f unc(~X) is a GLDP(#Fk-f) (see Definition)

Proof. We will show that each property of a good polynomial is met by fck f unc.

• If ~I = b1, . . . ,bn, then fck f unc(b1, . . . ,bn) = fck f unc(~I) = P(~I) where bi maps to either a zero or a one
in the prime finite field: fck f unc and #Fk-f count the same thing. Note that the inner summation is
computing ◦ f , the product is computing } f . Thus the overall sum is computing #Fk-f.

• The function fck f unc has degree d = o(lg(n)/ lg lg(n)): fck f unc has degree kg which, when k is constant
is o(lg(n)/ lg lg(n)) by the definition of g.

• The function fck f unc is strongly d-partite: Every monomial is formed by exactly one copy of a xv j[i](~s)
variable for every j ∈ [0,g−1] and i∈ [1,k]. These form our partitions and make the function strongly
kg partite.

18



Now we can say that the average case version of #Fk-f is as hard as the worst case version.

REMINDER OF THEOREM 1.3 Let µ be a constant such that 0 < µ < 1. If average-case #Fk-fµ (see
Definition) can be solved in time T (n) with probability 1− 1/(lg(n)kg lg lg(n)kg) then worst-case #Fk-
f can be solved in time Õ(T (n)) 5.

When µ = 1/2 average-case #Fk-fµ is average-case #Fk-f.

Proof. This follows from Theorem and Lemma. The dimension of the GLDP(#F k-f) is kg. By
our construction of fck f unc every set has every possible string as a variable. By the construction of the
framework from theorem, every bit will be selected as a 1 uniformly at random with probability µ . So,
given the construction of fck f unc every set will have every possible string included with probability µ . So
the distribution induced by our framework matches our defined average-case distribution.

Finally by definition when µ = 1/2 average-case #Fk-fµ is average-case #Fk-f.

REMINDER OF COROLLARY 1.4 By Theorem, we have the following result:
If average-case #Fk-OV can be solved in time T (n) with probability 1−1/(lg(n)gk lg lg(n)gk) then worst-

case #Fk-OV can be solved in time Õ(T (n)) 5.
If average-case # Fk-SUM can be solved in time T (n) with probability 1−1/(lg(n)gk lg lg(n)gk) then

worst-case # Fk-SUM can be solved in time Õ(T (n)) 5.
If average-case # Fk-XOR can be solved in time T (n) with probability 1− 1/(lg(n)gk lg lg(n)gk) then

worst-case # Fk-XOR can be solved in time Õ(T (n)) 5.

#FfkC Now we will give the #FfkC polynomial. Once again we will represent every factored vector v
with g2b variables. The variable xv[i](~s) is a 1 if s ∈ v[i] and 0 otherwise. We create such a variable for all
i ∈ [0,g− 1] and all s ∈ {0,1}b. Once again, let S f be the subset of

(k
2

)
tuples of vectors in {0,1}b such

that f (s1, . . . ,s(k
2)
) = 1. Finally for convenience let E1, . . . ,E(k

2)
be the

(k
2

)
partitions of edges in the input of

FfkC and let `=
(k

2

)
to make notation easier to read. Let SE be the set of all ` tuples of edges e1, . . . ,e` that

form a clique. In an abuse of notation we will also use ei to represent the factored vector associated with the
edge ei.

f f f kc(~X) = ∑
e1,...,e`∈SE

 ∏
i∈[0,g−1]

 ∑
(s1,...,s`)∈S f

xe1[i](~s1) · · ·xe`[i](~s`)

 .

Lemma 3.2. f f f kc(~X) is a GLDP(#FfkC) (see Definition).

Proof. We will show that each property of a good polynomial is met by f f f kc.

• If~I = b1, . . . ,bn, then f f f k(b1, . . . ,bn) = f f f kc(~I) = P(~I) where bi maps to either a zero or a one in the
prime finite field: f f f kc and #Fk-f count the same thing. Note that the inner summation is computing
◦ f , the product is computing }′f . Thus the overall sum is computing #Fk-f.

• The function f f f kc has degree d = o(lg(n)/ lg lg(n)): f f f kc has degree `g < k2g which, when k is
constant is o(lg(n)/ lg lg(n)) by the definition of g.

5Note that given that g = o(lg(n)/ lg lg(n)) then a probability of 1−1/nε will be high enough for any ε > 0.
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• The function f f f kc is strongly d-partite: Every monomial is formed by exactly one copy of a xe j[i](~s)
variable for every j ∈ [0,g−1] and i∈ [1, `]. These form our partitions and make the function strongly
`g partite.

REMINDER OF THEOREM 1.5 Let µ be a constant and 0< µ < 1. If average-case #FfkCµ (see Definition

18) can be solved in time T (n) with probability 1− 1/(lg(n)k2g lg lg(n)k2g) then worst-case #FfkC can be
solved in time Õ(T (n)) 5.

When µ = 1/2 average-case #FfkCµ is average-case #FfkC.

Proof. This follows from Theorem and Lemma. The dimension of the GLDP(#F fkC) is
(k

2

)
g < k2g.

By our construction of f f f kc every set has every possible string as a variable. By the construction of the
framework from theorem, every bit will be selected as a 1 uniformly at random with probability µ . So,
given the construction of f f f kc every set will have every possible string included with probability µ . So the
distribution induced by our framework matches our defined average-case distribution.

Finally by definition when µ = 1/2 average-case #FfkCmu is average-case #FfkC.

REMINDER OF COROLLARY 1.6 By Theorem, we have the following result:
If average-case # FZkC can be solved in time T (n) with probability 1− 1/(lg(n)k2g lg lg(n)k2g) then

worst-case #FZkC can be solved in time Õ(T (n)) 5 .

Reductions to Counting Factored Problems Imply Average Case Hardness Over Some Distribution
Assume a problem #P exists such that an algorithm for it running in T (n)1−ε implies a violation of #Fk-
fH or #FfkCH. We will evince examples of such problems in Section. Further imagine that there is an
explicit reduction that turns instances of #Fk-f or #FfkC into instances of #P. In that case we can describe
a distribution D over which problem #P is T (n)1−o(1) hard on average from #Fk-fH or #FfkCH. We can
generate this distribution D by taking the uniform distribution (the average-case distribution) over #Fk-f or
#FfkC and running this distribution through our reduction.

Thus, reductions from problems #P to #Fk-f or #FfkC give explicit hard average-case distributions for
problems #P.

3.3 Factoring is Expressive: Worst-Case Reductions

Our factored versions of these problems are very expressive. This allows us to show hardness from these
factored problems.

3.3.1 Completeness

We will now show that Fk-OV, Fk-XOR, and Fk-SUM are all complete for Fk-f for all functions f. We
do this by showing Fk-XOR solves Fk-f. Then, the equivalence between Fk-OV, Fk-XOR, and Fk-SUM
implies they are all complete for Fk-f. We will also show, using similar techniques, that FZkC is complete
for FfkC for all functions f.

This is a reminder of Theorem, however, we add an additional statement to the theorem. We give an
explicit function that we use to build this reduction.
REMINDER OF THEOREM 1.7 If we can solve #Fk-XOR with g sets of k3b length vectors in time T (n)
then we can solve #Fk-f instance with g sets of b length vectors in time T (n)+ Õ(n).
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Additionally, Let v1, . . . ,vk be k factored vectors each with g subsets of {0,1}b. Let fXOR be the function
that returns 1 if the k input vectors xor to zero and otherwise returns 0. There is a function γf→XOR,k(·, ·)
that takes as input a factored vector with g subsets of {0,1}b and an index and returns a new factored vector
with g subsets of {0,1}O(b). This function γf→XOR,k runs in Õ(2b ·g) time for each vector and:

} fXOR(γf→XOR,k(v1,1), . . . ,γf→XOR,k(vk,k)) =}f(v1, . . . ,vk).

Proof. Consider a Fk-f instance and let vi be a factored vector from the ith list of it. Given the factored
vector vi from Fk-f we will describe how to make the factored vector v′i for our Fk-XOR instance. This
transformation will be γf→XOR,k(·, ·). We will describe the transformation for γf→XOR,k(vi, i). We do this by
doing the same transformation on each set vi[ j] where j ∈ [1,g]. We transform each set by performing the
same transformation on every vector ui ∈ vi[ j]. We describe this transformation in the next paragraph.

Given a vector ui of length b we produce at most 2b(k−1) new vectors of length k3b. These vectors
represent all possible k tuples which include ui as as the ith vector. We want to include a k tuple vector only
if f of that k tuple evaluates to 1. And we want our new long vectors to to return true if we are comparing
vectors in Fk-f instance that do indeed have exactly that k tuple of vectors.

More formally, let one possible k tuple that includes ui as the ith vector be (w1, . . . ,wi−1,ui,wi+1 . . . ,wk).
If f (w1, . . . ,wi−1,ui,wi+1 . . . ,wk) = 1, then we create a k3b-length vector for ui with this kb length vector by
considering every possible tuple (x,y,z) where x,y,z ∈ [1,k]: We set aside b bits for every possible tuple (in
sorted order by the tuple). We want to use these to check if the xth vector and yth vector agree about what
tuple they are considering as follows:

• If the tuple is (x,x,z) we write the all zeros string, for the rest of the cases assume the first two indices
are non-equal.

• If the tuple is (x, i,z) we write wz (or ui if z = i) in the b bits.

• If the tuple is (i,y,z) we write wz (or ui if z = i) in the b bits.

• If the tuple is (x,y,z) and x,y 6= i then we write the all zeros vector of length b.

If we are comparing k of these new vectors each of which representing the same tuple (w1, . . . ,wk) then
the new vector xors to zero. Consider a given group of b bits that corresponds to (x,y,z). Only two of our
vectors have non-zero entries here, the xth and yth vectors. Both wrote down wz if they were representing the
same k-tuple. A vector xored to itself produces the zero vector, so we get the zero vector.

If we are comparing k of these new vectors and not all of the vectors agree about what tuples they are
comparing then we will not xor to the zero vector. Say the xth and yth vectors disagree about what the
zth element of the tuple is. Then the b bits corresponding to (x,y,z) will still have only two vectors with
non-zero contributions. We will be xoring two vectors which are not equal, this will xor to some non-zero
string.

Thus there is a one-to-one correspondence between k-tuples of vectors that evaluate to one in the Fk-
f version and k-tuples of vectors that xor to the zero vector in the new Fk-XOR version. Thus, the counts
both give as output are equal.

As a result, we can transform an instance of Fk-f with g groups of b length vectors into an instance of
Fk-XOR with g groups of k3b length vectors in time O(n ·g ·2b ·2(k−1)b · k3b). We restrict k to be constant
and b = o(lg(n)), thus the time for the conversion is Õ(n). In the new version the count of the number of
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Fk-XOR vectors that xor to zero is the same as the count of the number of Fk-f vectors that evaluate to 1 on
the function. So, a T (n) algorithm for Fk-XOR with g groups and k3b bits implies a T (n)+ Õ(n) algorithm
for Fk-f.

3.3.2 fk-OV, fk-SUM, and Fk-XOR are Equivalent and Complete

Intuitively, we can use our subsets of {0,1}b to do guesses that reduce from one problem to another.

Lemma 3.3. If (#)Fk-OV can be solved in time T (n) then (#)Fk-XOR can be solved in Õ(T (n)) time.

Proof. Say we are given an Fk-XOR instance, with k lists of factored vectors, each with g subsets of b-bit
vectors. We will follow the structure of Theorem. Say we are given a factored vector from list i, vi.
Consider the jth subset vi[ j] of it. Consider a particular vector ui ∈ vi[ j]. We will produce a new vector for
every possible k tuple of vectors (w1, . . . ,ui, . . . ,wk) such that w1⊕ . . .⊕ui⊕ . . .⊕wk =~0. This vector will
have k3 sections each of length 2b, for a total length of vector 2k3b. These k3 sections will correspond to
every possible tuple (x,y,z) where x,y,z ∈ [1,k]. The 2b bits will be used to check if the vector from list x
and the vector from list y agree about the vector wz. We want to only accept if there are k vectors, one from
each list that xor to the zero vector. Let s̄ be the bitwise bit flip of every bit in s. We will use the fact that if
both s1 and s̄2 are orthogonal and s̄1 and s2 are orthogonal then s1 = s2. This allows us to check equality. Let
‖ be the concatenation operator (e.g 00‖01 = 0001). The 2b bits that correspond to (x,y,z) are determined
as follows:

• If the tuple is (x,x,z) we write the 2b bit all zeros string. For the rest of these assume the first two
indices are not equal.

• If the tuple is (i,x,z) then write wz ‖ w̄z (for convenience let wi = ui).

• If the tuple is (x, i,z) then write w̄z ‖wz (for convenience let wi = ui).

• If the tuple is (x,y,z) and x 6= i and y 6= i then we put the all ones string.

Now k of these constructed vectors will be orthogonal only if w1⊕ . . .⊕wk =~0, all the vectors wi existed
in the original lists, and the constructed vectors all agree on the tuple (w1, . . . ,wk).

So, with our constructed vectors the count of the number of vectors that are orthogonal will remain
the same. The new instance will have the same number of factored vectors, n, but the vectors will have
g subsets of {0,1}2k3b. An algorithm which runs in T (n) on this Fk-OV instance will run in T (n) on the
Fk-XOR instance.

Next we reduce (#)Fk-XOR to (#) Fk-SUM . In Fk-XOR we want to know if k vectors xor to zero, which
is very similar to asking if k numbers sum to zero. The difference is entirely carries. So, we can pad the
instance, and then guess carries.

We will use the Fk-SUM variant where we ask if k−1 numbers sum to equal exactly the last number.

Lemma 3.4. If (#) Fk-SUM can be solved in time T (n) then (#)Fk-XOR can be solved in Õ(T (n)) time.
Additionally, Let v1, . . . ,vk be k factored vectors each with g subsets of {0,1}b. Let fXOR be the function

that returns 1 if the k input vectors xor to zero and otherwise returns 0. Let fSUM be the function that returns
1 if the k input vectors sum to zero and otherwise returns 0. There is a function γXOR→SUM,k(·, ·) that takes
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as input a factored vector with g subsets of {0,1}b and an index and returns a new factored vector with g
subsets of {0,1}O(b). This function γXOR→SUM,k runs in Õ(2b ·g) time for each vector and:

} fSUM(γXOR→SUM,k(v1,1), . . . ,γXOR→SUM,k(vk,k)) =}f(v1, . . . ,vk).

Proof. We will describe the transformation γXOR→SUM,k below. Let v1, . . . ,vk be k factored vectors from a
Fk-XOR instance. Let v1[ j], . . . ,vk[ j] be the jth subset of b-bit vectors from each of the factored vectors. Let
vi[ j][h][`] be the `th bit of the hth vector in the set vi[ j].

We will turn every bit from vi[ j][h][`] into dlg(k)e+1 bits in a new number. If i < k then this new longer
string is dlg(k)e zeros followed by the bit vi[ j][h][`]. If i = k, then every vector vk[ j][h] turns into many
vectors in the kth set of the Fk-SUM instance: If vk[ j][h][`] = 0 then we use our dlg(k)e+1 bits to represent
all of the even numbers in [0,k−1]. If vk[ j][h][`] = 1 then we use our dlg(k)e+1 bits to represent all of the
odd numbers in [0,k−1]. So we produce O(kb) vectors for vk[ j][h].

If a k-tuple of vectors forms a zero vector in k-xor then we get exactly one k-sum. The number of sets
stays the same but the length of vectors in those sets grows from b to (dlg(k)e+1)b length vectors. This is
a constant and so if Fk-SUM can be solved in time T (n) then Fk-XOR can be solved in Õ(T (n)) time.

REMINDER OF THEOREM 1.8 If any of #Fk-OV, # Fk-SUM , or #Fk-XOR can be solved in T (n) time then
all of #Fk-OV, # Fk-SUM , and #Fk-XOR can be solved in Õ(T (n)) time.

Proof. This follows from Lemmas,, and Theorem.

REMINDER OF THEOREM 1.9 If any of #Fk-OV, # Fk-SUM , or #Fk-XOR can be solved in T (n) time then
#Fk-f can be solved in Õ(T (n)) time.

Proof. Use Theorem and Theorem.

By Theorem and Theorem we get the following corollary.

Corollary 3.5. #Fk-OVH, #Fk-SUMH, and #Fk-XORH are all equivalent. Moreover, #Fk-OV is implied by
#Fk-f for any function f.

3.3.3 Factored zero-k-clique is hard from fk-OV, fk-SUM, fk-XOR, and FfkC

Lemma 3.6. If (#)FZkC is solved in time T (n) then (#) Fk-SUM is solved in time Õ(T (n)).

