
ar
X

iv
:1

91
0.

10
63

1v
3

 [
cs

.D
S]

 1
7

N
ov

 2
02

0

Resolution of the Burrows-Wheeler Transform Conjecture

Dominik Kempa∗1 and Tomasz Kociumaka†2,1

1University of California, Berkeley, USA
kempa@berkeley.edu, kociumaka@berkeley.edu

2Bar-Ilan University, Ramat Gan, Israel

Abstract

The Burrows–Wheeler Transform (BWT) is an invertible text transformation that per-
mutes symbols of a text according to the lexicographical order of its suffixes. BWT is the
main component of popular lossless compression programs (such as bzip2) as well as re-
cent powerful compressed indexes (such as r-index [Gagie et al., J. ACM, 2020]), central in
modern bioinformatics. The compression ratio of BWT is quantified by the number r of
equal-letter runs. Despite the practical significance of BWT, no non-trivial bound on the
value of r is known. This is in contrast to nearly all other known compression methods,
whose sizes have been shown to be either always within a polylogn factor (where n is the
length of text) from z, the size of Lempel–Ziv (LZ77) parsing of the text, or significantly
larger in the worst case (by a nε factor for ε > 0).

In this paper, we show that r = O(z log2 n) holds for every text. This result has numerous
implications for text indexing and data compression; for example: (1) it proves that many
results related to BWT automatically apply to methods based on LZ77, e.g., it is possible
to obtain functionality of the suffix tree in O(z polylogn) space; (2) it shows that many
text processing tasks can be solved in the optimal time assuming the text is compressible
using LZ77 by a sufficiently large polylogn factor; (3) it implies the first non-trivial relation
between the number of runs in the BWT of the text and its reverse.

In addition, we provide an O(z polylogn)-time algorithm converting the LZ77 parsing
into the run-length compressed BWT. To achieve this, we develop a number of new data
structures and techniques of independent interest. In particular, we introduce a notion of
compressed string synchronizing sets (generalizing the recently introduced powerful tech-
nique of string synchronizing sets [STOC 2019]) and show how to efficiently construct them.
Next, we propose a new variant of wavelet trees for sequences of long strings, establish a
non-trivial bound on their size, and describe efficient construction algorithms. Finally, we
describe new indexes that can be constructed directly from the LZ77-compressed text and
efficiently support pattern matching queries on substrings of the text.

∗Supported by NSF grants no. 1652303 and 1934846, and an Alfred P. Sloan Fellowship grant.
†Supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant no. 2018364, and by an ERC grant

MPM under the EU’s Horizon 2020 Research and Innovation Programme (agreement no. 683064).

http://arxiv.org/abs/1910.10631v3
mailto:kempa@berkeley.edu
mailto:kociumaka@berkeley.edu

1 Introduction

Lossless data compression aims to exploit redundancy in the input data to represent it in a small
space. Despite the abundance of compression methods, nearly every existing tool falls into one of
the few general frameworks, among which the three most popular are: Lempel–Ziv compression
(where the nominal and most commonly used is the LZ77 variant [84]), statistical compression
(this includes, for example, context mixing [57], prediction by partial matching (PPM) [21], and
dynamic Markov coding [22]), and Burrows–Wheeler transform (BWT) [17]. As seen in the Large
Text Compression Benchmark [56], these three frameworks underlie most existing compressors.

One of the features that best differentiates these algorithms is whether they better remove
the redundancy caused by skewed symbols frequencies or by repeated fragments. The idea in
LZ77 (which underlies, for example, 7-zip [69] and gzip [31] compressors) is to partition the
input text into long substrings, each having an earlier occurrence in the text. Every substring
is then encoded as a pointer to the previous occurrence using a pair of integers. This method
natively handles long repeated substrings and can achieve an exponential compression ratio given
sufficiently repetitive input. Statistical compressors, on the other hand, are based on representing
(predicting) symbols in the input based on their frequencies. This is formally captured by the
notion of the kth order empirical entropy Hk(T) [23]. For any sufficiently long text T , symbol
frequencies (taking context into account) in any power of T (the concatenation of several copies
of T) do not change significantly [52, Lemma 2.6]. Therefore, |T t|Hk(T

t) ≈ t · |T |Hk(T) for
any t > 1, i.e., entropy is not sensitive to long repetitions, and hence statistical compressors are
outperformed by LZ77, when the goal is to capture long repetitions [25, 30, 46, 52, 79].

The above analysis raises the question about the nature of compressibility of the Burrows–
Wheeler transform. The compression of BWT-based compressors, such as bzip2 [77], is quantified
by the number r of equal-letter blocks in the BWT. The clear picture described above no longer
applies to the measure r. On one hand, Manzini [61] proved that r can be upper-bounded in
terms of the kth order empirical entropy of the input string. On the other hand, already in 2008,
Sirén et al. [79] observed that BWT achieves excellent compression (superior to statistical meth-
ods) on highly repetitive collections and provided probabilistic analysis exhibiting cases when r
is small. Yet, after more than a decade, no upper bound on r in terms of z was discovered.

This lack of understanding is particularly frustrating due to numerous applications of BWT in
the field of bioinformatics and compressed computation. One of the most successful applications
of BWT is in compressed indexing, which aims to store a compressed string, simultaneously
supporting various queries (such as random access, pattern matching, or even suffix array queries)
on the uncompressed version. While classical (uncompressed) indexes, such as suffix trees [83]
and suffix arrays [59], have been successful in many applications, they are not suitable for storing
and searching big highly repetitive databases. Such datasets are virtually impossible to search
without preprocessing: Github databases, for example, take more than 20 terabytes, and the
recently finished 100000 Human Genome Project [34] produced 75 terabytes of DNA [63]. These
databases are, however, highly compressible: Github averages 20 versions per project [63], and
two human genomes are 99.9% similar [75]. This area has witnessed a remarkable surge of
interest in recent years [5, 10, 11, 12, 20, 26, 28, 44, 64, 74, 78]. BWT-based indexes, such
as r-index [30], are among the most powerful [28], and their space usage is up to O(polylog n)
factors away from the value r. For a comprehensive overview of this field, we refer the reader
to a survey by Navarro [63].

In addition to text indexing, BWT has many applications in compressed computation. For
example, BWT is the main component of the popular read aligners such as Bowtie [53], BWA [54],
and Soap2 [55]. Modern textbooks spend dozens of pages describing applications of BWT [1, 58,
62, 66]. The richness of these applications has even spawned a dedicated seminar [27]. Given the

1

importance and practical significance of BWT, one of the biggest open problems that emerged
in the field of lossless data compression and compressed computation asks:

What is the upper bound on the output size of the Burrows–Wheeler transform?

With the exception of BWT, essentially every other known compression method has been
proven [29, 46] to produce output whose size is always within an O(polylog n) factor from z, the
output size of the LZ77 algorithm (e.g., grammar compression [18, 76], collage systems [47], and
macro schemes [81]), or larger by a polynomial factor (nε for some ε > 0) in the worst case (e.g.,
LZ78 [85], compressed word graphs (CDAWGs) [13]).1 BWT is known to never compress much
better than LZ77, i.e., z = O(r log n) [29]. The opposite relation (that r = O(z polylog n)) was
generally conjectured to be false. For example, after presenting how to support suffix array and
suffix tree queries in O(r polylog n) space, Gagie et al. [28] speculate that “(...) it seems unlikely
that one can provide suffix array or tree functionality within space related to g, z, or γ, since
these measures are not related to the structure of the suffix array: this is likely to be a specific
advantage of measure r”.

Our Contribution We prove that r = O(z log2 n) holds for all strings, resolving the BWT con-
jecture in the more surprising way than anticipated, and solving an open problem by Prezza [73]
and Gagie et al. [28, 29]. This result alone has multiple implications for indexing and compression:

1. It is possible to support suffix array and suffix tree functionality in O(z polylog n) space [30].
2. It was shown in [44] that many string processing tasks (including BWT and LZ77 construc-

tion) can be solved in O(n/ logσ n + r polylog n) time (where σ is the alphabet size), i.e.,
if the text is sufficiently compressible by BWT (formally, when n/r = Ω(polylog n)), these
tasks can be solved in optimal time (which is unlikely to be possible for general texts [45]).
Our result loosens this assumption to n/z = Ω(polylog n).

3. Until now, methods based on the Burrows–Wheeler transform were thought to be neither
statistical nor dictionary (LZ-like) compression algorithms [28, 79]. Our result challenges
the notion that the BWT forms its own compression type: In view of our bound, BWT is
much closer to LZ compressors than was previously thought.

Our slightly stronger bound r = O(δ log2 n), where δ ≤ z is a symmetric (insensitive to string
reversal) repetitiveness measure recently introduced in [49], further shows that:

4. The number r̄ of BWT runs in the reverse of the text satisfies r̄ = O(r log2 n), which is the
first non-trivial bound in terms of r. This result is of practical importance due to many
algorithms whose efficiency depends on r̄ [6, 8, 9, 67, 68, 71, 72].

After proving r = O(z log2 n) and r = O(δ log2 n), by a tighter analysis, we obtain r =
O(z log zmax(1, log n

z log z)) and r = O(δ log δmax(1, n
δ log δ)), and we show that the latter is

asymptotically tight for the full spectrum of values of n and δ. As a side-result, we obtain a
tight upper bound O(n log δ) on the sum of irreducible LCP values. This improves upon the
previously known bound O(n log r) [41].

We then describe an O(z log8 n)-time algorithm converting the LZ77 parsing into run-length
compressed BWT (the polylog n factor has not been optimized). This offers up to exponential
speedup over the previously fastest space-efficient algorithms, which need Ω(n log z) time [68, 71].
To achieve this, we develop new data structures and techniques of independent interest. In par-
ticular, we introduce a notion of compressed string synchronizing sets, generalizing the powerful

1The choice for LZ77 as a representative in this class follows from the fact that most of the other methods are
NP-hard to optimize [18, 32], while LZ77 admits a simple linear-time compression algorithm (see, e.g., [42]).

2

technique introduced in [45]. We also describe a new variant of wavelet trees [35], designed to
work for sequences of long strings. Finally, we describe new indexes that can be built directly
from the LZ77-compressed text and support fast pattern matching queries on text substrings.

Organization of the Paper Section 2 introduces the basic notation. We present our upper
and lower bounds in Sections 3 and 4, respectively. Finally, in Section 5, we develop our algorithm
converting LZ77 to run-length compressed BWT, with the description of our LZ77-based text
indexes deferred to Section 6.

2 Preliminaries

For any string S, we write S[i . . j], where 1 ≤ i, j ≤ |S|, to denote a substring of S. If i > j, we
assume S[i . . j] to be the empty string ε. By S we denote the reverse of S.

An integer p ∈ [1 . . |S|] is a period of a string S if S[i] = S[i + p] holds for every i ∈
[1 . . |S| − p]. The classic periodicity lemma [24] states that if a string S has periods p, q such
that p+ q − gcd(p, q) ≤ |S|, then gcd(p, q) is also a period of S.

The shortest period of S is denoted as per(S). A string S is called periodic if per(S) ≤ 1
2 |S|.

The following fact is a folklore consequence of the periodicity lemma.

Fact 2.1 (see [4, Fact 1]). Any two distinct periodic strings of the same length differ on at least
two positions.

$
a$
aababa$
aababababaababa$
aba$
abaababa$
abaababababaababa$
ababa$
ababaababa$
abababaababa$
ababababaababa$
ba$
baababa$
baababababaababa$
baba$
babaababa$
babaababababaababa$
bababaababa$
babababaababa$
bbabaababababaababa$

T [SA[i] . . n]

a1
b2
b3
b4
b5
b6
b7
a8
b9
b10
a11
a12
a13
a14
a15
a16
b17
a18
a19
$20

BWT[i]i

20
19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SA[i]

0
0
1
6
1
3
8
3
5
5
7
0
2
7
2
4
9
4
6
1

LCP[i]

Figure 1: A list of lexicographically sorted suf-
fixes of the string T = bbabaababababaababa$

along with the BWT, SA, and LCP tables. The
irreducible LCP values are bold and underlined.

Throughout the paper, we consider a string
(text) T [1 . . n] of n ≥ 1 symbols from an ordered
alphabet Σ of size σ. We assume T [n] = $, where
$ ∈ Σ is the lexicographically smallest symbol in
Σ, and that $ does not occur anywhere else in T .

The suffix array [59] of T is an array SA[1 . . n]
containing a permutation of the integers [1 . . n]
such that T [SA[1] . . n] ≺ T [SA[2] . . n] ≺ · · · ≺
T [SA[n] . . n], where ≺ denotes the lexicographic
order. The closely related Burrows–Wheeler trans-
form [17] BWT[1 . . n] of T is defined by BWT[i] =
T [SA[i]−1] if SA[i] > 1 and BWT[i] = T [n] other-
wise. The BWT is invertible: given BWT[1 . . n],
the text T can be restored in O(n) time.

For any string S = cℓ11 cℓ22 · · · cℓhh , where ci ∈ Σ
and ℓi > 0 for i ∈ [1 . . h], and ci 6= ci+1 for
i ∈ [1 . . h), we define the run-length encoding of
S as a sequence RL(S) = ((c1, λ1), . . . , (ch, λh)),
where λi = ℓ1 + . . . + ℓi for i ∈ [1 . . h]. Through-
out, we let r = |RL(BWT)| denote the number
of runs in the BWT of T . E.g., for the text
T = bbabaababababaababa$ in Fig. 1, we have
BWT = a1b6a1b2a6b1a2$1, and hence r = 8.

By lcp(S1, S2) we denote the length of the longest common prefix of strings S1 and S2. For
j1, j2 ∈ [1 . . n], we let LCE(j1, j2) = lcp(T [j1 . . n], T [j2 . . n]). The LCP array (see [59, 43]),
LCP[1 . . n], is defined as LCP[i] = LCE(SA[i],SA[i− 1]) for i ∈ [2 . . n] and LCP[1] = 0. We say
that the value LCP[i] is reducible if BWT[i] = BWT[i− 1] and irreducible otherwise (including
i = 1). Note that there are exactly r irreducible LCP values.

3

Theorem 2.2 (Kärkkäinen et al. [41]). The sum of all irreducible LCP values is at most n log r.

We say that a fragment T [i . . i+ ℓ) is a previous factor if it has an earlier occurrence in T ,
i.e., LCE(i, i′) ≥ ℓ holds for some i′ ∈ [1 . . i). An LZ77-like factorization of T is a factorization
T = F1 · · ·Ff into non-empty phrases such that each phrase Fj with |Fj | > 1 is a previous factor.
In the underlying LZ77-like representation, every phrase Fj = T [i . . i+ℓ) that is a previous factor
is encoded as (i′, ℓ), where i′ ∈ [1 . . i) satisfies LCE(i, i′) ≥ ℓ (and is chosen arbitrarily in case
of multiple possibilities); if Fj = T [i] is not a previous factor, it is encoded as (T [i], 0).

The LZ77 factorization [84] (or the LZ77 parsing) of a string T is then just an LZ77-like fac-
torization constructed by greedily parsing T from left to right into longest possible phrases. More
precisely, the jth phrase Fj is the longest previous factor starting at position 1 + |F1 · · ·Fj−1|;
if no previous factor starts there, then Fj consists of a single character. We denote the number
of phrases in the LZ77 parsing by z. For example, the text bbabaababababaababa$ of Fig. 1
has LZ77 factorization b · b · a · ba · aba · bababa · ababa · $ with z = 8 phrases, and its LZ77
representation is (b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5), ($, 0).

The following relation between z and r is known.

Theorem 2.3 (Gagie et al. [29]). Every string of length n satisfies z = O(r log n).

3 Upper Bounds

3.1 Basic Upper Bound

To illustrate the main idea of our proof technique, we first prove the upper bound in its simplest
form r = O(z log2 n). The following lemma stands at the heart of our proof.

Lemma 3.1. For every ℓ ∈ [1 . . n], the number of irreducible LCP values in [ℓ . . 2ℓ) is O(z log n).

Proof. Let T∞ be an infinite string defined so that T∞[i] = T [1 + (i − 1) mod n] for i ∈ Z; in
particular, T∞[1 . . n] = T [1 . . n]. Due to T [n] = $, we have T∞[SA[1] . .] ≺ · · · ≺ T∞[SA[n] . .]
and BWT[i] = T∞[SA[i]− 1] for i ∈ [1 . . n].

Denote Sm = {S ∈ Σm : S is a substring of T∞} for m ≥ 1. Observe that |Sm| ≤ mz since
every length-m substring of T∞ has an occurrence crossing or beginning at a phrase boundary
of the LZ77 parsing of T . This includes substrings overlapping two copies of T , which cross the
boundary between the last and the first phrase.

The idea of the proof is as follows. With each irreducible value LCP[i] ∈ [ℓ . . 2ℓ), we associate
a cost of ℓ units, which are charged to individual characters of strings in S3ℓ. We then show
that each of the strings in S3ℓ is charged at most 2 log n times. The number of irreducible LCP
values in [ℓ . . 2ℓ) equals 1

ℓ times the total cost, which is at most

|S3ℓ| · 2 log n ≤ 6ℓz log n.

$ a b

a a b $ a b

b b a b a a b $

a a a b $ b b a b a

Figure 2: The trie T of reversed length-4 sub-
strings of T∞ for T = bbabaababababaababa$

of Fig. 1. Light edges are thin and dotted.

To devise the announced assignment of cost to
characters of strings in S3ℓ, consider the trie T of
all reversed strings in Sℓ (see Fig. 2 for an example).
By vX denote the node of T whose path from the
root of T is labelled by a string X.

Let LCP[i] ∈ [ℓ . . 2ℓ) be an irreducible LCP
value; note that i > 1 due to LCP[i] ≥ ℓ > 0. Let
j0 = SA[i − 1] and j1 = SA[i] so that LCP[i] =
LCE(j0, j1). Since LCP[i] is irreducible, we have

4

T∞[j0 − 1] = BWT[i − 1] 6= BWT[i] = T∞[j1 − 1]. For k ∈ [1 . . ℓ], the kth unit of
the cost associated with LCP[i] is charged to the kth character (T∞[jt − 1]) of the string
T∞[jt − k . . jt − k + 3ℓ) ∈ S3ℓ, where t ∈ {0, 1} is such that the subtree of T rooted at
vT∞[jt−1. .jt−k+ℓ) contains less leaves than the subtree rooted at vT∞[j1−t−1. .j1−t−k+ℓ) (we choose

t = 0 in case of ties).
Note that at most log n characters of each S ∈ S3ℓ can be charged during the above procedure:

whenever S[k], with k ∈ [1 . . ℓ], is charged, the subtree of T rooted at v
S[k+1. .ℓ]

has at least twice

as many leaves as the subtree rooted at vS[k. .ℓ], and this can happen for at most log |Sℓ| ≤ log n
nodes vS[k. .ℓ] on the path from the root of T to the leaf vS[1. .ℓ].

It remains to show that, for every S ∈ S3ℓ, a single position S[k], with k ∈ [1 . . ℓ], can be
charged at most twice. For this, observe that the characters charged for a single irreducible value
LCP[i] are at different positions (of strings in S3ℓ). Hence, to analyze the total charge assigned
to S[k], we only need to bound the number of possible candidate positions i. Let [b . . e] be the
set of indices i′ such that T∞[SA[i′] . .] starts with S[k + 1 . . 3ℓ]. In the above procedure, if a
character S[k] is charged a unit of cost corresponding to LCP[i], then S[k + 1 . . 3ℓ] is a prefix
of either T∞[SA[i− 1] . .] = T∞[j0 . .] or T∞[SA[i] . .] = T∞[j1 . .]. Hence, {i− 1, i} ∩ [b . . e] 6= ∅.
At the same time, LCE(SA[i− 1],SA[i]) < 2ℓ and all strings T∞[SA[i′] . .] with i′ ∈ [b . . e] share
a common prefix S[k + 1 . . 3ℓ] of length 3ℓ− k ≥ 2ℓ. Consequently, i = b or i = e+ 1.

Theorem 3.2. Every string of length n satisfies r = O(z log2 n).

Proof. Recall that r is the total number of irreducible LCP values. Thus, the claim follows by
applying Lemma 3.1 for ℓi = 2i, with i ∈ [0 . . ⌊log n⌋], and observing that the number of LCP
values 0 is exactly σ ≤ z.

3.2 Tighter Upper Bound

To obtain a tighter bound, we refine the ideas from Section 3.1, starting with a counterpart of
Lemma 3.1.

Lemma 3.3. For every ℓ ∈ [1 . . n], the number of irreducible LCP values in [ℓ . . 2ℓ) is O(z log z).

Proof. The proof follows closely that of Lemma 3.1. However, with each irreducible value
LCP[i] ∈ [ℓ . . 2ℓ), we associate cost ⌈12ℓ⌉ rather ℓ. We then show that each of the strings in
S3ℓ is charged at most 2 · (3 + log z) times (rather than 2 log n times). Then, the number of
irreducible LCP values in the range [ℓ . . 2ℓ) does not exceed 2

ℓ times the total cost, which is
bounded by

|S3ℓ| · 2 · (3 + log z) ≤ 6ℓz(3 + log z).

Recall the trie T of all reversed strings in Sℓ. For a node v of T , by size(v) we denote the
number of leaves in the subtree of T rooted in v. An edge connecting v 6= root(T) to its parent
in T is called light if v has a sibling v′ satisfying size(v′) ≥ size(v) (see Fig. 2). In the proof of
Lemma 3.1, we observed that the characters S[k] of S ∈ S3ℓ that can be charged correspond to
light edges on the path from the root of T to the leaf vS[1. .ℓ]: whenever S[k], with k ∈ [1 . . ℓ],
is charged, the edge connecting vS[k. .ℓ] to its parent vS[k+1. .ℓ] is light. We then noted that there
are at most log |Sℓ| ≤ log n light edges on each root-to-leaf path in T . Here, we perform the
same assignment of cost to the characters of strings in S3ℓ as in Lemma 3.1, but only for units
k ∈ [1 . . ⌈12ℓ⌉]. This implies that only characters S[k] of S ∈ S3ℓ with k ≤ ⌈12ℓ⌉ are charged. It
remains to show that any root-to-leaf path in T contains at most 3 + log z light edges between
a node at depth at least ⌊12ℓ⌋ and its child.

Consider a light edge from a node v to its parent u at depth at least ⌊12ℓ⌋. Let v′ be a sibling
of v satisfying size(v′) ≥ size(v), and let Sv, Sv′ be the labels of the paths from the root to v

5

and v′, respectively. These labels differ on the last position only so, by Fact 2.1, they cannot be
both periodic. Let ṽ ∈ {v, v′} be such that Sṽ is not periodic, and let m̃ = size(ṽ).

Consider the set S of length-ℓ strings corresponding to the leaves in the subtree of T rooted
at ṽ (i.e., the labels of the root-to-leaf paths passing through ṽ). Define S := {P : P ∈ S} and
note that S ⊆ Sℓ because T is the trie of reversed strings from Sℓ. Let e1 < · · · < em̃ denote the
ending positions of the leftmost occurrences in T∞[1 . .) of strings in S. By definition, we have an
occurrence of Sṽ ending in T∞ at every position ei with i ∈ [1 . . m̃]. Now, per(Sṽ) >

1
2 |Sṽ| ≥

1
4ℓ

implies that ei+1 − ei >
1
4ℓ for every i ∈ [1 . . m̃ − 1] (otherwise, the two close occurrences of

Sṽ would yield per(Sṽ) = per(Sṽ) ≤
1
4ℓ). Consequently, at least 1

4 |S| =
1
4m̃ length-ℓ substrings

of T∞[1 . .) have disjoint leftmost occurrences. Since each leftmost occurrence crosses or begins
at a phrase boundary of the LZ77 parsing of T , we conclude that z ≥ 1

4m̃, and therefore
size(v) ≤ size(ṽ) = m̃ ≤ 4z.

The reasoning above shows that once a root-to-leaf path encounters a light edge connecting a
node u at depth at least ⌊12ℓ⌋ to its child v, we have size(v) ≤ 4z. The number of the remaining
light edges on the path is at most log(size(v)) ≤ 2 + log z by the standard bound applied to the
subtree of T rooted at v.

Theorem 3.4. Every string of length n satisfies r = O(z log zmax(1, log n
z log z)).

Proof. To obtain tighter bounds on the number of irreducible LCP values in [ℓ . . 2ℓ), we consider
three cases:

1. ℓ ≤ log z. We repeat the proof of Lemma 3.1, except that we observe that the number of
light edges on each root-to-leaf path in T is bounded by ℓ. Thus, the number of irreducible
LCP values in [ℓ . . 2ℓ) is O(zℓ).

2. log z < ℓ ≤ n
z . We use the bound O(z log z) of Lemma 3.3.

3. n
z < ℓ. We repeat the proof of Lemma 3.3, except that we observe that |S3ℓ| ≤ n. Thus,

the number of irreducible LCP values in [ℓ . . 2ℓ) is O(n log z
ℓ).

The above upper bounds, applied for every ℓ = 2i with i ∈ [0 . . ⌊log n⌋], yield

r ≤ σ +

⌊logn⌋∑

i=0

∣∣{j ∈ [2 . . n] : BWT[j−1] 6= BWT[j] and LCP[j] ∈
[
2i . . 2i+1

)}∣∣

= σ +

⌊log log z⌋∑

i=0

O
(
z2i
)
+

⌊log n
z ⌋∑

i=⌊log log z⌋+1

O (z log z) +

⌊logn⌋∑

i=⌊log n
z ⌋+1

O

(
n log z

2i

)

= σ +O (z log z) +O
(
z log zmax

(
1, log n

z log z

))
+O (z log z)

= O
(
z log zmax

(
1, log n

z log z

))
.

