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Abstract

We study the problem of testingwhether amatrix A ∈ �n×n with bounded entries (‖A‖∞ ≤ 1)
is positive semi-definite (PSD), or ε-far in Euclidean distance from the PSD cone, meaning that
minB�0 ‖A−B‖2F > εn2, where B � 0 denotes that B is PSD. Ourmain algorithmic contribution is
a non-adaptive tester which distinguishes between these cases using only Õ(1/ε4) queries to the
entries of A.1 If instead of the Euclidean norm we considered the distance in spectral norm, we
obtain the “`∞-gap problem”, where A is either PSD or satisfies minB�0 ‖A − B‖2 > εn. For this
related problem, we give a Õ(1/ε2) query tester, which we show is optimal up to log(1/ε) factors.
Both our testers randomly sample a collection of principal submatrices and check whether these
submatrices are PSD. Consequentially, our algorithms achieve one-sided error: whenever they
output that A is not PSD, they return a certificate that A has negative eigenvalues.

We complement our upper bound for PSD testing with Euclidean norm distance by giving a
Ω̃(1/ε2) lower bound for any non-adaptive algorithm. Our lower bound construction is general,
and can be used to derive lower bounds for a number of spectral testing problems. As an
example of the applicability of our construction, we obtain a new Ω̃(1/ε4) sampling lower bound
for testing the Schatten-1 norm with a εn1.5 gap, extending a result of Balcan, Li, Woodruff, and
Zhang [BLWZ19]. In addition, our hard instance results in new sampling lower bounds for
estimating the Ky-Fan Norm, and the cost of rank-k approximations, i.e. ‖A−Ak ‖2F �

∑
i>k σ

2
i (A).

∗Ainesh Bakshi and Rajesh Jayaram would like to thank the partial support from the Office of Naval Research (ONR)
grant N00014-18-1-2562, and the National Science Foundation (NSF) under Grant No. CCF-1815840.

1Throughout the paper, Õ(·) hides log(1/ε) factors.
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1 Introduction

Positive Semi-Definite (PSD) matrices are central objects of interest in algorithm design, and
continue to be studied extensively in optimization, spectral graph theory, numerical linear algebra,
statistics, and dynamical systems, among many others [VB96, WSV12, GW95, ARV09, AHK05,
Ste10, ST04, DL09, Wai19, DK19, SL+91]. Specifically, a real-valued matrix A ∈ �n×n is said to
be PSD if it defines a non-negative quadratic form: namely if x>Ax ≥ 0 for all x ∈ �n . If A is
symmetric, this is equivalent to the eigenvalues of A being non-negative. Certifying whether a
matrix is PSD often provides crucial insights into the structure of metric spaces [Sch35], arises as a
separation oracles in Semi-Definite Programming (SDP) [VB96], leads to faster algorithms for solving
linear systems and linear algebra problems [ST04, KOSZ13, MW17, BCW19] detects existence of
community structure in randomgraphs [SKZ14], and is used to ascertain local convexity of functions.
Furthermore, testing if a matrix is PSD is also used when studying the rate of dissipation in the
heat equation [ÃzÖÖ93] and the behavior of non-oscillatory, exponentially stable modes of linear
differential equations [Gle94]. For these applications, in addition to testing the existence of negative
eigenvalues, it is often important to provide a certificate that the matrix is not PSD, by exhibiting a
direction in which the quadratic form is negative.

While efficient, numerically stable algorithms for computing the spectrum of a matrix have
been known since Turing [Tur48], such algorithms require reading the entire matrix and incur
a cubic running time in practice. Computing the eigenvalues of a matrix is often the bottleneck
in applications, especially when just determining the existence of negative eigenvalues suffices.
For instance, checking embeddability of a finite metric into Euclidean space, feasibility of a SDP,
convexity of a function, and if specialized solvers are applicable for linear algebraic problems, all
only require knowledge of whether a given matrix is PSD. The focus of this work is to study when
the property of being PSD can be tested sublinear time and queries, without reading the entire
matrix.

We approach the problem from the perspective of property testing [GGR98, Gol17], where the
input matrix A is promised to be either a PSD matrix, or “ε-far” from PSD under an appropriate
notion of distance (discussed below). Specifically, we work in the bounded-entry model, proposed by
Balcan, Li, Woodruff, and Zhang [BLWZ19], where the input matrix has bounded entries: ‖A‖∞ ≤ 1.
Boundedness is often a natural assumption in practice, and has numerous real world applications,
such as recommender systems as in the Netflix Challenge [KBV09], unweighted or bounded weight
graphs [Gol10, GGR98], correlation matrices, distance matrices with bounded radius, and others
[LWW14, KIDP16, BLWZ19]. Further, the boundedness of entries avoids degenerate instances
where an arbitrarily large entry is hidden in A, thereby drastically changing the spectrum of A,
while being impossible to test without reading the entire matrix.

Our starting point is a simple fact: a matrix A is PSD if and only if all principal2 submatrices of A
are PSD. However, a much more interesting direction is: if A is not PSD, what can be said about the
eigenvalues of the submatrices of A? Specifically, if A is far from PSD, how large of a submatrix
must one sample in order to find a negative eigenvalue? Note that given a principal submatrix
AT×T with x>AT×T x < 0 for some x ∈ �|T | , this direction x can be used as a certificate that the input
matrix is not PSD, since y>Ay � x>AT×T x < 0, where y is the result of padding x with 0’s. Further,

2Recall that a principal submatrix AT×T for T ⊆ [n] is the restriction of A to the rows and columns indexed by T.
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it leads us to a natural algorithm to test definiteness: sample multiple principal submatrices and
compute their eigenvalues. If any are negative, then A must not be PSD. Determining the query
complexity of this task is the principal focus of this paper. Specifically, we ask:

Can the positive semi-definiteness of a bounded matrix be tested via the semi-definiteness of a
small random submatrix?

The Testing Models. The distance from A to the PSD cone is given by minB�0 ‖A − B‖, where
‖ · ‖ is a norm, and B � 0 denotes that B is PSD. To instantiate ‖ · ‖, we consider two natural norms
over n × n matrices: the spectral norm (‖ · ‖2) and the Euclidean norm (‖ · ‖F). Perhaps surprisingly,
the distance of a symmetric matrix A to the PSD cone under these norms can be characterized in
terms of the eigenvalues of A. In particular, let λ ∈ �n be the vector of eigenvalues of A. Then, the
spectral norm distance corresponds to the `∞ distance between λ and the positive orthant. Similarly,
the squared Frobenius distance corresponds to the `2

2 distance between λ and the positive orthant.
Therefore, we will refer to the two resulting gap problems as the `∞-gap and the `2

2-gap,
respectively. This connection between matrix norms of A and vector norms of eigenvalues λ will
be highly useful for the analysis of random submatrices. Next, we formally define the testing
problems:

Problem 1.1 (PSD Testing with Spectral norm/`∞-gap). Given ε ∈ (0, 1] and a symmetric matrix
A ∈ �n×n such that ‖A‖∞ ≤ 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in Spectral norm: minB�0 ‖A − B‖2 � maxi:λi<0 |λi(A)| ≥ εn.

The fact that the spectral norm distance from A to the PSD cone (minB�0 ‖A−B‖2) is equivalent
to the magnitude of the smallest negative eigenvalue of A is a consequence of the variational
principle for eigenvalues. For general non-symmetric matrices A, one can replace (2) above with
the condition x>Ax < −εn for some unit vector x ∈ �n , which is equivalent to (2) if A is symmetric
(again by the variational principle). We note that our results for the `∞-gap hold in this more
general setting.3

Next, if we instantiate ‖ · ‖ with the (squared) Euclidean norm, we obtain the `2
2 gap problem.

Problem 1.2 (PSD Testing with `2
2-gap). Given ε ∈ (0, 1] and a symmetric matrix A ∈ �n×n such

that ‖A‖∞ ≤ 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in squared Euclidean norm:

min
B�0
‖A − B‖2F �

∑
i:λi(A)<0

λ2
i (A) ≥ εn2 (1)

Note that the identity minB�0 ‖A − B‖2F �
∑

i:λi(A)<0 λ
2
i (A) in equation 1 also follows from the

variational principle for eigenvalues (see Appendix A). Similarly to the `∞-gap, if A is not symmetric

3Also note that given query access to any A ∈ �n×n , one can always run a tester on the symmetrization B � (A+A>)/2,
which satisfies x>Ax � x>Bx for all x, with at most a factor of 2 increase in query complexity.
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one can always run a tester on the symmetrization (A + A>)/2. Also observe that ‖A‖2F ≤ n2 and
‖A‖2 ≤ n for bounded entries matrices, hence the respective scales of n , n2 in the two gap instances
above. Notice by definition, if a symmetric matrix A is ε-far from PSD in `∞ then A is ε2-far from
PSD in `2

2. However, the converse is clearly not true, and as we will see the complexity of PSD
testing with ε2-`2

2 gap is strictly harder than testing with ε-`∞ gap.4
In fact, there are several important examples of matrices which are far from the PSD cone in `2

2,
but which are not far in `∞. For instance, if A is a randommatrix with bounded moments, such as a
matrix with i.i.d. Rademacher ({1,−1}) or Gaussian entries, then as a consequence of Wigner’s
Semicircle Law A will be Ω(1)-far in `2

2 distance. However, ‖A‖2 � O(
√

n) with high probability, so
A will only be O(1/

√
n)-far in `∞ distance. Intuitively, such random instances should be very “far”

from being PSD, and the `2
2 distance captures this fact.

Remark 1.3. A previous version of this work defined the gap in Problem 1.1 in full generality
(without symmetry assumed) as x>Ax < −εn for a unit vector x. We have since changed the
presentation, as this more general definition does not clearly emphasize the connection between the
Problem 1.1 and the spectral norm. The authors would like to thank an anonymous reviewer for
this suggestion. We note that the results themselves remain unaffected.

1.1 Our Contributions

We now introduce our main contributions. Our algorithms for PSD testing randomly sample
principal submatrices and check if they are PSD. Thus, all our algorithms have one-sided error;
when A is PSD, they always return PSD, and whenever our algorithms return Not PSD, they output
a certificate in the form of a principal submatrix which is not PSD. In what follows, ω < 2.373 is the
exponent of matrix multiplication, and Õ , Ω̃ notation only hide log(1/ε) factors (and log(s) factors
for Ky-Fan-s and residual error bounds), thus our bounds have no direct dependency on the input
size n. We first state our result for the `∞ gap problem in its most general form, which is equivalent
to Problem 1.1 in the special case when A is symmetric.

Theorem 3.25 (`∞-gap Upper Bound) There is a non-adaptive sampling algorithm which, given A ∈ �n×n

with ‖A‖∞ ≤ 1 and ε ∈ (0, 1), returns PSD if x>Ax ≥ 0 for all x ∈ �n , and with probability 2/3 returns
Not PSD if x>Ax ≤ −εn for some unit vector x ∈ �n . The algorithm make Õ(1/ε2) queries to the entries of
A, and runs in time Õ(1/εω).

We demonstrate that the algorithm of Theorem 3.25 is optimal up to log(1/ε) factors, even for
adaptive algorithms with two-sided error. Formally, we show:

Theorem 5.1 (`∞-gap Lower Bound)Any adaptive or non-adaptive algorithm which solves the PSD testing
problem with ε-`∞ gap with probability at least 2/3, even with two-sided error and if A is promised to be
symmetric, must query Ω̃(1/ε2) entries of A.

Next, we present our algorithm for the `2
2-gap problem. Our algorithm crucially relies on first

running our tester for the `∞-gap problem, which allows us to demonstrate that if A is far from PSD

4The difference in scaling of ε between the `∞ and `2
2 gap definitions (ε is squared in the latter) is chosen for the sake

of convenience, as it will become clear the two problems are naturally studied in these respective paramaterizations.
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in `2
2 but close in `∞, then it must be far, under other notions of distance such as Schatten norms or

residual tail error, from any PSD matrix.

Theorem 4.12 (`2
2-gap Upper Bound) There is a non-adaptive sampling algorithm which, given a

symmetric matrix A ∈ �n×n with ‖A‖∞ ≤ 1 and ε ∈ (0, 1), returns PSD if A is PSD, and with probability
2/3 returns Not PSD if minB�0 ‖A − B‖2F ≥ εn2. The algorithm make Õ(1/ε4) queries to A, and runs in
time Õ(1/ε2ω).

We complement our upper bound by a Ω̃( 1
ε2 ) lower bound for PSD-testing with ε-`2

2 gap, which
holds even for algorithms with two sided error. Our lower bound demonstrates a separation
between the complexity of PSD testing with

√
ε-`∞ gap and PSD testing with ε-`2

2-gap, showing
that the concentration of negative mass in large eigenvalues makes PSD testing a strictly easier
problem.

Theorem 5.12 (`2
2-gap Lower Bound) Any non-adaptive algorithm which solves the PSD testing problem

with ε-`2
2 gap with probability at least 2/3, even with two-sided error, must query Ω̃(1/ε2) entries of A.

Our lower bound is built on discrete hard instances which are “locally indistinguishable”, in the
sense that the distribution of any small set of samples is completely identical between the PSD and
ε-far cases. At the heart of the lower bound is a key combinatorial Lemma about arrangements of
paths on cycle graphs (see discussion in Section 1.4.3). Our construction is highly general, and we
believe will likely be useful for proving other lower bounds for matrix and graph property testing
problems. Exemplifying the applicability of our construction, we obtain as an immediate corollary
a new lower bound for testing the Schatten-1 norm of A. Recall, that the Schatten-1 norm is defined
via ‖A‖S1 �

∑
i σi(A), where σ1(A) ≥ · · · ≥ σn(A) are the singular values of A.

Theorem 5.19 (Schatten-1 Lower Bound) Fix any 1/
√

n ≤ ε ≤ 1. Then any non-adaptive algorithm in
the bounded entry model that distinguishes between

1. ‖A‖S1 ≥ εn1.5,

2. ‖A‖S1 ≤ (1 − ε0)εn1.5

with probability 2/3, where ε0 � 1/logO(1)(1/ε), must make at least Ω̃(1/ε4) queries to A.

Note that one always has ‖A‖S1 ≤ n1.5 in the bounded entry model (‖A‖∞ ≤ 1), which accounts
for the above scaling. Theorem 5.19 extends a lower bound of Balcan et. al. [BLWZ19], which is
Ω(n) for the special case of ε, ε0 � Θ(1). Thus, for the range ε � Õ(n−1/4), our lower bound is an
improvement. To the best of our knowledge, Theorem 5.19 gives the first Ω̃(n2) sampling lower
bound for testing Schatten-1 in a non-degenerate range (i.e., for ‖A‖S1 > n).

Remark 1.4. We note that the lower bound of [BLWZ19] is stated for a slightly different version of
gap (a “ε-`0”-gap), where either ‖A‖S1 ≥ c1n1.5 for a constant c1, or at least εn2 of the entries of A
must be changed (while respecting ‖A‖∞ ≤ 1) so that the Schatten-1 is larger than c1n1.5. However,
their lower bound construction itself satisfies the “Schatten-gap” version as stated in Theorem 5.19,
where either ‖A‖S1 ≥ c1n1.5, or ‖A‖S1 ≤ c2n1.5 and c1 > c2 are constants. From here, it is easy to
see that this gap actually implies the `0-gap (and this is used to obtain the `0-gap lower bound in
[BLWZ19]), since if ‖A‖S1 ≤ c2n1.5 then for any E with ‖E‖∞ ≤ 2 and ‖E‖0 ≤ εn2 for a small enough

4



constant ε < c2
2, we have ‖A + E‖S1 ≤ ‖A‖S1 + ‖E‖S1 ≤ n1.5(c2 + 2

√
ε) < c1n1.5. So Theorem 5.19

implies a lower bound of Ω̃(1/ε2) for distinguishing ‖A‖S1 ≥
√
εn1.5 from the case of needing to

change at least Ω̃(εn2) entries of A so that ‖A‖S1 ≥
√
εn1.5. Thus, our lower bound also extends the

`0-gap version of the results of [BLWZ19] for the range ε � Õ(1/
√

n).
In addition to Schatten-1 testing, the same lower bound construction and techniques from

Theorem 5.12 also result in new lower bounds for testing the Ky-Fan s norm ‖A‖KF(s) �
∑s

i�1 σi(A),
as well as the cost of the best rank-s approximation ‖A −As ‖2F �

∑
i>s σ

2
i (A), stated below. In the

following, s is any value 1 ≤ s ≤ n/(poly log n), and c is a fixed constant.

Theorem 5.20 (Ky-Fan Lower Bound) Any non-adaptive algorithm in the bounded entry model which
distinguishes between

1. ‖A‖KF(s) >
c

log s n

2. ‖A‖KF(s) < (1 − ε0) · c
log s n

with probability 2/3, where ε0 � Θ(1/log2(s)), must query at least Ω̃(s2) entries of A.

Theorem 5.21 (Residual Error Lower Bound) Any non-adaptive algorithm in the bounded entry model
which distinguishes between

1. ‖A −As ‖2F >
c

s log s n

2. ‖A −As ‖2F < (1 − ε0) · c
s log s n

with probability 2/3, where ε0 � 1/logO(1)(s), must query at least Ω̃(s2) entries of A.

Our lower bound for the Ky-Fan norm complements a Ky-Fan testing lower bound of [LW16b],
which is Ω(n2/s2) for distinguishing 1) ‖A‖KF(s) < 2.1s

√
n from 1) ‖A‖KF(s) > 2.4s

√
n when

s � O(
√

n). Note their bound decreases with s, whereas ours increases, thus the two bounds are
incomparable (although they match up to log(s) factors at s � Θ(

√
n)).5 We also point out that there

are (not quite matching) upper bounds for both the problems of Ky-Fan norm and s-residual error
testing in the bounded entry model, just based on a standard application of the Matrix Bernstein
Inequality.6 We leave the exact query complexity of these and related testing problems for functions
of singular values in the bounded entry model as subject for future work.

A Remark on the `2
2-Gap. We note that there appear to be several key barriers to improving

the query complexity of PSD testing with `2
2-gap beyond O(1/ε4), which we briefly discuss here.

First, in general, to preserve functions of the squared singular values of A up to error εn2, such as
‖A‖2F �

∑
i σ

2
i (A) or ‖A‖

2
2 � σ2

1(A), any algorithm which samples a submatrix must make Ω(1/ε4)
queries (see Lemma 5.22 for estimating

∑
i≤k σ

2
i for any k). In other words, detecting εn2-sized

5The bound from [LW16b] is stated in the sketching model, however the entries of the instance are bounded, thus it
also applies to the sampling model considered here.

6See Theorem 6.1.1 of [Tro15], applied to Sk � a(k)(a(k))>, where a(k) is the k-th row sampled in A; for the case of
residual error, one equivalently applies matrix Bernstein inequality to estimate the head

∑
i≤k σ

2
i (A). These bounds can

be tightened via the usage of interior Chernoff bounds [GT11].
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perturbations in the spectrum of a matrix in general requires Ω(1/ε4) sized submatrices. This rules
out improving the query complexity by detecting the εn2 negative mass in A via, for instance,
testing if the sum of squares of top k � 1/ε singular values has Θ(εn2) less mass than it should if A
were PSD (even this may require Ω(k2/ε4) queries, see the discussion in Section 1.4.2).

The key issue at play in the above barrier appears to be the requirement of sampling submatrices.
Indeed, notice for the simplest case of ‖A‖2F , we can easily estimate ‖A‖2F to additive εn2 via O(1/ε2)
queries to random entries of A. On the other hand, if these queries must form a submatrix, then
it is easy to see that Ω(1/ε4) queries are necessary, simply from the problem of estimating ‖A‖2F
whose rows (or columns) have values determined by a coin flip with bias either equal to 1/2 or
1/2 + ε. On the other hand, for testing positive semi-definiteness, especially with one-sided error,
the requirement of sampling a principal submatrix seems unavoidable.

In addition, a typical approach when studying spectral properties of submatrices is to first pass
to a random row submatrix AS×[n], argue that it preserves the desired property (up to scaling), and
then iterate the process on a column submatrix AS×T . Unfortunately, these types of arguments
are not appropriate when dealing with eigenvalues of A, since after passing to the rectangular
matrix AS×[n], any notion of negativity of the eigenvalues has now been lost. This forces one to
argue indirectly about functions of the singular values of AS×[n], returning to the original difficulty
described above. We leave it as an open problem to determine the exact non-adaptive query
complexity of PSD testing with `2

2-gap. For a further discussion of these barriers and open problems,
see Section 6.

1.2 Connections to Optimization, Euclidean Metrics and Linear Algebra

We now describe some explicit instances where our algorithms may be useful for testing positive
semi-definiteness. We emphasize that in general, the distance between A and the PSD cone may be
too small to verify via our testers. However, when the input matrices satisfy a non-trivial gap from
the PSD cone, we can speed up some basic algorithmic primitives. The first is testing feasibility
of the PSD constraint in a Semi-Definite Program (SDP) with sublinear queries and time, so long
as the variable matrix has bounded entries. Importantly, our algorithms also output a separating
hyperplane to the PSD cone.

Corollary 1.5 (Feasibility and Separating Hyperplanes for SDPs). Given a SDP S, let X ∈ �n×n be a
symmetric matrix that violates the PSD constraint for S. Further, suppose ‖X‖∞ ≤ 1 and X is εn2-far in
entry-wise `2

2 distance to the PSD cone. Then, there exists an algorithm that queries Õ(1/ε4) entries in X
and runs in Õ(1/ε2ω) time, and with probability 9/10, outputs a vector ṽ such that ṽTXṽ < 0. Moreover, if
λmin(X) < −εn, then there is an algorithm yielding the same guarantee, that queries Õ(1/ε2) entries in X
and runs in Õ(1/εω) time.

While in the worst case, our algorithm may need to read the whole matrix to exactly test if X is
PSD, there may be applications where relaxing the PSD constraint to the convex set of matrices
which are close to the PSD cone in Euclidean distance is acceptable. Moreover, our algorithm may
be run as a preliminary step at each iteration of an SDP solver to check if the PSD constraint is badly
violated, resulting in speed-ups by avoiding an expensive eigendecomposition of X whenever our
algorithm outputs a separating hyperplane [VB96].
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Next, we consider the problem of testing whether an arbitrary finite metric d over n points,
x1 , . . . xn ∈ �d is embeddable into Euclidean Space. Testing if a metric is Euclidean has a myriad of
applications, such as determining whether dimensionality reduction techniques such as Johnson-
Lindenstrauss can be used [PR03], checking if efficient Euclidean TSP solvers can be applied [Aro98],
and more recently, computing a low-rank approximation in sublinear time [BW18, IVWW19].
It is well known (Schoenberg’s criterion [Dat10]) that given a distance matrix D ∈ �n×n such
that Di , j � d(xi , x j), the points are isometrically embeddable into Euclidean space if and only If
G � 1 · D1,∗ + D>1,∗ · 1> − D � 0, where D1,∗ is the first row of D. Notice that embeddability is
scale invariant, allowing one to scale distances to ensure boundedness. Furthermore, since our
algorithms sample submatrices and check for non-positive semi-definiteness, the tester need not
know this scaling in advance, and gives guarantees for distinguishing definiteness if the necessary
gap is satisfied after hypothetically scaling the entries.