Proof. Consider a Fk-SUM instance with lists L1, . . . ,Lk. We will build the k-partite graph of our FZkC in-
stance to have vertex sets V1, . . . ,Vk. For every factored number xi ∈ Li from the Fk-SUM instance we create
a node vi ∈Vi where all edges going from vi to any vertex in Vi+1 have the value xi on them. All edges going
from vi to nodes in Vj where j 6= i− 1 and j 6= i+ 1 are given the special factored vector where every set
contains only the all zeros string.

Now, when three nodes are selected v1,v2, . . . ,vk the corresponding edges have a zero sum iff the corre-
sponding x1,x2, . . . ,xk are a zero sum.

Theorem 3.7. If (#)FZkC can be solved in T (n) time then all of (#)Fk-OV, (#) Fk-SUM , and (#)Fk-XOR can
be solved in Õ(T (n)) time.
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Proof. This follows from Lemma and Theorem.

Now we will show that FZkC is complete for the set of all problems FfkC for all functions f.

REMINDER OF THEOREM 1.10 If (#)FZkC can be solved in T (n) time then (#)FfkC for any f , can be
solved in Õ(T (n)+n2) time.

Proof. We will use the transforms γf→XOR,(k
2)
(·, ·) and γXOR→SUM,(k

2)
(·, ·) from Theorem and Lemma

respectively.
Let G be the k-partite graph we take as input from (#)FfkC, now label the `=

(k
2

)
edge sets as E1, . . . ,E`.

Now, for every factored vector ei ∈Ei run the following transform: γ̂`(ei, i)= γXOR→SUM,(k
2)
(γf→XOR,`(ei, i), i).

This causes the output factored vector to have g subsets of {0,1}O(b). The transformation takes Õ(2O(b)g)
time per vector, which is Õ(1) time per vector. The output vectors have the property that

} fSUM(γ̂`(e1,1), . . . , γ̂`(e`, `)) =}f(e1, . . . ,e`).

Because }′f (the function used in our factored clique problem definition) is equal to } f ·isClique(e1, . . . ,e`),
by running this transformation we will have that:

}′fSUM
(γ̂`(e1,1), . . . , γ̂`(e`, `)) =}′f(e1, . . . ,e`).

Thus, we can run the transformation γ̂` in time Õ(n2) (because n2 is the input size). Additionally, the
output of the counting or detection variants of the FZkC on the transformed input will be exactly equal to the
output of FfkC on the original input. Thus, if we can solve (#)FZkC in time T (n) we can solve (#) FfkC in
time Õ(T (n)+n2).

3.3.4 Factored Zero Triangle is hard from SETH, 3-SUM and APSP

Lemma 3.8. The FZ3CH is implied by any one of SETH, the 3-SUM hypothesis, or the APSP hypothesis.

Proof. A violation of FZ3CH implies a violation of F3-OVH by Lemma. A violation of F3-OVH implies
a violation of SETH [].

A violation of FZ3CH implies that a O(n1−ε) time algorithm exists for the zero triangle problem for
some ε > 0. A O(n1−ε) time algorithm for zero triangle implies a violation of the 3-SUM hypothesis and
the APSP hypothesis [].

So if any one of the three core hypotheses of fine-grained complexity (SETH, 3-SUM, and APSP) are
true then FZ3CH is true.

REMINDER OF THEOREM 1.2 If FZ3C (even for b= o(logn) and g= o(log(n)/ log log(n))) can be solved
in O(n3−ε) time for some constant ε > 0, then SETH is false, and there exists a constant ε ′ > 0 such that
3-SUM can be solved in O(n2−ε ′) time and APSP can be solved in O(n3−ε ′) time.

Proof. This follows from Lemma. A O(n3−ε) time algorithm implies a violation of FZ3CH. If FZ3CH is
false then all of SETH, the APSP hypothesis, the 3-SUM hypothesis are false.
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4 Implications from Factored Variants

In this section we will show that a series of problems reduce from both counting and decision versions of
FZ3C, FZkC, and Fk-f.

The reductions from the counting variant of FZ3C generate counting problems that are hard in the
average-case from SETH, 3-SUM, and APSP. The reductions from the counting variant of FZkC or Fk-
f generate counting problems that are hard in the average-case from SETH. As a result, in this section we
produce a suite of problems that are fine-grained hard from the most popular hypotheses of fine-grained
complexity.

In this section we give explicit tight fine-grained reductions from factored problems to many other
problems. We will quickly summarize the results of this section.

We give four tight fine-grained reductions from counting versions of our factored problems. We reduce
#PMT from #FZ3C, #k-NLstC from #FZkC and #k-ELstC from #Fk-f. Finally, we reduce counting regular
expression matching to #F2-OV.

We also give three tight fine-grained reductions that only work from the detection versions of our fac-
tored problems. We reduce (k + 1)L-MF to FZkC. We reduce Edit Distance to F2-OV and k-LCS from
Fk-OV.

4.1 The Partitioned Matching Triangles Problem solves the Factored Zero Triangle Prob-
lem

REMINDER OF THEOREM 1.11 If (#)Partitioned Matching Triangles (PMT) can be solved in T (n) time,
then we can solve (#) FZ3C in time Õ(T (n)+n2).

Proof. Let G = (U,V,W ) be an instance of FZ3C, where each edge e is a factored vector. For notation
convenience let uv[ j] refer to the jth set of the factored vector on the edge from u to v.

We define an instance of PMT as a set of g graphs G j for j = 1, . . . ,g. We define G j as follows. For
every u ∈U add a copy of u in G j with color u. For every v ∈ V and w ∈W , add vertices vx and wx for all
x =−2b+1, . . . ,2b+1, with color v and w respectively. Note that since b = o(logn), G j has Õ(n) nodes.

Now we attach u ∈G j to vx ∈G j if x ∈ uv[ j]. We connect vx to wy if y−x ∈ vw[ j] and we connect wy to
u if −y ∈ wu[ j].

We prove that the FZ3C instance and the PMT instance are equivalent. For this, consider a zero triangle
uvw, where the vectors x j ∈ uv[ j], y j ∈ vw[ j] and z j ∈ wu[ j] are picked to have sum zero for each j. This
corresponds to the triangles uvx j wy j+x j in G j for each j, where all these triangles are of color (u,v,w).
Conversely, any set of g triangles of color (u,v,w) in G js should be of the form uvx j wy j , and hence from the
definition of the PMT instance we have that for each j, x j ∈ uv[ j], y j− x j ∈ vw[ j] and −y j ∈ wu[ j] and so
they correspond to a zero uvw triangle.

4.2 k-Node Labeled st Connectivity is hard from Factored Zero-k-Clique

We will show that counting k-NLstC mod 22k lg2(n) is hard from #FZkCH. The generated graph will be a
dense DAG. Recall that this implies an explicit average-case distribution over which counting k-NLstC mod
22k lg2(n) is hard from worst case FZkCH, SETH, the 3-SUM hypothesis, and the APSP hypothesis.

REMINDER OF THEOREM 1.12 If a O(|C|k−2|E|1−ε/2) or O(|C|k−2−ε |E|) time algorithm exists for
(counting mod 22k lg2(n)) k-NLstC then a O(nk−ε) algorithm exists for (#)FZkC.
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Proof. Let G = (V1, . . . ,Vk) be an instance of FZkC. We reduce this instance to an instance of k-NLstC as
follows. We begin by adding the special node s and the special node t. We will build g gadgets and put them
after each other serially. The nodes in the gadgets will be assigned colors associated to the nodes of G. Each
gadget will be designed to check if given k colors (and thus k nodes in G) whether the ith subset of the

(k
2

)
factored vectors represented do have a zero sum. See Figure for a representation of our construction.

s

t

Set 1

Set 2

. . .

Set g

L1

L2

L(k2)

V1

Vx

Vz

Vw

Vr

u1

ux(s1)

uz(s1)

uw(s1, s2)

ur

Set i

Figure 4: Left: The gadget structure for k-NLstC. Right: Inside of a set gadget.

The gadget for set i consists of
(k

2

)
layers L1, . . . ,L(k

2)
. Each layer L j represents the edges from Vx to

Vy for some x,y ∈ {1, . . . ,k} as follows: L j consists of two layers itself, one for Vx and one for Vy. For
each vertex ux ∈ Vx, we add 2b( j−1) nodes ux(s1, . . . ,s j−1) where s1, . . . ,s j−1 ∈ {0,1}b, and we color these
nodes with the color ux. So we have a total of n2b( j−1) vertices. These vertices represent that we have
chosen a particular node ux ∈ Vx and that in the first j edges we have chosen the j− 1 vectors s1, . . . ,s j−1
from the sets of the previous j− 1 edges. For the second layer of L j, for each uy ∈ Vy we add 2b j nodes
uy(s1, . . . ,s j) where s1, . . . ,s j ∈ {0,1}b, and we color these nodes with the color uy. We add edges between
nodes ux(s1, . . . ,s j−1) and uy(s1, . . . ,s j−1,s j) iff the ith set of the factored vector of edge (ux,uy) contains the
string s j, i.e. s j ∈ uxuy[i].

Now to specify the edges between layers, suppose that layer L j+1 deals with the edges between Vz and
Vw. For every j-tuple (s1, . . . ,s j), add an edge from uy(s1, . . . ,s j) in L j to uz(s1, . . . ,s j) in L j+1 for every
uy ∈Vy and uz ∈Vz. If z = y we can skip this step and just use the same set nodes.

Finally, we do something special for layer L(k
2)

. Lets say that layer L(k
2)

summarizes the edges between
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Vx and Vy. For the nodes associated to Vy, instead of having vertices uy(s1, . . . ,s(k
2)
), we put only one vertex

uy. We connect ux(s1, . . . ,s(k
2)−1) to uy if and only if the set i of the edge (ux,uy) has a vector s(k

2)
such that

the vectors s1, . . . ,s(k
2)−1,s(k

2)
sum to zero. Note that given a fixed choice of s1, . . . ,s(k

2)−1 there is a single
vector s(k

2)
such that they all sum to zero together.

This forms a layered directed graph, where edges go from layer Li to layer Li+1. We also assume that
L1 represents the edges from V1 to Vx for some x. We add an edge from s to all vertices of the first layer of
L1 and an edge from all vertices in the last layer of L(k

2)
to t. A representation of the layers is represented in

Figure.
By this construction, a path with colors u1,u2, . . . ,uk that goes through the jth gadget represents a zero

sum within the jth sets on the
(k

2

)
edges between u1, . . . ,uk.

In our graph the number of colors |C| is O(n) and |E| = O(n2) so a O(|C|k−2|E|1−ε/2) algorithm and a
O(|C|k−2−ε |E|) algorithm both run in O(nk−ε) time. The number of solutions to both problems is the same,
thus the counts are the same. The maximum count of FZkC is 2gbnk = O(2lg2(n)+k lg(n)). Notably, this is less
than 22k lg2(n), so the count from the k-NLstC instance will be less than the count for the FZkC instance.

Note that we can count k-NLstC mod 22k lg(n)2
with |C|= n and |E|= n2 in time Õ

(
nk
)
.

Corollary 4.1. If #FZkCH is true then #k-NLstC (mod R) takes |C|k−2±o(1)|E|1±o(1) (where lg(R) = no(1)).

Proof. By Theorem if #FZ kCH is true then # k-NLstC (mod R) takes at least |C|k−2−o(1)|E|1−o(1) time.
By Theorem there is a |C|k−2+o(1)|E|1+o(1) time algorithm for counting k-NLstC mod R.

4.3 k-Edge Labeled st Connectivity is hard from Factored k Function Problems (Fk-f)

In this subsection we will show hardness from The edge labeled version of st connectivity. This reduction
will get hardness from #Fk-f. Note that while k-NLstC has a Õ(Ck−2E) algorithm, k-ELstC has a more
expensive Õ(Ck−1E) algorithm. In this section we will show that the k-ELstC algorithm is optimal up to
sublinear factors if Fk-fH is true (note that this algorithm is thus also implied to be tight by SETH).

While our reduction to k-NLstC generated a dense graph, our reduction to k-ELstC generates a sparse
graph. The sparsity allows for a tight reduction to the Fk-fH problem. However, because that our reduction
requires sparsity to be tight, we have not been able to reduce FZkC to k-ELstC.

REMINDER OF THEOREM 1.13 If a Õ(|E||C|k−1−ε) or Õ(|E|1−ε |C|k−1) time algorithm exists for (count-
ing mod 22k lg2(n)) k-ELstC, then a Õ(nk−ε) algorithm exists for (#)Fk-f.

Proof. Given an instance of Fk-f which takes k lists V1, . . . ,Vk of factored vectors, we produce an instance
of k-ELstC with Õ(n) colors and Õ(n) edges. In the Fk-f instance, let u j[i] be the ith subset of the vector
u j ∈Vj. We use the vectors in the Fk-f instance as colors in the k-ELstC instance.

We start by adding two nodes s and t. We will make g gadgets, G1, . . . ,Gg, where Gi handles the ith

set of the factored vectors, i.e. u j[i] for all u j ∈ Vj for all j. In each gadget Gi we have k layers of vertices
Li

1, . . . ,L
i
k, where the vertex set Li

j represents the factored vectors in Vj. Finally we attach these gadgets one
after the other serially.

For j ≤ k the layer Li
j has two layers itself, one with n2b j nodes and one with 2b j nodes. For each node

u j ∈ Vj, we add the nodes u j(s1, . . . ,s j) to the first layer of Li
j for all s1, . . . ,s j ∈ {0,1}b, so adding n2b j

nodes in total. For the second layer of Li
j, we add nodes li(s1, . . . ,s j) for all s1, . . . ,s j ∈ {0,1}b. For each

vertex u j, we add a matching from the 2b j nodes associated to vector u j to the nodes in the second layer,
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connecting u j(s1, . . . ,s j) to li(s1, . . . ,s j). We color these edges with u j. Note that this is how we achieve
sparsity. Every other layer has Õ(1) nodes in it. So every node (other than s and t) has an out-degree of
Õ(1).

We add edges from the second layer of Li
j to the first layer of Li

j+1. For u j+1 ∈ Vj+1, we connect
li(s1, . . . ,s j) ∈ Li

j to u j+1(s1, . . . ,s j,s j+1) ∈ Li
j+1 if, and only if, s j+1 ∈ u j+1[i]. We color this edge with u j+1.

The full effect of this means that by layer Li
k a path from the beginning to the end of the gadget with the

colors of a given set of k vectors implies those vectors have the corresponding set of vectors in their ith sets.
We will only add outgoing edges from nodes in the second layer of Li

k only if f (s1, . . . ,sk) = 1.
We add edges between gadgets Gi and Gi+1 by adding edges between the second layer of Li

k and the first
layer of Li+1

1 as follows. We connect the node li(s1, . . . ,sk) ∈ Gi to u1(s′1) ∈ Gi+1 for some u1 ∈ V1 if and
only if f (s1, . . . ,sk) = 1 and s′1 ∈ u1[i+1]. We color this edge with u1.

Now we deal with s and t. We add edges from s to all nodes u1 ∈ L1
1 if s1 ∈ u1[1]. These edges are

colored with u1. Further, we add edges from the first layer of Lg
k to t directly, removing the second layer of

Lg
k . We only add edges from uk(s1, . . . ,sk) for uk ∈Vk to t iff f (s1, . . . ,sk) = 1. We color this edge with uk.

First, note that we always add edges between two layers of size o(n) and Õ(n), so adding at most Õ(n)
edges between them. Since we have O(1) layers, our graph has Õ(n) edges in total.

Given this graph setup, if we pick k colors for example associated with u1(1),u2(2), . . . ,uk(k) then the
number of paths from s to t using only those colors of edges will correspond to the outcome of

}(u1(1),u2(2), . . . ,uk(k))

as defined in the preliminaries. As a result, the sum over all k tuples of colors will be the count of the output
of the Fk-f instance. The count of a Fk-f instance is at most nk2bg = o(22k lg2(n)). So if R = Ω(22k lg2(n)) the
count mod R and the count are the same.

Corollary 4.2. If Fk-fH (#Fk-f) is true then k-ELstC(#k-ELstC mod R) takes |C|k−1±o(1)|E|1±o(1) (when
lg(R) = no(1)).

Proof. By Theorem if F k-fH (#Fk-fH) is true then k-ELstC (#k-ELstC mod R) takes at least |C|k−1−o(1)|E|1−o(1)

time.
By Theorem there is a |C|k−1+o(1)|E|1+o(1) time algorithm for counting mod R k-ELstC.

4.4 (k+1) Labeled Max Flow solves Factored Zero-k-Clique

REMINDER OF THEOREM 1.14 If (k+ 1)L-MF can be solved in T (n) time, then we can solve FZkC in
time Õ(T (n)+n2).

