
Beyond Tree Embeddings – a Deterministic Framework for

Network Design with Deadlines or Delay

Yossi Azar

azar@tau.ac.il

Tel Aviv University

Noam Touitou

noamtouitou@mail.tau.ac.il

Tel Aviv University

Abstract

We consider network design problems with deadline or delay. All previous results for these models

are based on randomized embedding of the graph into a tree (HST) and then solving the problem on this

tree. We show that this is not necessary. In particular, we design a deterministic framework for these

problems which is not based on embedding. This enables us to provide deterministic poly-log(n)-

competitive algorithms for Steiner tree, generalized Steiner tree, node weighted Steiner tree, (non-

uniform) facility location and directed Steiner tree with deadlines or with delay (where n is the number

of nodes).

Our deterministic algorithms also give improved guarantees over some previous randomized re-

sults. In addition, we show a lower bound of poly-log(n) for some of these problems, which implies

that our framework is optimal up to the power of the poly-log. Our algorithms and techniques di�er

signi�cantly from those in all previous considerations of these problems.

1

ar
X

iv
:2

00
4.

07
94

6v
1

 [
cs

.D
S]

 1
6

A
pr

 2
02

0

1 Introduction

In online minimization problems with deadlines, requests are released over a timeline. Each request has

an associated deadline, by which it must be served by any feasible solution. The goal of an algorithm is to

give a solution which minimizes the total cost incurred in serving the given requests.

Another model, which generalizes the deadline model, is that of online problems with delay. In those

problems, requests again arrive over a timeline. While requests no longer have a deadline, each pending

request (i.e. a request which has been released but not yet served) incurs growing delay cost. The total

cost of the algorithm is the cost of serving requests plus the total delay incurred over those requests; the

delay cost thus motivates the algorithm to serve requests earlier.

In this paper, we consider classic network design problems in the deadline/delay setting. In the classic

(o�ine) setting of network design, one is given a graph of n nodes and a set of connectivity requests (e.g.

pairs of nodes to connect). The input contains a collection of elements (e.g. edges) with associated cost.

A request is satis�ed by any subset of elements which serves the connectivity request (e.g. a set of edges

which connects the requested pair of nodes). A feasible solution for the o�ine problem is a set of elements

which simultaneously satis�es all connectivity requests.

Such an o�ine network design problem induces an online problem with deadlines/delay as follows. The

input graph is again given in advance. The requests, however, arrive over a timeline (with either a deadline

or a delay function). At any point in time, the algorithm may choose to transmit an o�ine solution (i.e.

a set of elements); each pending request that is served by the transmitted solution in the o�ine setting is

served by this transmission in the online setting. In keeping with previous work on these problems, this

paper considers the clairvoyant model, in which the deadline of a request – or its future accumulation of

delay – is revealed to the algorithm upon the release of the request.

We next discuss such induced network design problems with deadlines/delay that have been previously

considered. The usual solution for such problems is to randomly embed the general input into a tree,

incurring a distortion to the metric space, then solving the problem on the resulting tree. In this paper, we

present frameworks which bypass this usual mode of work, enabling improved guarantees, generality and

simplicity.

Steiner tree with deadlines/delay. In this problem, requests are released on nodes of a graph with

costs to the edges. Serving these requests comprises transmitting a subgraph which connects the request

and a designated root node of the graph. This problem was studied in the case in which the graph is a tree

– in this case it is called the multilevel aggregation problem (�rst presented in [9]). WithD the depth of

the input tree, the best known results for multilevel aggregation areO(D) competitiveness for the deadline

model by Buchbinder et al. [15], and O(D2) competitiveness for the delay model in [6]. Thus, a simple

algorithm for general Steiner tree with deadlines/delay based on metric tree embedding for this problem

is to embed a general graph into a tree, and then using the best multilevel aggregation algorithms; in both

the deadline and delay case, this can be seen to yield O(log2 n)-competitive randomized algorithms.