Corollary 1.6 (Euclidean Embeddability of Finite Metrics). Given a finite metric d on n points
{x1 , . . . , xn}, let D ∈ �n×n be the corresponding distance matrix, scaled so that ‖D‖∞ ≤ 1/3, and let
G � 1D1,∗ + D>1,∗1

> −D. Then if minB�0 ‖G − B‖2F ≥ εn2, there exists an algorithm that queries Õ(1/ε4)
entries in A and with probability 9/10, determines the non-embeddability of {x1 , . . . , xn} into Euclidean
space. Further, the algorithm runs in time Õ(1/ε2ω).

Remark 1.7. An intriguing question is to characterized geometric properties of finite metrics based
on the `2

2-distance of the Schoenberg matrix G from the PSD cone. For instance, given a finite metric
with Schoenberg matrix G that is close to being PSD in `2

2-distance, can we conclude that the metric
has a low worst or average case distortion embedding into Euclidean space?

Remark 1.8. Since rescaling entries to be bounded only affects the gap parameter ε, in both of the
above cases, so long as the magnitude of the entries in X,D do not scale with n, the running time of
our algorithms is still sublinear in the input.

Finally, several recent works have focused on obtaining sublinear time algorithms for low-rank
approximation when the input matrix is PSD [MW17, BCW19]. However, such algorithms only
succeed when the input is PSD or close to PSD (in `2

2), and it is unknown how to verify whether
these algorithm succeeded in sublinear time. Therefore, our tester can be used as a pre-processing
step to determine input instances where the aforementioned algorithms provably will (or will not)
succeed.

1.3 Related work

Property testing in the bounded entry model was first considered in [BLWZ19] to study the query
complexity of testing spectral properties of matrices, such as stable rank (the value ‖A‖2F/‖A‖22)
and Schatten p norms. A related model, known as the bounded row model, where rows instead of
entries are required to be bounded, was studied by Li, Wang, and Woodruff [LWW14], who gave
tight bounds for testing stable rank in this model. In addition, the problem of testing the rank of
a matrix from a small number of queries has been well studied [PR03, KS03, LWW14, BBG18], as
well the problem of estimating the rank via a random submatrix [BH11, BZ16]. Notice that since
rank is not a smooth spectral property, hiding an unbounded value in a single entry of A cannot
drastically alter the rank. Thus, for testing rank, the condition of boundedness is not required.
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More generally, the bounded entry model is the natural sampling analogue for the linear
sketching model, where the algorithm gets to choose a matrix S ∈ �t×n2 , where t is the number
of “queries”, and then observes the product S · vec(A), where vec(A) is the vectorization of
A [LW17, LW16b, BCK+18, LW16a, LWW14, LNW14, BKKS19, LNW19]. The model has important
applications to streaming and distributed algorithms. Understanding the query complexity of
sketching problems, such as estimating spectral norms and the top singular values [AN13, LNW14,
LW16b], estimating Schatten and Ky-Fan norms [LW16b, LW17, LW16a, BKKS19], estimating `p

norms [AMS96, Ind06, KNW10, JW19, BJWY20], and `p sampling [MW10, JST11, JW18, JSTW19],
has been a topic of intense study. For the problem of sketching eigenvalues (with their signs), perhaps
the most related result is [AN13], which gives point-wise estimates of the top eigenvalues. Notice
that linear sketching can simulate sampling by setting the rows of S to be standard basis vectors,
however sketching is in general a much stronger query model. Note that to apply a linear sketch,
unlike in sampling, one must read all the entries of A, which does not yield sublinear algorithms.

A special case of the sketching model is the matrix-vector product model, which has been
studied extensively in the context of compressed sensing [CRT06, EK12] and sparse recovery [GI10].
Here, one chooses vectors v1 , . . . , vk and observes the products Av1 , . . . ,Avk . Like sketching,
matrix-vector product queries are a much stronger access model than sampling. Recently, in
the matrix-vector product model, Sun et. al. considered testing various graph and matrix
properties [SWYZ19], and Han et. al. considered approximating spectral sums and testing positive
semi-definiteness [HMAS17].

Lastly, while there has been considerable work on understanding concentration of norms and
singular values of random matrices, not as much is known about their eigenvalues. Progress in
understanding the behavior of singular values of random matrices includes concentration bounds
for spectral norms of submatrices [RV07, Tro08], concentration bounds for extreme singular values
[GT11, Tro15, Ver10, GLSS18, KS18], non-commutative Khintchine inequalities for Schatten-p norms
[LPP91, Pis09, PR17], as well as Kadison-Singer type discrepancy bounds [MSS15, KLS20, SZ20].
These random matrix concentration bounds have resulted in improved algorithms for many
fundamental problems, such as low-rank approximation and regression [CW17, MW17, BW18,
IVWW19, DJS+19] and spectral sparsification [ST11, BSST13, ACK+16]. However, in general,
understanding behavior of negative eigenvalues of random matrices and submatrices remains
largely an open problem.

1.4 Technical Overview

In this section, we describe the techniques used in our non-adaptive testing algorithms for the
`∞ and more general `2

2 gap problem, as well as the techniques involved in our lower bound
construction for the `2

2-gap.

1.4.1 PSD Testing with `∞ Gap

Recall in the general statement of the `∞-gap problem, our task is to distinguish between A ∈ �n×n

satisfying x>Ax ≥ 0 for all x ∈ �n , or x>Ax ≤ −εn for some unit vector x ∈ �n . Since if x>Ax ≥ 0
for all x ∈ �n the same holds true for all principal submatrices of A, it suffices to show that in the
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ε-far case we can find a k × k principal submatrix AT×T such that y>AT×T y < 0 for some y ∈ �k .7

Warmup: A O(1/ε3) query algorithm. Since we know x>Ax ≤ −εn for some fixed x, one natural
approach would be to show that the quadratic form with the same vector x, projected onto to a
random subset T ⊂ [n] of its coordinates, is still negative. Specifically, we would like to show that
the quadratic form QT(x) � x>T AT×T xT , of x with a random principal submatrix AT×T for T ⊂ [n]
will continue to be negative. If QT(x) < 0, then clearly AT×T is not PSD. Now while our algorithm
does not know the target vector x, we can still analyze the concentration of the scalar random
variable QT(x) over the choice of T, and show that it is negative with good probability.

Proposition 3.7 and Lemma 3.8 (informal) Suppose A ∈ �n×n satisfies ‖A‖∞ ≤ 1 and x>Ax ≤ −εn
where ‖x‖2 ≤ 1. Then if k ≥ 6/ε, and if T ⊂ [n] is a random sample of expected size k, we have
�[QT(x)] ≤ − εk2

4n and Var(QT(x)) ≤ O( k3

n2 ).

By the above Proposition, after setting k � Θ(1/ε2), we have that |�[QT(x)]|2 � Ω(Var(QT(x)),
and so by Chebyshev’s inequality, with constant probability we will have QT(x) < 0. This results
in a k2 � O(1/ε4) query tester. To improve the complexity, we could instead set k � Θ(1/ε) and
re-sample T for k times independently to reduce the variance. Namely, one can sample submatrices
T1 , T2 , . . . , Tk , and analyze 1

k
∑k

i�1 QTi (x). The variance of this sum goes down to O( k2

n2 ), so, again
by Chebyshev’s inequality, the average of these quadratic forms will be negative with constant
probability. If this occurs, then at least one of the quadratic forms must be negative, from which we
can conclude that at least one of ATi×Ti will fail to be PSD, now using only O(1/ε3) queries.

A Family of Hard Instances One could now hope for an even tighter analysis of the concentration
of QT(x), so that O(1/ε2) total queries would be sufficient. Unfortunately, the situation is not so
simple, and in fact the two aforementioned testers are tight in the query complexity for the matrix
dimensions they sample. Consider the hard instance A in the left of Figure 1, which is equal to the
identity on the diagonal, and is zero elsewhere except for a small subset S ⊂ [n] of |S | � ε2n rows
and columns, where we have AS×S � AS×S � −1, where S is the complement of S. Notice that if
we set x2

i � 1/(2n) for i < S and x2
i � 1/(2ε2n) for i ∈ S, then x>Ax ≤ −εn/4. However, in order to

even see a single entry from S, one must sample from at least Ω(1/ε2) rows or columns. In fact,
this instance itself gives rise to a Ω(1/ε2) lower bound for any testing algorithm, even for adaptive
algorithms (Theorem 5.1).

The difficulty of the above instance is that the negative mass of x>Ax is hidden in only a
ε2-fraction of A. On the other hand, since the negative entries are so large and concentrated, one
need only sample O(1) entries from a single row i ∈ S in order for AT×T to be non-PSD in the prior
example. Thus, an algorithm for such instances would be to sample O(1/ε2) principal submatrices,
each of constant size. On the other hand, the set S could also be more spread out; namely, we could
have |S | � αn for any ε2 ≤ α ≤ ε, but where each entry in AS×S is set to −ε/

√
α (see the matrix in

the right side of Figure 1). If instead, we define x2
i � 1/(2αn) for i ∈ S, we still have x>Ax < −εn/4.

However, now any submatrix AT×T with |T∩S | � 1 must have at least |T | ≥ α/ε2 rows and columns,
otherwise AT×T would be PSD due to the identity on the diagonal.

7This can be efficiently checked by computing the eigenvalues of AT×T + A>T×T .
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Figure 1: Hard instances for `∞ testing. On the left, the negative mass is highly concentrated in
|S | � ε2n rows and columns, and on the right it more spread out over |S | � αn, where ε2 ≤ α ≤ ε.

The aforementioned instances suggest the following approach: query matrices at O(log 1
ε )

different scales of subsampling. Specifically, for each ε2 ≤ α � 2i ≤ ε, we sample Õ( ε2

α2 ) independent
k × k submatrices, each of size k � Õ(α/ε2), giving a total complexity of Õ( 1

ε2 ). The analysis now
proceeds by a complete characterization of the ways in which x>Ax can be negative. Specifically,
we prove the following: either a substantial fraction of the negative mass is hidden inside of a small
set of rows and columns S with |S | < εn, or it is the case that Var(QT(x)) is small enough so that a
single k × k submatrix will already be non-PSD with good probability when k & 1/ε. Given this
classification, it suffices to demonstrate a level of subsampling which will find a non-PSD submatrix
when the negative mass is concentrated inside inside a small set S.

Eigenvector Switching. To analyze this case, ideally, one would like to demonstrate that con-
ditioned on T intersecting S at some level of subsampling, we will have QT(x) < 0 with good
probability. Unfortunately, the approach of analyzing the quadratic form with respects to x will
no longer be possible; in fact, QT(x) may never be negative conditioned on |T ∩ S | � 1 (unless
|T | > 1/ε, which we cannot afford in this case). The complication arises from the fact that the
coordinates of xi in the small set S can be extremely large, and thus the diagonal contribution of
x2

i Ai ,i will dominate the quadratic form of a small submatrix. For instance, if AT×T is a sample with
k � |T | � O(1) which intersects the set S in the leftmost matrix in Figure 1, where xi � 1/(ε

√
n) for

i ∈ S and xi � 1/
√

n otherwise, then QT(x) ≈ k/n − (k/
√

n)xi + Ai ,i x2
i , which is dominated by the

diagonal term Ai ,i x2
i � 1/(ε2n). Thus, while AT×T itself is not PSD, we have that QT(x) > 0.

To handle this, we must and analyze the quadratic form QT(·)with respect to another direction
y. The vector y may not even satisfy y>Ay < 0, however conditioned on |T ∩ S | ≥ 1, we will have
QT(y) < 0 with good probability. Clearly, we must scale down the large coordinates xi for i ∈ S.
However, one cannot scale too low, otherwise the negative contribution of the rows i ∈ S would
become too small. The correct scaling is then a careful balancing act between the contributions of
the different portions of AT×T . Informally, since the xi’s for i ∈ S make up a |S |/n fraction of all
coordinates, they can be as large as x2

i ≥ (n/|S |) · (1/n). However, inside of the smaller submatrix
AT×T , then conditioned on i ∈ T, since |T | is small xi now makes up a larger 1/|T | fraction of the
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submatrix, thus we should scale down xi to only be x2
i ≈ |T |/n. With this scaling in mind, we (very

roughly) set y2
i � (|S |/n) · (|T |/n) if i ∈ S, and set yi � xi otherwise. The remaining argument then

requires a careful analysis of the contribution of entries of A outside of S to show that the target
vector y indeed satisfies QT(y) < 0 with good probability conditioned on T intersecting S.

1.4.2 PSD Testing with `2 Gap

Recall in the `2 gap problem, our task is to distinguish between A being PSD, and A being ε-far in
`2

2 distance from any PSD matrix, namely that
∑

i:λi(A)<0 λ
2
i (A) > εn2. In what follows, we refer to

the quantity
∑

i:λi(A)<0 λ
2
i (A) as the negative mass of A. First observe that in the special case that we

had a “large” negative eigenvalue, say λmin(A) � −
√
εn, then by applying our testing algorithm for

`∞-gap, we could find a non-PSD submatrix with only Õ(1/ε) queries. However, in general the
negative mass of A may be spread out over many smaller eigenvalues. Thus, we cannot hope to
apply our earlier approach for the `∞-gap, which preserved the quadratic form QT(x) � x>T AT×T xT

with respects to a fixed direction x. Instead, our approach will be to show that if A is ε-far from
PSD in `2

2, then the singular values of A must be “far” from PSD, in some other notion of distance,
allowing us to indirectly infer the existence of negative eigenvalues in submatrices.

PSDmatrices are top-heavy, and a reduction to estimating the tail. Our first step is to show that
if A ∈ �n×n is PSD, then the t-“tail” of A, defined as

∑
i>t σ

2
i (A), cannot be too large. This can

be derived from the following fact: if A is PSD then we can bound the Schatten-1 norm of A by
‖A‖S1 �

∑
i σi(A) � Tr(A), which is at most n if ‖A‖∞ ≤ 1. This simple fact will prove highly useful,

since whenever we can demonstrate that the Schatten-1 norm of a submatrix AT×T is larger than |T |,
we may immediately conclude the that AT×T is not PSD. In addition, it implies:
Proposition 4.2 (PSD matrices are top-heavy) Fix any n ∈ �, 1 ≤ t ≤ n, and D ∈ �n×n . Then if D is
PSD, we have ∑

i>t

σi(D)2 ≤
1
t
(Tr(D))2

In particular, if D has bounded entries ‖D‖∞ ≤ 1, we have
∑

i>t σi(D)2 ≤ 1
t n2.

On the other hand, suppose that A is ε-far from PSD, and let t > 10/ε. Then if no eigenvalue
is smaller than −εn/100, a condition which can be checked with Õ(1/ε2) queries by first running
our `∞-gap tester, then the negative mass must be spread out, and it must be the case that a
substantial fraction of the negative mass of A is contained in the bottom n − t singular values.
Specifically, we must have

∑
i>t σi(A)2 > (ε/2)n2, whereas any PSD matrix D would have to satisfy∑

i>t σ
2
i (D) ≤ (ε/10)n2 by the above Proposition. Thus, after first running our `∞ tester, it will

suffices to estimate the tail
∑

i>t σ
2
i (A). Equivelantly, since ‖A‖2F �

∑
i σ

2
i (A) can be efficiently

estimated, it also suffices to estimate the “head”
∑

i≤t σ
2
i (A) to additive O(εn2).

In order to accomplish this, one could utilize the tools from random matrix concentration, such
as Matrix Bernstein’s inequality [Tro15], which allows one to estimate each σ2

i to error ηn2 by taking
a random rectangular O(1/η2)×O(1/η2) sized submatrix. The error in estimating

∑
i≤t σ

2
i (A) is then

tηn2, thus one needs to set η � O(ε/t), giving a O(1/ε8) tester with two-sided error. Using a careful
bucketing analysis on the error, along with the more powerful Interior Matrix Chernoff bounds
of Gittens and Tropp [GT11], one can improve this to O(t2/ε4) � O(1/ε6). However, substantial
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improvements on unconditional estimation of
∑

i≤t σ
2
i (A) seem unlikely. In fact, we demonstrate

that event for t � 1 (spectral norm estimation), tools such as matrix concentration inequalities which
sample submatrices of A, must makeΩ(1/ε4) queries (Lemma 5.22), which rules out, for instance, a
o(t2/ε4) upper bound for general t. Thus, instead of unconditional estimation, our main insight
is to demonstrate conditions under which

∑
i≤t σ

2
i (A) can be efficiently estimated. When these

conditions do not hold, we show that it is because the Schatten-1 norm of our sampled submatrix
must be too large, from which we can deduce the existence of negative eigenvalues in our query.

In the first case, if the t-th singular value is not too large, say σt+1(A) ≤ 10n/t, we show that
the (re-scaled) tail n2

k2
∑

i>t σ
2
i (AS×T) of a random rectangular matrix, where |S | � |T | � k � O(1/ε2),

approximates the tail of A to error O(εn2). Our argument relies on splitting A into head and tail
pieces A � At +A−t , where At is A projected onto the top-t eigenvectors of A. We demonstrate that
the spectral mass of each is preserved after passing to a random row submatrix, and additionally
demonstrate that σmax(A−t) � σt+1(A) does not grow too much using spectral decay inequalities for
random submatrices [RV07]. This forces the spectrum of (A−t)S×[n] to be well spread out, allowing
us to apply interlacing inequalities to demonstrate that after adding (At)S×[n] back in, the resulting
tail is still sufficiently large, and then iterate the argument when sampling columns to obtain AS×T .

On the other hand, if σt+1(A) is too large, then after moving to a random row submatrix the
spectral norm of A−t can concentrate highly in its top eigenvalues, which can then be absorbed by the
top t eigenvalues of At , stealing too much mass from the tail. Instead, note that if σt+1(A) ≥ 10n/t,
then the Schatten norm of A must be large, namely

∑
i σi(A) > 10n, which cannot occur if A is PSD.

We show that by applying Interior Eigenvalue Matrix Chernoff bounds (mentioned above), we can
preserve this fact, obtaining n

k σt+1(AS×T) > 10n/t with good probability when k � Ω(1/ε2). If this
is the case, then the Schatten norm of the submatrix will be too large: ‖AS×T ‖S1 ≥ t(10k/t) > 10k.
To obtain a certificate from this fact, we move to the larger principal submatrix A(S∪T)×(S∪T), which
we show must still have large Schatten norm, from which we can infer the existence of negative
eigenvalues. Similarly, in the earlier case, we show that the large tail of AS×T implies that the
principal submatrix A(S∪T)×(S∪T) also has too large of a tail, meaning it must not be PSD.

1.4.3 Lower Bounds

As seen above, the distribution of negative mass in the matrix A plays an important role in the
complexity of testing if A is PSD. Specifically, the problem becomes easier the more concentrated
the negative mass is within a few eigenvalues. So in order to avoid a o(1/ε2) upper bound from the
`∞-testing algorithm, our hard instance must have |λmin(A)| � O(εn) in the ε-far case. On the other
hand, we cannot allow the negative mass to be extremely spread out, otherwise we would have to
add many more positive eigenvalues to avoid violating the trace constraint |Tr(A)| � |∑i λi(A)| ≤ n
implied by the boundedness, creating further spectral differences between the instances. With
this in mind, our hard distribution will have 1/ε negative eigenvalues, each roughly equal to
λi(A) � −εn.

The Hard Instance. Our first insight is to construct a discrete instance, with the property that the
distribution induced by observing a small sample of the “meaningful” entries of A is identical in
both cases. Specifically, we construct two distribtuions: DYES andDNO over n × n matrices. In both
cases, A will be block diagonal, with k disjoint blocks B1 , B2 , . . . , Bk ⊂ [n], each of size |Bi | � n/k,
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for some parameter k; we will later set k � Θ(1/ε), so our target lower bound is Ω(k2). In DYES,
each block ABi×Bi will be PSD, whereas inDNO we will have λmin(ABi×Bi ) � −Θ̃(n/k) ≈ −εn. The
partition B1 ∪ B2 ∪ · · · ∪ Bk � [n] is chosen randomly, so that for any fixed set of samples, only a
small fraction them will be contained inside any block ABi×Bi . The diagonal entries will always be
fixed to 1, and all off-diagonal entries are either {0, 1,−1}. The samples a1 , a2 , . . . , as ∈ [n] × [n] of
any algorithm can then be interpreted as a graph H (possibly with self-loops), where for each edge
ar � (i , j) ∈ E(H), the algorithm learns the value Ai , j ∈ {0, 1,−1}.

Now consider the algorithm which just samples a t × t principal submatrix T ⊂ [n], so that H is
a t-clique. Now in expectation �[|T ∩ Bi |] � t

k for each i, however, by a balls and bins argument, as
t approaches k we will obtain some blocks i with |T ∩ Bi | � Ω(log k/log log k). Thus, to fool this
query, we must be able to “fool” cliques of size roughly log k within a block Bi . On the other hand,
an algorithm could find many more entries in a block by lop-sided sampling: for instance, it could
sample k2 entries in a single column of A (H is a k2-star), getting k entries inside a column of a block
ABi×Bi . Thus we must also fool large star queries. It turns out that the right property to consider is
the matching number ν(H) of the query graph H, i.e. the size of a maximum matching. Notice for a
star H, we have ν(H) � 1. We prove (roughly) that if within each block Bi , one can “fool” every
query graph H inside ABi×Bi with matching number ν(H) < `, one would obtain a lower bound of
Ω(k

2(`−1)
` ). Thus, it will suffice to fool all query graphs H within a block Bi with ν(H) ≤ log k.

For a first step towards this, suppose that in DYES, we set each block independently to
ABi×Bi � vv>, where v ∈ {1,−1} |Bi | is a random sign vector, and in DNO, we set ABi×Bi � −vv>

(except we fix the diagonal to be 1 in both cases). Now notice that the distribution of any individual
entry (ABi×Bi )a ,b is symmetric, and identical in bothDYES andDNO. Furthermore, it is not difficult
to check that the distribution of a path or star query H inside of ABi×Bi is also identical in both
cases. On the other hand, if H contained a triangle, then this would not be the case, since inDYES
one could never have a negative cycle (x , y , z) where vx vy � vy vz � vz vx � −1, whereas this could
occur inDNO, since we could have that −vx vy � −vy vz � −vz vx � −1. Thus, roughly, to distinguish
between these distributionsDYES fromDNO, an algorithm must sample a triangle within one of the
blocks ABi×Bi , which one can show requires Ω(k4/3) queries, yielding a first lower bound.8

Boosting to Ω(k2). Given the above example, we would now like to construct instances which
fool H with larger and larger ν(H). In fact, our next insight is to have an even simpler structure on
DYES and DNO: each of them will be a random permutation of one of two fixed matrices D1 ,D2
respectively. We now formalize the “fooling” condition we need. For a matrix B and a query
graph H, let (B)H denote the result of setting all entries of B not in H equal to zero. Then the
matrices D1 ,D2 must have the property that for any graph H with ν(H) ≤ log k, if σ : [m] → [m] is
a random permutation and Pσ ∈ �m×m is the row permutation matrix corresponding to σ, then
the distribution of (PσD1P>σ )H is identical to the distribution (PσD2P>σ )H . We call this property
H-subgraph equivalence. This implies that any algorithm which queries the edges in H inside of
PσD1P>σ or PσD2P>σ will be unable to distinguish between them with any advantage. To obtain a
lower bound, we must also have a gap between λmin(D1) and λmin(D2), so that their spectrum can
be shifted to make one PSD and the other far. Furthermore, neither λmin(D1) or λmin(D2) can be
too negative, otherwise by shifting we would lose boundedness of the entries.