3.3 Upper Bound in Terms of δ

Let δ = maxnm=1
1
m |Sm| denote the substring complexity of T [49]. Note that letting δ =

sup∞m=1
1
m |Sm| is equivalent because |Sm| ≤ n holds for m ≥ 1, which implies 1

m |Sm| ≤ 1 ≤ |S1|
for m ≥ n. We start by noting that δ ≤ z since |Sm| ≤ mz holds for every m ≥ 1, as observed
in the proof of Lemma 3.1. Furthermore, |Sm| ≤ mδ holds by definition of δ, so δ can replace z
in the proof of Lemma 3.1.

To adapt the proof Lemma 3.3, we need to generalize the observation that at most z sub-
strings from Sℓ may have disjoint leftmost occurrences in T∞[1 . .). This observation is easy

6

since the LZ77 parsing naturally yields a set of z positions (phrase boundaries) in T . The sub-
string complexity δ does not provide such structure, but as the lemma below implies, we can
replace z by 3δ in the aforementioned observation. The proof of Lemma 3.5 is a straightforward
modification of the argument used in [49, Lemma 6]. For completeness, below we write down
the full reasoning, with technical details tailored to our notation (e.g., Sℓ defined in terms of
T∞ rather than T).

Lemma 3.5 (based on [49, Lemma 6]). For any positive integer ℓ, the total number of positions
in T∞[1 . .) covered by the leftmost occurrences of strings from Sℓ is at most 3δℓ.

Proof. Let C denote the set of positions in T∞[1 . .) covered by the leftmost occurrences of
strings from Sℓ, and let C ′ = C \ [1 . . ℓ). For any i ∈ C ′ denote Si = T∞[i− ℓ+1 . . i+ ℓ], and let
S = {Si : i ∈ C ′} ⊆ S2ℓ. We will show that |S| = |C ′|. Let i ∈ C ′. First, observe that, due to
i ≥ ℓ, the fragment Si is entirely contained in T∞[1 . .). Furthermore, by definition, Si contains
the leftmost occurrence of some S ∈ Sℓ. Thus, this occurrence of Si in T∞[1 . .) must also be
the leftmost one in T∞[1 . .). Consequently, the substrings Si for i ∈ C ′ are distinct.

We have thus shown that |C ′| = |S| ≤ |S2ℓ|. Since |S2ℓ| ≤ 2δℓ holds by definition of δ, we
obtain |C| < |C ′|+ ℓ ≤ |S2ℓ|+ ℓ ≤ (2δ + 1)ℓ ≤ 3δℓ.

Lemma 3.6. For every ℓ ∈ [1 . . n], the number of irreducible LCP values in [ℓ . . 2ℓ) is O(δ log δ).

Proof. Compared to the proof of Lemma 3.3, we use the bound |S3ℓ| ≤ 3ℓδ instead of |S3ℓ| ≤ 3ℓz.
The only other modification needed is that, for every light edge connecting a node u of T at
depth at least ⌊12ℓ⌋ to its child v, we need to prove size(v) = O(δ).

Let m̃ ≥ size(v) be defined as in the proof of Lemma 3.3. Recall that we have identified at
least m̃

4 strings in Sℓ whose leftmost occurrences in T∞[1 . .) are disjoint. By Lemma 3.5, there
are at most 3δ such substrings. Thus, size(v) ≤ m̃ ≤ 12δ.

By replacing the thresholds log z and n
z with log δ and n

δ , respectively, in the proof of Theo-
rem 3.4, we immediately obtain a bound in terms of δ.

Theorem 3.7. Every string of length n satisfies r = O(δ log δmax(1, log n
δ log δ)).

Note that the trivial upper bound r = O(n) is tighter if δ log δ > n. In Section 4, we show
that a combination of these two upper bounds is asymptotically optimal. For this, we construct
tight examples in which the values δ cover the whole spectrum between O(1) and Ω(n).

3.4 Further Upper Bounds

By combining Theorem 3.7 with known properties of the substring complexity δ, we obtain the
first bound relating the number of BWT runs in the string and its reverse. No such bounds
(even polynomial in r log n) were known before.

Corollary 3.8. If r and r̄ denote the number of runs in the BWT of a length-n text and its
reverse, respectively, then r̄ = O(r log rmax(1, n

r log r)).

Proof. Since the value of δ is the same for the text and its reverse, Theorem 3.7 yields r̄ =
O(δ log δmax(1, log n

δ log δ)). Combining [46, Theorem 3.9] and [49, Lemma 2] gives δ ≤ r. Con-
sequently, we obtain r̄ = O(r log rmax(1, n

r log r)).

Our technique also lets us strengthen the bound of Theorem 2.2 on the sum of irreducible
LCP values.

7

Theorem 3.9. For every string of length n, the sum of all irreducible LCP values is O(n log δ).

Proof. As for the irreducible LCP values not exceeding n
δ , Lemma 3.6 immediately yields

∑

LCP[j]≤n/δ
BWT[j−1] 6=BWT[j]

LCP[j] <

⌊log n
δ
⌋∑

i=0

2i+1 ·
∣∣{j : BWT[j − 1] 6= BWT[j] and LCP[j] ∈ [2i . . 2i+1)

}∣∣

=

⌊log n
δ
⌋∑

i=0

2i+1 · O (δ log δ) = O (n log δ) .

For irreducible LCP values larger than n
δ , a simple approach would be to separately consider

Θ(log δ) ranges of LCP values, [2i . . 2i+1) for i ∈ [⌊log n
δ ⌋ . . ⌊log n⌋], and bound the number of

irreducible LCP values in each range by O(n log δ
2i

), as in the proof of Theorem 3.7. Unfortunately,
this only gives an overall bound of O(n log2 δ) on the sum of irreducible LCP values.

Instead, we employ a similar scoring as in the proof of Lemma 3.6, except that we handle all
the irreducible values LCP[i] > n

δ together. With each such value, we associate LCP[i]−⌊ n
2δ ⌋ ≥

1
2LCP[i] units of cost, and we charge them to individual characters of strings in Sn. We then
show that each of the strings in Sn is charged at most 6 + 2 log δ times. Consequently, the sum
of irreducible LCP values larger than n

δ does not exceed twice the total cost, which is bounded
by

2|Sn| · (6 + 2 log δ) = 4n(3 + log δ).

The cost assignment is based on the trie T of all reversed strings in Sn. Let LCP[i] > n
δ be

an irreducible LCP value, and let j0 = SA[i − 1] and j1 = SA[i] so that LCP[i] = LCE(j0, j1).
Since LCP[i] is irreducible, we have T∞[j0 − 1] = BWT[i − 1] 6= BWT[i] = T∞[j1 − 1]. For
k ∈ (n − LCP[i] . . n − ⌊ n

2δ ⌋], the kth unit of the cost associated with LCP[i] is charged to the
kth character (T∞[jt − 1]) of the string T∞[jt − k . . jt − k + n) ∈ Sn, where t ∈ {0, 1} is
such that size(vT∞[jt−1. .jt−k+n)) ≤ size(vT∞[j1−t−1. .j1−t−k+n)). Note that T∞[j0 . . j0 − k + n) =

T∞[j1 . . j1 − k + n) holds due to LCE(j0, j1) > n − k, so the edge from v
T∞[jt−1. .jt−k+n)

to its
parent vT∞[jt. .jt−k+n) is light.

For every S ∈ Sn, a single position S[k], with k ∈ [1 . . n − ⌊ n
2δ ⌋], can be charged at most

twice. This is because there is a unique position j ∈ [1 . . n] such that S = T∞[j− k . . j− k+n),
and S[k] can be charged for LCP[i] only if j = SA[i− 1] or j = SA[i].

It remains to prove that at most 3+log δ characters of each S ∈ Sn can be charged. For this,
we note that every charged character S[k], with k ∈ [1 . . n−⌊ n

2δ⌋], corresponds to a light edge on
the path from the root of T to the leaf vS connecting a node u at depth at least ⌊ n

2δ ⌋ to its child v.
Let us fix the highest such pair (u, v). It is not difficult to see that the argument from the proof
Lemma 3.3 yields at least size(v)

4δ strings in Sn with disjoint leftmost occurrences in T∞[1 . .).
However, all such occurrences overlap, so size(v) ≤ 4δ and, consequently, the number of the
remaining light edges on the path from the root of T to vS is at most log(size(v)) ≤ 2 + log δ.
Including the edge from u to v, we obtain a bound of 3+log δ chargeable characters in total.

Due to δ ≤ r, the presented upper bound is always (asymptotically) at least as strong as the
bound of Theorem 2.2; furthermore, it can be strictly stronger since log δ = o(log r) is possible
when δ = logo(1) n. In Section 4, we construct strings proving tightness of the new bound for
the values δ ranging from O(1) to Ω(n).

8

4 Lower Bounds

In this section, we present examples showing asymptotic tightness of the upper bounds in Sec-
tion 3.3.

4.1 Lower Bound for the Number of BWT Runs

We give two constructions, corresponding to the bound of Theorem 3.7 and the trivial bound
r = O(n), respectively.

For ℓ ≥ 1, let binℓ(x) ∈ {0, 1}ℓ be the binary representation of x ∈ [0 . . 2ℓ), and let bin−1
ℓ be

the inverse mapping.

Lemma 4.1. For all integers ℓ ≥ 2 and K ≥ 1, the length n, the substring complexity δ, and
the number of runs r in the BWT of a string Tℓ,K ∈ {$, 0, 1, 2}+, defined with

Tℓ,K =

K−1⊙

k=0

2ℓ−1⊙

i=0

(
22

kℓ · binℓ(i)
)

 · $,

satisfy n = Θ(2K+ℓℓ), δ = Θ(2ℓ), and r = Ω(2ℓℓK).

Proof. Let Bℓ,k :=
⊙2ℓ−1

i=0

(
22

kℓ · binℓ(i)
)

so that Tℓ,K is the concatenation of Bℓ,k for k ∈ [0 . . K),

followed by a $. Note that |Bℓ,k| = 2ℓ · (2kℓ+ ℓ) = Θ(2k+ℓℓ), so the length of Tℓ,K satisfies

n = 1 +

K−1∑

k=0

|Bℓ,k| = 1 +

K−1∑

k=0

Θ
(
2k+ℓℓ

)
= Θ(2K+ℓℓ).

To show that 1
m |Sm| = O(2ℓ) holds for every m ∈ [1 . . n], we consider three cases:

• m ≤ ℓ. Observe that any occurrence of S ∈ Sm ∩ {0, 1, 2}∗ in Tℓ,K overlaps at most one
maximal block of 2s. It is easy to see that there are O(2m) such strings S. Adding m
substrings containing the symbol $ thus yields |Sm| = m+O(2m) = O(2ℓ).

• ℓ < m ≤ 2K−1ℓ. Observe that any length-m substring of Bℓ,k+1 with m ≤ 2kℓ is also a
substring of Bℓ,k. More generally, if a length-m substring of Tℓ,K does not contain a $,
then its leftmost occurrence starts within Bℓ,k for some k ∈ [0 . . ⌈log m

ℓ ⌉]. Hence,

|Sm| ≤ m+

⌈log m
ℓ
⌉∑

k=0

|Bℓ,k| = m+

⌈log m
ℓ
⌉∑

k=0

O
(
2k+ℓℓ

)
= O(mℓ · 2ℓ · ℓ) = O(m · 2ℓ).

• 2K−1ℓ < m. Then, 1
m |Sm| ≤ n

m = O
(
2K+ℓℓ
2Kℓ

)
= O(2ℓ).

To show δ = Ω(2ℓ), observe that, for any i ∈ [0 . . 2ℓ − 1) and t ∈ [0 . . ℓ), the string 2t ·
binℓ(i) · 2

ℓ−t ∈ {0, 1, 2}2ℓ is a substring of Tℓ,K . Since all these substrings are different, we have
|S2ℓ| ≥ (2ℓ − 1) · ℓ and δ ≥ 1

2ℓ |S2ℓ| ≥ 2ℓ−1 − 1
2 = Ω(2ℓ).

As for the lower bound on r, we start by observing that, for any strings S,P ∈ {0, 1}+ such
that |S|+ |P | = ℓ and any integer k ∈ [0 . . K), the string S22

kℓP is a substring of B∞
ℓ,k. Let us

define s = bin−1
|S|(S) and p = bin−1

|P |(P), and consider three cases:

• S 6= 1|S|. Let x = p2|S| + s < 2ℓ − 1 and observe that S22
kℓP is a substring of binℓ(x) ·

22
kℓ · binℓ(x+ 1) = bin|P |(p) · bin|S|(s) · 2

2kℓ · bin|P |(p) · bin|S|(s + 1).

9

• S = 1|S| and P 6= 0|P |. Let x = (p − 1)2|S| + s < 2ℓ − 1 and observe that S22
kℓP is a

substring of binℓ(x) · 22
kℓ · binℓ(x+ 1) = bin|P |(p− 1) · bin|S|(s) · 2

2kℓ · bin|P |(p) · bin|S|(0).

• S = 1|S| and P = 0|P |. Then, S22
kℓP is a substring of binℓ(2ℓ − 1) · 22

kℓ · binℓ(0).

Note that in all but the last case, S22
kℓP is a substring of Bℓ,k. However, since every Bℓ,k

ends with binℓ(2
ℓ − 1), S22

kℓP also occurs in Tℓ,K unless S = 1|S|, P = 0|P |, and k = 0. The
number of remaining triples (S,P, k) is equal to ℓ− 1 times the number of maximal blocks of 2s
in Tℓ,K excluding the prefix 2ℓ of Tℓ,K . As distinct triples yield distinct substrings, no substring

S22
kℓP occurs in Tℓ,K twice.
We will focus on triples satisfying S 6= 1|S| and P 6= 1|P |. By the discussion above, for each

such triple, S22
kℓP occurs exactly once in Tℓ,K . We will now show that every such triple (S,P, k)

corresponds to a different run in the BWT of Tℓ,K . Thus, computing the number of considered
triples yields

r ≥ K ·
ℓ−1∑

t=1

(2t − 1)(2ℓ−t − 1) = K
(
2ℓ(ℓ− 3) + ℓ+ 3

)
= Ω

(
2ℓℓK

)
.

Let i be the rank of the suffix of Tℓ,K having S22
kℓP as a prefix. We will show that i+1 is the

rank of the suffix prefixed with S22
kℓP ′, where P ′ = bin|P |(p+1). Suppose that these suffixes are

not adjacent in SA. Any suffix that is in between them must start with S22
kℓc for some c ∈ {0, 1}.

Furthermore, since every maximal block of 2s in Tℓ,K is followed by some P̂ ∈ {0, 1}|P |, and

there is exactly one occurrence of S22
kℓP̂ in Tℓ,K for every possible P̂ , there would exist P̂ such

that P ≺ P̂ ≺ P ′. This is clearly impossible since it implies p < bin−1
|P |

(P̂) < p+ 1.

Observe now that, by S 6= 1|S|, the substrings S22
kℓP and S22

kℓP ′ are preceded in Tℓ,K by
P = bin|P |(p) and P ′ = bin|P |(p + 1), respectively. Therefore, BWT[i + 1] = (p + 1) mod 2 6=
p mod 2 = BWT[i].

Lemma 4.2. For all integers ℓ ≥ 2 and ∆ ∈ Ω(2ℓ) ∩ O(2ℓℓ), the length n, the substring
complexity δ, and the number of runs r in the BWT of a string T ′

ℓ,∆ ∈ {$1, . . . , $∆, 0, 1, 2}
+,

defined with

T ′
ℓ,∆ =

2ℓ−1⊙

i=0

(
2ℓ · binℓ(i)

)

 · $1$2 · · · $∆,

satisfy n = Θ(2ℓℓ), δ = Θ(∆), and r = Ω(2ℓℓ).

Proof. The length satisfies n = 2ℓ · 2ℓ+∆ = Θ(2ℓℓ).
To show that 1

m |Sm| = O(∆) holds for every m ∈ [1 . . n], we consider two cases:

• m ≤ ℓ log3 2. Trivially, |Sm ∩ {0, 1, 2}∗| ≤ 3m. Adding m + ∆ − 1 substrings containing
the symbols $i yields

1
m |Sm| = O

(
3m+∆

m

)
= O

(
2ℓ+∆
m

)
= O

(
∆
m

)
= O(∆).

• m > ℓ log3 2. Then, 1
m |Sm| ≤ n

m = O
(
2ℓℓ
m

)
= O(2ℓ) = O(∆).

To show δ = Ω(∆), we observe that |S1| = ∆+ 3.
To bound r from below, as in the proof of Lemma 4.1, we observe that, for any strings

S,P ∈ {0, 1}+ such that |S| + |P | = ℓ, the string S2ℓP occurs exactly once in T ′
ℓ,∆ unless

S = 1|S| and P = 0|P |. Moreover, every string S2ℓP with S 6= 1|S| and P 6= 1|P | corresponds to
a different run in the BWT. Hence, counting such strings yields r ≥ 2ℓ·(ℓ−3)+ℓ+3 = Ω(2ℓℓ).

10

Combining Lemmas 4.1 and 4.2, we obtain the following lower bound.

Theorem 4.3. For every N ≥ 1 and ∆ ∈ [1 . . N], there exists a string T whose length n,
substring complexity δ, and number of runs r in the BWT satisfy n = Θ(N), δ = Θ(∆), and
r = Θ(min(n, δ log δmax(1, log n

δ log δ))).

Proof. If ∆ log∆ < 1
2N , we set T = Tℓ,K with ℓ = max(2, ⌈log ∆⌉) and K =

⌈
log N

∆ log∆

⌉
. By

Lemma 4.1, we thus have

n = Θ(2K+ℓℓ) = Θ
(

N
∆ log∆∆ log∆

)
= Θ(N),

δ = Θ(2ℓ) = Θ(∆),

r = Ω(2ℓℓK) = Ω
(
∆ log∆ log N

∆log∆

)
= Ω

(
δ log δmax(1, log n

δ log δ)
)
.

If ∆ log∆ ≥ 1
2N , we set T = T ′

ℓ,∆ with ℓ = max(2, ⌈log N
logN ⌉). Note that ∆ = Ω(N

logN) =

Ω(2ℓ) and ∆ = O(N) = O(2ℓℓ), so the assumptions of Lemma 4.2 are satisfied. We thus have

n = Θ(2ℓℓ) = Θ
(

N
logN log N

logN

)
= Θ(N),

δ = Θ(∆),

r = Ω(2ℓℓ) = Ω
(

N
logN log N

logN

)
= Ω(N) = Ω(n).

In both cases, either the upper bound of Theorem 3.7 or the bound r = O(n) is tight.

4.2 Lower Bound for the Sum of Irreducible LCP Values

The same strings show that our upper bound O(n log δ) on the sum of irreducible LCP values
is also tight.

Lemma 4.4. For all integers ℓ ≥ 2 and K ≥ 1, the sum of irreducible LCP values of Tℓ,K is
rΣ = Ω(2K+ℓℓ2).

Proof. In the proof of Lemma 4.1, we showed that, for every k ∈ [0 . . K) and S,P ∈ {0, 1}+\{1}+

such that |S| + |P | = ℓ, the symbols preceding suffixes starting with S22
kℓP ∈ {0, 1, 2}+ and

S22
kℓP ′ ∈ {0, 1, 2}+, where P ′ = bin|P |(bin

−1
|P |(P) + 1), are distinct, and that these suffixes

are adjacent lexicographically. This implies that the corresponding irreducible LCP value is
at least 2kℓ. With k = K − 1, noting that there are Ω(2ℓℓ) choices for S and P , we obtain
rΣ = 2K−1ℓ · Ω(2ℓℓ) = Ω(2K+ℓℓ2).

Analogously to Lemma 4.2 and Theorem 4.3, we also get the following results:

Lemma 4.5. For all integers ℓ ≥ 2 and ∆ ∈ Ω(2ℓ) ∩O(2ℓℓ), the sum of irreducible LCP values
of T ′

ℓ,∆ is rΣ = Ω(2ℓℓ2).

Theorem 4.6. For every N ≥ 1 and ∆ ∈ [1 . . N], there exists a string T whose length n,
substring complexity δ, and sum rΣ of irreducible LCP values satisfy n = Θ(N), δ = Θ(∆), and
rΣ = Θ(n log δ).

11

5 Converting LZ77 to Run Length BWT

In this section, we describe an algorithm that, given the LZ77 parsing of a text T ∈ Σn, computes
its run-length compressed BWT in O(z polylog n) time. We start with an overview that explains
the key concepts. Next, we present two new data structures utilized in our algorithm: the
compressed string synchronizing set (Section 5.1) and the compressed wavelet tree (Section 5.2).
The conversion algorithm is then developed in Section 5.3.

For any substring Y of T∞, we define lpos(Y) = min{i ∈ [1 . . n] : T∞[i . . i+ |Y |) = Y }. If
Y is a substring of T

∞
, we define lpos(Y) by replacing T∞ in the definition with T

∞
. We say

that a substring Y of T∞ is left-maximal if there exist distinct symbols a, b ∈ Σ such that the
strings aY and bY are also substrings of T∞. The following definition, assuming Σ ∩ N = ∅,
plays a key role in our construction.

Definition 5.1 (BWT modulo ℓ). Let T ∈ Σn, ℓ ≥ 1 be an integer, and Yi = T∞[SA[i] . . SA[i]+ℓ)
for i ∈ [1 . . n]. We define the string BWTℓ ∈ (Σ ∪ N)n, called the BWT modulo ℓ (of T), as
follows. For i ∈ [1 . . n],

BWTℓ[i] =

{
lpos(Yi) if Yi is left-maximal,

BWT[i] otherwise.

The algorithm runs in k = ⌈log n⌉ rounds. For q ∈ [0 . . k), the input to the qth round is
RL(BWTℓ), where ℓ = 2q, and the output is RL(BWT2ℓ). At the end of the algorithm, we have
RL(BWT2k) = RL(BWT) because X ∈ S2k is never left-maximal for 2k ≥ n.

Informally, in round q, we are given a (run-length compressed) subsequence of BWT that can
be determined based on sorting the suffixes only up to their prefixes of length 2q. BWTℓ[b . . e] ∈
Σ+ implies BWTℓ+1[b . . e] ∈ Σ+ (because a prefix of a left-maximal substring is left-maximal).
Hence, these subsequences need not be modified until the end of the algorithm (except possibly
merging their runs with adjacent runs). For the remaining positions, BWTℓ identifies the (left-
most occurrences of) substrings to be inspected in the qth round with the aim of replacing their
corresponding runs in BWTℓ with previously unknown BWT symbols (as defined in BWT2ℓ).

We call a block BWT[b . . e] uniform if all symbols in BWT[b . . e] are equal, and non-uniform
otherwise. The following lemma ensures feasibility of the above construction.

Lemma 5.2. For any integer ℓ ≥ 1, it holds |RL(BWTℓ)| < 2r.

Proof. Denote RL(BWTℓ) = ((c1, λ1), . . . , (ch, λh)), letting λ0 = 0. By definition of BWTℓ, if
ci ∈ N, then the block BWT(λi−1 . . λi] is non-uniform. Thus, there are at most r − 1 runs of
symbols from N in BWTℓ.

On the other hand, ci ∈ Σ and cj ∈ Σ, with i < j, cannot both belong to the same run
in BWT. If this was true, then either ci+1 ∈ Σ (which implies ci+1 = ci, contradicting the
definition of RL(BWTℓ)), or ci+1 ∈ N, which is impossible since then BWT(λi . . λi+1] is non-
uniform. Thus, there are at most r runs of symbols from Σ in BWTℓ.

5.1 Compressed String Synchronizing Sets

Our algorithm builds on the notion of string synchronizing sets, recently introduced in [45]. Syn-
chronizing sets are one of the most powerful techniques for sampling suffixes. As demonstrated
in [48], in the uncompressed setting, they are the key in obtaining time-optimal solutions to
many problems, and their further applications are still being discovered [3, 45]. In this section,
we introduce a notion of compressed string synchronizing sets. Our construction is the first im-
plementation of synchronizing sets in the compressed setting and thus of independent interest.

We start with the definition of basic synchronizing sets.

12

Definition 5.3 (τ -synchronizing set [45]). Let T be a string of length n, and let τ ∈ [1 . . ⌊n2 ⌋]. A
set S ⊆ [1 . . n−2τ+1] is called a τ -synchronizing set of T if it satisfies the following consistency
and density conditions:

1. If T [i . . i+ 2τ) = T [j . . j + 2τ), then i ∈ S if and only if j ∈ S (for i, j ∈ [1 . . n− 2τ + 1]),
2. S ∩ [i . . i+ τ) = ∅ if and only if per(T [i . . i+ 3τ − 2]) ≤ 1

3τ (for i ∈ [1 . . n− 3τ + 2]).

In most applications, we want to minimize |S|. Observe that the Thue–Morse sequence
TTM [82] does not contain any cube (substring of the form W 3). Thus, by density condition, any
synchronizing set S of the length-n prefix of TTM satisfies |S| = Ω

(
n
τ

)
unless n < 3τ . Therefore,

we cannot hope to achieve an upper bound improving in the worst case upon the following one.

Theorem 5.4 ([45]). For any string T of length n and parameter τ ∈ [1 . . ⌊n2 ⌋], there exists a τ -
synchronizing set S of size |S| = O

(
n
τ

)
. Moreover, such S can be (deterministically) constructed

in O(n) time.

Storing S for compressible strings presents the following challenge: As shown in [60], a length-
n prefix of TTM satisfies z = O(log n) and yet, as discussed above, every τ -synchronizing set of
TTM satisfies |S| = Ω

(
n
τ

)
. Thus, although |S| can be smaller than n

τ , the assumption z ≪ n
does not imply |S| ≪ n, preventing us from keeping plain S when τ = o(nz).

