
ar
X

iv
:2

00
4.

04
49

6v
2

 [
cs

.D
S]

 4
 S

ep
 2

02
0

Near-Optimal Decremental SSSP in Dense Weighted Digraphs

Aaron Bernstein

Rutgers University New Brunswick

bernstei@gmail.com

Maximilian Probst Gutenberg

BARC, University of Copenhagen

maximilian.probst@outlook.com

Christian Wulff-Nilsen

BARC, University of Copenhagen

koolooz@di.ku.dk

Abstract

In the decremental Single-Source Shortest Path problem (SSSP), we are given a weighted
directed graph G = (V, E, w) undergoing edge deletions and a source vertex r ∈ V ; let
n = |V |, m = |E| and W be the aspect ratio of the graph. The goal is to obtain a data
structure that maintains shortest paths from r to all vertices in V and can answer distance
queries in O(1) time, as well as return the corresponding path P in O(|P |) time.

This problem was first considered by Even and Shiloach [JACM’81], who provided
an algorithm with total update time O(mn) for unweighted undirected graphs; this was
later extended to directed weighted graphs [FOCS’95, STOC’99]. There are conditional
lower bounds showing that O(mn) is in fact near-optimal [ESA’04, FOCS’14, STOC’15,
STOC’20]. In a breakthrough result, Forster et al. showed that total update time
min{m7/6n2/3+o(1), m3/4n5/4+o(1)}polylog(W) = mn0.9+o(1)polylogW is possible if the al-
gorithm is allowed to return (1 + ǫ)-approximate paths, instead of exact ones [STOC’14,
ICALP’15]. No further progress was made until Probst Gutenberg and Wulff-Nilsen
[SODA’20] provided a new approach for the problem, which yields total time
Õ(min{m2/3n4/3 log W, (mn)7/8 log W}) = Õ(min{n8/3 log W, mn3/4 log W}).

Our result builds on this recent approach, but overcomes its limitations by introducing
a significantly more powerful abstraction, as well as a different core subroutine. Our new
framework yields a decremental (1+ǫ)-approximate SSSP data structure with total update
time Õ(n2 log4 W/ǫ). Our algorithm is thus near-optimal for dense graphs with polynomial
edge-weights. Our framework can also be applied to sparse graphs to obtain total update
time Õ(mn2/3 log3 W/ǫ). Combined, these data structures dominate all previous results.
Like all previous o(mn) algorithms that can return a path (not just a distance estimate),
our result is randomized and assumes an oblivious adversary.

Our framework effectively allows us to reduce SSSP in general graphs to the same
problem in directed acyclic graphs (DAGs). We believe that our framework has significant
potential to influence future work on directed SSSP, both in the dynamic model and in
others.

http://arxiv.org/abs/2004.04496v2

1 Introduction

In the Single-Source Shortest Paths (SSSP) problem, the input is a directed weighted graph
G = (V, E, w) and a dedicated source vertex r ∈ V , and the goal is to compute shortest
paths from r to every other vertex v in V . Let n = |V |, m = |E|, and W be the aspect
ratio of the graph, which is the ratio of maximum to minimum edge weight. The problem
can be solved in O(m + n log(n)) time using Dijkstra’s algorithm. In this article, we study
the dynamic version of the problem, where the graph changes over time. The most general
model is the fully dynamic one, where the graph is subject to a sequence of edge insertions and
deletions. Unfortunately, there are extremely strong conditional lower bound for this model
[RZ04; AW14; Hen+15; PVW20].

For this reason, much of the research on this problem has focused on the decremental
setting. Formally, the algorithm is given a graph G = (V, E, w) subject to a sequence of edge
deletions and edge weight increases, and the goal is is to maintain shortest distances/paths
from r to every v ∈ V . Although decremental SSSP only applies to a more restricted model,
it is an extremely common subroutine in other dynamic algorithms (including fully dynamic
ones), and has recently been used to make progress on long-standing static problems such as
computing max-flow [CK19; Chu+19], multi-commodity flow [Mad10], expanders [Chu+19],
and sparse cuts [Chu+19]. For this reason, decremental SSSP is one of the most well-studied
problems in dynamic algorithms [ES81; BR11; HKN14a; HKN14b; HKN15; HKN16; BC16;
BC17; Ber17; CK19; Chu+19; GW20a; GW20b; BPS20].

The first algorithm for decremental SSSP was the Even and Shiloach tree [ES81], which
dates back to 1981 and has total update time O(mn) over the entire sequence of deletions;
it was later extended to directed weighted graphs [HK95; Kin99]. O(mn) is conditionally
optimal for the exact version [RZ04; AW14; Hen+15; PVW20], but one can do better with
a (1 + ǫ)-approximation. In fact, recent research culminated in a near-optimal algorithm for
undirected graphs [HKN14a] with total update time m1+o(1) log(W)1; there has also been more
recent work improving upon O(mn) with adaptive or even deterministic algorithms (see e.g.
[BC16; BC17; Ber17; CK19; Chu+19; GW20b; Ber+20]).

In directed graphs, however, the decremental SSSP problem remains poorly understood.
The first algorithms to improve upon the classic O(mn) bound (with a (1 + ǫ)-approximation)
were by Henzinger, Forster and Nanongkai [HKN14b] in 2014; the total update time is
min{m7/6n2/3+o(1), m3/4n5/4+o(1)}polylog(W) = mn0.9+o(1)polylog(W) [HKN15]. Since then,
the only progress on the problem is a very recent algorithm of Probst Gutenberg and Wulff-
Nilsen [GW20a] with total update time Õ(min{m2/3n4/3, mn3/4} log(W)), or slightly better in
unweighted graphs. Very recently, it was further shown in [BPS20] that a total update time of
n2+2/3+o(1) can even be obtained deterministically. Besides this recent progress, state-of-the-
art algorithms for directed graphs still lag far behind the ones for undirected ones, and only
achieve small improvements beyond O(mn).

For more related work on the problems of maintaining Single-Source Reachability, Strongly-
Connected Components, Single-Source Shortest Paths and All-Pairs Shortest Paths in incre-

1In the decremental setting m is taken to be the number of edges in the initial graph G

1

mental, decremental and fully-dynamic graphs, we refer the reader to Appendix A.

Our Contribution. We make significant progress on this problem and present the first
near-optimal algorithm for decremental SSSP in directed dense graphs.

Theorem 1.1. Given a decremental input graph G = (V, E, w) with n = |V |, m = |E| and
aspect ratio W , a dedicated source r ∈ V and ǫ > 0, there is a randomized algorithm that
maintains a distance estimate d̃ist(r, x), for every x ∈ V , such that

distG(r, x) ≤ d̃ist(r, x) ≤ (1 + ǫ)distG(r, x)

at any stage w.h.p. The algorithm has total expected update time Õ(n2 log4 W/ǫ). Distance
queries are answered in O(1) time, and a corresponding path P can be returned in O(|P |) time.

We also present the currently fastest algorithm for sparse graphs. Combined, our two results
significantly improve upon all previous work.

Theorem 1.2. Given a decremental input graph G = (V, E, w) with n = |V |, m = |E| and
aspect ratio W , a dedicated source r ∈ V and ǫ > 0, there is a randomized algorithm that
maintains a distance estimate d̃ist(r, x), for every x ∈ V , such that

distG(r, x) ≤ d̃ist(r, x) ≤ (1 + ǫ)distG(r, x)

at any stage w.h.p. The algorithm has total expected update time Õ(mn2/3 log3 W/ǫ). Distance
queries are answered in O(1) time, and a corresponding path P can be returned in O(|P |) time.

Adaptive Versus Oblivious Adversaries Both our results are randomized, and assume
an oblivious adversary whose update sequence does not depend on the distance estimates and
query-paths returned by the algorithm. This assumption is also necessary for all previous
algorithms in directed graphs that go beyond the classic O(mn) bound of Even and Shiloach
[HKN14b; HKN15; GW20a], and achieving such a result adaptively remains a major open
problem. (The result of [GW20a] allows for adaptive distance queries, but still assumes the
adversary is oblivious to the paths returned by the algorithm.) More generally, achieving
truly fast adaptive algorithms seems implausible until we understand the problem well enough
to at least have fast oblivious algorithms, and our result makes significant progress on this
front. In fact, arguably more than any other dynamic graph algorithm, our Õ(n2) result
highlights the gap between these two models: if one could design an adaptive algorithm that
matches this efficiency, then plugging it into the existing framework of [CK19] (based in turn
on the multiplicative-weight update method as described in [Fle00; GK07; Mad10]) would yield
an Õ(n2) algorithm for static directed maximum flow, which would constitute an enormous
breakthrough in the field of graph algorithms.

2

Techniques The key contribution of our paper is a general technique for converting algo-
rithms on directed acyclic graphs (DAGs) into algorithms on general graphs. Earlier techniques
in [Ber17; GW20a] lead to two simple algorithms for DAGs with total update times Õ(n2) and
Õ(mn2/3); our conversion then extends these bounds to general graphs. We first introduce
the concept approximate topological order (AT O), which loosely speaking imposes a DAG-like
structure on any graph. We then show that an AT O always exists and can be maintained
efficiently.

At a high-level, the conversion is as follows. Let ADAG be a decremental SSSP algorithm
for DAGs and let T (ADAG) be the total update time. The first (easier) step is to convert
ADAG to an algorithm A∗

DAG that works on any graph with an AT O and has total update
time T (A∗

DAG) ∼ T (ADAG). The second (harder) step is to build an algorithm AAT O that
maintains an AT O in G by recursively applyingA∗

DAG as a subroutine: the basic idea is that an
AT O of better “quality" can be built by using A∗

DAG to maintain shortest paths in an AT O of
worse quality. Using this layered approach, we can achieve T (AAT O) ∼ T (A∗

DAG) ∼ T (ADAG),
and combining AAT O with A∗

DAG gives an algorithm for general graphs.
Neither the step from ADAG to A∗

DAG nor the step from A∗
DAG to AAT O are black-box,

but the techniques are quite modular and flexible, as evidenced by the fact that we were able
to apply this conversion to both of the state-of-the-art algorithms for DAGs. We believe our
conversion has strong potential to influence future work on directed shortest paths, in both the
dynamic model and in others, by allowing researchers to focus on the simpler case of DAGs.

2 Preliminaries

We let a graph H refer to a weighted, directed graph with vertex set denoted by V (H), edge
set E(H) and weight function wH : E(H) → [1, W] ∪ {∞}2. We say that H is a decremental
graph if it is undergoing a sequence of edge deletions and edge weight increases (also referred
to as updates), and refer to version t of H, or H at stage t as the graph H obtained after the
first t updates have been applied. In this article, we denote the (decremental) input graph by
G = (V, E, w) with n = |V | and m = |E| (where m refers to the number of edges of G at stage
0). In all subsequent definitions, we often use a subscript to indicate which graph we refer to,
however, when we refer to G, we often omit the subscript.

Cuts, Neighborhoods and Subgraphs. For graph H, and any two disjoint subsets X, Y ⊆
V (H), we let EH(X) be the set of edges in E(H) with an endpoint in X, and EH(X, Y) denote
the set of edges in E(H) with tail in X and head in Y . We let N in

H (v) = {u | (u, v) ∈ E(H)}
and N out

H (v) = {u | v ∈ N in
H (u)} denote the in-neighborhood and out-neighborhoods of v ∈ V .

We further let H[X] refer to the subgraph of H induced by X, i.e. H[X] = (X, EH (X, X), wH).
We use H ⊆ G to denote that V (H) = V (G) and E(H) ⊆ E(G).

Contractions. We define the graph H/X to be the graph obtained from H by contracting
all vertices in X into a single node (we use the word node instead of vertex if it was obtained

2In this article, we restrict our attention to integers and let [a, b] denote the set of integers a, a+1, a+2, . . . , b.

3

by contractions). Similarly, for a set of pairwise disjoint vertex sets X1, X2, . . . , Xk, we let
H/{X1, X2, . . . , Xk} denote the graph ((((H/X1)/X2) . . .)/Xk). If V forms a partition of V ,
we use the convention to denote by Xv the node in G/V that contains v ∈ V , i.e. v ∈ Xv.

Reachability and Strong-Connectivity. For graph H and any two vertices u, v ∈ V (H),
we let u H v denote that u can reach v in H, and u⇄H v that u can reach v and vice versa
(in the latter case, we also say u and v are strongly-connected). For any sets X, Y ⊆ V (H),
we say that X H Y if there exists some x ∈ X, y ∈ Y such that x H y; we define X ⇄H Y
analogously. We say that the partition of V (H) induced by the equivalence relation ⇄H is
the set of strongly-connected components (SCCs).

Generalized Topological Order. We define a generalized topological order
GeneralizedTopOrder(H) to be a tuple (V, τ) where V is the set of SCCs of H and
τ : V → [0, n) is a function that maps any sets X, Y ∈ V such that τ(X) < τ(Y), if X H Y
and such that [τ(X), τ(X) + |X|) ∩ [τ(Y), τ(Y) + |Y |) = ∅. Thus, τ effectively establishes
a one-to-one correspondence between |X|-sized intervals and SCCs X in H. We point out
that a GeneralizedTopOrder(H) can always be computed in O(|E(H)|) time [Tar72]. In
fact, a generalized topological order can also be maintained efficiently in a decremental graph
H. Here, we say that (V, τ) is a dynamic tuple that forms a generalized topological order
of H if it is a topological order for all versions of H. Further, we say that (V, τ) has the
nesting property, if for any set X ∈ V and a set Y ⊇ X that was in V at an earlier stage,
we have τ(X) ∈ [τ(Y), τ(Y) + |Y | − |X|]; in other words, the interval [τ(X), τ(X) + |X|) is
entirely contained in the interval [τ(Y), τ(Y) + |Y |). Thus, the associated interval with X
is contained in the interval associated with Y . We refer to the following result that can be
obtained straight-forwardly by combining the data structure given in [BPW19] and the static
procedure by Tarjan [Tar72] as described in [GW20a].

Theorem 2.1 (see [Tar72; BPW19; GW20a]). Given a decremental digraph H, there exists
an algorithm that can maintain the generalized topological order (V, τ) of H where τ has the
nesting property. The algorithm runs in expected total update time O(m log4 n), is randomized
and works against an adaptive adversary.

Distances and Diameter. We let distH(u, v) denote the distance from vertex u to vertex
v in graph H and denote by πu,v,H the corresponding shortest path (we assume uniqueness
by implicitly referring to the lexicographically shortest path). We define the weak diameter of
X ⊆ V (H) in H by diam(X, H) = maxx,y∈X distH(x, y).

Exponential Distribution. Finally, we make use of the exponential distribution, that is
we use random variables X with cumulative distribution function FX(x, λ) = 1− e−λx for all
x ≥ 0, λ > 0, which we denote by the shorthand X ∼ Exp(λ). If X ∼ Exp(λ) is clear, we
also use FX(x) in place of FX(x, λ). The exponential distribution has the special property of
being memoryless, that is if X ∼ Exp(λ), then

P[X > s + t | X > t] = P[X > s].

4

3 Overview

We now give an overview of our algorithm. In order to illustrate the main concepts, we start
by giving a simple algorithm to obtain total update time O(n2 log n/ǫ) in directed acyclic
graphs (DAGs). While this algorithm was previously not explicitly mentioned, it follows
rather directly from the techniques developed in [Ber17; GW20a]. We present this algorithm
to provide intuition for our approach and motivates our novel notion of approximate topological
orders. In the light of approximate topological orders, we then shed light on limitations of
the previous approach in [GW20a] and present techniques to surpass these limitations to
obtain Theorem 1.1. In this overview, we focus on obtaining an SSSP algorithm that runs in
Õ(n2 log4 W/ǫ) expected update time. The final paragraph then sketches our improvement for
sparse graphs (Theorem 1.2); this result combines our directed framework in a non-trivial way
with ideas from an earlier result for sparse SSSP in undirected, unweighted graphs [BC17].

3.1 A Fast Algorithm for DAGs

The Topological Order Difference. Let G = (V, E, w) be a DAG and let τ be the function
returned by GeneralizedTopOrder(G) computed on the initial version of G (since G is a
DAG, this is just a standard topological order). Let us now make an almost trivial observation:
for any shortest s-to-t path πs,t, in any version of G, the sum of topological order differences
is bounded by n. More formally:

T (πs,t, τ)
def
=

∑

(u,v)∈πs,t

τ(v) − τ(u) = τ(t)− τ(s) ≤ n. (1)

Observe that every path in G can only contain few edges (u, v) with large topological order
difference, i.e. with τ(v)− τ(u) large, by the pigeonhole principle.

Reviewing the ES-tree. To understand how this fact can be exploited, let us review the
classic ES-tree (see [ES81]): We maintain distances from a fixed source r ∈ V to each vertex
v in V up to distance δ > 0 by storing a distance estimate d̃ist(r, v) that is initialized to the
distance between r and v in G along with a shortest-path tree T rooted at r. On update (u, v),
we delete the edge from G and possibly from T . Then, if possible, we extract wmin ∈ V \ {r},
the vertex with smallest distance estimate among vertices without incoming edge in T . (For
the first extraction, we always have wmin = v.) For this vertex wmin, we then try to find a
vertex x ∈ N in(wmin) such that adding (x, wmin) to T implies distT (r, wmin) ≤ d̃ist(r, wmin).
We therefore search in N in(v) for an x that satisfies

d̃ist(r, x) + w(x, wmin) ≤ d̃ist(r, wmin). (2)

If no such x exists, then d̃ist(r, wmin) has to be incremented, and we set T to T \Nout(wmin).
If d̃ist(r, wmin) > δ, we set it to ∞ and remove wmin from the tree. We iterate the process
until T is spanning for vertices with distance estimate <∞. Since for each distance estimate
value d̃ist(r, v), the in-neighourhood N in(v) has to be scanned once (in an efficient implemen-
tation), and since estimates increase monotonically, the total update time can be bound by

5

O(
∑

v∈V |N in(v)|δ) = O(mδ). Further, observe that if a vertex v was only allowed to scan a cer-

tain vertex x ∈ N in(v) every i distance estimates (for example whenever d̃ist(r, v) is divisible
by i) then this corresponds to enforcing that at all times d̃ist(r, x)+w(x, v)+ i−1 ≤ d̃ist(r, v)
since we check equation 2 every i steps (in particular, for i = 1, we get an exact algorithm).
Consequently, we get at most i − 1 additive error in the distance estimate for any t whose
shortest r-to-t path πr,t contains (x, v). On the other hand, we only need to scan and check
the edge (x, v), by the argument above, δ/i times3.