Proof. We use the set gadgets from Theorem and instead of placing them serially, we make a parallel
network G′ as shown in Figure. More particularly, let SG1, . . . ,SGg be the set gadgets from Theorem

1.12. Add s1, . . . ,sg with a source node s to the graph. Add t1, . . . , tg with a sink node t to the graph. This
completes the definition of the vertices of G′.

We attach s to all s j and all t j to t with label l∗ for j = 1, . . . ,g. For each j, we attach s j to all the nodes
in the first layer of SG j, which is a copy of V1. Let the label of any s ju edge be u where u ∈V1. Connect all
the nodes in the last layer of SG j to t j for all j. Suppose that the last layer of SG j corresponds to Vy. Let the
label of any edge uyt j be uy. Let the label of any edge (r,z) in any set gadget SG j be the same as the color of
r, since G′ is supposed to be an edge-labeled graph. All the edges are unit capacitated. This completes the
definition of G′.
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Figure 5: (k+1) labeled max flow instance structure.

First note that the maximum flow is at most g since the outdegree of s is g and the graph is unit-
capacitated. So the flow going through each set gadget is at most 1, which means that there is at least one
path from s j to t j through SG j. From Theorem any zero weight k-clique corresponds to g paths, one
in each set gadget, using k labels corresponding to the k vertices of the clique. So any zero weight k-clique
corresponds to a (k+ 1) labeled flow of size g from s to t. Conversely, if there is a (k+ 1) labeled flow of
size g from s to t, it must correspond to (at least) one path from s j to t j in SG j for each j with all the g paths
having the same k labels, which corresponds to a zero k-clique by Theorem.

4.5 Regular Expression Matching is hard from Factored OV

We are going to reduce F2-OV to regular expression matching. First, we define type and depth of a regular
expression. Intuitively, the structure of the operations in a regular expression is called its type, which is
represented by a tree with nodes labeled with operations. Let • be an arbitrary operator. A tree T with root
node • means that all the first level operations of a regular expression E of are •, i.e. E = A1 •A2 • . . .•A`,
where Ais are regular expressions. The type of each Ai can be the subtree with any of the children of the root
node as its root. The depth of a regular expression is the longest root-leaf path in the type tree of the regular
expression.

We reduce (#)F2-OV to (#)regular expression matching where the pattern is a depth 5 pattern of type
T0 shown in Figure, and we give an O(mn) algorithm for counting such patterns in O(mn) time (Theorem

A.9 in the Appendix).

REMINDER OF THEOREM 1.15 Let R be an integer where lg(R) is subpolynomial. If you can solve (#
mod R) regular expression matching in T (n) time, then you can solve (# mod R) F2-OV in Õ(T (n)+ n)
time.
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Figure 6: Type T0 of the regular expression of Theorem. Where “ |” is the OR operator, “·” is the
concatenation operator, and ∗ is the Kleen star operator.

Proof. We use the proof of Theorem 1 in [] that shows hardness for patterns of type “ | · |”, where “|”
is the OR operator, “·” is the concatenation operator and the type tree is a path of length two with node
|, · and | respectively. In [] authors start with any 2 OV instances (A,C) where A = {a1, . . . ,an} and
C = {c1, . . . ,cn} are sets of n vectors of dimension d and reduce it to an instance of regular expression
matching with pattern p constructed from A (and independent from C) and text t constructed from C (and
independent from A) both of O(dn) size, where any orthogonal pair (a,c) with a ∈ A and c ∈C corresponds
to an alignment of p on a substring of t, and conversely any alignment of p on t corresponds to an orthogonal
pair (a,c). More particularly, pattern p =V G(a1)| . . . |V G(an) consists of the OR of vector gadgets V G(a) =
CG(a1) · . . . ·CG(ad) where CG is a coordinate gadget and ai is the ith bit of vector a. Each coordinate gadget
is aligned on a single bit. The text t =V G′(c1)2 . . .2V G′(cn) consists of vector gadgets V G′(c) = c1c2 . . .cd
which is the bit representation of the vector c. We have that ai ·c j = 0 iff there is an alignment of V G(ai) on
V G′(c j). As a result, the number of orthogonal pairs in (A,C) is the number of subset alignments of p on t.

We use the above construction for our factored vectors. Note that if w is a factored vector, for any
j ∈ {1, . . . ,g} we can construct a pattern (or a text) of length O(|w[ j]|b) using the vectors in w[ j] which have
length b.

Consider an instance (U,V ) of F2-OV where U = {u1, . . . ,un} and V = {v1, . . . ,vn} are sets of n factored
vectors. We construct the pattern P using U and the text T using V . We first construct the pattern. Let pi[ j]
be the pattern corresponding to ui[ j] using the construction of [] for i = 1, . . . ,n and j = 1, . . . ,g. Note
that the symbols used in pi[ j] are 0,1. Let p′i[ j] = [0|1|2]∗ · pi[ j] · [0|1|2]∗, where “∗” is the Kleen star
operator. Define the “pattern factored vector gadget” PV G(i) for ui as follows:

PV G(i) = p′i[1] ·3 · p′i[2] ·3 · . . . ·3 · p′i[g]

Let the pattern P be the following:

P = PV G(1)|PV G(2)| . . . |PV G(n)

Note that the length of P is Õ(n), since we have that |pi[ j]|= O(|ui[ j]|) = O(2b.b) = o(n), |p′i[ j]|= O(pi[ j])
and the number of occurrence of the symbol 3 is (g−1)n. The number of symbols in a ∗ expression is also
O(gn) since the number of ∗ expressions is 2ng. So the total number of symbols in P is Õ(n), and as a result
the length of P is Õ(n).

Now we construct the text. Let ti[ j] be the text corresponding to vi[ j] using the construction in [] for
i = 1, . . . ,n and j = 1, . . . ,g. Note that the symbols used in ti[ j] are 0,1,2. Define the “text factored vector
gadget” TV G(i) for vi as follows:

TV G(i) = ti[1]3ti[2]3 . . .3ti[g]

Let the pattern T be the following:

T = TV G(1)4TV G(2)4 . . .4TV G(n)
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Similar to P, the length of T is Õ(n).
Now we have to show that there is a one to one correspondence between orthogonal vectors in the F2-

OV instance and the number of subset alignments of P on T . First consider an orthogonal pair (ui,v j), where
for each k = 1, . . . ,g the vector chosen from ui[k] is the rkth vector ui[k][rk], and the vector chosen from v j[k]
is the skth vector v j[k][sk]. So we have that for each k, ui[k][rk].v j[k][sk] = 0. This means that there is a subset
alignment of pi[k] on t j[k] corresponding to ui[k][rk] and v j[k][sk] for all k. We use the [0|1|2]∗ parts of p′i[k]
to cover the rest of t j[k] and thus we get a full alignment of p′i[k] on t j[k]. Having these alignments for each
k, they extend uniquely to a full alignment of PV G(i) on TV G(i).

Conversely, suppose that there is a subset alignment of P on T . Note that the first level of the pattern
consists of ORs, so any alignment should choose some i ∈ {1, . . . ,n} and align PSG(i) on T . On the other
hand, symbol 4 is not used in the pattern P. So P should be aligned on T SG( j) for some j. So assume that
in this subset alignment, PSG(i) is aligned on T SG( j). Since there are exactly g− 1 symbols “3” that are
concatenated in PSG(i) and there are exactly g−1 symbols “3” in T SG( j), the 3s should be aligned to each
other. So p′i[k] is fully aligned to t j[k]. Recall that p′i[k] = [0|1|2]∗ · pi[k] · [0|1|2]∗. So pi[k] should be aligned
to t j[k]. So by the construction of [] there are unique rk and sk where the vector gadget for ui[k][rk] is
fully aligned to the vector gadget for v j[k][sk], which means that these two vectors are orthogonal. Since
this is true for every k, ui and v j are orthogonal, and hence the number of factored orthogonal vectors in the
F2-OV instance equals to the number of subset alignments of P on T .

4.6 Longest Common Subsequence and Edit Distance

We are going to look at the k-LCS problem in this subsection. We show that k-LCS is hard from Fk-OV. We
note that this sort of proof should also work for other string similarity measures. In a work of Bringmann
and Künnemann they show a general framework for proving hardness for string comparisons on two strings
from 2-OV []. Presumably this framework can be expanded to work for F k-OV, however, generating
this framework is out of the scope of this paper. We will note however that the only additional gadget you
seem to need to solve Fk-OV is a selector gadget for at most Õ(1) strings each of length Õ(1). This means
even expensive gadgets are acceptable.

We will first show that weighted k-LCS is hard from Fk-OV.

Definition 1. Weighted Longest Common Subsequence (WLCS) [] For k sequences P1, . . . ,Pk of
length n over an alphabet Σ and a weight function w : Σ→ [K], let X be the sequence that appears in all of
P1, . . . ,Pk as a subsequence and maximizes the expression W (X) = ∑

|X |
i=1 w(X [i]). We say that X is the WLCS

of P1, . . . ,Pk and write WLCS(P1, . . . ,Pk) =W (X). The Weighted Longest Common Subsequence problem
asks to output WLCS(P1, . . . ,Pk).

We will then use this lemma from a previous work to show that k-LCS is hard from k-WLCS if the
weights are small enough [].

Lemma 4.3. If the k-LCS of k sequences of length O(Kn) over Σ can be computed in time T (n) then the
k-WLCS of k sequences of length n over Σ with weights w : Σ→ [K] can be computed in Õ(T (n)K) time
[].

We want to use the ideas and gadgets of Abboud, Backurs and Vassilevska Williams []. We
basically want to ask, given sets V1, . . . ,Vk of factored vectors, are there k factored vectors v1 ∈V1, . . . ,vk ∈Vk
such that for all i there exist vectors u1 ∈ v1[i], . . . ,uk ∈ vk[i] such that those vectors are orthogonal. Notably,
once you have specified the factored vectors and the index i what remains is a (small) orthogonal vectors
instance. The construction from [] produces a fixed longest common sub-sequence value if there
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is an orthogonal k tuple. So, if we can construct a setup where the output of the WLCS is basically a
concatenation of gadgets for each index i then we will get the value we want for any given pair of vectors.
We will need to add some gadgets to force the WLCS to “pick” a set of vectors.

Notably, “selector gadgets” from [] serve the purpose of forcing the WLCS to choose which k
factored vectors to compare. And, if we have a gadget for every subset (so every i ∈ [1,g]) and put a high
value set of symbols between them it forces the gadgets to not interact or loose that value. For this we want
a “parallel gadget”. Thus, we get a WLCS that is roughly the concatenation of the WLCS of each of the g
gadgets. This gives us the desired result.

Gadgets of General Use First we will describe the selector gadget.

Lemma 4.4. As input we are given k lists L1, . . . ,Lk each of which contain n strings of length at most ` (e.g.
si,1, . . . ,si,n ∈ Li and |si, j| ≤ `) with an alphabet Σ and weights in the range [K]. Let M be the maximum
value of WLCS(s1, j1 , . . . ,sk, jk) over all choices of j1, . . . , jk ∈ [1,n].

We can generate a k-WLCS instance P1, . . . ,Pk with k symbols added to Σ, the new range of weights
being [2`Kn] and length |Pi|= O(n2 +n`), such that WLCS(P1, . . . ,Pk) =Csel +M for Csel = (2kn)(2`Kn).

Proof. We introduce k symbols @1,@2, . . . ,@k for this selector gadget. We assign a weight of 2`Kn to all
the symbols @ j (note this is larger than the total weight of any given string si, j). For convenience by @(x)

j
we mean x copies of the symbol @1.

We first define a helper gadget for separating our strings

ST Gi(s) = @i@
(2n)
i−1 . . .@(2n)

1 s@(2n)
1 . . .@(2n)

i−1 @i.

We can now define our output strings:

Pi = @(2n)
k . . .@(2n)

i+1 ST Gi(si,1) . . .ST Gi(si,n)@
(2n)
i+1 . . .@(2n)

k .

Note that every ST Gi() gadget is of length O(n2 + `) and O(n) ST Gi() gadgets are used. The additional
@ symbols make up at most kn symbols on every string. So the total length of each string Pi is at most
O(n2 + n`). The largest weight we use is for the @ symbols, they have a weight of 2`Kn. There are k @
symbols, so we increase the alphabet by k.

Let ? be some string made of symbols from the original alphabet (so no @ symbols). We will use this
to make arguing easier. We claim that the weighted longest common subsequence will look like this:

@(yk)
k . . .@(y2)

2 @(y1)
1 ?@(2n−y1)

1 @(2n−y2)
2 . . .@(2n−yk)

k .

Let us argue for this claim. First, every symbol @i appears only 2n times in string Pi so it can not appear
more often. Second, in the string P1 the only place that symbols @k, . . . ,@2 appear is at the start and end of
the string in the order presented above. For @k it appears only 2n times in the string Pk. In every other string
@k only appear at the start and end of strings. To match all 2n copies of the @k symbol we must align a
single ST Gk(s) gadget with the other strings Pi for i < k. Given that we are matching a single ST Gk(s) string
note that the only locations that @k−1, . . . ,@1 symbols appear are around the string s in decreasing and then
increasing order. So, if we do try to match all 2n copies of every symbol @i we must get k-WLCS that looks
like the above.
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Now we will argue that you can match 2n copies of every symbol @i. Consider the string Pi, if you
pick any single ST Gi(si, j), all the symbols @i and the “intro” and “outro” strings of @(2n)

k . . .@(2n)
i+1 and

@(2n)
i+1 . . .@(2n)

k together make a string of the form:

@(2n)
k . . .@(2 j−1)

i . . .@(2n)
1 ?@(2n)

1 . . .@(2n−2 j+1)
i . . .@(2n)

k .

If we match k of these we get our claimed string where yi = 2 j−1.
Now we must argue that one wants to match all @i symbols possible. Note that every @i symbol is worth
more than all non @ symbols in the entire string. Given this, we must prefer matching all @ symbols to any
other goal.

So, given that the k-WLCS will have the described form we can now note the following. The ? that
appears must be the k-WLCS of k strings si, j. In every Pi in order to match all 2n symbols @i and only
have non-@ symbols in the middle of the string one must select a single ST G() gadget to be included in the
k-WLCS.

So the k-WLCS will include 2n copies of @i symbols and the k-WLCS of the k strings that have the
largest k-WLCS.

Now we will describe the parallel gadget.

Lemma 4.5. As input we are given k lists L1, . . . ,Lk each containing g strings of length at most ` (e.g.
si,1, . . . ,si,g ∈ Li and |si, j| ≤ `) with an alphabet Σ and weights in the range [K]. Let

M =
g

∑
j=1

WLCS(s1, j, . . . ,sk, j).

We can generate a k-WLCS instance P1, . . . ,Pk with 1 symbol added to the alphabet Σ, the new range of
weights being [2`Kg] and length |Pi|= O(n`), such that WLCS(P1, . . . ,Pk) =Cpar +M for Cpar = 2`Kg(g−
1).

The count of # WLCS(P1, . . . ,Pk) will be

Π
g
j=1#WLCS(s1, j, . . . ,sk, j).

So the multiplication of all the matched k tuple counts.

Proof. We create a new character $ with weight 2`kn which is larger than M. Create each string Pi as follows

Pi = si,1$si,2$ . . .$si,g.

Now aligning the g−1 symbols $ has such impact it swamps everything else. So the WLCS will force
comparisons of the first k tuple (s1,1, . . . ,s(k,1)), then the next k tuple and so on. Given this, the count of
the number of longest weighted subsequences is simply the multiplication of how many ways to achieve the
longest subsequence for each of our g k-tuples.

Building Factored Vector Gadgets

Lemma 4.6. Let w1, . . . ,wk be vectors of length b= o(lg(n)). There are k vector gadgets V G1(·), . . . ,V Gk(·)
such that WLCS(V G1(w1), . . . ,V Gk(wk)) is some constant CV G if the k vectors w1, . . . ,wk are orthogonal and
is CV G−1 otherwise.

This uses an alphabet of size 2k+2, weights of size Õ(1) and the length of each wi is Õ(1).
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Proof. We introduce two symbols 0 and 1 where w(0) = w(1) = 1. For each vector wi we construct all
possible kb length zero-one strings of the following form: {0,1}(i−1)bwi{1,0}(k−i)b. That is, we generate all
possible bk length zero-one strings where the bits from position b(i−1)+1 to position bi form wi. Call this
set of strings S′i(wi). Now we generate the set Si(wi) ⊆ S′i(wi) by including only strings where the vectors
formed by the first b bits, the second b bits, the third b bits, etc form a k tuple of vectors that are k-orthogonal.
So Si(wi) is a representation of all tuples of k vectors of length b where wi is the ith vector and the k vectors
are k-orthogonal.