We thus exploit a different property of compressible strings: their substrings Y satisfy
lpos(Y) ∈

⋃z
j=1(ej − |Y | . . ej], where ej is the last position of the jth phrase in the LZ77

parsing of T . By consistency of S, it suffices to store
⋃z

j=1 S ∩ (ej−2τ . . ej]. To check if i ∈ S,
we then locate i′ = lpos(T [i . . i + 2τ)) and check if i′ ∈

⋃z
j=1 S ∩ (ej−2τ . . ej]. This motivates

the following (more general) definition.

Definition 5.5 (Compressed τ -synchronizing set). Let S be a τ -synchronizing set of string T [1 . . n]
for some τ ∈ [1 . . ⌊n2 ⌋], and, for every j ∈ [1 . . z], let ej denote the last position of the jth phrase
in the LZ77 parsing of T . For k ∈ N≥2, we define the compressed representation of S as

compk(S) :=

z⋃

j=1

S ∩
(
ej−kτ . . ej+kτ

]
.

Next, we prove that every text T has a synchronizing set S with a small compressed repre-
sentation, and we show how to efficiently compute such S from the LZ77 parsing of T .

5.1.1 The Nonperiodic Case

We initially assume that per(T [i . . i+τ)) > 1
3τ holds for all i ∈ [1 . . n− τ + 1].

Theorem 5.6. Let T be a string of length n and let τ ∈ [1 . . ⌊n2 ⌋]. Assume that per(T [i . . i+τ)) >
1
3τ holds for all i ∈ [1 . . n− τ + 1]. Then, for every k ∈ N≥2, there exists a τ -synchronizing set
S of T with compk(S) ≤ 12kz.

Proof. Let h : Sτ → [0, 1] be a function mapping strings to real values in [0, 1] independently
and uniformly at random. Note that h is collision-free almost surely (with probability 1). Let
us define id : [1 . . n − τ + 1] → [0, 1] with id(i) = h(T [i . . i+ τ)). Observe that (almost surely)
id is an identifier function, that is, id(i) = id(j) holds if and only if T [i . . i+τ) = T [j . . j+τ).
In [45, Lemma 8.2], it is proved that then

S := {i ∈ [1 . . n−2τ+1] : min {id(j) : j ∈ [i . . i+τ]} ∈ {id(i), id(i+τ)}}

is a τ -synchronizing set of T . Moreover, E [|S|] = O
(
n
τ

)
. To see this, observe that, for j, j′ ∈

[i . . i+ τ], id(j) = id(j′) implies |j′− j| > 1
3τ (otherwise, assuming j < j′, we have per(T [j . . j′+

13

τ)) ≤ 1
3τ , which contradicts per(T [j . . j + τ)) > 1

3τ). Thus, T [i . . i + 2τ − 1] contains d ≥ τ
3

distinct length-τ substrings. Since each has equal chance of having the smallest id, we have
P [i ∈ S] ≤ 2

d ≤ 6
τ , and consequently, by linearity of expectation, E [|S|] ≤ 6n

τ . More generally,
E [|S ∩ (i . . i+ ℓ]|] ≤ 6ℓ

τ , and therefore

E
[
|compk(S)|

]
= E

∣∣∣∣∣∣

z⋃

j=1

S ∩ (ej−kτ . . ej+kτ]

∣∣∣∣∣∣

 ≤

z∑

j=1

E
[
|S ∩ (ej−kτ . . ej+kτ]|

]
≤ 12kz.

In particular, |compk(S)| ≤ 12kz holds for some h.

The above proof does not lead to an efficient algorithm for constructing S as it relies on the
random assignment of unique names to all substrings in Sτ and, since |Sτ | = Θ(zτ) holds in
the worst case, we cannot hope to achieve O(z polylog n) time this way. Next, we prove that
assigning unique names to all elements of Sτ is in fact not necessary.

Lemma 5.7. Let T be a string of length n and let τ ∈ [1 . . ⌊n2 ⌋]. Assume that per(T [i . . i+τ)) >
1
3τ holds for all i ∈ [1 . . n − τ + 1]. For i ∈ [1 . . n − τ + 1], let id(i) := h(T [i . . i + τ)), where
h : Sτ → [0, 1] assigns independent and uniformly random values.

If κ = max(1, τ
3c lnn) for c > 1, then, with probability at least 1 − n1−c, all positions i ∈

[1 . . n− 2τ + 1] satisfy min{id(j) : j ∈ [i . . i+ τ]} ≤ 1
κ .

Proof. Recall from the proof of Theorem 5.6 that T [i . . i + 2τ − 1] contains d ≥ τ
3 distinct

length-τ substrings. Since the values of h are independent and uniformly distributed, we have
P
[
min{id(j) : j ∈ [i . . i+ τ]} > 1

κ

]
=
(
1− 1

κ

)d
≤ exp(− d

κ) ≤ exp(− τ
3κ). The probability above

is trivially 0 if κ = 1, so we can bound it by n−c if κ = max(1, τ
3c lnn). Taking the union bound

across all positions i, we derive the final claim.

If κ is set as in the above lemma for a sufficiently large constant c, then, with high probability,
each window contains at least one substring with a “small” identifier ≤ 1

κ . The “large” identifiers
of other substrings are never used in the construction of the synchronizing set S and hence need
not be specified. Consequently, to carry out the randomized construction of S using Theorem 5.6,
rather than choosing a random function h : Sτ → [0, 1], it suffices to select a random subset
Ssample ⊆ Sτ with rate 1

κ (each string in Sτ is included in Ssample independently with probability
1
κ) and then construct a uniformly random function hsample : Ssample → [0, 1

κ] (mapping strings
in Ssample to real values in [0, 1

κ] independently and uniformly at random).
Clearly, the element-wise sampling of Sτ is equivalent to sampling the set Pleft containing

the starting positions of the leftmost occurrences of strings in Sτ . Sampling Pleft directly is still
hard, though. The key observation is that instead of Pleft (which is difficult to compute), we can
sample (at the same rate) elements of its superset Pclose :=

⋃z
j=1(ej − τ . . ej], which is readily

available, and yet still sufficiently small. Let P ′
sample ⊆ Pclose be a resulting sample. We then

define the desired sample with Psample := P ′
sample ∩ Pleft. Crucially, however, we have

E
[
|P ′

sample|
]
= 1

κ |Pclose| ≤
3c lnn

τ · zτ = O(z log n).

To finish the construction, it suffices to pick a random function hsample : Ssample → [0, 1
κ]

to obtain id(i) := hsample(T [i . . i + τ)) (letting id(i) = 1 if T [i . . i + τ) 6∈ Ssample). Then,
by Lemma 5.7 and the discussion above, using hsample is with high probability equivalent to
using a uniformly random function h : Sτ → [0, 1] during the construction behind Theorem 5.6.
Moreover, we can also detect failures (that min {id(j) : j ∈ [i . . i+ τ]} = 1 for some i), so the
algorithm is Las-Vegas randomized.

14

Theorem 5.8. Let T be a string of length n and let τ ∈ [1 . . ⌊n2 ⌋]. Assume that per(T [i . . i+τ)) >
1
3τ holds for all i ∈ [1 . . n − τ + 1]. There exists a Las-Vegas randomized algorithm that, for
any constant k ∈ N≥2, given the LZ77 parsing of T , constructs in O(z log5 n) time a compressed
representation compk(S) of a τ -synchronizing set S of T satisfying compk(S) ≤ 24kz.

Proof. We first compute comp′(S) :=
⋃z

j=1 S∩ (ej − 3τ + 2 . . ej + τ). The algorithm consists of
three steps.

1. We start by computing the sample Psample ⊆ Pleft for κ = τ
3c lnn . As discussed above, for

this we first compute P ′
sample ⊆ Pclose using the same rate κ. Using the algorithm from [15, 16],

this takes O
(
1
κ |Pclose|+ log n

)
= O(z log n) time with high probability.2 We then discard every

i ∈ P ′
sample \ Pleft. By Theorem 6.11, this takes O(log4 n) time per position. Overall, by taking

Theorem 6.11 into account, computing Psample = P ′
sample ∩ Pleft, we spend O(z log5 n) time.

2. Let Ssample = {T [i . . i + τ) : i ∈ Psample}. By consistency of S, whether i ∈ S or not,
depends only on T [i . . i + 2τ). Thus, to determine comp′(S) using the construction in Theo-
rem 5.6, it suffices to find all occurrences of strings from Ssample inside length-(6τ−4) substrings
of T centered at the boundaries of LZ77 phrases. Let Pocc = {i ∈ [1 . . n] : T [i . . i+ τ) ∈ Ssample}.
Formally, we compute

Pnearocc := Pocc ∩

z⋃

j=1

[ej − 3τ + 3 . . ej + 2τ − 1]

 .

As discussed above, for every i ∈ Pleft, we have P [i ∈ Psample] = 1
κ , or equivalently,

P [X ∈ Ssample] =
1
κ for X ∈ Sτ . Thus, E [Pocc ∩ [i . . i+ ℓ)] = ℓ

κ for i, ℓ ∈ [1 . . n] and hence

E

[
|Pnearocc|

]
≤ z(5τ−3)

κ = O(z log n).

Let ℓ = 3τ − 2, e0 = 0, and ez+1 = n+1. We call the jth, j ∈ [1 . . z], phrase T [ej−1+1 . . ej]
in the LZ77 parsing of T short if ej − ej−1 ≤ 2ℓ − τ , and long otherwise. We define the
sentinel phrases 0 and z + 1 to be long. We create a text Tnear ∈ (Σ ∪ {#})∗, where # 6∈ Σ, as
follows. Consider listing all long phrases left to right. Let T [ej−1 + 1 . . ej], j ∈ [1 . . z + 1], be
the current long phrase and let ej′ be the last position of the preceding long phrase. Append
T [max(ej′ − ℓ + 1, 1) . .min(ej−1 + ℓ, n)]# to Tnear. It is easy to check that there is a bijection
between Pnearocc and occurrences of strings from Ssample in Tnear, and every string from Ssample

has at least one occurrence in Tnear.
To compute Pnearocc, we observe that excluding all # symbols, Tnear consists of not more

than 2z substrings, each with an earlier occurrence in Tnear. In the construction of Tnear, these
substrings are: T [max(ej′ − ℓ+ 1, 1) . . ej′], T [ej′ + 1 . .min(ej′ + ℓ, ej′+1)], T [min(ej′ + ℓ, ej′+1) +
1 . . ej′+1], . . . , T [ej−1 + 1 . .min(ej−1 + ℓ, n)]. Thus, after accounting for the # symbols, Tnear

has an LZ77-like parsing with at most 3z phrases. The phrase boundaries of this parsing can be
obtained immediately from the LZ77 parsing of T . To guarantee that their sources are in Tnear

we need to find their leftmost occurrences in T . Using Theorem 6.11 (applied to the LZ77 parsing
of T), this takes O(z log4 n) time. Then, to compute Pnearocc, we use the reporting index from
Theorem 6.10 (constructed from the parsing of Tnear). Starting positions of example occurrences
of strings from Ssample can be easily mapped to Tnear via Psample. Therefore, computing Pnearocc

takes O(z log4 n+ |Psample| log
3 n+ |Pnearocc| log n) = O(z log4 n) time in total.

3. We now compute comp′(S) from Pnearocc. Assume |Pnearocc| = O(z log n). We start
by constructing hsample : Ssample → [0, 1

κ] that independently assigns uniformly random values.

2The algorithm technically samples [0 . . |Pclose|) rather than Pclose, but the desired subset P
′

sample ⊆ Pclose is
easy to obtain by exploiting the fact that Pclose consists of at most z contiguous integer ranges.

15

With high probability, O(log n)-bit precision is sufficient to guarantee that there are no ties.
We implicitly assign hsample(X) = 1 for X 6∈ Ssample. We keep a hash table mapping i ∈
Psample to hsample(T [i . . i+ τ)). Moreover, with each i ∈ Pnearocc we store i′ ∈ Psample such that
T [i . . i + τ) = T [i′ . . i′ + τ). All i′ can be computed during the construction of Pnearocc. Then,
given i ∈ Pnearocc, we obtain hsample(T [i . . i+ τ)) in O(1) time.

Let Pnearocc = {p1, . . . , pk} denote its elements in ascending order. Let j ∈ [1 . . z], and
let range [pb, . . . , pe] be such that Pnearocc ∩ [ej−3τ+3 . . ej+2τ−1] = {pb, . . . , pe}. Denote I =
[ej−3τ+3 . . ej+τ−1] and consider the computation of S ∩ I according to Theorem 5.6. By
Lemma 5.7, with high probability, for every i ∈ I , we have [i . . i+ τ]∩{pb, . . . , pe} 6= ∅. Assume
this is the case. Our goal is to find all i ∈ I , for which

mi := min{hsample(T [t . . t+ τ)) : t ∈ [i . . i+ τ] ∩ {pb, . . . , pe}}

satisfies mi ∈ {hsample(T [i . . i + τ)), hsample(T [i + τ . . i + 2τ))}. This can only happen if {i, i +
τ} ∩ {pb, . . . , pe} 6= ∅ and hence it suffices to inspect ≤ 2(e − b+ 1) values of i. Using balanced
BST to maintain [i . . i + τ] ∩ {pb, . . . , pe}, the search can be implemented in O((e − b) log n)
time. It is not difficult to modify this approach so that in total for all j ∈ [1 . . z], it takes
O(|Pnearocc| log n) = O(z log2 n) time. Note that during this algorithm we can detect whether
for some i ∈ I , [i . . i+ τ] ∩ {pb, . . . , pe} = ∅. If this happens, we restart the algorithm.

Let us return to the construction of compk(S). Observe that S is entirely determined by
comp′(S). Furthermore, it allows computing S ∩ [i . . i+ τ) in O

(
log4 n+ |S ∩ [i . . i+ τ)|

)
time.

Namely, first locate the leftmost occurrence T [ileft . . ileft + 3τ − 1) of T [i . . i + 3τ − 1) using
Theorem 6.11, and then copy the positions using the observation

i+∆ ∈ (S ∩ [i . . i+ τ)) if and only if ileft +∆ ∈ (S ∩ [ileft . . ileft + τ)) .

Thus, compk(S) is easily computed in O(kz log4 n+ |compk(S)|) time. During the construction,
we keep track of the number of positions in compk(S) and restart the algorithm if their number
gets too large. This concludes the construction of compk(S).

5.1.2 The General Case

Periodic fragments are handled similarly as in [45]. This yields the following two results, which
constitute the main outcome of this section.

Theorem 5.9. Let T be a string of length n and let τ ∈ [1 . . ⌊n2 ⌋]. For any k ∈ N≥2, there exists
a τ -synchronizing set S of T satisfying compk(S) ≤ 36kz.

Proof. The key difference, compared to Theorem 5.6, is that we can no longer assume that
per(T [i . . i+τ)) > 1

3τ holds for all i. Let us denote the set of positions that violate this assump-
tion Q :=

{
i ∈ [1 . . n− τ + 1] : per(T [i . . i+ τ)) ≤ 1

3τ
}
. We can then modify the construction

as follows. Letting again id : [1 . . n− τ + 1] → [0, 1] be any identifier function, we now define:

S := {i ∈ [1 . . n−2τ+1] : min {id(j) : j ∈ [i . . i+τ] \ Q} ∈ {id(i), id(i+τ)}}

It is proved in [45] that: (1) Such construction yields a correct synchronizing set of T (Lemma
8.2). (2) If B := {i ∈ [1 . . n−τ+1]\Q : per(T [i . . i+τ−1)) ≤ 1

3τ or per(T [i+1 . . i+τ)) ≤ 1
3τ} and

B := {T [i . . i+ τ) : i ∈ B}, then id(i) := h(T [i . . i + τ)), where h : Sτ → [0 . . |Sτ |) is uniformly
random function such that h(X) < h(Y) holds for all X ∈ B, Y 6∈ B, satisfies E[|S|] = O

(
n
τ

)
.

To see (2), let Bnear :=
⋃

i∈B[i− τ . . i]. Then E[|S|] = E[|S∩Bnear|] +E[|S∩ ([1 . . n] \Bnear)|].

• By the property of h, if i ∈ S ∩ Bnear then {i, i + τ} ∩ B 6= ∅, since then id achieves the
minimum value on the position in B. Moreover, since by periodicity lemma, for any i, we
have |[i . . i+

⌈
τ
3

⌉
) ∩ B| ≤ 2, then altogether we obtain |S ∩ Bnear| ≤ 2|B| ≤ 12n

τ .

16

• It is easy to see that if [i . . i+τ]∩Q 6= ∅ and [i . . i+τ] 6⊆ Q then [i . . i+τ]∩B 6= ∅. Thus, by
contraposition, if i ∈ [1 . . n] \ Bnear then, as in the analysis in Theorem 5.6, P [i ∈ S] ≤ 6

τ .
Consequently, E[|S ∩ ([1 . . n] \ Bnear)|] ≤

6n
τ .

More generally, |S∩ (i . . i+ ℓ]∩Bnear| ≤ |(i . . i+ ℓ]∩B|+ |(i+τ . . i+ ℓ+τ]∩B| ≤ 4
⌈
ℓ/⌈ τ3⌉

⌉
≤

4
⌈
3ℓ
τ

⌉
and E [|S ∩ ((i . . i+ ℓ] \ Bnear)|] ≤

6ℓ
τ . Thus, denoting Ij := (ej−kτ . . ej+kτ], we have

E
[
|compk(S)|

]
= E

∣∣∣∣∣∣

z⋃

j=1

S ∩ Ij

∣∣∣∣∣∣

 ≤

z∑

j=1

E
[
|S ∩ Ij|

]

≤
z∑

j=1

|S ∩ Ij ∩ Bnear|+
z∑

j=1

E
[
|S ∩ (Ij \ Bnear)|

]
≤ 36kz.

In particular, |compk(S)| ≤ 36kz holds for some h.

Theorem 5.10. Let T be a string of length n and let τ ∈ [1 . . ⌊n2 ⌋]. There exists a Las-Vegas
randomized algorithm that, for any constant k∈N≥2, given the LZ77 parsing of T , constructs in
O(z log5 n) time a compressed representation compk(S) of a τ -synchronizing set S of T satisfying
|compk(S)| ≤ 72kz.

Proof. The algorithm is a modified construction from Theorem 5.8. The problematic part of
adapting the randomized construction is enforcing that our sampling of substrings is equivalent
to using a uniformly random function h : Sτ → [0, 1] among those satisfying h(X) < h(Y) for
all X ∈ B, Y 6∈ B.

The key observation is that the bound |S∩ (i . . i+ ℓ]∩Bnear| ≤ 4
⌈
3ℓ
τ

⌉
holds (for all i) in the

worst case, and not only in expectation. We can thus explicitly set S∩Bnear :=
⋃

i∈B{i−τ, i}, and
then what remains is to determine S for positions i 6∈ Bnear. For all such i, as discussed above, we
either have [i . . i+ τ] ∩ Q = ∅ (in which case the randomized construction remains unchanged),
or [i . . i + τ] ⊆ Q (in which case there is nothing to do). To implement this modification, we
need to be able to efficiently represent and compute sets

Qnearocc := Q ∩
(
∪z
j=1Ij

)
and Bnearocc := B ∩

(
∪z
j=1Ij

)
,

where Ij = [ej − 3τ + 2 . . ej + 2τ − 1].
Towards efficient representation, observe that if i+1 ∈ Q and i 6∈ Q then i ∈ B. Analogously,

if i − 1 ∈ Q and i 6∈ Q then i ∈ B. Thus, B forms a boundary between Q and [1 . . n] \ Q.
We may also have {i, i + 1} ⊆ B, i.e., the enclosed interval of positions is empty. Nevertheless,
augmenting every i ∈ Bnearocc with a single bit yields a representation of

⋃
{Q ∩ Ij : j ∈

[1 . . z] and B ∩ Ij 6= ∅} ⊆ Qnearocc. To represent remaining elements of Qnearocc, it suffices to
store a sequence of z bits, with the jth bit indicating whether Q∩Ij is nonempty. It remains to
see that since (as noticed in the proof of Theorem 5.9) for any i we have |[i . . i+

⌈
τ
3

⌉
) ∩ B| ≤ 2,

the set Bnearocc satisfies |Bnearocc| = O(z). Thus, we obtain an O(z)-space representation of
Bnearocc and Qnearocc. This also implies that we can efficiently store (as O(z) runs of consecutive
positions) and random-access the set Pclose \ (Bnearocc ∪ Qnearocc), during the sampling phase.

To finish the construction, it remains to show how to find Bnearocc. By [45, Lemma 8.8],
for any i, computation of [i . . i + b) ∩ B, where b ≤

⌈
τ
3

⌉
, can be reduced to two LCE queries

and the computation of the shortest period of some substring. More precisely, letting X =
T [i + b . . i + τ − 1), we first determine p := per(X). If p > 1

3τ we conclude [i . . i + b) ∩ B = ∅.
Otherwise, we compute the longest superstring Y = T [y . . y′] of X that has period p and is a
substring of T [i . . i+ b+ τ − 1). If |Y | ≥ τ − 1 we have [i . . i+ b) ∩ B = {y − 1, y′ − τ + 2} and
otherwise we again have [i . . i+ b) ∩ B = ∅. The set [i . . i+ b) ∩ Q is deduced similarly.

17

If τ > 3, we set b = ⌊ τ−1
3 ⌋ and use the above method to determine Bnearocc and Qnearocc. To

find p, we observe that we only need its exact value if p ≤ ⌊13τ⌋. Otherwise, the knowledge that

p > ⌊13τ⌋ holds is sufficient. Since for our choice of b it holds ⌊13τ⌋ ≤ |X|
2 , we can reduce the

computation of p to the so-called 2-period query that given a string X asks to return per(X) or
to report that X is not periodic, that is per(X) > 1

2 |X|. Using Theorem 6.7, we can answer 2-
period queries for substrings of T in O(log3 n) time after a O(z log2 n)-time preprocessing of the
LZ77-compressed T . Computing y, y′ on the other hand, is done using LCE queries in O(log n)
time after the O(z log n)-time preprocessing (Theorem 6.3). Since

⋃z
j=1 Ij can be decomposed

into O(z) length-b intervals, overall we execute O(z) queries, and hence the computation of
Bnearocc and Qnearocc (including preprocessing) takes O(z log3 n) time.

To handle τ ≤ 3, we observe that if τ ≤ 2, then Q = B = ∅. For τ = 3, we compute Qnearocc

and Bnearocc by checking consecutive i ∈
⋃z

j=1 Ij using the definition of Q and B.

5.2 Compressed Wavelet Trees

Along with string synchronizing sets, wavelet trees [35], originally invented for text indexing,
play a central role in our algorithm. Unlike virtually all prior applications of wavelet trees,
ours uses a sequence of very long strings (up to Θ(n) symbols). This approach is feasible since
all strings are substrings of the text, which is stored in the LZ77-compressed form. In this
section, we describe this novel variant of wavelet trees, dubbed here compressed wavelet trees. In
particular, we prove the upper bound on their size, describe an efficient construction from the
LZ77-compressed text, and show how to augment them to support some fundamental queries.

Let Σ be an alphabet of size σ ≥ 1. Consider a string W [1 . . m] over the alphabet Σℓ so
that W is a sequence of m ≥ 0 strings of length ℓ ≥ 0 over the alphabet Σ. The wavelet tree of
W is defined as follows. Let T be a perfect σ-ary rooted tree of height ℓ with edges labelled by
symbols of Σ such that, for every Y ∈ Σℓ, there exists a root-to-leaf path in T whose edges are
labelled Y [1], . . . , Y [ℓ]. We define the label of a node as the concatenation of the edge labels on
the path from the root. For X ∈ Σd, where d ∈ [0 . . ℓ], by vX we denote the node of T labelled
X. We let V (T) =

⋃ℓ
d=0{vX : X ∈ Σd} denote the node set of T .

With each node vX ∈ V (T) we associate an increasing sequence IX [1 . . h] of primary indices
such that

{IX [i] : i ∈ [1 . . h]} = {j ∈ [1 . . m] : W [j][1 . . |X|] = X}.

Based on IX , we define BX ∈ Σ∗ such that, for i ∈ [1 . . h],

BX [i] = W [IX [i]][|X| + 1],

if |X| < ℓ and BX = ε if |X| = ℓ. In other words, BX is a string containing the symbol at
position |X| + 1 for each string of W that is prefixed by X. Importantly, the symbols in BX

occur in the same order as these strings occur in W .
As typically done in the applications of wavelet trees, we only explicitly store the strings BX .

The values of primary indices IX are retrieved using additional data structures, based on the
following observation.

Lemma 5.11 ([35]). Let X ∈ Σd, where d ∈ [0 . . ℓ). For every c ∈ Σ and j ∈ [1 . . |IXc|], we
have IXc[j] = IX [i], where BX [i] is the jth occurrence of c in BX .

We define the compressed wavelet tree Tc of W as the wavelet tree of W in which all strings
BX have been run-length compressed and, with the exception of {vε}∪ {vW [i]}

m
i=1, all nodes vX

satisfying |RL(BX)| ≤ 1, have been removed (the unary paths are collapsed into single edges).
The shape and edge labels of the resulting tree are identical to the compact trie of strings
W [1], . . . ,W [m].

18

We store edge labels of Tc as pointers to substrings in W . We assume that values of ℓ and
m fit into a single machine word so that each edge of Tc and each element of RL(BX) can be
encoded in O(1) space. Since |RL(BY)| ≥ 1 holds for every internal node vY ∈ V (Tc), and
unless |V (Tc)| = 1, each leaf vZ in Tc can be injectively mapped to an element of RL(BZ′) for
the parent vZ′ of vZ , the space to store Tc is dominated by the run-length compressed strings
BX , i.e., Tc needs O(1 +

∑
vX∈V (Tc)

|RL(BX)|) space.