Improving the Running Time. Let us now exploit Inequality 1. We therefore define

Bj(v) = {u ∈ N in(v) with 2j ≤ τ(v) − τ(u) < 2j+1}

for every v ∈ V and 0 ≤ j ≤ lg n; the Bj(v) partition the in-neighborhood of v according to
topological order difference to v. Observe that |Bj(v)| ≤ 2j . Now, consider the algorithm as
above where for every vertex v, instead of checking all N in(v), we only check edge (x, v) for
x ∈ Bj(v) if d̃ist(r, v) is divisible by ⌈2j ǫδ

n ⌉. By the arguments above the total running time
now sums to

O


∑

v∈V

∑

0≤j≤lg n

|Bj(v)| δ

2j ǫδ
n


 = O


∑

v∈V

∑

0≤j≤lg n

2j+2 δ

2j ǫδ
n


 = Õ(n2/ǫ).

Bounding the Error. Fix a shortest r-to-t path πr,t, and consider any edge (u, v) ∈ πr,t

with u ∈ Bj+1(v). We observe that the edge (u, v) contributes at most an additive error of

2j+1 ǫδ
n to d̃ist(r, t) since it is scanned every ⌈2j ǫδ

n ⌉ distance values and if ⌈2j ǫδ
n ⌉ is equal to 1

it does not induce any error.
On the other hand, since u ∈ Bj+1(v) we also have τ(v) − τ(u) ≥ 2j . We can thus charge

n/(2ǫδ) units from T (πr,t, τ) for each additive error unit; we know from Equation 1 that
T (πr,t, τ) ≤ n, so the total additive error is at most n

n/(2ǫδ) = 2ǫδ. Thus, for all distances ≈ δ

(say in [δ/2, δ)), we obtain a (1 + 4ǫ)-multiplicative distance estimate4.

Working with Multiple Distance Scales. Observe that the data structure above has
no running time dependency on δ. Thus, to obtain a data structure that maintains a (1 +
2ǫ)-approximate distance estimate from r to any vertex x, we can simply use lg(nW) data
structures in parallel where the ith data structure has δ = 2i. A query can then be answered
by returning the smallest distance estimate from any data structure, using a min-heap data
structure to obtain this smallest estimate in constant time5. The running time for all data
structures is then bounded by Õ(n2 log W/ǫ).

3This trade-off was first observed in [Ber17].
4Technically, we run to depth (1 + 4ǫ)δ to ensure that vertices’ distance estimates are not set to ∞ too early.
5Here, we exploit that all distance estimates are overestimates, and at least one of them is (1 + 2ǫ)-

approximate.

6

3.2 Extending the Result to General Graphs

We now encourage the reader to verify that in the data structure for DAGs, we used at no
point that the graph was acyclic, but rather only used that T (πs,t, τ) is bounded by n for
any path πs,t. In this light, it might be quite natural to ask whether such a function τ might
exist for general decremental graphs. Surprisingly, it turns out that after carrying out some
contractions in G that only distort distances slightly, we can find such a function τ that comes
close in terms of guarantees. We call such a function τ an approximate topological order (this
function will no longer encode guarantees about reachability, but it helps for intuition to think
of τ as being similar to a topological order).

The Approximate Topological Order We start with the formal definition:

Definition 3.1. Given a decremental weighted digraph G = (V, E, w) and parameter ηdiam ≥
0. We call a dynamic tuple (V, τ) an approximate topological order of G of quality q > 1
(abbreviated AT O(G, ηdiam) of quality q), if at any stage

1. V = {X1, X2, .., Xk} forms a partition of V and a refinement of all earlier versions of V,
and

2. τ : V → [0, n) is a function that maps each X ∈ V to a value τ(X). If some set X ∈ V is
split at some stage into disjoint subsets X1, X2, .., Xk, then we let τ(Xπ(1)) = τ(X) and
τ(Xπ(j+1)) = τ(Xπ(j)) + |Xπ(j)| for each j < k and some permutation π of [1, k], and

3. each X ∈ V has weak diameter diam(X, G) ≤ |X|ηdiam

n , and

4. for any two vertices s, t ∈ V , the shortest path πs,t in G satisfies T (πs,t, τ) ≤ q ·w(πs,t)+n

where we define T (πs,t, τ)
def
=
∑

(u,v)∈πs,t
|τ(Xu)− τ(Xv)|.

We say that (V, τ) is an AT O(G, ηdiam) of expected quality q, if (V, τ) satisfies properties 1-3,
and at any stage, for every s, t ∈ V , E[T (πs,t, τ)] ≤ q · w(πs,t) + n.

Let us expound the ideas captured by this definition. We remind the reader that such a
function τ is required by a data structure that only considers distances in [δ/2, δ). Let us
consider a tuple (V, τ) that forms an AT O(G, ǫδ) of quality q. Then, for any s-to-t shortest
path πs,t = 〈s = v1, v2, . . . vℓ = t〉 in G, let si and ti be the first and last vertex on the path
in Xi ∈ V (see property 1) if there are any. Observe that by property 3, the vertices si and

ti are at distance at most |Xi|ǫδ
n in G. It follows that if we contract the SCC Xi, the distance

distG/Xi
(s, t) is at least the distance from s to t in G minus an additive error of at most |Xi|ǫδ

n .
It follows straight-forwardly, that after contracting all sets in V, we have that distances in G/V
correspond to distances in G up to a negative additive error of at most

∑
Xi∈V

|Xi|ǫδ
n = n·δǫ

n = ǫδ.
Thus, maintaining the distances in G/V (1 + 2ǫ)-approximately is still sufficient for getting a
(1 ± 2ǫ)-approximate distance estimate.

Property 1 simply ensures that the vertex sets forming the elements of V decompose over
time. Property 2 states that τ assigns each node in G/V a distinct number in [0, n). It also

7

ensures that if a set X ∈ V receives τ(X) that every later subset of X will obtain a number in
the interval [τ(X), τ(X)+|X|). Moreover, τ effectively establishes a one-to-one correspondence
between nodes in a version of G/V and intervals in [0, n) of size equal to their underlying vertex
set. Once a set X ∈ V decomposes into sets X1, X2, . . . , property 2 stipulates that the intervals
that τ maps X1, X2, . . . to are disjoint subintervals of [τ(X), τ(X) + |X|). We point out that
once V consists of singletons, each vertex is essentially assigned a single number.

Finally, property 4 gives an upper bound on the topological order difference. Observe
that we redefine T (πs,t, τ) in a way that is consistent with Definition 1. In our algorithm, for
ηdiam ≈ ǫδ, we obtain a quality of Õ(n/ǫδ). Thus, any path π of weight ≈ δ has T (π/V, τ) ≤
Õ(n/ǫ) which is very close to the upper bound obtained by the topological order function in
DAGs. We summarize this result in the theorem below which is one of our main technical
contributions.

Theorem 3.2. [see Section 4 and Section 5.2.] For any 0 ≤ i ≤ lg(W n), given a decremental
digraph G = (V, E, w), we can maintain an AT O(G, 2i) of expected quality Õ(n/2i). The
algorithm runs in total expected update time Õ(n2) against a non-adaptive adversary with high
probability.

Combining the theorem above and the theorem below which is obtained by generalizing
the above decremental SSSP algorithm for DAGs, we obtain our main result Theorem 1.1.

Theorem 3.3. [see Section 5.1.] Given G = (V, E, w) and (V, τ) an AT O(G, ηdiam ≈ ǫδ), for
some depth parameter δ > 0, of quality q, a dedicated source r in V , and an approximation
parameter ǫ > 0. Then, there exists a deterministic data structure Er that maintains a distance
estimate d̃ist(r, v) for each v ∈ V , which is guaranteed to be (1+ ǫ)-approximate if dist(r, v) ∈
[δ, 2δ). Distance queries are answered in O(1) time and a corresponding path P can be returned
in O(|P |) time. The total update time is Õ(nδq/ǫ + n2).

3.3 The Framework by [GW20a]

Before we describe our new result, we review the framework in [GW20a] to construct and
maintain an AT O(G, ηdiam). We point out that while the abstraction of an approximate
topological order is new to our paper, analyzing the technique in [GW20a] through the AT O-
lens is straight-forward and gives a first non-trivial result. Throughout this review section,
we assume that the graph G is unweighted to simplify presentation. This allows us to make
use of the following result which states that for vertex sets that are far apart, one can find
deterministically a vertex separator that is small compared to the smaller side of the induced
partition (to obtain an algorithm for weighted graphs a simple edge rounding trick is sufficient
to generalize the ideas presented below).

Definition 3.4. Given graph G = (V, E, w), then we say a partition of V into sets A, SSep, B
is a one-way vertex separator if A 6 G\SSep

B and A and B are non-empty.

Lemma 3.5 (see Definition 5 and Lemma 6 in [Che+16]). Given an unweighted graph G of
diameter diam(G). Then we can find sets A, SSep, B that form a one-way vertex separator

such that |SSep| ≤ Õ(min{|A|,|B|}
diam(G)) in time O(m).

8

High-level Framework. The main idea of [GW20a] is to maintain a tuple (V, τ) which is
an AT O(G, ηdiam) by setting (V, τ) to be GeneralizedTopOrder(G′) of some decremental
graph G′ ⊆ G (over the same vertex set, i.e. V (G′) = V (G)). It is straight-forward to see
that (V, τ) satisfies property 1 in Definition 3.1, since SCCs in the decremental graph G′

decompose. Further, it is not hard to extend the existing algorithm for maintaining SCCs in
a decremental graph G′ given in [BPW19] to also maintain function τ that obeys property 2
in Definition 3.1. The algorithm to maintain (V, τ) given G′ runs in total update time Õ(m)
(same as in [BPW19]).

So far, we have not given any reason why G′ needs to be a subgraph of G. To see why
we cannot use the above strategy on G directly, recall property 3 in the AT O-definition 3.1,
which demands that each SCC X has weak diameter at most |X|ηdiam

n . This property might
not hold in the main graph G. In order to resolve this issue, G′ is initialized to G and then
the diameter of SCCs in G′ is monitored. Whenever an SCC X violates property 3, a vertex
separator SSep is found in the graph G′[X] as described in Lemma 3.5 and all edges incident
to SSep are removed from G′. Letting S denote the union of all such separators SSep, we can
now write G′ = G \ E(S).

Establishing the Quality Guarantee. To establish a quality q of the AT O as described
in property 4 in Definition 3.1, let us first partition the set S into sets S0, S1, . . . , Slg n where
each Si contains all separator vertices found on a graph of size [n/2i, n/2i+1), thus it was
found when the procedure from Lemma 3.5 was invoked on a graph with diameter at least
(n/2i+1)ηdiam

n = ηdiam

2i+1 . Since separators are further balanced, i.e. there size is controlled by
the smaller side of the induced cut, we can further use induction and Lemma 3.5 to establish
that there are at most Õ(2in

ηdiam
) vertices in Si. Next, observe that since any separator that

was added to Si was found in a graph G′[X] with |X| ∈ [n/2i, n/2i+1), we have by property 2
that nodes X ′ ⊆ X that are in the current version of V are assigned a τ(X ′) from the interval
[τ(X), τ(X) + |X|). Thus, any edge (x, s) or (s, x) with x ∈ X, s ∈ Si ∩ X has topological
order difference |τ(Xx)− τ(Xs)| ≤ |X| ≤ n/2i.

Finally, let us define

T ′(πs,t, τ)
def
=

∑

(u,v)∈πs,t

min{0, τ(Xv)− τ(Xu)} (3)

the function similar to T (πs,t, τ) that only captures negative terms, i.e. sums only over edges
that go "backwards" in τ . Observe that T (πs,t, τ) ≤ 2T ′(πs,t, τ) + n. Now, since (V, τ) is a
GeneralizedTopOrder(G′), we have that (u, v) occurs in the sum of T ′(πs,t, τ) if and only
if (u, v) ∈ G \G′, so one endpoint is in a set Si and therefore τ(Xv)− τ(Xu) ≤ n/2i. Since we
only have two edges on any shortest path incident to the same vertex, we can establish that

T ′(πs,t, τ) ≤
∑

i

2|Si|n/2i = Õ(n2/ηdiam).

We obtain that (V, τ) is a AT O(G, ηdiam) of quality Õ(n2

2iηdiam
) for all paths of weight at least

2i. Thus, when the distance scale δ ≥ √n/ǫ, Theorem 3.3 requires total update time ≈ n2.5

9

to maintain (1 + ǫ)-approximate SSSP. For distance scales where δ <
√

n/ǫ, a classic ES-tree
has total update time ≈ m

√
n ≤ n2.5.

Limitations of the Framework. Say that the goal is to maintain shortest paths of length
around

√
n. The first step in the framework of [GW20a] is to find separator S such that all

SCCs of G′ = G\E(S) have diameter at most ǫ
√

n and then maintain (V, τ) = Generalized-

TopOrder(G′). Every edge (u, v) /∈ E(S) will only go forward in τ , but each edge (u, s), for
s ∈ S, can go “backwards" in τ . By the nesting property of generalized topological orders, the
amount that (u, s) goes backwards – i.e. the quantity |τ(Xu)− τ(Xs)| – is upper bounded by
the size of the SCC in G′ from which s was chosen: the original SCC has size n, but as we add
vertices to S, the SCCs of G′ = G \E(S) decompose and new vertices added to S may belong
to smaller SCCs. Define S∗ ⊆ S to contain all vertices s ∈ S that were chosen in an SCC of
size Ω(n). Intuitively, S∗ is the top-level separator chosen in G, before SCCs decompose into
significantly smaller pieces. Every edge in E(S∗) may go backwards by as much as n in τ , so
for any path πx,y in G, the best we can guarantee is that T (πx,y) ∼ n · |πx,y ∩ S∗|.

The framework of [GW20a] tries to find a small separator S∗ and then uses the trivial
upper bound |πx,y ∩ S∗| ≤ |S∗|. In fact, one can show that given any deterministic separator
procedure, the adversary can pick a sequence of updates where |πx,y ∩ S∗| ∼ |S∗|. But now,
say that G is a

√
n × √n-grid graph with bidirectional edges. It is not hard to check that

|S∗| = Ω(
√

n), because every balanced separator of a grid has Ω(
√

n) vertices. The framework
of [GW20a] can thus at best guarantee T (πx,y) ∼ n · |πx,y ∩ S∗| ∼ n|S∗| = Ω(n1.5), which is a√

n factor higher than it would be in a DAG, and thus leads to running time Õ(n2.5) instead
of Õ(n2).

Our algorithm uses an entirely different random separator procedure. We allow S∗ to be
arbitrarily large, but use randomness to ensure that |πx,y ∩ S∗| is nonetheless small.

3.4 Our Improved Framework

We now introduce our new separator procedure and then show how it can be used in a recursive
algorithm that uses ATOs of worse quality (large q) to compute ATOs of better quality (small
q). (By contrast, the framework of [GW20a] could not benefit from a multi-layered algorithm
because it would still hit upon the fundamental limitation outlined above.)

A New Separator Procedure. Before we describe the separator procedure, let us formally
define the guarantees that we obtain. In the lemma below, think of ζ = Θ(log(n)).

Lemma 3.6. There exists a procedure OutSeparator(r, G, d, ζ) where G is a weighted graph,
r ∈ V a root vertex, and integers d, ζ > 0. Then, with probability at least 1−e−ζ , the procedure
computes a tuple (ESep, VSep) where edges ESep ⊆ E, and vertices VSep = {v ∈ V |r G\ESep

v}
such that

1. for every vertex v ∈ VSep, distG\ESep
(r, v) ≤ d, and

2. for every e ∈ E, we have P[e ∈ ESep|r G\ESep
tail(e)] ≤ ζ

dw(e).

10

Otherwise, it reports Fail. The running time of OutSeparator(·) can be bounded by O(|E(VSep)| log n).

In fact, Algorithm 1 gives a simple implementation of procedure OutSeparator(·). Here,
we pick a ball B = Bout(r, X) in the graph G from r to random depth X, and then simply
return the tuple (ESep, VSep) = (E(B, B), B) where E(B, B) are the edges (u, v) with u ∈ B
but v 6∈ B. The procedure thus only differs from a standard edge separator procedure in that
we choose X according to the exponential distribution Exp(ζ

d).

Algorithm 1: OutSeparator(r, G, d, ζ)

1 Choose X ∼ Exp(ζ
d).

2 if X ≥ d then return Fail

3 Compute the Ball B = Bout(r, X) = {v ∈ V |dist(r, v) ≤ X}
4 return (E(B, B), B)

A proof of Lemma 3.6 is now straightforward. We return Fail in Line 2 with probability

P[X ≥ d] = 1− FX(d) = 1− (1− e− ζ
d

·d) = e−ζ (recall from section 2 that FX(d) is shorthand
for F (x, ζ

d), the cumulative distribution function of an exponential distribution with parameter
ζ
d). Assuming no failure, we have ESep = E(B, B), and it is easy to see that VSep = {v ∈
V |r G\ESep

v} = B, so Property 1 of Lemma 3.6 holds by definition of B. Moreover, we can
compute B in the desired O(|E(B)| log n) time by using Dijkstra’s algorithm by only extracting
a vertex from the heap if it is at distance at most X. Finally, for property 2, note that e ∈ Esep

iff dist(r, tail(e)) ≤ X < dist(r, tail(e)) + w(e). Thus,

P[e ∈ ESep|r G\ESep
tail(e)] = P[X < dist(r, tail(e)) + w(e)|X ≥ dist(r, tail(e))]

= P[X < w(e)] = FX(w(e)) = 1− e− ζ
d

w(e)

≤ 1−
(

1− ζ

d
w(e)

)
=

ζ

d
w(e)

where the second equality follows from the memory-less property of the exponential distri-
bution, and the inequality holds because 1 + x ≤ ex for all x ∈ R. We point out that the
technique of random ball growing using the exponential distribution is not a novel contribu-
tion in itself and has be previously used in the context of low-diameter decompositions [LS93;
Bar96; MPX13; Pac+18] which have recently also been adapted to dynamic algorithms [FG19;
CZ20].

A New Framework. Let us now outline how to use Lemma 3.6 to derive Theorem 3.2
which is stated below again. The full details and a rigorous proof are provided in Section 4.

Theorem 3.2. [see Section 4 and Section 5.2.] For any 0 ≤ i ≤ lg(W n), given a decremental
digraph G = (V, E, w), we can maintain an AT O(G, 2i) of expected quality Õ(n/2i). The
algorithm runs in total expected update time Õ(n2) against a non-adaptive adversary with high
probability.

11

As in [GW20a], we maintain a graph G′ ⊆ G and its generalized topological order (V, τ).

Whenever the diameter of an SCC X in G′ is larger than |X|ηdiam

n , we now use the separator

procedure described in Lemma 3.6 with d = |X|ηdiam

2n from some vertex r in X with |Bout(r, d =
|X|ηdiam

2n)| ≤ |X|/2. Such a vertex exists since by definition of diameter, as we can find two
vertices with disjoint balls. We obtain an edge separator ESep and update G′ by removing the
edges in ESep. Let the union of all edge separators be denoted by F and again observe that
G′ = G \ F . It is not hard to see that our scheme still ensures properties 1-3 in Definition 3.1.
We now argue that the quality improved to Õ(n/2i).