Facility location with deadlines/delay. In this problem, presented in [6], the input graph has weights

to the edges and facility costs to the nodes. Requests arrive on the nodes of the graph, to be served by

transmissions. A transmission consists of a set of facilities U , and a collection of pending requests Q. The

transmission serves the requests of Q, and has a cost which is the sum of facility costs of the nodes in U ,

plus the sum of distances from each request of Q to the closest facility in U . The best known algorithms

for both the deadline and delay variants of this problem, also based on tree embedding, are randomized

and O(log2 n) competitive – but apply only to the uniform problem, where the nodes’ facility costs are

identical.

2

This paper introduces a general deterministic framework for solving such network design problems on

general graphs, with deadlines or with delay, which does not rely on tree embeddings. This framework

obtains improved results to both previous problems, as well as new results for Steiner forest, nonuniform

facility location, multicut, Steiner network, node-weighted Steiner forest and directed Steiner tree.

1.1 Our Results

We now state speci�cally our results for network design problems with deadlines/delay. Let E be the

collection of elements in an o�ine network design problem. In this paper, we show the following results.

1. If there exists a deterministic (randomized) γ-approximation for the o�ine network design problem

which runs in polynomial time, then there exists anO(γ log |E|)-competitive deterministic (random-

ized) algorithm for the induced problem with deadlines, which also runs in polynomial time.

2. If there exists a deterministic (randomized) γ-approximation for the prize-collecting variant of the

o�ine network design problem, then there exists an O(γ log |E|)-competitive deterministic (ran-

domized) algorithm for the induced problem with delay, which also runs in polynomial time.

Each of those results is obtained through designing a framework which encapsulates the given approxi-

mation algorithm.

We consider several network design problems on a graph of n nodes, which are described in Subsection 1.3.

Plugging into our frameworks previously-known o�ine approximations (for either the original or prize-

collecting variants) yields the results summarized in Table 1. Except for the algorithm for directed Steiner

tree (which is randomized and runs in quasi-polynomial time due to the encapsulated approximation), all

algorithms are deterministic and run in polynomial time.

Table 1: Framework Applications

With Deadlines With Delay

Edge-weighted Steiner forest O(log n) O(log n)
Multicut O(log2 n) O(log2 n)
Edge-weighted Steiner network O(log n) O(log n)
Node-weighted Steiner forest O(log2 n) O(log2 n)
Facility location (non-uniform) O(log n) O(log n)

Directed Steiner tree O
(

log3 n
log logn

)
?

1

Our frameworks improve on previous results in the following way:

1. For Steiner tree with deadlines/delay, we give O(log n)-competitive deterministic algorithms, while

the best previously-known algorithms are randomized and O(log2 n)-competitive [9, 6].

2. For facility location with deadlines/delay, the best previously-known algorithms are randomized,

O(log2 n)-competitive [6], and apply only for the uniform case (where facilities have the same

opening cost). We give O(log n)-competitive, deterministic algorithms which apply also for the

non-uniform case.

1

We could �nd no approximation result for prize-collecting directed Steiner tree. We conjecture that such an approximation

algorithm exists which loses only a constant factor apart from the best approximation for the original o�ine problem, in which

case we obtain an identical guarantee to the deadline case.

3

For node-weighted Steiner forest and directed Steiner tree, our results are relatively close to the optimal

solution – in appendix we show an Ω(
√

log n) lower bound on competitiveness through applying the lower

bound of [3] for set cover with delay. As an information-theoretic lower bound, it applies for algorithms

with unbounded computational power.

While the common regime in problems with deadlines/delay is that the number of requests k is unbounded

and the number of nodes n is �nite, we also address the opposite regime in which k is small – the latter

being more popular in classic network design problems. We achieve the best of both worlds – namely,

we show a modi�cation to the deadline/delay frameworks which replaces n by min{n, k} in the compet-

itiveness guarantees. This modi�cation applies to all problems considered in this paper except for facility

location, but conjecture that a similar algorithm would apply there as well.