Theorem 5.12. Let W be a non-empty sequence of equal-length strings and let Tc be its com-
pressed wavelet tree. Then,

∑
vX∈V (Tc)

|RL(BX)| = O(1 + |RL(W)| log |RL(W)|).

Proof. Let m = |W |, k = |RL(W)| ≤ m, and k′ = |{W [i] : i ∈ [1 . . m]}| ≤ k. Due to
|V (Tc)| ≤ 2k′ = O(k), we can focus on nodes vX ∈ V (Tc) such that |RL(BX)| ≥ 2.

The proof resembles that of Lemma 3.1. With each X ∈ Σ∗ such that |RL(BX)| ≥ 2, we
associate |RL(BX)| − 1 units of cost and charge them to individual elements of W . We then
show that each run in RL(W) is in total charged at most 2 log k′ units of cost. Consequently,

∑

vX∈V (Tc)
|RL(BX)|≥2

|RL(BX)| ≤ 4k log k′ = O(k log k).

Consider X ∈ Σd with |RL(BX)| ≥ 2; note that d < ℓ. Let RL(BX) = ((c1, λ1), . . . , (ch, λh)).
Observe that if we let p0 = IX [λi] and p1 = IX [λi + 1] for some i ∈ [1 . . h), then W [p0][d+ 1] =
ci 6= ci+1 = W [p1][d + 1]. Moreover, BX [λi] 6= BX [λi + 1] implies W [p0 + 1] 6= W [p0] and
W [p1−1] 6= W [p1]. The ith unit of cost is charged to W [pt], where t ∈ {0, 1} is chosen depending
on the sizes of subtrees of Tc rooted at the children of vX , so that the subtree containing vW [pt]

has at most as many leaves as the subtree containing vW [p1−t].
Now, consider a run W [b . . b′] = Y δ in RL(W). For a single depth d, the run could be

charged at most twice, with at most one unit assigned to W [b] due to p1 = b and at most one
unit assigned to W [b′] due to p0 = b′, both for X = Y [1 . . d]. Moreover, note that the subtree
size on the path from vY to the root vε of Tc doubles for every depth d for which the run was
charged. Thus, the total charge of the run is at most 2 log k′ units.

Let W [1 . . m] be a sequence of substrings of T∞ of the same length ℓ. Observe that if we have
access to T , then the sequence W can be compactly encoded in O(1+ |RL(W)|) space. Namely,
it suffices to store the length ℓ and the sequence RL((lpos(W [i]))i∈[1. .m]). The following theorem
shows that given such compact encoding of W and the LZ77 parsing of T , the compressed wavelet
tree of W can be constructed efficiently.

Theorem 5.13. Given the LZ77 parsing of text T [1 . . n], and a sequence W [1 . . m] of m ≤ n
substrings of T∞ of length ℓ ≤ n, represented as RL((lpos(W [i]))i∈[1. .m]), the compressed wavelet

tree of W can be constructed in O((z + |RL(W)|) log2 n) time.

Proof. We start by constructing the compact trie Tc of W . Let k = |RL(W)| ≤ m, W = {W [i] :
i ∈ [1 . . m]} and k′ = |W| ≤ k. We first construct P = {lpos(W [i]) : i ∈ [1 . . m]} to represent
W. Given RL((lpos(W [i]))i∈[1. .m]), P is easy to compute in O(k log k) time. We now observe
that an LCE query on T suffices to determine the lexicographical order between any substrings
of T∞. We construct the data structure for LCE queries on T using Theorem 6.3 in O(z log2 n)
time. We then lexicographically sort all length-ℓ substrings of T∞ starting at positions in P in
O(k′ log k′ log n) = O(k log2 n) time (e.g., using mergesort). Finally, we construct Tc by inserting
elements of W in the order given by P. We maintain the stack containing the internal nodes
on the rightmost path, with the deepest node on top. Adding each string first removes some

19

elements from the stack, and then adds at most one new element. The total number of steps is
thus O(k).

In the second step of the algorithm, we compute RL(BX) for all vX ∈ V (Tc). Let Σ =
{c0, . . . , cσ−1} be the alphabet of T . If k ≤ 1 or ℓ = 0, then |V (Tc)| ≤ 2 and the step takes
O(1) time. Let us thus assume k ≥ 2 and ℓ ≥ 1. This implies σ ≥ 2. Denote RL(W) =
((R1, λ1), . . . , (Rk, λk)), letting λ0 = 0. Let also δi = λi − λi−1 for i ∈ [1 . . k]. For any i ∈
[1 . . |IX |], let JX [i] be the index j ∈ [1 . . k] satisfying IX [i] ∈ [λj−1 + 1 . . λj]. It holds

W [IX [i]] = RJX [i].

Recall, that for |X| < ℓ, BX [i] = W [IX [i]][|X| + 1] = RJX [i][|X| + 1]. Thus, when computing

BX , we can use the sequence JX instead of IX . Note that letting JX [1 . . |JX |] = pt11 p
t2
2 . . . pthh ,

where pi 6= pi+1 for i ∈ [1 . . h), it holds tj = δpj for j ∈ [1 . . h]. Moreover, p1 < . . . < ph. We
can thus store each JX simply as a set J ′

X = {p1, . . . , ph}.
We process all vX ∈ V (Tc) in the order of nonincreasing |X|. During the algorithm, we

maintain sets J ′
X for a subset of nodes vX ∈ V (Tc). More precisely, at any point, we keep a data

structure representing the set J ′
X in sorted order for (only) the highest processed node on each

leaf-to-root path.
Let us first assume σ = 2. To start, observe that the trie construction is easily augmented

to compute, for any i ∈ [1 . . k], the pointer to vRi
. Thus, to initialize J ′

X for all leafs vX , iterate
through RL(W) and add i to J ′

Ri
. Consider now vX ∈ V (Tc) that is not a leaf. If vX has one

child vXY , then it holds X = ε and Bε = cm where c is the first symbol in Y . Thus, RL(BX)
is easy to compute. Assume thus that vXY0

and vXY1
are children of vX , and for i ∈ {0, 1}, Yi

starts with ci ∈ Σ. Clearly, J ′
X = J ′

XY0
∪ J ′

XY1
. Moreover, the sorted set J ′

X is obtained by
merging |RL(BX)| contiguous subsequences from either J ′

XY0
or J ′

XY1
(both regarded as sorted

sequences). Suppose that during the ith step of the merging, we append to J ′
X the elements

{pb, . . . , pe} ⊆ J ′
XYh

, where pb < . . . < pe and h ∈ {0, 1}. Note, that this implies that the ith
run in BX is cδh, where

δ =
∑

p∈J ′

XYh
∩[pb. .pe]

δp.

To implement the merging efficiently, each set J ′
X is represented using an AVL tree augmented

(using standard techniques, i.e., each node stores the sum of elements in its subtree) to support
computing, for any p′, p′′ the value of

∑
p∈J ′

X
∩[p′. .p′′] δp in O(log k) time. Since AVL trees also

support split/join in O(log k) time, each subsequence {pb, . . . , pe} can be appended to J ′
X in

O(log k) time. During each append, we compute the next element of RL(BX). Consequently,
the AVL tree for J ′

X , together with RL(BX), can be computed in O(|RL(BX)| log k) time. By
Theorem 5.12, this yield the claim.

To generalize the merging to any σ ≥ 2, during the computation of J ′
X , we maintain a priority

queue containing, for h ∈ [0 . . σ), the smallest unextracted element of J ′
XYh

. After extracting
(and removing) the minimum element p′ corresponding to h ∈ [0 . . σ) from the queue, the new
minimum element p′′ specifies the range [p′ . . p′′] of elements to be extracted from J ′

XYh
. The

queue contains at most σ elements. We perform O(1) queue operations for each run. Thus, the
complexity of the construction is not affected.

The above Theorem holds also if W is the sequence of substrings of T
∞

.

Theorem 5.14. Given the LZ77 parsing of text T [1 . . n], and a sequence W [1 . . m] of m ≤ n
substrings of T

∞
of length ℓ ≤ n, represented as RL((lpos(W [i]))i∈[1. .m]), the compressed wavelet

tree of W can be constructed in O((z + |RL(W)|) log2 n) time.

20

Proof. It suffices to observe that Theorem 6.3 supports also LCE queries on T . Thus, the
construction is identical as in the proof of Theorem 5.13.

Computing Primary Indices The key operation that we want to support on Tc is, given a
pointer to vX ∈ V (Tc) and an integer q ∈ [1 . . |IX |], compute the value IX [q].

Let us first consider a simpler problem. Given a pointer to vX ∈ V (Tc) different from the
root, and q ∈ [1 . . |IX |], compute q′ such that IX [q] = IXp [q

′], where vXp is the parent of vX .

Proposition 5.15. Let Tc be the compressed wavelet tree of W [1 . . m]. There exists a data
structure of size O(1 + |RL(BX)|) that, given a pointer to vX ∈ V (Tc) and an integer q ∈
[1 . . |IX |], in O(logm) time returns q′ such that IX [q] = IXp [q

′], where vXp is the parent of vX .

Proof. Observe that by Lemma 5.11, q′ is the position of the qth occurrence of X[|Xp| + 1] in
BX′ .

Denote RL(BY) = ((c1, λ1), . . . , (ck, λk)), where vY ∈ V (Tc). For any i ∈ [1 . . k], define
ni = |{i ∈ [1 . . λi] : BY [i] = ci}|. For c ∈ Σ, let LY,c be the sequence containing all pairs in
{(λi, ni) : i ∈ [1 . . k] and ci = c}, sorted by λi.

Observe, that for any q ≥ 1, given LY,c, the position of the qth occurrence of c in BY , if it
exists, can be computed in O(logm) time using binary search. Thus, the data structure consists
simply of sequences LX,c for all pairs (X, c), such that c occurs in BX . The total length of all
sequences is O(|RL(BX)|). All sequences are concatenated and stored in one array, and we store
a balanced BST containing the size and a pointer to the beginning of LY,c, for every c occurring
in BY .

Let us now consider a more general problem. Let Xup,Xdown ∈ Σ∗ be such that Xup is a
prefix of Xdown, and vXup , vXdown

∈ V (Tc). Let X ⊆ Σ∗ be the set of labels of nodes of Tc on the
path connecting (and including) vXup and vXdown

. Given a pointer to any node vX of Tc such
that X ∈ X , and an integer q ∈ [1 . . |IX |], we aim to compute q′ such that IX [q] = IXup [q

′].
Let s = |IXup | and

ℓi = lcp
(
W [IXup[i]],Xdown

)
,

where i ∈ [1 . . s]. Consider P = {(i, ℓi)}i∈[1. .s] as a set of points on a plane. Let us fix some
X ∈ X , and let mi = |{j ≤ i : ℓj ≥ |X|}| for i ∈ [1 . . s]. The value of mi is the number of points
of P inside the upper left “quadrant” defined by i and |X|. Clearly, m1 ≤ m2 ≤ . . . ≤ ms.

Lemma 5.16. Let q′ = min{i ∈ [1 . . s] : mi ≥ q}. Then, IX [q] = IXup [q
′].

Proof. By X ∈ X , the string Xup is a prefix of X. By Lemma 5.11, IX is a subsequence of IXup ,
and q′ is the position of the qth index i ∈ [1 . . s] satisfying lcp(W [IXup [i]],X) ≥ |X|. Since X is
a prefix of Xdown, we obtain that for i ∈ [1 . . s], lcp(W [IXup [i]],X) ≥ |X| if and only if ℓi ≥ |X|.
Therefore, q′ is the qth index i ∈ [1 . . s] for which it holds ℓi ≥ |X|, or equivalently, the smallest
i ∈ [1 . . s] satisfying mi ≥ q.

It thus suffices to store a data structure answering orthogonal range counting queries on the
set of points P. Then, by the above lemma, the value q′ can be found using binary search. Using
the data structure of [19] for range queries, we obtain the solution to our problem using O(s)
space and answering queries in O(log2 s) time. To reduce the space usage, we observe that the
sequence (ℓi)i∈[1. .s] is compressible.

Lemma 5.17. ∣∣∣RL
(
(ℓi)i∈[1. .s]

)∣∣∣ ≤ 1 +
∑

X∈X\{Xdown}

|RL(BX)| .

21

Proof. The proof is by induction on |X |. If |X | = 1, then Xup = Xdown and hence ℓi = |Xdown|
holds for all i ∈ [1 . . s]. Consequently |RL((ℓi)i∈[1. .s])| = 1.

Let us thus assume |X | ≥ 2. Let k denote the number of i ∈ [1 . . s) satisfying ℓi 6= ℓi+1. Let
i ∈ [1 . . s) be any such position. Let X ′

up be the shortest string in X ′ = X \ {Xup}, and denote
s′ = |IX′

up
|, and ℓ′j = lcp(W [IX′

up
[j]],Xdown), for j ∈ [1 . . s′]. Consider two cases:

1. BXup [i] = BXup [i + 1]. Denote c = Xdown[|Xup| + 1]. We observe that it must hold
BXup [i] = c, since otherwise ℓi = lcp(W [IXup [i]],Xdown) = |Xup| and analogously ℓi+1 =
|Xup|, contradicting ℓi 6= ℓi+1. Let i′ = |{j ≤ i : BXup [j] = c}|. By Lemma 5.11, we
have IX′

up
[i′] = IXup[i] and IX′

up
[i′ + 1] = IXup [i + 1]. Thus, we have ℓ′i′ 6= ℓ′i′+1. It is

easy to see that this mapping of i to i′ is injective. Thus, this case can happen at most
|RL((ℓ′j)j∈[1. .s′])| − 1 times. By the inductive assumption, it holds |RL((ℓ′j)j∈[1. .s′])| − 1 ≤∑

X∈X ′\{Xdown}
|RL(BX)|.

2. BXup [i] 6= BXup [i+ 1]. This case can happen at most |RL(BXup)| − 1 times.

Thus, k ≤ |RL(BXup)| − 1 +
∑

X∈X ′\{Xdown}
|RL(BX)| <

∑
X∈X\{Xdown}

|RL(BX)|. It remains
to note that |RL((ℓi)i∈[1. .s])| = 1 + k.

Denote RL((ℓi)i∈[1. .s]) = ((t1, λ1), . . . , (ts′ , λs′)), letting λ0 = 0, and δi = λi − λi−1 for
i ∈ [1 . . s′]. If we now let m′

i =
∑

j≤i, tj≥|X| δj for i ∈ [1 . . s′], then m′
1 ≤ . . . ≤ m′

s′ and
Lemma 5.16 generalizes as follows.

Lemma 5.18. Let q′′ = min{i ∈ [1 . . s′] : m′
i ≥ q} and q′ = λq′′−1 − m′

q′′−1 + q. Then,
IX [q] = IXup [q

′].

Proof. As shown in the proof of Lemma 5.16, it suffices to prove that q′ is the qth index i ∈
[1 . . s] satisfying ℓi ≥ |X|. It is easy to see, by definition of (m′

j)j∈[1. .s′], that such i satisfies
i ∈ (λq′′−1 . . λq′′], where q′′ is the smallest index i ∈ [1 . . s′] for which it holds m′

i ≥ q. More
precisely, it is the (q−m′

q′′−1)th position inside this interval. This yields q′ = λq′′−1−m′
q′′−1+ q,

as claimed.

Thus, rather than s points in the range counting structure, we can instead store a set of only
s′ ≤ 1 +

∑
X∈X\{Xdown}

|RL(BX)| weighted points P ′ = {(i, ti)}i∈[1. .s′], where the weight of the
ith point is δi. The range counting query is now replaced with the query that returns the total
weight of points in a given range. Using [19], the data structure takes O(s′ log s′) space and
answers range sum queries in O(log2 s′) time. Accounting for the binary search, we obtain the
solution to our problem running in O(log3 s′) time per query. We have thus proved the following
result.

Proposition 5.19. Let Tc be the compressed wavelet tree of W [1 . . m]. Let vXup , vXdown
∈ V (Tc)

be such that Xup is a prefix of Xdown. Let X be the set of labels of nodes on the path between
vXup and vXdown

. There exists a data structure of size O(1+
∑

X∈X |RL(BX)| logm) that, given
a pointer to any vX ∈ V (Tc) with X ∈ X , and q ∈ [1 . . |IX |], returns in O(log3m) time q′ such
that IX [q] = IXup [q

′].

We now show how to combine the above data structures to solve the general problem of
computing primary index queries.

Theorem 5.20. Let Tc be the compressed wavelet tree of W [1 . . m]. There exists a data structure
of size O(1 + |RL(W)| log2m) that, given a pointer to vX ∈ V (Tc) and an integer q ∈ [1 . . |IX |],
in O(log4m) time returns IX [q].

22

Proof. We apply the heavy path decomposition [80, 36] to Tc. Let u be a node of Tc other
than its root. An edge connecting u to its parent is called light if u has a sibling u′ satisfying
size(u) ≤ size(u′); otherwise, the edge is called heavy (see also Lemma 3.3). Then, every node
has at most one child connected via a heavy edge, and there is at most logm light edges on any
leaf-to-root path.

Let vXup , vXdown
∈ V (Tc) be such that Xup is a proper prefix of Xdown. A path between vXup

and vXdown
is called heavy if all edges on the path are heavy, and each of vXup , vXdown

is incident
with exactly one heavy edge.

The data structure consists of two components. First, for every heavy path with endpoints
vXup and vXdown

, we store the data structure from Proposition 5.19. Since every node in V (Tc)
belongs to at most one heavy path, the total size of these data structures, by Theorem 5.12, is
O(1 + |RL(W)| log2 m). The second component is the data structure from Proposition 5.15 for
every node of Tc.

Given a pointer to any vX ∈ V (Tc), and an integer q ∈ [1 . . |IX |], the algorithm first checks if
X = ε. If yes, then it holds IX [q] = q and hence it returns q as the answer. Otherwise, we distin-
guish between two cases. If the edge to the parent vXp of vX is light then, by Proposition 5.15,
we first compute q′ ∈ [1 . . |IXp |] such that IXp [q

′] = IX [q], and then recursively compute IXp [q
′].

Otherwise (i.e., if the edge to vXp is heavy), by Proposition 5.19, we first compute q′ ∈ [1 . . |IXup |]
such that IXup[q

′] = IX [q] (where vXup is the highest node on the heavy path containing vX ;
each node stores the pointer to such node), and then recursively compute IXup[q

′].
Every two steps of the recursion, the number of light edges on path to the root of Tc decreases

by at least one. Thus, the query takes O(log4m) time.

Finally, we prove that the data structure described above can be constructed efficiently, given
the compact representation of W , and the LZ77 parsing of text T [1 . . n].

Theorem 5.21. Given the LZ77 parsing of a string T [1 . . n], and a sequence W [1 . . m] of
m ≤ n substrings of T∞ of length ℓ ≤ n, represented as RL((lpos(W [i]))i∈[1. .m]), the compressed

wavelet tree of W , supporting primary index queries in O(log4 n) time, can be constructed in
O((z + |RL(W)|) log2 n) time.

Proof. The algorithm extends the construction of the compressed wavelet tree presented in
Theorem 5.13.

As in the basic algorithm, after constructing the compact trie Tc of W [1 . . m], we process all
nodes vX ∈ V (Tc) bottom-up. During the traversal, we compute size(vX), i.e., the number of
leaves in the subtree rooted in vX , for all vX ∈ V (Tc). This lets us identify the heavy edges. The
algorithm maintains the invariant, that after the construction of RL(BX) is complete, it stores
a representation of the sequence RL((ℓi)i∈[1. .|IX |]), defined by ℓi = lcp(W [IX [i]],Xdown), where
Xdown is the longest string having X as a prefix, and for which it holds that vXdown

∈ V (Tc),
and all edges on the path from vX to vXdown

are heavy. Then, if the path connecting vX and
vXdown

is heavy, i.e., Xdown 6= X, and vX is the root of Tc or the edge to the parent of vX is light
(see also the proof of Theorem 5.20), the algorithm uses this representation to initialize the data
structure from Proposition 5.19. By Theorem 5.12 and [19, Table I], over all heavy paths, this
takes O(1 + |RL(W)| log2 n) time.

Consider any vX ∈ V (Tc) and let s = |IX |. The first challenge is representing the sequence
RL((ℓi)i∈[1. .s]) to support efficient queries and updates. Let us first focus on representing simply
(ℓi)i∈[1. .s]. We start by observing that the set of pairs {(IX [i], ℓi)}i∈[1. .s] is a valid representation
of (ℓi)i∈[1. .s], since for any i, i′ ∈ [1 . . s] it holds i < i′ if and only if IX [i] < IX [i′]. To see the
advantage of this representation, compared to {(i, ℓi)}i∈[1. .s], let vX′ ∈ V (Tc) be child of vX con-
nected by a heavy edge, and let (ℓ′j)j∈[1. .p] be the sequence defined by ℓ′j = lcp(W [IX′ [j]],Xdown)

23

for j ∈ [1 . . p], where p = |IX′ |. By Lemma 5.11, (ℓ′j)j∈[1. .p] is a subsequence of (ℓi)i∈[1. .s]. More-
over, the “position” IX′ [j] of ℓ′j in the representation of (ℓ′j)j∈[1. .p] is automatically the correct
position of ℓ′j in the representation of (ℓi)i∈[1. .s]. More precisely, it holds

{(IX′ [j], ℓ′j)}j∈[1. .p] ⊆ {(IX [i], ℓi)}i∈[1. .s].

The remaining elements of {(IX [i], ℓi)}i∈[1. .s] correspond to children of vX other than vX′ .
Specifically, letting c = X ′[|X| + 1], we have

{(IX [i], ℓi)}i∈[1. .s] \ {(IX′ [j], ℓ′j)}j∈[1. .p] = {(IX [i], |X|) : i ∈ [1 . . s] and BX [i] 6= c}.

We now note that the sequence JX , used as a replacement of IX in the proof of Theorem 5.13,
satisfies the sufficient conditions to replace IX also in this case. Namely, it holds JX [1] ≤ . . . ≤
JX [s], and for i ∈ [1 . . s), ℓi 6= ℓi+1 implies JX [i] < JX [i + 1]. Thus, {(JX [i], ℓi)}i∈[1. .s] is
also a valid representation of (ℓi)i∈[1. .s], and moreover, since IX [i] = IX′ [j] implies JX [i] =
JX′ [j], {(JX [i], ℓi)}i∈[1. .s] is also a disjoint union of {(JX′ [j], ℓ′j)}j∈[1. .p] and {(JX [i], |X|) : i ∈
[1 . . s] and BX [i] 6= c}. The advantage of using the sequence JX is that the needed values are
easy to compute during the construction in Theorem 5.13. Therefore, letting RL((ℓi)i∈[1. .s]) =
((t1, λ1), . . . , (ts′ , λs′)), where λ0 = 0, and δj = λj − λj−1 for j ∈ [1 . . s′], we represent the
sequence RL((ℓi)i∈[1. .s]) as a set of pairs

QX = {(JX [λj−1 + 1], (tj , δj))}j∈[1. .s′] .

Note, that JX [λj−1 + 1] < JX [λj + 1] for j ∈ [1 . . s′).
During the algorithm, each set QX is stored in an AVL tree, with the first element of each

pair as the key. In addition, for each set of pairs Q, we augment the tree that stores it (using
the same technique as in the proof of Theorem 5.13) to compute, for any k′, the value of

∑

(k,(t,δ))∈Q
k<k′

δ.

Assume that vX is the node currently processed by the algorithm. Denote RL(BX) =
((c1, κ1), . . . , (cs′′ , κs′′)), letting κ0 = 0 and c0 = cs′′+1 = c (recall that c = X ′[|X|+1]). Observe
that during the computation of RL(BX), at no extra cost, the algorithm in the proof of Theo-
rem 5.13 can also return all values JX [κi−1 + 1], where i ∈ [1 . . s′′]. If Xdown = X, i.e., vX is a
leaf or all its children are connected using light edges, then it holds ℓi = |X| for every i ∈ [1 . . s].
Thus, the set representing RL((ℓi)i∈[1. .s]) consists of a single pair QX = {(JX [κ0 + 1], (|X|, s))}.
Let us thus assume that vX′ is the child of vX connected using a heavy edge. Assume also that
we are given the representation QX′ of RL((ℓ′j)j∈[1. .p]). By the above characterization, the set
QX contains the pair (JX [κjb−1 + 1], (|X|, κje − κjb−1)), for all subsets {jb, je} ⊆ [1 . . s′′] that
satisfy jb ≤ je, c 6∈ {cjb , cjb+1, . . . , cje}, and cjb−1 = cje+1 = c. Simply adding these pairs into
QX′ , however, does not produce the correct QX .

Let us initialize Q := QX′ . Consider all subsets {jb, je} ⊆ [1 . . s′′] satisfying the above
conditions in the order of increasing jb. The complication, following from the fact that ℓi = ℓi+1

does not imply JX [i] = JX [i+ 1], is to ensure that after inserting the pair corresponding to the
subset {jb, je}, into the current set Q, the value

δprev =
∑

(k,(t,δ))∈Q
k<JX [κjb−1+1]

δ

24

satisfies δprev = κjb−1. To achieve this, before inserting the pair, we first compute (using
the augmented AVL tree) the current value δprev and the pointer to the node storing the pair
(k, (t, δ)) ∈ Q with the largest k smaller than JX [κjb−1+1]. If δprev > κjb−1 (note that this implies
je < s′′), we replace the pair (k, (t, δ)) in Q with two pairs (k, (t, δ′)) and (JX [κje + 1], (t, δ′′)),
such that δ′ + δ′′ = δ and δ′′ = δprev − κjb−1. Only then, we insert the pair (JX [κjb−1 +
1], (|X|, κje − κjb−1)) into Q.

Each operation on Q takes O(logm) time. Thus, computing the set QX from QX′ takes
O(|RL(BX)| logm) time. By Theorem 5.12, over all vX ∈ V (Tc), this amounts to O(1 +
|RL(W)| log2 n) time.