Partition F into sets F0, F1, . . . , Flg n where each Fj contains all separator edges found on a
graph of size [n/2j+1, n/2j). We again have that every edge (u, v) ∈ Fj has |τ(Xu)− τ(Xv)| ≤
n/2j . Let us establish an upper bound on the number of edges in Fj on any shortest path
πs,t. Consider therefore any edge e ∈ πs,t, at a stage where both endpoints of e are in a SCC
X of size [n/2j+1, n/2j) and where we compute a tuple (VSep, ESep) from some r ∈ X. Now,
observe that if tail(e) 6∈ VSep, then e can not be in ESep. So assume that tail(e) ∈ VSep. Then,
we have e joining Fj with probability

P[e ∈ ESep|r H\ESep
tail(e)] =

ζ

2i|X|/n
w(e) = Õ

(
2jw(e)

2i

)

according to Lemma 3.6, where we set ζ = Õ(1) to obtain high success probability. But if e
did not join Fj at that stage, then it is now in a SCC of size at most n/2j+1 (recall we chose
|Bout(r, d)| ≤ |X|/2, and we have VSep ⊆ Bout(r, d)). Thus, e cannot join Fj at any later stage.

Now, it suffices to sum over edges on the path πs,t and indices j to obtain that

T ′(πs,t, τ) ≤
∑

e∈πs,t

∑

j

P[e ∈ Fj] · n/2j =
∑

e∈πs,t

∑

j

Õ

(
2jw(e)

2i

)
· n/2j = Õ

(
w(πs,t)n

2i

)

giving quality Õ
(

n
2i

)
.

Efficiently Maintaining G′. As shown above, maintaining an AT O(G, 2i) requires detect-
ing when any SCC in G′ = G \ E(S) has diameter above 2i. We start by showing how to do
this efficiently if we are given a black-box algorithm ASSSP that maintains distance estimates
up to depth threshold 2i (i.e. if a vertex is at distance less than 2i from the source vertex,
there is a distance estimate with good approximation ratio).

We use the random source scheme introduced in [RZ08] along with some techniques de-
veloped in [Che+16; BPW19; GW20a]: we choose for each SCC X in G′ a center vertex
Center(X) ∈ X uniformly at random, and useASSSP to maintain distances from Center(X)
to depth 2i|X|/n ≤ 2i. Since the largest distances between the vertex Center(X) and any
other vertex in X is a 2-approximation on the diameter of G[X], this is sufficient to monitor
the diameter and to trigger the separator procedure in good time.

Cast in terms of our new ATO-framework, the previous algorithm of [GW20a] used a
regular Even and Shiloach tree for the algorithm ASSSP . We instead use a recursive structure,

12

where AT Os of bad quality (large q) are used to build AT Os of better quality (small q).
Recall that our goal is to build an AT O(G, 2i) of quality Õ(n/2i) and say that X is some
SCC of G′ = G \ E(S) whose diameter we are monitoring. Now, using the lower level of
the recursion, we inductively assume that we can maintain an AT O(G′[X], 2i−1) of quality
Õ(n/2i−1) in time Õ(|X|2). Plugging this AT O into Theorem 3.3 gives us an algorithm for
maintaining distances up to depth 2i in X with total update time Õ(|X|2), Summing over all
components X in G′, we get an Õ(n2) total update time to maintain AT O(G, 2i), as desired.

We actually cheated a bit in the last calculation, because the scheme above could incur an
additional logarithmic factor for computing AT O(G, 2i) from all the AT O(G′[X], 2i−1), so we
can only afford a sublogarithmic number of levels, which leads to an extra no(1) factor in the
running time. However, a careful bootstrapping argument allows us to avoid this extra term.

3.5 A Framework for Sparse SSSP

Similarly to Theorem 3.2, we can prove a similar theorem with better running time for sparse
graphs.

Theorem 3.7. [see Section 4 and Section 6.2.] For any 0 ≤ i ≤ log(W n), given a decremental
digraph G = (V, E, w), we can maintain an AT O(G, 2i) of expected quality Õ(n/2i). The
algorithm runs in total expected update time Õ(mn2/3) against a non-adaptive adversary with
high probability.

In the remaining section, let us sketch how we obtain an efficient algorithm to compute
SSSP given the result from Theorem 3.7. To simplify the presentation let us assume for the
rest of the section that the graph G = (V, E) is unweighted.

Reducing SSSP to Hopset Maintenance. Let us introduce the notion of a (1 + ǫ, h)-
hopset H which is a weighted decremental graph on the same vertex set as G such that at any
stage, for any two vertices s, t ∈ V , we have

distG(s, t) ≤ disth
G∪H(s, t) ≤ (1 + ǫ)distG(s, t) (4)

where we use the notation distℓ
F (s, t) to denote the shortest s to t path in the graph F

consisting of at most ℓ edges. Using a well-known rounding technique, we can then run a
slightly modified ES-tree data structure from a root vertex r on the graph G ∪H to depth h
to obtain (1 + ǫ)-approximate distances in G from r. The data structure only requires time
Õ((m + |E(H)|)h).

In our paper, we show how to construct for every lg(n2/3 log n) ≤ i ≤ lg n, a (1 + ǫ, n2/3)-
hopset Fi with Õ(n) edges that satisfies equation Equation (4) for all pairs at distance [2i, 2i+1),
so the total update time of the ES-tree becomes Õ(mn2/3), as desired. For i < lg(n2/3 log n), we
can maintain distances up to 2i in total update time Õ(mn2/3) by simply running a classic ES-
tree, without any hop-set. We obtain final distance estimates by running the above algorithm
for each i; then, for any pair s, t, we find the smallest distance estimate among these O(log(n))
data structures and output that as the final distance estimate.

13

Maintaining a Hopset Fi. For each lg(n2/3 log n) ≤ i ≤ lg n, we want to maintain Fi as a
weighted graph with the guarantee that for every vertices s and t at distance at [2i, 2i+1), we
have a (1 + ǫ)-approximate shortest path in Fi ∪G of hop at most Õ(n2/3).

To maintain such a graph Fi, we use (Vi, τi) an AT O(G, ηdiam = ǫ2i) as given in Theo-
rem 3.7. We first sample each vertex v ∈ V with probability Θ̃(n1/3/2i). We let S be the
set of sampled vertices and have |S| = Õ(n1+1/3/2i) with high probability. We then run from
each vertex s ∈ S, with node Xs ∈ Vi, an ES-tree to depth 2i/n2/3 on the graph G/Vi induced
by the set of nodes Y ∈ Vi such that |τi(X

s) − τi(Y)| = Õ(n2/3). We then add an edge (s, t)
for every vertex t that is in a node in the ES-tree of the vertex s where we use corresponding
distance estimate as an edge weight.

Hopset Sparsity and Running Time. It can be shown that every edge only participates
in Õ(|S|) ES-trees and therefore the total running time of all ES-trees can be bound by
Õ(m|S| · 2i) = Õ(mn2/3). Further, each ES-tree from a vertex s ∈ S has with high probability
at most Õ(n1/3/2i) vertices in S in its tree and therefore the set Fi has at most Õ(|S|n1/3/2i) =
Õ(n) edges.

Correctness. Finally, to show that G ∪ Fi contains a path of hop at most Õ(n2/3) between
any two vertices s, t at distance 2i let us focus on their corresponding shortest path πs,t. We
can partition the path into segments of length at most 2i−1/n2/3, and by a standard hitting set
argument, we have with high probability a vertex in S in every segment. Let s1, s2, . . . , sk be
such that each sj is a vertex in S in the jth segment. We observe that k ≤ 2i

2i−1/n2/3 = 2n2/3.

Now, for every sj we either have sj+1 in the ES-tree, in which case we have a direct edge
between the vertices in Fi. Otherwise, some vertex v on the path segment from sj to sj+1 is in
a node Y such that |τi(X

s)− τi(Y)| ≫ n2/3. But since the quality of the AT O is Õ(n/2i), the
total sum of topological difference of the path πs,t is only Õ(n). Thus, this can occur at most
n1/3 times. Every time, we can use the shortest path in G between sj and sj+1 consisting of at
most 2i/n2/3 ≤ n1/3 edges. Adding the paths from s to s1 and from sk to t, the total number
of edges is at most Õ(n2/3) as desired. Finally, we observe that when running the ES-data
structure on G ∪ Fi, we have to add an additive term of ηdiam since the contractions in the
graph G/Vi might decrease distances by this additive term. But for distances in the range
[2i, 2i+1), this term can be subsumed in the (1 + ǫ) multiplicative error (after rescaling ǫ by a
constant factor).

3.6 Organization

We recommend the reader to carefully study Section 3 to gain necessary intuition for our
approach. In Section 4, we give an efficient reduction from maintaining an approximate topo-
logical order to depth-restricted SSSP. This section is the centerpiece of the article and its
main result, Theorem 4.4, is one of our main technical contributions.

We then show how to use Theorem 4.4 to obtain a SSSP data structure for dense graphs
in Section 5 and for sparse graphs in Section 6. Both sections follow the same structure: we

14

first show how to obtain a depth-restricted SSSP data structure using an AT O and then we
bootstrap the reductions to obtain the final result.

In Section 7, we draw a conclusion, put our results in perspective and discuss open prob-
lems.

4 Reducing Maintenance of an Approximate Topological Or-
der to α-approximate δ-restricted SSSP

In this section, we show how to obtain an AT O given an α-approximate δ-restricted SSSP
data structure. We start by defining such a data structure and then give a reduction.

Definition 4.1. Let A be a data structure that given any decremental directed weighted graph
G, a dedicated source r ∈ V , an approximation parameter α > 1, maintains for each vertex
v ∈ V , distance estimates d̃ist(r, v) and d̃ist(v, r) such that at any stage of G, for every pair
(s, t) ∈ ({r} × V) ∪ (V × {r})

• we have dist(s, t) ≤ d̃ist(s, t), and

• if dist(s, t) ≤ δ, then d̃ist(s, t) ≤ αdist(s, t).

Then, we say A is an α-approximate δ-restricted SSSP data structure with running time
TSSSP (m, n, δ, α). We require only that A runs against a non-adaptive adversary.

Remark 4.2. In the rest of the article, we implicitly assume that all SSSP data structures
have TSSSP (m, n, δ, α) monotonically increasing in the first two parameters.

We also need another definition that makes it more convenient to work with AT Os that
only have expected quality (see Definition 3.1). However, we require high probability bounds
in our constructions and it will further be easier to work with deterministic objects. This
inspires the definition of an AT O-bundle which is a collection of AT Os such that for each
path of interest, there is at least one AT O in the bundle that has good quality for the path
at-hand.

Definition 4.3 (AT O(G, ηdiam, ℓ)-bundle). Given a decremental weighted directed graph G =
(V, E, w) and parameter ηdiam ≥ 0. We call S = {(Vi, τi)}i∈[1,ℓ] an AT O(G, ηdiam, ℓ)-bundle of
quality q if every (Vi, τi) is an AT O(G, ηdiam) and for any two vertices s, t ∈ V , there exists
an i ∈ [1, ℓ], such that the shortest path πs,t in G satisfies T (πs,t, τi) ≤ q · w(πs,t) + n.

Without further due, let us state and prove the main result of this section.

Theorem 4.4 (AT O-bundle from SSSP). Given an algorithm A to solve 2-approximate δ-
restricted SSSP on any graph H in time TSSSP (m, n, δ), and for any c > 0, we can maintain

an AT O(G, 2αδ, 40c log n)-bundle of quality (c+2)40000n log5 n
δ in total expected update time

O




⌈lg δ⌉∑

j=0

2j+3c log2 n∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log3 n


 (5)

15

where
∑

j mj,k ≤ 16c ·m log2 n for all k. The algorithm runs correctly with probability 1− n−c

for any c > 0.

Remark 4.5. The graphs that the data structure A runs upon during the algorithm are vertex-
induced subgraphs of G. The data structure A is further allowed to maintain distances on a
larger subgraph of G, i.e. when A is applied to a graph G[X], it can run instead on G[Y] for
any set X ⊆ Y ⊆ V .

We point out that Remark 4.5 is only of importance at a later point at which the reader
will be reminded and can safely be ignored for the rest of this sections (the reader is however
invited to verify its correctness which is easy to establish).

We now describe how to obtain an efficient algorithm that obtains an AT O(G, 2αδ) hence-
forth denoted by (V, τ). The next sections describe how to initialize (V, τ), how to maintain
useful data structures to maintain the diameter, give the main algorithm and then a rigorous
analysis. Finally, we obtain a AT O(G, 2αδ, 40c log n)-bundle by running 40c log n independent
copies of the algorithm below.

4.1 Initializing the Algorithm

As described in Section 3, our goal is to maintain a graph G′ that is a subgraph of G and
satisfies that no SCC X in G′ has weak diameter diam(X, G) larger than δ|X|

n . Throughout,
we maintain the generalized topological order (V, τ) on G′ where τ has the nesting property
as described in Theorem 2.1.

To ensure the diameter constraint initially, we use the following partitioning procedure
whose proof is deferred to Appendix B.

Lemma 4.6 (Partitioning Procedure). Given an algorithm A to solve 2-approximate δ-restricted
SSSP. There exists a procedure Partition(G, d, ζ) that takes weighted digraph G, a depth
threshold d ≤ δ and a success parameter ζ > 0, and returns a set ESep ⊆ E such that

1. for each SCC X in G\ESep, we have for any vertices u, v ∈ X that distG\ESep
(u, v) ≤ d,

and

2. for e ∈ E, we have P[e ∈ ESep] ≤ 240ζ log2 n
d w(e).

The algorithm runs in total expected time

O




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log2 n




where we have that
∑

k=0 mj,k ≤ 2m for every i. The algorithm terminates correctly with
probability 1− e−ζ for any c > 0.

Remark 4.7. During the execution, the graphs on which we use the SSSP structure upon
have the properties as described in Remark 4.5.

16

Algorithm 2: Init()

1 Let G′ be initialized to G.
2 for i = 0 to ⌈lg δ⌉ do

3 Compute the SCCs V of G′

4 foreach SCC X in V, |X| ≤ n/2i do

5 ESep ← Partition(G[X], δ/2i , (c + 2) log n)
6 G′ ← G′ \ESep

7 return G′

Using this procedure, it is straight-forward to initialize our algorithm. The pseudo-code of
the initialization procedure is given in Algorithm 2. Here, we iteratively apply the partitioning
procedure to SCCs of small size to decompose them further if their diameter is too large. It
is not hard to establish that the graph G′ returned by the procedure, satisfies that every SCC
X in G′ has diam(X, G) ≤ δ|X|

n .

4.2 Maintaining Information about SCC Diameters

Before we describe how to maintain G′ to satisfy the guarantees given above, we address the
issue of maintaining information about the diameter of the current SCCs in G′.

Therefore, we maintain a set S of random sources throughout the algorithm, and from
each s ∈ S, we run an α-approximate δ-restricted SSSP data structure As. Initially S = ∅,
and whenever there is an SCC X in V (which is maintained by the data structure on G′), and
we find S ∩X = ∅, we pick a vertex s uniformly at random from X and add it to S. Once
added, we initialize and maintain an α-approximate δ-restricted SSSP data structure As on
the current version of G[X]. That is, even if X does not form an SCC at later stages, the
data structure is run until the rest of the algorithm on the graph G[X]. This ensures that
once the algorithm is invoked, all edge updates are determined by the adversary formulating
updates to G. Since we assume that the adversary is non-adaptive, we have that the SSSP
data structure only has do deal with updates from a non-adaptive adversary6.

We point out that since we maintain G′ to be a decremental graph, we have that V forms
a refinement of previous versions at any stage i.e. the SCC sets only decompose over time
in G′. Therefore, we can never have multiple center vertices in the same SCC X ∈ V. For
convenience, we let for each X ∈ V, the vertex {s} = X ∩ S be denoted by Center(X). By
the above argument, this function is well-defined.

6If we would instead remove vertices from the data structure, we would do so based on the information
gathered from the data structure. Thus, the data structure would be required to work against an adaptive
adversary. A similar problem arises when running on G′.

17

4.3 Maintaining G′

Let us now describe the main procedure of our algorithm: the part that efficiently handles
violations of the diameter constraint by finding new separators. The implementation of this
procedure is given by Algorithm 3. Let us now provide some intuition and detail as to how
the algorithm works.

Algorithm 3: ResolveDiameterViolations()

1 while there exists an X ∈ V, where ACenter(X) has a distance estimate

d̃ist(Center(X), t) or d̃ist(t, Center(X)) exceeding δ|X|
n for some vertex t ∈ X do

/* Find separator sets that decompose X. */

2 if d̃ist(t, Center(X)) > |X|δ
n then

3 (ESep, C)← OutSeparator(t, G′[X], |X|δ
2n , (c + 2) log n)

4 else

5 (ESep, C)← OutSeparator(t,
←−−−
G′[X], |X|δ

2n , (c + 2) log n)

6 E′
Sep ← Partition(G′[C], |X|δ

4n , (c + 2) log n))

/* Update G′, V and τ to reflect the changes. */

7 G′ ← G′ \ (ESep ∪ E′
Sep)

8 Wait Until the generalized topological order (V, τ) of G′ was updated, each SCC Z
in G′ has a center Center(Z), and all data structures As are updated.

The algorithm runs a while-loop starting in Line 1 that checks whether there exists a SCC
X ∈ V, such that the α-approximate δ-restricted SSSP data structure ACenter(X) has one of

its distance estimates d̃ist(Center(X), t) (or d̃ist(t, Center(X))) exceeding δ|X|
n for some

vertex t in the same SCC X in G′. The goal of the while-loop iteration, is then to find a
separator ESep between Center(X) and t and to delete the edges from G′.

Let us describe a loop-iteration where some distance estimate d̃ist(Center(X), t) was

found that exceeded δ|X|
n and where t ∈ X (the case where we have a distance estimate

d̃ist(Center(X), t) exceed the threshold value is analogous and therefore omitted). In this
case, we find a separator ESep that separates vertices in C (where t ∈ C) from vertices in X \C
(where Center(X) ∈ X\C) in G′. Further, we invoke the procedure Partition(G′[C], δ|X|

4n , ζ)
on C and obtain a separator E′

Sep in G′ such that each SCC in G′[C]\E′
Sep has small diameter.

We point out that while the first separator procedure is necessary to separate the vertices
Center(X) and t in G′, the partitioning procedure is run for technical reasons only since we
cannot ensure an efficient implementation without this step.

Finally, we wait until the data structures that maintain the generalized topological order
and the distance estimates from random sources are updated before we continue with the
next iteration. On termination of the while-loop, we have that all distance estimates between
centers and vertices in their SCC (with regard to G′) are small (with regard to G).