8Note that ν(H) � 1 for a triangle H, so the Ω(k2(`−1)/`) lower bound when ν(H) < ` is actually loose here.
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A priori, it is not even clear that such matrices D1 ,D2 exist, even for fixed values of ν(H), such
as ν(H) � 5. Our main contribution now is to demonstrate their existence for every ν(H). Our
construction is simple, but perhaps surprisingly so. Both D1 ,D2 will be adjacency matrices; in the
PSD case, we set D1 to be the cycle graph C2m+1 on 2m + 1 � Θ(log k) vertices, and in the ε-far case
we set D2 to be the disjoint union of two cycles Cm+1 ⊕ Cm . Since one of m and m + 1 is even, while
2m + 1 is odd, we will have that λmin(Cm+1 ⊕ Cm) � −2, but λmin(C2m+1) > −2.9 To show subgraph
equivalence, it suffices to show a slightly more general version of the following: for any graph H
with ν(H) < m/4, the number of subgraphs of C2m+1 isomorphic to H is the same as the number
of subgraphs of Cm+1 ⊕ Cm isomorphic to H.10 Note that if ν(H) < m/4, then H is just a disjoint
collection of paths.

Our proof of this fact is by a construction of a bĳection from arrangements of H in C2m+1 to H
in Cm+1 ⊕ Cm . While a seemingly simple property, some care must be taken when designing a
bĳection. Our mapping involves first “swapping” two paths (whose length depends on H) in C2m+1,
before “splitting” C2m+1 into two cycles of length m and m + 1. We direct the reader to Section 5.2.1
for further details.

Amplifying the Gap. The subgraph equivalence between C2m+1 and Cm+1 ⊕ Cm prevents any
algorithm from distinguishing between them with a small number of samples, however the gap
in the minimum eigenvalue shrinks at the rate of Θ(1/m2). Meaning, if we set γ � λmin(C2m+1) �
2 − Θ(1/m2), while the matrix γI + C2m+1 is PSD and has constant sized entries, we only have
λmin(γI + Cm+1 ⊕ Cm) � −Θ(1/m2), which is not far enough from PSD. Instead, recall that we only
need m � Ω(log k) to fool all H with ν(H) ≤ log k, but the block size which we must fill is much
larger: ABi×Bi has size |Bi | � n/k. Thus, instead of setting m � Θ(n/k) and filling all of ABi×Bi with
the cycles, we set m � Θ(log k), and we amplify the spectral gap by taking the tensor product of
the small graphs C2m+1 and Cm+1 ⊕ Cm with a large, fixed matrix M, so that (γI + C2m+1) ⊗M has
|Bi | rows and columns. We prove that taking the tensor product with any fixed M preserves the
subgraph equivalence properties of the original matrices. From here, our lower bounds for testing
PSD with `2 gap, Schatten norms, Ky fan, and the cost of the best rank-k approximation, all follow
by a proper choice of M. For PSD testing, we can choose M � 1 to be the all 1’s matrix, and to
amplify the gap in Schatten 1 norm, we can choose M to be a random Rademacher matrix. Since
M � 1 is PSD and ‖M‖2 � Ω̃(n/k), the gap is amplified to the desired −Ω̃(n/k). Finally, we remark
that to obtain a lower bound for another norm, any matrix M which is large in that norm may
be suitable, so long as the original sub-graph equivalent matrices also have a gap in that norm.
We pose it as an interesting open problem to design other pairs of matrices D1 ,D2 with different
spectral gaps which have good sub-graph equivalence properties.

2 Preliminaries

We now introduce the notation and definitions that will be used consistently throughout the
paper. Additional, specialized notation will be introduced as needed in their respective sections.

9To intuitively see why this is true, note that if m is even and v ∈ {−1, 1}m is the vector that assigns opposite signs to
adjacent vertices of Cm , then we have Cm v � −2v. However, if m is odd, this assignment v is no longer possible.

10A more general statement is needed since H can also query for edges which do not exist in C2m+1.
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Specifically, our lower bound construction in Section 5 utilizes several additional pieces of notation,
such as those concerning signed graphs, which are introduced at the beginning of that section.

Singular Values and Eigenvalues. We use boldface A notation to denote matrices. For a n × d
matrix A, let σmax(A) � σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{n ,d}(A) � σmin(A) denote the singular values of
A. If A is rank r, let A � UΣV> be its singular value decomposition, where U ∈ �n×r ,V ∈ �d×r have
orthonormal columns, and Σ ∈ �r×r is a diagonal matrix with the (non-zero) singular values σi on
the diagonal. We use Σk to denote the matrix Σ but with all entries but the k largest singular values
removed and use Σ−k to denote thematrix Σ but with all entries but the n−k smallest singular values
removed. Let Ak � UΣkV> and A−k � UΣ−kV>. The matirx Ak is referred to as the truncated SVD of
A, and is the best rank-k approximation to A: ‖A−Ak ‖2F �

∑
i>k σ

2(A) � minB rank-k ‖A−B‖2F . For the
special case when A ∈ �n×n is symmetric, we use UΛU> to denote the Eigenvalue Decomposition
of A, where λmax(A) � λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) � λmin(A) denote the eigenvalues of A. A
real-symmetric matrix A is said to be Positive Semi-Definite (PSD) if λmin ≥ 0, which is equivalent to
having x>Ax ≥ 0 for all x ∈ �n . We will utilize the Loewner ordering on symmetric matrices.

Definition 2.1 (Loewner Ordering). For symmetric matrices B,D, we write B � D if B −D is PSD.

Notice that if B � D, then by definition x>Bx ≥ x>Dx for all x ∈ �n . Then by an application of the
Courant-Fischer variational principle for eigenvalues, we have that λi(B) ≥ λi(D) for all i ∈ [n].

Matrix Norms and Submatrices. We use the notation ‖A‖2 � σmax(A) to denote the spectral
norm of A, ‖A‖F � (∑i , j A2

i , j)1/2 � (∑n
i�1 σ

2
i (A))1/2 to denote the Frobenius norm of A. For p ≥ 1, we

write ‖A‖Sp � (∑n
i�1 σ

p
i (A))1/p to denote the Schatten p-norm of A, and ‖A‖KF(p ,k) � (

∑k
i�1 σ

p
i (A))1/p

to denote the (p , k)-Ky-Fan norm of A. If p is not specified for a Ky-Fan norm, it is assumed to be
1, namely ‖A‖KF(k) � ‖A‖KF(1,k). For subsets S, T ⊆ [n], we denote the matrix AS×T ∈ �|S |×|T | as
the matrix A restricted to the submatrix of the rows in S and the columns in T. If S � T, then the
square submatrix AS×T � AS×S is called a principal submatrix of A. For a vector x ∈ �n and subset
S ⊂ [n], we write xS ∈ �n to denote the vector obtained after setting equal to zero all coordinates xi

with i < S. Finally, we use the notation Ai ,∗ to denote the i-th row of A, and A∗,i to denote the i-th
column of A.

3 PSD Testing with `∞ Gap

In this section, we introduce our algorithm for the PSD testing problem with `∞-gap. As discussed
earlier, we consider a more general version of the `∞ gap than the definition presented in Problem
1.1, which allows one to test a notion of positive semi-definitness which applies to non-symmetric
matrices as well. Specifically, we define the PSD case as when x>Ax ≥ 0 for all x ∈ �n , and the
far case as when x>Ax < −εn for a unit vector x. We note that if A is symmetric, this definition is
equivalent to Problem 1.1. In fact, as we will see shortly, one can always reduce the non-symmetric
case to the symmetric case, so this distinction will not matter algorithmically. Formally, we solve
the following problem:

Definition 3.1 (General PSD Testing with `∞-Gap.). Fix, ε ∈ (0, 1] and let A ∈ �n×n be any matrix
satisfying ‖A‖∞ ≤ 1. The goal is to distinguish between the following two cases:
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• YES Instance: A satisfies x>Ax ≥ 0, for all x ∈ �n .

• NO Instance: There exists a unit vector x ∈ �n such that x>Ax < −εn.

with probability at least 2/3.

Reducing to the symmetric case In the case where A is symmetric, as in Problem 1.1, the above
gap instance can be restated in terms of the minimum eigenvalue of A. Specifically, we are promised
that either λmin(A) ≥ 0 or λmin(A) ≤ −εn. However, we now observe that one can reduce to
the symmetric case with only a factor of 2 loss in the query complexity, by simply querying the
symmetrization (A + A>)/2. First note, that for any x ∈ �n and any matrix A ∈ �n×n , we have
x>Ax � x>A>x, thus for any x we have x>Ax � x>A+A>

2 x. Thus x>Ax ≥ 0 for all x if and only
if x>A+A>

2 x ≥ 0 for all x, which occurs if and only if the matrix A+A>
2 is PSD. Similarlly, we have

that x>Ax ≤ −εn for some unit vector x if and only if x>A+A>
2 x ≤ −εn for some unit vector x,

which occurs if and only if λmin(A+A>
2 ) ≤ −εn. Note also that the matrix A+A>

2 has bounded entries
‖A+A>

2 ‖∞ ≤ 1 if ‖A‖∞ ≤ 1. Moreover, query access to A+A>
2 can be simulated via query access to

A+A>
2 with a loss of at most a factor of 2 in the query complexity, by symmetrizing the queries. In

fact, our algorithms will not even incur this factor of 2 loss, since all queries our algorithms make
will belong to principal submatrices of A. Thus, in what follows, we can restrict ourselves to the
original formulation as specified in Problem 1.1, and assume our input A is symmetric.

The goal of this section is now to prove the following theorem, which demonstrate the existence
of a Õ(1/ε2) query one-sided error tester for the above problem. In Section 5, we demonstrate that
this complexity is optimal (up to log(1/ε) factors), even for testers with two sided error (Theorem
5.1).

Theorem 3.2 (Query Optimal One-Sided Tester for `∞ Gap (see Theorem 3.25)). There is an algorithm
which, given A with ‖A‖∞ ≤ 1 such that either x>Ax ≥ 0 for all x (YES case), or such that x>Ax ≤ −εn for
some x ∈ �n with ‖x‖2 ≤ 1 (NO case), distinguishes the two cases with probability at least 3/4, while making
at most Õ( 1

ε2 ) queries to the entries of A, and runs in time Õ(1/εω), where ω < 2.373 is the exponent of
matrix multiplication. Moreover, in the first case when x>Ax ≥ 0 for all x, is PSD, the algorithm always
correctly outputs YES.

Algorithmic Setup First recall that if A is PSD, then then every principal submatrix AT×T of
A for T ⊆ [n] is also PSD. Thus, it will suffice to query a collection of principal submatrices
AT1×T1 ,AT2×T2 , . . . ,ATt×Tt of A, and return Not PSD if any one of them fails to be PSD. Such a
algorithm then naturally has one-sided error, since if A is PSD it will always return PSD. Thus, in
the remainder of the section, it suffices to consider only the NO case, and demonstrate that, if A
satisfies x>Ax ≤ −εn for some unit vector x ∈ �n , then with good probability at least one of the
sampled principal submatrices will fail to be PSD.

Moreover, as shown above, it suffices to consider the case where A is symmetric. In this case,
we will fix x to be the eigenvector associated with the smallest eigenvalue of A. Thus, in what
follows, we can fix x so that minz∈�n :‖z‖2�1 z>Az � x>Ax � λmin(A) � −εn. Notice here we define ε
to satisfy the equality λmin(A) � −εn, however our algorithm need only know a lower bound ε0 < ε

on ε. The reason for this is that the input parameter ε0 will only effect the sizes of the random
submatrices being sampled (smaller ε0 increases the size). Thus, an algorithm run with parameter
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ε0 can be simulated by first running the algorithm with parameter ε > ε0, and then randomly
adding rows and columns to the sampled submatrices from the correct marginal distribution. Thus,
there is a coupling such that the submatrices chosen by an algorithm with any input ε0 < ε will
always contain the submatrices sampled by an algorithm given the input exactly ε, so if the latter
algorithm sampled a non-PSD submatrix, so would the former. Thus, for the sake of analysis, we
can assume that the value ε is known.

Throughout the following section, we will assume 1/ε < c ·n for some sufficiently small constant
c. Notice that if this was not the case, we would have 1/ε2 � Ω(n2), and we would be permitted to
read the entire matrix A, as this is within our target budget of Õ(1/ε2).

3.1 Warm-up: a O(1/ε3) algorithm
We first describe a O(1/ε3) query algorithm for the problem of PSD testing with `∞-gap. The
general approach and results of this algorithm will be needed for the more involved Õ(1/ε2) query
algorithm which we shall develop in the sequel. As noted above, it suffices to analyze the NO case,
where we have x>Ax � λmin(A) � −εn for a unit vector x ∈ �n . Our goal will be to analyze the
random variable Z � x>T AT×T xT , where T ⊂ [n] is a random subset, where each i ∈ [n] is selected
independently with some probability δ. Notice that if δi ∈ {0, 1} is an indicator variable indicating
that we sample i ∈ T, then we have Z � x>T AT×T xT �

∑
i , j xiAi , j x jδiδ j .

Now, algorithmically, wedonot know the vector x. However, ifwe candemonstrate concentration
of Z, and show that Z < 0 for our sampled set S, then we can immediately conclude that AT×T is not
PSD, a fact which can be tested. Thus, the analysis will proceed by pretending that we did know x,
and analyzing the concentration of x>T AT×T xT . In the following section, however, we will ultimately
analyze the concentration of this random variable with respects a slightly different vector than x.

We first remark that we can assume, up to a loss in a constant factor in the value of ε, that the
diagonal of A is equal to the identity.

Proposition 3.3. We can assume Ai ,i � 1, for all i ∈ [n]. Specifically, by modifying A so that Ai ,i � 1, for
all i ∈ [n], the completeness (PSD) case is preserved and the soundness (not PSD) case is preserved up to a
factor of 1/2 in the parameter ε.

Proof. Every time we observe an entry Ai ,i we set it equal to 1. In this new matrix, if A was PSD to
begin with, then A will still be PSD, since this modification corresponds to adding a non-negative
diagonal matrix to A. If xAx ≤ −εn originally for some x ∈ �n , then x>Ax ≤ −εn + 1 after this
change, since the diagonal contributes at most

∑
i Ai ,i x2

i ≤ ‖x‖
2
2 ≤ 1 to the overall quadratic form.

Note this additive term of 1 is at most (εn)/2 since we can assume ε � Ω(1/n). �

We now notice that if x is the eigenvector associated with a a large enough eigenvalue, the `2
mass of x cannot be too concentrated.

Proposition 3.4. Let A ∈ �n×n be a symmetric matrix with λmin(A) � −εn, and let x ∈ �n be the (unit)
eigenvector associated with λmin(A). Then we have that ‖x‖∞ ≤ 1

ε
√

n
.

Proof. By Cauchy-Schwartz, for any i ∈ [n]:

|λmin | · |xi | � |〈Ai ,∗ , x〉| ≤ ‖Ai ,∗‖2 ≤
√

n

from which the proposition follows using λmin(A) � −εn. �
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Recall that our goal is to analyze the random variable Z � x>T AT×T xT �
∑

i , j xiAi , j x jδiδ j . To
proceed, we bound the moments of Z. Our bound on these moments can be tightened as a function
of the row and column contributions of the target vector x, which we now define.

Definition 3.5. Fix any y ∈ �n . Then for any i ∈ [n], define the total row and column contributions
of i as Ri(y) �

∑
j∈[n]\i yiAi , j y j and Ci(y) �

∑
j∈[n]\i y jA j,i yi respectively.

Notice from the above definition, we have
∑

i Ri(y) + Ci(y) � 2
(
y>Ay −∑

i Ai ,i y2
i

)
.

Fact 3.6. Let x ∈ �n be the eigenvector associated with λmin(A). Then we have Ri(x) + Ci(x) ≤ 0 for all
i ∈ [n].

Proof. Suppose there was an i with Ri(x) + Ci(x) > 0. Then setting z � x[n]\i we have z>Az �

〈x ,Ax〉 − (Ri(x) + Ci(x)) −Ai ,i(xi)2. Recall from Proposition 3.3 that we can assume Ai ,i � 1 for all
i, thus it follows that z>Az < 〈x ,Ax〉, which contradicts the optimality of x. �

We now bound the expectation of the random quadratic form.

Proposition 3.7 (Expectation Bound). Let A ∈ �n×n be a matrix with ‖A‖∞ ≤ 1, and let y ∈ �n be
any vector with ‖y‖2 ≤ 1 and y>Ay < −εn. Let Z �

∑
i , j yiAi , j y jδiδ j , where δ1 , . . . , δn ∼ Bernoulli( k

n ).
Then if k ≥ 8/ε, we have �[Z] ≤ − εk2

4n .

Proof. Let ci , j � Ai , j yi y j . First note, for any i ∈ [n], the term ci , j is included in T with probability
k/n if i � j, and with probability k2/n2 if i , j. So

�

[
Z
]
�

∑
i, j

k2

n2 ci , j +
∑
i∈[n]

k
n

ci ,i

�
k2

n2
©«〈y ,Ay〉 −

∑
i∈[n]

Ai ,i y2
i
ª®¬ + k

n

∑
i∈[n]

Ai ,i y2
i

≤ −εk2

2n
+

(
k
n
+

k2

n2

) ∑
i∈[n]

y2
i

≤ −εk2

2n
+

2k
n
≤ −εk2

4n

(2)

Where in the last inequality, we assume k ≥ 8/ε. �

Next, we bound the variance of Z. We defer the proof of the following Lemma to Section 3.2.

Lemma 3.8 (Variance Bound). Let δ1 , . . . , δn ∼ Bernoulli( k
n ). Let y ∈ �n be any vector such that

‖y‖2 ≤ 1, ‖y‖∞ ≤ 1
ε
√

n
, and y>Ay � −εn, where A ∈ �n×n satisfies ‖A‖∞ ≤ 1. Further suppose that

Ri(y) + Ci(y) ≤ 0 for each i ∈ [n]. Then, assuming k ≥ 6/ε, we have

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ O
(

k3

n2

)
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Moreover, if the tighter bound ‖y‖∞ ≤ α
ε
√

n
holds for some α ≤ 1, we have

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ O
(

k2

n2 +
αk3

n2

)
We note that the variance of the random quadratic form can be improved if we have tighter

bounds on certain properties of the target vector y. We demonstrate this fact in the following
Corollary, which we will use in Section 3.3. Note that the assumptions of Corollary 3.9 differ in
several minor ways from those of Lemma 3.8. For instance, we do not require k ≥ 6/ε (we note that
this assumption was required only to simply the expression in Lemma 3.8). Also notice that we do
not bound the diagonal terms in Corollary 3.9. We defer the proof of Corollary 3.9 to Section 3.2.

Corollary 3.9 (Tighter Variance Bound). Let δ1 , . . . , δn ∼ Bernoulli( k
n ). Let A ∈ �n×n with ‖A‖∞ ≤ 1

be any matrix and y a vector such that |y>Ay | ≤ c1εn for some value c1 > 0, and such that ‖y‖∞ ≤ α
ε
√

n
for

some α > 0. Let Z ∈ �n be defined by Zi � Ri(y) + Ci(y) for i ∈ [n], and suppose we have ‖Z‖22 ≤ c2εn.
Then we have

Var

∑
i, j

yiAi , j y jδiδ j

 ≤ O

(
k2

n2 +
c2

1k4ε2

n2 +
(c1 + c2)εk3

n2 +
α2k3

n2

)
We now observe that the variance computations from Lemma 3.8 immediately gives rise to a

O(1/ε3) algorithm.

Theorem 3.10. There is a non-adaptive sampling algorithm which queries O(ε−3) entries of A, and
distinguishes the case that A is PSD from the case that λmin(A) < −εn with probability 2/3.

Proof. Let x ∈ �n be the eigenvector associated with λmin(A) � −εn (recall that we can assume
equality), and let Z1 , . . . , Zd be independent repetitions of the above process, with k � 10/ε and
d � 3840/ε. Let Z �

1
d
∑d

i�1 Zi . Then Var
(
Z
)
≤ 6

d
k3

n2 by Lemma 3.8, where we used the bounds on
‖x‖∞ from Proposition 3.4 and the property that Ri(x) + Ci(x) ≤ 0 for all i from Fact 3.6 to satisfies
the assumptions of Lemma 3.8. By Chebysev’s inequality:

Pr
[
Z ≥ −εk2

4n
+
εk2

8n

]
≤

(
64n2

ε2k4

) (
6k3

dn2

)
≤ 1

10εk

≤ 1
100

(3)

It follows that with probability 99/100, the average of the Zi ’s will be negative. Thus at least one of
the Zi’s must be negative, thus the submatrix corresponding to this Zi will not be PSD. The total
query complexity is O(k2d) � O(ε−3).

�

3.2 Variance Bounds

In this section, we provide the proofs of the variance bounds in Lemma 3.8 and Corollary 3.9. For
convenience, we restate the Lemma and Corollary here before the proofs.
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Lemma 3.8 Let δ1 , . . . , δn ∼ Bernoulli( k
n ). Let y ∈ �n be any vector such that ‖y‖2 ≤ 1, ‖y‖∞ ≤ 1

ε
√

n
,

and y>Ay � −εn, where A ∈ �n×n satisfies ‖A‖∞ ≤ 1. Further suppose that Ri(y) + Ci(y) ≤ 0 for each
i ∈ [n]. Then, assuming k ≥ 6/ε, we have

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ O
(

k3

n2

)
Moreover, if the tighter bound ‖y‖∞ ≤ α

ε
√

n
holds for some α ≤ 1, we have

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ O
(

k2

n2 +
αk3

n2

)

Proof. Let ci , j � Ai , j yi y j . We have

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ k
n

∑
i

c2
i ,i +

k2

n2

∑
i, j

c2
i , j +

k2

n2

∑
i, j

ci , j c j,i +
k2

n2

∑
i, j

ci ,i c j, j +
k2

n2

∑
i, j

ci ,i ci , j

+
k2

n2

∑
i, j

ci ,i c j,i +
k3

n3

∑
i, j,u

ci , j cu , j +
k3

n3

∑
j,i,u

ci , j ci ,u +
k3

n3

∑
i, j,u

ci , j c j,u +
k3

n3

∑
j,i,u

ci , j cu ,i

+
2k3

n3

∑
i, j,u

ci ,i c j,u +
k4

n4

∑
i, j,v,u

ci , j cu ,v −
©« k2

n2

∑
i, j

yiAi , j y j −
k
n

∑
i

Ai ,i y2
i
ª®¬

2

(4)

We first consider the last term k4

n4
∑

i, j,v,u ci , j cu ,v �
∑

i, j yiAi , j y j
∑

u,v,i, j yuAu ,v yv . Here
i , j , v , u means all 4 indices are distinct. Note that this term is canceled by a subset of the

terms within
(

k2

n2
∑

i, j yiAi , j y j − k
n
∑

i Ai ,i y2
i

)2
. Similarly, the term k2

n2
∑

i, j ci ,i c j, j cancels. Moreover,

after expanding
(

k2

n2
∑

i, j yiAi , j y j − k
n
∑

i Ai ,i y2
i

)2
, every remaining term which does not cancel with

another term exactly is equal to another term in the variance above, but with an additional one (or
two) factors of k

n attached. Thus, if we can bound the remaining terms in Equation 4 by some value
B, then an overall variance bound of 2 · B will follow.