To complete the construction, we observe that given RL(BY), all sequences LY,c (with c occur-
ring in BY) in the proof of Proposition 5.15 are easy to compute in O(1+|RL(BY)| log |RL(BY)|)
time. Thus, by Theorem 5.12, initializing the structure from Proposition 5.15 takes O(1 +
|RL(W)| log2 n) time.

Similarly, as for Theorem 5.14, the above result applies also when W is a sequence of sub-
strings of T

∞
.

Theorem 5.22. Given the LZ77 parsing of a string T [1 . . n], and a sequence W [1 . . m] of
m ≤ n substrings of T

∞
of length ℓ ≤ n, represented as RL((lpos(W [i]))i∈[1. .m]), the compressed

wavelet tree of W , supporting primary index queries in O(log4 n) time, can be constructed in
O((z + |RL(W)|) log2 n) time.

5.3 The Algorithm

We are now ready to show how to construct the sequences RL(BWTℓ), where ℓ = 2q for q ∈
[0 . . ⌈log n⌉].

For small ℓ, constructing RL(BWTℓ) reduces to sorting and computing frequencies of length-
Θ(ℓ) substrings of T∞.

Proposition 5.23. Let ℓ = O(1). Given the LZ77 parsing of T [1 . . n], the sequence RL(BWTℓ)
can be constructed in O(z log4 n) time.

Proof. First, we compute Sℓ with each string X ∈ Sℓ represented by pX := lpos(X). For this,
we exploit the fact that pX ∈ (ej − ℓ . . ej] for some j ∈ [1 . . z]. Thus, it suffices to list the
O(ℓz) = O(z) candidate positions p, group them according to T∞[p . . p + ℓ) (by sorting), and
keep the leftmost position in each group. Next, for each X ∈ Sℓ, we count the number cX of
positions i ∈ [1 . . n] such that T∞[i . . i+ ℓ) = X. For this, we use Theorem 6.21 to compute the
number of occurrences of X in T∞[1 . . n + ℓ). Similarly, we count the number c′X of positions
i ∈ [1 . . n] such that T∞[i − 1 . . i + ℓ) = T∞[pX − 1 . . pX + ℓ); observe that X is left-maximal
if and only if c′X < cX . Finally, we construct BWTℓ from left to right processing the strings
X ∈ Sℓ in lexicographic order and appending pcXX if c′X < cX , and (T∞[pX − 1])cX otherwise.
The overall running time O(z log4 n) is dominated by the use of Theorem 6.21.

Let q ≥ 4. We show how to compute RL(BWT2ℓ), given the LZ77 parsing of T and
RL(BWTℓ). The main idea of the algorithm is as follows.

Let S be a τ -synchronizing set of T , where τ = ⌊ ℓ
3⌋. As noted earlier, BWTℓ[j] ∈ Σ implies

BWT2ℓ[j] ∈ Σ. Let BWTℓ[y . . y
′] ∈ N

+ be a run in BWTℓ. By definition of BWTℓ, the
suffixes of T∞ starting at positions i ∈ SA[y . . y′] share a common prefix of length ℓ ≥ 3τ .
Thus, assuming that S ∩ [i . . i+ τ) 6= ∅ holds for all i∈ SA[y . . y′] (the periodic case is handled
separately), by the consistency of S, all text positions i∈ SA[y . . y′] share a common offset ∆
with i+∆ = min(S∩ [i . . i+ τ)). This lets us deduce the order of length-2ℓ prefixes T [i . . i+2ℓ)

25

based on the order of strings T [i+∆ . . i+2ℓ) starting at synchronizing positions. For this, from
the sorted list of fragments T [s . . s+2ℓ−∆) across s ∈ S, we extract, using a wavelet tree,
those preceded by T [i . . i+∆) (a prefix common to T∞[i . .) for i ∈ SA[y . . y′]). Importantly,
the synchronizing positions s sharing T [s− ℓ . . s+2ℓ) can be processed together; hence, by
Theorem 5.9, it suffices to use O(z) distinct substrings.

We formalize these ideas as follows. Let

R =
{
i ∈ [1 . . n− 3τ +2] : per (T [i . . i+3τ − 2]) ≤ 1

3τ
}
.

The description of the algorithm is divided into the nonperiodic case (when R = ∅) and the
general case.

5.3.1 The Nonperiodic Case

Let (s′i)i∈[1. .|S|] be the sequence containing all positions in S such that i < j holds if

• T∞[s′i . . s
′
i + 7τ) ≺ T∞[s′j . . s

′
j + 7τ), or

• T∞[s′i . . s
′
i + 7τ) = T∞[s′j . . s

′
j + 7τ) and

T∞[s′i − τ . . s′i) ≺ T∞[s′j − τ . . s′j).

Based on (s′i)i∈[1. .|S|], we define three length-|S| sequences. For i ∈ [1 . . |S|], we set

W̃ [i] = T∞[s′i − τ . . s′i + 7τ),

W [i] = T∞[s′i − τ . . s′i),

W ′[i] = T∞[s′i . . s
′
i + 7τ).

Recall that we can compactly represent the sequence W̃ in O(1 + |RL(W̃)|) space using
RL((lpos(W̃ [j]))j∈[1. .|S|]). The sequences W and W ′ can be represented analogously, except
that we use RL((lpos(W [j]))j∈[1. .|S|]) for W .

Lemma 5.24. The sequences W̃ , W , and W ′ defined above satisfy |RL(W)|, |RL(W ′)| ≤

|RL(W̃)| ≤ |comp7(S)|.

Proof. For the first inequality, note that W̃ [i] = W̃ [i+ 1] implies W [i] = W [i+ 1] and W ′[i] =
W ′[i+ 1].

Let RL(W̃) = ((R1, λ1), . . . , (Rh, λh)). Observe that i 6= j implies Ri 6= Rj. For i ∈ [1 . . h],
let T∞[p − τ . . p + 7τ) be the occurrence of Ri in T∞ that minimizes p ∈ [1 . . n]. Then, there
exists j ∈ [1 . . z] such that ej − 8τ < p − τ ≤ ej . By the consistency of S, we conclude that
p ∈ S ∩ (ej − 7τ . . ej + τ] ⊆ comp7(S). The claim follows, since this map is injective.

Importantly, the compact representations of W̃ , W , and W ′ can be computed efficiently.

Lemma 5.25. Given comp7(S) and the LZ77 parsing of T , the compact representations of W̃ ,
W , and W ′ can be constructed in O(z log4 n+ |comp7(S)| log

3 n) time.

Proof. Denote RL(W̃) = ((R1, λ1), . . . , (Rk, λk)), letting λ0 = 0, and δi = λi−λi−1 for i ∈ [1 . . k].
As observed in the proof of Lemma 5.24, it holds {Ri}i∈[1. .k] = {T∞[i − τ . . i + 7τ) : i ∈
comp7(S)}. Using LCE queries on T we can sort any set of substrings of T∞. Thus, using
Theorems 6.3 and 6.11, we first compute the sequence (lpos(Ri))i∈[1. .k]. We then observe that
by the consistency of S, the value δi is the number of occurrences of Ri in T∞ starting at a

26

position j satisfying j + τ ∈ [1 . . n]. Thus, we obtain (λi)i∈[1. .k] using Theorem 6.21. In total,
this takes O(z log4 n+ |comp7(S)| log

3 n) time.
To obtain the compact representation of W (resp. W ′), it now suffices to merge the adjacent

equal runs obtained by discarding the length-7τ suffix (resp. length-τ prefix) of strings in W̃ .
Importantly, the counts for the runs in RL(W) and RL(W ′) are computed from the counts
of RL(W̃). The merging is performed using Theorem 6.3. We then compute the leftmost
occurrences using Theorems 6.11 and 6.12. In total, we spend O(z log4 n + |comp7(S)| log

3 n)
time.

Next, we recall the notion of distinguishing prefixes, originally introduced in [45], that allows
mapping each suffix T∞[i . .) to the corresponding node of the wavelet tree of W .

Definition 5.26 (Distinguishing prefix). For any position i ∈ [1 . .max(S ∪ {0})], let isucc =
min{j ∈ S : j ≥ i}. The distinguishing prefix of T [i . . n] is Di = T [i . . isucc + 2τ).

Let D = {Dj : j ∈ [1 . .max(S ∪ {0})]}. Note that if Y starts with D ∈ D, then, for
every occurrence T∞[i . . i+|Y |) = Y with i ∈ [1 . . n], the distinguishing prefix Di is defined and
satisfies Di = D.3 Thus, for any such Y , we define DY = D. We denote D′

Y = DY [1 . . |DY |−2τ].
We now present the key lemma used in our algorithm. Assume that we have constructed a

wavelet tree of W .

Lemma 5.27. Let Y be a string starting with an element of D. Denote Y = XX ′, where
X = D′

Y , and assume that |X| < τ and |X ′| ≤ 7τ . Let [y . . y′] be the range of all indices i such
that T∞[SA[i] . .] starts with Y for i ∈ [y . . y′].

Let W ′[f . . f ′] be the range containing all elements of W ′ prefixed with the string X ′, and let
[b . . b′] = {i ∈ [1 . . |IX |] : IX [i] ∈ [f . . f ′]}. Then

1. BX [b . . b′] and BWT[y . . y′] are equal as multisets.
2. |RL(BX [b . . b′])| ≤ 3|RL(BWT[y . . y′])|.

Proof. 1. Due to T [n] = $, by the consistency of S, there is a one-to-one correspondence
between the occurrences of Y in T∞ starting in [1 . . n], and positions s ∈ S satisfying (a)
T∞[s . . s+ |X ′|) = X ′, and (b) T∞[s− |X| . . s) = X. Let us interpret the process of identifying
the subsequence of (s′i)i∈[1. .|S|] containing all such s as a two-step search.

First, we note that s′i ∈ S satisfies condition (a) if and only if i ∈ [f . . f ′]. We refer to the
process of identifying the range [f . . f ′] as the forward search. Then, to additionally satisfy (b),
we select a subsequence of W [f . . f ′] containing only strings ending with X (backward search).
By definition of [b . . b′], such subsequence is given by IX [b . . b′], and moreover, BX [b . . b′] contains
symbols preceding suffix X in all W [f . . f ′] having X as a suffix. This yields the claim.

2. Let Ỹ be any substring of T∞ such that Y is a prefix of Ỹ and |Ỹ | = |X|+7τ . Let [ỹ . . ỹ′],
[f̃ . . f̃ ′], and [̃b . . b̃′] be the ranges (as in the lemma statement) for Ỹ . Since Y is a prefix of Ỹ
and DỸ = DY , we obtain [ỹ . . ỹ′] ⊆ [y . . y′], [f̃ . . f̃ ′] ⊆ [f . . f ′], and [̃b . . b̃′] ⊆ [b . . b′]. Moreover,

by definition of IX , the range [b . . b′] is a disjoint union of ranges [̃b . . b̃′] corresponding to all
choices of Ỹ .

Since |Ỹ | − |X| = 7τ implies |RL(W ′[f̃ . . f̃ ′])| = 1, the symbols in BX [̃b . . b̃′] appear in the
nondecreasing order. Consequently, BX [b . . b′] can be obtained by partitioning BWT[y . . y′] into
blocks corresponding to all Ỹ , and sorting the symbols in each block. If BWT[y . . y′] initially
contains k runs, this adds at most 2(k − 1) new runs.

3Here, we utilize the assumption that T [n] = $. For this reason, if Y contains $, then T
∞[i . . i+|Y |) = Y for

at most one index i ∈ [1 . . n].

27

Let BWTℓ[y . . y
′] = cδ ∈ N

+ be a run in BWTℓ. Since T∞[c . . c+ ℓ) is left-maximal, we have
c+ ℓ ≤ n. Let Y = T [c . . c+ ℓ). By 3τ ≤ ℓ and R = ∅, we obtain [c . . c+ τ) ∩ S 6= ∅. Moreover,
if Y = XX ′ is such that |X| = ∆, where

c+∆ = min(S ∩ [c . . c+ τ)),

then D′
Y = X. Since we also have |X ′| ≤ 2ℓ ≤ 7τ (due to q ≥ 4), Lemma 5.27 holds for Y .

Let [b . . b′] be the range of BX corresponding to Y through Lemma 5.27. Then, |RL(BX)| > 1.
Moreover:

• For every j ∈ [0 . . δ) such that BWT2ℓ[y+ j] ∈ Σ, it holds: BWT2ℓ[y+ j] = BX [b+ j]. To
see this, apply Lemma 5.27 to all strings Ỹ ∈ Y := {T∞[SA[j] . . SA[j] + 2ℓ) : j ∈ [y . . y′]}
ordered lexicographically. Since D

Ỹ
= DY , the corresponding ranges [̃b . . b̃′] form a left-to-

right partition of [b . . b′]. Thus, if Ỹ is not left-maximal, its BWT block is BWT[ỹ . . ỹ′] =
BX [̃b . . b̃′].

• On the other hand, if c′ = BWT2ℓ[y + j] ∈ N holds for some j ∈ [0 . . δ), then the string
BX [̃b . . b̃′] corresponding (through Lemma 5.27) to Ỹ = T∞[c′ . . c′ + 2ℓ) ∈ Y is not unary,

i.e., there exists an index b̂ ∈ [̃b . . b̃′) satisfying BX [b̂] 6= BX [b̂ + 1], and lcp(W ′[IX [b̂]],

W ′[IX [b̂+ 1]]) ≥ 2ℓ − |X|. The converse is also true: if b̂ ∈ [b . . b′) satisfies the two
conditions, then BWT2ℓ[y + (b̂− b)] ∈ N. Consequently, the set of left-maximal strings in
Y is

{X ·W ′[IX [b̂]][1 . . 2ℓ−|X|] :

b̂ ∈ [b . . b′), BX [b̂] 6= BX [b̂+ 1], and

lcp(W ′[IX [b̂]],W ′[IX [b̂+ 1]]) ≥ 2ℓ− |X|}.

Moreover, letting Ỹ = X ·W ′[IX [b̂]][1 . . 2ℓ−|X|] for any b̂ satisfying the above conditions,
the range [ỹ . . ỹ′] = {j ∈ [1 . . n] : T∞[SA[j] . . SA[j] + 2ℓ) = Ỹ } satisfies [ỹ . . ỹ′] = y − b +
[̃b . . b̃′], where BX [̃b . . b̃′] corresponds to Ỹ through Lemma 5.27.

The algorithm processing a run BWTℓ[y . . y
′] = cδ ∈ N

+ is thus as follows. Letting Y =
T [c . . c + ℓ) and X = D′

Y , we first compute |X| and the pointer to vX . We then perform a
single forward and backward search to find the ranges [f . . f ′] and [b . . b′] for Y . Given these,
the computation of BWT2ℓ[y . . y

′] is achieved by a series of forward and backward searches (at
most one per run of BX [b . . b′]).

The length |X| is computed using comp7(S). The pointers to vX are precomputed since
|RL(BX)| > 1 implies vX ∈ V (Tc). To implement a forward search, we use LCE queries on T .
A backward search is implemented using primary index queries on the wavelet tree of W . We
thus obtain:

Proposition 5.28. Let T be a string of length n, and let ℓ = 2q be such that q ∈ [4 . . ⌈log n⌉).
If R = ∅, then, given RL(BWTℓ) and the LZ77 parsing of T , the sequence RL(BWT2ℓ) can be
constructed in O((r + z) log5 n) time.

Proof. Let τ = ⌊ ℓ
3⌋. We start by constructing the compressed representation comp7(S) of a τ -

synchronizing set S of T satisfying |comp7(S)| = O(z). By Theorem 5.10, this takes O(z log5 n)

time. Next we construct the compact representations of W̃ , W , and W ′. By Lemmas 5.24
and 5.25, they need O(z) space and can be built in O(z log4 n) time. Lastly, we construct the
compressed wavelet tree Tc for W , augmented with the data structure supporting primary index
queries. By Theorem 5.22, this takes O(z log2 n) time.

28

Let BWTℓ[y . . y
′] = cδ ∈ N

+ be one of the runs in BWTℓ. As noted earlier, this implies
c+ℓ ≤ n. By 3τ ≤ ℓ and R = ∅, we then obtain S∩[c . . c+τ) 6= ∅. Denote Y = T [c . . c+ℓ) = XX ′,
with X = D′

Y . Then:

1. By c = lpos(Y), we have S ∩ [c . . c + τ) ⊆ comp7(S) and get |X| = min(S ∩ [c . . c+τ))−c
in O(log n) time.

2. To compute the pointer to vX , we store a hash table than maps (|Z|, lpos(Z)) to vZ for every
vZ ∈ V (Tc). Such table is easily initialized in O(z log5 n) time during the construction of
Tc. Thus, using Theorem 6.12, we obtain a pointer to vX in O(log4 n) time.

3. To find the range [f . . f ′] (i.e., the forward search), we use the fact that W ′ is lexicograph-
ically sorted. Thus, by Theorem 6.3, we only need O(log2 n) time.

4. Lastly, to find the range [b . . b′] (i.e., the backward search), we use primary index queries
on Tc. Using binary search and the data structure from Theorem 5.22, computing [b . . b′]
takes O(log5 n) time.

We then proceed to the construction of RL(BWT2ℓ[y . . y
′]). We begin by initializing the output

to RL(BX [b . . b′]). By the above discussion, it remains to identify all left-maximal Ỹ ∈ Y

and replace (in the output) the range [ỹ . . ỹ′] ⊆ [y . . y′] corresponding to each such Ỹ with
(lpos(Ỹ))ỹ

′−ỹ+1.
Using RL(BX [b . . b′]), and LCE and primary index queries we find all b̂ ∈ [b . . b′) satisfying

BX [b̂] 6= BX [b̂ + 1] and lcp(W ′[IX [b̂]],W ′[IX [b̂ + 1]]) ≥ 2ℓ−|X|. For every such b̂, we find the

ranges [f̃ . . f̃ ′] and [̃b . . b̃′], corresponding to the left-maximal Ỹ = X · W ′[IX [b̂]][1 . . 2ℓ−|X|]

as above (using LCE and primary index queries). To compute lpos(Ỹ) we use Theorem 6.11,
noting that Ỹ occurs in W̃ [IX [b̂]].

Initializing the auxiliary indexes (Theorems 6.3, 6.11 and 6.12) takes O(z log4 n) time. By
Lemma 5.27 we spend at most O(log5 n) time per run of BWT2ℓ. Thus, by Lemma 5.2, we
spend O(r log5 n) time overall.

5.3.2 The General Case

In this section, we show how to extend the algorithm from the previous section to allow R 6= ∅.
We start by observing, that the only place where we used the assumption R = ∅ in Propo-

sition 5.28 is to deduce that for any run BWTℓ[y . . y
′] = cδ of BWTℓ that satisfies cδ ∈ N

+, it
holds S ∩ [c . . c + τ) 6= ∅. All lemmas in the previous section hold, however, even when R 6= ∅.
The general algorithm is therefore an extension of the procedure in Proposition 5.28, i.e., all
runs BWTℓ[y . . y

′] = cδ ∈ N
+ satisfying S ∩ [c . . c+ τ) 6= ∅ are processed as in Proposition 5.28,

except rather than computing S satisfying |comp7(S)| = O(z), we instead compute S satisfying
|comp9(S)| = O(z). Any such S clearly also satisfies |comp7(S)| = O(z).

The remaining runs are handled as follows. Let R′ := {j ∈ R : j − 1 6∈ R} be a subset of R.
For k ∈ [1 . . n], let Fk = {T∞[i . . i+ k) : i ∈ R} and F ′

k := {T∞[i . . i+ k) : i ∈ R′} ⊆ Fk.

Lemma 5.29. It holds:

1. |F ′
2ℓ| ≤ |comp7(S)|.

2. If T∞[i . . i+ 2ℓ) = Ỹ ∈ F2ℓ \ F
′
2ℓ then T∞[i− 1] = Ỹ [per(Ỹ [1 . . 3τ − 1])].

Proof. 1. Let Ỹ ∈ F ′
2ℓ. Then, there exists j ∈ R′ such that T∞[j . . j + 2ℓ) = Ỹ . Let j′ =

lpos(T∞[j−1 . . j+2ℓ)). Since j−1 ∈ S, by the consistency condition, we have j′ ∈ S. Moreover,
since for ℓ ≥ 16 we have 2ℓ + 1 ≤ 7τ (recall, that τ = ⌊ ℓ

3⌋), it also holds j′ ∈ comp7(S). This
proves the claim as this mapping from F ′

2ℓ to comp7(S) is injective.

29

2. By definition of F ′
2ℓ, Ỹ ∈ F2ℓ \ F

′
2ℓ implies i > 1 and i− 1 ∈ R. We also have i ∈ R. This

implies that p := per(T∞[i−1 . . i+3τ−2)) and p′ := per(T∞[i . . i+3τ−1)) = per(Ỹ [1 . . 3τ − 1])
satisfy p, p′ ≤ 1

3τ . By periodicity lemma, p = p′ and hence T∞[i−1] = T∞[i−1+p′] = Ỹ [p′].

Let BWTℓ[y . . y
′] = cδ ∈ N

+ be a run in RL(BWTℓ). Let Y = T [c . . c + ℓ) and assume
S ∩ [c . . c + τ) = ∅. Consider Ỹ ∈ Y := {T∞[SA[i] . . SA[i] + 2ℓ) : i ∈ [y . . y′]}. Let moreover
[ỹ . . ỹ′] ⊆ [y . . y′] be the range of all indices i such that T∞[SA[i] . .] starts with Ỹ for i ∈ [ỹ . . ỹ′].
Observe, that Ỹ ∈ F2ℓ and thus, by the above lemma, whenever Ỹ ∈ F2ℓ \ F ′

2ℓ, we have
BWT2ℓ[ỹ . . ỹ

′] = Ỹ [p]ỹ
′−ỹ+1 = Y [p]ỹ

′−ỹ+1, where p = per(Ỹ [1 . . 3τ − 1]) = per(Y [1 . . 3τ − 1]),
i.e., BWT2ℓ[ỹ . . ỹ

′] is a unary string consisting of the symbol that depends only on Y .
With this in mind, whenever during the processing of RL(BWTℓ) in the algorithm of Sec-

tion 5.3.1 we encounter a run BWTℓ[y . . y
′] = cδ ∈ N

+ such that S∩ [c . . c+ τ) = ∅ (to recognize
such runs, we can simply check if S∩ [c . . c+τ) = ∅, since by definition of BWTℓ, the occurrence
T [c . . c+ ℓ) is the leftmost in T), we set (letting Y = T [c . . c+ ℓ))

BWT2ℓ[y . . y
′] = Y [per(Y [1 . . 3τ − 1])]y

′−y+1.

The resulting BWT2ℓ is correct, except for SA ranges corresponding to Ỹ ∈ F ′
2ℓ. Since there

are at most |comp7(S)| = O(z) such Ỹ , we can individually find each such range and correct the
corresponding symbols of BWT2ℓ.

In the rest of the section we focus on implementing the correction algorithm. Observe
first that to compute F ′

2ℓ, it suffices to iterate through positions in comp9(S). By the density
condition, whenever for adjacent elements si < si+1 we have si+1 − si > τ , then si + 1 ∈ R′.
For each such si, we collect a symbol-string pair (T [si], T∞[si +1 . . si + 1+ 2ℓ)). The resulting
collection contains O(z) pairs. If we now sort it according to the strings, we can easily tell
whether the range BWT[ỹ . . ỹ′] corresponding to each Ỹ ∈ F ′

2ℓ is uniform or not. If so, we know
the preceding symbol and the frequency of Ỹ is obtained using Theorem 6.21. Otherwise we
only need the frequency. The main challenge in the correction phrase is to compute the starting
index ỹ of the range in SA corresponding to each Ỹ ∈ F ′

2ℓ. More precisely, for each X ∈ F ′
2ℓ it

suffices to compute a local rank rX = |pos(Ỹ)|, where4

pos(X) :=
{
j ∈ R : T∞[j . . j + 2ℓ) ≺ X and T∞[j . . j + ℓ) = X[1 . . ℓ]

}
.

The outline of the algorithm for computing all rX is similar to [45, Section 6.1.2]. How-
ever, nearly every step needs to be redesigned to use only O(z polylog n) space. Motivated by
Lemma 5.29, we focus on the properties of runs of consecutive positions in R. We first partition
such runs into classes where the computation can be done independently.

Equivalent Runs We say that two positions i, j ∈ R are R-equivalent if there exists a primitive
string H of length |H| ≤ 1

3τ such that both T [i . . i+ τ) and T [j . . j + τ) are substrings of H∞.
It is easy to see that if i and j are R-equivalent, then there is exactly per(T [i . . i + τ)) =
per(T [j . . j + τ)) choices for H. For each equivalence class of this relation, we designate a
unique H ∈ Σ+ and call it the R-root of j ∈ [i], denoting R-root(j) = H. Then, i is R-equivalent
to j if and only if R-root(i) = R-root(j).

Let us now explain how we choose R-roots. Let j ∈ R and let p = per(T [j . . j + τ)). We
define R-root(j) := T [j′ . . j′ + p), where j′ = min{j′′ ∈ R : j′′ is R-equivalent to j}. Crucially,
in the above definition it always holds j′ ∈ R′. This allows us to efficiently compute the R-root

4To ease the notation, in the rest of this section we use X to denote a generic string from F ′

2ℓ, but remark
that such X corresponds to Ỹ in Section 5.3.1.

30

for any j ∈ R as follows. Let (F1, . . . , Fk) be the sequence such that {F1, . . . , Fk} = F ′
2τ and

lpos(F1) < . . . < lpos(Fk). Consider the string Troot defined as follows:

Troot := T ·

(
k−1⊙

i=0

Fk−i ·#i

)
,

where #i are distinct sentinel symbols not occurring in T .
Let j ∈ R and assume we computed p = per(T [j . . j+ τ)) using Theorem 6.7 (note that here

we are guaranteed that p ≤ τ
3 thus computing the exact period is equivalent to a 2-period query).