18

4.4 Analysis

We establish Theorem 4.4 by establishing four lemmas establishing for (V, τ) correctness
(Lemma 4.8), running time (Lemma 4.12) and success probability (Lemma 4.13) and finally
establishing that c log n independent copies of (V, τ) form an AT O(G, 2αδ)-bundle with the
guarantees given in Theorem 4.4, as required.

Lemma 4.8 (Correctness). Given that no procedure returns Fail, we have that the algorithm

maintains (V, τ) to be an AT O(G, 2αδ) of expected quality (c+2)20000n log5 n
δ .

Let us first prove that the diameter of SCCs in G′ remains small.

Claim 4.9. After invoking Algorithm 3, we have that each set X ∈ V satisfies

diam(X, G) ≤ 2αδ|X|
n

Proof. First, recall that when the while-loop in Line 1 terminates, we have that every X ∈ V
has that no distance estimate d̃ist(Center(X), t) or d̃ist(t, Center(X)) exceeds δ|X|

n for any
t ∈ X.

Next, observe that the algorithm maintains the following invariant on the while-loop in
Line 1: every X ∈ V contains exactly one center is only marked in the data structure ECenter(X).
This follows by resampling centers in SCCs X that do not have a center yet and the by Line 8
which ensures that at the end of each while-loop iteration, there is time to resample.

Combined, this implies that on termination of the while-loop, for every x, y ∈ X, in any
X ∈ V, we have

distG(x, y) ≤ distG(x, Center(X)) + distG(Center(X), y)

≤ d̃ist(x, Center(X)) + d̃ist(Center(X), y)

≤ 2αδ|X|
n

(6)

where we used the triangle inequality, Definition 4.1 and the fact that ACenter maintains
distances with regard to a vertex-induced subgraph of G (adding edges can only decrease
distances, thus distances in G are smaller than in G[Y] ⊆ G for any Y).

Let us now bound the quality of the approximate topological order (V, τ), i.e. upper bound
for any s-to-t path πs,t the amount T (πs,t, τ). As in the overview section, we focus on the
"negative" terms in T (πs,t, τ), which are captured by

T ′(πs,t, τ)
def
=

∑

(u,v)∈πs,t

min{0, τ(Xv)− τ(Xu)} (7)

which is the definition of T ′ already given in equation 3. It is not hard to see that T (πs,t, τ) =
2T ′(πs,t, τ)+|τ(Xs)−τ(Xt)| ≤ 2T ′(πs,t, τ)+n. It, thus, only remains to establish the following
lemma.

19

Claim 4.10. At any stage of G, for any path πs,t in G, we have

E[T ′(πs,t, τ)] ≤ (c + 2)10000n log5 n

δ
wG(π)

throughout the course of the algorithm.

Before, we provide a proof, let us state the following lemma which has been shown in slightly
different forms in various papers before and whose proof is therefore delayed to Appendix C.

Lemma 4.11 (c.f. also [Che+16], Lemma 13; [BPW19], Lemma 7.1). Each vertex v ∈ V
participates in C in at most 2⌈lg δ⌉ while-loop iterations of Algorithm 3 during the entire course
of the algorithm in expectation. Further, in expectation, the SCC in G′ that v is contained in,
halves every second time that v participates in C.

Proof of Claim 4.10. We proof this lemma for edges (u, v) ∈ E. Then, the result follows
straight-forwardly by summing over the path edges. Let us start by observing that we have
T ′((u, v), τ) 6= 0 if and only if Xv strictly precedes Xu in τ (where Xz denotes the set in V
that contains vertex z ∈ V). But since (V, τ) forms a generalized topological order of G′, we
have that (u, v) cannot be contained in E(G′).

However, we only remove edges from E(G′) in Line 7 of our algorithm, after being added
to ESep in Line 3 or 5, or to E′

Sep in Line 6. Having (u, v) ∈ ESep occurs by Lemma 3.6 only if
(u, v) is contained in G′[X] and if at least one of the endpoints is in C (depending on whether

the separator is computed on G′[X] or
←−−−
G′[X] it is u or v). In this case, the probability that

(u, v) is added to ESep is at most (c+2) log n2n
|X|δ wG(u, v), again by Lemma 3.6.

However, if (u, v) is not added to ESep (and not already removed from G′) then it is
completely contained in G′[C]. Thus, by Lemma 4.6 it is sampled into E′

Sep with probability

at most (c+2)240 log4(n)·4n
|X|δ wG(u, v) ≤ (c+2)960n log4 n

|X|δ wG(u, v).

Observe that if (u, v) is sampled into either ESep or E′
Sep, then since it was contained in

X and by the nesting property of τ which is guaranteed by Theorem 2.1, we have that during
the rest of the algorithm, we have |τ(Xu)− (Xv)| < |X| where Xu (resp. Xv) denotes the set
in V that contains u (resp. v).

Thus, a while-loop iteration where u or v participate in C adds to E[T ′(πs,t, τ)] at most

|X| · (c + 2)1000n log4 n

|X|δ wG(u, v) =
(c + 2)1000n log4 n

δ
wG(u, v).

Since by Lemma 4.11 each vertex only occurs during 2 lg n while-loop iterations in C, we can
establish the final bound.

Combining the fact that (V, τ) is a GeneralizedTopologicalOrder(G′) at all stages
and G′ ⊆ G where τ has the nesting property, combined with Claim 4.9 and Claim 4.10, we
derive Lemma 4.8.

20

Lemma 4.12 (Running Time). The algorithm to maintain (V, τ) requires at most expected
time

O




⌈lg δ⌉∑

j=0

2j+3⌈lg δ⌉∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log2 n




where
∑

j mj,k ≤ 16m⌈lg δ⌉.

Proof. Again, our proof crucially relies on the following lemma.

Lemma 4.11 (c.f. also [Che+16], Lemma 13; [BPW19], Lemma 7.1). Each vertex v ∈ V
participates in C in at most 2⌈lg δ⌉ while-loop iterations of Algorithm 3 during the entire course
of the algorithm in expectation. Further, in expectation, the SCC in G′ that v is contained in,
halves every second time that v participates in C.

We first observe that the initialization procedure described in Section 4.1 initializes G′ in
O(m) time and then runs O(log n) iterations where in each iteration it invokes the procedure
Partition(·) on a set of disjoint subgraphs of G to update G′. By Lemma 4.6, we can
implement all of these calls in time

O


log n




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log n




 .

The latter term in this expression subsumes the time spend on updating G′ once a separator
is returned.

Next, let us bound the time spend on maintaining the SSSP data structures as described
in Section 4.2. It is here that we use Lemma 4.11: we have that initially each vertex (and
edges) is in exactly one data structure. Further, every second time a vertex v participates in
C as computed in Line 3 or Line 5, the SCC it is contained in in G′ is halved in size (i.e. in
the number of vertices). Since new SSSP data structures are initialized on the new SCCs
that are contained in the C set, we have that each vertex v, in expectation, only participates
2 times in an SSSP structure with running time TSSSP (mj,k, n/2j , δ, 2) + m log n for any j.
Since each edge is incident to only two vertices, we have a similar argument on edges and can
therefore bound the total amount of time spend on SSSP data structures by

O




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (mj,k, n/2j , δ, 2)


 .

where
∑

j mj,k ≤ 4m.
Finally, let us bound the time spend in calls to Algorithm 3. We observe that each while-

loop iteration takes time

O




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (m′
j,k, n′/2j , δ, 2) + m′ log n




21

where
∑

j m′
j,k ≤ 4m′ for m′ = |EG(C)| and n′ = |VG(C)|. This follows since the OutSeparator(·)

procedure runs in time almost-linear in the number of edges incident to C and afterwards the
call of the procedure Partition(·) which dominates the costs of the procedure is only on
the graph G′ induced by the vertices in C. Thus, this insight follows straight-forwardly from
Lemma 3.6 and Lemma 4.6 and the insight that the cost of the remaining operations is sub-
sumed in the bounds.

Finally, we again use Lemma 4.11 which gives that summing over all while-loop iterations
is at cost at most

O




⌈lg δ⌉∑

j=0

2j+2⌈lg δ⌉∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log2 n




where
∑

j mj,k ≤ 8m⌈lg δ⌉. Combining the parts of the algorithm, we thus get the total
bound.

Lemma 4.13 (Success Probability). The algorithm reports Fail with probability at most
2n−c−1.

Proof. We point out that we can only get a Fail due to procedures OutSeparator(·) and
Partition(·).

Since each separator found in the while-loop in Line 1 refines V, we can bound the number
of while-loop iterations in the course of the algorithm by n− 1. Thus, we make at most n− 1
calls to procedures OutSeparator(·) and Partition(·). Each of the former calls returns
Fail with probability at most n−(c+2) and each of the latter with probability at most n−(c+2).

Taking a union bound over all events, the lemma follows.

Finally, let us put everything together and prove our main theorem.

Theorem 4.4 (AT O-bundle from SSSP). Given an algorithm A to solve 2-approximate δ-
restricted SSSP on any graph H in time TSSSP (m, n, δ), and for any c > 0, we can maintain

an AT O(G, 2αδ, 40c log n)-bundle of quality (c+2)40000n log5 n
δ in total expected update time

O




⌈lg δ⌉∑

j=0

2j+3c log2 n∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log3 n


 (5)

where
∑

j mj,k ≤ 16c ·m log2 n for all k. The algorithm runs correctly with probability 1− n−c

for any c > 0.

Proof. We maintain a collection of 40c log n independent AT O(G, 2αδ) instances

(V1, τ1), (V2, τ2), . . . , (V40c log n, τ40c log n)

as described earlier in this section and let S denote the collection of these instances.
The total running time to maintain these AT O(G, 2αδ)’s is clearly bounded by the term

given in equation 5 by Lemma 4.12.

22

Now, since by Lemma 4.8, each AT O(G, 2αδ) has expected quality q = (c+2)20000n log5 n
δ ,

we have by Markov’s inequality and a simple Chernoff bound, that for each shortest path πs,t

in G at some stage t, we have that there exists an i, such that T (πs,t, τi) ≤ 2q with probability
at least 1−e−40c log n/8 = 1−n−5c. Since c > 1, we have that the probability that any shortest-
path at any stage fails, is at most 1− n−c/2 by union bounding over at most n2 stages and at
most n2 shortest-paths, for n large enough. Moreover, the total probability that any instance
returns Fail is at most n−c/2 by Lemma 4.13 and a union bound over the instances. Thus,
we have established that with probability at least 1 − n−c, S forms an AT O(G, 2αδ)-bundle
of quality 2q as defined in Definition 4.3.

5 A SSSP Algorithm for Dense Graphs

We now give a proof of Theorem 3.2 which implies our main result, Theorem 1.1, as a corollary.
Our proof is in two steps: we first show how to implement an α-approximate δ-restricted SSSP
as described in Definition 4.1 given access to approximate topological orders. We then show
how to bootstrap the reductions to maintains different SSSP data structures to cover all
depths.

5.1 α-approximate δ-restricted SSSP via Maintaining an Approximate Topo-
logical Order

The main objective of this section is to prove the following theorem which gives a reduction
from (1+ǫ)-approximate δ-restricted SSSP to approximate topological orders. In this theorem,
we only assume access to an AT O(G, ηdiam) denoted by (V, τ) where we assess the quality
individually for each path. If the quality for a certain tuple is below a threshold q, we show
how to exploit the approximate topological order to maintain the distance estimate for the
tuple efficiently, otherwise we provide no guarantees.

Theorem 5.1. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a depth
threshold δ > 0, a quality parameter q, an approximation parameter ǫ > 0, and access to (V, τ)
an AT O(G, ηdiam).

Then, there exists a deterministic data structure that maintains a distance estimate d̃ist(r, v)
for every vertex v ∈ V such that at each stage of G, distG(r, v) ≤ d̃ist(r, v) and if distG(r, v) ≤
δ and T (πr,v, τ) ≤ q · δ + n, then

d̃ist(r, v) ≤ distG(r, v) + ηdiam + ǫδ.

The total time required by this structure is

O(nδq log n/ǫ + n2 log n)

Remark 5.2. Technically, we require the approximate topological order (V, τ) to encode changes
efficiently and pass them the SSSP data structure. Since the SSSP data structure is updated

23

only through delete operations, we require, that with each edge update, the data structure re-
ceives changes to (V, τ) since the last stage. More precisely, we require that the user passes a
set of pointers to each set Y that occurred in V at the previous stage (denoted VOLD), but did
not occur in V at the current stage (denoted VNEW), i.e. each Y ∈ VOLD \ VNEW . Addition-
ally, we require with each such Y that was split into subsets Y1, Y2, . . . , Yk ∈ VNEW that form a
partition of Y , pointers to each new element Yi. We further require worst-case constant query
time of τ , and each element Y ∈ V (for any version) can be queried for its size in constant
time and returns its vertex set in time O(|Y |). For the rest of the paper, this detail will be
concealed in order to improve readability.

Before we show how to implement such a data structure, let us emphasize that the above
theorem directly implies Theorem 3.3 that we introduced in the overview. It can further also
be used to derive the following corollary which is at the heart of our proof in the next section.
Its proof is rather straight-forward and can be found in Appendix E.

Corollary 5.3. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a
depth threshold δ > 0, an approximation parameter ǫ > 0, and access to a collection S =
{Si}1≤i≤µ for µ = ⌊lg δ⌋ − 1 where each Si forms an AT O(G, 2i, 40c log n)-bundle of quality
qi. Then, there exists an implementation for (1 + ǫ)-approximate δ-restricted SSSP where
TSSSP (n, m, δ, ǫ) = O(n(max1≤i≤µ{ δqi

2i }+ n) log3 n/ǫ2).

Let us now describe the implementation of a data structure Er that stipulates the guarantees
given in Theorem 5.1. Since the proof that this is indeed a valid implementation of Theorem 5.1
is quite similar to the proof sketch we give in Section 3, we refer the reader to Appendix D.

Initialization. Throughout the algorithm, we define δmax = ⌈(1 + ǫ)δ + ǫn/q⌉ and define
the complete graph H = (V,V2, w)7 with weight function

w(X, Y) = inf{w(x, y)|(x, y) ∈ E(X, Y)}

for X, Y ∈ V. We use the convention that the infimum of the empty set is ∞. We use H to
avoid dealing explicitly with G/V which is a multi-graph, instead in H we use the same node
set with simple edges as the infimum over weights of the multi-edges (even if there is no such
edge).

We use a standard min-heap data structure8 QX,Y over the set E(X, Y) for each ordered
pair (X, Y) to maintain the weight w(X, Y). We henceforth denote by QX,Y .MinValue the
value w(X, Y) and by QX,Y .MinElem a corresponding edge (x, y) with x ∈ X, y ∈ Y , and use
the convention of denoting the node in V that contains vertex x ∈ V by Xx. We initialize the
data structure Er by constructing H and by running Dijkstra’s algorithm9 from Xr on H. We
then initialize a distance estimate d̃ist(Xr, Y) for each Y ∈ V to distH(Xr, Y). If we have

7Here, we are again slightly abusing notation by referring to V as partition and node set, however, context
and the fact that this implicitly refers to a one-to-one correspondence between partition sets and nodes ensures
that no ambiguity arises.

8See for example [Cor+09].
9See [Cor+09] for an efficient implementation.

24

d̃ist(Xr, Y) > δmax at any point in the algorithm, we set it to ∞. Further, we also maintain
the distance estimates d̃ist(r, u) for each u ∈ V equal to d̃ist(Xr, Xu) + ηdiam, i.e. every
time we increase d̃ist(Xr, Xu), we also increase u’s distance estimate10. This allows us to
henceforth focus on the distance estimates of nodes which is easier to describe. We also store
the corresponding shortest-path tree T truncated at distance δmax that serves as a certificate
of the distance estimates.

Finally, we partition for each node X ∈ V, the in-neighbors set in H of X into different
buckets based on their τ -distance: for each X, we initialize bucket B−1(X) = {X} and for
0 ≤ j ≤ lg n we initialize the bucket Bj(X) to

{2j ≤ χ(X, Y, τ) < 2j+1|Y ∈ N in
H (X), X 6= Y }

where we define

χ(X, Y, τ)
def
=

{
τ(Y)− (τ(X) + |X| − 1) if τ(X) < τ(Y)

χ(Y, X, τ) otherwise
(8)

that is χ(·) is similar to T (·) (in fact χ(X, Y, τ) ≤ T (X, Y, τ)), however, as τ maps nodes
X and Y to disjoint intervals, T (·) measures the distance between the starting points of the
intervals, while χ(·) measures the distance between the intervals (i.e. the closest endpoints of
the intervals).

At any stage, we let B≤j(X) =
⋃

j′≤j Bj′(X). We store each set Bj(X) explicitly as a
linked list, store for each Y ∈ Bj(X) a pointer to the bucket, and maintain the buckets to
partition the in-neighbors of each X.

Handling Edge Deletions. The edge deletion procedure takes two parameters: the edge
to be deleted (u, v) and a collection of tuples U that encode refinements of V during this stage.
To handle the update, we initialize a min-heap Q = ∅ that keeps track of the nodes in H, that
cannot be reached from Xr in the truncated shortest-path tree T (i.e. whose certificate for
the current distance estimate was compromised).

We start our update procedure by processing updates to (V, τ) (check the remark of Theo-
rem 5.1 for a description of these updates encoded by U). For any node X ∈ VOLD\VNEW , that
was split into subsets X1, X2, . . . , Xk ∈ V NEW (i.e. for every tuple (X, X1, X2, . . . , Xk) ∈ U),
we query for each Xi, its size. Then, we let the largest node Xi inherit the original node X
(that is the nodes are equal in our data structure at this stage although the partition sets are
not), and create a new node Xi′ in H for other i′ 6= i, and new heap structures QXi′ ,Y for
every Y ∈ V. Then for each Xi′ , i′ 6= i, we scan each edge (x, y) in E(Xi′ , V \ Xi′), remove
it from the heap QXi,Xy and add it to the new heap QXi′ ,Xy . We also initialize the distance

estimates for each Xi′ , d̃ist(Xr, Xi′) to take the value d̃ist(Xr, X), also for Xi. We then find
the edge (w, x) in T where X = Xx. Clearly, we now have that Xi′ = Xx for some i′ and we
connect Xi′ in the tree T since this edge is now a certificate for Xi′ ’s distance estimate. The

10We will show that d̃ist(Xr, Xu) is a monotonically increasing value over time.

25

rest of the nodes, i.e. the nodes X1, X2, . . . , Xi′−1, Xi′+1, . . . , Xk, we add to Q since we do not
have a certificate for them yet.

Finally, when all the node splits for the current stage where processed, we update the
buckets Bj(Y) for all j and Y to almost stipulate the initialization rules. We point out that
all edges that have to be assigned to a different bucket have to be incident to X1, X2, . . . , Xk

by property 2. Then, for each Xi′ (also Xi), we compute j to be the largest integer such that
some number in |Xi′ |, |Xi′ | + 1, . . . , |X| − 1 is divisible by 2j . Then, we update all nodes in
B≤j+1(Xi′) by scanning and reassigning them, and similarly reassign Xi′ to a new bucket for
each Y where Xi′ ∈ B≤j(Y).