Now note that the only way that there is one string from each set S1(w1), . . . ,Sk(wk) such that the
weighted longest common subsequence of those strings is kb is that if those strings match perfectly. The
only way for there to be k perfectly matching strings is if vectors w1, . . . ,wk are orthogonal (the string would
otherwise be excluded).

So we have generated k lists of at most 2b(k−1) strings of length bk. To ensure all the lists are the same
length we will pad all the lists to length 2b(k−1) with empty strings. We can now use the selector gadget
(Lemma) to wrap around these lists. This will add k new symbols and make the gadgets have length
O(22b(k−1)+2b(k−1)bk) with weights in range [2bk2b(k−1)]. We note that this length is Õ(1) and this weight
is also Õ(1) because b is constrained to be b = o(lg(n)). Call this construction V G′i(·) for the ith vector.

So right now if we have an orthogonal vector k tuple we get a weighted longest common subsequence of
weight y = 2k2b(k−1)(2bk2b(k−1))+bk. But, for some inputs the optimal weight could be much lower (like
2k2b(k−1)(2bk2b(k−1))).

So, we will add another layer of a selector (from Lemma) around V G′i(wi) as follows: Our lists will
be of length two. The ith list will be V G′i(wi) and 0y−1. So if the vectors aren’t orthogonal the second option
will lower bound the weight of the longest subsequence. This layer of selector adds another k symbols to
our alphabet. It multiplies our weight by Õ(1). Our weight remains Õ(1).

Now if the vectors are orthogonal we get weight Csel + y and Csel + y−1 otherwise where Csel is set by
our selector gadget.

Lemma 4.7. Let Z1, . . . ,Zk each be a subset of {0,1}b. There are k set vector gadgets SV G1(·), . . . ,SV Gk(·)
such that WLCS(SvG1(Z1), . . . ,SV Gk(Zk)) is some constant CSV G if the k sets of vectors have ◦(Z1, . . . ,Zk)>
0 and is CSV G−1 otherwise.

This uses an alphabet of size 3k+2, weights of size Õ(1) and has a length of Õ(1).

Proof. We first construct vector gadgets V Gi(wi) of Lemma for all wi ∈ Zi. Let the list Li consist of all
the vector gadgets V Gi(wi) for all wi ∈ Zi. We use these lists to make the selector gadget of Lemma.

Note that Zi is a set of at most 2b zero-one vectors of length b. So the expense of the selector gadget is
polynomial in the length, weight, and number of input strings. All these numbers are Õ(1) so the cost of
this selector gadget is Õ(1). If there is an orthogonal k tuple within these sets then the optimal weight will
be Csel +CV G, if there are not then the optimal weight will be Csel +CV G−1.

This adds another set of k symbols for a total of 3k+2.

Lemma 4.8. Let v1, . . . ,vk each be a factored vector with g sets containing b-bit vectors. There are k set
vector gadgets FV G1(·), . . . ,FV Gk(·) such that WLCS(FV G1(v1), . . . ,FV Gk(vk)) is some constant CFV G if
the k sets of vectors have }(v1, . . . ,vk)> 0 and is CFV G−1 otherwise.

This gadget uses an alphabet of size 3k+3 has weights of Õ(1) and has a length of Õ(1).

Proof. Let v be a factored vector with g sets called v[1], . . . ,v[g].
To build FV Gi(v) we want to concatenate the gadgets SV Gi(v[1]), . . . ,SV Gi(v[g]). We will use the

parallel gadget for this (Lemma).
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We have that }(v1, . . . ,vk) > 0 only if for all j ∈ [1,g] we have ◦(v1[ j], . . . ,vk[ j]) > 0. So, we want to
know if the sum of all the k-WLCS of all k tuples of string SV G1(v1[ j]), . . . ,SV Gk(vk[ j]) are CSV G. If they
are all CSV G, then }(v1, . . . ,vk)> 0.

There are g set vector gadgets each of length Õ(1) and with symbols of weight Õ(1). The parallel gadgets
weights and length depend polynomialy on g and the weights and length of the input strings. Notably, all
these values are Õ(1) so the length and weight of the FV Gi(·) will both be Õ(1).

The number of symbols increases by 1 over the symbols in SV Gi. So we have 3k+3 symbols.

WLCS and LCS We now give a reduction from Fk-OV to k-WLCS in the worst case.

Theorem 4.9. A T (n) time algorithm for k-WLCS with alphabet size O(k) and weights in the range [Õ(1)]
implies a Õ(T (n)) algorithm for Fk-OV.

Proof. Let the Fk-OV instance be given as k lists V1, . . . ,Vk each containing n factored vectors v ∈Vi. Every
factored vector has g subsets of {0,1}b. Recall that g = o(lg(n)/ lg lg(n)) and b = o(lg(n)).

We will be reducing this to an instance of k-WLCS where we have k strings P1, . . . ,Pk. These strings
will have length Õ(n) and weights that range from 1 to a number that is Õ(1).

We will produce our k-WLCS instance by wrapping an alignment gadget around our factored vector
gadgets from Lemma. We are going to use the alignment gadget from [] (see the proof of
Lemma 14 in that paper) as follows.

We introduce k+1 new symbols: 8,9,32,33, . . . ,3k. Let Q = |Pk|. For the weights of these symbols, we
set w(3i) = Bi and we set B = Bk > D where D is the largest possible weight of a factored vector gadget
FV G which we defined in Lemma. The length of a FV G(v) is Õ(1) and the weight of every symbol is
Õ(1) so D is Õ(1). We set B = Bk = (10kD)2. We set Bi = (2k)k−iB. We set w(8) = w(9) = 10k2B2. So

w(8) = w(9)� w(32)� w(33)� . . .� w(3k)� D.

We will use parentheses bellow. They do not represent symbols, they are there to assist in readability
and to help convey repetitions for example ($#)3 means $#$#$#.

Now we produce gadgets to wrap our factored vector gadgets. Let

FV G′1(s) = 8FV G1(s)9

and
FV G′i(s) = 8FV Gi(s)9(32 . . .3i)

Q.

Define the factored vector~e to be the vector formed by g empty sets (so a vector that gets the worst match
possible). We define the concatenation operator. Let |v∈ViFV G′i(v) be the concatenation of the FV G′(·)
applied to every factored vector v in the input list Vi.

Now we will define the strings Pi:

Pi = (3i+1 . . .3k)
Q(32 . . .3i)(FV G′i(~e))

(i−1)n (|v∈ViFV G′i(v)
)
(FV G′i(~e))

(i−1)n(3i+1 . . .3k)
Q

Given the choices of weights for the symbols 8,9,32, . . . ,3k, a weighted longest common subsequence
must contain the maximum possible number of each symbol. Given the construction of the alignment
gadgets, there are weighted longest common subsequences that contain the maximum possible number of
each symbol individually, simultaneously. For a more formal treatment see Lemma 14 in []. The
length of these strings is Õ(n) and the weights are of size Õ(1). Recall the FV G(·) constructions have length
Õ(1) each.
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Our alphabet use for FV G is O(k) symbols and we have added k+ 1 symbols so the total number of
symbols is O(k).

Further note that the optimal k-WLCS will align exactly n k-tuples of FV G(·)s. This means the length
of the optimal k-WLCS will be some constant Ctot , plus n(X − 1) if there are no k-tuples (v1, . . . ,vk) such
that }(v1, . . . ,vk) > 0. Otherwise the optimal k-WLCS will be at least Ctot + n(X − 1)+ 1. This allows us
to solve the detection problem for Fk-OV with one call to k-WLCS on strings of length Õ(n) and weights in
the range Õ(1).

REMINDER OF THEOREM 1.16 A T (n) time algorithm for k-LCS with alphabet size O(k) implies a
Õ(T (n)) algorithm for Fk-OV.

Proof. We use Theorem and Lemma. The weights of the instance produced in Theorem are Õ(1)
and the length of strings is Õ(n). So we can reduce Fk-OV to k-WLCS and then reduce that instance of
k-WLCS to k-LCS.

Edit Distance We will use the following Lemma to obtain hardness for Edit Distance.

Lemma 4.10 (Restated from Theorem C.2 from []) . An algorithm for WLCS (k-WLCS where k = 2)
that runs in O(n2−ε) time for some constant ε > 0 implies a O(n2−δ ) time algorithm for Edit Distance for
some constant δ > 0. []

Thus Theorem and Lemma give us the following theorem.

REMINDER OF THEOREM 1.17 A T (n) time algorithm for Edit Distance implies a Õ(T (n)) algorithm
for F2-OV.

Fk-OVH and LCS and Edit Distance Theorem and Theorem give us the following corollary.

Corollary 4.11. If Fk-OVH is true then k-LCS requires nk−o(1) time. If F2-OVH is true then Edit Distance
requires n2−o(1) time.

5 Average Case Hardness for Subgraph Counting

Here we demonstrate the power of the framework in Section to show average case hardness for count-
ing subgraphs H with k vertices, where k = o(

√
lg(n)/ lg lg(n)). If the sub-graph H is sufficiently sparse

then some larger k can be tolerated. Notably, for this section, as long as the number of edges is e =
o(lg(n)/ lg lg(n)) then our worst case to average case reduction has sub-polynomial overhead.

Using the framework we can immediately show that counting subgraphs H in what are roughly H-partite
Erdős-Rényi graphs (see Definition) is hard. We use our Inclusion/Edgesculsion Lemma from Section
to extend this result to counting subgraphs H in Erdős-Rényi graphs, and show that this problem is average
case hard as well. We start by a few definitions.

Definition 1. The counting H sub-graphs in a H-partite fashion (CHGHP) problem takes as input a
k-node graph H and a H-partite n-node graph G with vertex set partition V1, . . . ,Vk, and asks for the count
of the number of sub-graphs of G that have exactly one node from each of the k partitions and contain the
graph H.
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Definition 2. The uniform counting H sub-graphs in a H-partite fashion (UCHGHP) problem takes
as input a k-node graph H and an H-partite n-node graph G with vertex set partition V1, . . . ,Vk, where every
edge between partitions that have edges in H is chosen to exist iid with probability µ . The problem asks
for the count of the number of sub-graphs of G that have exactly one node from each of the k partitions and
contain the graph H.

Note that CHGHP is a worst-case problem whereas UCHGHP is an average-case problem. Notably,
UCHGHP is the uniform distribution over inputs to CHGHP.

5.1 Reducing counting H subgraphs in H-partite fashion to uniform counting

We start by reducing CHGHP to UCHGHP. Our ultimate goal is to reduce CHGHP to counting H subgraphs
in an Erdős-Rényi graph.

Lemma 5.1. Let H be a k-node graph with vertices VH = {x1, . . . ,xk} and G a H-partite n-node graph
with vertex set partition V1, . . . ,Vk. Let ~E be the set of variables {e(vi,v j)|i 6= j,vi ∈ Vi,v j ∈ Vj} when an
edge variable is a 1 if that edge exists and 0 if the edge is absent in G. Let h(v1, . . . ,vk) be a function that
multiples e(vi,v j) if xix j is an edge in H for all i, j ∈ [1,k] where i 6= j. If p is a prime in [2nk,n2k], the
following function returns the output of CHGHP on G:

f (~E) = ∑
v1∈V1,...,vk∈Vk

h(v1, . . . ,vk) (mod p).

Proof. Consider the function h: If v1, . . . ,vk in that particular order contain the graph H it returns 1, other-
wise it returns 0. Specifically, we are checking if our particular permutation of these variables completely
covers the (arbitrary) permutation of variables associated with the input sub-graph H.

Now f sums over all choices of k nodes from each partition and counts how many instances of the sub
graph appear in each. There is no double counting because every set of k nodes differs by at least one
node.

Lemma 5.2. The function f defined in Lemma is a good low-degree polynomial for CHGHP if the
number of edges in H is o(lg(n)/ lg lg(n)).

Proof. To prove the lemma, first note that f is a polynomial over a prime finite field Fp for some prime
p ∈ [2nk,n2k], and the number of monomials in f is O(nk · k!), which is polynomial. By Lemma the
function f returns the same value as CHGHP when it is given zero-one inputs.

Let |EH | be the number of edges in H. The function f has degree |EH |= o(lg(n)/ lg lg(n)). In fact given
constant k, f has constant degree. This is because f is formed with a sum over monomials h(v1, . . . ,vk),
which have degree |EH | ≤

(k
2

)
.

Finally, the function f is strongly |EH |-partite. There are |EH | partitions of edges. The function f is a
sum over calls to h where h takes as input one variable from each of those edge partitions and multiplies all
of them.

Corollary 5.3. Let d =
(k

2

)
and k = o(

√
lg(n)/ lg lg(n)). If an algorithm exists to solve UCHGHP in time

T (n) with probability 1−1/ω
(
lgd(n) lg lgd(n)

)
, then an algorithm exists to solve CHGHP in time Õ(T (n)+

n2) with probability at least 1−O
(

2− lg2(n)
)

.
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Proof. If k= o(
√

lg(n)/ lg lg(n)) then the size of the edge set in H, EH is at most
(k

2

)
= d = o(lg(n)/ lg lg(n)).

Using Theorem we simply need that a good low-degree polynomial for CHGHP exists. By Lemma,
the function f from Lemma is a GLDP(CHGHP).

Corollary 5.4. Let H be a sub-graph with an edge set EH where |EH | = o(lg(n)/ lg lg(n)). Let d = |EH |.
If an algorithm exists to solve UCHGHP in time T (n) with probability 1− 1/ω

(
lgd(n) lg lgd(n)

)
, then an

algorithm exists to solve CHGHP in time Õ(T (n)+n2) with probability at least 1−O
(

2− lg2(n)
)

.

Proof. We have that EH is at most
(k

2

)
= d = o(lg(n)/ lg lg(n)). Using Theorem we simply need that

a good low-degree polynomial for CHGHP exists. By Lemma, the function f from Lemma is a
GLDP(CHGHP).

5.2 Inclusion-Edgesculsion

In Corollary we show that counting subgraphs H in Erdős-Rényi H-partite graphs quickly with a high
enough probability implies fast algorithms for counting H-subgraphs in the worst case. We now want to
extend this to fully Erdős-Rényi graphs. Specifically, we want to show that counting H-subgraphs in Erdős-
Rényi quickly with a high enough probability implies a fast algorithm for counting H-subgraphs in the
worst case. To acheive this goal we introduce our Inclusion-Edgesclusion technique. We begin with a few
definitions.

Definition 3. Let G be a k-partite Erdős-Rényi graph with every edge included with probability 1/b where
b is a constant integer. Let the vertex partitions of G be V1, . . . ,Vk and the edge partitions be Ei, j ∀i, j ∈ [1,k]
where i < j.

Label all |Vi| · |Vj| edges with numbers in [1,b] as follows. Edges that exist in G are labeled 1. The rest
of the edges are uniformly at random assigned labels from [2,b]. For ` ∈ [1,b], let E`

i, j be the set of all edges
of label `.

Let G
(`1)(`2)...(`(k

2)
)

be the graph formed by choosing edge sets E`1
1,2, E`2

1,3, . . . ,E
`
(k

2)
k−1,k. Let SG be the set of

all possible b(
k
2) graphs G

(`1)(`2)...(`(k
2)
)
. Note when b = 2 these sets of edges are E(1)

i, j = Ei, j and E(2)
i, j = Ēi, j.

Definition 4. Let G be a k-partite Erdős-Rényi graph with every edge included with probability 1/b where
b is a constant integer. Let the vertex partitions be V1, . . . ,Vk. Let the edge partitions be Ei, j ∀i, j ∈ [1,k]
where i < j.

Let a labeled subgraph L of H in G be a subgraph of H where every vertex is assigned a unique label
from [1,k].

Define the count of the number of labeled subgraphs L in G to be the number of not-necessarily induced
subgraphs L where every vertex in L with label ` comes from V` in the original graph.

We want to reduce UCHGHP to counting subgraphs H in Erdős-Rényi graphs. A uniformly random
H-partite graph only has edges between partitions corresponding to edges in H. However, an Erdős-Rényi
graph would have edges within partitions and between partitions that don’t correspond to edges in H. So, if
we add these random edges we will over count subgraphs H, including subgraphs H that appear outside of
the original H-partite graph.

We solve this problem by creating multiple graphs. Each graph individually looks like it is sampled
from the Erdős-Rényi distribution. However, these graphs are correlated. We use a variant of an inclusion-
exclusion argument (hence the name “inclusion-edgesclusion”) to count the subgraphs H that appear in the
original H-partite graph.
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We will start with a warm up lemma.