To compute R-root(j), we first find the rightmost occurrence Troot[j
′ . . j′ + τ) of T [j . . j + τ) in

Troot. Clearly, we must have j′ > |T |. We then binary search b and e such that T [j′ . . j′ + τ)
occurs inside Troot[b . . e) = Ft for some t ∈ [1 . . k] and obtain R-root(j) = Troot[b . . b + p).
Moreover, ∆ := (p+ b− ileft) mod p < p satisfies R-root(j) = T [j +∆ . . j +∆+ p).

Lemma 5.30. Given the LZ77 parsing and a string synchronizing set S of text T satisfying
|comp9(S)| = O(z), we can in O(z log4 n) time construct a data structure, than given j ∈ R,
returns in O(log4 n) time a value ∆ < p = per(T [j . . j + τ)) ≤ 1

3τ satisfying R-root(j) =
T [j +∆ . . j +∆+ p).

Proof. The sequence (F1, . . . , Fk) is easily obtained using comp9(S) and Theorems 6.3 and 6.11.
We then construct the LZ77 parsing of Troot by taking the parsing of T and appending 2k phrases.
We then feed the resulting parsing to Theorem 6.12.

The usefulness of R-roots is due to the following two properties. First, if j ∈ R \ R′ then
R-root(j) = R-root(j − 1). Second, if X = T∞[j . . j + 2ℓ) where j ∈ R′, then every j′ ∈ pos(X)
satisfies R-root(j′) = R-root(j). Thus, we can first partition the set of runs in R according to
R-roots and then, to compute pos(X), it suffices to search through j′ with the same R-root as j.

Equivalent Positions For j ∈ R, let αj = min{j′ ≥ j : j′ 6∈ R} + 3τ − 2. Recall [45,
Section 6.1.2] that runs of consecutive positions in R (and hence in particular positions in R′)
are easily identified as follows. Denote S = {s1, . . . , sn′}, where si < sj if i < j, and let s0 = 0,
sn′+1 = n− 2τ + 2. Then, by density condition, it holds:

R′ = {si + 1 : i ∈ [0 . . n′] and si+1 − si > τ}.

Furthermore, whenever j−1 = si for j ∈ R, then αj = si+1+2τ −1. Thus, by [45, Fact 3.2], for
any j ∈ R, T [j . . αj) is the longest prefix of T [j . . n] having period p = per(T [j . . j + 3τ − 1)).

For j ∈ R we define type(j) = +1 if T [αj] ≻ T [αj − p] and type(j) = −1 otherwise, where
p = per(T [j . . αj)). Similarly as for R-root, if j ∈ R \ R′, then type(j) = type(j − 1). Moreover,
if X = T∞[j . . j + 2ℓ) ⊆ F ′

2ℓ (where j ∈ R′) is such that αj − j < 2ℓ and type(j) = −1
then type(j′) = −1 holds for all j′ ∈ pos(X). With the above observations in mind, let R− =
{j ∈ R : type(j) = −1}, R+ = R \ R−, R′− = R′ ∩ R− and R′+ = R′ ∩ R+. Moreover, let
F ′−
k := {T∞[j . . j+k) : j ∈ R′− and αj−j < k}. The set F ′+

k is defined analogously. The above
observation can then be stated as follows: if X ∈ F ′−

2ℓ then any j ∈ pos(X) satisfies j ∈ R−.
Note also that any such j satisfies αj − j < 2ℓ. We can therefore focus on computing rX only
for X ∈ F ′−

2ℓ . The set F ′+
2ℓ is processed symmetrically, and strings X corresponding to j ∈ R′

satisfying αj − j ≥ 2ℓ are processed separately.
To efficiently use R-roots as a mean of comparing equivalent runs in R, we classify individual

positions within a run. Let H = R-root(j) for j ∈ R. Observe that the following R-decomposition
T [j . . αj) = H ′HkH ′′ (where k ≥ 1, H ′ is a proper prefix of H, and H ′′ is a proper suffix of
H) is unique. We call the triple R-sig(j) := (|H ′|, k, |H ′′|) the R-signature of j ∈ R and the

31

value R-exp(j) = k its R-exponent. Note that |H ′| in the R-signature is the value ∆ computed
in Lemma 5.30. It is hence easy to use Lemma 5.30 and Theorem 6.3 to compute αj and the
R-signature for each j ∈ R in O(log4 n) time. Moreover, if X = T∞[j . . j +2ℓ) for j ∈ R′−, then
it holds R-exp(j′) ≤ R-exp(j) for all j′ ∈ pos(X). Thus, letting

r=X := |{j′ ∈ pos(X) : R-exp(j′) = R-exp(j)}|,

r<X := |{j′ ∈ pos(X) : R-exp(j′) < R-exp(j)}|,

we have rX = r=X + r<X . We will compute the terms separately.

Computing r=X Denote by (zi)i∈[1. .|R′−|] a sequence containing all j ∈ R′− sorted first accord-
ing to their R-root, second (in case of ties) according to |H ′′| in their R-signature, and third (in
case there are still ties) according to suffix T [αj . . n]. We can use this sequence to compute r=X ,
where X = T∞[j . . j + 2ℓ) ∈ F ′−

2ℓ for j ∈ R′−, as follows.
Let X = X ′X ′′ where |X ′| = αj − j < 2ℓ (by the consistency of S, the decomposition does

not depend on the choice of j). Then, let i′ ∈ [1 . . |R′−|] be the smallest index such that j′ = zi′

satisfies R-root(j′) = R-root(j) and X ′′ is a prefix of T [αj′ . . n] (at least one such i′ exists since
j occurs in (zi)i∈[1. .|R′−|]). By definition of the sequence (zi)i∈[1. .|R′−|], i

′ can be computed using
binary search and LCE queries (Theorem 6.3). The value r=X is then equal to the number of
indices i′′ ∈ [1 . . i′) such that j′ = zi′′ satisfies R-root(j′) = R-root(j) and the factor H ′Hk in
the R-decomposition of j′ is at least as long as for j. To compute the number of such i′ we store
a collection of 2D points containing a point for each j ∈ R′− with its position in (zi)i∈[1. .|R′−|] as
an x-coordinate and |H ′Hk| in its R-decomposition as its y-coordinate. Computing r=X then (as
explained above) corresponds to a 3-sided orthogonal range counting query [19].

The above algorithm requires storing and searching sets of size |R′−| which can be as large
as Ω(nτ). We observe, however, that the used sequences can be compressed, and furthermore,
a compressed representation of this (or more precisely, sufficiently similar) sequence can be
computed quickly, given comp9(S) and the LZ77 parsing of T . The key observation is that
the relevant for the algorithm information about each j ∈ R′− is the length-Θ(ℓ) substring of
T located around position αj . More precisely, we first note that since |X ′′| ≤ ℓ + 3 ≤ 2ℓ, to
compute i′ we only access substrings T∞[αi . . αi + 2ℓ) where i ∈ R′−. On the other hand, since
|X ′| < 2ℓ, to determine the R-root and select all j′ ∈ R′− for which the factor H ′Hk in the R-
decomposition is at least as long as for j, it suffices to know T [αi−2ℓ . . αi), i ∈ R′−. Thus, rather
than (zi)i∈[1. .|R′−|], the above algorithm can be executed on the sequence of strings Z[1 . . |R′−|]
defined as follows. For i ∈ [1 . . |R′−|],

Z[i] := T∞[αzi − 2ℓ . . αzi + 2ℓ).

Using Z directly is problematic, since RL(Z) may have multiple runs of the same string and
hence we may have |RL(Z)| = ω(z polylog n). We note, however, that |Z| = O(z) holds, where
Z := {Z[i] : i ∈ [1 . . |R′−|]}. To see this, note that if T∞[i . . i+ |Z|) = Z for some Z ∈ Z, then
by consistency condition i+ 2ℓ = αi′ for some i′ ∈ R. Similarly, if j ∈ R, then αj − 2τ + 1 ∈ S.
Thus, i+2ℓ−2τ +1 ∈ S. In particular, j′ = lpos(Z) satisfies j′+2ℓ−2τ +1 ∈ S. This mapping
is injective, and moreover, since |Z| = 4ℓ and 2ℓ ≤ 7τ , we have j′ + 2ℓ− 2τ + 1 ∈ comp9(S).

Combined with the observation that two equal elements of Z are always either both included
or both excluded, when computing r=X , we thus instead consider the string sequence Z ′ defined
by (z′i)i∈[1. .|R′−|] containing all elements j ∈ R′− sorted first according to their R-root, second
according to |H ′′|, third according to the substring T∞[αj . . αj + 2ℓ), and finally according
to the reversed substring T∞[αj − 2ℓ . . αj). Then, |RL(Z ′)| = O(z) holds, and RL(Z ′) can be
computed using LZ77 of T , comp9(S), and Theorems 6.3 and 6.11. The query algorithm remains

32

unchanged, except each 2D point now represents a run of strings, and hence is augmented with
the weight corresponding to its frequency.

Lemma 5.31. Let T be a length-n text. Given the LZ77 parsing and a string synchronizing set
S of T satisfying |comp9(S)| = O(z), the set {r=X}X∈F ′−

2ℓ
can be computed in O(z log4 n) time.

Computing r<X Let us start with the following inefficient algorithm. Consider sorting all
j ∈ R′− first by R-root(j) and then by R-exp(j). Let

H := {R-root(j) : j ∈ R}.

For H ∈ H, let R−
H := {j ∈ R− : R-root(j) = H} and R′−

H := R′ ∩ R−
H .

Let us fix some H ∈ H. The algorithm processes all elements of R′−
H in rounds. In round

i, we consider all positions in the set Qi := {j ∈ R′−
H : R-exp(j) = i}. We execute rounds in

increasing order, skipping i for which Qi = ∅. The algorithm maintains an array C[0 . . |H|) that
satisfies the following invariant: at the end of round i, C[t] = |{j ∈ R−

H,t : R-exp(j) ≤ i}|, where

R−
H,t := {j ∈ R−

H : R-sig(j) ∈ {t} × N
2}. Round i proceeds as follows.

1. First, we look at |Qi−1| and if Qi−1 = ∅, we increment all C[0 . . |H|) by (i − iprev − 1) ·∑
i′≥i |Qi′ |, where iprev = max{i′ < i : Qi′ 6= ∅}. This accounts for skipped exponents.

After this, it holds C[t] = |{j ∈ R−
H,t : R-exp(j) ≤ i− 1}| for all t ∈ [0 . . |H|).

2. Now, iterate through X = T∞[j . . j+2ℓ) ∈ F ′−
2ℓ satisfying R-root(j) = H and R-exp(j) = i.

For each such j, we answer r<X = C[t] + . . .+ C[|H| − 1], where R-sig(j) ∈ {t} × N
2 (note

that R-sig(j) does not depend on the exact choice of j). Since all considered j satisfy
j ∈ Qi, there is nothing to do in this step when Qi = ∅. Hence, skipping such Qi is
correct.

3. Then, for j ∈ Qi add one to all counters in the range to C[0 . . t], where R-sig(j) ∈ {t}×N
2.

This accounts for j ∈ R′−
H having R-exp(j) = i.

4. Finally, increment C[0 . . |H|) by
∑

i′>i |Qi′ |, accounting j ∈ R−
H \R′−

H having R-exp(j) = i.

If we represent C using a balanced BST, each update in the algorithm takes O(log n) time.
The above algorithm processes each element j ∈ R′−

H separately. To turn it into an efficient
algorithm for compressible strings (obtaining a runtime of the form O(z polylog n)), we first
note that the only used information for j ∈ R′−

H is R-sig(j). Moreover, two elements with equal
R-signatures are processed in the same way. We can thus process them together, i.e., in step
3, rather than by one, we increment C[0 . . t] by the frequency of a given signature. Finally, we
note that all X = T∞[j . . j + 2ℓ) considered in step 2 satisfy αj − j < 2ℓ, thus we only need to
execute rounds up to imax := ⌈2ℓ/|H|⌉. Consequently, the algorithm remains correct if instead
of using R-sig(j) for all j ∈ R′−, we use truncated R-signatures defined as:

R-sig′(j) :=

(
|H ′|, k, |H ′′|

)
if k <

⌈
2ℓ
|H|

⌉
,

(
0,
⌈

2ℓ
|H|

⌉
, |H ′′|

)
otherwise,

where R-sig(j) = (|H ′|, k, |H ′′|). The following lemma ensures that this (assuming truncating
signatures is combined with group processing of equal signatures) significantly improves the
runtime. Note that we need to count separately for each H ∈ H, as (truncated) R-signatures
for different R-roots can be equal.

Lemma 5.32. ∑

H∈H

∣∣{R-sig′(j) : j ∈ R′−
H

}∣∣ = O(z).

33

Proof. Let us fix H ∈ H.
Consider first j ∈ R′−

H such that R-sig(j) ∈ N×{k} ×N, where k < ⌈2ℓ/|H|⌉. We injectively
assign R-sig′(j) = R-sig(j) to an element of comp8(S). Let ileft = lpos(T [j− 1 . . αj +1)) (taking
one symbol past the periodic region ensures that the mapping is injective). By the consistency of
S, it holds ileft ∈ S. Furthermore, by k < ⌈2ℓ/|H|⌉, it holds αj−j+2 ≤ (k+2)|H| ≤ 2ℓ+2|H| ≤
8τ (since 2ℓ ≤ 7τ and |H| ≤ 1

3τ). Thus, for some t ∈ [1 . . z], ileft ∈ S∩ (et− 8τ . . et] ⊆ comp8(S).
This map remains injective even considering all H ∈ H.

Consider now j ∈ R′−
H such that R-sig(j) ∈ N×{k}×{|H ′′|}, where k ≥ ⌈2ℓ/|H|⌉. We again

construct an injective map of R-sig′(j) to comp8(S). Denote ℓtail = |H| · ⌈2ℓ/|H|⌉ + |H ′′|. Let
ileft = lpos(T [αj − ℓtail . . αj + 1)). By the consistency condition of S, for every j ∈ R it holds
αj − 2τ +1 ∈ S. Thus, since ileft ∈ R and αileft = ileft+ ℓtail, it holds ileft+ ℓtail− 2τ +1 ∈ S. We
have 6τ ≤ 2ℓ ≤ ℓtail+1 ≤ 2ℓ+2|H| ≤ 8τ . Thus, for some t ∈ [1 . . z], we have et−8τ < ileft ≤ et
and so ileft + ℓtail − 2τ + 1 ∈ S ∩ (et − 4τ . . et + 6τ] ⊆ comp8(S). The map remains injective
considering all H ∈ H.

Using the above lemma, the set of distinct truncated R-signatures, along with their frequen-
cies, can be constructed from the LZ77 parsing and comp9(S) using Theorems 6.3 and 6.21.

Lemma 5.33. Let T be a length-n text. Given the LZ77 parsing and a string synchronizing set
S of T satisfying |comp9(S)| = O(z), the set {r<X}X∈F ′−

2ℓ
can be computed in O(z log4 n) time.

Putting Things Together It remains to explain how to compute rX for X = T∞[j . . j+2ℓ) ∈
F ′
2ℓ where j ∈ R′ and αj − j ≥ 2ℓ. We observe that for such X, r=X and r<X can be obtained

during the computation of {r=X : X ∈ F ′−
2ℓ } and {r<X : X ∈ F ′−

2ℓ }.
More precisely, after completing the last round during the processing of some contiguous

subsequence of all j′ ∈ R′−
H , we can set, for every X = T∞[j . . j+2ℓ) ∈ F ′

2ℓ, such that R-root(j) =
H and αj−j ≥ 2ℓ, r<X := C[t]+ . . .+C[|H|−1], where R-sig(j) ∈ {t}×N

2. Similarly, computing
r=X for each X = T∞[j . . j + 2ℓ) ∈ F ′

2ℓ with ej − j ≥ 2ℓ only requires one query on the 2D
orthogonal range counting data structure. Thus, handling all X ∈ F ′

2ℓ \
(
F ′−
2ℓ ∪ F ′+

2ℓ

)
is not more

expensive than handling F ′−
2ℓ and F ′+

2ℓ .
By combining Proposition 5.28 with Lemmas 5.31 and 5.33, we therefore obtain the following

result and consequently the main result of this section.

Proposition 5.34. Let T be a string of length n, and let ℓ = 2q be such that q ∈ [4 . . ⌈log n⌉).
Then, given RL(BWTℓ) and the LZ77 parsing of T , the sequence RL(BWT2ℓ) can be constructed
in O((r + z) log5 n) time.

By Proposition 5.23 we can compute BWTℓ for ℓ = 2q and q < 4 in O(z log4 n) time. For
q ≥ 4, we use Proposition 5.34. Thus, by the upper bound r = O(z log2 n) from Theorem 3.2,
we obtain the main result of this section.

Theorem 5.35. There exists a Las-Vegas randomized algorithm that, given the LZ77 parsing of
a text T of length n, computes its run-length compressed Burrows–Wheeler transform in O((r +
z) log6 n) = O(z log8 n) time.

6 Auxiliary Recompression-Based Data Structures

For a context-free grammar G, we denote by ΣG and NG, the set of non-terminals and the set
of terminals, respectively. The set of symbols is SG := ΣG ∪NG . If the grammar G is clear from
context, the subscripts G might be omitted.

A straight-line grammar (SLG) is a context-free grammar G such that:

34

• each non-terminal A ∈ N has a unique production A → rhs(A), where rhs(A) ∈ S∗,
• the set of symbols S admits a partial order ≺ such that B ≺ A if B appears in rhs(A).

A simple inductive argument shows that, for each symbol A ∈ S, the language L(A) consists of a
unique string, which we call the expansion of A and denote exp(A). In particular, the expansion
exp(S) of a starting symbol S ∈ S is the unique string represented by G.

The parse tree T (A) of a symbol A ∈ S is a rooted ordered tree with each node ν associated to
a symbol s(ν) ∈ S. The root of T (A) is a node ρ with s(ρ) = A. If A ∈ Σ, then ρ has no children.
If A ∈ N and rhs(A) = B1 · · ·Bk, then ρ has k children, and the subtree rooted at the ith child
is (a copy of) T (Bi). The height height(A) of a symbol A ∈ S is defined as the height of its
parse tree T (A). In other words, height(A) = 0 if A ∈ Σ and height(A) = 1+maxki=1 height(Bi)
if rhs(A) = B1 · · ·Bk. The parse tree TG of an SLG G is defined as the parse tree T (S) of the
starting symbol S, and the height of G is defined as the height of S.

Each node ν of T (A) is associated with a fragment exp(ν) of exp(A) matching exp(s(ν)).
For the root ρ, we define exp(ρ) = exp(A)[1 . . | exp(A)|] to be the whole exp(A). Moreover,
if exp(ν) = exp(A)[ℓ . . r), rhs(s(ν)) = B1 · · ·Bk, and ν1, . . . , νk are the children of ν, then
exp(νi) = exp(A)[ri−1 . . ri), where ri =

∑i
j=1 | exp(Bj)| for 0 ≤ i ≤ k. This way, the fragments

exp(νi) form a partition of exp(ν), and exp(νi) matches exp(s(νi)) (as claimed).
Without loss of generality, we assume that each symbol A ∈ S appears as s(ν) for a node

ν of TG; the remaining symbols can be removed from G without affecting the string generated
by G.

Straight-Line Programs We say that a straight-line grammar G is in Chomsky normal form
(CNF) if |rhs(A)| = 2 holds for each A ∈ N . A straight-line grammar in CNF is called a straight-
line program (SLP). An SLP G of size g (with g symbols) representing a text T of length n can be
stored O(g) space (O(g log n) bits) with each non-terminal A ∈ N storing rhs(A) and | exp(A)|.
This representation allows for efficiently traversing the parse tree TG : given a node ν represented
as a pair (s(ν), exp(ν)), it is possible to retrieve in constant time an analogous representation of
a child νi of ν given its index i ∈ {1, 2} (among the children of ν) or an arbitrary position T [j]
contained in exp(νi).

Rytter [76] provided an efficient algorithm that converts the LZ77 representation of a string
into an SLP generating it. Unfortunately, he assumed a weaker non-self-referential variant of
LZ77, where T [i . . i+ ℓ) is a previous factor only if there exists i′ ∈ [1 . . i− ℓ] with LCE(i, i′) ≥ ℓ.
In the following theorem, we adapt his methods to the self-referential variant allowing i′ ∈ [1 . . i).

Theorem 6.1. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, an SLP G of size
O(f log n) and height O(log n) generating T can be constructed in O(f log n) time.

Proof. Rytter [76, Section 3] defined AVL grammars as SLPs satisfying the following extra
condition: if rhs(A) = BC for A ∈ N , then |height(B) − height(C)| ≤ 1. This guarantees [76,
Lemma 1] that height(A) = O(log | exp(A)|) holds for every A ∈ S.

The algorithm of [76] builds G incrementally: each step involves adding a symbol A with a
desired expansion exp(A), as well as a bounded number of auxiliary symbols. In the last step,
the starting symbol S with exp(S) = T is added. Final post-processing includes pruning the
grammar to remove symbols not occurring in TG . Each step is of one of three kinds:

(a) A new terminal symbol can be added to G in O(1) time (along with no auxiliary symbols).
(b) Given two symbols B,C ∈ S, a new symbol A with exp(A) = exp(B) exp(C) can be added

to G in O(1+ |height(B)−height(C)|) time along with O(|height(B)−height(C)|) auxiliary
symbols [76, Lemma 2].

35

(c) Given a symbol A ∈ S and two positions 1 ≤ i ≤ j ≤ | exp(A)|, a new symbol B
with exp(B) = exp(A)[i . . j] can be added to G in O(1 + log | exp(A)|) time along with
O(log | exp(A)|) auxiliary symbols [76, Lemma 3 and Theorem 2].

Now, a non-self-referential LZ77-like parsing T = F1 · · ·Ff can be processed by iteratively
constructing symbols Aj with exp(Aj) = F1 · · ·Fj for j ∈ [1 . . f]. At each iteration j, a symbol
Bj with exp(Bj) = Fj is first constructed. If Fj = T [i . . i+ ℓ) is a previous fragment represented
by (i′, ℓ) such that i′ ∈ [1 . . i − ℓ] and LCE(i, i′) ≥ ℓ, then Fj = (F1 · · ·Fj−1)[i

′ . . i′ + ℓ) =
exp(Aj−1)[i

′ . . i′ + ℓ− 1], so Bj can be constructed using operation (c). Otherwise Fj = T [i] is
a single character (not occurring in F1 · · ·Fj−1), so Bj can be constructed using operation (a).
Finally, Aj is obtained based on Aj−1 and Bj using operation (b). Consequently iteration j
involves O(log |F1 · · ·Fj |) = O(log n) new symbols and can be implemented in O(log n) time,
for a total of O(f log n) symbols and O(f log n) time across all iterations.

In order to apply the same scheme for a (potentially) self-referential LZ77-like parsing, we
need to specify the construction of Bj for a previous fragment Fj = T [i . . i + ℓ) represented
with i′ ∈ (i− ℓ . . i) such that LCE(i, i′) ≥ ℓ. Note that P := T [i′ . . i) is then a string period of
Fj and, consequently, Fj = P∞[1 . . ℓ]. Thus, we first use operation (c) to construct a symbol
Pj,0 representing P ; this costs O(1 + log |F1 · · ·Fj−1|) = O(log n) time and auxiliary symbols.
Next, for k ∈ [1 . . ⌈log ℓ

|P |⌉], we use operation (b) to construct symbols Pj,k representing P 2k .
Note that each application of operation (b) involves O(1) time and no auxiliary symbols, for
a total of O(log ℓ

|P |) = O(log ℓ) = O(log n) time and symbols. Finally, we derive Bj using

operation (c) based on Fj = P∞[1 . . ℓ] = exp(Pj,k′)[1 . . ℓ], where k′ = ⌈log ℓ
|P |⌉; this costs

O(log |P 2k
′

|) = O(k′ + log |P |) = O(log ℓ) = O(log n) time and symbols. Overall, iteration j
still costs O(log n) time and symbols.

Run-Length Straight-Line Programs A run-length straight-line program (RLSLP) is a
straight-line grammar G whose non-terminals can be classified into pairs A → BC, where B,C ∈
S and B 6= C, and powers A → Bk, where B ∈ S and k ≥ 2 is an integer. Analogously to an
SLP, an RLSLP of size g (with g symbols) representing a text T of length n can be stored in
O(g) space (O(g log n) bits) allowing efficient traversal of the parse tree TG.

Recompression Recompression [40] is a technique of computing a small and locally consis-
tent RLSLP G representing a given text T . Recompression is based on a sequence of strings
T1, . . . , Tr ∈ S∗ such that Tr = S, where S is the starting symbol, the string Tj−1 for 2 ≤ j ≤ r
can be obtained from Tj by replacing some non-terminals A in Tj with rhs(A), and T1 = T .

Recompression proceeds iteratively starting from T1 = T . As long as |Tj | > 1, the algorithm
partitions Tj into blocks using one of the following two schemes:

• Run-length encoding: If j is odd, then Tj is partitioned into maximal blocks consisting
of equal symbols (runs).

• Alphabet partitioning: If j is even, then the set of symbols occurring in Tj is decom-
posed into left symbols and right symbols, respectively (implementation of this process
differs between variants of recompression). Whenever Tj [i] is a left symbol and Tj [i+1] is
a right symbol, Tj [i . . i+1] forms a length-2 block. The remaining positions form length-1
blocks.