Finally, when all node splits are processed, the node set of H reflects the current V, and
we can delete the edge (u, v) from H by deleting it from the heap it is contained in. If (u, v)
was equal to QXu,Xv .MinElem, and (Xu, Xv) ∈ T , we delete it from T and insert Xv into Q.

We then rebuild our certificate T : we take the node Y from Q with the smallest distance
estimate d̃ist(Xr, Y) until Q is empty or the smallest distance estimate ∞. Now, let j be the
largest integer such that d̃ist(Xr, Y) is divisible by ⌈2j · ǫ

q ⌉. We then check if there exists a
node X ∈ B≤j(Y) such that

d̃ist(Xr, X) + QX,Y .MinValue ≤ d̃ist(Xr, Y).

In this case, the edge (x, y) = QX,Y .MinElem serves as a certificate that the distance from

Xr to Y is at most d̃ist(Xr, Y) and therefore we add (x, y) to T . If there exists no such vertex
X, then we increase the value d̃ist(Xr, Y) by one or to ∞ if it is currently at least δmax and
reinsert Y and children Z1, Z2, . . . , Zk of Y in T into Q (after deleting the edges (Y, Zi) from
T). This completes the description of the algorithm. Again, we refer the reader interested in
the proof of Theorem 5.1 to Appendix D.

5.2 Bootstrapping an Algorithm for Unrestricted Depth

Next, let us prove the following theorem which show is a detailed version of Theorem 3.2.
Combined with Corollary 5.3 (where we set the depth threshold parameter δ to W n), this
immediately implies our main result, Theorem 1.1.

Theorem 5.4. For any 0 ≤ i ≤ lg(W n), given a decremental digraph G = (V, E, w), we can
maintain a hierarchy S = {Si}i where each Si is a AT O(G, 2i, 40c log n)-bundle of expected
quality Õ(n/2i). The algorithm runs in total expected update time O(c5n2 log17 n lg5(W n))
against a non-adaptive adversary and is correct with probability at least 1 − n−c+2 for any
failure probability parameter c ≥ 2.

Proof. In order to prove our theorem formally, we need to fix the constants hidden by the big-
O notation in some of our statements. We therefore henceforth denote the constant hidden
by Corollary 5.3 to maintain the SSSP data structure by cSSSP , the constant hidden in Theo-
rem 4.4 to obtain an AT O-bundle from an SSSP data structure by cSSSP →AT O and finally, we
denote the constant hidden in the theorem that we want to prove by cT otal where we require
that cT otal ≥ (cSSSP →AT O · cSSSP)2 · 249.

26

Without further due, let us prove the theorem by induction on n, the number of vertices
in graph G. The base case with n ≤ 1 is easily established since there are no paths in a graph
of only one vertex thus we obtain arbitrarily good quality and the running time is a small
constant (at least smaller than cT otal).

Let us now give the inductive step n 7→ n + 1: for each i, we iteratively construct an
AT O(G, 2i, 40c log n)-bundle Si as described in Theorem 4.4. Thus, we have to show how
to implement a 2-approximate 2i−2-restricted SSSP data structure required in the reduction
(note that for i ≤ 2 this task is trivial, so we omit handling it as special levels).

Note that each data structure SSSP that we are asked to implement for an AT O-bundle
Si at level i is run on a different graph H ⊆ G. To obtain an efficent algorithm, we will
implement the data structure differently depending on the size of such H. If H has at least
n/2γ vertices for some γ = Θ(lg log W n) that we fix later, we call H a large graph. Otherwise,
we say H is small. Now, we implement SSSP as follows:

• if H is small, then we use the induction hypothesis, find a AT O-bundle S ′ for H and
and invoke Corollary 5.3 on S ′. We note that we need to set the parameter that controls
the failure probability for S ′ to c · 4 log n to ensure that it succeeds with high probability
(this is since S ′ only succeeds with probability polynomial in |V (H)| which might be very
small).

• if H is large, we exploit Remark 4.5 which states that when the reduction asks to main-
tain approximate distances on some graph H ⊆ G, it is sufficient to maintain distance
estimates on any graph F such that H ⊆ F ⊆ G and in particular, it is ok to simply run
on the entire graph G. Therefore, we simply use Si−1 in combination with Corollary 5.3
and maintain distances in G.

Let us now analyze the total running time. We start by calculating the running time
required by each level i separately. For some fixed i, we have that by Theorem 4.4 we have
running time

cSSSP →AT O




⌈lg 2i−2⌉∑

j=0

2j+3c log2 n∑

k=0

TSSSP (mj,k, n/2j , 2i−2, 2) + n2 log3 n


 (9)

where
∑

j mj,k ≤ 16c ·m log2 n for all k, to maintain Si.
Let us analyze the terms TSSSP (mj,k, n/2j , 2i−2, 2) based on whether j < γ or not (i.e.

depending on how the SSSP data structure was implemented):

• if j < γ: then, by the induction hypothesis, we require time at most

cT otal(c4 log n)5 ·
(

n

2j

)2

log17(n) lg5(W n)2−2j

< cT otal · 28 · c5n2 log22(n) lg5(W n)2−j2−γ

to maintain the new AT O-bundle S ′ on the graph H and again by the induction hypoth-

esis we have that the bundle has quality (4 log nc+2)40000n log5 n2−j

2i−3 log3 n.

27

Thus, maintaining SSSP on H using S ′ as described in Corollary 5.3 can be done in time

cSSSP ((c · 4 log n + 2)40000 · 23)(n2 log8 n2−2j) < cSSSP · c · 222(n2 log9 n2−j2−γ).

Combined, we obtain that we can implement the entire SSSP data structure with total
running time at most

cT otal · 28 · c5n2 log22(n) lg5(W n)2−j2−γ + cSSSP · c · 222(n2 log9 n2−j2−γ)

≤ cT otal · cSSSP · c5 · 2−j2−γ · 222 · n2 log22(n) lg5(W n).

Combining these bounds and summing over all small graph terms in equation 9, we
obtain that the total contribution is at most

cSSSP →AT O · lg(nW) · (23c log2 n)
(
cT otal · cSSSP · c5 · 2−γ · 222 · n2 log22(n) lg5(W n)

)

≤ c6 · cSSSP →AT O · cT otal · cSSSP

(
222 · n2 log24(n) lg6(W n)2−γ

)
.

This completes the analysis of the small graph data structures.

• otherwise (j ≥ γ): then, we run the SSSP structure from Corollary 5.3 on Si−1 which
gives running time at most

cSSSP

(
n2i · (c + 2)40000n log5 n

2i−3
log3 n

)
≤ cSSSP · c(220 · n2 log8 n)

where we used c ≥ 2. Since there are at most cSSSP →AT O · c · (23 lg(nW) log2 n2γ) terms
for large graphs, where j ≥ γ, we have that the total cost of all SSSP data structures
on large graphs is at most

cSSSP →AT O · c · (23 lg(nW) log2(n)2γ) ·
(
cSSSP · c(220 · n2 log8 n)

)

= cSSSP →AT O · c2 · cSSSP ·
(
223 · n2 log10(n) lg(nW)2γ

)

It now only remains to choose γ and combine the two bounds. We set γ = 24⌈lg(c2 ·
cSSSP →AT O · cSSSP · lg3(W n) log7(n))⌉, and obtain that the total running time summed over
large and small graphs is at most

c2
SSSP →AT O · c2

SSSP · c4 · 248(n2 log17 n lg4(W n)))

+
c4cT otal(n

2 log17 n lg3(W n))

2

≤ c4cT otal(n
2 log17 n lg4(W n))

where we used our initial assumption on the size of cT otal.
Finally, we point out that there are at most lg(nW) levels i and therefore, the total update

time is at most
cT otal(c

4n2 log17 n lg5(W n))

28

as required.
Further, we point out that every AT O-bundle Si that was constructed runs correctly with

high probability at least 1 − n−c, while every AT O-bundle S ′ is maintained correctly with
probability at least 1− n−4c (recall that we set the failure parameter of these data structures
to c · 4 log n). Noting that we only have lg(nW) instances of the former bundles, and at most
n3 of the latter, taking a simple union bound over the events that any bundle instance fails
gives a total failure probability of at most n−c+2.

6 A SSSP Algorithm for Sparse Graphs

Finally, we give a construction that is efficient in sparse graphs. Again, we prove Theorem 1.2
in two steps: we first show how to reduce SSSP to maintaining an approximate topological
order and then we bootstrap the approach.

6.1 α-approximate δ-restricted SSSP via Maintaining an Approximate Topo-
logical Order

In this section, we give the following theorem that takes an AT O(G, ηdiam and shows how to
implement (1 + ǫ)-approximate δ-restricted SSSP. As in the previous section, we first prove
a simpler theorem and then derive the SSSP data structure as a corollary.

Theorem 6.1. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a depth
threshold δ > 0, a quality parameter q such that δq ≥ n, an approximation parameter ǫ > 0,
and access to (V, τ) an AT O(G, ηdiam).

Then, there exists a data structure that maintains a distance estimate d̃ist(r, v) for every
vertex v ∈ V such that at each stage of G, distG(r, v) ≤ d̃ist(r, v) and if distG(r, v) ≤ δ and
T (πr,v, τ) ≤ q · δ + n, then

d̃ist(r, v) ≤ (1 + ǫ)distG(r, v) + ηdiam.

The expected total time required by this structure is

O((mδq/n−1/3 + δqn2/3) log3 n log W n/ǫ)

and the data structure runs correctly with probability at least 1− n−c for any constant c > 0.

We point out that Remark 5.2 also applies to this theorem. As before, we use the theorem
above to establish a simple corollary where we refer the reader to the proof of Corollary 5.3
which with minor changes proves the below result.

Corollary 6.2. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a
depth threshold δ > 0, an approximation parameter ǫ > 0, and access to a collection S =
{Si}1≤i≤µ for µ = ⌊lg δ⌋ − 1 where each Si forms an AT O(G, 2i, 40c log n)-bundle of quality
q · 2i. Then, there exists an implementation for (1 + ǫ)-approximate δ-restricted SSSP where
TSSSP (n, m, δ, ǫ) = O((mδq/n−1/3 + δqn2/3) log3 n log2 W n/ǫ) with high probability.

29

As in the previous section, we defer the proof of Theorem 6.1 to Appendix F but present
the implementation of a data structure Er that satisfies the guarantees of Theorem 6.1. We
therefore first show how to maintain a hopset H of G using (V, τ) and then show that we can
run an ES-tree on the hopset H from source s. Before we discuss the internal parts of the
data structure, let us define some useful concepts.

Preliminary Concepts. In our algorithm, it is key to distinguish between the hop h and
the depth δ that was given. We therefore introduce the superscript h to distances to denote the
weight of the h-hop restricted shortest path in G between two vertices s, t ∈ V by disth

G(s, t).
Further, we henceforth use hi = 2i and we give data structures for every i ≤ lg n that

recovers paths from r to vertices at distance at most δ and hop hi and assume for convenience
that n is a power of 2 wlog. In order to describe the data structure for every hop level i, let
us discuss some preliminary concepts.

As in equation 8, we also use the function χclose defined by

χclose(X, Y, τ)
def
=

{
τ(Y)− (τ(X) + |X| − 1) if τ(X) < τ(Y)

χclose(Y, X, τ) otherwise

Intuitively, χclose takes two nodes X, Y and maps to distance of the points in their intervals
that are closest. We also set up a function χfar that maps to the farthest distance between
any such two numbers. We define

χfar(X, Y, τ)
def
=

{
τ(Y)− τ(X) + |Y | − 1 if τ(X) < τ(Y)

χfar(Y, X, τ) otherwise

Using these functions, we define the balls of vertices at small topological order distance.

Definition 6.3 (Topological Order Difference Ball.). For each v ∈ V and integer K ≥ 0, we
define the closed topological order difference ball by

Cclosed(v, K, (V, τ))
def
= {Y ∈ V | χclose(X

v, Y, τ) ≤ K}
and the corresponding open ball by

Copen(v, K, (V, τ))
def
= {Y ∈ V | χfar(Xv , Y, τ) ≤ K}

We observe that Cclosed(v, K, (V, τ)) is a decreasing, refining set over time, i.e. new all sets
are subsets of earlier sets11. Finally, let us give a definition for a decremental refining graph
which eases the description of the hopset.

Definition 6.4 (Decremental Refining Graph). Given a refining partition V of the universe
V , and a graph H on the node set V, we say that H is a decremental refining graph if at
every stage, for any vertices s, t ∈ V , the distance between the nodes Xs and Xt, the nodes
containing the vertices s and t respectively, is monotonically increasing in H. In particular,
any decremental graph H ′ along with an arbitrary refining partition V ′ of its vertex set forms
the decremental refining multi-graph H ′/V ′.

11This is however not true for Cclosed(v, K, (V, τ)).

30

It is not hard to adapt the Generalized ES-trees presented in [BPW19] combining it with
a standard edge rounding technique for ES-trees (see for example [Ber16]) in order to obtain
the following theorem. We refer the reader to [BPW19] for a full proof.

Lemma 6.5 (c.f. Lemma 4.2 and Lemma 4.3 in [BPW19]). Given a decremental refining
graph H with refining node set V part of an AT O (V, τ), an approximation parameter ǫ > 0,
a depth threshold δ > 0 and hop threshold hi for some 0 ≤ hi ≤ lg n, a vertex v ∈ V , and a
positive integer K.

Let us define the graph Hv of v by Hv
def
= H [Cclosed(v, K, (V, τ))].

Then, there exists a deterministic data structure GESv that can maintain the distance esti-
mates d̃ist(Xv , Y) from Xv, the node in V containing v, to every node Y ∈ Cclosed(v, K, (V, τ))
such that distGv (Xv , Y) ≤ d̃ist(Xv , Y) and

d̃ist(Xv, Y) ≤ (1 + ǫ)dist
hi
Hv

(Xv, Y).

The algorithm runs in total update time

O(|EH(Copen(v, K, (V, τ)))|hi log K log W n/ǫ + K log K + ∆)

where W is the largest integer weight in H and the former term is the number of edges in H
that is incident to a node in Copen(v, K, (V, τ)) throughout the entire course of the algorithm,
and ∆ is the number of edge weight increases for edges incident to Copen(v, K, (V, τ)).

Hopset. For different hop thresholds hi, we describe how to maintain the hopset Hi which
forms a decremental refining graph on the node set V.

If hi < n2/3 log n, we let Hi be the empty graph throughout the algorithm. Otherwise, we
initialize the data structure to maintain the hopset Hi by calculating li = hi

n1/3 , and sampling

each vertex v in V into the set S of sampled vertices with probability 3(c+6)·log n
li

. We run a
data structure GESs for every vertex s ∈ S, with hop li on the graph G/V where we choose
Ki = q·δ

n1/3 as described in Lemma 6.5.
We maintain the hopset Hi so that for any nodes X, Y ∈ V, there is an edge (X, Y) if

1. there exists vertices s, t ∈ S, with s ∈ X and t ∈ Y , and

2. d̃ist(X, Y) is at most li.

If such an edge is in Hi, we assign it weight d̃ist(X, Y). It is straight-forward to see that we
can maintain the required distance estimates d̃ist(X, Y) for the required depth using the data
structure GESs (technically there can be multiple s′ in X but in this case their GESs′ data
structures maintain the same distance estimates so there is no ambiguity in our notation).
We observe that Hi is a decremental refining graph which follows since distances in Hs =
(G/V) [Cclosed(s, K, (V, τ))] can only increase over time and only when the distance between
the nodes containing s and t exceeds li in this graph, we delete (s, t) from Hi.

31

SSSP on the Hopset. Finally, we can run from the root vertex r, the data structure GESr

as described in Lemma 6.5 for K = n on the graph (G/V)
⋃

(∪iHi) with the given weights and
(V, τ) to depth δ and hop n2/3 log n. This completes the description of the algorithm.

6.2 Bootstrapping an Algorithm for Unrestricted Depth

We can now prove the theorem below which is a more detailed version of Theorem 3.7. Using
Theorem 4.4, this immediately implies Theorem 1.2. Since the proof is quite similar to the
proof of Theorem 5.4, we defer the proof to Appendix G.

Theorem 6.6. For any 0 ≤ i ≤ lg(W n), given a decremental digraph G = (V, E, w), we can
maintain a hierarchy S = {Si}i where each Si is a AT O(G, 2i, 40c log n)-bundle of expected
quality n/2i. The algorithm runs in total expected update time O(mn2/3 log16 n log3(W n))
against a non-adaptive adversary and is correct with high probability.

7 Conclusion

In this article, we gave the first near-optimal algorithm to solve the decremental SSSP prob-
lem on dense digraphs. Combined with the recent result by Gutenberg et al [PVW20], this
establishes an Õ(n2 log4 W/ǫ) complexity for the partially-dynamic SSSP problem in directed
weighted graphs. Moreover, we gave a simple new technique to derive a data structure for
sparse graphs using our framework, which runs in total time Õ(mn2/3 log3 W/ǫ) and thereby
vastly improves over the best existing result by Probst Gutenberg and Wulff-Nilsen as recently
shown in [GW20a].

This substantial progress on the problem motivates the following two open questions:

• Can we obtain a near-optimal algorithm for partially-dynamic SSSP in directed graphs
for any sparsity? Recent work by Bernstein et al. [BPW19] has shown that this is at
least possible for the simpler problem of maintaining single-source reachability.

• Can we derandomize our results or make them work against an adaptive adversary? Par-
tial progress on this question has been made in [PVW20] where the incremental SSSP
data structure presented is already deterministic which gave the first deterministic im-
provement in directed graphs over the ES-tree. In decremental graphs, a recent result
by Bernstein et al. [BPS20] gives deterministic total update time O(n2+2/3) following a
result by Probst Gutenberg and Wulff-Nilsen [GW20a] that broke the O(mn) bound ran-
domized but against an adaptive adversary. However, this is far from the near-optimal
bound achieved in this paper. We point out that even in the undirected, unweighted set-
ting, the best data structure requires total update time Õ(min{mn0.5+o(1), n2}) [GW20b;
BC16] as opposed to m1+o(1) total update time in the non-oblivious setting [HKN14b].

Acknowledgements. Aaron Bernstein is supported by NSF CAREER Grant 1942010 and
the Simons Group for Algorithms & Geometry. Maximilian Probst Gutenberg is supported by
Basic Algorithms Research Copenhagen (BARC), supported by Thorup’s Investigator Grant

32

from the Villum Foundation under Grant No. 16582. Christian Wulff-Nilsen is supported
by the Starting Grant 7027-00050B from the Independent Research Fund Denmark under
the Sapere Aude research career programme. The authors thank Thatchaphol Saranurak
for insightful comments and corrections, and anonymous FOCS reviewers for their helpful
feedback.