We now consider T �

(∑
j,i,u ci , j ci ,u +

∑
i, j,u ci , j cu , j +

∑
j,i,u ci , j cu ,i +

∑
i, j,u ci , j c j,u

)
. We

have ∑
i, j,u

ci , j ci ,u �

∑
i

∑
j,i

yiAi , j y j

∑
u,i, j

yiAi ,u yu∑
i, j,u

ci , j cu , j �
∑

j

∑
i, j

yiAi , j y j

∑
u,i, j

yuAu , j y j∑
j,i,u

ci , j cu ,i �
∑

i

∑
j,i

yiAi , j y j

∑
u,i, j

yuAu ,i yi∑
i, j,u

ci , j c j,u �

∑
j

∑
i, j

yiAi , j y j

∑
u,i, j

y jA j,u yu
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Now for simplicity, we write Ri � Ri(y) and Ci � Ci(y) for i ∈ [n]. Then by assumption,
we have Ri + Ci ≤ 0 for each i, thus |∑i(Ri + Ci)| �

∑
i |(Ri + Ci)|. Also note that we have

|∑i(Ri + Ci)| � |2y>Ay − 2
∑

i Ai ,i y2
i | ≤ 4εn. Now observe������©«

∑
i

∑
j,i

yiAi , j y j

∑
u,i, j

yiAi ,u yu
ª®¬ −

∑
i

R2
i

������ � ∑
i

∑
u∈[n]\i

y2
i A2

i ,u y2
u ≤

∑
i

y2
i ≤ 1

And similarly������©«
∑

j

∑
i, j

yiAi , j y j

∑
u,i, j

yuAu , j y j
ª®¬ −

∑
j

C2
i

������ � ∑
j

∑
u∈[n]\ j

y2
uA2

u , j y2
j ≤

∑
j

y2
j ≤ 1

������©«
∑

i

∑
j,i

yiAi , j y j

∑
u,i, j

yuAu ,i yi
ª®¬ −

∑
i

RiCi

������ � ∑
i

∑
u∈[n]\i

y2
i Ai ,uAu ,i y2

u ≤
∑

i

y2
i ≤ 1������©«

∑
j

∑
i, j

yiAi , j y j

∑
u,i, j

y jA j,u yu
ª®¬ −

∑
j

R jCj

������ � ∑
j

∑
u∈[n]\ j

y2
uAu , jA j,u y2

j ≤
∑

j

y2
j ≤ 1

Taking these four equations together, we obtain
��T −∑

i(Ri + Ci)2
�� ≤ 4, so it will suffice to upper

bound the value
∑

i(Ri + Ci)2 instead. First note that since |yi | ≤ 1
ε
√

n
for all i, so for any i ∈ [n] we

have
|(Ri + Ci)| ≤ |

∑
j,i

yiAi , j y j | + |
∑
j,i

y jA j,i yi | ≤
1
ε
√

n
(
∑

j

2y j) ≤
2
ε
√

n
‖y‖1 ≤

2
ε

Combining this bound with the fact that
∑

i |(Ri + Ci)| ≤ 4εn from earlier, it follows that the sum∑
i(Ri +Ci)2 is maximized by setting 2ε2n of the terms (Ri +Ci) equal to the largest possible value of
(2/ε), so that

∑
i(Ri + Ci)2 ≤ 2ε2n(2/ε)2 � O(n). This yields an upper bound of k3

n3T � O( k3

n2 ). Note,
that in general, given the bound ‖y‖∞ ≤ α

ε
√

n
for some value α ≤ 1, then each term |(Ri + Ci)| ≤ 2α

ε .
On the other hand,

∑
i |(Ri + Ci)| ≤ 4εn. Thus, once again,

∑
i |(Ri + Ci)|2 is maximized by setting

Θ(ε2n/α) inner terms equal to Θ(( αε )2), giving T ≤ αn for general α < 1. Thus, for general α ≤ 1,
we have k3

n3T � O( αk3

n2 ).
Next, we bound k2

n2
∑

i, j ci ,i ci , j +
k2

n2
∑

i, j ci ,i c j,i by k2

n2
∑

i y2
i (Ri +Ci). As shown above, |Ri +Ci | ≤

2yi
√

n, thus altogether we have

k2

n2
©«
∑
i, j

ci ,i ci , j +
∑
i, j

ci ,i c j,i
ª®¬ ≤ k2

n2

∑
i

y3
i

√
n (5)

Using that ‖y‖∞ ≤ α
ε
√

n
for α ≤ 1, and the fact that ‖y‖22 ≤ 1, it follows that ‖y‖33 is maximized

by having nε2

α2 terms equal to ‖y‖∞ ≤ α
ε
√

n
, which gives an upper bound of ‖y‖33 ≤

α
ε
√

n
. Thus, we

can bound the right hand side of Equation 5 by k2α
n2ε

, which is O(k3/n2) when α � 1 using that
k � Ω(1/ε).

Now, we bound k3

n3
∑

i, j,u ci ,i c j,u by
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k3

n3

∑
i, j,u

ci ,i c j,u ≤
k3

n3

∑
i

y2
i Ai ,i

∑
j,u,i

y jA j,u yu

≤ k3

n3

∑
i

y2
i Ai ,i

∑
j,u,i

y jA j,u yu

≤ k3

n3

∑
i

y2
i Ai ,i (εn + O(1))

≤ εk3

n2

� O( k
2

n2 )

(6)

Also observe that
∑

i , j c2
i , j ≤

∑
i , j y2

i y2
j � ‖y |42 ≤ 1, so

∑
i, j c2

i , j ≤
∑

i , j c2
i , j ≤ 1, and also∑

i, j ci , j c j,i ≤
∑

i , j y2
i y2

j ≤ 1, which bounds their corresponding terms in the variance by O(k2/n2).
Finally, we must bound the last term k

n
∑

i c2
i ,i �

k
n
∑

i y4
i A2

i ,i ≤
k
n
∑

i y4
i . Note that |yi | ≤ 1/(ε

√
n) for

each i, and ‖y‖2 ≤ 1. Thus
∑

i y4
i is maximized when one has ε2n terms equal to 1/(ε

√
n) , and the

rest set to 0. So
∑

i y4
i ≤ ε2n( 1

ε
√

n
)4 ≤ 1

ε2n . In general, if ‖y‖∞ ≤ α
ε
√

n
, we have

∑
i y4

i ≤
ε2n
α2 ( α

ε
√

n
)4 ≤ α2

ε2n .

Thus we can bound k
n
∑

i c2
i ,i by O( k3α2

n2 )
Altogether, this gives

Var

∑
i , j

yiAi , j y jδiδ j

 ≤ O( k
2

n2 +
αk3

n2 +
αk2

n2ε
+
α2k3

n2 )

� O( k
2

n2 +
αk3

n2 +
α2k3

n2 )

(7)

which is O(k3/n2) in general (where α ≤ 1), where we assume k ≥ 6/ε throughout. �

Corollary 3.9 Let δi ∈ {0, 1} be an indicator random variable with �[δi] � k/n. Let A ∈ �n×n with
‖A‖∞ ≤ 1 be any matrix and y a vector such that |y>Ay | ≤ c1εn for some value c1 > 0, and such that
‖y‖∞ ≤ α

ε
√

n
for some α > 0. Let Z ∈ �n be defined by Zi � Ri(y) + Ci(y) for i ∈ [n], and suppose we

have ‖Z‖22 ≤ c2εn. Then we have

Var

∑
i, j

yiAi , j y jδiδ j

 ≤ O

(
k2

n2 +
c2

1k4ε2

n2 +
(c1 + c2)εk3

n2 +
α2k3

n2

)
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Proof. We proceed as in Lemma 3.8, except that we may remove the terms with ci , j for i � j, yielding

Var

∑
i, j

yiAi , j y jδiδ j

 ≤ k2

n2

∑
i, j

c2
i , j +

k2

n2

∑
i, j

ci , j c j,i +
k3

n3

∑
i, j,u

ci , j cu , j

+
k3

n3

∑
j,i,u

ci , j ci ,u +
k3

n3

∑
i, j,u

ci , j c j,u +
k3

n3

∑
j,i,u

ci , j cu ,i

+
k3

n3

∑
i, j,u

ci ,i c j,u +
k4

n4

∑
i, j,v,u

ci , j cu ,v −
©« k2

n2

∑
i, j

yiAi , j y j
ª®¬

2

(8)

As in Lemma 3.8, we can cancel the term k4

n4
∑

i, j,v,u ci , j cu ,v with a subterm of −
(

k2

n2
∑

i, j yiAi , j y j

)2
,

and bound the remaining contribution of −
(

k2

n2
∑

i, j yiAi , j y j

)2
by individually bounding the other

terms in the sum.
First, we can similarly bound the last term by c2

1ε
2k4/n2 as needed. Now when bounding

T �
©«
∑

j,i,u

ci , j ci ,u +

∑
i, j,u

ci , j cu , j +
∑

j,i,u

ci , j cu ,i +
∑

i, j,u

ci , j c j,u
ª®¬

we first observe that in the proof of Lemma 3.8, we only needed a bound on ‖Z‖22 to give the bound
on T . So by assumption, ‖Z‖22 ≤ c2εn, which gives a total bound of c2k3ε

n2 on k3

n3T .
Also, we bound we bound k3

n3
∑

i, j,u ci ,i c j,u by

k3

n3

∑
i, j,u

ci ,i c j,u ≤
k3

n3

∑
i

y2
i Ai ,i

∑
j,u,i

y jA j,u yu

≤ k3

n3

∑
i

y2
i Ai ,i

∑
j,u,i

y jA j,u yu

≤ k3

n3

∑
i

y2
i Ai ,i (c1εn + O(1))

≤ εc1k3

n2

(9)

which is within our desired upper bound. Finally observe that
∑

i , j c2
i , j ≤

∑
i , j y2

i y2
j � ‖y |

4
2 ≤ 1, so∑

i, j c2
i , j ≤

∑
i , j c2

i , j ≤ 1, and also
∑

i, j ci , j c j,i ≤
∑

i , j y2
i y2

j ≤ 1, which bounds their corresponding
terms in the variance by O(k2/n2), which completes the proof.

�

3.3 Improving the complexity to Õ(1/ε2)
We now demonstrate how to obtain an improved sample complexity of Õ(1/ε2) using different
scales of sub-sampling, as well as a careful “eigenvector switching” argument. As before, we can
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assume that A is symmetric, and x � arg minv∈�n ,‖v‖2≤1 v>Av is the smallest eigenvector of A, so
that that 〈x ,Ax〉 � λmin(A) � −εn. Also recall that our algorithms will not need to explicitly know
the value ε � minv∈�n ,‖v‖2≤1 v>Av/n, only a lower bound on it, since when run on smaller ε our
algorithm only samplers larger submatrices. By Proposition 3.4, we have ‖x‖∞ ≤ 1

ε
√

n
. We now

partition the coordinates of x into level-sets, such that all the coordinates x2
i within a level set have

magnitudes that are close to each other.

Definition 3.11. Given (A, x), where x is as defined above, define the base level set S as S � {i ∈
[n] : |xi |2 ≤ 100

εn }, and let Ta � {i ∈ [n] : 100·2a−1

εn ≤ |xi |2 ≤ 100·2a

εn } for an integer a ≥ 1.

We now break the analysis into two possible cases. In the first case, the coordinates in one of
the sets Ta contributed a substantial fraction of the “negativeness” of the quadratic form x>T Ax, for
some a sufficiently large. Since the sets Ta can become smaller as a increases while still contributing
a large fraction of the negative mass, this case can be understood as the negativeness of x>Ax being
highly concentrated in a small fraction of the matrix, which we must then find to determine that A
is not PSD. In the second case, no such contributing Ta exists, and the negative mass is spread out
more evenly across the terms in the quadratic form x>Ax. If this is the case, we will show that our
variance bounds from the prior section can be made to obtain a proof that a single, large sampled
principal submatrix T ⊂ [n]will satisfies x>T AT×T xT will be negative with non-negigible probability.

Formally, we define the two cases as follows:

Case 1: We have xSAxTa + xTa AxS ≤ − εn
10 log(1/ε) for some a such that 2a ≥ 106ζ3, for some

ζ � Θ(log2(1/ε))with a large enough constant.

Case 2: The above does not hold; namely, we have xSAxTa + xTa AxS > − εn
10 log(1/ε) for every

2a ≥ 106ζ3.

3.3.1 Case 1: Varied Subsampling and Eigenvector Switching

In this section, we analyze the Case 1, which specifies that xSAxTa + xTa AxS ≤ − εn
10 log(1/ε) for some

Ta such that 2a ≥ 106ζ3, where ζ � Θ(log2(1/ε)) is chosen with a sufficiently large constant. Recall
here that x ∈ �n is the (unit) eigenvector associated with λmin(A) � −εn. We now fix this value a
associated with Ta . In order to find a principal submatrix AT×T that is not PSD for some sampled
subset T ⊂ [n], we will need to show that T ∩ Ta intersects in at least one coordinate.

As discussed in Section 1.4.1, we will need to switch our analysis from x to a different vector y,
in order to have y>T AT×T yT < 0 with non-negligible probability conditioned on |T ∩ Ta | ≥ 1. To
construct the appropriate vector y, we will first proceed by proving several propositions which
bound how the quadratic form x>Ax changes as we modify or remove some of the coordinates of x.
For the following propositions, notice that by definition of Tb , using the fact that ‖x‖22 ≤ 1, we have
that |Tb | ≤ εn

1002b−1 for any b ≥ 1, which in particular holds for b � a.

Proposition 3.12. Let A ∈ �n×n satisfy ‖A‖∞ ≤ 1. Let S, T ⊂ [n], and let v ∈ �n be any vector such that
‖v‖2 ≤ 1. Then |v>S AvT | ≤

√
|S | · |T |

24



Proof. We have |v>S AvT | � |
∑

i∈S
∑

j∈T viAi , j v j | ≤
∑

i∈S |vi |
∑

j∈T |v j | ≤
∑

i∈S |vi |‖vT ‖1 ≤ ‖vS‖1‖vT ‖1
≤

√
|S | |T | as needed. �

Proposition 3.13. Let A ∈ �n×m satisfy ‖A‖∞ ≤ 1 for any n ,m. and let v ∈ �n , u ∈ �m satisfy
‖u‖22 , ‖v‖22 ≤ 1. Then

m∑
j�1

(
n∑

i�1
viAi , j u j

)2

≤ n

Proof. We have
(∑n

i�1 viAi , j u j
)2 ≤ u2

j

(∑n
i�1 |vi |

)2 ≤ u2
j ‖v‖

2
1 , so the sum can be bounded by∑m

j�1 u2
j ‖v‖

2
1 � ‖v‖21 ‖u‖22 ≤ ‖v‖21 ≤ n as needed.

�

Proposition 3.14. Let x be as defined above. Then we have |〈xS ,AxS〉| ≤ 10εn.

Proof. Suppose 〈xS ,AxS〉 � Cεn for a value C with |C | > 10. Note that |〈x[n]\S ,Ax[n]\S〉| ≤ εn
100

by Proposition 3.12, using that |[n] \ S | � | ∪b≥1 Tb | ≤ εn
100 (here we use the fact that at most εn

100
coordinates of a unit vector can have squared value larger than 100

εn ). If C > 0, then we must have
that (〈xS ,Ax[n]\S〉 + 〈x[n]\S ,AxS〉) ≤ −(C + 99/100)εn for us to have that 〈x ,Ax〉 � −εn exactly.
Thus if C is positive and larger than 10, it would follow that by setting v � xS/2 + x[n]\S, we would
obtain a vector v with ‖v‖2 ≤ 1 such that v has smaller quadratic form with A than x, namely with
v>Av ≤ −(C + 99/100)εn/2 + εCn/4 + nε/100 < −εn using that C > 10, which contradicts the
optimality of x as the eigenvector for λmin(A). Furthermore, if C < −10, then x>S AxS < −10ε, which
again contradicts the optimality of x.

�

Nowrecall that the total rowand column contributions of i are defined asRi(x) �
∑

j∈[n]\i xiAi , j x j

andCi(x) �
∑

j∈[n]\i x jA j,i xi respectively. In the remainder of the section, we simplywriteRi � Ri(x)
and Ci � Ci(x). We now define the contribution of i within the set S ⊂ [n].

Definition 3.15. Let S ⊂ [n] be as defined above. Then for any i ∈ [n], define the row and column
contributions of i within S as RS

i �
∑

j∈S\i xiAi , j x j and CS
i �

∑
j∈S\i x jA j,i xi respectively.

Observe from the above definition, we have
∑

i∈Ta (RS
i + CS

i ) � (xSAxTa + xTa AxS) ≤ − εn
10 log(1/ε) ,

where the inequality holds by definition of Case 1.

Proposition 3.16. We have
∑

i∈S(RS
i + CS

i )2 ≤ 1601εn.

Proof. Let zS , z , z− ∈ �|S | be vectors defined for i ∈ S as zS
i � RS

i + CS
i , zi � Ri + Ci , and z− � z − zS.

Notice that our goal is to bound ‖zS‖22 , which by triangle inequality satisfies ‖zS‖22 ≤ 2
(
‖z‖22 + ‖z−‖22

)
.

First note that

‖z−‖22 �

∑
i∈S

©«
∑
j<S

xiAi , j x j +
∑
j<S

x jA j,i xi
ª®¬

2

≤ 2
∑
i∈S

©«
∑
j<S

xiAi , j x j
ª®¬

2

+ 2
∑
i∈S

©«
∑
j<S

x jA j,i xi
ª®¬

2 (10)
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Using that [n] \ S < εn/100, we have by Proposition 3.13 that
∑

i∈S

(∑
j<S xiAi , j x j

)2
≤ εn/100, so

‖z−‖22 ≤ εn/25.
We now bound ‖z‖1 �

∑
i∈S |Ri +Ci |. By Fact 3.6, we haveRi +Ci ≤ 0 for all i ∈ [n], whichmeans

that ‖z‖1 ≤
∑

i∈[n] |Ri + Ci | � |2〈x ,Ax〉 − 2
∑

i∈[n]Ai ,i(xi)2 | ≤ 2εn. Next, we bound ‖z‖∞. Notice
that |Ri + Ci | � 2|xi 〈Ai ,∗ , x〉 − Ai ,i(xi)2 | ≤ 2εn(xi)2 + 2Ai ,i(xi)2 < 4εn(xi)2, using that Ax � −εnx,
since x is an eigenvector of A. Since for i ∈ S, it also follows that (xi)2 ≤ 100

εn , thus ‖z‖∞ ≤ 400 as
needed. It follows that ‖z‖22 is maximized by having 2εn/400 coordinates equal to 400, giving
‖z‖22 ≤ 2εn/400(400)2 � 800εn. It follows then that ‖zS‖22 ≤ 1601εn as needed. �

Eigenvector Setup: We now define the “target” direction y ∈ �n which we will use in our
analysis for Case 1. First, we will need the following definitions. Let

Dp
a �

{
t ∈ Ta : − 2p+12a

log(1/ε) ≤ R
S
t + CS

t ≤ −
2p2a

log(1/ε)

}
Define the fill β of Ta as the value such that β � 2−p where p ≥ 1 is the smallest value of p such
that −|Dp

a |( 2p2a

log(1/ε) ) ≤ −
εn

40 log2(1/ε) . Note that at least one such p for 1 ≤ p ≤ log(1/ε)must exist. let

T∗a � Dp
a where β � 2−p . Observe that xSAxT∗a + xT∗a AxS ≤ − εn

40 log2(1/ε) . Finally, we define our target
“eigenvector” y as

y � xS + ζβ
(
2−a · xTa

)
(11)

where ζ � Θ(log2(1/ε)) is as above, and we also define our target submatrix subsampling size as
λ �

2000β2ζ2 log(1/ε)
2aε . First, we prove that for a random submatrix AT×T , where i ∈ [n] is sampled and

added to T with probability λ/n, we have that y>AT×T y is negative in expectation conditioned on
|T ∩ T∗a | ≥ 1.

Lemma 3.17. Suppose we are in case 1 with Ta contributing such that 2a ≥ 106ζ3. Let δi be an indicator
variable that we sample coordinate i, with �[δi] � λ

n and λ �
2000β2ζ2 log(1/ε)

2aε . Then if y � xS + ζβ(2−a xTa )
where ζ ≥ 100 log2(1/ε), and if t ∈ T∗a , then

�


∑

i , j∈S∪{t}
yiAi , j y jδiδ j

�� δt � 1
 ≤ −50ζλ

n

Proof. First observe �[∑i∈S y2
i Ai ,iδi] ≤ λ

n ‖x‖22 ≤
λ
n since x is a unit vector. Note that yS � xS by

construction, so we can use Proposition 3.14 to bound |〈yS ,AyS〉| by 10εn, which gives

�


∑

i , j∈S∪{t}
yiAi , j y jδiδ j

�� δt � 1
 ≤ λ

2

n2

(
〈yS ,AyS〉 −

∑
i∈S

y2
i Ai ,iδi

)
+
λ
n
+
λ
n

∑
i∈S

(At ,i + Ai ,t)yi yt + y2
t

≤ 20λ2ε
n

+
λ
n

(
1 +

ζβ

2a

(
RS

t + CS
t

))
+ (
ζβ

2a )
2(1002a

εn
)

≤ 20λ2ε
n

+
λ
n

(
1 +

ζβ

2a

(
RS

t + CS
t

))
+

100ζ2β2

2aεn
(12)
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Now by definition of i ∈ T∗a , we have
(
RS

t + CS
t
)
≤ − 2a

β log(1/ε) . Thus

�


∑

i , j∈S∪{t}
yiAi , j y jδiδ j

�� δt � 1
 ≤ 20λ2ε

n
+
λ
n

(
1 − ζ

log(1/ε)

)
+

100ζ2β2

2aεn
(13)

Setting ζ > 100 log2(1/ε), we first note that λn
(
1 − ζ

log(1/ε)

)
≤ − 99λζ

100n log(1/ε) . Since

λ �
2000β2ζ2 log(1/ε)

2aε
≤

2000β2

26ζε
≤ 1
ζε

it follows that 20λ2ε
n ≤ 20λ

nζ ≤ 20λ
n < λζ

5 log(1/ε)n . Thus 10λ2ε
n − 99λζ

100n log(1/ε) ≤ −
3λζ

4n log(1/ε) . So we can
simply and write

�


∑

i , j∈S∪{t}
yiAi , j y jδiδ j

�� δt � 1
 ≤ − 3λζ

4n log(1/ε) +
100ζ2β2

2aεn

� −
1500β2ζ3

2aεn
+

100ζ2β2

2aεn

≤ −
1400β2ζ3

2aεn

≤ −50ζλ
n

(14)

as desired. �

Lemma 3.18. Let δi be an indicator variable with �[δi] � λ/n. Then

Pr

������∑i , j∈S

yiAi , j y jδiδ j −�
[ ∑

i , j∈S

yiAi , j y jδiδ j

] ������ ≥ C
λ
n

 ≤ 49
50

Where C > 0 is some constant.