Lemma 5.5 (Warm Up Lemma). Let CG be the count of the number of k-node subgraphs H in a complete
k-partite graph with the same edge partitioning as G where exactly one node of the subgraph is in each
partition in G.

Let CSG be the sum of the subgraphs H in all graphs G
(`1)(`2)...(`(k

2)
)

in SG where each of the partitions of

G
(`1)(`2)...(`(k

2)
)

has exactly one vertex of the subgraph.
Then, CG =CSG .

Proof. If a subgraph H0 exists and has one vertex in each partition, then there is exactly one choice of

G
(`1)(`2)...(`(k

2)
)
∈ SG that will contain it. The choice of G

(`1)(`2)...(`(k
2)
)

that picks the edge sets that H0’s edges

lay in. Every H that exists in the complete graph will appear in exactly one of these G
(`1)(`2)...(`(k

2)
)
, so the

counts of both are the same.

What should you get out of this lemma intuitively? Consider what happens if we sum all H that involve
exactly one edge from E1

i, j,E
2
i, j, . . . or,Eb

i, j (as defined in Definition). Then, we are getting the sum of all H
that would exist if Ei, j were complete. We can use this idea to count the subgraphs that use particular edge
partitions, while every E(`)

i, j looks uniformly random. To do this count, we develop a few lemmas and then
we proceed to our main counting result in Lemma.

Counting Small Subgraphs We will argue that we can count labeled subgraphs H recursively. We start
by arguing the base cases. Below are give fast algorithms for counting small labled subgraphs. By counting
labeled subgraphs H in a graph G with partitions V1, . . . ,Vk, we mean that the vertex set of H is labeled with
1, . . . ,k, and we want every copy of H to have a copy of xi in Vi where xi is the vertex with label i in H.

Lemma 5.6. Let G be a graph with n nodes, m edges and k labeled partitions of the vertices V1, . . . ,Vk (G
is not necessarily k partite).

Given a labeled k-node tree H with vertices, counting the number of such labeled trees in G takes
O(m+n) time.

Proof. Pick a root of the tree H. Let (u0, p0) be the root and its label p0. Let Ui be the set of all tuples of
vertices and their labels in the tree at level i. Let h be the height of the tree.

Thus, the set Uh only contains leaves, and every node in Uh has one sub-tree that includes it and no nodes
below it.

For all (uh−1, ph−1)∈Uh−1, where ph−1 is the label of uh−1, we look at the vertex set Vph−1 . For all nodes
in Vph−1 we are going to count the number of labeled sub-trees that include it and the nodes below it. We can
do this in linear time over the edges between the relevant partitions. Save all the computed values.

Now, we can do this for level h− 2, using our pre-existing counts. We can propagate these up the tree
until we reach our root and count the total number of labeled trees H in the graph.

Lemma 5.7. Let G be a graph with n nodes, m edges and k labeled partitions of the vertices V1, . . . ,Vk (G
is not necessarily k partite).

If we have the counts of all labeled subgraphs of H in G of size less than s vertices, we can compute the
number of labeled subgraphs in G that are the union of two disconnected labeled subgraphs of H of size s
or less.
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Proof. Let one be labeled subgraph L and the other be labeled subgraph L′. Given that they share no vertices,
we can simply multiply the number of subgraphs L and L′.

Lemma 5.8. Let G be a graph with n nodes, m edges and k labeled partitions of the vertices V1, . . . ,Vk (G
is not necessarily k partite).

We can compute all counts of subgraphs in G with 2 vertices or fewer in Õ(m+n) time.

Proof. All subgraphs with 1 edge are trees. So by Lemma we can compute all subgraphs with 2 edges
or fewer in Õ(m) time.

The Recursive Step of Inclusion-Edgesclusion This next lemma is the core step. We will use all counts
of subgraphs with a small number of edges to count those with more edges. At its core this relies on the
fact that if we sum together the counts of the number of subgraphs H with all possible combinations of
complimentary edge sets this roughly gives us a count of the number of subgraphs when that edge partition
is a complete bipartite edge set.

Lemma 5.9. Let G be a labeled k-partite graph with n nodes per partition.
Say we are given the counts of the number of subgraphs H in all graphs SG (see Definition).
Additionally, say we are given the counts of all less than or equal to v vertex labeled subgraphs of H

with [0,e] edges.
Let L be a labeled subgraph of H with v vertices and e+1 edges.
Using both of these counts we can count the number of not-necessarily induced subgraphs L in G in time

O(k! ·2k2
+bk2

).

Proof. Let H have vH = k vertices and eH edges. Let the subgraph L be given as a list of v vertices labeled
as being in partitions i1, . . . , iv and e+1 edges between partitions ix and iy where x,y ∈ [1,v]. Let SE be the
set of all such pairs (x,y).

Consider S̄E , the set of all pairs of partitions not in SE . Then consider the subset of instances in SG where
the edges between partitions in SE (for example Ei1,i2) are all set to be the version labeled (1) (E(1)

i1,i2). Call
this subset SG[L].

Take the counts of the number of subgraphs H that appear in all graphs in SG[L] and sum them together,
call this count cSG[L]. What will this count contain? It will count the number of subgraphs H that appear if
the graph G were to have complete bipartite graphs between all pairs of partitions in S̄E , weighted by how
many edges in SE that subgraph uses. If a specific subgraph H appears in the graph G where ` of its edges
are in the S̄E partitions then it is counted b(

k
2)−e−1−` times. We include that many copies of graphs in SG[L]

that include this particular H.
Given that L is a labeled subgraph of H, at least one labeling of H will share all e+1 edges and v vertices

of L. There may be many valid labelings for the eH − e− 1 unaccounted for edges and k− v unaccounted
for vertices.

We want to count all H that happen to have a labeling that matches the e+1 edges of L, and not count
those that share only some of these edges. Luckily, given the counts of all small subgraphs we can count
how many subgraphs H exist that match up only partially with L and remove these from the count cSG[L].

For a subgraph to match up only partially with L, it must match up with some labeled subgraph of L, L′.
L′ must have v vertices and at most e edges. We have the counts of all labeled subgraphs with v vertices and
at most e edges. We want to remove from cSG[L] the count of all subgraphs H that overlap with L′ and share
no edges with L−L′.
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Let GL,L′ be a graph on k vertices where all edges in L′ are included, all edges in L−L′ are excluded and
all other edges are included. Let cGL,L′ be the count of the number of subgraphs H that exist in this graph.

Note we can compute this in O(k!) and we do this computation on at most O(2k2
) graphs.

Let L′ have eL′ edges and vL′ vertices. Let cL′ be the count of all labeled subgraphs L′ that exist in G.
The count of all subgraphs H which overlap exactly with L′ (sharing no edges with L−L′) that are counted
in cSG[L] is

cL′ · cGL,L′ ·n
k−vL′ ·b(

k
2)−e−eH+eL′ .

Lets break down this value. First, of course the number of labeled subgraphs L′ that appear in the original
graph each contribute proportionally. A choice of a particular labeled subgraph L′ fixes vL′ of the k vertices,
but the rest of the vertices could be any of the available n vertices per partition. Now, given a fixed choice
of k vertices and eH edges this subgraph may still appear in multiple graphs in SG[L]. Specifically, it will
appear in all graphs where we haven’t “fixed” the edge set. This is a total of b(

k
2)−e−eH+eL′ graphs.

So, for all O(2k2
) labeled subgraphs of L we can compute their contribution to cSG[L] and subtract out this

contribution. This leaves only a count of subgraphs H that overlap with L exactly. To compute the number
of subgraphs L we simply divide this number by cGL,L ·nk−v ·b(

k
2)−eH .

The total time for this computation is, at most O(2k2 · k!+ bk2
). If k = o(

√
lg(n)) and b is a constant,

then this term is sub-polynomial.

Lemma 5.10. Let G be a graph with n nodes, m edges and k labeled partitions of vertices V1, . . . ,Vk. Given
the count of all labeled subgraphs of H in G with less than v vertices, we can count all labeled sub-graphs
with v vertices and at most v−1 edges in Õ(m) time.

Proof. There are two cases. The subgraph is connected (only possible when we have exactly v−1 edges),
or it is disconnected.

If the subgraph is connected then it is a tree, by Lemma we have can count this labeled tree in Õ(m)
time.

If the subgraph is disconnected then it is made up of disconnected labeled subgraphs with less than v
vertices. We have the count of each of these on their own, thus by repeated applications of Lemma we
can count these with overhead the number of subgraphs which is at most v, and thus also Õ(m).

Reducing to UCHGHP First we reduce counting labeled copies of H in a k-partite Erdős-Rényi graph to
counting H in Erdős-Rényi graphs. We then note that by picking a particular labeling this solves the problem
of UCHGHP. Finally, we use our previous reduction from CHGHP to UCHGHP to get our desired result: a
reduction from CHGHP to counting H subgraphs in Erdős-Rényi graphs.

Lemma 5.11. Let H have e edges and k vertices. Let A be an average-case algorithm for counting
“unlabeled” subgraphs H in k-partite Erdős-Rényi graphs with edge probability 1/b which takes T (n)
time with probability 1− ε/

(
2k ·bk2

)
.

The number of “labeled” copies of subgraph H in k-partite Erdős-Rényi graphs with edge probability
1/b can be computed in time Õ(2k2 ·m+2k ·bk2 ·T (n)) with probability at least 1− ε .

Proof. We want to count only subgraphs that use exactly one vertex from each partition. We can make 2k

calls to A using standard inclusion/exclusion to count only subgraphs with exactly one edge in each partition.
Call this algorithm A′.
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Let C(v, `) be a list of tuples of all labeled subgraphs J with v vertices and ` edges with the associated
count of the number of labeled subgraphs J in G.

By Lemma we can compute C(v, `) in time |C(v, `)| · Õ(m) if `≤ v−1.
By Lemma if we can compute C(v, `) for all ` ≤ `? then we can compute C(v, `?+1) given calls to

A′ on all graphs in SG. Note each of these steps uses the same set of calls to A′ on all graphs in SG.
We can bound |SG| ≤ bk2

. With this we can say that we make at most bk2
calls to A′, meaning we make

at most 2k ·bk2
calls to A.

We can bound the total sum of all |C(v, `)| by 2k2
(every possible choice of a subset of edges in the complete

graph on k vertices). This gives a time bound of Õ(2k2 ·m+2k ·bk2 ·T (n)).
We make 2k · bk2

calls to A, if they are all correct then we give the correct answer to the labeled H
question. If A succeeds with probability at least 1−ε/

(
2k ·bk2

)
, then, by the union bound 2k ·bk2

calls to A
will all succeed with probability at least 1− ε .

Lemma 5.12. Let H have e edges and k vertices where k = o(lg(n)/ lg lg(n)). Let A be an average-case
algorithm for counting subgraphs H in Erdős-Rényi graphs with edge probability 1/b which takes T (n) time
with probability 1−2−2k ·b−k2 · (lg(e) lg lg(e))−ω(1)

Then an algorithm exists to count subgraphs H in H-partite graphs (CHGHP) in time Õ(T (n)) with
probability at least 1−O(2− lg2(n)).

Proof. By Lemma, A implies a Õ(T (n)) algorithm for counting the number of labeled copies of sub-
graph H in k-partite Erdős-Rényi graphs with edge probability 1/b with probability 1−2−k(lg(e) lg lg(e))−ω(1).

We need to add random edges within each partition to get a truly Erdős-Rényi graph. Luckily, we can
use traditional inclusion-exclusion to count how many subgraphs don’t include exactly one vertex in each
partition. This introduces another 2k calls. By the union bound this causes the probability of success to be
at least 1− (lg(e) lg lg(e))−ω(1).

Now note that counting labeled copies of subgraph H in k-partite Erdős-Rényi graphs solves UCHGHP with
edge probability 1/b with a single call. Given an instance of UCHGHP label the vertices of the subgraph H
in the input instance, between all other partitions add random edges with probability 1/b.

Now apply Lemma. An algorithm for UCHGHP that succeeds with probability 1 −(lg(e) lg lg(e))−ω(1)

in time T (n) implies an algorithm for CHGHP that runs in time Õ(T (n)+n2) and succeeds with probability
1−O(2− lg2(n)).

REMINDER OF THEOREM 1.21 Let H have e edges and k vertices where k = o(
√

lg(n)). Let A be an
average-case algorithm for counting subgraphs H in Erdős-Rényi graphs with edge probability 1/b which
takes T (n) time with probability 1−2−2k ·b−k2 · (lg(e) lg lg(e))−ω(1).

Then an algorithm exists to count subgraphs H in k-partite graphs in time Õ(T (n)) with probability at
least 1− Õ(2− lg2(n)).

Proof. From Lemma we know that A implies a Õ(T (n)) time algorithm for counting H in H-partite
graphs.

Now, given an input of a graph G that is k-partite graph we can produce all e choose
(k

2

)
graphs that

have only e sets of edges between the partitions. From these we can select only those that are H partite (the
number of these will vary based on H’s shape). The number of these graphs is at most 2k2

, which by our
restriction on k is Õ(1). Call the set of these H partite graphs SH .
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We use the result from Lemma to count the results on each of these graphs. By the union bound we
will get the correct answer on every graph with probability at least 1− Õ(2− lg2(n)). The sum these counts
over all G′ ∈ SH is equal to the number of H in the original graph.

6 Counting OV is Easy on Average

Previous work has shown that detecting if there is at least one orthogonal vector in a set of n vectors is
possible in sub-quadratic time []. So, the next natural candidate problem that we might hope to show
hard with our framework would be the counting version of average-case Orthogonal Vectors problem (OV).
However, even the counting version of orthogonal vectors has truly subquadratic algorithm, as we will prove
below.

Definition 1. The counting µ-uniform d-dimensional Orthogonal Vectors problem (#OVµ,d) takes as input
two lists of n zero-one vectors, where each vector is d-dimensional. All 2 · n · d bits are chosen iid where
a one is selected with probability µ . The output is the count of the number of vectors that are orthogonal
(whose dot product is zero).

We will consider constant µ for this section. We built up a few lemmas to prove the following theorem.

REMINDER OF THEOREM 1.18 For all constant values of µ and all values of d there exists constants
ε > 0 and δ > 0 such that there is an algorithm for #OVµ,d that runs in time Õ(n2−δ ) with probability at
least 1−n−ε .

We start by showing that if vectors are very long we are unlikely to have an orthogonal vector pair.

Lemma 6.1. A #OVµ,d instance has at most a n2 ·e−µ2·d probability of having at least one pair of orthogonal
vectors.

Proof. Any given pair of vectors has a probability of (1−µ2)d of being an orthogonal pair. The probability
that some vector is an orthogonal pair is at most n2 · (1−µ2)d which is at most n2 · e−µ2·d .

Lemma 6.2. If d > (1+ δ )2lg(e) lg(n) for some constant δ > 0 then there is a constant µ = (1+ δ )−1/4

such that #OVµ,d instance has at least a 1− 1/nε probability of having no orthogonal vectors for some
constant ε .

Proof. Using Lemma and plugging in our value of d we have that the probability of an #OVµ,d instance
having an orthogonal vector is at most n2 ·(n2)−(1+δ )µ2

. If µ =(1+δ )−1/4 then we can bound the probability
by n2(1−(1+δ )1/2). For δ > 0 we have that (1+δ )1/2 > 1, and so 1− (1+δ )1/2 is a negative constant. Thus
there is some positive constant ε (for example ε =−2(1− (1+δ )1/2)) such that the probability there are no
orthogonal vectors in a #OVµ,d instance is at least 1−1/nε .

A straightforward Corollary of Lemma is the following.

Corollary 6.3. For all constant µ there is a constant δ = 1/µ4−1 such that for d > (1+δ )2lg(e) lg(n) a
#OVµ,d instance has at least a 1−1/nε probability of having no orthogonal vectors for some constant ε .

We use the following theorem appearing in [] in the proof of Theorem.

Theorem 6.4. Given a vector of dimension d = c lg(n) there is a Õ(n2−1/O(lg(c))) time algorithm that suc-
ceeds with probability 1 on instances of #OVµ,d in returning the count of the number of orthogonal vector
pairs for every vector if one exists, regardless of µ . []
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Finally, we return to the proof of Theorem. We show that even the counting version of the uniform
average-case OV has a subquadratic algorithm.