33

References

[AC13] Ittai Abraham and Shiri Chechik. “Dynamic Decremental Approximate Distance
Oracles with (1+ ǫ, 2) stretch”. In: arXiv preprint arXiv:1307.1516 (2013) (cit. on
p. 39).

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. “Fully dynamic all-pairs
shortest paths with worst-case update-time revisited”. In: Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2017, pp. 440–
452 (cit. on p. 39).

[AW14] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply
strong lower bounds for dynamic problems”. In: Foundations of Computer Sci-
ence (FOCS), 2014 IEEE 55th Annual Symposium on. IEEE. 2014, pp. 434–443
(cit. on p. 1).

[Bar96] Yair Bartal. “Probabilistic approximation of metric spaces and its algorithmic
applications”. In: Proceedings of 37th Conference on Foundations of Computer
Science. IEEE. 1996, pp. 184–193 (cit. on p. 11).

[BC16] Aaron Bernstein and Shiri Chechik. “Deterministic decremental single source
shortest paths: beyond the o (mn) bound”. In: Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. ACM. 2016, pp. 389–397 (cit.
on pp. 1, 32).

[BC17] Aaron Bernstein and Shiri Chechik. “Deterministic partially dynamic single source
shortest paths for sparse graphs”. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2017, pp. 453–469 (cit. on
pp. 1, 5).

[Ber+20] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. “Fully-Dynamic
Graph Sparsifiers Against an Adaptive Adversary”. In: arXiv preprint arXiv:2004.08432
(2020) (cit. on p. 1).

[Ber16] Aaron Bernstein. “Maintaining shortest paths under deletions in weighted directed
graphs”. In: SIAM Journal on Computing 45.2 (2016), pp. 548–574 (cit. on pp. 31,
39).

[Ber17] Aaron Bernstein. “Deterministic partially dynamic single source shortest paths
in weighted graphs”. In: 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing. 2017, p. 44 (cit. on pp. 1, 3, 5, 6).

[BHS07] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Improved decremental
algorithms for maintaining transitive closure and all-pairs shortest paths”. In:
Journal of Algorithms 62.2 (2007), pp. 74–92 (cit. on p. 39).

34

[BN19] Jan van den Brand and Danupon Nanongkai. “Dynamic Approximate Short-
est Paths and Beyond: Subquadratic and Worst-Case Update Time”. In: arXiv
preprint arXiv:1909.10850 (2019) (cit. on p. 39).

[BPS20] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. “De-
terministic Decremental Reachability, SCC, and Shortest Paths via Directed Ex-
panders and Congestion Balancing”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020 (cit. on pp. 1, 32, 39).

[BPW19] Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. “Decremental
strongly-connected components and single-source reachability in near-linear time”.
In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting. ACM. 2019, pp. 365–376 (cit. on pp. 4, 9, 12, 20, 21, 31, 32, 39, 43).

[BR11] Aaron Bernstein and Liam Roditty. “Improved dynamic algorithms for maintain-
ing approximate shortest paths under deletions”. In: Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Algorithms. Society for Indus-
trial and Applied Mathematics. 2011, pp. 1355–1365 (cit. on pp. 1, 39).

[Che+16] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F Italiano, Jakub Łącki, and
Nikos Parotsidis. “Decremental single-source reachability and strongly connected
components in O (m√ n) total update time”. In: Foundations of Computer Science
(FOCS), 2016 IEEE 57th Annual Symposium on. IEEE. 2016, pp. 315–324 (cit. on
pp. 8, 12, 20, 21, 39, 43).

[Che18] Shiri Chechik. “Near-Optimal Approximate Decremental All Pairs Shortest Paths”.
In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2018, pp. 170–181 (cit. on p. 39).

[Chu+19] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. “A Deterministic Algorithm for Balanced Cut with Applications to
Dynamic Connectivity, Flows, and Beyond”. In: arXiv preprint arXiv:1910.08025
(2019) (cit. on p. 1).

[CK19] Julia Chuzhoy and Sanjeev Khanna. “A new algorithm for decremental single-
source shortest paths with applications to vertex-capacitated flow and cut prob-
lems”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing. ACM. 2019, pp. 389–400 (cit. on pp. 1, 2).

[Cor+09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009 (cit. on p. 24).

[CZ20] Shiri Chechik and Tianyi Zhang. “Dynamic low-stretch spanning trees in subpoly-
nomial time”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM. 2020, pp. 463–475 (cit. on p. 11).

[DI01] Camil Demetrescu and Giuseppe F Italiano. “Fully dynamic all pairs shortest
paths with real edge weights”. In: Proceedings 42nd IEEE Symposium on Founda-
tions of Computer Science. IEEE. 2001, pp. 260–267 (cit. on p. 39).

35

[DI04] Camil Demetrescu and Giuseppe F Italiano. “A new approach to dynamic all pairs
shortest paths”. In: Journal of the ACM (JACM) 51.6 (2004), pp. 968–992 (cit. on
p. 39).

[ES81] Shimon Even and Yossi Shiloach. “An on-line edge-deletion problem”. In: Journal
of the ACM (JACM) 28.1 (1981), pp. 1–4 (cit. on pp. 1, 5, 49).

[FG19] Sebastian Forster and Gramoz Goranci. “Dynamic low-stretch trees via dynamic
low-diameter decompositions”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. 2019, pp. 377–388 (cit. on p. 11).

[Fle00] Lisa K Fleischer. “Approximating fractional multicommodity flow independent of
the number of commodities”. In: SIAM Journal on Discrete Mathematics 13.4
(2000), pp. 505–520 (cit. on p. 2).

[GK07] Naveen Garg and Jochen Koenemann. “Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems”. In: SIAM Journal on
Computing 37.2 (2007), pp. 630–652 (cit. on p. 2).

[GW20a] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. “Decremental sssp in
weighted digraphs: Faster and against an adaptive adversary”. In: Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.
2020, pp. 2542–2561 (cit. on pp. 1–5, 8–10, 12, 32).

[GW20b] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. “Deterministic algo-
rithms for decremental approximate shortest paths: Faster and simpler”. In: Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM. 2020, pp. 2522–2541 (cit. on pp. 1, 32).

[Hen+15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. “Unifying and strengthening hardness for dynamic problems via the on-
line matrix-vector multiplication conjecture”. In: Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. ACM. 2015, pp. 21–30 (cit. on
p. 1).

[HK95] Monika Rauch Henzinger and Valerie King. “Fully dynamic biconnectivity and
transitive closure”. In: Foundations of Computer Science, 1995. Proceedings., 36th
Annual Symposium on. IEEE. 1995, pp. 664–672 (cit. on pp. 1, 39).

[HKN14a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decremen-
tal single-source shortest paths on undirected graphs in near-linear total update
time”. In: Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on. IEEE. 2014, pp. 146–155 (cit. on pp. 1, 39).

[HKN14b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
time decremental algorithms for single-source reachability and shortest paths on
directed graphs”. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. ACM. 2014, pp. 674–683 (cit. on pp. 1, 2, 32, 39).

36

[HKN15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Improved al-
gorithms for decremental single-source reachability on directed graphs”. In: Inter-
national Colloquium on Automata, Languages, and Programming. Springer. 2015,
pp. 725–736 (cit. on pp. 1, 2, 39).

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic
Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Deran-
domization”. In: SIAM Journal on Computing 45.3 (2016), pp. 947–1006 (cit. on
pp. 1, 39).

[Ita+17] Giuseppe F Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. “Decre-
mental single-source reachability in planar digraphs”. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. ACM. 2017, pp. 1108–
1121 (cit. on p. 39).

[Kar18] Adam Karczmarz. “Decrementai transitive closure and shortest paths for planar
digraphs and beyond”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2018, pp. 73–92 (cit. on p. 39).

[Kin99] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths
and Transitive Closure in Digraphs”. In: 40th Annual Symposium on Foundations
of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE
Computer Society, 1999, pp. 81–91 (cit. on pp. 1, 39).

[KŁ20] Adam Karczmarz and Jakub Łącki. “Simple Label-Correcting Algorithms for Par-
tially Dynamic Approximate Shortest Paths in Directed Graphs”. In: Symposium
on Simplicity in Algorithms. SIAM. 2020, pp. 106–120 (cit. on p. 39).

[Łąc13] Jakub Łącki. “Improved deterministic algorithms for decremental reachability and
strongly connected components”. In: ACM Transactions on Algorithms (TALG)
9.3 (2013), p. 27 (cit. on p. 39).

[LS93] Nathan Linial and Michael Saks. “Low diameter graph decompositions”. In: Com-
binatorica 13.4 (1993), pp. 441–454 (cit. on p. 11).

[Mad10] Aleksander Madry. “Faster approximation schemes for fractional multicommodity
flow problems via dynamic graph algorithms”. In: Proceedings of the forty-second
ACM symposium on Theory of computing. ACM. 2010, pp. 121–130 (cit. on pp. 1,
2).

[MPX13] Gary L Miller, Richard Peng, and Shen Chen Xu. “Parallel graph decompositions
using random shifts”. In: Proceedings of the twenty-fifth annual ACM symposium
on Parallelism in algorithms and architectures. ACM. 2013, pp. 196–203 (cit. on
p. 11).

[Pac+18] Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska
Williams. “Approximating cycles in directed graphs: Fast algorithms for girth and
roundtrip spanners”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2018, pp. 1374–1392 (cit. on p. 11).

37

[PVW20] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein.
“New Algorithms and Hardness for Incremental Single-Source Shortest Paths in
Directed Graphs”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing. 2020 (cit. on pp. 1, 32, 39).

[PW20] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. “Fully-Dynamic All-
Pairs Shortest Paths: Improved Worst-Case Time and Space Bounds”. In: Proceed-
ings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM. 2020 (cit. on p. 39).

[RZ04] Liam Roditty and Uri Zwick. “On dynamic shortest paths problems”. In: European
Symposium on Algorithms. Springer. 2004, pp. 580–591 (cit. on pp. 1, 39).

[RZ08] Liam Roditty and Uri Zwick. “Improved dynamic reachability algorithms for di-
rected graphs”. In: SIAM Journal on Computing 37.5 (2008), pp. 1455–1471 (cit.
on pp. 12, 39).

[RZ12] Liam Roditty and Uri Zwick. “Dynamic approximate all-pairs shortest paths in
undirected graphs”. In: SIAM Journal on Computing 41.3 (2012), pp. 670–683
(cit. on p. 39).

[RZ16] Liam Roditty and Uri Zwick. “A fully dynamic reachability algorithm for directed
graphs with an almost linear update time”. In: SIAM Journal on Computing 45.3
(2016), pp. 712–733 (cit. on p. 39).

[Tar72] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal
on computing 1.2 (1972), pp. 146–160 (cit. on p. 4).

[Tho05] Mikkel Thorup. “Worst-case update times for fully-dynamic all-pairs shortest
paths”. In: Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing. ACM. 2005, pp. 112–119 (cit. on p. 39).

38

A Related Work

We also point out that the simpler problem of Single-Source Reachability where the data
structure only has to report whether there exists a path from the fixed vertex s to some vertex
v ∈ V has been solved to near-optimality in [BPW19] which improved on the breakthrough
results in [RZ08; Łąc13; HKN14b; HKN15; Che+16]. The algorithm in [BPW19] further even
allows to maintain the Strongly-Connected Components of G. A recent result by Bernstein et
al. [BPS20] further attempts to derandomize the algorithm in [BPW19] and deterministically
achieves total update time mn2/3+o(1) to maintain Strongly-Connected Components, which
constitutes the first deterministic improvement over the long-standing O(mn) bound.

We further point out that the problem of maintain Single-Source Shortest Paths has also
been considered quite recently in the incremental setting, i.e. the setting where a graph
only undergoes edge insertions. In [PVW20], the authors give a deterministic algorithm that
achieves total update time Õ(n2polylog(W)). Unfortunately, the techniques proposed in this
algorithm cannot be extended to the more interesting decremental setting.

There is also a wide literature on the related problems of All-Pairs Shortest Paths and All-
Pairs Reachability both in the decremental [BHS07; BR11; HKN14a; HKN16; Ber16; Che18;
KŁ20] and in the fully-dynamic setting [HK95; Kin99; DI01; DI04; RZ04; Tho05; RZ12; AC13;
RZ16; HKN16; ACK17; BN19; PW20].

Finally, for planar graphs, decremental algorithms are known to solve Single-Source Reach-
ability deterministically in near-linear update time [Ita+17] and SSSP in directed graphs in
total update time Õ(n4/3) as shown by [Kar18].

B Efficient Partitioning

Let us now prove Lemma 4.6 which is restated below for convenience.

Lemma 4.6 (Partitioning Procedure). Given an algorithm A to solve 2-approximate δ-restricted
SSSP. There exists a procedure Partition(G, d, ζ) that takes weighted digraph G, a depth
threshold d ≤ δ and a success parameter ζ > 0, and returns a set ESep ⊆ E such that

1. for each SCC X in G\ESep, we have for any vertices u, v ∈ X that distG\ESep
(u, v) ≤ d,

and

2. for e ∈ E, we have P[e ∈ ESep] ≤ 240ζ log2 n
d w(e).

The algorithm runs in total expected time

O




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log2 n




where we have that
∑

k=0 mj,k ≤ 2m for every i. The algorithm terminates correctly with
probability 1− e−ζ for any c > 0.

39

Let us start by claiming that Algorithm 4 is an efficient implementation of the procedure
Partition(G, d, ζ) that gives the guarantees stated in Lemma 4.6. In the algorithm, we first
initialize the separator set to the empty set and let H throughout the algorithm be the graph
G without the vertices that are already contained in an SCC that satisfies the constraints.
Thus, we run multiple iterations reducing the size of H until it is empty and therefore all
vertices satisfy our constraints.

Algorithm 4: Partition(G, d, ζ)

Input: A weighted digraph G, and integers d and ζ.
Output: Returns a set of edges ESep such that for every SCC X in G \ ESep, any two

vertices u, v ∈ X, satisfy distG\ESep
(u, v) ≤ d.

1 ESep ← ∅; H ← G;
2 while H 6= ∅ do

3 Pick an arbitrary vertex r in V (H).

4 Run OutSeparator(r, H, d/8, 3ζ log n) and OutSeparator(r,
←−
H, d/8, 3ζ log n),

and let (E′
Sep, V ′

Sep) be the tuple of the procedure such that |E(VSep)| is minimized.

5 if |V ′
Sep| ≤ 2

3n then

6 Esmall ← Partition(H[V ′
Sep], d, ζ)

7 ESep ← ESep ∪ ESmall ∪ E′
Sep

8 H ← H \ V ′
Sep

9 else

10 Initialize Ar to be a 2-approximate δ-restricted SSSP data structure on H
/* Find a good separator for every vertex that is far from r. */

11 while there exists a vertex v ∈ V (H) such that Ar has distance estimate

d̃ist(r, v) or d̃ist(v, r) exceeding d
4 do

12 if d̃ist(v, r) > d/2 then

13 (E′′
Sep, V ′′

Sep)← OutSeparator(v, H, d/8, 3ζ log n)

14 else // If d̃ist(r, v) > d/2

15 (E′′
Sep, V ′′

Sep)← OutSeparator(v,
←−
H, d/8, 3ζ log n)

16 H ← H \ V ′′
Sep

17 E′′′
Sep ← Partition(H[V ′′

Sep], d, ζ)

18 ESep ← ESep ∪ E′′
Sep ∪ E′′′

Sep

19 H ← ∅

20 return ESep

In each iteration, we first pick an arbitrary vertex r ∈ V (H) and then run the separator

procedure described in lemma 3.6 on H and on
←−
H . We let (ESep, VSep) denote the tuple

returned by the procedure where the size of E(VSep), that is the number of edges in H incident

40

to VSep, is minimized and break ties arbitrary if they are of equal size. We then check whether
E(VSep) contains less than a 2/3-fraction of the edges in G in line 5 (in fact, we could also
compare to the number of edges in H, without affecting the asymptotic running time). In
this case, we recurse on the graph H[VSep], add the resulting edges to our edge set ESep and
remove the vertices VSep from H.

Otherwise, we know that most edges have their tail at small distance from and to r. We
therefore initialize a SSSP data structure Ar from r on H in Line 10. Then, we successively
extract a vertex v that is far from r, compute a separator from/to them, and prune the set of
vertices separated (after recursing on them). Since on termination of the while-loop in Line 11
each vertex is close to and from r, we have that all vertices are in an SCC of small diameter.
Thus, we set H = ∅.

Let us now analyze the algorithm more formally. We start by showing that no induced
subgraph that we recurse on in Line 17 can contain more than 2

3n vertices. This will be crucial
to bound our running time, since it implies that every time that we recurse, we recurse on
subgraphs that are significantly smaller, and therefore we make significant progress.

Claim B.1. If the algorithm enters Line 9, then on termination of the while-loop starting in
Line 11, we have that the set vertices V (H) in H before it is set to ∅ is of size at least 1

3n.

Proof. Observe first that since we did not enter the if-case in Line 6, that |V ′
Sep| > 2

3n. Since

tuple (E′
Sep, V ′

Sep) was chosen among the tuples (Eout
Sep, V out

Sep) and (Ein
Sep, V in

Sep) (the first corre-
sponding to the first separator procedure, the second is the output of the second procedure in
Line 4 which are computed on H), we have

|V out
Sep | >

2

3
n and |V in

Sep| >
2

3
n.

Further, we have by Lemma 3.6 that V out
Sep ⊆ Bout

H (r, d/8) and V in
Sep ⊆ Bin

H (r, d/8).
Thus, it is straight-forward to see that

|Bout
H (r, d/8) ∩Bin

H (r, d/8)| ≥ 1

3
n (10)

Finally, observe that during the while-loop starting Line 11, we only prune vertices at
distance at least d/8 in at least one direction. This is since distance estimates are overestimates
so each vertex v from which we start the procedure OutSeparator(·) is at distance at least
d/4 from r and by Lemma 3.6 we only remove vertices that are at most at distance d/8 from v,
so a straight-forward application of the triangle inequality implies our claim (a slightly subtle
issue is that H evolves, however distance estimates are with regard to the graph that Ar is
initialized upon and H has monotonically increasing distances over time so this might only
help us).

Since vertices in Bout
H (r, d/8) ∩ Bin

H (r, d/8)) are close to r, none of them are pruned away.
This is since distances do not change because even though we remove vertices from H, the
SSSP data structure is run on the initial graph H, i.e. the one it was initialized upon. Thus,
the vertices in the intersection of these balls remain in H until the end. Combined with
Equation 10, we derive the claim.

41

This claim is indeed the only crucial ingredient for our proof of Lemma 4.6, which we can
now carry out.