Proof. We can apply Corollary 3.9, where we can set the values of c1 , c2 to be bounded by constants
by the results of Proposition 3.14 and 3.16, and by definition of the set S we can set α ≤

√
ε for the α

in Corollary 3.9, and using that λ ≤ O(1/ε), we obtain:

Var

∑

i, j∈S

yiAi , j y jδiδ j

 ≤ Cλ2

n2

for some constant C. Now note that �[∑i, j∈S yiAi , j y jδiδ j] ≤ 30λ2ε
n ≤ O(λn ), thus by Chebyshev’s,

with probability 99/100, we have |∑i, j∈S yiAi , j y jδiδ j | ≤ O(λn ). Moreover, note that
∑

i Ai ,i y2
i δi can

be assumed to be a positive random variable using that Ai ,i � 1, and note the expectation of this
variable is λn , and is at most 100λ/n with probability 99/100. Thus |∑i∈S y2

i Ai ,iδi−�[
∑

i∈S y2
i Ai ,i]| ≤

100λ/n. By a union bound, we have:

Pr

������∑i , j∈S

yiAi , j y jδiδ j

������ ≥ C
λ
n

 ≤ 49
50

Where C � 150. �
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Lemma 3.19. Fix any t ∈ T∗a . Then

Pr

[�����∑
i∈S

yt(yiAi ,t + At ,i yi)δi −�[
∑
i∈S

yt(yiAi ,t + At ,i yi)δi]
����� ≥ 10λ

n

]
≤ 1

100

Proof. By independence of the δi’s

Var
(∑

i∈S

(yiAi ,t yt + ytAt ,i yi)δi

)
≤ λ

n

∑
i

(yiAi ,t yt + ytAt ,i yi)2

≤ λ
n

∑
i

2y2
t y2

i

≤ 2λ
n
(ζβ2−a)2 1002a

εn

≤ 2λ
n

(
100ζ2β2

2aεn

)
≤ 2λ2

5n2

(15)

Now since �[∑i∈S(yiAi ,t yt + ytAt ,i yi)δi] ≤ −λn
ζ

log(1/ε) ≤ −
100λ

n , the desired result follows by
Chebyshev’s inequality. �

Lemma 3.20. Fix any t ∈ T∗a . Then

Pr
[ ∑

i , j∈S∪{t}
yiAi , j y jδiδ j ≤

−25ζλ
n

�� δt � 1
]
≥ 24/25

Proof. Conditioned on δt � 1, we have������


∑
i , j∈S∪{t}

yiAi , j y jδiδ j

 −�
[ ∑

i , j∈S∪{t}
yiAi , j y jδiδ j

�� δt � 1|
] ������

≤
�����∑

i∈S

yt(yiAi ,t + At ,i yi)δi −�[
∑
i∈S

yt(yiAi ,t + At ,i yi)δi]
�����

+

������∑i , j∈S

yiAi , j y jδiδ j −�
[ ∑

i , j∈S

yiAi , j y jδiδ j

] ������
≤ C

λ
n

(16)

for some constant C ≤ 200, where the last fact follows from Lemmas 3.18 and 3.19 with probability
24/25. Since �

[ ∑
i , j∈S∪{t} yiAi , j y jδiδ j

�� δt � 1|
]
≤ − 50ζλ

n by Lemma 3.17, by scaling ζ by a
sufficiently large constant, the result follows. �

Theorem 3.21. Suppose we are in case 1 with Ta contributing such that 2a ≥ 106ζ3. Then there is an
algorithm that queries at most O( log7(1/ε)

ε2 ) entries of A, and finds a principal submatrix of A which is not
PSD with probability at least 9/10 in the NO case. The algorithm always returns YES on a YES instance.
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Proof. By the above, we just need to sample a expected size O(λ2) submatrix from the conditional
distribution of having sampled at least one entry from T∗a . Since |T∗a | ≥ β/10 εn

2a log(1/ε) , and since

λ � Θ( β
2ζ2 log(1/ε)

2aε ), we see that this requires a total of k samples of expected size O(λ2) , where

k � (n/|T∗a |)/λ ≤ (
2a10 log(1/ε)

βε
)( 2aε

β2ζ2 log(1/ε) )

≤ 10 22a

β3ζ2

(17)

Thus the total complexity is O(kλ2), and we have

kλ2 ≤ 10 22a

β3ζ2 (
β4ζ4 log2(1/ε)

22aε2 )

≤ 10
βζ2 log2(1/ε)

ε2

� O(
ζ2 log2(1/ε)

ε2 )

(18)

we use the fact that we can set ζ � O(log2(1/ε)). Finally, note that we do not know β or 2a , but we
can guess the value of λ in powers of 2, which is at most O( ζ2

ε2 ), and then set k to be the value such
that kλ2 is within the above allowance. This blows up the complexity by a log(1/ε) factor to do the
guessing.

�

3.3.2 Case 2: Spread Negative Mass and Main Theorem

In the prior section, we saw that if the quadratic form xTAx satisfies the condition for being
in Case 1, we could obtain a Õ(1/ε2) query algorithm for finding a principal submatrix AT×T

such that y>AT×T y < 0 for some vector y. Now recall that S � {i ∈ [n] : |xi |2 ≤ 1
εn }, and let

Ta � {i ∈ [n] : 1002a−1

εn ≤ |xi |2 ≤ 1002a

εn } for a ≥ 1. Recall that the definition of Case 1 was that
x>S AxTa + x>Ta

AxS ≤ −εn/(10 log(1/ε)) for some 2a ≥ 106ζ3. In this section, we demonstrate that if
this condition does not hold, then we will also obtain a Õ(1/ε2) query algorithm for the problem.

Thus, suppose now that we are in Case 2; namely that xSAxTa + xTa AxS > −εn/(10 log(1/ε)) for
all 2a ≥ 106ζ3. Now let T+ � ∪2a>106ζ3Ta and let T− � ∪2a≤106ζ3Ta . Let S∗ � S ∪T−. We now observe
an important fact, which sates that if we are not in Case 1, then xS∗AxS∗ contributes a substantial
fraction of the negativeness in the quadratic form.

Fact 3.22. Suppose we are in Case 2: meaning that x>S AxTa + xTa AxS > −εn/(10 log(1/ε)) for all
2a ≥ 106ζ3. Then we have x>S∗AxS∗ ≤ −εn/2.

Proof. Notice that this implies that x>S AxT+ + xT+AxS ≥ −εn/10, since there are at most log(1/ε)
level sets included in T+ by Proposition 3.4. Note since the contribution of |x>T+AxT+ | ≤ −εn10−6/ζ3

and |xT−AxT+ + xT+AxT− | ≤
√
|T− | |T+ | ≤ εn/100 by Proposition 3.12. Thus if x>Ax ≤ −εn to begin
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with, it follows that we must have

x>S∗AxS∗ ≤ x>Ax −
(
(x>S AxT+ + xT+AxS) − (x>T+AxT+) − (xT−AxT+ + xT+AxT−)

)
≤ −εn + εn/10 + +εn10−6/ζ3εn/100
< −εn/2

(19)

�

We now proceed by analyzing the result of sampling a principal submatrix from the quadratic
form x>S∗AxS∗ , which by the prior fact is already sufficently negative. Specifically, wewill demonstrate
that the variance of the standard estimator from Lemma 3.8, and specifically Corollary 3.9, is already
sufficiently small to allow for a single randomly chosen O(1/ε) × O(1/ε) principal submatrix of
A to have negative quadratic form with xS∗ with good probability. In order to place a bound on
the variance of this estimator and apply Corollary 3.9, we will need to bound the row and column
contributions of the quadratic form x>S∗AS∗×S∗xS∗ , which we now formally define.

Definition 3.23. For i ∈ [n], define the row and column contributions of i within S∗ as R∗i �∑
j∈S∗\i xiAi , j x j and C∗i �

∑
j∈S∗\i x jA j,i xi respectively.

Recall that the total row and column contributions of i are defined via Ri �
∑

j∈[n]\i xiAi , j x j and
Ci �

∑
j∈[n]\i x jA j,i xi respectively, and recall that we have Ri + Ci ≤ 0 for all i ∈ [n] by Fact 3.6

Proposition 3.24. We have
∑

i∈S∗(R∗i + C
∗
i )2 ≤ 109 · ζ3εn.

Proof. The proof proceeds similarly to Proposition 3.16. Let z∗ , z , z− ∈ �|S∗ | be defined for i ∈ S∗ via
z∗i � R

∗
i + C

∗
i , zi � Ri + Ri , and z− � z − z. Notice that our goal is to bound ‖z∗‖22 , which by triangle

inequality satisfies ‖z∗‖22 ≤ 2
(
‖z‖22 + ‖z−‖22

)
. First note that

‖z−‖22 �

∑
i∈S∗

©«
∑
j<S∗

xiAi , j x j +
∑
j<S∗

x jA j,i xi
ª®¬

2

≤ 2
∑
i∈S∗

©«
∑
j<S∗

xiAi , j x j
ª®¬

2

+ 2
∑
i∈S∗

©«
∑
j<S∗

x jA j,i xi
ª®¬

2 (20)

Using that |[n] \ S∗ | < εn/100, we have by Proposition 3.13 that
∑

i∈S∗

(∑
j<S xiAi , j x j

)2
≤ εn/100, so

‖z−‖22 ≤ εn/25.
We now bound ‖z‖1 �

∑
i∈S |Ri + Ri |. Recall that we have Ri + Ri ≤ 0 for all i ∈ [n], which

means that ‖z‖1 ≤
∑

i∈[n] |Ri + Ri | � |2〈x ,Ax〉 − 2
∑

i∈[n]Ai ,i(xi)2 | ≤ 2εn. Next, we bound ‖z‖∞.
Notice that |Ri + Ri | � 2|xiAi ,∗x | � 2εn(xi)2 − 2Ai ,i(xi)2 < 4εn(xi)2, using that Ax � −εnx, since x
is an eigenvectror of A. Since i ∈ S∗, by definition we have (xi)2 ≤ 100·106·ζ3

εn , thus ‖z‖∞ ≤ 100 · 106 · ζ3.
It follows that ‖z‖22 is maximized by having 2εn/(108 · ζ3) coordinates equal to 108 · ζ3, giving
‖z‖22 ≤ 2εn/(108 · ζ3)(108 · ζ3)2 � 2 · 108 · ζ3εn. It follows then that ‖z‖22 ≤ ·109 · ζ3εn as needed. �

Theorem 3.25. There is an algorithm which, given A with ‖A‖∞ ≤ 1 such that either x>Ax ≥ 0 for all
x ∈ �n (YES Case), or x>Ax ≤ −εn for some x ∈ �n with ‖x‖2 ≤ 1 (NO Case), distinguishes the two cases
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with probability 3/4 using at most Õ( 1
ε2 ) queries, and running in time Õ(1/εω), where ω < 2.373 is the

exponent of fast matrix multiplication. Moreover, in the YES case the, the algorithm always outputs YES (with
probability 1), and in the NO case, the algorithm returns a certificate in the form of a principal submatrix
which is not PSD.

Proof. By Theorem 3.21 which handles Case 1, we can restrict ourselves to Case 2. Using Fact 3.22
as well as Proposition 3.24, can apply Corollary 3.9 with the vector y � xS∗ , setting c1 � Θ(1) and
c2 � Θ(ζ3), and α � O(

√
εζ3) � O(

√
ε log6(1/ε)), to obtain that

Var[
∑
i, j

yiAi , j y jδiδ j] ≤ O(log12(1/ε) k
2

n2 )

where k � Θ̃(1/ε). Since by Proposition 3.7 and Fact 3.22 , we have �[∑i, j yiAi , j y jδiδ j] ≤
k2

4n2 〈xS∗ ,AxS∗〉 ≤ − εk2

8n , it follows that by repeating the sampling procedure O(log12(1/ε)), by
Chebyshev’s we will have that at least one sample satisfies

∑
i, j yiAi , j y jδiδ j ≤ − εk2

4n with probability
99/100.

Now note that this random variable does not take into account the diagonal. Thus, it will
suffice to bound the contribution of the random variable

∑
i∈[n] δiAi ,i(yi)2 Õ((1/ε)/n). First

observe that �[∑i∈[n] δiAi ,i(yi)2] � k
n . The proof proceeds by a simple bucketing argument; let

Λi � {i ∈ S∗ | 2i

n ≤ (yi)2 ≤ 2i+1

n }, and for a single k × k sampled submatrix, let T ⊂ [n] be the rows
and columns that are sample. Note that �[|T ∩Λi |] ≤ k2−i , since |Λi | ≤ 2−i . Note also that |Λi | � 0
for every i such that 2i ≥ 1008ζ3

ε by definition of S∗ and the fact that y is zero outisde of S∗. Then by
Chernoff bounds we have that with probability Pr[|T ∩Λi | > log(1/ε)max{k2−i , 1}] ≤ 1 − ε10

C for
some constant C for our choosing. We can then union bound over all O(log(1/ε)) sets Λi , to obtain∑

i∈[n]
δiAi ,i(yi)2 ≤

∑
i:2i≤ 1008ζ3

ε

2i+1

n
|T ∩Λi | ≤

∑
i:2i≤ 1008ζ3

ε

2
n

log(1/ε)max{k , 2i}

with probability at least 1 − ε9

C . Setting k � Θ(log6(1/ε)/ε), we have that
∑

i∈[n] δiAi ,i(yi)2 ≤∑
i:2i≤ 1008ζ3

ε

(2/n) log(1/ε)k � O(log2(1/ε)k/n) . Thus we can condition on
∑

i∈[n] δiAi ,i(yi)2 �

O(log2(1/ε)k/n) for all Õ(1) repetitions of sampling a submatrix. Since at least one sampled
submatrix satisfied

∑
i, j yiAi , j y jδiδ j ≤ − εk2

4n , and since k � Θ(log6(1/ε)/ε), this demonstrates that
at least one sampled submatrix will satisfy

∑
i , j yiAi , j y jδiδ j < − εk2

8n as needed in the NO instance.

The resulting query complexity is then O(log2(1/ε)k2) � O( log24(1/ε)
ε2 ) � Õ( 1

ε2 ) as desired. Finally,
for runtime, notice that the main computation is computing the eigenvalues of a k × k principal
submatirx, for k � Õ(1/ε), which can be carried out in time Õ(1/εω) [DDHK07, BVKS19]. �

4 PSD Testing with `2
2 Gap

Let A ∈ �n×n be a symmetric matrix with eigenvalues λmax � λ1 ≥ λ2 ≥ · · · ≥ λn � λmin. In this
section, we consider the problem of testing positive semi-definiteness with an `2

2 gap. Formally, the
problem statement is as follows.
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Definition 4.1 (PSD Testing with `2
2-Gap.). Fix, ε ∈ (0, 1] and let A ∈ �n×n be a symmetric matrix

satisfying ‖A‖∞ ≤ 1, with the promise that either

• YES Instance: A is PSD.

• NO Instance: A is ε-far from PSD in `2
2, meaning that minB�0 ‖A − B‖2F �

∑
i:λi<0 λ

2
i � εn2.

The PSD Testing problem with `2
2-gap is to design an algorithm which distinguish these two cases

with probability at least 2/3, using the minimum number of queries possible to the entires of A.

Our algorithm for this problem will query a principal submatrix AS×S and return PSD if AS×S is
PSD, otherwise it will return not PSD. Since all principal submatrices of PSD matrices are PSD,
we only need show that if A is ε-far from PSD, then we can find a non-PSD principal submatrix
with small size. Note again that this implies that our algorithm will be one-sided. Thus, in the
following, we can focus on the case where A is ε-far from PSD.We begin by stating two fundamental
observations, which, along with an application of our algorithm from Section 3, will allow us to
reduce the problem of PSD testing with `2 gap to the problem of testing certain functions of the
singular values of A.

Proposition 4.2 (PSD matrices are top heavy). Fix any n ∈ �, 1 ≤ k ≤ n, and D ∈ �n×n . Then if D is
PSD, we have ∑

i>k

σi(D)2 ≤
1
k
(Tr(D))2

In particular, if D has bounded entries ‖D‖∞ ≤ 1, we have
∑

i>k σi(D)2 ≤ 1
k n2.

Proof. We first show that σk(D) ≤ k−1Tr(D). To see this, suppose σk(D) > k−1Tr(D). Then
because D is PSD, we would have

∑
i σi �

∑
i λi � Tr(A) > k · k−1Tr(D), a contradiction. Thus,

σi(D) ≤ k−1Tr(D) for all i ≥ k. Using this and the bound
∑

i>k σi(D) ≤ Tr(D), it follows that
the quantity

∑
i>k σi(D)2 is maximimized by having k singular values equal to Tr(D)/k, yielding∑

i>t σi(D)2 ≤ k · (Tr(D)/k)2 � k−1(Tr(D))2 as needed. �

Proposition 4.3. Let D ∈ �n×n be a symmetric matrix such that ‖D‖∞ ≤ 1, and let σ1 ≥ σ2 ≥ · · · ≥ σn

be its singular values. Suppose D is at least ε-far in L2 from PSD, so that
∑

i:λi(D)<0 λ
2
i (D) ≥ εn2, and

suppose further that mini λi(D) > − 1
2k n for any k ≥ 2

ε . Then we have∑
i>k

σ2
i (D) >

ε
2

n2

Proof. Let W ⊆ [n] be the set of values i ∈ [n] such that λi < 0. Let W′ ⊆ [n] be the set of
values i ∈ [n] such that σi < 1

2k n. By assumption:
∑

i∈W′ σ
2
i ≥

∑
i∈W λ2

i ≥ εn2. Now
∑

i∈W′ σ
2
i �∑

i∈W′,i≤k σ
2
i +

∑
i∈W′,i>k σ

2
i , so the fact that |σi | ≤ (1/2k)n for every i ∈ W′, we have that

∑
i∈W′,i≤k σ

2
i ≤

k(n/(2k))2 � n2/4k < εn2/2. Thus we must have
∑

i∈W,i>t σ
2
i > εn2/2, giving∑

i>k

σ2
i ≥

∑
i∈W′,i>k

σ2
i

> εn2/2
(21)

as required. �
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4.1 Analysis of the Algorithm

Our analysis will require several tools, beginning with the following interlacing lemma.

Lemma 4.4 (Dual Lidskii Inequality, [Tao11] Chapter 1.3). Let M1 ,M2 be t × t symmetric Matrices,
and fix 1 ≤ i1 < i2 < · · · < ik ≤ n. Then we have

k∑
j�1

λi j (M1 + M2) ≥
k∑

j�1
λi j (M1) +

k∑
j�1

λn− j+1(M2)

We will also need the following result of Rudelson and Vershynin [RV07] on the decay of spectral
norms of random submatrices.

Proposition 4.5 ([RV07]). Let A ∈ �n×m be a rank r matrix with maximum Euclidean row norm bounded
by M, in other words maxi |(AA>)i ,i | ≤ M. Let Q ⊂ [n] be a random subset of rows of A with expected
cardinality q. Then there is a fixed constant κ ≥ 1 such that

�[‖AQ×[m]‖2] ≤ κ(
√
δ‖A‖2 +

√
log qM)

Finally, we will need a generalized Matrix Chernoff bound for the interior eigenvalues of sums of
random matrices, which was derived by Gittens and Tropp [GT11].

Theorem 4.6 (Interior Eigenvalue Matrix Chernoff, Theorem 4.1 of [GT11]). Consider a finite sequence
{X j} of independent, random, positive-semidefinite matrices with dimension m, and assume that ‖X j ‖2 ≤ L
for some value L almost surely. Given an integer k ≤ n, define

µk � λk
©«
∑

j

�[X j]
ª®¬

then we have the tail inequalities
Pr

[
λk(

∑
j X j) ≥ (1 + δ)µk

]
≤ (n − k + 1) ·

[
eδ

(1+δ)1+δ

]µk/L
for δ > 0

Pr
[
λk(

∑
j X j) ≤ (1 − δ)µk

]
≤ k ·

[
e−δ

(1−δ)1−δ

]µk/L
for δ ∈ [0, 1)

(22)

The Algorithm. Our first step is to run the `∞-gap algorithm of Section 3 with ε0 �
2
k , where

we set k �
2·4002κ4

ε , where κ ≥ 1 is the constant in Proposition 4.5. This allows us to assume that
λi ≥ −ε0n/1000 ≥ − 1

2k n for all i, otherwise we have a Õ(1/ε2)-query algorithm from the Section
3, and since our target complexity is Õ(1/ε4), we can safely disregard the cost of running this
algorithm in parallel. We begin by demonstrating that the Frobenius norm of SA is preserved (up
to scaling), where S is a random row sampling matrix with sufficiently many rows.
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Proposition 4.7. Let M ∈ �m×m . Fix t ≥ 1 and let S be a row sampling matrix which samples each row of
M with probability p �

t
m , and let S ∈ �t0×m be a row sampling matrix drawn from this distribution, where

�[t0] � t. Then we have
�[1

p
Tr(SMS>)] �

∑
i

λi(M) � Tr(M)

and
Var

(
1
p
Tr(SMS>)

)
≤ m

t

∑
i

M2
i ,i

Proof. For i ∈ [m], let δi ∈ {0, 1} indicate that we sample row i. We have �[Tr(SMS>)] �
1
p�[

∑n
i�1 δiMi ,i] � Tr(M). Moreover,

Var
(
1
p
Tr(SMS>)

)
≤ 1

p2

n∑
i�1

δiMi ,i − (Tr(M))2

≤
∑
i, j

Mi ,iM j, j +
1
p

∑
i

M2
i ,i − (Tr(M))

2

≤ 1
p

∑
i

M2
i ,i

(23)

as stated. �

We now fix t � Θ(log(1/ε)/ε2), and draw row independent sampling matrices S,T with an
expected t rows. Let S, T ⊂ [n] be the rows and columns sampled by S,T> respectively. We then
compute Z � SAT> with an expected O(t2) queries. Finally, we query the principal submatrix
A(S∪T)×(S∪T), and test whether A(S∪T)×(S∪T) is PSD. Clearly if A is PSD, so is A(S∪T)×(S∪T), so it suffices
to anaylzie the NO case, which we do in the remainder.

Lemma 4.8. Let A ∈ �n×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then let Z � SAT> be samples as described
above, so that Z has an expected t � Θ(log(1/ε)/ε2) rows and columns, where t is scaled by a larger
enough constant, and let k �

2·4002κ4

ε , where κ ≥ 1 is the constant in Proposition 4.5. Suppose further that
σk+1(A) ≤ 10n/k. Then with probability 19/20, we have

n2

t2

∑
i>k

σ2
i (Z) > εn2/16

Proof. Now write A � UΛV>, Ak � UΛkV> ,A−k � UΛ−kV>. Then A � Ak + A−k , and the rows of
Ak are orthogonal to the rows of A−k . Note that this implies that ‖Ai ,∗‖22 � ‖(Ak)i ,∗‖22 + ‖(A−k)i ,∗‖22
for each i ∈ [n] by the Pythagorean theorem, and since ‖A‖∞ ≤ 1 we have ‖(A−k)i ,∗‖22 ≤ n.