Proof of Theorem. Let the dimension be d = c lg(n). By Corollary if c > 2lg(e)/µ4 then there
is some ε > 0 such that there are no orthogonal vectors with probability at least 1−n−ε . Notably, this gives
us an Õ(d) time algorithm where we return a count of zero if the dimension is larger than 2lg(e) lg(n)/µ4

that succeeds with probability at least 1−n−ε .
When c≤ 2lg(e)/µ4 we will run the algorithm from Theorem. This runs in Õ(n2−1/ lg(c)) time and is

correct with probability 1. This is at its worst a run time of Õ(n2−1/ lg(2lg(e)µ−4)). So δ = µ4/ lg(2lg(e)µ−4),
µ is a constant so δ is also a constant. 2

7 Counting to Detection Reduction for Average-Case ZkC

In fine-grained complexity the primary technique used for worst-case to average-case reductions has used
the technique described by []. This technique produces average-case hardness for computing the
output of functions over a finite field. These problems are fundamentally counting problems. The issue with
counting problems is that they are much harder to build cryptographic objects out of.

Here we give a reduction from Counting to Detection for ZkC in the average case (ACZkC). Notably,
such a reduction does not exist in the worst case in fine-grained complexity. This makes the assumption
that average case ZkC detection with high probability requires nk−o(1) time more plausible. The assumption
that ZkC detection is hard with probability 1/100 can be used to make fine-grained public-key cryptogra-
phy [] (though the assumption that average-case Z kC is hard with probability 1− n−o(1) should be
sufficient). There is a gap here between the probabilities we are describing, 1−1/Ω(nk), and the probabili-
ties used for fine-grained cryptography, 1−1/no(1). However, this makes a step forward in closing the gap
between the problems we can show are average-hard from worst-case assumptions and those we can build
cryptography from.

Let us define average-case ZkC.

Definition 1. An average case instance of ZkC (ACZkC) with range R takes as input a complete k-partite
graph with n nodes in each partition. Every edge has a weight chosen iid from [0,R− 1]. A clique is
considered a zero k clique if the sum of the edges is zero mod R.

The idea of our reduction from counting to detection uses the fact that average-case ZkC is easy when
R is small and there are very few solutions when R is large. In the worst-case we can reduce detecting
ACZkC to counting nk−ε ACZkCs when ε > 0. So, intuitively we are using the fact that when R is small we
can use a fast algorithm for counting. When R is larger there are nk−ε solutions, so we can use a reduction
to show that faster detection solves counting those small number of solutions.

First we will prove that when the range is small there is a fast algorithm. Then, we will show that a
search algorithm counts very well when the range is exactly R = nk. We will then show that this gives a
generic counting to search reduction. Next, we will provide a search to decision reduction. Finally, we will
give the counting to detection statement.

Note that throughout this section we assume the function p(n) is a monotonically non-increasing func-
tion. Additionally, when we say an algorithm succeeds in the average case with probability p, this is ran-
domness over both the input and the random coins flipped in the algorithm.

Small Range is Easy

Lemma 7.1. There is a Õ(R2nωdk/3e) time algorithm for ACZkC.
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Proof. Take the graph as a k-partite graph. Group together k/3 partitions of nodes. If k is not a multiple
of 3 then make groups of dk/3e partitions and bk/3c partitions. Then, in each group of partitions create a
node for every possible set of dk/3e or bk/3c nodes one from each partition. The total number of nodes is
O(ndk/3e).

Consider two nodes v and u where v represents x nodes and u represents y nodes. Add an edge between
u and v only if all x+y represented nodes form a clique. The weight on the edge between u and v is the sum
of half the weight of all edges within the clique of x nodes represented by v, half of the weight of all the
edges within the clique of y nodes represented by u, and the weight of all edges going between the x nodes
in v and the y nodes in u.

Now, the weights of the edges are still in the range [0,R]. We want to find a zero triangle in this new
graph. We can guess the edge weights of two of the edges in the triangle, which forces the third value. Then,
we produce a graph with only the edges of the guessed weights, then use matrix multiplication. All told this
takes O(R2 · (ndk/3e)ω) time. This can be simplified to Õ(R2nωdk/3e) time.

We can have a slight improvement in the running time of Lemma.

Lemma 7.2. There is a Õ(R2n(ω(k−2)/3)+2) time algorithm for ACZkC.

Proof. Let g be the largest integer such that 3g≤ k. Note that 3g≥ k−2.
If 3g = k then by Lemma an algorithm exists which runs in time Õ(R2nωdk/3e) time, which is

Õ(R2n(ω(k−2)/3)+2).
If 3g= k−1 then pick one partition, for every node in this partition we create a zero k−1 clique instance

and use Lemma to get a Õ(R2nωd(k−1)/3+1e) time algorithm, which is Õ(R2n(ω(k−2)/3)+2).
If 3g= k−2 then pick one partition, for every node in this partition we create a zero k−2 clique instance

and use Lemma to get a Õ(R2n(ω(k−2)/3)+2) time algorithm.

Lemma gives the following corollary.

Corollary 7.3. If R = O(n(k−2−ω(k−2)/3−ε)/2) then there is a Õ(nk−ε) time algorithm for ACZkC with range
R.

High Probability Counting for R = nk When the range is nk we want to count efficiently with very high
probability. We will do this by first proving two helper lemmas.

Lemma 7.4. The probability that an instance of ACZkC with range R = nk has at least kk lg2k(n) solutions
is 2−Ω(lg2(n)).

Proof. If there are at least
(
k lg2(n)

)k
zero cliques then there is at least one set of lg2(n) cliques such that

each zero clique has at least one node not shared by any other zero clique. After all at least k lg2(n) distinct
nodes must be involved in these

(
k lg2(n)

)k
zero cliques.

If a zero clique has a node not shared with the other cliques then whether or not it is a zero clique is
uncorrelated with the other zero cliques. So, the probability that there are

(
k lg2(n)

)k
zero cliques is at most

the probability that out of nk independent trials lg2(n) return true when the probability of a trial returning
true is 1/R = 1/nk. By the Chernoff bound we get the probability of this event is less than 2−lg2(n)/3 which
is 2−Ω(lg2(n)).
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Lemma 7.5. Using a search algorithm, A , that succeeds with probability 1− p on an instances of ACZkC with
n/(k lg2(n)) nodes per partition and edge weights in the range R = θ(nk) in time T (n) we can count the
number of solutions (or list all those solutions) in a ACZkC instance in time Õ(T (n)+nk−1) with probability
at least 1− pkk lg2k+2(n)−2−Ω(lg2(n)).

Proof. Let the input ACZkC instance be the graph G with edge set E and vertex set V . First, note that with
probability 1−1/2Ω(lg2(n)) there are at most s = kk lg2k(n) zero k-cliques (ZKCs).

Now consider a given ZKC c in G. Imagine creating a new instance G′ that is a subset of G by selecting
a random subset of n/x nodes from each partition. The ZKC c is in G′ with probability x−k. Now consider
a clique c′ which is in G and shares no nodes with c. Given that c is in G′ the probability that c′ is also in
G′ is at most x−k. If there are at most ` cliques in G then the probability that a given clique c is in G′ and
no disjoint cliques (cliques that share no vertices with c) are in G′ is at least: x−k(1− x−k)`. Further note
that the sub-graph G′ has total variation distance 0 from ACZkC instances with n/x nodes per partition and
range nk.

Consider the algorithm Bx. It creates an empty set SB that it will fill with cliques it finds. It generates G′

at random by selecting a random set of n/x nodes from each partition. Then it runs A on G′. If A returns
a clique c, check that it is a ZKC. If it is, further exhaustively check that there is no clique that shares a
node with c this takes O(k(n/x)k−1) time (you can simply check all sets of k nodes involving one node in
the clique). Any cliques it finds in this search are added to SB and SB is returned. Bx takes O(T (n)+nk−1)
time. If:

1. a ZKC c is in G′,

2. A returns correctly, and

3. there are no ZKCs in G′ which share no vertices with c

then Bx will include c in SB. Because A returned a ZKC and it was either c or a clique that shared a node
with c. In the later case our exhaustive search would find it. Given a specific clique c and A returning
correctly c ∈ SB with probability x−k(1− x−k)`.

Consider the case where `≤ s and x = k lg2(n) = s1/k. Then Bk lg2(n) returns a given c with probability
at least s−1(1− s−1)s ≥ 1

4s . If A is returning correctly every trial is independent. Thus if we run Bk lg2(n)

4s lg2(n) times we will find the clique c with probability at least 1− (1− 1/(4s))4s lg2(n) ≥ 1− 2−Ω(lg2(n)).
The probability we find all the ZKCs (given that there are at most s ZKCs) is, by union bound at least
1− s2−Ω(lg2(n)) = 1−2−Ω(lg2(n)).

After making 4s lg2(n) calls to Bk lg2(n) we will have made 4s lg2(n) calls to A . Using union bound all
of these will succeed with probability at least 1−4s lg2(n)p.

So the time we take is O(4s lg2(n)T (n)+ 4s lg2(n)nk−1) which is Õ(T (n)+ nk−1). Our success proba-
bility requires the union of the number of cliques being less than s, A returning correctly on all calls, and
the randomness in Bk lg2(n) allowing us to return all cliques. Thus our probability of success is at least 1−
4s lg2(n)p−2−Ω(lg2(n))−2−Ω(lg2(n)). This can be simplified to a success probability of 1−4kk lg2k+2(n)p−
2−Ω(lg2(n)).

Counting to Search We will start by describing the self reduction for ACZkC. This is a folklore self-
reduction in the worst case and was analyzed in the average case in [].
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Lemma 7.6. Given an instance, I, of average case ZkC with range R with kn nodes it can be split into (n/x)k

instances I1, . . . , I(n/x)k each with kx nodes such that:

1. The distribution over each Ii is the average case distribution with kx nodes and range R. (Though two
instances Ii and Ii′ may be correlated.)

2. The number of solutions in instance I (#Solutions(I)) is equal to the sum of solutions in all the in-

stances I1, . . . , I(n/x)k (∑
(n/x)k

i=1 #Solutions(Ii)).

Proof. Note the k-partite graph in the instance I and note each partition of vertices V1, . . . ,Vk. We create a
random partition of each vertex set into n/x sets of x vertices. Name the subsets of Vi, Vi[ j] where j ∈ [1,n/x].
The (n/x)k subinstances are formed by taking the intersection of k subsets one from each of the k partitions:
V1[ j1]∪ . . .∪Vk[ jk] for all possible k tuples ( j1, . . . , jk) ∈ [n/x]k.

For the first claim, note that for any given instance Ii we simply have a random selection of n/x nodes
from an average case instance. So every edge is chosen iid from [R]. This is indeed the distribution of an
average case ZkC instance. We will note that two separate instances may be correlated. For example the
instance formed by V1[ j1]∪V2[ j2]∪V3[ j3] . . .∪Vk[ jk] and the instance formed by V1[ j1]∪V2[ j2]∪V3[ j′3] . . .∪
Vk[ j′k] will share all edges between sections V1[ j1] and V2[ j2]. Of course union bounds can still be used to
bound error between these (n/x)k instances.

For the second claim, any ACZkC witness has k nodes one from each partition: v1 ∈ V1, . . . ,vk ∈ Vk.
Every witness appears in exactly one sub-instance. A given witness (v1, . . . ,vk) will appear only in the
instance formed by a union of the subsets V1[ j1]∪ . . .∪Vk[ jk] where vi ∈Vi[ ji] in every subset.

Lemma 7.7. Let p(n) be a monotonically non-increasing function.
Assume an algorithm exists for the search version of ACZkC with range R ∈ [kk lg2k(n)nk,2kk lg2k(n)nk]

that succeeds with probability at least 1− p(n) and runs in time O(nk−ε) where ε > 0. Let k′ = 2+ω(k−
2)/3. Then there is an algorithm for counting the number of ZkC in an average case instance for any
positive integer R with probability at least 1−2−Ω(lg2(n))− p

(
n(k−k′−δ )/(2k)/(k lg2(n))

)
·n(k′+δ )/2 ·kk lgk2(n)

that runs in time Õ(nk−δ ) for some constant δ > 0.

Proof. Let us call the search algorithm A . There are two cases to consider. R≤ nk and R > nk.
If R > nk then we can use nearly linear hashing (see []) to reduce our range down to nk. There may

be false positives here, however, the instance will look uniformly random (we are hashing large uniformly
random numbers). So we can use Lemma to say that there will be at most s = kk lgk2(n) solutions (false
positives or true positives) with probability at least 1− 2−Ω(lg2(n)). Now, we can use the algorithm from
Lemma to list all solutions with probability at least 1 − p(n/(k lg2(n)))s− 1/2Ω(lg2(n)). For each listed
solution we can check if it is a false positive and only count the actual cliques. This will return the true
number of cliques with probability at least 1− p(n/(k lg2(n)))s−2−Ω(lg2(n)). This requires s calls to A so
it takes time O(nk−εs). This constrains δ < ε .

If R≤ n(k−k′−ε ′)/2 where k′ = 2+ω(k−2)/3, then by Corollary there is a O(nk−ε ′) time algorithm
that succeeds with probability 1.

If n(k−k′−ε ′)/2 < R < nk then we will use the average case self reduction for ACZkC (see Lemma or
[]) to reduce the problem to problems of size x = R1/k, so now we have that R = xk where x is our
new smaller input size. We can now call A on all these instances. Note that s≥ n(k−k′−ε ′)/(2k). Further note
that the total number of instances is (n/x)k ≤ n(k

′+ε ′)/2. So, if A succeeds with probability 1− p(n) then by
union bound these independent instances will succeed with probability at least 1− p(x/(k lg(x))) · (n/x)k.
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Now note that this is at least 1− p(n(k−k′−ε ′)/(2k)) ·n(k′+ε ′/(k lg(n)))/2. If there is an algorithm running in time
O(xk−ε) for all (n/x)k problems then the running time is Õ(nk−ε(k−k′−ε ′)/(2k)). Notably ε(k−k′−ε ′)/(2k)>
0.

We want δ < ε ′ and δ < ε(k−k′−ε ′)/(2k)< ε/2. If we choose δ < ε ′ = ε/2 then this meets all of our
constraints. In every case the algorithm succeeds with probability at least 1−2−Ω(lg2(n))− p(n(k−k′−δ )/(2k)) ·
n(k

′+δ )/2 · s and runs in time Õ(nk−δ ) when δ < ε ′ = ε/2.

Search to Decision

Lemma 7.8. Let p(n) be a monotonically non-increasing function.
Given a detection algorithm that runs in O(nk−δ ) time for some δ > 0 and has success probability at

least 1− p(n) we can produce a search algorithm that runs in time Õ
(
nk−εk +nk−δ (1−ε)

)
for any constant

1/2 > ε > 0 and has success probability at least 1− p(n1−ε)nkε .
Specifically for ε = 1/2 this can be bounded as Õ

(
nk−δ/2

)
time and probability at least 1− p(n1/2)nk/2.

Proof. We use the classic self reduction for ACZkC producing instances of size n1−ε . For this we randomly
split each partition of vertices into nε groups of n1−ε nodes. We form all nkε possible sub-problems and run
the detection algorithm on them. On any instance that returns true we brute force the problem in O(nk−kε)
time. We of course can stop as soon as we find a clique.

The probability that none of our nkε instances produces a false positive is at least 1− p(n1−ε)nkε . If
we have no false positives then our running time is O(nk−kε + nkε(n1−ε)k−δ ). This can be simplified to
O(nk−kε +nk−δ (1−ε))

Counting to Decision

Lemma 7.9. Let p(n) be a monotonically non-increasing function.
Given a decision algorithm for ACZkC that runs in time O(nk−ε) for some ε > 0 and succeeds with

probability at least 1− p(n) there is a counting algorithm that runs in O(nk−ε ′) for some ε ′> 0 and succeeds
with probability at least 1−2− lg2(n)− p(n1/25)nk.

Proof. Use Lemma when ε = 1/2 and Lemma. When combing our numbers we find that the proba-
bility is at least 1− p(n1/25)nk.

Note this is not tight, by tuning ε and plugging in an improved value for the matrix multiplication
constant you will get a tighter result. This bound is sufficient for our purposes so we leave it as is.

REMINDER OF THEOREM 1.19 Given a decision algorithm for ACZkC that runs in time O(nk−ε) for
some ε > 0 and succeeds with probability at least 1− n−ω(1), there is a counting algorithm that runs in
O(nk−ε ′) time for some ε ′ > 0 and succeeds with probability at least 1−n−ω(1), where ω(1) here means any
function that is asymptotically larger than constant.

Proof. We plug in n−ω(1) for p(n) in Lemma. Note that the second error term, 2 − lg2(n) is n−ω(1).

8 Future Work

Average-case fine-grained complexity still has a lot of unexplored areas. We suggest the following open
problems that directly relate to results of this work.
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General Questions What other natural non-factored problems are hard from factored problems (either Fk-
f and FfkC)? We give three problems in section where we only show their detection version is hard. Can
one show that a counting version of (k+ 1)L-MF, k-LCS, or Edit Distance is hard from counting factored
problems? Recall that such a reduction would imply average case hardness over some distribution for the
problem reduced to. We show hardness for the uniform average case for #Fk-f and #FfkC, can one show
hardness for other natural worst case distributions of these problems?