Establishing Property 1. Let us prove the property by induction on the size of E. For
the base case, assume E = ∅. Then, the claim is vacuously true.

For |E| = i + 1 > 0, we observe that every time, we enter the if-case in line 5 for some set
V ′

Sep, we add the edges E′
Sep to ESep, thus for any vertex u ∈ V \ VSep, v ∈ VSep, we have that

they are not strongly-connected in G \ESep. Thus, we do not have to establish any guarantee
for these pairs. We then recurse on H[VSep] ⊆ G[VSep] which has fewer edges than G by the
if-condition. Thus, our claim for SCCs contained in this subgraph is true by the induction
hypothesis.

Otherwise, we enter the else-case in Line 9. By Claim B.1, on termination of the while-loop
starting in Line 11, the graph H is still incident to a third of the edges in G. Thus, whenever
we prune away a subgraph due to taking a separator chosen in Line 12, we can again invoke
the induction hypothesis when we recurse in Line 17.

Thus, it only remains to establish on termination of the while-loop in Line 11, the graph
H satisfies the property. Let H ′ denote the graph that the data structure Ar was initialized
on, so H ⊆ H ′ ⊆ G. It is clear that the vertices remaining in H are at distance at most d/2
to and from r (with regard to H ′). Thus, for any two such vertices x, y ∈ V (H), we have

distG(x, y) ≤ distH′(x, y) ≤ distH′(x, r) + distH′(r, y) ≤ d/2 + d/2 ≤ d

as desired.

Establishing Property 2. Let us first observe that we only add edges to the separator
set ESep in lines 7 and 18. There are further four different places that emerge where an
edge e could have been added to a set that is then added to the separator set. We next
observe that the edge e is either added due to a recursive call or due to invoking procedure
(E′′′′

Sep, V ′′′′
Sep)← OutSeparator(·) (here (E′′′′

Sep, V ′′′′
Sep) is a placeholder for the tuple returned in

either one of the procedures). However, if E′′′′
Sep is really added to ESep and edge e has its tail

in V ′′′′
Sep, then we have

1. that by Lemma 3.6, we added e to ESep with probability at most 8·3ζ log n
d w(e), and

2. that V ′′′′
Sep is removed from H and since separator edges are computed in H, e can af-

terwards only be added to ESep due to a subsequent recursive call to Partition(·),
and

3. the graph G[V ′′′′
Sep] contains at most a 2

3 -fraction of the vertices in G.

Combining these facts, it is straight-forward to argue that the total probability of e being

added can be bound by log3/2 n · 24ζ log n
d w(e) ≤ 240ζ log2 n

d w(e).

42

Bounding the Error Probability. First, observe that the probability of failure each pro-
cedure OutSeparator(·) in our algorithm is at most e−3ζ log n by Lemma 3.6. Now observe
that every separator computed by this procedure that is used, separates two vertex sets that
have so far been part of the same graph. Thus, throughout all subcalls, there can be at most
n − 1 such separators. Further observe, that if a separator computed by the procedure is not
used, then we enter the else-case in Line 9. Thus, this can only happen for each recursive call
once. But since the number of recursive calls is exactly the number of used separators, this
also occurs only n− 1 times. Finally, we point out that in order to get a separator, we might
run two separator procedures to get a single separator (namely in Line 4). Thus, the total
number of separator procedures used throughout all the algorithm (including all subcalls) is at
most 4(n− 1). Using a simple union bound over all bad events, we can bound the probability
of failure by 4n · e−3ζ log n ≤ e−ζ .

Bounding the Running Time. Let us first bound the running time of the procedure ex-
cluding recursive calls. We have that for each iteration of the while-loop in line 2, the separator
procedures in line 4 can be implemented efficiently, by running in parallel (that is they are
executed such that the machine interleaves operations from the separator procedures). Then,
if one of them terminates with tuple (E′

Sep, V ′
Sep), it runs in time O(|E(V ′

Sep)| log n) by lemma
Lemma 3.6. Further observe that if the other procedure runs longer than O(|E(V ′

Sep)| log n)
by some large constant, we can abort it since it will not produce a tuple that is eligible for
becoming (E′

Sep, V ′
Sep) again by the running time guarantees of Lemma 3.6. Thus, line 4 can

be implemented in time O(|E(V ′
Sep)| log n). If we enter the if-case in line 5, then we prune the

set E(V ′
Sep) from H. Thus, we can amortize all while-iterations entering the if-case over the

edges removed from H, leading to total update time O(|E| log n).
The final while-iteration might enter the else-case in line 9. Then, maintaining the data

structure Ar takes total time TSSSP (n, m, δ, 2) (here we could use |V (H)| ≤ n and |E(H)| ≤ m,
however this will not have significant impact).

Finally, summing over the recursive calls where we use again the argument that the number
of vertices in each induced subgraph is at most 2

3n by Claim B.1. We thus obtain total running
time

O




⌈lg δ⌉∑

j=0

2j+1∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log2 n




with
∑2j+1

k=0 mj,k ≤ 2m. To derive the last bound observe that each vertex (and therefore
incident edge) is in a single instance on each recursive level and after at most two recursive
levels, the number of vertices has decreased by factor at least 2.

C Proof of Lemma 4.11

Lemma 4.11 (c.f. also [Che+16], Lemma 13; [BPW19], Lemma 7.1). Each vertex v ∈ V
participates in C in at most 2⌈lg δ⌉ while-loop iterations of Algorithm 3 during the entire course

43

of the algorithm in expectation. Further, in expectation, the SCC in G′ that v is contained in,
halves every second time that v participates in C.

Proof. For v ∈ V , consider any two iterations of the while-loop in Line 1 where v ∈ C, say
iteration t1 and iteration t2, where t1 < t2. Let Xv,t refer to the SCC containing v in G′ after
the while-loop iteration t ended, where t1 ≤ t ≤ t2.

We claim that with probability at least 1/2, we have |Xv,t2 | ≤ 1
2 |Xv,t1 |. This implies the

theorem, since every time this event occurs the size of the SCC that v is contained in is halved
(observe that sequence of trials until one halving event occurs constitutes a geometric random
variable with expectation 2), and the SCC of v can be halved at most lg n times.

Let us define by Gt the graph G after the tth iteration of the while loop and by Ht the
graph G′ after the tth iteration of the while-loop. Further let us define the graph F t, for t ≥ t1,
to be the defined F t = Ht1 \ (Gt \Gt1). That is F t is the graph Gt1 to which only adversarial
updates where applied after iteration t1. So that is the edge deletions to G′ due to separator
edges are ignored after iteration t1 and on.

Next, let Xmax,t ⊆ Xv,t1 denote some maximal set of vertices such that Ht[Xmax,t] is a SCC

containing v of diameter at most δ|Xv,t1 |
16n . Similarly, let Ymax,t ⊆ Xv,t1 denote some maximal

set of vertices such that F t[Ymax,t] is a SCC containing v of diameter at most δ|Xv,t1 |
16n . Observe

that |Xmax,j | ≤ |Ymax,j | since F j ⊇ Hj .
Next, let t1 ≤ t′ be the index such that,

|Ymax,t1 | <
1

2
|Xv,t′ | ≤ |Ymax,t1 |

that is t′ is the first iteration after which G′[Xv,t1] has no SCC of diameter δ|Xv,t1 |
16n containing

v of size more than 1
2 |Xv,t1 |.

Now consider the case where some vertex in Ymax,t′−1 was chosen as a center Center(Xv,t1)
in iteration t1. Then, observe that in each while-loop iteration, we always have a vertex t that

is at least at distance δ|Xv,t1 |
8n from Center(Xv,t1). Thus, the separator is taken at distance at

least δ|Xv,t1 |
16n in Line 3 or Line 5. Thus, we never remove a vertex at distance smaller-equal-than

δ|Xv,t1 |
16n from Center(Xv,t1) due to a separator procedure (and since we reuse the distance

threshold until the component decreases by factor 2 in size). Thus, if such a center was chosen,
none of the vertices in Ymax,t′−1 would have participated in C before iteration t′. Thus, if
t2 < t′, then the set C, with v ∈ C, was of size at most 1

2 |Xv,t1 | and therefore the new SCC
containing v would have at most half the size of the previous one. One the other hand, if

t2 ≥ t′, then G′[C] would not contain a single induced SCC containing v of diameter δ|Xv,t1 |
16n

that is of size larger than 1
2 |Xv,t1 |. Since we invoke Partition(·) in that iteration on G′[C],

and by the guarantees given in Lemma 4.6, the SCC Xv,t2 certainly satisfies |Xv,t2 | ≤ 1
2 |Xv,t1 |.

Finally, we observe that since 1
2 |Xv,t1 | ≤ |Ymax,t′−1|, we would have chosen a center in

Ymax,t′−1, with probability at least 1/2 initially. This completes the proof.

44

D The SSSP Data Structure

Let us now show how to prove Theorem 5.1 which is restated below for convenience.

Theorem 5.1. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a depth
threshold δ > 0, a quality parameter q, an approximation parameter ǫ > 0, and access to (V, τ)
an AT O(G, ηdiam).

Then, there exists a deterministic data structure that maintains a distance estimate d̃ist(r, v)
for every vertex v ∈ V such that at each stage of G, distG(r, v) ≤ d̃ist(r, v) and if distG(r, v) ≤
δ and T (πr,v, τ) ≤ q · δ + n, then

d̃ist(r, v) ≤ distG(r, v) + ηdiam + ǫδ.

The total time required by this structure is

O(nδq log n/ǫ + n2 log n)

Remark 5.2. Technically, we require the approximate topological order (V, τ) to encode changes
efficiently and pass them the SSSP data structure. Since the SSSP data structure is updated
only through delete operations, we require, that with each edge update, the data structure re-
ceives changes to (V, τ) since the last stage. More precisely, we require that the user passes a
set of pointers to each set Y that occurred in V at the previous stage (denoted VOLD), but did
not occur in V at the current stage (denoted VNEW), i.e. each Y ∈ VOLD \ VNEW . Addition-
ally, we require with each such Y that was split into subsets Y1, Y2, . . . , Yk ∈ VNEW that form a
partition of Y , pointers to each new element Yi. We further require worst-case constant query
time of τ , and each element Y ∈ V (for any version) can be queried for its size in constant
time and returns its vertex set in time O(|Y |). For the rest of the paper, this detail will be
concealed in order to improve readability.

For a description of the algorithm, we refer the reader to Section 5.1.

D.1 Correctness of the Algorithm

We first point out that subsequently in the correctness proof, the term ηdiam actually appears
in the lower bound instead of the upper bound on distance estimates. This however can
be rectified by simply adding ηdiam to every distance estimate. Further, we observe that by

property 4, we obtain that T (πr,u, τ) is upper bounded by qδ+n, thus ǫT (πr,u,τ)
q ≤ ǫ(δ+n/q) ≤

2ǫδ (n/q is always upper bounded by δ). Thus, we get the guarantees described in Theorem 5.1
if we invoke the algorithm with ǫ′ = ǫ/2 (which only affects the running time by a constant
factor).

Lemma D.1 (Proof of Correctness). For each u ∈ V , we have that d̃ist(r, u) is a monotoni-
cally increasing distance estimate such that

• distG(r, u) ≤ d̃ist(r, u), at each stage, and

45

• if distG(r, u) ≤ δ and T (πr,u, τ) ≤ q · δ + n, then d̃ist(r, u) ≤ distG(r, u) +
ǫT (πr,u,τ)

q +
ηdiam.

Proof. In this proof, we use the superscript t to refer to the version of a variable at the end
of stage t (it will be second if there already is a superscript indicating the node Xx that some
vertex x is contained in, i.e. Xx,t). We recall that we maintain the distance estimate d̃ist(r, u)
to be equal to d̃ist(Xr, Xu) + ηdiam and observe that the distance estimates of Xu and u are
monotonically increasing over time since Xu,t+1 is a subset of the set Xu,t, and if it is a strict

subset, then its distance estimate was initialized to the distance estimate d̃ist
t
(Xr,t, Xu,t) and

afterwards, the update procedure can only have increase the estimate.

Now, let us establish that the distance estimate d̃ist
t
(r, u) = d̃ist

t
(Xr,t, Xu,t) + ηdiam, at

any stage t, satisfies the stretch guarantee. We start by establishing the lower bound: we
therefore observe that the certificate T t is formed by a subset of edges Et, and the node set
always corresponds to the partition Vt. Thus, every path in T must be at least of length equal
to the shortest-path in Gt/Vt. But since property 3 enforces that any path has at most ηdiam

of its length contracted, the lower bound follows.
We now prove the upper bound by induction on the distance distt(r, u) for every u ∈ V

where we assume that distt(r, u) ≤ δ + ηdiam and T (πr,u,Gt, τ t) ≤ q · δ + n.

• Base case distt(r, u) = ηdiam: since edge weights are positive, this is only true if u = r.
Since the distance estimate of r is never changed by our update procedure (since r never
looses an incoming edge in T and therefore is never added to Q), the distance estimate
is 0, as desired.

• Inductive step for distt(r, u) = d + 1 + ηdiam: Let x be the vertex in πr,u,Gt that precedes
u (i.e. the second last vertex on the shortest-path). Since (x, u) is in G at stage t,
we have that at every stage t′ ≤ t, the edge (x, u) is in QXx,(t′),Xu,(t′) and since the

function χ(Xx,(t′), Xu,(t′)) is monotonically increasing in t′, we therefore also have that
Xx,(t′) ∈ B≤j(X

u,(t′)) for j = ⌊lg χ(Xx,t, Xu,t)⌋ since our bucket update procedure always
puts Xx,(t′) into the bucket Bj′(Xu,(t′)) with the largest j′ and then χ(Xx,t, Xu,t) only
increases during the ensuing stages.

We retell that Xu,0 had its distance estimate initialized to dist0(Xr, Xu) ≤ distt(Xr, Xu) =
d + 1. Every time t′′, it was increased ever since by at most ⌈2j · ǫ

q ⌉, we scanned Xx,t′′

since it is in B≤j(X
u,t′′

). Thus, Xu,t’s distance estimate is at most 2jǫ
q + wGt(x, u) larger

than the distance estimate of Xx (here we use that wGt(x, u) ≥ wGt′ (x, u) for all t′ ≤ t).

46

Therefore,

d̃ist
t
(Xr,t, Xu,t) ≤ d̃ist

t
(Xr,t, Xx,t) + wGt(x, u) +

2jǫ

q

≤ distt(r, x) + ηdiam +
ǫT (πr,x,Gt, τ)

q
+ wGt(x, u) +

2jǫ

q

≤ distt(r, x) + ηdiam +
ǫT (πr,x,Gt, τ)

q
+ wGt(x, u) +

2jǫ

q

≤ (distt(r, x) + ηdiam + wGt(x, u)) +
ǫT (πr,x,Gt, τ)

q
+

χ(Xx,t, Xu,t, τ)ǫ

q

≤ (distt(r, x) + ηdiam + wGt(x, u)) +
ǫT (πr,x,Gt, τ)

q
+
T (Xx,t, Xu,t, τ)ǫ

q

= distt(r, u) + ηdiam +
ǫT (πr,x,Gt, τ)

q
+
T ((x, u), τ)ǫ

q

= distt(r, u) + ηdiam +
ǫT (πr,u,Gt, τ)

q

where we use the induction hypothesis on x in the second inequality, then plug in the
value of j, observe that χ is dominated by T and finally observe that the function T
is linear. We finally observe that by our assumptions d̃ist

t
(Xr,t, Xu,t) ≤ distt(r, u) −

ηdiam +
ǫT (πr,u,Gt ,τ)

q ≤ δ + ǫ(qδ+n)
q = (1+ ǫ)δ + ǫn/q ≤ δmax and since it was monotonically

increasing, there was no previous stage at which the distance estimate could have been
reassigned ∞ due to exceeding δmax.

D.2 Running Time

It remains to establish that the algorithm given above is efficient. Let us start by analyzing
the bucket update procedure.

Claim D.2. At any stage t, for any X, Y ∈ V, with 2j ≤ χ(X, Y, τ) < 2j+1, the update
procedure ensures that we have we have X in Bj(Y) or Bj−1(Y).

Proof. We observe that X should be moved to a different bucket if χ(X, Y, τ) changes by a
significant amount. We observe further, that χ(X, Y, τ) is monotonically increasing over stages
and increases between two stages t′ ≤ t′′ by at most |Xt′ \Xt′′ |+ |Y t′ \Y t′′ |. This follows since
χ(X, Y, τ) maps to τ(Y)− (τ(X) + |X| − 1) which increases if either Y is mapped to a larger
τ -value due to a split or due to a lower size of X, again, due to a split.

Now, let tlast be the last stage that X was reassigned to a bucket Bj′(Y). Then, at that
stage, X was assigned according to the initialization rule, so 2j′ ≤ χ(X, Y, τ) < 2j′+1. However,
this implies that since tlast neither X nor Y have decreased in size by 2j′

or more since otherwise

47

the pair would be scanned (a simple proof by contradiction establishes this claim). Thus, we
can upper bound the increase in χ(X, Y, τ) since this stage by

|Xt \Xtlast |+ |Y t \ Y tlast | < 2j′+1

and therefore we have that χ(X, Y, τ) < 2j′+2.

Claim D.3. The total time required to update the graph H and the corresponding buckets is
O(n2 log n).

Proof. Every time we split a node X into nodes X1, X2, . . . , the largest new node Xi inherits
the node of X, which can be implemented in constant time by reassigning pointers. Then,
for each Xi′ , we scan the incident edges to construct the new vertices. However, Xi′ is of
size at most half the size of X. Thus, each vertex (and incident edge) participates only
O(log n) times in such a node split. Therefore, the total time required by such scans is
O(m log n) = O(n2 log n). Claim D.2 implies that after the update procedure, each bucket
Bj(Y) contains at most 2j+2 vertices. Since each vertex can only be in n/2j nodes that scan
Bj(Y) due to the size decrease (or node versions at which a size update is triggered), and
since there are only O(log n) values for j, we scan at most O(n2 log n) pairs without moving a
vertex to another bucket.

Further since each X in Bj(Y) can only be assigned to the same bucket or a bucket with
larger index, each vertex X can change O(log n) times the bucket at Y , thus we have at most
O(n2 log n) scans overall that where some node is moved to another bucket.

Since each scan only takes constant time, our claim now follows.

Finally, we establish that our procedure to reconstruct T is efficient.

Claim D.4. The total update time to construct and maintain the certificate T is O(n log n δmaxq
ǫ).