Now setM1 � SAkA>k S>, andM2 � SA−kA>−kS>. Notice thatM1+M2 � S(AkA>k +A−kA>−k)S
> �

SAA>S>, using the fact that the rows and columns of Ak are orthogonal to the rows and columns
(respectively) ofA−k . Let p �

t
n be the rowsamplingprobability. Nowsuppose ‖(A−k)‖2F � αn2. Note

that we have shown that α > ε/2. By Proposition 4.7, we have �[Tr(M2)/p] �
∑

i>k � αn2 > εn2/2
for some α ≥ ε/2, where the last inequality follows from Proposition 4.3. Moreover, we have
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Var
(
1
p
Tr(M2)

)
≤ 1

p

∑
i

(M2)2i ,i

�
1
p

∑
i

‖(A−k)i ,∗‖42
(24)

It follows that since each row satisfies ‖(A−k)i ,∗‖22 ≤ n and ‖(A−k)‖2F � αn2., the quantity∑
i ‖(A−k)i ,∗‖42 is maximized having αn rows with squared norm equal to n. This yields

Var
(
1
p
Tr(M2)

)
≤ 1

p

∑
i

2αn · n2

≤ 2αn4

t

≤ α2

1002 n4

(25)

Where in the last line, we used that t > 4·1002

ε0
≥ 2·1002

α . Then by Chebyshev’s inequality, with
probability 99/100, we have 1

pTr(M2) > αn2 − (α/10)n2 � (9/10)αn2 ≥ (9/20)εn2. Call this
event E1, and condition on it now. Next, by Proposition 4.5, since σk+1(A) ≤ 10n/k we have
�[‖SA−k ‖2] ≤ κ(10

√
tn/k +

√
2 log(1/ε)

√
n) < 20κ

√
tn/k. Then by Markovs, we have ‖SA−k ‖22 �

‖M2‖2 ≤ 2002κ2tn/k2 with probability 99/100, which we condition on now, and call this event E2.
Then by the Dual Lidskii inequality 4.4, we have

1
p

∑
j>k

λ j(M1 + M2) ≥
1
p

©«
∑
j>k

λ j(M2)
ª®¬

≥ 1
p
(Tr(M2) − k‖M2‖2)

≥ (9/20)εn2 − 2002κ2n2/k
≥ εn2/4

(26)

using that k > 2·4002κ4

ε . Now let W �
1√
p (SA)>, and note that we took the transpose, so W has n rows

and t1 columns, where�[t1] � t. Now by Chernoff bounds, with probability 99/100 we have t2 ≤ 2t;
call this event E3 and condition on it now. The above demonstrates that 1

p
∑

j>k λ j(M1 + M2) �∑
j>k λ

2
j (W) ≤ εn2/4. Now note that σk+1(W) � 1√

p (σk+1(SAk + SA−k) < 1√
p ‖SA−k ‖2 ≤ 200κn/k,

where we used the Weyl inequality for singular values: namely that for any two matrices A,B and
value i, |σi(A + B) − σi(A)| ≤ ‖B‖2, and using that SAk is rank at most k, so σk+1(SAk) � 0.

Now draw a random row sampling matrix T with an expected t rows, and write N1 � TWkW>k T
and N2 � TW−kW>−kT, and note again that N1 + N2 � TWW>T. Moreover, the rows of Wk live in a
subspace orthogonal to the rows of W−k , so again by the Pythagorean theorem and boundedness of
the entries in A, we have ‖(W−k)i ,∗‖22 ≤

1
p t1 ≤ 2n for all i ∈ [n]. Then by Proposition 4.7, we have
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�[Tr(N2)/p] � ‖W−k ‖2F � αn2 ≥ εn2/4, and

Var
(
1
p
Tr(N2)

)
≤ 1

p

n∑
i�1
‖(W−k)i ,∗‖42

≤ 1
p

n3

≤ 1
t

n4

≤ ε2

1002 n4

(27)

Then by Chebyshev’s inequality, with probability 99/100, we have 1
pTr(N2) > εn2/4 − (ε/10)n2 �

εn2/8. Call this eventE4, and condition on it now. Nowas shown above, we have ‖W−k ‖2 ≤ 200κn/k,
thus by Proposition 4.5 we have �[‖TW−k ‖2] ≤ κ(200κ

√
tn/k + 4

√
log(1/ε)

√
n) ≤ 400κ2√tn, again

where we take t � Θ( log(1/ε)
ε2 ) with a large enough constant. Then by Markov’s inequality, with

probability 99/100 we have ‖N2‖2 ≤ 4002κ4n2/k2, and again by the Dual Lidskii inequality 4.4, we
have

1
p

∑
j>k

λ j(N1 + N2) ≥
1
p

©«
∑
j>k

λ j(N2)
ª®¬

≥ 1
p
(Tr(N2) − k‖N2‖2)

≥ εn2/8 − 4002κ4n2/k
≥ εn2/16

(28)

Using that k ≥ 2·4002κ4

ε . Note moreover that

1
p

∑
j>k

λ j(N1 + N2) �
1
p

∑
j>k

σ2
j (TW) � 1

p2

∑
j>k

σ2
j (SA>T>)

Using that A � A> so that Z � SA>T> we conclude that 1
p2

∑
i>k σ

2
i (Z) �

n2

t2
∑

i>k σ
2
i (Z) > εn2/16 as

desired. Note that we conditioned on Ei for i � 1, 2, 3, 4, 5, each of which held with probability
99/100, thus the result holds with probability 19/20 by a union bound.

�

We will now address the case where σk(A) > 10n/k.

Lemma 4.9. Let A ∈ �n×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then let Z � SAT> be samples as described
above, so that Z has an expected t � Θ(log(1/ε)/ε2) rows and columns, where t is scaled by a larger
enough constant, and let k �

2·4002κ4

ε , where κ ≥ 1 is the constant in Proposition 4.5. Suppose further that
σk(A) > 10n/k. Then with probability 49/50, we have

n
t
σk(Z) ≥ 8n/k
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Proof. The proof is by application of Theorem 4.6 twice. We first generate a random row sampling
matrix S with an expected t rows, and bound λk((SA)>SA) � σ2

k(SA). Let X j ∈ �n×n be a
random variable such that X j � A>( j)A( j), where A( j) is the j-th row of A that was sampled in
S. Then

∑
j X j � (SA)>SA, and �[X j] � t

n
∑n

j�1 A>j A j �
t
n AA>, where A j is the j-th row of A.

Moreover, note that ‖X j ‖2 ≤ maxi ‖Ai ,∗‖22 ≤ n for all j, by the boundedness of A. Thus note that
µk � λk((t/n)A>A) ≥ (t/n)100n2/k2 �

100tn
k2 . Thus by the Interior Matrix Chernoff Bound 4.6, we

have that for some constant c:

Pr
[
λk((SA)>SA) ≤ .9µk

]
≤ k · cµk/L

≤ k · c
100tn

k2 · 1n

≤ k · e−100 log(k)

≤ 1/1000

(29)

Where we use t � Θ( log(1/ε)
ε2 ) with a large enough constant. Also condition on the fact that S

has at most 2t rows, which holds with probability 999/1000. Call the union of the above two
event E1, which holds with probability 99/100, and condition on it now. Given this, we have
σ2

k(SA) ≥ 90tn
k2 . Now again, let Y j � (SA)( j)(SA)>( j), where (SA)( j) is the j-th column of SA sampled

by the column sampling matrix T. Let M � (SA)>. Then again we have ‖Y j ‖2 ≤ 2t, using that SA
has at most 2t rows, and each entry is bounded by 1. Moreover,

∑
j Y j � TMM>T>We also have

λk(�[
∑

j Y j]) � λk( t
n MM>) > 90t2

k2 . Applying the Interior Matrix Chernoff Bound again, we have
that for some constant c:

Pr
[
λk(T(SA)>(SA)T>) ≤ .9µk

]
≤ k · cµk/L

≤ k · c
90t2
k2 · 1

2t

≤ k · e−100 log(k)

≤ 1/1000

(30)

Call the above event E2. Conditioned on E∞ ∪ E2, which hold together with probability 49/50, we

have that σk(SAT>) ≤ .9
√

90t2

k2 > 8t/k. Since Z � SAT>, we have n
t σk(Z) > 8n/k as needed.

�

Theorem 4.10. Let A ∈ �n×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then if S, T ⊂ [n] are random
subsets with expected each size t � O(log(1/ε)/ε2), then with probability 9/10 the principal submatrixx
A(S∪T)×(S∪T) is not PSD.

Proof. First, by Chernoff bounds, with probability 99/100 we have |S ∪ T | ≤ |S | + |T | ≤ 4t, which
we call E1 and condition on now. First, consider the case that σk(A) ≤ 10n/k, where k �

2·4002κ4

ε .
Then by Lemma 4.8, with probability 19/20, we have that

∑
i>k σ

2
i (AS×T) > εt2/16. Now we first

prove the following claim:
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Claim 4.11. Let Z ∈ �n×m be any matrix, and let Z̃ be a rectangular submatrix of Z. for any Let
Zk , Z̃k be the truncated SVD of Z, Z̃ respectively, for any 1 ≤ k ≤ min{n ,m}. Then we have

‖Z − Zk ‖2F ≥ ‖Z̃ − Z̃k ‖2F

Proof. Note that ‖Z − Zk ‖2F ≥ ‖Z̃k − Z′k ‖
2
F, where Z′k is the matrix Zk restricted to the submatrix

containing Z̃. But Z̃k is the best rank-k approximation to Z̃, so ‖Z̃ − Z̃k ‖2F � minBrank-k ‖Z̃ − B‖2F ≤
‖Z̃k − Z′k ‖

2
F, using the fact that a submatrix of a rank-k matrix is at most rank k. �

It follows that ‖A(S∪T)×(S∪T) − (A(S∪T)×(S∪T))k ‖2F �
∑

j>k σ
2
j (A(S∪T)×(S∪T)) ≥

∑
j>k σ

2
j (AS×T) >

εt2/16 > ε |S∪T |2/256. But note that ifA(S∪T)×(S∪T)was PSD, thenwewould have
∑

j>k σ
2
j (AS×T) <≤

16
k t2, which is a contradiction since k �

2·4002κ4

ε > 1002

ε .
Now consider the case that σk(A) > 10n/k. Then by Lemma 4.9, we have σk((AS×T) ≥ 8t/k with

probability at least 49/50. Then ‖AS×T ‖S1 ≥
∑k

i�1 σi((AS×T) ≥ 8t. Using the fact that the Schatten
norm of a matrix is always at least as large as the Schatten norm of any submatrix (this follows from
the fact that the singular values of the submatrix are point-wise dominated by the larger matrix,
see Theorem 1 [Tho72]), we have ‖A(S∪T)×(S∪T)‖S1 ≥ 8t. But note that if A(S∪T)×(S∪T) was PSD, then
we would have ‖A(S∪T)×(S∪T)‖S1 � Tr(A(S∪T)×(S∪T)) ≤ |S ∪ T | ≤ 4t, which is a contradiction. This
completes the proof of the theorem. �

Theorem 4.12. Fix A ∈ �n×n with ‖A‖∞ ≤ 1. There is a non-adaptive sampling algorithm that, with
probability 9/10, correctly distinguishes the case that A is PSD from the case that A is ε-far from PSD in
`2, namely that

∑
i:λi(A)<0

λ2
i (A)
n2 ≥ ε. The algorithm queries a total of O( log2(1/ε)

ε4 ) entries of A, and always
correctly classifies A as PSD if A is indeed PSD. Moreover, the algorithm runs in time Õ(1/ε2ω), where
ω < 2.373 is the exponent of fast matrix multiplication.

Proof. We first apply the algorithm of Section 3 with ε0 �
2
k , which as discussed allows us to assume

that λi ≥ −ε0n/1000 ≥ − 1
2k n for all i. The cost of doing so is Θ̃(1/ε2) queries, and this algorithm

also yields one-sided error as desired. The remainder of the theorem follows directly from Theorem
4.10, using that all principal submatrices of PSD matrices are PSD. Finally, for runtime, notice that
the main computation is computing the eigenvalues of a k × k principal submatirx, for k � Õ(1/ε2),
which can be carried out in time Õ(1/ε2ω) [DDHK07, BVKS19]. �

5 Lower bounds

5.1 Lower Bound for PSD Testing with `∞ Gap

We begin by demonstrating a O(1/ε2) lower bound for the problem of testing postive semi-
definiteness with an `∞ gap. Our lower bound holds even when the algorithm is allowed to
adaptively sample entryies of A.

Theorem 5.1. Any adaptive or non-adaptive algorithm which receives query access to A ∈ �n×n with
‖A‖∞ ≤ 1, and distinguishes with probability at least 2/3 whether

• A is PSD.
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• xTAx < −εn for some unit vector x ∈ �n and ε ∈ (0, 1)

must make Ω(1/ε2) queries to A.

Proof. We construct two distributionsD1 ,D2 over matrices, and draw the input A from the mixture
(D1 +D2)/2. D1 is supported on one matrix: the zero matrix 0n×n , which is PSD. Now set t � 2ε2n
and let B ∈ �n×n be the matrix given by

B �

[
0 −1n−t×t

−1t×n−t −1t×t

]
Where −1n×m is the n × m matrix consisting of a −1 in each entry. Now let x ∈ �n×n be defined
by xi � 1 for i � 1, 2, . . . , n − t, and let x j � 1/ε for j > n − t. Then note that xTBx < − 1

ε · 2ε2n2 <

−εn‖x‖22 , thus B is ε-far from PSD in `∞ gap. To sample A ∼ D1, we set A � PΣBPT
σ , where Pσ

is a randomly drawn permutation matrix, namely σ ∼ Sn uniformly at random. Notice that to
distinguish A ∼ D1 from A ∼ D2, the algorithm must read a non-zero entry. By Yao’s min-max
principle, we can assume that there is a deterministic algorithm that solves the problem with
probability 2/3 over the randomness of the distribution. Fix any k < 1/(100ε2), and let s1 , s2 , . . . sk

be the adaptive sequence of entries it would sample if Asi � 0 for each i � 1, 2, . . . , k. Then then the
probability that any of the the si ’s land in a row or a column of A � PΣBPT

σ with non-zero entries is
at most 1/50. Thus with probability 49/50 under input from A ∼ D2, the algorithm will output the
same value had A been the all zero matrix. Thus the algorithm succeeds with probability at most
51/100 when A is drawn from the mixture, demonstrating that Ω(1/ε2) samples are required for
probability 2/3 of success. �

5.2 Lower Bound for PSD Testing with `2 Gap

We now present our main lower bound for PSD testing. Our result relies on the construction of
explicit graphs with gaps in their spectrum, which have the property that they are indistinguishable
given only a small number of queries to their adjacency matrices. Our lower bound is in fact a
general construction, which will also result in lower bounds for testing the Schatten 1 norm, Ky-Fan
norm, and cost of the best rank k approximation.

Roadmap In the following, we will first introduce the notation and theory required for the section,
beginning with the notion of subgraph equivalence of matrices. We then construct our hard
distributionsD1 ,D2, and prove our main conditional results, Lemma 5.8, which demonstrates a
lower bound for these hard distributions conditioned on the existence of certain pairs of subgraph
equivalent matrices. Finally, we prove the existence of such matrices, which is carried out in the
following Section 5.2.1. Putting these pieces together, we obtain our main lower bound in Theorem
5.12.

Preliminaries and Notation In the following, it will be useful to consider signed graphs. A signed
graph Σ is a pair (|Σ|, s), where |Σ| � (V, E) is a simple graph, called the underlying graph, and
s : E→ {1,−1} is the sign function. We will sometimes abbreviate the signs equivalently as {+,−}.
We will write E+ , E− to denote the set of positive and negative edges. If Σ is a signed graph, we will
often write Σ � (V(Σ), E(Σ)), where E(Σ) is a set of signed edges, so E(Σ) ⊂

( |V(Σ)|
2

)
× {+,−} with the
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property that for each e ∈
( |V(Σ)|

2
)
, at most one of (e ,+, ), (e ,−) is contained in E(Σ). For a signed

graph G on n vertices, let AG ∈ {1, 0,−1}n×n be its adjacency matrix, where (AG)i , j is the sign of the
edge e � (vi , v j) if e ∈ E(G), and is 0 otherwise.

For a graph H, let ‖H‖ denote the number of vertices in H. For any simple (unsigned) graph
G, let G be the signed graph obtained by having E+(G) � E(G), and E−(G) �

( |V |
2
)
\ E(G). In other

words, G is the complete signed graph obtained by adding all the edges in the complement of
G with a negative sign, and giving a positive sign the edges originally in G. We remark that the
negation of the adjacency matrix of G is known as the Seidel matrix of G. In what follows, we will
often not differentiate between a signed graph G and its signed adjacency matrix AG. For graphs
G,H, let G ⊕ H denote the disjoint union of two graphs G,H We will assume familiarity with basic
group theory. For groups G,H, we write H ≤ G if H is a subgroup of G. For a set T, let 2T denote
the power set of T. Throughout, let Sn denote the symmetric group on n letters. For two signed
graphs Σ,H, let FH(Σ) � {G � (V(Σ), E(G)) | E(G) ⊆ E(Σ),G � H} be the set of signed subgraphs
of Σ isomorphic to H. For a permutation σ ∈ Sn , we write Pσ ∈ �n×n to denote the row permutation
matrix associated with σ. For k ≥ 3, let Ck denote the cycle graph on k vertices.

For signed graphs G,H, a signed graph isomorphism (or just isomorphism) is a graph isomor-
phism that preserve the signs of the edges. For any set U ⊂ [n] × [n] and matrix A ∈ �n×n , we write
AU to denote the matrix obtained by setting the entries (AU)i , j � Ai , j for (i , j) ∈ U, and (AU)i , j � 0
otherwise. A set U ⊂ [n] × [n] is called symmetric if (i , j) ∈ U ⇐⇒ ( j, i) ∈ U. We call U simple if
it does not contain any elements of the form (i , i). We will sometimes refer to a simple symmetric U
by the underlying simple undirected graph induced U.

Subgraph Equivalence We now formalize the indistinguishably property which we will require.
For matrices A,B, when thought of as adjacency matrices of graphs, this property can be thought of
as a more general version of “locally indistinguishability”, in the sense that, for any small subgraph
H of A, there is a unique subgraph of B that is isomorphic to H. The following definition is more
general, in the sense that a subgraph can also have “zero valued edges”, corresponding to the fact
that an algorithm can learn of the non-existence of edges, as well as their existence.

Definition 5.2 (Sub-graphEquivalence). Fix any familyU of symmetric subsetsU � {Ui}i ∈ 2[n]×[n],
and let Γ ≤ Sn be a subgroup of the symmetric group on n letters. Let A,B ∈ �n×n . Then we
say that A is (U , Γ)-subgraph isomorphic to B, and write A �U ,Γ B, if for every Ui ∈ U there is a
bĳection ψi : Γ→ Γ such that (

PσAPT
σ

)
Ui

�

(
Pψi(σ)BPT

ψi(σ)

)
Ui

for all σ ∈ Γ. If G,H are two signed graphs on n vertices with adjacency matrices AG ,AH , then we
say that G is (U , Γ)-subgraph equivalent to H, and write G �U ,Γ H, if AG �U ,Γ AH .

Note we do not require the Ui’s to be simple in the above definition. At times, if Γ � Sn , then we
may omit Γ and just write G �U H or A �U B.

Example 5.3. Let G,H be arbitrary graphs on n vertices, and let eachU � {Ui} be a simple graph
consisting of a single edge. Then G �U ,Sn H if and only if |E(G)| � |E(H)|.
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Example 5.4. Let G,H be arbitrary graphs on n vertices, and let U � {Ui} be a single graph,
where Ui is a triangle on any three vertices. Then G �U ,Sn H if and only if the number of induced
subgraphs on three vertices that are triangles, wedges, and single edges, are each the the same in G
as in H.

In what follows, we will consider graphs that areU subgraph isomorphic, for a certain family
of classesU , which we now define. In what follows, recall that the matching number ν(G) of a
graph G is the size of a maximum matching in G, or equivalently the maximum size of any subset
of pairwise vertex disjoint edges in G.

Definition 5.5. For 1 ≤ t ≤ n, letU t
n be the set of all undirected, possibly non-simple graphs Ui on

n vertices, with the property that after removing all self-loops, Ui does not contains any set of t
vertex disjoint edges. Equivalently, after removing all self-loops from Ui , the matching number
ν(Ui) of Ui is less than t.

In other words,U t
n is the set of graphs with no set of t pair-wise non-adjacent edges e1 , . . . , et

such that each ei is not a self loop. Notice by the above definition thatU t
n ⊂ U t+1

n . We will also
need the following definition.

Definition 5.6. For any n ,m ≤ 1, let Γn ,m ≤ Snm be the subgroup defined Γn ,m � {σ ∈ Snm | σ(i , j) �
(π(i), j), π ∈ Sn}, where the tuple (i , j) ∈ [n] × [m] indexes into [nm] in the natural way.

Notice in particular, if A ∈ �n×n and D ∈ �m×m , then we have

{Pσ(A ⊗ D)PT
σ | σ ∈ Γn ,m} � {(Pπ ⊗ �m)(A ⊗ D)(Pπ ⊗ �m)T | π ∈ Sn}

Note also by elementary properties of Kronecker products, we have (Pπ ⊗ �m)(A ⊗ D)(Pπ ⊗ �m)T �

(PπAPT
π) ⊗ D. For such a σ ∈ Γn ,m , we write σ � π ⊗ id, where π ∈ Sn

Lemma 5.7. Fix any t ,m ≥ 1, and let A,B ∈ �n×n be matrices with A �U t
n ,Sn

B, whereU t
n is defined as

above, and let T ∈ �m×m be any matrix. Then A ⊗ T �U t
nm ,Γn ,m

B ⊗ T, where Γ ≤ Snm is as defined above.11

Proof. Fix any U′i ∈ U t
nm . Note that every edge of U′i corresponds to a unique edge of a graph on n

vertices. This can be seen as every edge of U′i is of the form ((i1 , j1), (i2 , j2))where i1 , i2 ∈ [n], j1 , j2 ∈
[m], which corresponds to the edge (i1 , i2) ∈ [n] × [n]. So let Ui ⊂ [n] × [n] be the set of all such
edges induced by the edges of U′i . Observe, of course, that many distinct edges of U′i could result in
the same edge of Ui . We claim that Ui ∈ U t

n . Suppose this was not the case, and let e1 , . . . , et ∈ Ui

be vertex disjoint non-self loop edges, where e` � (i` , j`), i` , j` . Then for each ` ∈ [t], there must
be at least one edge e′` ∈ U′i such that e′` � ((i` , a`)( j` , b`)) ∈ U′i , and we can fix e′` to be any such
edge. Then since each vertex i` ∈ [n] occured in at most one edge of e1 , . . . , et by assumption, it
follows that each vertex (i` , j`) ∈ [n] × [m] occurs at most once in e′1 , . . . , e

′
t , which contradictts the

fact that the U′i ∈ U t
nm .

Now that we have Ui ∈ U t
n , since A �U t

n ,Sn
B we have a bĳection function ψi : Sn → Sn

such that
(
PπAPT

π

)
Ui

�

(
Pψi(π)BPT

ψi(π)

)
Ui
. We now define the mapping ψ̂i : Γn ,m → Γn ,m by

ψ̂i(π ⊗ id) � ψi(π) ⊗ id, and show that it satisfies the conditions of Definition 5.2. Now note that
each σ � π ⊗ id ∈ Γn ,m satisfies Pσ � Pπ ⊗ �, and so Pσ(A ⊗ T)PT

σ � PπAPT
π ⊗ T.