Cryptography and Counting vs Detection In Section we show that detecting Z kC with high probability
in the average case implies fast algorithms for counting with high probability in the average case.

• Counting to detection in the high error regime: Can you show that a detection algorithm for average-
case ZkC that succeeds with probability 1−1/(polylog(n)) implies an algorithm for counting ZkC with
probability 2/3? If such a reduction exists in the high error regime you can build cryptography proto-
cols from an assumption about the difficulty of counting ZkC on average [].

• Worst case ZkC to counting ZkC on average: Can we reduce the worst case hardness of ZkC to
average case #ZkC? What about k-SUM? If you can prove this for ZkC and prove the previous high-
error regime reduction, then you can build fine-grained cryptography from a worst-case assumption
about the complexity of ZkC.

• Counting to detection for other problems: A similar proof technique that we use for ZkC should
work for the 3-SUM problem. For this style of reduction we need: (1) an efficient average-case self-
reduction for the problem, (2) the number of witnesses to be small on average when some parameter
R is large, and (3) an efficient algorithm when R is small. All of these exist for 3-SUM, however, there
isn’t an efficient self reduction for k-SUM for k > 3. Can another approach work to show counting to
detection results for problems like k-SUM, k-LCS, etc?

Using/Extending the Good Low-Degree Polynomial Framework A few directions that could be taken
with respect to our framework are the following:

• Can the framework be extended to handle multiple outputs? For example, the problem of multiplying
two zero-one matrices?

• Can we find new problems P that have GLDP(P)?

• Can the framework be improved? For example, could it be improved to handle polynomials of
(slightly) greater degree? Can the strong k-partiteness condition be weakened?

LCS and Edit Distance In Section we cover LCS and Edit Distance. We have two open problems
from this section we want to highlight.

• Making a framework for string distance lower bounds from factored problems: Bringmann and
Künnemann [] create a framework for proving n2−o(1) lower bounds from SETH. We believe
this same framework can be extended to work for F2-OV by adding a requirement of a selection gad-
get. It also seems that this framework could be extended to contain Fk-OV. Relatedly, can k-median
distance and k-center-edit-distance be reduced to Fk-OV?
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• Getting tight hardness for #k-LCS or #k-WLCS: We note that the counting versions of k-LCS and k-
WLCS both have algorithms that run in time nk+o(1) (see Appendix). Given our construction, the
counting versions of k-LCS and k-WLCS count }(v1, . . . ,vk) is given as input the k strings FV G(v1),
. . . ,FV G(vk). However, unfortunately, the counting versions of k-LCS and k-WLCS do not return
# Fk-OV given our construction of P1, . . . ,Pk. This is due to using an alignment gadget instead of a
selector gadget. If we used the selector gadget, the count of longest common subsequences would be
the sum over the counts of all FV G(v1), . . . ,FV G(vk) where }(v1, . . . ,vk) > 0. This would result in
the count being exactly the output of # Fk-OV. However, the strings produced by our reduction would
have length n2 and weights of size Õ(n). So, we would get a lower bound of nk/2−o(1) for #k-WLCS,
and a lower bound of nk/3−o(1) for #k-LCS. A more efficient selector gadget would yield tight lower
bounds for # k-LCS and # k-WLCS, including in the average-case. We suggest this as a potential topic
for future work.
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[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 79–97. IEEE Computer Society, 2015.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case fine-
grained hardness. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 483–496. ACM, 2017.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of work from
worst-case assumptions. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer
Science, pages 789–819. Springer, 2018.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 261–270, 2016.

[CR02] Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs. Information
Processing Letters, 84(4):175–180, 2002.

[CW16] Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016.

[GCSR13] Donatella Granata, Raffaele Cerulli, Maria Grazia Scutellà, and Andrea Raiconi. Maximum
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A Removed Algorithms

A.1 Algorithms for Factored Problems

These algorithms are straightforward be case they are simply brute force.

Lemma A.1. Fk-f can be solved in Õ(nk) time.

Proof. For Fk-f, we want to run }(v1, . . . ,vk) on every set of k vectors. To do this we need to compute
◦(v1[i], . . . ,vk[i]) for all i ∈ [0,g]. Running ◦(·) takes O(Π j∈[1,k]|v j[i]|) time. We can use the upper bound
|v j[i]| ≤ 2b. So computing ◦(·) takes at most O(2bk) time. Thus, computing }(·) takes at most O(g ·2bk).

Thus, computing Fk-f takes at most O(nk ·g ·2bk) time. We bounded g and b to be o(lg(n)) so g ·2bk is
subpolynomial. Thus, Fk-f takes at most Õ(nk) time.

Lemma A.2. FfkC (#FfkC) can be solved in time Õ(nk).

Proof. For every k tuple of nodes in the graph we want to evaluate }(·). If we can evaluate }(·) in Õ(1)
time then we can count or detect in Õ(nk) time.

Evaluating isClique(·) can be done in Õ(1) time. Evaluating the multiplication, given the results of the
function ◦(·) can be done in Õ(g) time. Evaluating ◦(·) should require at most Õ(2(

k
2)b) time as the function

f has a total truth table size of 2(
k
2)b and we simply need to evaluate how many entries of the truth table are

1 while we simultaneously have that vector.
Finally, we note that g = Õ(1) and 2(

k
2)b = Õ(1). So evaluating }(·) can be done in Õ(1) time.

A.2 Algorithms for Problems Harder than Factored Problems

Theorem A.3. Counting partitioned matching triangles (#PMT) can be solved in Õ(n3) time.

Proof. Let the g graphs be G1, . . . ,Gg in our PMT instance, and let n j
r be the number of nodes of color r in

G j. For all triple of colors (c1,c2,c3) and all j, we count the number of triangles of these colors in G j. We
can do this by inspecting every triple of nodes of color (c1,c2,c3) in time n j

c1n j
c2n j

c3 . Since ∑r n j
r = n for all

j, we have that ∑
g
j=1 ∑(c1,c2,c3) n j

c1n j
c2n j

c3 = O(gn3) = Õ(n3).

Theorem A.4. (Counting mod R) k-NLstC has a Õ(|C|k + |C|k−2|E|) time algorithm for all k ≥ 2 (when
lg(R) is sub-polynomial).

Proof. We can guess the k colors and use BFS to discover if s is connected to t. This takes O(|E|) time.
If we are counting instead of detecting paths from s to t then we want to extend the BFS approach by

associating an additional number to each node. Every node will keep a value of the number of paths from
s to that node mod R. These numbers will require a sub-polynomial number of bits to represent as lg(R) is
bounded to be subpolynomial. In a layered graph we can compute the number of paths from s to a node v in
layer i by summing the number of paths from s to u for all u that are neighbors of v that are in layer i− 1.
We can go through the graph by computing these numbers layer by layer staring at layer L0. This also takes
O(|E|) time.

Let Eci,c j be the set of all edges between nodes of colors ci and c j. Let Es,ci be the set of all edges
between s and nodes with color ci. Let Et,ci be the set of all edges between t and nodes with color ci.
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Our running time is:

∑
c1,c2,...,ck∈C

((
∑

i∈[1,k]
|Es,ci |+ |Et,ci |

)
+ ∑

i, j∈[1,k]
|Eci,c j |

)
.

We know that |Es,ci |+ |Et,ci | ≤ 2 from the problem definition. We also know that |Eci,ci |= 0. So we can
simplify to:

Õ

(
k|C|k + k2

∑
c1,c2,...,ck∈C

|Ec1,c2 |

)
.

Then we can use the fact that ∑c1,c2∈C |Ec1,c2 |= |E| and that k is a constant to get:

Õ
(
|C|k + |C|k−2|E|

)
.

Theorem A.5. There is an algorithm for (counting mod R) k-ELstC that runs in time Õ(|C|k−1|E|) (when
lg(R) = no(1)).

Proof. We do an exhaustive search for all k colors. Once we guess k colors c1, . . . ,ck then we simply run a
O(|E|) time algorithm for (directed/undirected) reachability on this input. If we are counting paths mod R
then we use the fact that the graph is a directed acyclic graph to count the number of paths from s to every
node, so we can go through a normal breadth first search but keeping the count mod R. Because lg(R) = no(1)

we can track these sums in sub-polynomial time.
We start by sorting our edges by their color (so that given a guess of colors we can in k lg(n) time give

pointers to the full set of all edges of that color). Let e(c) be the number of edges of color c. Then our
running time can be given as:

∑
c1,...,ck∈[1,|C|]

e(c1)+ . . .+ e(ck)+ k lg(n).

Consider a particular one of the additive parts of this sum: ∑c1,...,ck∈[1,n] e(ci). This can be re-written as:

∑
c1,...,ci−1,ci+1,...,ck∈[1,|C|]

(
∑

ci∈[1,|C|]
e(ci)

)
.

Which is
∑

c1,...,ci−1,ci+1,...,ck∈[1,|C|]
|E|= |C|k−1|E|.

So the total running time is k|C|k+k|C|k−1|E| lg(R) lg(n)+ |E| lg(n). The k|C|k time comes from running
all of our small instances. The k lg(n) coming from the need to give pointers into where our k colors of edges
are stored. The factor of lg(R) comes from tracking the count mod R in the counting version. And finally,
the |E| lg(n) comes from sorting our edges according to color.

Theorem A.6. There is an algorithm for detecting (k+ 1)L-MF* on an n-node graph that runs in Õ(nk)
time.
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Proof. First we run a max flow algorithm on the graph to obtain the value |F | of the max flow. Since the
graph is unit-capacitated, this can be done in O(n

√
m) = O(n2) time.

Recall that the edges connected to the source s and the sink t have a special label l∗. So this label must
be among the k+ 1 labels. Now for any choice of k labels l1, . . . , lk, we consider the subgraph induced on
the edges with labels in l1, . . . , lk, l∗, and we run a max flow algorithm on this graph. If the max flow value
on this graph equals |F |, we are done. Otherwise if all these graphs have maximum flow less than |F |, there
is no max flow with k+1 labels. Note that the max flow in each small graph takes o(n) time since for each
label the number of edges with that label is o(n).

Now we turn to regular expressions matching problem, and state an efficient algorithm for counting the
number of alignments of the pattern on sub-strings of the text. First we state two lemmas.

Lemma A.7. Let M be an NFA with no cycles of length more than 1. Let a computation of a string t in
M be a sequence of states from the start state to the accept state of M that produces t. Then given a text
T and a fixed integer R where logR is sub-polynomial, there is an algorithm that computes the number of
computations of substrings of T in M mod R in O(m|T |) time, where m is the number of edges of M.

Proof. All numbers are taken mod R. Let Q be the set of states of M, and let ∆ : Q×Σ→ P(Q) be the
transition function of M, where Σ is the alphabet, and P(Q) is the power set of Q. Recall that we have an
edge from state s to state s′ if s′ ∈ ∆(s,σ) for σ ∈ Σ∪{ε}, where ε is the empty string. Note that for any
state s ∈Q, s /∈ ∆(s,ε). We can assume that there is only one accept state with no outgoing edge (and hence
no self-loops).

Since M has no cycles other than self-loops, it has a topological ordering s1,s2, . . . ,sr where s1 is the
start state, sr is the accept state, r is the number of states of M and there is no edge from state si to s j if i > j.
We compute the number of computations of substrings of T in M by dynamic programming. Let |T | = n,
and let Ti be the postfix of T starting at i for i = 1, . . . ,n+1, where Tn+1 is the empty string. Let Mi be the
NFA obtained from M by having si as the start state. For i = 1, . . . ,r and j = 1, . . . , |T |, let f (i, j) be the
number of computations of prefixes of Tj by Mi. So ∑

n
j=1 f (1, j) is what we have to compute.

As the base case, we have that f (r,n+1) = 1. Let Nout(si) be the set of outgoing neighbors of si, i.e. we
have that s j ∈ Nout(si) if there is an edge from si to s j. Similarly we define Nin(si) to be the set of incoming
neighbors of si.

Fix i, j. Suppose that we have computed f (i′, j′) for all i′≥ i and j′≥ j where i′+ j′> i+ j. We compute
f (i, j) as follows.

f (i, j) = ∑
s`∈∆(si,T [ j])

f (i+1, `)+ ∑
s`∈∆(si,ε)

f (i, `)

Note that si /∈ ∆(si,ε), so we can compute this sum, which takes O(|Nout(si)|) to compute. Hence the
computation of all f (i, j)s takes O(mn) time.

Lemma A.8. If E is a regular expression of the type T0 (see Figure), there is an NFA equivalent to E that
has no cycle of length more than 1. This MFA has O(|E|) edges.

Proof. Let a sub-type of a regular expression type T be a type shown by a sub-tree of the tree of T . We
show that for any regular expression of type T0 or any sub-type of T0, there is an NFA equivalent to E that
has no cycle length more than 1. Recall that ε is the empty string.

So let E be a regular expression of any sub-type of T0. We construct the NFA of E in a recursive manner.
As the base case, suppose that E has length 1. So it consists of only one symbol a, for which a two state
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NFA suffices: Let s1 be the starting state and s2 be the accept state, and let e be an edge from s1 to s2 with
value a (equivalently, the transition function ∆ is ∆(s1,a) = {s2}).

If E has length more than 1, it is of the form A•B or A∗, where • is one of the operators concatenation
(“ · ”) or OR (“|”), and A and B are two regular expressions of a sub-type of T0. Let MA and MB be the
NFAs corresponding to A and B respectively, with sA,sB as the corresponding start states and tA, tB as the
corresponding accept states.

So we have three cases:

1. Concatenation: suppose that •= ·. Define M to be the MFA that consists of MA and MB, with an edge
added from tA to sB with value ε . Let sA be the start state of M and tB be the accept state of M.

2. Or: suppose that •= |. Let s be a new state, which has an edge of value ε to sA and sB. Mark s as the
start state of M. Let t be a new state, where there is an edge from tA and tB to t with value ε . Let t be
the accept state.

3. Star: Suppose that E = A∗. Since E is of a subtype of T0, A must be of type “|”. So it is the OR of
some symbols. Let the set of these symbols be QA. Then define M to have 3 states, sE as the start
state, tE as the accept state, and s as a middle state where there is a self-loop from s to itself with all
symbols in QA as its values, an edge from sA to s and an edge form s to tA with empty string ε as their
value.

It is straightforward to see that this NFA is equivalent to E, so that each alignment of E on a text is equivalent
to a computation of the text by the NFA M. Note that in each case we add O(1) edges. So the total number
of edges is O(|E|).

Combining Lemma and gives us the following Theorem.

Theorem A.9. Given a regular expression E, a text T and a fixed integer R where logR is sub-polynomial,
there is an algorithm that counts the number of alignments of E on substrings of T mod R in O(|T ||E|) time.

Theorem A.10. There is an algorithm for #k-WLCS mod R which runs in Õ(nk) time when lg(R) = o(lg(n)).

Proof. Take P1, . . . ,Pk to be the input sequences. Recall that w(P̀ [i]) is the weight of the symbol at position
i in the `th string.

We will use dynamic programming. We will have a cell in our table for every k tuples of locations in the
strings i1, . . . , ik. Every cell will contain two pieces of information:

• `(i1, . . . , ik) the length of the longest common subsequence(s) of the substrings P1[: i1], . . . ,Pk[: ik].

• C(i1, . . . , ik) is the count of the number of longest common subsequences mod R. This will have a
no(1) bit representation due to our restriction on R.

We start by initializing all cells associated with locations i1, . . . , ik where any i j = 0. These cells are
initialized to `(i1, . . . , ik) = 0 and C(i1, . . . , ik) = 1, as there is only one way to have a zero length string.

Let the total sum of a cell be ∑
k
j=1 i j, we will fill cells out in order by there total sum, starting with zero

and moving to kn. Any cell that has a i j value equal to zero will be left with its initialization.
When filling the cell there are two cases: when P1[i1] = P2[i2] = . . .= Pk[ik], and when that isn’t true. We

define some helpful notation. Let ~v = i1, . . . , ik and let eq`(~v,~u) be a function that returns 1 if `(~v) = `(~u).
Let~v(−1) be the vector i1−1, . . . , ik−1. Let S(~v) be a set of all vectors ~u such that for all indices j we have
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that ~u[ j] =~v[ j]+{0,−1} excluding~v and~v(−1). So all the smaller neighboring vectors of~v, excluding the
strictly smaller vector (note these may differ from~v in 1,2, . . . ,k−1 locations). By our order of computation
all cells associated with S(~v) and~v(−1) will have been computed by the time we are computing the cell~v.