1.2 Our Techniques

The deadline framework performs services (i.e. transmissions) of various costs; the logarithmic class

of the cost of a service is called its level. Pending requests also have levels, which are maintained by the

algorithm. Whenever a pending request of level j reaches its deadline, a service of level j + 1 starts.

This service is only meant to serve requests of lower or equal level (we call such requests eligible for the

service). After a service concludes, the level of remaining eligible requests is raised to that of the service.

Intuitively, this means that once a pending request has seen a service of cost 2j , it refuses to be served by

any cheaper service. This makes use of the aggregation property – higher-cost services tend to be more

cost-e�ective per request.

When a service is triggered, it has to choose which of the eligible requests to serve, subject to its budget

constraint. The service prioritizes requests of earlier deadline, adding them until the budget is exceeded.

The cost of serving those requests is estimated using the encapsulated approximation algorithm.

The main idea of levels exists in the delay framework as well. However, handling general delay functions

requires more intricate procedures – namely, for triggering a service and for choosing which requests to

serve. The delay framework maintains an investment counter for each pending request, which allows a

service to pay for the delay of a request (i.e. the delay cost is charged to the budget of the service). A

service is started when a large amount of delay for which no service has paid has accumulated on the

requests of a particular level j – the started service is of level j + 1.

When choosing which of the eligible requests to serve, the algorithm considers the �rst point in time in

which an eligible request would accumulate delay which is not paid for by its investment counter. Using its

budget of 2j , it then attempts to push back this point in time farthest into the future – it does so either by

raising the investment counters, or by serving requests. The way to balance these two methods is problem-

speci�c – the framework thus formulates a prize-collecting instance, where the penalties represent future

delay, and calls the encapsulated prize-collecting approximation algorithm to solve it.

1.3 Considered Problems

In this paper, we consider the induced deadline/delay problems of several network design problems. We

now introduce those problems.

Steiner tree and Steiner forest. In the Steiner forest problem, each request is a pair of terminals (i.e.

nodes in the input graph), and the elements are the edges. A request is satis�ed by a set of edges if the two

terminals of the request are connected by those edges. The Steiner tree problem is an instance of Steiner

forest in which the input also designates a speci�c node as the root, such that every request contains the

root as one of its two terminals. A special case of the Steiner tree problem is the multilevel aggregation

problem, in which the graph is a tree.

4

We also consider a stronger variant of the Steiner forest problem, in which each request is a subset of nodes

to be connected. While this problem is identical to the original Steiner forest in the o�ine setting (as the

subset can be broken down to pairs), their induced deadline/delay problems are substantially di�erent.

Multicut. In the o�ine multicut problem, each request is again a pair of terminals, and the elements are

again the edges. A request is satis�ed by a set of edges which, if removed from the original graph, would

disconnect the pair of terminals.

As in Steiner forest, it makes sense to de�ne the stronger variant in which each request is a subset of nodes

which must be disconnected from each other – while both variants are equivalent in the o�ine setting,

their induced deadline/delay problems are distinct.

Node-weighted Steiner forest. In this problem, the elements are the nodes, rather than edges. Each

request is again a pair of terminals, and is satis�ed by a solution which contains (in addition to the terminals

themselves) nodes that connect the pair of terminals.

Edge-weighted Steiner network. This problem is identical to the Steiner forest problem, except that

each request q comes with a demand f(q) ∈ N. A request is satis�ed by a set of edges that contains f(q)
edge-disjoint paths between the terminals.

Directed Steiner tree. This problem is identical to the Steiner tree problem, except that the graph is now

directed. Each pair request, where one of its terminals is the root, is satis�ed by a set of edges that contain

a directed path from the root to the other terminal.