11Note that this fact extends naturally to tensoring with rectangular matrices T.
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Wenowclaim that for anyU′i ∈ U t
nm , ifwe constructUi ∈ U t

n as above,wehave that for anymatrix
Z ∈ �n×n the non-zero entries of (Z)Ui⊗T contain the non-zero entries of (Z⊗T)U′i . As a consequence,
if (Z)Ui ⊗ T � (Y)Ui ⊗ T for some other matrix Y ∈ �n×n , we also have (Z ⊗ T)U′i � (Y ⊗ T)U′i . But the
claim in question just follows from the construction of U′i , since for every entry ((i1 , j1), (i2 , j2)) ∈ U′i
we added the entry (i1 , i2) ∈ Ui . Now since we have that

(
PπAPT

π

)
Ui

�

(
Pψi(π)BPT

ψi(π)

)
Ui
, we also

obtain (
PπAPT

π

)
Ui
⊗ T �

(
Pψi(π)BPT

ψi(π)

)
Ui
⊗ T

which as just argued implies that(
PπAPT

π ⊗ T
)

U′i
�

(
Pψi(π)BPT

ψi(π) ⊗ T
)

U′i

Since
(
PπAPT

π ⊗ T
)

U′i
�

(
Pσ(A ⊗ T)PT

σ

)
U′i

and (Pψi(π)BPT
ψi(π)⊗T)U′i � (Pψ̂(σ)(B⊗T)PT

ψ̂(σ))U′i , it follows
that A ⊗ T �U t

nm ,Γn ,m
B ⊗ T as required.

�

The Hard Instance. We now describe now distributions,D1 ,D2, supported on n × n matrices A
and paramterized by a value k ≥ 1, such that distinguishingD1 fromD2 requires Ω(k2) samples.
The distributions are parameterized by three matrices, (B,D,Z), which are promised to satisfy the
properties that B,D ∈ �d×d with B �U t

d ,Sd
D for some t ≤ d, and Z ∈ �m×m , where m � n/(dk).

Also define B̃ � B ⊗ Z, D̃ � D ⊗ Z. We now define the distribution. We first defineD1. InD1, we
select a random partition of [n] into L1 , . . . , Lk , where each |Li | � n/k exactly. Then for each i ∈ [k],
we select a uniformly random σi ∈ Γd ,m and set ALi×Li � Pσi B̃PT

σi
, and the remaining elements of A

are set to 0. InD2, we perform the same procedure, but set ALi×Li � Pσi D̃PT
σi
. So if A ∼ D1+D2

2 , then
A is block-diagonal, with each block having size n/k. We first demonstrate that for any matrices
(B,D,Z) satisfying the above properties, distinguishing these distributions requires Ω(k2) samples.
We assume in the following that dk divides n, which will be without loss of generality since we can
always embed a small instance of the lower bound with size n′ such that n/2 < n − dk ≤ n′ ≤ n,
and such that dk divides n.

Lemma 5.8. Fix any 1 ≤ k , d ≤ n. Let (B,D,Z) be any three matrices such that B,D ∈ �d×d , B �U t
d ,Sd

D
where t � log k, and Z ∈ �m×m , where m � n/(dk). Then any non-adaptive sampling algorithm which
receives A ∼ D1+D2

2 where the distributions are defined by the tuple (B,D,Z) as above, and distinguishes
with probability at least 2/3 whether A was drawn fromD1 orD2 must sample Ω(k2) entries of A.

Proof. We show that any algorithm cannot distinguishD1 fromD2 with probability greater than 2/3
unless it makes at least ` > C · k2 queries, for some constant C > 0. So suppose the algorithmmakes
at most C · k2/100 queries in expectation and is correct with probability 2/3. Then by Markov’s
there is a algorithm that always makes at most ` � Ck2 queries which is correct with probability
3/5. By Yao’s min-max principle, there is a determinstic algorithm making this many queries which
is correct with probability 3/5 over the distribution D1+D2

2 . So fix this algorithm, which consists of a
single subset U ⊂ [n] × [n]with |U | � `.

We now generate the randomness used to choose the partition L1 , . . . , Lk of [n]. Let Ui �

U ∩ Li × Li � {(i , j) ∈ U | i , j ∈ Li}. Let Ei be the event that Ui ∈ U t
md . We first bound Pr[¬Ei],
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where the probability is over the choice of the partition {Li}i∈[k]. For ¬Ei , there must be t pairwise
vertex disjoint non-self loop edges e1 , . . . , et ∈ U such that e j � (a j , b j) and a j , b j ∈ Li . In other
words, we must have 2t distinct vertices a1 , b1 , . . . , at , bt ∈ Li . For a fixed vertex v ∈ [n], this occurs
with probability 1/k, and the probability that another u ∈ [n] ∩ Li conditioned on v ∈ [n] is strictly
less than 1/k as have have |Li | � n/k exactly. Thus, the probability that all 2t vertices are contained
in Li can then be bounded 1

k2t . Now there are
( |U |

t

)
≤ `t possible choices of vertex disjoint edges

e1 , . . . , et ∈ U which could result in Ei failing to hold, thus Pr[Ei] ≥ 1 − `t

k2t and by a union bound

Pr[∩k
i�1Ei] ≥ 1 − `t

k2t−1

≥ 1 − Ct k2t

k2t−1

≥ 1 − Ct k

≥ 99
100

(31)

Where in the last line, we took C ≤ 1/10 and used the fact that t � log(k). Then if E � ∩k
i�1Ei , we

have Pr[E] > 99/100, which we condition on now, along with any fixing of the Li’s that satisfies E.
Conditioned on this, it follows that Ui ∈ Umd for each i ∈ [k]. Using that B �U t

d ,Sn
D, we can and

apply Lemma 5.7 to obtain B ⊗ Z �U t
dm ,Γd ,m

D ⊗ Z. Thus, for each i ∈ [k]we can obtain a bĳection
function ψi : Γd ,m → Γd ,m such that (Pσi B̃PT

σi
)Ui � (Pψi(σi)D̃PT

ψ(σi))Ui for each σi ∈ Γd ,m . Thus we
can create a coupling of draws fromD1 with those fromD2 conditioned on E, so for any possible
draw from the remaining randomness ofD1, which consists only of drawing some (σ1 , . . . , σk) ∈ Sk

d
generating a matrix A1, we have a unique corresponding draw (ψ1(σ1), . . . , ψk(σk)) ∈ Sk

d of the
randomness in D2 which generates a matrix A2, such that (A1)U � (A2)U . Thus conditioned
on E, any algorithm is correct on D1+D2

2 with probability exactly 1/2. Since E occured with
probability 99/100, it follows than the algorithm is correct with probability 51/100 < 3/5, which is a
contradiction. Thus we must have ` ≥ Ck2 � Ω(k2) as needed.

�

We are now ready to introduce our construction of the matrices as required in the prior lemma.
Recall that k ≥ 3, let Ck denote the cycle graph on k vertices.

Fact 5.9. Fix any n ≥ 3. We have λmin(C2n+1) � −2 +Θ(1/n2) and λmin(Cn ⊕ Cn+1) � −2.

Proof. The eigenvalues of the cycle C` are given by 2 cos(2πt
` ) [Chu96] for t � 0, . . . , ` − 1, which

yields the result using the fact that cos(π(1 + ε)) � 1 +Θ(ε2) for small ε �

Proposition 5.10. Fix any n � n1 + n2. For any t ≤ min{n1 , n2}/4, we have Cn �U t
n ,Sn

Cn1 ⊕ Cn2

Proof. We begin by fixing any set Ui ∈ U t
n . For any signed graph Σ and graph G on n vertices

such that the maximum set of vertex disjoint edges in Σ is t ≤ min{n1 , n2}/4, let HΣ(G) � {σ ∈
Sn | PσAΣPT

σ � AH ,H ⊂ G} and let H−1
Σ
(G) � {σ ∈ Sn | AΣ � PσAHPT

σ ,H ⊂ G}. By Corollary
5.15, we have |HΣ(Cn)| � |HΣ(Cn1 ⊕ Cn2)| whenever |Σ| has no set of at least min{n1 , n2}/4 vertex
disjoint edges. Since Sn is a group and has unique inverses, we also have|H−1

Σ
(Cn)| � |HΣ(Cn)| �

|HΣ(Cn1 ⊕ Cn2)| � |H−1
Σ
(Cn1 ⊕ Cn2)|.
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We now define a function ψi : Sn → Sn such that (PσACn
PT
σ )Ui � (Pψi(σ)ACn1⊕cn2

PT
ψi(σ))Ui for

every σ ∈ Sn . Now fix any signed graph Σ such that Σ � (PσACn
PT
σ )Ui for some σ ∈ Sn . Note that

the set of π ∈ Sn such that Σ � (PπACn
PT
π)Ui is preciselyH−1

Σ
(Cn). Similarly, the set π ∈ Sn such

that Σ � (PπACn1⊕Cn2
PT
π)Ui is preciselyH−1

Σ
(Cn1 ⊕ Cn2). Also, by construction ofU t

n , we know that
the maximum set of vertex disjoint edges in Ui , and therefore in Σ is t ≤ min{n1 , n2}/4, So by
the above, we know there is a bĳection ψΣi : H−1

Σ
(Cn) → H−1

Σ
(Cn1 ⊕ Cn2) for every such realizable

matrix Σ. Taking ψi(σ) � ψ
(PσACn

PT
σ )Ui

i (σ) satisfies the desired properties for Cn �U t
n ,Sn

Cn1 ⊕ Cn2 .
Notice that this implies that Cn �U t

n ,Sn
Cn1 ⊕ Cn2 , since Cn and Cn1 ⊕ Cn2 are both obtained from

obtained Cn and Cn1 ⊕ Cn2 by changing every entry with the value −1 to 0.
�

Proposition 5.11. Fix any t > 1, and set either d0 � 4t, and d � 2d0 + 1. Set B � 1/2(ACd + λ�d) and
D � 1/2(ACd0⊕Cd0+1 + λ�d), where λ � −2 cos( 2πd0

2d0+1 ). Then we have that B is PSD, λmin(D) < −δ where
δ � Θ(1/d2), ‖B‖∞ , ‖D‖∞ ≤ 1, and B �U t

d ,Sd
D.

Proof. By Proposition 5.10, we know C2d0+1 �U t
2d0+1 ,S2d0+1

Cd0 ⊕ Cd0+1, so to show subgraph equiva-
lence suffices to show that adding λ�2d0+1 to both C2d0+1 and Cd0 ⊕ Cd0+1 does not effect the fact that
they areU t

d0
, Sd0 subgraph-equivalent. But note that this fact is clear, since we have only changed

the diagonal which is still equal to λ everywhere for both B,D. Namely, for any σ, π ∈ S2d0+1 and
i ∈ [2d0 + 1]we have

(
PσBPT

σ

)
(i ,i) �

(
PπDPT

π

)
(i ,i) � λ, thus the subgraph equivalence between C2d0+1

and Cd0 ⊕Cd0+1 still holds using the same functions ψi as required for C2d0+1 �U t
2d0+1 ,S2d0+1

Cd0 ⊕Cd0+1.
Note that the L∞ bound on the entries follows from the fact that adjacency matrices are bounded by
1 and zero on the diagonal, λ ≤ 2, and we scale each matrix down by 1/2. Next, by Fact 5.9, we
know that B is PSD and λmin(D) � −Θ( 1

d2 ), which holds still after scaling by 1/2, and completes the
proof. �

We now state our main theorem, which is direct result of instantiating the general lower bound
of Lemma 5.8 with the matrices as described above in Proposition 5.11.

Theorem 5.12. Any non-adaptive sampling algorithm which solves with probability at least 2/3 the PSD
testing problem with ε-`2

2 gap must query at least Ω̃( 1
ε2 ) entries of the input matrix.

Proof. Set k � C 1
ε log6(1/ε) for a small enough constant C > 0. Also set t � log k, d0 � 4t. d � 2d0 + 1,

and as before set m � n/(dk). We first apply Lemma 5.8 with Z � 1m×m , and the matrices
B � 1/2(ACd + λ�d) and D � 1/2(ACd0⊕Cd0+1 + λ�d) from Proposition 5.11, where λ � −2 cos( 2πd0

2d0+1 ).
Then byLemma5.8, using thatB �U t

2d0+1 ,S2d0+1
D via Proposition 5.11, it follows that any non-adaptive

sampling algorithm that distinguishesD1 fromD2 requires Ω(k2) samples.
We now demonstrate every instance of D1 and D2 satisfy the desired `2

2-gap as defined in
Problem 1.2. First, since the eigenvalues of the Kronecker product Y ⊗ Z of any matrices Y,Z are all
pairwise eigenvalues of thematrices Y,Z, it follows that B̃ is PSD as B is PSD by Proposition 5.11 and
and 1m×m � 1m(1m)T is PSD. By the same fact and Proposition 5.11, since λ1(1m×m) � m, we have
that λmin(D̃) � −Θ(m/(d2)) � −Θ( n

d3k ). Now note that if A1 ∼ D1, then A1 is a block-diagonal matrix
where each block is PSD, thus A1 is PSD. Note also that if A2 ∼ D2, then A2 is a block-diagonal
matrix where each block is has an eigenvalue smaller than −C′ n

d3k for some constant C′ > 0. Since
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the eigenvalues of a block diagonal matrix are the union of the eigenvalues of the blocks, it follows
that

∑
i:λi(A2)<0

(λi(A2))2 �

k∑
i�1

λmin(D̃)2

≥ k(C′ n
d3k
)2

�
©« (C′)2 log6(1/ε)

C(8 log( C
ε log6(1/ε) ) + 1)6

ª®¬ · εn2

≥ εn2

(32)

Where the last inequality follows from setting the constant C �
(C′)2
1006 so that

(C′)2 log6(1/ε)

C
(
8 log( C

ε log6(1/ε) ) + 1
)6 �

1006 log6(1/ε)(
8 log( (C′)2

1006ε log6(1/ε) ) + 1
)6

≥
1006 log6(1/ε)(

16 log( 1ε )
)6

> 1

(33)

and using that the first inequality above holds whenever
( 1
ε

)16 ≤
(

(C′)2
3·1006ε log6(1/ε)

)8
, which is true so

long as ε < C0 for some constant C0. Note that if ε > C0, then a lower bound of Ω(1) � Ω(1/ε2)
follows from the one heavy eigenvalue `∞ gap lower bound. Thus A1 ,A2 satisfies the ε-L2 gap
property as needed, which completes the proof.

�

5.2.1 Cn1+n2 is Subgraph Equivalent to Cn1 ⊕ Cn2

In this section, we demonstrate the subgraph equivalence of the the cycle Cn1+n2 and union of
cycles Cn1 ⊕ Cn2 . In order to refer to edges which are not in the cycles Cn1+n2 and Cn1 ⊕ Cn2 , it will
actually be convenient to show that Cn1+n2 is subgraph equivelant to Cn1 ⊕ Cn2 , where recall that G
for a simple graph G is the result of adding negative edges to G for each edge e � (u , v) < E(G).
Equivalently, the adjacency matrix of G is the result of replacing the 0’s on the off-diagonal of AG

with −1’s. Notice that, by the definition of subgraph equivalence, it does not matter whether these
values are set to 0 or to −1.

Overview of the bĳection. We now intuitively describe the bĳection of Lemma 5.13, which
demonstrates that for any singed graph Σ such that any set of pairwise vertex disjoint edges
{e1 , . . . , ek} (i.e. any matching) in Σ has size at most k ≤ min{n1 , n2}/4, the number of subgraphs
of Cn1+n2 isomorphic to Σ is the same as the number of subgraphs of Cn1 ⊕ Cn2 isomorphic to Σ. So
let H be any subgraph of Cn1+n2 that is isomorphic to Σ. For simplicity, let n1 � n2, and suppose H
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Figure 2: An illustration of the bĳection in Lemma 5.13, when H only contains positive edges. The
three colored paths represent the graph H, which must be mapped from C2n to Cn ⊕ Cn . Since the
paths intersect the edges (2n , 1) and (n , n + 1) to be cut, we must first swap the last four vertices
{n − 4, . . . , n} and {2n − 4, . . . , 2n} of C2n before the two splitting points n , 2n, and then cut the
cycle. Note that four is the smallest number of vertices which can be swapped, without swapping
in the middle of a path of H.

contains only positive edges, so that H is actually a subgraph of the unsigned cycle C2n . Since Σ has
at most n/4 edges, Σ � H must be a collection of disjoint paths. So the problem can be described as
an arrangement problem: for each arrangement H of Σ in C2n , map it to a unique arrangement H′

of Σ in Cn ⊕ Cn .
We would like to construct such a mapping by “splitting” the big cycle C2n into two smaller

cycles, see Figure 2 for an example. Specifically, we could split the cycle C2n down the middle,
cutting the edges (n , n + 1), and (n , 1), and instead connecting the first vertex to the n-th and the
n + 1-st to the 2n-th. Now if H does not contain either of the cut edges, then the resulting collection
of paths will be an isomorphic copy of H living inside of Cn ⊕ Cn . However, if H does contain
such an edge, we cannot cut the cycle here, as the resulting paths inside of Cn ⊕ Cn would not
be isomorphic. For example see Figure 2, where if we just cut the edge between (n , n + 1) and
rerouted it to (n , 1), then the red cycle with 4 vertices would be disconnected into a cycle of length
three, and an isolated vertex. To handle this, before cutting and rerouting the edges (n , n + 1) and
(2n , 1), we first swap the last i vertices before the cutting points, for some i. Namely, we swap the
vertices (n − i , n − i + 1, . . . , n)with (2n − i , 2n − i + 1, . . . , 2n) and then split the graph at the edges
(n , n + 1) and (2n , 1). For the resulting graphs to be isomorphic, we cannot swap in the middle
of a path, thus the value i is chosen as the smallest i ≥ 0 such that the edges (n − i − 1, n − i) and
(2n − i − 1, 2n − i) do not exist in any path of H. Moreover, such an i must exist, so long as H has
fewer than min{n1 , n2} edges (the stronger bound of min{n1 , n2}/4 is only needed for the more
general case, where negative edges are included).

One can show that this mapping is actually an involution; namely, given the collection of paths
H′ in Cn ⊕ Cn which are obtained from applying the function on H, one can similarly find the
smallest i ≥ 0 such that the edges (n − i − 1, n − i) and (2n − i − 1, 2n − i) are not in H′, which must
in fact be the same value of i used when mapping H! Then, by swapping the last i vertices before n
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and 2n, and then reconnecting Cn ⊕ Cn into a single cycle, one obtains the original graph H. From
this, demonstrating bĳectivity becomes relatively straightforward. Extending this to the case where
H is allowed to contain negative edges of C2n follows similar steps, albiet with a stronger condition
on the choice of i. The full proof is now presented below.

Lemma 5.13. Fix any n � n1 + n2. Fix any simple graph |Σ|, such that any set of vertex disjoint edges
{e1 , . . . , ek} in |Σ| has size at most k ≤ min{n1 , n2}/4, and let Σ � (|Σ|, σ) be any signing of |Σ|. Let
FΣ(Cn) denote the set of subgraphs of Cn isomorphic to |Σ|, and similarly define FΣ(Cn1 ⊕ Cn2). Then we
have ���FΣ(Cn)

��� � ���FΣ(Cn1 ⊕ Cn2)
���

Proof. Order the vertices’s of the cycle Cn � {1, 2, . . . , n}, which we will describe as the same
vertex set for Cn1 ⊕ Cn2 , where {1, . . . , n1} are the vertices of the first cycle Cn1 and {n1 + 1, . . . , n}
are the vertices of Cn2 . We derive a bĳection ϕ : FΣ(Cn) → FΣ(Cn1 ⊕ Cn2). We describe a
point X ∈ FH(Cn) ∪ FΣ(Cn1 ⊕ Cn2) by its (signed) adjacency matrix X ∈ {−1, 0, 1}n×n . Namely,
X ∈ {−1, 0, 1}n×n is any matrix obtained by setting a subset of the entries of ACn1+n2

or ACn1⊕Cn2
equal to 0, such that the signed graph represented by X is isomorphic to Σ. In this following, we
will always modularly interpret the vertex vn+i � vi for i ≥ 1.

Thus, we can now think of ϕ as being defined on the subset of the matrices {−1, 0, 1}n×n given
by the adjacency matrices of signed graphs in FΣ(Cn). In fact, it will useful to define ϕ on a larger
domain. Let D ⊂ {−1, 0, 1}n×n be the set of all adjacency matrices for signed graphs G with the
property that any set of vertex disjoint edges {e1 , . . . , ek} in G size at most k ≤ min{n1 , n2}/4. Notice
thatD contains both FΣ(Cn) and FΣ(Cn1 ⊕ Cn2). For a given X ∈ D, we will define ϕ(X) � PσXXPT

σX

for some permutation σX. Since the graph of PσXXPT
σX is by definition isomorphic to X, it follows

that PσXXPT
σX ∈ D, thus ϕ maps D into D. So in order to define the mapping ϕ(X), it suffices to

define a function φ : D → Sn mapping into the symmetric group so that ϕ(X) � Pφ(X)XPT
φ(X).

For i � 0, 1, 2, . . . ,minn1 ,n2 −1, define the permutation σi ∈ Sn as follows. For j ∈ {0, 1, . . . , n1 −
i} ∪ {n1 + 1, . . . , n − i}, we set σi( j) � j. If i > 0, then for each 0 ≤ j < i, we set σi(n1 − j) � n − j
and σi(n − j) � n1 − j. In other words, the function σi swaps the last max{0, i − 1} vertices before
the spliting points n1 , n of the cycle. Notice that σi is an involution, so σi(σi) � id and σi � σ−1

i .
We now define our bĳection ϕ. For X ∈ D, let i(X) be the smallest value of i ≥ 0 such that

Xn1−i ,n1−i+1 � Xn−i ,n−i+1 � Xn−i ,n1−i+1 � Xn1−i ,n−i+1 � 0. Equivalently, i(X) is the smallest value of
i ≥ 0 such that none of the four edges of the cycle ci � (vn1−i , vn1−i+1 , vn−i , vn−i+1) exist in X. We
then define ϕ(X) � σi(X) � σX, so that ϕ(X) � Pσi(X)XPT

σi(X) . Note that if the maximum number of
vertex disjoint edges in X is at most min{n1 , n2}/4, then i(X) must always exist and is at most
min{n1 , n2}/2 + 1. This can be seen by the fact that for each i such that i(X) > i + 1, there must be
at least one edge with endpoints in the set {vn1−i , vn1−i+1 , vn−i , vn−i+1}, thus for each i ≥ 0 with
i < i(X)we can assign an edge ei , such that e0 , e2 , e4 , . . . , ei(X)−1 are vertex disjoint.

Wemust first argue that ifX ∈ FΣ(Cn), thenϕ(X) ∈ FΣ(Cn1 ⊕ Cn2), namely that the functionmaps
into the desired co-domain. To do this, we must show that for every (i , j) with (PσXXPT

σX)i , j , 0,
we have (PσXXPT

σX)i , j � (ACn1⊕Cn2
)i , j . This is equivalent to showing that for any signed edge

e � (vi , v j) ∈ X, vi , v j are connected in Cn if and only if vσX(i) , vσX( j) are connected in Cn1 ⊕ Cn2 . In
the proof of this fact, we will only use that X ∈ D.