We will start with the case where P1[i j] 6= P2[i j′ ]. Our length is the maximal length seen so far.

`(i1, . . . , ik) = max
~u∈S(~v)

(`(~u)) .

This is maximizing over all possible previous choices of longest common subsequence. We know our current
last symbols can’t all be included in the LCS.

For setting C: We want to look only at entries that are longest common subsequences, so naively you
might think to just sum all the counts from the earlier cells that hit our max length of `(~v). But, we will have
an inclusion exclusion issue. Consider the case of k = 2, i.e. 2-LCS. If C(i−1, j) = x, C(i, j−1) = y, and
C(i−1, j−1) = z then C(i, j) = x+y− z. This is because x captures both all the longest sequences between
P1[: i− 1] and P2[: j− 1] as well as those that use the symbol in location P1[i]. The parallel statement
is true for y. So we are double counting those longest common subsequences that appear in both P1[:
i− 1] and P2[: j− 1], so we subtract out that double counting. In order to handle this smoothly we will
define a more involved version of S(~v). Let Sr(~v) contain the subset of vectors ~u ∈ S(~v)∪~v(−1) where(
∑

k
j=1~v[ j]

)
−
(
∑

k
j=1~u[ j]

)
= r. So Sr(~v) is the set of vectors that have r indices that are smaller than~v. Now,

after all this lead up, our value for C is the following:

C(~v) =
k

∑
r=1

(−1)r
∑

~u∈Sr(~v)
eq`(~v,~u)C(~u).

We need to mod this by R so that the total bits in the representation is not too large.
So in Õ(2kR) time per cell we can compute #k-LCS. There are a total of nk cells so the total time for this

algorithm is Õ(nk).
Now we will deal with the case of P1[i1] = P2[i2] = . . .= Pk[ik]. First let us set `(·):

`(i1, . . . , ik) = `(i1−1, i2−1, . . . , ik−1)+w(P1[i1]).

This works because we have a matching symbol. Our new longest common subsequence at this location
will have a length one longer than the longest sequence that existed using none of the current symbols.

For setting C: We want to count two non-overlapping sets. One set is the weighted longest common
subsequences at location~v(−1). The other set is all the strings that use some but not all of the symbols from
our current location~v. For counting this we need inclusion exclusion like before.

C(~v) =C(~v(−1))+
k

∑
r=1

(−1)r
∑

~u∈Sr(~v)
eq`(~v,~u)C(~u).

This counts all longest sequences that include the current symbols indicated by~v by including the count of
C(~v(−1)), it also counts all alternate ways to achieve a longest common subsequence of this length using
at least one of these symbols by the summation. We need to mod this by R so that the total bits in the
representation is not too large.

Corollary A.11. There is an algorithm for # k-LCS mod R which runs in Õ(nk) time when lg(R) = o(lg(n)).

Proof. The #k-LCS problem is a special case of #k-WLCS problem where w(·) is the constant function that
returns 1.
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B Framework for Generating Uniform Average Case Hardness

B.1 Preliminaries

B.1.1 Notation

Definition 1. We use x∼ Fn
p to mean that x is drawn uniformly at random from all pn values in the support

of Fn
p.

B.1.2 Getting Nearly Uniform Bit Strings from Finite Field Elements

Adserà et. al show that counting cliques is hard on average over the uniform distribution where every edge
exists iid [].

Theorem B.1. Let Zi = Ber[µ] where µ ∈ (0,1). Then let Y ≡ ∑
t
i=0 Zi ·2i (mod p). Let the total variation

distance between Y and UNIF[0, p− 1] be ∆. Then there exists a constant C such that if t ≥C · µ−1 · (1−
µ)−1 · lg(p/ε2) · lg(p), then ∆≤ ε [].

Theorem B.2. If you are given an input with n numbers x1, . . . ,xn each chosen from UNIF[1, p− 1] there
exists a sampling procedure which runs in time O(n lg3(n)t(1/p− ε)−1) that, with probability at least 1−
2− lg2(n), produces a new set of numbers I = x′1, . . . ,x

′
n such that:

1. x′i ≡ xi mod p for all i.

2. Each x′i is t bits long where t ≥C ·µ−1 · (1−µ)−1 · lg(p/ε2) · lg(p).

3. I is total variation distance nε from the distribution where every bit of x′i is iid sampled from Ber[µ].

(inspired by [])

Proof. Let Zi = Ber[µ] where µ ∈ (0,1). Then let Y be the distribution formed by ∑
t
i=0 Zi ·2i (mod p).

Consider the procedure to generate x′i where we sample a number y from Y , if y ≡ xi (mod p) then
x′i = y, else repeat. We take O(t) time to produce a sample. We succeed with the probability that y ≡ xi

(mod p). This probability is at least 1
p − ε , because ε is the total variation distance of Y and UNIF[1, p−1].

Thus, the time to produce a single sample in expectation is O(t(1/p−ε)−1). To fail Θ(t(1/p−ε)−1 lg3(n))
times in a row will happen with probability at most 1−2−2lg2(n). If we fail Θ(t(1/p− ε)−1 lg3(n)) times in
a row simply halt the program and throw an error.

We run this procedure for all n numbers, thus taking at most O(nt(1/p− ε)−1 lg3(n)) time to succeed
with probability at least 1−n2−2lg2(n) ≥ 1−2− lg2(n).

The total variation distance from each individual x′i to the uniform distribution is ε and there are n inputs
in total. Thus, the total variation distance is at most nε by the union bound.

Corollary B.3. If you are given an input with n numbers x1, . . . ,xn each chosen from UNIF[1, p− 1] there
exists a sampling procedure which runs in time O(n lg3(n)t(1/p− 1/n3)−1) that, with probability at least
1−2− lg2(n), produces a new set of numbers I = x′1, . . . ,x

′
n such that:

1. x′i ≡ xi (mod p) for all i.

2. Each x′i is t bits long where t ≥C ·µ−1 · (1−µ)−1 · (lg(p)+6lg(n)) · lg(p).

3. I is total variation distance 1/n2 from the distribution where every bit of x′i is iid sampled from Ber[µ].

Proof. Simply plug in ε = 1/n3 to Theorem.
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B.2 The framework

In this section we are going to show that any problem P with a GLDP(·) is hard over the uniform average
case. We define GLDP(·) in Definition.

First, we want to convert our problem over a polynomial large finite field to a problem over many
O(lg(n)) sized finite fields. We will use the Chinese Remainder Theorem (CRT) to do this.

Lemma B.4. Let P be some problem with output in range [1,nc]. Let Pp be the same problem as P, but
where Pp(~I)≡ P(~I) (mod p).

Let f be a GLDP(P). Let f1, . . . , fs be a set of s polynomials where s = O(lg(n)/ lg lg(n)). We define fi

as the same polynomial as f , but over finite field Fpi where pi = Θ(lg(n)) and all pi are distinct.
Then, for all i, fi is a GLDP(Ppi).
Finally, given fi(~I) for all i ∈ [1,s] we can return P(~I).

Proof. If f (~I) = P(~I) then trivially f (~I)≡ P(~I) (mod p). As a result fi(~I)≡ Ppi(~I)≡ P(~I) (mod pi).
If f has degree d then fi also has degree d (it certainly has at most d, because f is strongly d-partite they
will in fact be equal).
If f is d-partite then so is fi.
Thus, fi is a GLDP(Ppi).

Given fi(~I) for all i ∈ [1,s] we know Ppi(~I) for all i ∈ [1,s]. We can use the Chinese Remainder Theorem
to find the value of P as long as Πs

i=1 pi ≥ nc. By the prime number theorem there is a sufficiently large
constant c′ such that there are more than 2c lg(n)/ lg lg(n) primes between lg(n) and c′ lg(n). If we choose
these primes to be p1, . . . , ps=2c lg(n)/ lg lg(n) then Πs

i=1 pi ≥ n2c ≥ nc.

Now we want to apply a worst-case to average case reduction for each fi separately. We can use Lemma
1 from [] to achieve this.

Lemma B.5. Consider positive integers n, d, and p, and an ε ∈ (0,1/3) such that d > 9, p is prime and
p > 12d. Suppose that for some polynomial f : Fn

p → Fp of degree at most6 d, there is an algorithm A
running in time T (n) such that when x is drawn uniformly at random from all inputs Fn

p:

Pr[A(x) = f (x)]≥ 1− ε.

Then there is a randomized algorithm B that runs in time O(nd2log2(p)+d3+T (n)d) such that for any
x ∈ Fn

p:
Pr[B(x) = f (x)]≥ 2/3.

[]

Notably, we demand that d = o(lg(n)/ lg lg(n)) and we use p = Θ(lg(n)), so p > 12d. The running time,
given these choices, is Õ(n+T (n)) time.

Corollary B.6. Assume an f exists that is GLDP(P). Then, let f1, . . . , fs be the polynomials described in

B.4. Let A be an algorithm that runs in time T (n) such that when x∼ Fn
pi

:

Pr[A(x) = fi(x)]≥ 3/4,

6Ball et al. simply say a polynomial of degree d, however, unsurprisingly, their proof does not require the polynomial be of
degree at least 9 to work.
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for all i. Then there is a randomized algorithm B that runs in time Õ(n+T (n)) such that for any~I ∈ {0,1}n:

Pr[B(~I) = P(~I)]≥ 1−O
(

2− lg2(n)
)
.

Proof. We use Lemma for each polynomial fi. It follows that having an algorithm A for computing fi

over the uniform input Fn
pi

that succeeds with probability 3/4 implies that a randomized algorithm B′i exists
that succeeds with probability 2/3.

We can now create an algorithm Bi by running B′i for Θ(lg3(n)) times and pick the most common output,
this will return the correct answer with probability at least 1−2− lg2.5(n).

Now if all of B1, . . . ,Bs return the correct answer then we can use the CRT trick of Lemma to com-
pute the value of P(~I). All of B1, . . . ,Bs return the correct answer with probability at least 1− s2− lg2.5(n) =

1−O(lg(n)/ lg lg(n))2− lg2.5(n) < 1−O
(

2− lg2(n)
)

So, we now want to show that solving random instances of P can solve random instances fi(x) where
x∼ Fn

p. To do this we will use the sampling procedure described in Corollary. We will also use the fact
that Ppi(x) = fi(x) when x is a zero and one input.

Lemma B.7. Assume a d degree polynomial f exists that is GLDP(P). Then, let f1, . . . , fs and p1, . . . , ps be
the polynomials and primes described in Lemma.

Let A be an algorithm that runs in time T (n) such that when~I is formed by n bits each chosen iid from
Ber[µ] where µ ∈ (0,1) is a constant, then:

Pr[A(~I) = P(~I)]≥ 1−1/ω

(
lgd(n) lg lgd(n)

)
.

Then there is a B that runs in time Õ(n+T (n)) such that when x∼ Fn
pi

:

Pr[B(x) = fi(x)]> 3/4,

for all fi.

Proof. Let Dµ be the distribution over inputs where each of the n bits is chosen iid from Ber[µ], that is one
is chosen with probability µ and zero is chosen with probability 1−µ . Recall that when we say ~Z ∼Dµ we
mean that ~Z is drawn from the distribution Dµ . We will use an abuse of notation where we run fi(~Z), when
we do this we mean that one should interpret the n length bit vector as n values from Fpi where 0 maps to
0 ∈ Fpi and 1 maps to 1 ∈ Fpi . Additionally when we have a vector v we will use v[ j] to represent the jth

number in v.
In this proof we will show how to use P(~Z) to solve instances of fi(~Z) for all i. Note that we can simply

take the output of P(~Z) modulo pi. So we want to use fi(~Z) where ~Z ∼ Dµ to solve fi(z) where z∼ Fn
pi

.
Let f ′ be the function fi but taken over the integers instead of Fpi . Note that this is the same f ′ regardless

of fi. We have that if x ∈ Fn
pi

then f ′(x) ≡ fi(x) (mod pi). Furthermore, if we make a new input x′ where
x′[ j] ≡ x[ j] (mod pi) for all j ∈ [1,n] then f ′(x) ≡ fi(x) (mod pi). So, given an input x ∼ Fn

pi
we will

take the sampling procedure of Corollary and make a new input x′, where x′[ j] is a t = O(µ−1 · (1−
µ)−1 · (lg(pi)+ 6lg(n)) · lg(pi)) bit number. Note that because µ is constant and neither zero nor one and
pi = Θ(lg(n)) then t = O(lg(n) lg lg(n)). Furthermore, any given number x′[ j] has the property that the
distribution over its binary representation has total variation distance ≤ 1/n3 from the distribution where all
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t bits are chosen iid from Ber[µ]. Thus, all tn bits in our new input x′ have total variation distance at most
1/n2 from the distribution where all tn bits are chosen iid from Ber[µ].

Now, we can compute the value of f ′(x′) with td calls to f ′ where every call has a zero one input. Every
monomial is formed by one variable from each of the d partitions. Let m be the number of monomials. So
we can write our polynomial f ′ as follows :

f ′(x′) =
m

∑
j=1

yk j,1 · yk j,2 · · ·yk j,d ,

where yk j,` is a variable from the `th partition S`. The input x′ is formed with n of these input variables yk j,` .
We can break down this multiplication for every bit. Let yk j,` [r] be the rth bit of yk j,` . Now we can rewrite

our sum. Recall that g f ′(v1, . . . ,vd) is the function such that f ′ can be written as a sum of calls to g f ′ , where
v` is a variable from partition S`:

f ′(x′) =
m

∑
j=1

(
∑

r1,...,rd∈[0,t−1]
2r1+...+rd · yk j,1 [r1] · yk j,2 [r2] · · ·yk j,d [rd ]

)
.

Put in words, we can multiply d numbers each of t bits by making a weighted sum over the td multiplications
of the bits of the d numbers.

Now, we want to create td inputs x̂1, . . . , x̂td . They are formed by taking all possible choices of r1, . . . ,rd
where each r` is an integer in [0, t− 1]. Given a choice of r1, . . . ,rd we create a new input x̂ j by taking all
variables in S` and making their value in x̂ j be the rth

` bit of that variable in x′.
Now, call A(x̂ j) for all j ∈ [1, td ]. Note that P(x̂ j)≡ f ′i (x̂ j)≡ fi(x̂ j) (mod pi). So, if A(x̂ j) = P(x̂ j) for

all j ∈ [1, td ] then we can return the value of f ′(x′)≡ fi(x) (mod p).
By the definition of A in this Lemma, A must succeed on any individual random input x ∼ Dµ with

probability 1−1/ω(lgd(n) lg lgd(n)). The total variation distance of any x̂ j from Dµ is at most 1/n2. So A
must succeed on any one given random input x̂ j with probability 1−1/ω(lgd(n) lg lgd(n))−1/n2 which is
1−1/ω(lgd(n) lg lgd(n)).

Our inputs x̂ j are not iid from each other, however, if A is correct with probability 1−q on a given input
from x̂ j then A must be correct with probability at least 1−qtd on td inputs x̂ j at once.

So, A will return correct answers for all td inputs x̂ j at once with probability at least 1−1/ω(1). Given
these correct answers we can compute fi(x), for all fi. So, an algorithm B exists that makes td calls to A and
takes n lg4(n)t time to produce our new sampled input x′ from x.
B returns fi correctly with probability at least 1−1/ω(1)> 3/4.
B takes a total time of O(tdT (n)+n). We have that t = O(lg(n) lg lg(n)) and d = o(lg(n)/ lg lg(n)) (by our
definition of GLDP(P)). Thus, td = no(1). So we have that B runs in time Õ(T (n)+n).

This next theorem gives a worst case to average case reduction for P.
REMINDER OF THEOREM 1.20 Let µ be a constant such that 0 < µ < 1. Let P be a problem such that
a function f exists that is a GLDP(P), and let d be the degree of f . Let A be an algorithm that runs in time
T (n) such that when~I is formed by n bits each chosen iid from Ber[µ]:

Pr[A(~I) = P(~I)]≥ 1−1/ω

(
lgd(n) lg lgd(n)

)
.

Then there is a randomized algorithm B that runs in time Õ(n+T (n)) such that for any for~I ∈ {0,1}n:

Pr[B(~I) = P(~I)]≥ 1−O
(

2− lg2(n)
)
.
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Proof. We will use Lemma and Corollary to get this result.
Note that the algorithm A here can be used as the algorithm A in Lemma.
Furthermore, note that the algorithm B of Lemma has the same requirements as the algorithm A of

Corollary.
So, given the algorithm A of this theorem we can produce the algorithm B from Corollary.
The algorithm B of Corollary has the same properties of the algorithm B described in this theorem.
Thus, algorithm A implies that an algorithm B exists.
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