Facility location. In the facility location problem, the requests are on the nodes of the graph. The elements

are the nodes of the graph, upon which facilities can be opened. The cost of the solution is the total cost

of opened facilities (opening cost) plus the distances from each request to the closest facility (connection

cost).

The connection cost prevents facility location from being strictly compliant to the analysis of the frame-

work we present. However, we nonetheless show that the framework itself applies to facility location as

well.

1.4 Related Work

The classic online consideration of network design problems has been studied in numerous papers (e.g.

[30, 23, 8, 34, 27, 1]). In this genre of problems, the connectivity requests arrive one after the other in a

sequence (rather than over time), and must be served immediately by buying some elements which serve

the request. These bought elements remain bought until the end of the sequence, and can thus be used to

serve future requests. This is in contrast to the deadline/delay model considered in this paper, where the

elements are transmitted rather than bought, and thus future use of these elements requires transmitting

them again (at additional cost).

There is no connection between the classic online variant of a problem and the deadline/delay variant

– that is, neither problem is reducible to the other. There could be a stark di�erence in competitiveness

between the two models, which depends on the network design problem. For some problems, the classic

online admits much better competitive algorithms – for example, in the multilevel aggregation problem,

the classic online problem is Steiner tree on a tree, which is trivially 1-competitive (while the best known

algorithms for multilevel aggregation with deadlines/delay have logarithmic ratio). For other problems,

the opposite is true – for classic online directed Steiner tree, a lower bound of Ω(n1−ε) exists on the

competitiveness of any deterministic algorithm, for every ε > 0. In contrast, for directed Steiner tree with

deadlines/delay, we present in this paper polylogarithmic-competitive algorithms.

The multilevel aggregation problem was �rst considered by Bienkowski et al. [9], who gave an algorithm

with competitiveness which is exponential in the depthD of the input tree, for the delay model. This result

5

was then improved, �rst to O(D) for the deadline model by Buchbinder et al. [15], and then to O(D2)
for the general delay model in [6]. These results yield O(log2 n)-competitive randomized algorithms for

Steiner tree with deadlines/delay on general graphs, through metric embeddings; for more general Steiner

problems (e.g. Steiner forest, node-weighted Steiner tree) no previously-known algorithm exists.

The multilevel aggregation also generalizes some past lines of work – the TCP acknowledgement problem

[20, 33, 16] is multilevel aggregation with D = 1, and the joint replenishment problem [17, 14, 10] is

multilevel aggregation with D = 2.

Another problem studied in the context of delay is that of matching with delay [2, 22, 21, 4, 11, 12]. In this

problem, requests arrive on points of a metric space, and gather delay until served. The algorithm may

choose to serve two pending requests, at a cost which is the distance between those two requests in the

metric space. This problem seems hard without making assumptions on the delay function, and thus is

usually considered when the delay functions are identical and linear.

The k-server problem in the deadline/delay context has also been studied [5, 13, 6]. In this problem, k
servers exist in a metric space, and requests again arrive on points of the space, gathering delay. To serve

a request, the algorithm must move a server to that request, paying the distance between the server and

the request.

2 Model and Deadline Framework

We are given a set E of elements, with costs c : E → R+
. Requests are released over time, and we denote

the release time of a request q by rq . Each request has a deadline dq , by which it must be served. At any

point in time, the algorithm may transmit a subset of elements E ⊆ E , at a cost

∑
e∈E c(e).

Each request q is satis�ed by a collection of subsets Xq ⊆ 2E which is upwards-closed – that is, if E1 ⊆
E2 ⊆ E and we have that E1 ∈ Xq then E2 ∈ Xq . If the algorithm transmits the set of elements E, then

all pending requests q such that E ∈ Xq are served by that transmission.

To give a concrete example of this abstract structure, consider the Steiner forest problem. In this problem,

the elements E are the edges of a graph. For a request q for the terminals (u1, u2), the collection Xq is

the collection of edge sets E′ such that (u1, u2) are in the same connected component in the spanning

subgraph with edges E′.