Then, for blocks Tj [ℓ . . r] of length at least 2, new non-terminals A with rhs(A) = Tj [ℓ . . r]
are created. This process is implemented so that matching blocks get the same non-terminal.
Finally, Tj+1 is obtained from Tj by collapsing each block Tj [ℓ . . r] of length at least 2 to the
corresponding non-terminal. When |Tj | = 1, the procedure terminates (resulting in r := j), and

36

the only symbol of Tj is declared to be the starting symbol of G. We then say that G is an
r-round recompression RLSLP, noting that the height of G does not exceed r − 1.

A recompression RLSLP can be constructed efficiently based on any LZ77-like representation.

Theorem 6.2. There exists an algorithm that, given an LZ77-like parsing of a string T [1 . . n]
into f phrases, constructs in O(f log2 n) time an O(log n)-round recompression RLSLP G of size
O(f log2 n) generating T .

Proof. Given the LZ77-like parsing of T , the algorithm first uses Theorem 6.1 to represent T
as an SLP Ĝ of size |SĜ | = O(f log n). Then, using the algorithm of Jeż [38, 39] (see also [37,

Section 4]), Ĝ is converted into an O(log n)-round recompression RLSLP G of size O(|SĜ | log n) =

O(f log2 n). The running time of the two steps is O(f log n) and O(f log2 n), respectively.

LCE Queries I [37] showed that LCE queries can be answered in O(r) time in a string T
represented with an r-round recompression RLSLP. Since a recompression RLSLP generating
the reversed string T̄ can be obtained by reversing rhs(A) for each non-terminal A, the same
holds for LCE queries in T̄ . Due to Theorem 6.2, this yields the following result.

Theorem 6.3. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log2 n) time construct a data structure that supports LCE queries in T and in its reverse T̄
in O(log n) time.

6.1 Pattern Matching in RLSLPs

Given a pattern P and a text T , a fragment T [j . . j + |P |) matching P is called an occurrence
of P in T . We denote the set of starting positions of occurrences of P in T by Occ(P, T) = {j ∈
[1 . . |T | − |P |+1] : P = T [j . . j + |P |)}. In this section, we characterize the occurrences of P in
T based on the parse tree T of an RLSLP G representing T . The underlying concepts originate
from multiple works on pattern matching in compressed and dynamic strings [2, 33, 65, 20].

Let x = T [ℓ . . r) be a non-empty fragment of T . The hook of x, denoted hook(x), is the lowest
node ν in T such that exp(ν) contains x. Equivalently, hook(x) is the lowest common ancestor
of the leaf representing T [ℓ] and the leaf representing T [r − 1] in T . For |x| > 1, the anchor
of x, denoted anch(x), is the length a of the longest prefix y of x such that hook(y) 6= hook(x).
For |x| = 1, we define anch(x) = 0. For a node ν of T and an integer a ∈ [0 . . |P |), let
Occ(P, ν, a) = {j ∈ Occ(P, T) : hook(T [j . . j + |P |)) = ν and anch(T [j . . j + |P |)) = a}. The
following observation characterizes this set.

Observation 6.4. Let ν be node of T with s(ν) = A and exp(ν) = T [ℓ . . r), and let P = PL ·PR

be a non-empty pattern. Then Occ(P, ν, |PL|) 6= ∅ if and only if one of the following holds:

1. A ∈ Σ, PL = ε, and PR = A. Then Occ(P, ν, |PL|) = {ℓ}.
2. A → BC, PL 6= ε is a suffix of exp(B), and PR 6= ε is a prefix of exp(C). Then

Occ(P, ν, |PL|) = {ℓ+ | exp(B)| − |PL|}.
3. A → Bk, PL 6= ε is a suffix of exp(B), and PR 6= ε is a prefix of exp(B)k−1. Then

Occ(P, ν, |PL|) =
{
ℓ+ i| exp(B)| − |PL| : i ∈

[
1 . . k −

⌈ |PR|
| exp(B)|

⌉]}
.

Local consistency of recompression RLSLPs implies that the occurrences of any pattern have
just a few different anchors and that a set of few potential anchors can be computed efficiently.

Lemma 6.5 ([33, Corollary 10.4], [37, Lemma 10]). For a pattern P and a text T represented
by an RLSLP G, define anch(P, T) = {anch(T [j . . j + |P |)) : j ∈ Occ(P, T)}. If G is an r-round
recompression RLSLP, then |anch(P, T)| = O(r). Moreover, given any j ∈ Occ(P, T), a superset
Anch(P) ⊇ anch(P, T) of size |Anch(P)| = O(r) can be computed in O(r) time.

37

Internal Pattern Matching Queries in LZ77-Compressed Strings For a (static) text
T , internal pattern matching queries (IPM queries) [51] given two fragments x, y of T with
|y| < 2|x|, ask for the occurrences of x contained within y. Due to the assumption |y| < 2|x|,
the output Occ(x, y) can be represented using a single arithmetic progression [51, Lemma 2.1];
see also [14, 70]. If T is uncompressed, then IPM queries can be answered in O(1) time after O(n)-
time preprocessing [51, 48]. Combining Theorems 6.2 and 6.3, Observation 6.4, and Lemma 6.5,
we can answer IPM queries in LZ77-compressed strings in O(log3 n) time.

Theorem 6.6. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log2 n) time construct a data structure that supports IPM queries in T in O(log3 n) time.

Proof. Our data structure consists of a recompression RLSLP G generating T (constructed
using Theorem 6.2), and a component for LCE queries in T and in its reverse T̄ (built using
Theorem 6.3). Thus, the construction time is O(f log2 n).

Given x = T [ℓx . . rx) and y = T [ℓy . . ry), the query algorithm works as follows. First,
the algorithm applies Lemma 6.5 to obtain a set Anch(x) of potential anchors. Since G is
an O(log n)-round recompression RLSLP, we have |Anch(x)| = O(log n), and this step takes
O(log n) time. Next, the algorithm identifies all nodes ν in the parse tree T for which exp(ν)
intersects y = T [ℓy . . ry) on at least |x| positions. Due to |y| < 2|x|, for each of these nodes ν,
the fragment exp(ν) contains position T [ℓy + |x| − 1]. Therefore, it suffices to traverse the path
from the root of T towards the leaf representing T [ℓy + |x| − 1] as long as the intersection is at
least |x| positions. Consequently, this step takes O(log n) time, and it results in O(log n) nodes
ν. We call them potential hooks because the hook any occurrence of x contained in y must be
one of these nodes.

For each potential anchor a ∈ Anch(x) and for each potential hook ν, the algorithm constructs
Occ(x, ν, a) using Observation 6.4. Each of the three cases depending on A := s(ν) is easy to
implement since exp(ν) = T [ℓ . . r), PL = T [ℓx . . ℓx + a), and PR = T [ℓx + a . . rx) are all given
as fragments of T . The case of A ∈ Σ is particularly simple and costs O(1) time. The case of
A → BC requires computing the longest common suffix of PL and exp(B) = T [ℓ . . ℓ+ | exp(B)|),
and the longest common prefix of PR and exp(C) = T [ℓ + | exp(B)| . . r), which reduces to an
LCE query in T̄ and T , respectively. Similarly, the case of A → Bk requires computing the
longest common suffix of PL and exp(B) = T [ℓ . . ℓ+ | exp(B)|), and the longest common prefix
of PR and exp(B)k−1 = T [ℓ+ | exp(B)| . . r). Summing up, retrieving Occ(x, ν, a) for a potential
anchor a ∈ Anch and potential hook ν costs O(log n) time.

Finally, the algorithm filters occurrences contained in y, that is, starting in [ℓy . . ry − |x|],
shifts the starting positions by ℓy − 1 (so that they become relative to y), and takes the union
across potential anchors a ∈ Anch(x) and potential hooks ν. This post-processing takes O(log2 n)
time; the resulting set Occ(x, y) must form an arithmetic progression [51, Lemma 2.1].

Next, we show that 2-period queries [50] can be answered efficiently in grammar-compressed
strings. A 2-period query, given a fragment x of T , asks to return per(x) or to report that x is
not periodic, that is per(x) > 1

2 |x|. If T is uncompressed, then 2-period queries can be answered
in O(1) time after O(n)-time preprocessing [51, 48, 7] using relatively simple tools. Nevertheless,
in grammar-compressed strings, it is convenient to derive 2-period queries from IPM queries.

Theorem 6.7. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log2 n) time construct a data structure that supports 2-period queries in T in O(log3 n)
time.

Proof. The data structure consists of components for LCE queries (Theorem 6.3) and IPM
queries (Theorem 6.6), both of which take O(f log2 n) to construct. The query algorithm, given

38

x = T [ℓ . . r), makes an IPM query asking for the occurrences of x[1 . . ⌈12 |x|⌉] = T [ℓ . . ⌈ ℓ+r
2 ⌉) in

x[2 . . |x|] = T [ℓ + 1 . . r). If there are no occurrences, then the algorithm reports that x is not
periodic. Otherwise, it retrieves the starting position p of the leftmost occurrence and checks if
p is a period of x, that is whether x[1 + p . . |x|] = x[1 . . |x| − p], using an LCE(ℓ, ℓ + p) query
in T . If this test succeeds, then the algorithm returns p; if the test fails, the algorithm reports
that x is not periodic. This procedure costs O(log3 n) time, dominated by the IPM query.

The correctness follows from the fact that if per(x) ≤ 1
2 |x|, then the first two occurrences of

x[1 . . ⌈12 |x|⌉] in x start at positions 1 and per(x) + 1. The lack of the intermediate occurrences
is due to the primitivity of x[1 . . per(x)], which occurs in x[1 . . 2per(x)] just twice, as a prefix
and as a suffix, by the synchronization property of primitive strings.

6.2 Indexing LZ77-Compressed Texts

In this section, we describe an efficient index that, after preprocessing an LZ77-compressed text
T , given a pattern P , represented by its arbitrary occurrence in T , efficiently reports all the oc-
currences of P in T (returns Occ(P, T)), finds the leftmost occurrence (returns minOcc(P, T)), or
counts the occurrences (returns |Occ(P, T)|). While numerous indexes for dictionary-compressed
strings have been developed (see [30] for a recent overview), ours satisfies two rare properties:
it can be constructed efficiently without decompressing T , and it lets the pattern P to be given
by its occurrence in T (rather than in the plain representation). In particular, we are not aware
of any index answering counting queries and satisfying either property. On the other hand, in
this version of the manuscript we do not optimize the polylog n factors in the running times.

We start with two auxiliary results, and then we proceed to describing our index. For an
RLSLP G with parse tree T and a symbol A ∈ S, let nodes(A) denote the set of nodes ν in T
with s(ν) = A. Moreover, depth(ν) denotes the number of nodes on the path from ν to the root.

Lemma 6.8. Given an RLSLP G, we can in O(|S|) time compute, for any symbol A ∈ S, the
leftmost node first(A) ∈ nodes(A) and the number of nodes count(A) = |nodes(A)|. Moreover, we
can in O(|S|) time construct a data structure that, for any symbol A ∈ S, enumerates nodes(A)
in O(depth(ν)) time per each ν ∈ nodes(A).

Proof. To compute first(A) for each A ∈ S, the algorithm performs a pre-order traversal of the
parse tree T . Upon entering a node ν, the algorithm retrieves A = s(ν) and checks if first(A) has
already been computed. If so, then the algorithm ignores the subtree of ν. Otherwise, first(A)
is set to ν, and the algorithm continues traversing the subtree of ν. If A → Bk, the algorithm
visit only the first child of ν, so that the total running time is O(|S|).

To compute count(A) for each A ∈ S, the algorithm processes symbols in the ≻ order (if
B appears in rhs(A), then B is processed after A). At the beginning, count(A) is initialized
to 1 if A is the starting symbol and to 0 otherwise. Processing a non-terminal A ∈ Σ is void.
Processing a terminal A → BC, the algorithm adds count(A) to both count(B) and count(C).
Processing a terminal A → Bk, the algorithm adds k · count(A) to count(B). This procedure
guarantees that the value count(A) becomes correct before A is processed. The running time is
O(|S|).

Preprocessing for enumerating nodes(A) consists in listing, for each A ∈ S, all the symbols
B for which A appears in rhs(B). The query algorithm, given A ∈ S, recursively enumerates
nodes(B) for each such symbol. Next, for each node ν ∈ nodes(B) and for each position i where
A occurs in rhs(B), the algorithm adds the ith child νi of ν to nodes(A). Since depth(νi) =
depth(ν) + 1, the amortized cost of retrieving νi ∈ nodes(A) is O(depth(νi)).

Lemma 6.9. Suppose that LCE queries in a text T [1 . . n] and in its reverse T̄ can be an-
swered in O(log n) time. Given a multiset P of nO(1) triples (x, y, w), where x and y are

39

fragments of T and w is an integer, we can in O(|P| log2 n) time construct a data structure
that, given a pair (x′, y′) of fragments of T answers the following queries regarding the mul-
tiset W(x′, y′) := {w : (x, y, w) ∈ P, x′ is a suffix of x, and y′ is a prefix of y}: enumerate
W(x′, y′) in O(log2 n + |W(x′, y′)|) time, compute minW(x′, y′) in O(log2 n) time, and com-
pute

∑
W(x′, y′) in O(log2 n) time.

Proof. Let X = {x : (x, y, w) ∈ P} and Y = {y : (x, y, w) ∈ P}. At construction time, the
algorithm orders Y lexicographically and X according to the lexicographic order of the reversed
strings x̄ for x ∈ X . As a result, each y ∈ Y and each x ∈ X is associated to its rank rankY(y)
and rankX (x), respectively. Using LCE queries in T and in T̄ , this step can be implemented in
O(|P| log2 n) time. Next, a range searching data structure of Chazelle [19] is constructed with
a point (rankX (x), rankY(y)) of weight w associated to each (x, y, w) ∈ P. This data structure
costs O(|P| log |P|) time to build, and it answers range reporting queries in O(log |P|+ k) time
(where k is the number of reported points) and semigroup range searching queries in O(log2 |P|)
time. In particular, if the semigroup operation is + or min, we obtain (weighted) range counting
and range minimum queries.

Given a query (x′, y′), the algorithm first finds all x ∈ X with suffix x′ and all y ∈ Y with
prefix y′. Such fragments appear consecutively in X and Y, respectively (due to the way these
multisets are ordered), and the underlying ranges X [ℓX . . rX] and Y[ℓY . . rY] can be found in
O(log2 n) using binary search (with LCE queries in T̄ and T applied in the comparisons). The
multiset W(x′, y′) is precisely the multiset of weights of points in the range [ℓX . . rX]×[ℓY . . rY] in
the data structure of [19]. Hence, the algorithm makes a range query to this data structure with
this range. Depending on whether the task is to enumerate W(x′, y′), compute minW(x′, y′),
or compute

∑
W(x′, y′), this is a range reporting query, a range minimum query, or a range

counting query, respectively. In the latter two cases, the answer is forwarded to the output,
while in the first case, the algorithm transforms the multiset of (weighted) points to a multiset
of weights. The overall query time is O(log2 n) plus O(|W(x′, y′)|) in case of enumeration
queries.

Next, we describe indexes for reporting all the occurrences and finding the leftmost occur-
rence.

Theorem 6.10. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log4 n) time construct a data structure that, for any pattern P represented by its arbitrary
occurrence in T , reports all the occurrences of P in T in O(log3 n+ |Occ(P, T)| log n) time.

Proof. Our data structure consists of a recompression RLSLP G generating T (constructed
using Theorem 6.2), and a component for LCE queries in T and in its reverse T̄ (built using
Theorem 6.3). Moreover, the data structure of Lemma 6.8 is constructed on top of G, and the
data structure of Lemma 6.9 is built with P = {(exp(B), exp(C), A) : A ∈ N and A → BC} ∪
{(exp(B), exp(B)k−1, A) : A ∈ N and A → Bk}. Here, A on the third coordinate is technically
represented by an integer identifier of A. Moreover, exp(B) on the first coordinate and exp(C) or
exp(B)k−1 on the second coordinate are represented as fragments of T . Such fragments can be
retrieved based on ν = first(A): if exp(ν) = T [ℓ . . r), then T [ℓ . . ℓ+ | exp(B)|) matches exp(B),
and T [ℓ + | exp(B)| . . r) matches exp(C) or exp(B)k−1. Since |N | = O(f log2 n), the overall
construction time is O(f log4 n).

If the pattern P consists of a single letter A ∈ Σ, then the query algorithm simply retrieves
nodes(A) and reports exp(ν) as an occurrence of ν for each ν ∈ nodes(A). Since the parse tree
T is of height O(log n), this takes O(|Occ(P, T)| log n) time.

In the following, we assume that |P | ≥ 2. The algorithm first uses Lemma 6.5 to construct
a set anch(P) of O(log n) potential anchors. For each potential anchor a ∈ anch(P), the oc-
currences with anchor a are reported independently. Due to |P | ≥ 2, we may assume that

40

anch(P) ⊆ [1 . . |P |), so PL = P [1 . . a] and PR = P [a + 1 . . |P |] are both non-empty. Moreover,
both PL and PR are represented as fragments of T . The algorithm makes a reporting query
with (x′, y′) = (PL, PR) to the data structure of Lemma 6.9. Due to the characterization of
Observation 6.4, this results in a set of non-terminals A ⊆ N such that Occ(P, a, ν) 6= ∅ if
and only if s(ν) ∈ A. Next, for every A ∈ A, the algorithm uses Lemma 6.8 to enumerate
nodes(A), and for each ν ∈ nodes(A), it appends Occ(P, a, ν) to the constructed set Occ(P, T).
Since Occ(P, a, ν) 6= ∅ and since no occurrence is reported multiple times, the overall running
time is O(log3 n) (dominated by O(log n) queries to the data structure of Lemma 6.9) plus
O(|Occ(P, T)| log n) (dominated by enumerating nodes(A) for each A ∈ A).

Theorem 6.11. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log4 n) time construct a data structure that, for any pattern P represented by its arbitrary
occurrence in T , returns the leftmost occurrence of P in T in O(log3 n) time.

Proof. The index is the same as in the proof of Theorem 6.10, except for the weights w in triples
(x, y, w) ∈ P: for each A ∈ N with A → BC or A → Bk, the corresponding weight is set
to ℓ + | exp(B)|, where T [ℓ . . r) = exp(first(A)). Given that Lemma 6.8 provides first(A) for
each A ∈ S, the set P can still be constructed in O(f log2 n) time, and the whole index can be
constructed in O(f log4 n) time.

If the pattern P consists of a single letter A ∈ Σ, then the query algorithm simply returns
exp(first(A)); this costs O(1) time. In the following, we assume that |P | ≥ 2. The algorithm first
uses Lemma 6.5 to construct a set anch(P) of O(log n) potential anchors. For each potential
anchor a ∈ anch(P), the algorithm makes a minimum query with (x′, y′) = (P [1 . . a], P [a +
1 . . |P |)) to the data structure of Lemma 6.9. By Observation 6.4, for every A ∈ N and ν ∈
nodes(A), we have that Occ(P, a, ν) 6= ∅ if and only if x′ is a suffix of x and y′ is a prefix of y
for the triple (x, y, w) ∈ P corresponding to A. Moreover, w − a is then the starting position
of the leftmost occurrence of P with anchor a and hook ν ∈ nodes(A). Consequently, if the
query to the data structure of Lemma 6.9 yields a value p, then the leftmost occurrence of P
with anchor a starts at position p − a. (If p = ∞, then there are no occurrences with anchor
a.) Therefore, the algorithm reports the minimum among the values p− a obtained for various
potential anchors a ∈ anch(P) as the starting position of the leftmost occurrence of P in T . The
total query time is O(log3 n), dominated by |anch(P)| = O(log n) queries to the data structure
of Lemma 6.9.

Similarly, as in Theorem 6.3, since a recompression RLSLP generating the reversed string T̄
can be obtained by reversing rhs(A) for each non-terminal A, the above construction yields also
an index for finding the rightmost occurrences.

Theorem 6.12. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log4 n) time construct a data structure that, for any pattern P represented by its arbitrary
occurrence in T , returns the rightmost occurrence of P in T in O(log3 n) time.

Counting the occurrences is more challenging, because the size |Occ(P, a, ν)| may vary de-
pending on |P |: if s(ν) = A, A → Bk, P [1 . . a] is a suffix of exp(B), and P [a + 1 . . |P |) is a
prefix of exp(B)k−1, then |Occ(P, a, ν)| = k −

⌈ |P |−a
| exp(B)|

⌉
according to Observation 6.4. In other

words, we have one occurrence for each exponent k′ ∈ [1 . . k) such that P [a+1 . . |P |) is a prefix
of exp(B)k

′

. A simple solution would be to add to P a triple (exp(B), exp(B)k
′

, count(A)) for
each A → Bk and each k′ ∈ [1 . . k). However, this may result in |P| = Θ(n) even if f = O(1).
Hence, we apply a more sophisticated solution based on [20, Section 7]. The main idea is to
classify the fragments of T (and thus also the occurrences of P in T) into regular and special.

41

Definition 6.13. Consider an RLSLP G representing T . We call a fragment x of T regular if
|x| = 1 or x overlaps exp(ν ′) for at most three children ν ′ of hook(x), and special otherwise.

We design separate data structures for counting the regular and special occurrences of P in
T . For this, we partition Occ(P, T) into Occr(P, T) and Occs(P, T), which contain the starting
positions of regular and special occurrences of P in T , respectively. Similarly, we partition
Occ(P, a, ν) for any potential anchor a and any node ν in T into Occr(P, a, ν) and Occs(P, a, ν).

Counting Regular Occurrences. Regular occurrences are counted using an index similar
to that in Theorems 6.10 and 6.11, based on the following variant of Observation 6.4.

Observation 6.14. Let ν be node of T with s(ν) = A, and let P = PL · PR be a non-empty
pattern. Then Occr(P, ν, |PL|) 6= ∅ only if one of the following holds:

1. A ∈ Σ, PL = ε, and PR = A. Then |Occr(P, ν, |PL|)| = 1.
2. A → BC, PL 6= ε is a suffix of exp(B), and PR 6= ε is a prefix of exp(C). Then

|Occr(P, ν, |PL|)| = 1.
3. A → Bk, PL 6= ε is a suffix of exp(B), and PR 6= ε is a prefix of exp(B)2. Then

|Occr(P, ν, |PL|)| = k − 1 if PR is a prefix of exp(B) and |Occr(P, ν, |PL|)| = k − 2
otherwise.

Proposition 6.15. Given an O(log n)-round recompression RLSLP G generating a string T [1 . . n],
we can in O(|S| log2 n) time construct a data structure that, for any pattern P represented by
its arbitrary occurrence in T , returns the number |Occr(P, T)| of regular occurrences of P in T
in O(log3 n) time.

Proof. Recall that G allows answering LCE queries in T and its reverse T̄ in O(log n) time [37].
Our index applies Lemma 6.8 on top of G, and builds the data structure of Lemma 6.9 with

P = {(exp(B), exp(C), count(A)) : A ∈ N and A → BC}

∪ {(exp(B), exp(B), count(A)) : A ∈ N and A → Bk}

∪ {(exp(B), exp(B)2, (k − 2)count(A)) : A ∈ N and A → Bk}.

As in the proof of Theorem 6.2, the fragments on the first two coordinates can be retrieved
based on exp(first(A)) for each A ∈ N . The overall construction time is O(|S| + |N | log2 n) =
O(|S| log2 n).

If the pattern P consists of a single letter A ∈ Σ, then the query algorithm simply returns
count(A), which takes O(1) time. In the following, we assume that |P | ≥ 2. The algorithm first
uses Lemma 6.5 to construct a set anch(P) of O(log n) potential anchors. For each potential
anchor a ∈ anch(P), the algorithm makes a counting query with (x′, y′) = (P [1 . . a], P [a +
1 . . |P |)) to the data structure of Lemma 6.9. Due to the characterization of Observation 6.14,
this results in the total number of regular occurrences of P with anchor a. Finally, the algorithm
sums up the results obtained for all potential anchors a ∈ anch(P). The overall running time is
O(log3 n) (dominated by |anch(P)| = O(log n) queries to the data structure of Lemma 6.9).

Counting Special Occurrences. First, we need to take a detour and prove two properties
of recompression RLSLPs. For this, let us extend the expansion function exp so that exp(X) =
exp(X[0]) · · · exp(X[|X| − 1]) for X ∈ S∗.

Lemma 6.16. If exp(A) = exp(A′) for A,A ∈ S in a recompression RLSLP G, then A = A′.

42

Proof. Recall the strings T1, . . . , Th in the definition of G. We shall inductively prove the follow-
ing claim: if exp(x) = exp(x′) for two fragments of Tj , then x = x′. The claim holds trivially for
j = 1 due to x = exp(x) = exp(x′) = x′. Thus, consider j > 1 and suppose that the claim holds
for j − 1. Let x̄ and x̄′ be the fragments of Tj−1 corresponding to x and x′ in Tj , respectively.
Due to exp(x̄) = exp(x) = exp(x′) = exp(x̄′), the inductive assumption yields x̄ = x̄′. Notice
that block boundaries between two symbols of Tj−1 are placed solely based on the values of
these symbols (a boundary is not placed between matching symbols in run-length encoding and
between a left symbol and a right symbol in alphabet partitioning). Hence, block boundaries
within x̄ and x̄′ are placed in the same way. Moreover, block boundaries are placed at the
endpoints of x̄ and x̄′ (since they are collapsed to x and x′, respectively). Thus, the partition
of Tj−1 into blocks partitions x̄ and x̄′ into full blocks in the same way. As matching blocks
are replaced by the same non-terminal, we conclude that x = x′. This completes the inductive
proof.