So suppose vi , v j were connected in Cn , and wlog j > i. First suppose that i < {n , n1}. Then we
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have j � i + 1. Since e � (vi , v j) ∈ X is an edge of the subgraph, we know i < {n − i(X), n1 − i(X)}
by construction of i(X). Thus (vσX(i) , vσX( j)) � (vi′ , vi′+1) for some i′ < {n1 , n}, which is always an
edge of Cn1 ⊕ Cn2 . If i � n, then j � 1, and we have i(X) > 0, so σ(i) � n1 and σ( j) � 1, and (vn1 , v1)
is an edge of Cn1 ⊕ Cn2 . Similarly, if i � n1, then j � n1 + 1, and since again necessarily i(X) > 0
we have σ(i) � n , σ( j) � n1 + 1, and (vn , vn1+1) is an edge of Cn1 ⊕ Cn2 . We now consider the case
where (vi , v j) ∈ X is not an edge in Cn . Suppose for the sake of contradiction that (vσX(i) , vσX( j)) is
an edge in Cn1 ⊕ Cn2 . WLOG, i , j are in the first cycle Cn1 . We can write σX(i) � i′, σX( j) � i′ + 1 for
some i′ ∈ {1, 2, . . . , n1}, where i′ + 1 is interpreted as 1 if i′ � n1. If i′ ≤ i(X) − 1, then both i′ � i
and i′ + 1 � i + 1 � j, but (vi , vi+1) is also connected in Cn . If i′ ≥ i(X) + 1, then i′ � i + n2 and
i′ + 1 � i + n2 + 1 (where i + n2 + 1 is interpreted modularly as 1 if i � n1), and again vi+n2 and
vi+n2+1 are connected in Cn . Finally, if i′ � i(X), then i � i′ and j � i + n2 + 1, but then we cannot
have (vi , v j) ∈ X by construction of i(X), which completes the of the claim that ϕ maps FΣ(Cn) into
FΣ(Cn1 ⊕ Cn2).

We now show that ϕ is injective. To do this, we show that ϕ(ϕ(X)) � X for any X ∈ D – namely
that ϕ is an involution onD. This can be seen by showing that we always have i(X) � i(ϕ(X)). To
see this, observe that i(X) is defined as the first i ≥ 0 such that none of the four edges of the cycle ci �

(vn1−i , vn1−i+1 , vn−i , vn−i+1) exist in X. Thus it suffices to show that for each min{n1 , n2} − 1 > i ≥ 0,
the number of edges in ci is preserved after permuting the vertices by σi(X). To see this, note that
if i(x) > i, then (σi(X)(vn1−i), σi(X)(vn1−i+1), σi(X)(vn−i), σi(X)(vn−i+1)) � (vn−i , vn−i+1 , vn1−i , vn1−i+1),
which is the same cycle. If i(X) < i, then σi(X) does not move any of the vertices in ci . Finally,
if i(X) � i, then (σi(X)(vn1−i), σi(X)(vn1−i+1), σi(X)(vn−i), σi(X)(vn−i+1)) � (vn1−i , vn−i+1 , vn−i , vn1−i+1),
which again is the same cycle ci (just with the ordering of the vertices reversed). So ϕ(ϕ(X)) � X for
any X ∈ D, so in particular ϕ : FΣ(Cn) → FΣ(Cn1 ⊕ Cn2) is injective.

To show surjectivity, it suffices to show that if X ∈ FΣ(Cn1 ⊕ Cn2) then ϕ(X) ∈ FΣ(Cn). Namely,
that ϕ can also be defined as a valid function ϕ : FΣ(Cn1 ⊕ Cn2) → FΣ(Cn). Again, this is equivalent
to showing that for any signed edge e � (vi , v j) ∈ X, vi , v j are connected in Cn1 ⊕ Cn2 if and
only if vσX(i) , vσX( j) are connected in Cn . Since σX is an involution, this is the same as asking that
for any signed edge e � (vi , v j) ∈ X, vσX(σX(i)) , vσX(σX( j)) are connected in Cn1 ⊕ Cn2 if and only if
vσX(i) , vσX( j) are connected in Cn . Setting i′ � σX(i), j′ � σX( j), this states that for all signed edges
(vi′ , v j′) ∈ PσXXPσX � Y ∈ D, we have that vi′ , v j′ are connected in Cn if and only if vσX(i′) , vσX( j′) are
connected in Cn1 ⊕ Cn2 . But as shown above, we have that i(X) � i(ϕ(X)), so σX � σY , and then this
fact was already proven above for any Y ∈ D, which completes the proof.

�

Now for any signed graph Σ on n vertices, let AΣ be its adjacency matrix. Note that we
can equivalently define via FΣ(Cn) � {H ⊆ Cn , | PσAΣPT

σ � AH , σ ∈ Sn}. Here H ⊆ Cn

means H is a subgraph of Cn . On the other hand, we may be interested in the potentially
much larger set of all possible permutations σ such that PσAΣPT

σ � AH for some H ⊂ Cn .
So define HΣ(Cn) � {σ | PσAΣPT

σ � AH ,H ⊂ Cn , σ ∈ Sn}. It is not difficult to show that
|HΣ(Cn)| � |Aut(Σ)| |FΣ(Cn)|, where Aut(Σ) is the set of (signed) graph automorphisms of Σ.

Fact 5.14. We have |HΣ(Cn)| � |Aut(Σ)| |FΣ(Cn)|.

Proof. Fix any H ⊂ Cn such that PσAΣPT
σ � AH for some σ ∈ Sn . We show that there are exactly

|Aut(Σ)| elements σ′ ∈ Sn such that Pσ′AΣPT
σ′ � AH . By definition, Aut(Σ) is the set of permutations
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π ∈ Sn with PσAΣPT
σ � AΣ. For every π ∈ Aut(Σ), we have PσPπAΣPπPT

σ � Pσ◦πAΣPT
σ◦π � AH , and

moreover the set of elements |{σ ◦π | π ∈ Aut(Σ)}| � |Aut(Σ)| since Sn is a group. Now suppose we
have some λ ∈ Sn such that PλAΣPT

λ � AH and λ < {σ ◦ π | π ∈ Aut(Σ)}. Then PσAΣPT
σ � PλAΣPT

λ,
so Pσ−1◦λAΣPT

σ−1◦λ � AΣ, which by definition implies that σ−1 ◦ λ � x for some x ∈ Aut(Σ). Thus
λ � σ ◦ x ∈ {σ ◦ π | π ∈ Aut(Σ)}, which is a contradiction. �

Corollary 5.15. Fix any n � n1 + n2. Fix any simple graph |Σ|, such that any set of vertex disjoint edges
{e1 , . . . , ek} in |Σ| has size at most k ≤ min{n1 , n2}/4, and let Σ � (|Σ|, σ) be any signing of |Σ|. Let
FΣ(Cn) denote the set of subgraphs of Cn isomorphic to |Σ|, and similarly define FΣ(Cn1 ⊕ Cn2). Then we
have ���HΣ(Cn)

��� � ���HΣ(Cn1 ⊕ Cn2)
���

5.3 Lower Bounds for Schatten, Ky-Fan, and Tail Error Testing

In this section, we demonstrate how our construction of subgraph equivalent matrices with gaps in
their spectrum result in lower bounds for a number of other spectral testing problems via Lemma
5.8. We begin by proving a lower bound for testing Schatten norms. To do this, we must first
demonstrate that there is a gap in the Schatten 1 norm between a cycle and the union of two disjoint
cycles.

Fact 5.16 (Theorem 1 of [Kna09]). Fix any a , b , n ∈ �with sin(b/2) , 0. Then we have

n−1∑
k�0

cos(a + kb) �
sin( nb

2 )
sin( b2 )

cos
(
a +
(n − 1)b

2

)
Proposition 5.17. Fix any d ≥ 6 be any integer divisible by 4. Then

‖Cd ‖S1 � 4 · cos (π/d)
sin(π/d)

Proof. By [Chu96], for any d ≥ 3 the eigenvalues of Cd are given by 2 · cos(2π j
d ) for j � 0, 1, . . . , d − 1.

Let a1 � bd/4c , a2 � b3d/4c , a3 � d − a2 − 1.

‖Cd ‖1 � 2
d−1∑
j�0

����cos
(
2π j

d

)����
� 2 ©«

a1∑
j�0

cos
(
2π j

d

)
−

a2∑
j�a1+1

cos
(
2π j

d

)
+

d−1∑
j�a2+1

cos
(
2π j

d

)ª®¬
� 2 ©«

a1∑
j�−a3

cos
(
2π j

d

)
−

a2∑
j�a1+1

cos
(
2π j

d

)ª®¬
(34)

We analyze each term in the above via Fact 5.16. Firstly:
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a1∑
j�−a3

cos
(
2π j

d

)
�

a1+a3∑
j�0

cos
(
2π j

d
− 2πa3

d

)
�

sin((a1 + a3 + 1)π/d)
sin(π/d) cos

(
(a1 + a3)π

d
− 2πa3

d

) (35)

Note that if d is divisible by 4, the above becomes 2 cos(π/d)/sin(π/d). Next, for the second
term, we have

a2∑
j�a1+1

cos
(
2π j

d

)
�

a2−a1−1∑
j�0

cos
(
2π j

d
− 2π(a1 + 1)

d

)
�

sin((a2 − a1)π/d)
sin(π/d) cos

(
(a2 − a1 − 1)π

d
− 2π(a1 + 1)

d

) (36)

Again, note that if d is divisible by 4, the above becomes 2 cos(π/d)/sin(π/d). Putting these two
equations together, we have that

‖Cd ‖1 � 4 · cos (π/d)
sin(π/d)

�

Proposition 5.18. Fix any d larger than some constant. Then we have��‖C8d ‖S1 − ‖C4d ⊕ C4d ‖S1

�� & 1
d3

Proof. By the prior Lemma, we have ‖Cd ‖S1 � 4 cot(π/d) for any d divisible by 4. Thus using the
Taylor expansion of cotangent, we have

‖C8d ‖S1 � 4
(
8d
π

+
π

24d
+

π3

45 · 512 · d3 + O(1/d5)
)

(37)

and

‖‖C4d ⊕ C4d ‖S1 � 2‖C4d ‖S1

� 4
(
8d
π

+
π

24d
+

π3

45 · 128 · d3 + O(1/d5)
) (38)

Thus ��‖C8d ‖S1 − ‖C4d ⊕ C4d ‖S1

�� & 1
d3 (39)

�

Theorem 5.19. Fix any 1√
n
≤ ε ≤ 1. Then given A ∈ �n×n with ‖A‖∞ ≤ 1, any non-adaptive sampling

algorithm which distinguishes between the cases

1. ‖A‖S1 > ε0n1.5
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2. ‖A‖S1 < ε0n1.5 − εn1.5

with probability at least 3/4, where ε0 � Θ̃(ε), must query at least Ω̃(1/ε4) entries of A.

Proof. We use the hard instance D1 ,D2 as earlier. Set k � C 1
ε2 log9(1/ε) , t � log k, and d � 4k, and

m � n/(dk). We instantiate the matrices (B,D,Z) in the hard instance via B � C2d ,D � �d ⊕ Cd ,
and let Z � δi , j for i ≤ j, where δi , j ∈ {−1, 1} are i.i.d. Bernoulli random variables, so that Z ∈ �m×m

is a symmetric random Bernoulli matrix. Using the fact that ‖Z‖2 ≤ O(
√

n)with high probability
[Ver10], along with the fact that ‖Z‖2F � n2 deterministically, we have that ‖Z‖S1 > C1m1.5 with
non-zero probability for some constant C1 > 0, as the former two facts imply that Z has Ω(n)
eigenvalues with magnitude Θ(

√
n). Thus, we can deterministically fix Z to be such a matrix with

{1,−1} entries such that ‖Z‖S1 ≥ C1m1.5. Given this, we have ‖B̃‖S1 � ‖B ⊗ Z‖S1 � ‖B‖S1 · ‖Z‖S1 ,
and so by Proposition 5.18, we have ���‖B̃‖S1 − ‖D̃‖S1

��� ≥ C0
m1.5

d3

for some absolute constant C0 ≥ 0. Note also that we have ‖B‖S1 > Ω(d), where we use the fact that
a constant fraction of the eigenvalues 2 · cos(2π j

d ) for j � 0, 1, . . . , d − 1 of B are Ω(1). Thus we have
‖B̃‖S1 � dm1.5.

NowbyProposition 5.10, weobtain thatB �U t
2d ,S2d

D, and thus B̃ � B⊗Z �U t
2d ,Γ2d ,2dm

D⊗Z � D̃by
Lemma 5.7. Thus by Lemma 5.8, we have that distinguishingD1 fromD1 requiresΩ(k2) � Õ(1/ε4)
samples for any non-adaptive algorithm. It suffices then to show that if A1 ∼ D1 and A2 ∼ D2, then
we have the desired gap in Schatten norms. We have

��‖A1‖S1 − ‖A2‖S1

�� ≥ k∑
i�1

C0
m1.5

d3

≥ C0
n1.5

d4.5k1/2

≥ εn1.5

(40)

Where the last inequality follows setting C large enough, and assuming that 1/ε is larger than some
constant as in Theorem 5.12. Again, if 1/ε is not larger than some constant, a Ω(1) lower bound
always applies, since an algorithm must read at least one entry of the matrix to have any advantage.
Now note that we also have ‖A1‖S1 � k‖B̃‖S1 � kdm1.5 � n1.5/

√
dk � Θ̃(εn1.5) as desired. To

complete the proof, we can scale down all the entries of the input matrix by 1/2, which results in
the required bounded entry property, and only changes the gap by a constant factor. �

We now present our lower bound for testing Ky-Fan norms. Recall that for a matrix A ∈ �n×n

and 1 ≤ s ≥ n, the Ky-Fan s norm is defined as ‖A‖KF(s) �
∑k

i�1 σi(A), where σi(A) is the i-th
singular value of A.

Theorem 5.20. Fix any 1 ≤ s ≤ n/(poly log n). Then there exists a fixed constant c > 0 such that given
A ∈ �n×n with ‖A‖∞ ≤ 1, any non-adaptive sampling algorithm which distinguishes between the cases

1. ‖A‖KF(s) >
c

log(s)n
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2. ‖A‖KF(s) < (1 − ε0) c
log(s)n

with probability at least 3/4, where ε0 � Θ(1/log2(s)), must query at least Ω̃(s2) entries of A.12

Proof. The proof is nearly the same as the usage of the hard instance in Theorem 5.12. Set
k � s, and let d0 � Θ(log s) and d � 2d0 + 1. We apply Lemma 5.8 with the hard instance as
instantiated with Z � 1m×m , and the matrices B � 1/4(ACd − 2�d) and D � 1/4(ACd0⊕Cd0+1 − 2�d).
Notice that since the eigenvalues of Cd are given by 2 · cos(2π j

d ) for j � 0, 1, . . . , d − 1 [Chu96],
we have λmin(ACd ) � −2 cos( 2πd0

2d0+1 ) � −2 +Θ(1/log2(1/ε)), λmin(ACd0⊕Cd0+1) � −2, and λmax(ACd ) �
λmax(ACd0⊕Cd0+1) � 2. Thus ‖D‖2 � 4 and ‖B‖2 � 4 − Θ(1/d2), and moreover ‖D ⊗ Z‖2 � 4m

‖B ⊗ Z‖2 � 4m(1 − Θ(1/log2(1/ε))). Thus if A1 ∼ D1, we have ‖A1‖KF(s) >
∑k

i�1 4m � 4km, and
‖A2‖KF(s) < 4km(1 −Θ(1/log2(1/ε))). The proof then follows from the Ω(k2) lower bound for this
hard instance via Lemma 5.8.

�

We now present our lower bound for testing the magnitude of the s-tail ‖A − As ‖2F, where
As � UΣsVT is the truncated SVD (the best rank-s approximation to A). Note that ‖A − As ‖2F �∑

j>s σ
2
j (A).

Theorem 5.21. Fix any 1 ≤ s ≤ n/(poly log n). Then there exists a fixed constant c > 0 (independent of
ε), such that given A ∈ �n×n with ‖A‖∞ ≤ 1, any non-adaptive sampling algorithm which distinguishes
between the cases

1. ‖A −As ‖2F >
c

log(s) ·
n2

s

2. ‖A −As ‖2F < (1 − ε0) · c
log(s) ·

n2

s

with probability at least 3/4, where ε0 � Θ̃(1), must query at least Ω̃(s2) entries of A.

Proof. We set s � k, and use the same hard instance as in Theorem 5.20 above. Note that ifD1 ,D2
are defined as in Theorem 5.20, if A1 ∼ D1, As ∼ Ds , we have

∑s
i�1 λi(A1) � s(4m)2 � 16n2/(sd2)

and
∑s

i�1 λi(A2) � 16n2/(sd2)(1 −Θ(1/log2 s)). Now note that ‖A1‖2F � ‖A2‖2F � kdm2 � n2/(dk) �
n2/(ds), using that each of the single cycle and union of two smaller cycles has d edges, so the
Frobenius norm of each block is dm2 in both cases. Using that d � Θ(log s), we have that if
‖(A1) − (A1)s‖2F > n2/(ds) − 16n2/(sd2) � c n2

s log(s) for some constant c > 0, and ‖(A2) − (A2)s‖2F >
n2/(ds) − 16n2/(sd2)(1 −Θ(1/log2 s)) � c n2

s log(s) + Θ̃(
n2

s ), which completes the proof after applying
Lemma 5.8. �

5.4 Lower Bound For Estimating Ky-Fan of AAT via Submatrices

In this section, we demonstrate a Ω(1/ε4) query lower bound for algorithms which estimate the
quantity

∑k
i�1 σ

2
i (A) � ‖AAT ‖KF(k) for any k ≥ 1 by querying a sub-matrix. The following lemma as

a special case states that for ε � Θ(1/
√

n), additive εn2 approximation of ‖AAT ‖KF(k) requires one
to read the entire matrix A.

12Ω̃ hides log(s) factors here.
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Lemma 5.22. Fix any 1 ≤ k ≤ n, and fix any 100√
n
≤ ε ≤ 1/4. Any algorithm that queries a submatrix AS×T

of A ∈ �n×n with ‖A‖∞ ≤ 1 and distinguishes with probability at least 4/5 between the case that either:

•
∑k

i�1 σ
2
i (A) > n2/2 + εn2.

•
∑k

i�1 σ
2
i (A) ≤ n2/2

must make |S | · |T | � Ω(1/ε4) queries to the matrix A.

Proof. We design two distributionsD1 ,D2. If A1 ∼ D1, we independently set each row of A1 equal
to the all 1′s vector with probability p1 � 1/2 + 2ε, and then return either A � A1 or A � AT

1 with
equal probability. If A2 ∼ D2, we independently set each row of A2 equal to the all 1′s vector
with probability p2 � 1/2 − 2ε, and then return either A � A2 or A � AT

2 with equal probability.
Our hard instance then draws A ∼ D1+D2

2 from the mixture. First note that in both cases, we have
‖A‖22 � ‖A‖2F �

∑k
i�1 σ

2
i (A), since the matrix is rank 1. Since 100√

n
≥ ε, by Chernoff bounds, we have

that if A1 ∼ D1 then
∑k

i�1 σ
2
i (A) > n2/2 + εn2 with probability at least 99/100. Similarly, we have

that if A2 ∼ D2 then
∑k

i�1 σ
2
i (A) ≤ n2 with probability at least 99/100.

Now suppose that such an algorithm sampling |S | · |T | < c2

ε4 entries exists, for some constant
c > 0. Then by Yao’s min-max principle, there is a fixed submatrix S, T ⊂ [n] such that, with
probability 9/10 over the distribution D1+D2

2 , the algorithm correctly distinguishes D1 from D2
given only AS×T . Suppose WLOG that |S | ≤ c

ε2 . Then consider the case only when A1 or A2 is
returned by either of the distributions, and not their transpose, which occurs with probability at
least 1/2. Then AS×T is just a set of |S | rows, each of which are either all 0’s or all 1’s. Moreover, each
row is set to being the all 1’s row independently with probability p1 in the case of D2, and p2 in
the case ofD2. Thus, by Independence across rows, the behavior of the algorithm can be assumed
to depend only on the number of rows which are set to 1. Thus, in the case of D1 the algorithm
receives X1 ∼ Bin(|S |, p1) and inD2 the algorithm receives X2 ∼ Bin(|S |, p2). Then if dTV (X1 ,X2) is
the total variational distance between X1 ,X2, then by Equation 2.15 of [AJ06], assuming that ε

√
|S |

is smaller than some constant (which can be obtained by setting c small enough), we have

dTV (X1 ,X2) ≤ O(ε
√
|S |)

Which is at most 1/100 for c a small enough constant. Thus any algorithm can correctly distinguish
these two distributions with advantage at most 1/100. Since we restricted our attention to the event
when rows were set and not columns, and since we conditioned on the gap between the norms
which held with probability 99/100, it follows that the algorithm distinguishesD1 fromD2 with
probability at most 1/2 + 1/4 + (2/100) < 4/5, which completes the proof. �

6 Conclusion

In this work, we gave an optimal (up to log(1/ε) factors) algorithm for testing if a matrix was PSD, or
was far in spectral norm distance from the PSD cone. In addition, we gave a query efficient algorithm
for testing if a matrix was PSD, or was εn2 far from the PSD-cone in `2

2 distance. Furthermore, we
established a new technique for proving lower bounds based on designing “subgraph-equivelant”
matrices. We believe that this technique is quite general, as shown by its immediate application to
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lower bounds for the Schatten-1 norm, Ky-Fan norm, and tail error testing. Our construction could
also likely be useful for proving lower bounds against testing of graph properties, which is a well
studied area [Gol10]. We pose the open problem to design (or demonstrate the non-existence of)
additional subgraph-equivalent matrices beyond the cycle graph construction utilized in this work,
which have gaps in their spectral or graph-theoretic properties.

Additionally, we pose the open problem of determining the exact non-adaptive query complexity
of PSD testing with `2

2 gap. As discussed in Section 1.1, there appear to be several key barriers
to improving the complexity beyond O(1/ε4). Indeed, it seems that perhaps the main tool that is
lacking is a concentration inequality for the eigenvalues of random principal submatrices. Since
most such decay results apply only to norms [Tro08, RV07], progress in this direction would likely
result in important insights into eigenvalues of random matrices.

Finally, we note that the complexity of the testing problems for several matrix norms, specifically
the Schatten p and Ky-Fan norms, are still open in the bounded entry model. In particular, for the
Schatten 1 norm, to the best of our knowledge no non-trivial algorithms exist even for estimation
with additive error Θ(n1.5), thus any improvements would be quite interesting.
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A Proof of Eigenvalue Identity

PropositionA.1. Let A ∈ �n×n be any real symmetric matrix. Then minB�0 ‖A−B‖2F �
∑

i:λi(A)<0 λ
2
i (A).

Proof. Let 1i be the eigenvector associated with λi � λi(A). First, setting B �
∑

i:λi(A)≥0 λi1i1
>
i ,

which is a PSD matrix, we have ‖A − B‖2F � ‖∑i:λi(A)<0 λi(1i1
>
i A)‖22 �

∑
i:λi(A)<0 λ

2
i (A), where the

second equality follows from the Pythagorean Theorem, which proves that minB�0 ‖A − B‖2F ≤∑
i:λi(A)<0 λ

2
i (A). To see the other direction, fix any PSDmatrix B, and let Z � B−A. Then Z+A � 0,

where � is the Lowner ordering, thus Z � −A, which by definition implies that x>Zx ≥ −x>Ax
for all x ∈ �n . Then by the Courant-Fischer variational characterization of eigenvalues, we have
that λi(Z) ≥ −λi(A) for all i. In particular, |λi(Z)| ≥ |λi(A)| for all i such that λi(A) < 0. Thus
‖Z‖2F �

∑
i λ

2
i (Z) ≥

∑
i:λi(A)<0 λ

2
i (Z) ≥

∑
i:λi(A)<0 λ

2
i (A), which completes the proof.

�
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