Proof. We first observe that we can initialize T by Dijkstra’s algorithm in time O(|E(H)| log |E(H)|) =
O(n2 log n). On updates, for each distance value d̃ist(Xr, Y), a node Y ∈ V computes j to be
the largest integer such that the distance estimate is divisible by ⌈2j ǫ

q ⌉. Thus, for a specific j,

there are at most δmax
2j · q

ǫ distance values where j is computed. We then scan at the distance
value, the current set Bj(Y) which is of size O(2j) by Claim D.2. Note that the node Y might
be in Q multiple times until its distance value increases. However, every node X in Bj(Y),
once scanned and not used to repair the certificate T can be ignored for this distance value
since distance estimates and edge weights are monotonically increasing, thus it can never be
used at a later stage to repair T at the current distance value. Thus, the total cost to scan
the nodes in Bj(Y) for all j can be bounded by O(δmax · q

ǫ) and since we have at most n nodes

at any point and O(log n) buckets at each node, we have total cost O(n log n δmaxq
ǫ) for these

scans. We also point out that the set Bj(Y) might be changed between two fixing procedures
of T while the distance value of Y has not changed. However, we can amortize the scans of
new items over the bucket update procedure and obtain that at most O(n2 log n) additional
scans are necessary due to changes of Bj(Y) for all nodes Y .

Finally, we point out that δmaxq
ǫ = Ω(n) by definition and therefore the latter bound is

subsumed.

48

Using ǫ′ = ǫ/2 in the algorithms, we can combine, Lemma D.1, Claims D.3 and D.4, and
the value of δmax establish Theorem 5.1.

E SSSP from AT O-bundles

In this section, we prove Corollary 5.3.

Corollary 5.3. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a
depth threshold δ > 0, an approximation parameter ǫ > 0, and access to a collection S =
{Si}1≤i≤µ for µ = ⌊lg δ⌋ − 1 where each Si forms an AT O(G, 2i, 40c log n)-bundle of quality
qi. Then, there exists an implementation for (1 + ǫ)-approximate δ-restricted SSSP where
TSSSP (n, m, δ, ǫ) = O(n(max1≤i≤µ{ δqi

2i }+ n) log3 n/ǫ2).

Proof. We run for each (V, τ) ∈ Si a data structure as described in Theorem 5.1 from r

on G and
←−
G , respectively, with approximation parameter ǫ and depth threshold δ/(ǫ2i). By

Definition 4.3 and the guarantees given in Theorem 5.1, we have for any pair (s, t) ∈ ({r}×V)∩
(V ×{r}), that some data structure has a distance estimate d̃ist(s, t) such that if δ/(ǫ2i−1) ≤
dist(s, t) ≤ δ/(ǫ2i), then

d̃ist(s, t) ≤ (1 + 4ǫ)dist(s, t).

Further, we have that each distance estimate is an overestimate of the actual distance. We
observe that the only distance range uncovered is distances that are smaller than 1/ǫ. We
therefore run a single instance of an ES-tree as given in [ES81] which runs in time O(n2/ǫ).

Thus, letting d̃ist(s, t) be the minimal value of any distance estimate, in any of the data
structures, we have that our data structure maintains for each relevant tuple (s, t), a (1 + 4ǫ)
distance estimate (this can be done by maintaining a heap over all such distance estimates).
Rescaling ǫ slightly, gives the desired result.

The total update time can be bound straight-forwardly since we run O(log2 n) instances
of the data structure in Theorem 5.1 where each is at cost

O(n
δ

ǫ2i
· qi log n/ǫ + n2 log n) = O(n(max

1≤i≤µ
{δqi

2i
}+ n) log n/ǫ2)

and a single ES-tree at cost O(n2/ǫ). The costs of maintaining a heap over all distance
estimates is easily subsumed by the running time.

F Proof of Theorem 6.1

In this section we are concerned with proving Theorem 6.1.

Theorem 6.1. Given G = (V, E, w), a decremental weighted digraph, a source r ∈ V , a depth
threshold δ > 0, a quality parameter q such that δq ≥ n, an approximation parameter ǫ > 0,
and access to (V, τ) an AT O(G, ηdiam).

49

Then, there exists a data structure that maintains a distance estimate d̃ist(r, v) for every
vertex v ∈ V such that at each stage of G, distG(r, v) ≤ d̃ist(r, v) and if distG(r, v) ≤ δ and
T (πr,v, τ) ≤ q · δ + n, then

d̃ist(r, v) ≤ (1 + ǫ)distG(r, v) + ηdiam.

The expected total time required by this structure is

O((mδq/n−1/3 + δqn2/3) log3 n log W n/ǫ)

and the data structure runs correctly with probability at least 1− n−c for any constant c > 0.

We start the proof by showing a lemma that bounds construction time and size of Hi.
We then proceed to prove for each level i that we can find distance estimates for vertices at
distance at most δ from the root vertex r using the hopset Hi and finally we combine the
results to prove Corollary 6.2. Before we establish the first lemma, let us state a version of
the Chernoff bound that we use frequently in our analysis.

Theorem F.1 (Multiplicative Chernoff Bound). Suppose X1, X2, . . . , Xk are independent O/1-
random variables. Let X =

∑k
i=1 and let the expected value of X be denoted by µ = E[X].

Then for any δ ≥ 1, we have that

P [X > (1 + δ)µ] ≤ e− δµ
3 .

Equipped with this theorem, let us now start the analysis.

Lemma F.2. For every 0 ≤ i < lg n, the hopset Hi has at most O(δq log n) edges and
running time O(mδq log n log nW/(n1/3ǫ)) to maintain the hopset Hi with probability at least
1 −O(n−(c+1)).

Proof. The claim is trivially true for i where hi < n2/3 log n since then Hi is empty by defi-
nition. Otherwise, consider any vertex v ∈ V , then we have that v is contained in a node in
Copen(w, Ki, (V, τ) during the entire course of the algorithm of at most 2Ki vertices w ∈ V .
This follows since by definition of χfar all nodes Y in the set Copen(w, Ki, (V, τ) have their
interval [τ(Y), τ(Y) + |Y |) contained in the interval [τ(Xw) + |Xw| − Ki, τ(Xw) + Ki). But
this implies that there is only 2Ki vertices in such nodes.

It is not hard to establish that every set Copen(w, Ki, (V, τ) contains at most 18(c+6)Ki log2 n
li

vertices in S throughout the entire course of the algorithm with probability at least 1−n−(c+2)

by a straight-forward Chernoff bound application (see Theorem F.1). Using a union bound,

we can upper bound the probability that any vertex w has more than 18(c+6)Ki log2 n
li

vertices

in S in the set Copen(w, Ki, (V, τ) by 1−n−(c+1). Henceforth in the proof, we condition on the
event that no such event occurs.

Since, for every vertex s ∈ S, we have at most 18(c+6)Ki log2 n
li

+ 2 nodes throughout the
algorithm for which an edge is inserted into Hi. The additive plus 2 term stems from the fact
that the sets Copen(s, Ki, (V, τ) and Cclosed(s, Ki, (V, τ) differ by at most two nodes as pointed

50

out before (the two nodes that have overlapping τ -intervals with [τ(Xs) + |Xs| −Ki, τ(Xs) +
Ki)).

By a similar argument as above, there are at most 3(c+1)n log n
li

vertices in S with probability

at least 1−n−(c+1). Conditioning on the event that the number of vertices in S does not exceed
this bound, we can upper bound the number of edges in Hi by

∑

s∈S

|Cclosed(s, Ki, (V, τ)| ≤ 3(c + 1)n log n

li
·
(

18(c + 2)Ki log2 n

li
+ 2

)
= O

(
Ki · n log3 n

l2i

)
.

We recall that li = hi

n1/3 and Ki = q·δ
n1/3 , and therefore the total number of edges can be bound

by O

(
δqn1+1/3·log3 n

h2
i

)
and since hi ≥ n2/3 log n, we have at most O(δq log n) edges in Hi.

Finally, let us bound the running time to maintain Hi. Using an similar argument as before,
we have that every vertex v ∈ V is only in the sets Copen(s, Ki, (V, τ) of at most 3(c+1)Ki log n

li

vertices s ∈ S with probability 1− n−(c+1). Conditioning on this event, we have that we have
every edge in G, is contained in at most 6(c+1)Ki log n

li
sets EG/V(Copen(s, Ki, (V, τ)) for s ∈ S.

But then, the total update time to maintain all data structures GESs can be bound by

O

(
m · 6(c + 1)Ki log n log W n/ǫ

li
· li
)

= O(mδq log n log nW/(n1/3ǫ))

It is not hard to verify that the time to maintain the hopset Hi is subsumed in the running
time of the data structures GESs since after every time a node is split in such a data structure
we need to can check in constant time whether the new nodes contain a vertex in S and include
a new edge, and again in case the distance to a node exceeds li, we can in constant time remove
the corresponding edge if present in Hi. Edge weight changes further coincide with increases
of distance estimates. We point out that the events that we did not condition upon occur with
total probability at most O(n−(c+1)).

Lemma F.3. For any 0 ≤ i < lg n, the graph (G/V) ∪Hi maintains for any pair of vertices
s, t ∈ V with distG(s, t) = dist

hi
G (s, t) ≤ δ and T (πs,t), τ) ≤ qδ + n, that

dist
n2/3 log n
(G/V)∪Hi

(Xs, Xt) ≤ (1 + ǫ)distG(s, t).

where Xs and Xt are the nodes in V that contain the vertices s and t respectively.

Proof. Clearly, for hi < n2/3 log n, we have that the claim is vacuously true since this implies
that the path corresponding to dist

hi
G (s, t) has less than n2/3 log n edges in G and therefore

the path in the graph G/V where some vertices are contracted into nodes can have at most
the same hop.

For hi ≥ n2/3 log n, let πs,t be a shortest path in G between s and t of hop at most hi.
Let us partition the path into segments π1, π2, . . . , πk of exactly li/2 edges where only the last
segment is possible smaller. We observe that k ≤ ⌈2hi/li⌉ ≤ n2/3 + 1. We claim that with
exception of the last segment, each segment contains some vertex v that was sampled into S.

51

We can prove that this is indeed true by using a Chernoff bound as described in theorem F.1
where for each vertex in a fixed segment we have the experiment Xi that is 1 if the vertex is
sampled into S and 0 otherwise. It is not hard that for a fixed segment, there is at least one
such vertex with probability 1 − n−(c+6). Taking a union bound over the segments, we have
that with probability at least 1−n−(c+5) every segment (except the last one) contains a vertex
in S.

Next, let us select such a vertex sj ∈ S for each segment πj . We observe that any two
such vertices sj and sj+1 in consecutive segments have a shortest path consisting of at most
li edges between them by the optimal substructure property of shortest paths, in particular
they have the shortest path πi

s,t[sj , sj+1] with at most li edges.
We further observe that since sj has a GESs data structure, by the argument above, we

have that there is an edge (Xsj , Xsj+1) in Hi of weight at most (1 + ǫ)distG(sj, sj+1) if the
shortest path πi

s,t[sj , sj+1] is contained in the graph Hs. We remind the reader that the graph
Hs was defined to be the graph (G/V) [Cclosed(s, K, (V, τ))].

It is straight-forward to observe that for every segment between two vertices sj and sj+1

we have

• either the edge (Xsj , Xsj+1) of weight at most (1 + ǫ)w(πi
s,t[sj , sj+1]), or

• some vertex v ∈ πi
s,t[sj , sj+1] that is not in Cclosed(s, Ki, (V, τ)).

Now, we observe that the latter case we have by definition of Cclosed(s, Ki, (V, τ)) that |τ(Xv)−
τ(Xs)| ≥ Ki = q·δ

n1/3 . But since we have by the definition of quality, that T (πs,t), τ) ≤ qδ + n,

we have that there can be at most qδ+n
q·δ/n1/3 = 2n1/3 such indices j by the pigeonhole principle

(here we use δq ≥ n).
Finally, we can put everything together: we have that the shortest path from s to s1

contains at most li/2 edges, analogously for the last vertex sk−1 to t. In between for each
segment, we either have the direct edge in the hopset or we can take at most li edges in
G/V whenever we do not. Since this can occur at most n1/3 times, we have that the path
constructed by this method has hop at most

2 · li + k + 2n1/3li ≤ 4n2/3

since li ≤ n1/3 and k ≤ n2/3 for all choices of i. This proves the lemma.

Proof of Theorem 6.1. It is now rather straight-forward to observe that the data structure
GESr maintains (1 + ǫ)2-approximate distance estimates from Xr to every node Y ∈ V that
contains a vertex t at distance at most δ from s in G and with T (πr,t), τ) ≤ qδ+n by combining
Lemma 6.5 and Lemma F.3. Rescaling ǫ by a constant factor, we obtain again a (1 + ǫ)-
approximation on the distance estimates without affecting the running time asymptotically.

Due to contractions according to V, we might slightly underestimate the distances. How-
ever, since (V, τ) form an AT O(G, ηdiam), we underestimate by at most ηdiam and adding
ηdiam to every distance estimate remedies this problem without violation our constraints on
the upper bound for the approximation.

52

We further have that the running time of the data structure GESr is at most the number of
edges in Hi and G. But by combining Lemma 6.5 and Lemma F.2, we obtain that the running
time is at most

O((m +
∑

i

δq log n)n2/3 log n log W n/ǫ) = O((m + δq)n2/3 log3 n log W n/ǫ).

Since we can maintain each Hi in time O(mδq log n log nW/(n1/3ǫ)) by Lemma F.2, we can
bound the total update time that the data structure spends by

O(mδq log2 n log nW/(n1/3ǫ) + (m + δq)n2/3 log3 n log W n/ǫ)

= O((mδq/n−1/3 + δqn2/3) log3 n log W n/ǫ)

where we use again δq ≥ n.
Finally, we argue that each hopset Hi is correctly maintained with probability 1−O(n−(c+1))

and therefore by a simple union bound, we can deduce that the overall algorithm runs correctly
with probability at least 1− n−c. The theorem follows.

G Proof of Theorem 6.6

In this section we prove Theorem 6.6.

Theorem 6.6. For any 0 ≤ i ≤ lg(W n), given a decremental digraph G = (V, E, w), we can
maintain a hierarchy S = {Si}i where each Si is a AT O(G, 2i, 40c log n)-bundle of expected
quality n/2i. The algorithm runs in total expected update time O(mn2/3 log16 n log3(W n))
against a non-adaptive adversary and is correct with high probability.

Proof. We prove the theorem by induction on n, the number of vertices in graph G. The base
case with n ≤ 1 is easily established since we can subsume any term using a large enough
constant.

Let us now give the inductive step n 7→ n + 1: we maintain a hierarchy of AT O’s, for
levels 0 ≤ i ≤ lg(W n). At level i ≤ 2, we let Si be a AT O(G, 2i, 40c log n)-bundle where
each (V, τ) ∈ Si is an AT O(G, 2i) obtained from letting V be the trivial partition of V into
singletons and by letting τ be an arbitrary permutation of the elements in V. It is straight-
forward to see that because the maximal topological difference is n, that each (V, τ) has quality

n ≤ (c+2)40000n log5 n
22 .

For each i > 2, we then iteratively construct an AT O(G, 2i, 40c log n)-bundle Si as de-
scribed in Theorem 4.4. Thus, we have to show how to implement a 2-approximate 2i−2-
restricted SSSP data structure required in the reduction.

We implement the SSSP data structure depending on the size of the graph that it is run
upon, where we call a graph large if it has at least n/2γ vertices and small otherwise. It
is here that we exploit Remark 4.5 which states that when the reduction asks to maintain
approximate distances on some graph H ⊆ G, it is sufficient to maintain distance estimates

53

on any graph F such that H ⊆ F ⊆ G and in particular, it is ok to simply run on the entire
graph G.

Now, if the graph is large, we run the data structure given in Corollary 6.2 on the full graph
G using Si−3,Si−3, . . . ,S0: thus each such data structure exploits the access to the existing
AT Os. If the graph is small, then we construct a new hierarchy S ′ = {S ′

i}i on the graph
by invoking the induction hypothesis and then run an unrestricted 2-approximate SSSP data
structure derived by using Corollary 6.2 on S ′. This completes the description of level i.

Let us now bound the costs to maintain a single level i. For i ≤ 2, we can bound the total
running time by O(n log n) since we only have to publish S0 initially.

For i > 2, we have running time

O




⌈lg δ⌉∑

j=0

2j+3c log2 n∑

k=0

TSSSP (mj,k, n/2j , δ, 2) + m log3 n


 (11)

where
∑

j mj,k ≤ 16c ·m log2 n for all k, as given by Theorem 4.4.
For each term TSSSP (mj,k, n/2j , 2j , 2), where the graph is large, i.e. j ≤ γ, then we have

TSSSP (mj,k, n/2j , 2j , 2) = O(mn2/3 log8 n log2 W n/ǫ)

by Corollary 6.2. Since we have less than O(log4 n2γ) terms, where j ≥ γ, we have that the
total cost of all SSSP data structures on large graphs is at most

O(2γmn2/3 log12 n log2 W n/ǫ).

Further, using the induction hypothesis, we have that every term TSSSP (mj,k, n/2j , δ, 2)
where j < γ, requires time O(mj,kn2/3 log16 n log3 W n/ǫ). Summing over all such small graph
terms, we obtain total time

O(2−2/3·γm log18 n log3(W n)).

Finally, we balance both terms by setting γ = Θ(lg(log2(W n) log4 n)) with a sufficiently
large constant to obtain total running time O(mn2/3 log16 n log3(W n)). Thus, summing over
log(W n) values for i, the total running time is established (slightly better trade-off values can
be achieved but in order to keep bounds simple we use this trade-off).

Further, we point out that every AT O that was constructed runs correctly with high
probability 1−n−c′

for constant c′ > 0, and since there are only polynomially many instances,
we can set c′ large enough to ensure that the entire algorithm runs correctly with probability
1− n−c for any c > 0 by taking a union bound over the events that an instance fails.

54

	1 Introduction
	2 Preliminaries
	3 Overview
	3.1 A Fast Algorithm for DAGs
	3.2 Extending the Result to General Graphs
	3.3 The Framework by Gutenberg and Wulff-Nilsen
	3.4 Our Improved Framework
	3.5 A Framework for Sparse SSSP
	3.6 Organization

	4 Reducing Maintenance of an Approximate Topological Order to SSSP
	4.1 Initializing the Algorithm
	4.2 Maintaining Information about SCC Diameters
	4.3 Maintaining G'
	4.4 Analysis

	5 A SSSP Algorithm for Dense Graphs
	5.1 SSSP via Maintaining an Approximate Topological Order
	5.2 Bootstrapping an Algorithm for Unrestricted Depth

	6 A SSSP Algorithm for Sparse Graphs
	6.1 SSSP via Maintaining an Approximate Topological Order
	6.2 Bootstrapping an Algorithm for Unrestricted Depth

	7 Conclusion
	References
	A Related Work
	B Efficient Partitioning
	C Proof that the Number of While-Iterations is Small
	D The SSSP Data Structure
	D.1 Correctness of the Algorithm
	D.2 Running Time

	E SSSP from ATO-bundles
	F Proof of the Sparse Graph SSSP Reduction
	G Proof of the Bootstrapping Theorem for Sparse Graphs