Without loss of generality suppose that the recompression algorithm creates A before A′,
and suppose that A appears for the first time in Tj (so that neither A nor A′ appears in Tj′ for
j′ < j). Observe that, for each node ν ∈ nodes(A)∪ nodes(A′), the fragment exp(ν) is collapsed
to a fragment of Tj (which gets collapsed to A or A′ at some iteration j′ ≥ j). As A appears
in Tj , one of these fragments of Tj consists of a single symbol A, and by the claim above, this
means that all the fragments consist of a single symbol A. We conclude that A = A′ because
blocks of size 1 are never collapsed to new non-terminals

Lemma 6.17. If A → Bk in a recompression RLSLP G, then per(exp(B)2) = | exp(B)|.

Proof. Recall the strings T1, . . . , Th in the definition of G. We shall inductively prove the follow-
ing claim: if per(x) = 1

2 |x| for a fragment x of Tj, then per(exp(x)) = 1
2 | exp(x)|. The claim

holds trivially for j = 1 due to x = exp(x). Thus, consider j > 1 and suppose that the claim
holds for j − 1. Let x̄ be the fragment of Tj−1 corresponding to x in Tj . Note that 1

2 |x̄| is a
period of x̄. By periodicity lemma, we therefore have per(x̄) = 1

2k |x̄| for some integer k ≥ 1.
Consequently, x̄ can be decomposed into 2k matching fragments ȳ1, . . . , ȳ2k. Now, consider the
block boundaries that the recompression algorithm places within Tj−1. By definition of x̄, there
are block boundaries at the endpoints of x̄, that is, before ȳ1 and after ȳ2k. Moreover, since 1

2 |x|
is a period of x, there is a block boundary in the midpoint of x̄, that is, between ȳk and ȳk+1.
However, since the block boundaries between two symbols of Tj−1 are placed solely based on
the values of these two symbols, we conclude that block boundaries are placed between ȳi and
ȳi+1 for each i ∈ [1 . . 2k). Thus, the partition of Tj−1 into blocks partitions each fragment ȳi
(for i ∈ [1 . . 2k]) into full blocks the same way. As matching blocks are replaced by the same
non-terminal, we conclude that x can be partitioned into 2k matching fragments y1, . . . , y2k, that
is, 1

2k |x| is a period of x. Hence, k = 1, and thus per(x̄) = 1
2 |x̄|. The inductive assumption yields

per(exp(x)) = per(exp(x̄)) = 1
2 | exp(x̄)| =

1
2 | exp(x)|, which completes the inductive proof.

Suppose that A appears for the first time in Tj (so that it does not appear in Tj′ for j′ < j).
Let us fix any occurrence of A in Tj . The corresponding fragment of Tj−1 matches Bk. Applying
the claim to its prefix matching B2, we conclude that per(exp(B)2) = | exp(B)|.

We are now ready to characterize special occurrences just like regular occurrences were
characterized in Observation 6.14.

Lemma 6.18. Let P be a pattern, ν be a node of T , and a be an integer. Then Occs(P, ν, a) 6= ∅

if and only if A = s(ν) is of the form A → Bk, a ∈ [1 . . |P |), max
(
a, |P |−a

k−1

)
≤ per(P) < |P |−a

2 ,

and exp(B) = P [a+ 1 . . a+ per(P)]. In this case |Occs(P, a, ν)| = k −
⌈ |P |−a

per(P)

⌉
.

43

Proof. First, consider a special occurrence x of P with anchor a and hook ν. Since x overlaps
exp(ν ′) for at least 4 children ν ′ of ν, the symbol A = s(ν) must be of the form A → Bk

for k ≥ 4. Observation 6.4 implies that PL := P [1 . . a] is a non-empty suffix of exp(B) and
PR := P [a + 1 . . |P |) is a non-empty prefix of exp(B)k−1. In particular, a ∈ [1 . . |P |) and
| exp(B)| is a period of P . Moreover, since x overlaps exp(ν ′) for at least 4 children ν ′ of
ν, the string exp(B)2 must be a proper prefix of PR, and hence a substring of P . Due to
Lemma 6.17, we have per(exp(B)2) = | exp(B)|, and thus per(P) = | exp(B)|. Consequently,
exp(B) = PR[1 . . per(P)] = P [a + 1 . . a + per(P)]. Finally, per(P) ≥ a since PL is a suffix of
exp(B), per(P) ≥ |P |−a

k−1 since PR is a prefix of exp(B)k−1, and per(P) < |P |−a
2 since exp(B)2 is

a proper prefix of PR. Therefore, all the conditions in the lemma statement are satisfied.
It remains to prove the converse implication: if P , ν, and a satisfy the conditions in the

lemma statement, then |Occs(P, ν, a)| = k −
⌈ |P |−a

per(P)

⌉
> 0. Again, let PL := P [1 . . a] and

PR := P [a + 1 . . |P |); these fragments are non-empty due to a ∈ [1 . . |P |). As exp(B) =
PR[1 . . per(P)], we conclude that PL is a suffix and PR is a prefix of a sufficiently large power
exp(B)k

′

. Due to | exp(B)| ≥ max(|PL|,
|PR|
k−1), in fact, PL is a suffix of exp(B) and PR is a prefix

of exp(B)k−1. Consequently, Observation 6.4 yields Occ(P, ν, |PL|) =
{
ℓ + i| exp(B)| − |PL| :

i ∈
[
1 . . k−

⌈ |PR|
| exp(B)|

⌉]}
, where exp(ν) = T [ℓ . . r). Since | exp(B)| < 1

2 |PR|, the occurrence of P

at position ℓ + i| exp(B)| − |PL| is special as it overlaps the fragments exp(ν ′) for at least four
children of ν: these are T [ℓ+ j| exp(B)| . . ℓ+(j+1)| exp(B)) for j ∈ {i− 1, i, i+1, i+2}. Thus,
|Occs(P, ν, a)| = |Occ(P, ν, a)| = k −

⌈ |PR|
| exp(B)|

⌉
= k −

⌈ |P |−a
per(P)

⌉
> 0.

Next, we extend Lemma 6.8 so that generalized count(B) queries can be answered for B ∈ S.

Lemma 6.19. Given an RLSLP G, we can in O(|S| log |S|) time construct a data structure that,
given a symbol B and a positive integer m, computes the following value in O(log |S|) time:

count(B,m) :=
∑

A∈S : rhs(A)=Bk for k>m

(k −m) · count(A).

Proof. For each symbol B ∈ S, let us define a set K(B) containing 1 and all the exponents k such
that rhs(A) = Bk for some A ∈ S. The construction algorithm builds sets K(B) represented as
sorted arrays. Each element m ∈ K(B) is augmented with two values

∑

A∈S : rhs(A)=Bk for k>m

k · count(A) and
∑

A∈S : rhs(A)=Bk for k>m

count(A),

computed using a right-to-left scan of K(B), after the counts count(A) are obtained using
Lemma 6.8. The overall construction time is O(|S| log |S|), dominated by sorting K(B).

The query algorithm, given a symbol B and an integer m ≥ 1, finds the predecessor m′ ∈
K(B) of m (using binary search) and computes count(B,m) based on the values stored with m′:

count(B,m) =
∑

A∈S : rhs(A)=Bk for k>m′

k · count(A) − m ·
∑

A∈S : rhs(A)=Bk for k>m′

count(A).

This equality holds because, by definition of m′ as the predecessor of m in K(B), if rhs(A) = Bk,
then k > m is equivalent to k > m′. The query time is O(log |S|) dominated by finding the
predecessor.

Finally, we describe our index for counting special occurrences.

44

Proposition 6.20. Given an O(log n)-round recompression RLSLP G generating a string T [1 . . n],
we can in O(|S| log2 n) time construct a data structure that, for any pattern P represented by
its arbitrary occurrence in T , returns the number |Occs(P, T)| of special occurrences of P in T
in O(log3 n) time.

Proof. Recall that G allows answering LCE queries in T in O(log n) time [37]. The construction
algorithm uses these queries, combined with Lemma 6.8, which yields first(A) for each A ∈ S, to
sort the symbols A ∈ S according to the lexicographic order of their expansions exp(A). Addi-
tionally, the index contains a component for 2-Period queries (Theorem 6.7) and a component for
computing the values count(B,m) (Lemma 6.19). The overall construction time is O(|S| log2 n),
dominated by sorting S, which involves O(|S| log |S|) comparisons in O(log n) time each.

The query algorithm first makes a 2-period query on the pattern P . If per(P) > 1
2 |P |,

then the algorithm returns 0, which is correct due to the condition per(P) < |P |−a
2 < 1

2 |P | in
Lemma 6.18. Otherwise, the algorithm uses Lemma 6.5 to construct a set anch(P) of O(log n)
potential anchors. For each potential anchor a ∈ anch(P) ∩ [1 . . |P |), the algorithm checks
whether a ≤ per(P) < |P |−a

2 . If this test fails, then P has no special occurrences according
to Lemma 6.18. If the test succeeds, then the algorithm finds a symbol B ∈ S such that
exp(B) = P [a + 1 . . a + per(P)]. For this, the algorithm performs a binary search on the list
of symbols (sorted by expansions) with an LCE query applied to implement each comparison.
If there is no such symbol B, then P has no special occurrences with anchor a according to
Lemma 6.18. If a symbol B exists, it is unique by Lemma 6.16. In this case, the algorithm
adds count

(
B,
⌈ |P |−a

per(P)

⌉)
(obtained using Lemma 6.19) to the count of special occurrences of P .

This term represents the number of special occurrences with anchor a, because each node ν with
rhs(s(ν)) = Bk has a non-empty set Occs(P, ν, a) only if |P |−a

k−1 ≤ per(P), which is equivalent

to k − 1 ≥ |P |−a
per(P) and to k >

⌈ |P |−a
per(P)

⌉
. Moreover, the size of Occs(P, ν, a) is then equal to

k −
⌈ |P |−a

per(P)

⌉
by Lemma 6.18. Consequently, the algorithm correctly counts special occurrences

of P in T . The query time is O(log3 n) dominated by O(log n) LCE queries made for each
potential anchor.

Combining Theorem 6.2 (for transforming an LZ77-like parsing into a recompression RLSLP)
with Propositions 6.15 and 6.20 (for counting regular and special occurrences, respectively), we
obtain our counting index.

Theorem 6.21. Given an LZ77-like parsing of a string T [1 . . n] into f phrases, we can in
O(f log4 n) time construct a data structure that, for any pattern P represented by its arbitrary
occurrence in T , returns the number of occurrences of P in T in O(log3 n) time.

Acknowledgment. The authors would like to thank Barna Saha for helpful discussions.

References

[1] Donald Adjeroh, Tim Bell, and Amar Mukherjee. The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer, Boston, MA, USA, 2008.
doi:10.1007/978-0-387-78909-5.

[2] Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic
texts. In SODA, pages 819–828, 2000.

[3] Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Ra-
doszewski, Wojciech Rytter, Juliusz Straszynski, Tomasz Waleń, and Wiktor Zuba. Quasi-

45

http://dx.doi.org/10.1007/978-0-387-78909-5

linear-time algorithm for longest common circular factor. In CPM, pages 25:1–25:14, 2019.
doi:10.4230/LIPIcs.CPM.2019.25.

[4] Amihood Amir, Costas S. Iliopoulos, and Jakub Radoszewski. Two strings at Ham-
ming distance 1 cannot be both quasiperiodic. Inf. Process. Lett., 128:54–57, 2017.
doi:10.1016/j.ipl.2017.08.005.

[5] Diego Arroyuelo, Gonzalo Navarro, and Kunihiko Sadakane. Stronger Lempel-
Ziv based compressed text indexing. Algorithmica, 62(1-2):54–101, 2012.
doi:10.1007/s00453-010-9443-8.

[6] Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r -index. Theor. Comput. Sci.,
812:96–108, 2020. doi:10.1016/j.tcs.2019.08.005.

[7] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

[8] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raf-
finot. Composite repetition-aware data structures. In CPM, pages 26–39, 2015.
doi:10.1007/978-3-319-19929-0_3.

[9] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raf-
finot. Flexible indexing of repetitive collections. In CiE, pages 162–174, 2017.
doi:10.1007/978-3-319-58741-7_17.

[10] Djamal Belazzougui, Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Alberto Or-
dóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In
DCC, pages 83–92, 2015. doi:10.1109/DCC.2015.69.

[11] Philip Bille, Mikko Berggren Ettienne, Inge Li Gørtz, and Hjalte Wedel Vildhøj. Time-
space trade-offs for Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018.
doi:10.1016/j.tcs.2017.12.021.

[12] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti,
and Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J.
Comput., 44(3):513–539, 2015. doi:10.1137/130936889.

[13] Anselm Blumer, Janet A. Blumer, David Haussler, Ross M. McConnell, and Andrzej Ehren-
feucht. Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–
595, 1987. doi:10.1145/28869.28873.

[14] Dany Breslauer and Zvi Galil. Finding all periods and initial palindromes of a string in
parallel. Algorithmica, 14(4):355–366, 1995. doi:10.1007/BF01294132.

[15] Karl Bringmann and Tobias Friedrich. Exact and efficient generation of geo-
metric random variates and random graphs. In ICALP, pages 267–278, 2013.
doi:10.1007/978-3-642-39206-1_23.

[16] Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for discrete
distributions. Algorithmica, 79(2):484–508, 2017. doi:10.1007/s00453-016-0205-0.

[17] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[18] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. Trans. Inf. Theory, 51(7):2554–2576,
2005. doi:10.1109/TIT.2005.850116.

[19] Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988. doi:10.1137/0217026.

[20] Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes, 2019. arXiv:1811.12779.

46

http://dx.doi.org/10.4230/LIPIcs.CPM.2019.25
http://dx.doi.org/10.1016/j.ipl.2017.08.005
http://dx.doi.org/10.1007/s00453-010-9443-8
http://dx.doi.org/10.1016/j.tcs.2019.08.005
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1007/978-3-319-19929-0_3
http://dx.doi.org/10.1007/978-3-319-58741-7_17
http://dx.doi.org/10.1109/DCC.2015.69
http://dx.doi.org/10.1016/j.tcs.2017.12.021
http://dx.doi.org/10.1137/130936889
http://dx.doi.org/10.1145/28869.28873
http://dx.doi.org/10.1007/BF01294132
http://dx.doi.org/10.1007/978-3-642-39206-1_23
http://dx.doi.org/10.1007/s00453-016-0205-0
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1137/0217026
http://arxiv.org/abs/1811.12779

[21] John G. Cleary and Ian H. Witten. Data compression using adaptive cod-
ing and partial string matching. IEEE Trans. Commun., 32(4):396–402, 1984.
doi:10.1109/TCOM.1984.1096090.

[22] Gordon V. Cormack and R. Nigel Horspool. Data compression using dynamic Markov
modelling. Comput. J., 30(6):541–550, 1987. doi:10.1093/comjnl/30.6.541.

[23] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd Edition. Wiley,
2006.

[24] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proc. Am.
Math. Soc., 16(1):109–114, 1965. doi:10.2307/2034009.

[25] Travis Gagie. Large alphabets and incompressibility. Inf. Process. Lett., 99(6):246–251,
2006.

[26] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J.
Puglisi. A faster grammar-based self-index. In LATA, pages 240–251, 2012.
doi:10.1007/978-3-642-28332-1_21.

[27] Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Jens Stoye. 25 Years of the
Burrows-Wheeler Transform (Dagstuhl Seminar 19241). Dagstuhl Reports, 9(6):55–68, 2019.
doi:10.4230/DagRep.9.6.55.

[28] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully-functional suffix trees and optimal
text searching in BWT-runs bounded space, 2018. arXiv:1809.02792.

[29] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. On the approximation ratio of Lempel-
Ziv parsing. In LATIN, pages 490–503, 2018. doi:10.1007/978-3-319-77404-6_36.

[30] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and
optimal text searching in BWT-runs bounded space. J. ACM, 67(1):1–54, apr 2020.
doi:10.1145/3375890.

[31] Jean-loup Gailly and Mark Adler. gzip Homepage. www.gzip.org. Accessed: 2019-10-19.
[32] John Kenneth Gallant. String compression algorithms. PhD thesis, Princeton University,

1982.
[33] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr

Sankowski. Optimal dynamic strings, 2015. arXiv:1511.02612.
[34] Genomics England. The 100000 Genomes Project.

www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project.
Accessed: 2019-04-13.

[35] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In SODA, pages 841–850, 2003.

[36] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

[37] Tomohiro I. Longest common extensions with recompression. In CPM, pages 18:1–18:15,
2017. doi:10.4230/LIPIcs.CPM.2017.18.

[38] Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Trans. Algo-
rithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

[39] Artur Jeż. A really simple approximation of smallest grammar. Theor. Comput. Sci.,
616:141–150, 2016. doi:10.1016/j.tcs.2015.12.032.

[40] Artur Jeż. Recompression: A simple and powerful technique for word equations. J. ACM,
63(1):4:1–4:51, 2016. doi:10.1145/2743014.

[41] Juha Kärkkäinen, Dominik Kempa, and Marcin Piątkowski. Tighter bounds for
the sum of irreducible LCP values. Theor. Comput. Sci., 656:265–278, 2016.
doi:10.1016/j.tcs.2015.12.009.

[42] Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lazy Lempel-Ziv factorization
algorithms. ACM J. Exp. Algor., 21(1):2.4:1–2.4:19, 2016. doi:10.1145/2699876.

47

http://dx.doi.org/10.1109/TCOM.1984.1096090
http://dx.doi.org/10.1093/comjnl/30.6.541
http://dx.doi.org/10.2307/2034009
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.4230/DagRep.9.6.55
http://arxiv.org/abs/1809.02792
http://dx.doi.org/10.1007/978-3-319-77404-6_36
http://dx.doi.org/10.1145/3375890
www.gzip.org
http://arxiv.org/abs/1511.02612
www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.18
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1016/j.tcs.2015.12.032
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1016/j.tcs.2015.12.009
http://dx.doi.org/10.1145/2699876

[43] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In CPM, pages
181–192, 2001. doi:10.1007/3-540-48194-X_17.

[44] Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts.
In SODA, pages 1344–1357, 2019. doi:10.1137/1.9781611975482.82.

[45] Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: Sublinear-time
BWT construction and optimal LCE data structure. In STOC, pages 756–767, 2019.
doi:10.1145/3313276.3316368.

[46] Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: String attrac-
tors. In STOC, pages 827–840, 2018. doi:10.1145/3188745.3188814.

[47] Takuya Kida, Tetsuya Matsumoto, Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara,
and Setsuo Arikawa. Collage system: A unifying framework for compressed pattern match-
ing. Theor. Comput. Sci., 298(1):253–272, 2003. doi:10.1016/S0304-3975(02)00426-7.

[48] Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, 2018.

[49] Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Towards a definitive measure of
repetitiveness, 2019. arXiv:1910.02151.

[50] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Effi-
cient data structures for the factor periodicity problem. In SPIRE, pages 284–294, 2012.
doi:10.1007/978-3-642-34109-0_30.

[51] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In SODA, pages 532–551, 2015.
doi:10.1137/1.9781611973730.36.

[52] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013.

[53] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol., 10(3):R25,
2009.

[54] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinform., 25(14):1754–1760, 2009. doi:10.1093/bioinformatics/btp324.

[55] Ruiqiang Li, Chang Yu, Yingrui Li, Tak Wah Lam, Siu-Ming Yiu, Karsten Kristiansen,
and Jun Wang. SOAP2: an improved ultrafast tool for short read alignment. Bioinform.,
25(15):1966–1967, 2009. doi:10.1093/bioinformatics/btp336.

[56] Matt Mahoney. Large Text Compression Benchmark.
http://mattmahoney.net/dc/text.html. Accessed: 2020-09-07.

[57] Matt Mahoney. Adaptive weighing of context models for lossless data compression. Tech-
nical Report CS-2005-16, Florida Institute of Technology, Melbourne, Florida, 2005.

[58] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-
scale algorithm design: Biological sequence analysis in the era of high-throughput sequencing.
Cambridge University Press, Cambridge, UK, 2015. doi:10.1017/cbo9781139940023.

[59] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

[60] Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and Marinella
Sciortino. String attractors and combinatorics on words. In ICTCS, pages 57–71, 2019.

[61] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430,
2001. doi:10.1145/382780.382782.

[62] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University
Press, Cambridge, UK, 2016. doi:10.1017/cbo9781316588284.

[63] Gonzalo Navarro. Indexing highly repetitive string collections, 2020. arXiv:2004.02781.

48

http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1137/1.9781611975482.82
http://dx.doi.org/10.1145/3313276.3316368
http://dx.doi.org/10.1145/3188745.3188814
http://dx.doi.org/10.1016/S0304-3975(02)00426-7
http://arxiv.org/abs/1910.02151
http://dx.doi.org/10.1007/978-3-642-34109-0_30
http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp336
http://mattmahoney.net/dc/text.html
http://dx.doi.org/10.1017/cbo9781139940023
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/382780.382782
http://dx.doi.org/10.1017/cbo9781316588284
http://arxiv.org/abs/2004.02781

[64] Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput.
Sci., 762:41–50, 2019. doi:10.1016/j.tcs.2018.09.007.

[65] Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. Discret. Appl. Math., 274:116–
129, 2020. doi:10.1016/j.dam.2019.01.014.

[66] Enno Ohlebusch. Bioinformatics algorithms: Sequence analysis, genome rearrangements,
and phylogenetic reconstruction. Oldenbusch Verlag, Ulm, Germany, 2013.

[67] Enno Ohlebusch, Timo Beller, and Mohamed Ibrahim Abouelhoda. Computing the
Burrows-Wheeler transform of a string and its reverse in parallel. J. Discrete Alg., 25:21–33,
2014. doi:10.1016/j.jda.2013.06.002.

[68] Tatsuya Ohno, Kensuke Sakai, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto.
A faster implementation of online RLBWT and its application to LZ77 parsing. J. Discrete
Alg., 52-53:18–28, 2018. doi:10.1016/j.jda.2018.11.002.

[69] Igor Pavlov. 7-zip Homepage. https://www.7-zip.org/. Accessed: 2019-10-19.
[70] Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the

solution of words equations. In ICALP, pages 731–742, 1998. doi:10.1007/BFb0055097.
[71] Alberto Policriti and Nicola Prezza. From LZ77 to the run-length encoded Burrows-Wheeler

transform, and back. In CPM, pages 17:1–17:10, 2017. doi:10.4230/LIPIcs.CPM.2017.17.
[72] Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded

BWT. Algorithmica, 80(7):1986–2011, 2018. doi:10.1007/s00453-017-0327-z.
[73] Nicola Prezza. Can Lempel-Ziv and Burrows-Wheeler compression be asymptotically com-

pared? https://nms.kcl.ac.uk/iwoca/problems/Prezza2016_updated2019.pdf, 2016.
IWOCA 2016 Open Problems.

[74] Nicola Prezza. Optimal rank and select queries on dictionary-compressed text. In CPM,
pages 4:1–4:12, 2019. doi:10.4230/LIPIcs.CPM.2019.4.

[75] Molly Przeworski, Richard R. Hudson, and Anna Di Rienzo. Adjusting the focus on human
variation. Trends Genet., 16(7):296–302, 2000. doi:10.1016/S0168-9525(00)02030-8.

[76] Wojciech Rytter. Application of Lempel–Ziv factorization to the approximation
of grammar-based compression. Theor. Comput. Sci., 302(1–3):211–222, 2003.
doi:10.1016/S0304-3975(02)00777-6.

[77] Julian Seward. bzip2 Homepage. www.sourceware.org/bzip2. Accessed: 2019-10-19.
[78] Sandip Sinha and Omri Weinstein. Local decodability of the Burrows-Wheeler transform.

In STOC, pages 744–755, 2019. doi:10.1145/3313276.3316317.
[79] Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed

indexes are superior for highly repetitive sequence collections. In SPIRE, pages 164–175,
2008. doi:10.1007/978-3-540-89097-3_17.

[80] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

[81] James A. Storer and Thomas G. Szymanski. The macro model for data compression. In
STOC, pages 30–39, 1978. doi:10.1145/800133.804329.

[82] Axel Thue. Über unendliche zeichenreihen. Norsk. Vid. Selsk. Skr.I, Mat.-Nat.Kl. Nr.7,
pages 1–22, 1906.

[83] Peter Weiner. Linear pattern matching algorithms. In SWAT/FOCS, pages 1–11, 1973.
doi:10.1109/SWAT.1973.13.

[84] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

[85] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. Trans. Inf. Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

49

http://dx.doi.org/10.1016/j.tcs.2018.09.007
http://dx.doi.org/10.1016/j.dam.2019.01.014
http://dx.doi.org/10.1016/j.jda.2013.06.002
http://dx.doi.org/10.1016/j.jda.2018.11.002
https://www.7-zip.org/
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.17
http://dx.doi.org/10.1007/s00453-017-0327-z
https://nms.kcl.ac.uk/iwoca/problems/Prezza2016_updated2019.pdf
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.4
http://dx.doi.org/10.1016/S0168-9525(00)02030-8
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
www.sourceware.org/bzip2
http://dx.doi.org/10.1145/3313276.3316317
http://dx.doi.org/10.1007/978-3-540-89097-3_17
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1145/800133.804329
http://dx.doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934

	1 Introduction
	2 Preliminaries
	3 Upper Bounds
	3.1 Basic Upper Bound
	3.2 Tighter Upper Bound
	3.3 Upper Bound in Terms of Delta
	3.4 Further Upper Bounds

	4 Lower Bounds
	4.1 Lower Bound for the Number of BWT Runs
	4.2 Lower Bound for the Sum of Irreducible LCP Values

	5 Converting LZ77 to Run Length BWT
	5.1 Compressed String Synchronizing Sets
	5.1.1 The Nonperiodic Case
	5.1.2 The General Case

	5.2 Compressed Wavelet Trees
	5.3 The Algorithm
	5.3.1 The Nonperiodic Case
	5.3.2 The General Case

	6 Auxiliary Recompression-Based Data Structures
	6.1 Pattern Matching in RLSLPs
	6.2 Indexing LZ77-Compressed Texts