One can also look at the corresponding o�ine problem – given a set of requestsQ, �nd a subset of elements

E′ of the minimal total cost such that E′ ∈ Xq for every q ∈ Q.

Now, consider a class of problems of this form – such as Steiner tree for example – and denote this class

by ND. The main result of this section is the following.

Theorem2.1. If there exists a γ deterministic (randomized) approximation algorithm forNDwhich runs
in polynomial time, then there exists an O(γ log |E|)-competitive deterministic (randomized) algorithm
for ND with deadlines, which also runs in polynomial time.

Remark 2.2. If the approximation algorithm runs in quasi-polynomial time, then the online algorithm

also runs in quasi-polynomial time.

6

Remark 2.3. In this paper, we consider randomized approximation algorithms which have determinis-

tic approximation guarantees and expected running time guarantees. Converting a randomized algo-

rithm of expected approximation guarantee and deterministic running time to the format we consider

can be achieved with repeated running of the algorithm until the resulting approximation is at most a

factor of 2 from the expected guarantee – Markov’s inquality ensures that the expected running time

of this new algorithm is small.

The only requirement for this conversion is that the algorithm is able to know whether its approx-

imation meets the expected guarantee – this requirement is met, for example, in all approximation

algorithms based on LP solving + rounding (and in particular, all randomized algorithms in this paper).

For a set of requestsQ, we denote the solution for the o�ine problem returned by the γ approximation by

ND(Q). We also denote the optimal solution by ND
∗(Q).

2.1 The Framework

We now present a framework for encapsulating an approximation algorithm for ND to obtain a competitive

algorithm for ND with deadlines, thus proving Theorem 2.1.

Calls to approximation algorithm. The framework makes calls to the approximation algorithm for

ND – we denote such a call on a set of requestsQ by ND(Q) (the universe of elements E , and the elements’

costs, are identical to those of the online problem). Similarly, we denote the optimal solution for this set

of requests by ND
∗(Q).

The framework also makes calls to ND where the costs of the elements are modi�ed – namely, that the

cost of some subset of elements E0 ⊆ E is set to 0. We use NDE0←0 to denote such calls.

When calling the approximation algorithm, we store the resulting solution (i.e. subset of elements) in a

variable. If a solution is stored in a variable S, we use c(S) to refer to the cost of that solution. Note that

this cost is not necessarily the sum of costs of elements in that solution – it is possible that the solution is

for an instance in which the costs of some set of elements E0 are set to 0.

Algorithm’s description. The framework is given in Algorithm 1. For each pending request q, the

algorithm maintains a level `q . Upon the arrival of a new request q, the function UponReqest is called.

This function assigns the initial value of the level of q, which is initially supposed to be the logarithmic

class of the cost of the least expensive (o�ine) solution for q – the algorithm approximates this by making

a call to the approximation algorithm on {q}, then dividing by the approximation ratio γ. Over time, the

level of a request may increase.

Whenever a deadline of a pending request is reached, the function UponDeadline is called, and the algo-

rithm starts a service. Services also have levels – the level of a service λ, denoted by `λ, is always `q + 1,

where q is the request which triggered the service. Intuitively, the service λ is “responsible” for all pend-

ing requests of level at most `λ – these requests are called the eligible requests for λ. Overall, the service

spends O(γ · 2`λ) cost solely on serving these eligible requests.

The service constructs a transmission, which occurs at the end of the service. First, the service adds to

the transmission all “cheap” elements – those that cost at most
2`λ
|E| . Then, the service decides which

of the eligible requests to serve, using the following procedure. It considers the requests by order of

increasing deadline, adding them to the set of requests to serve. This process stops when either the cost

of serving those requests, as estimated by the approximation algorithm, exceeds the budget (O(γ · 2`λ)),

or the requests are all served.

7

Since the amount by which the budget was exceeded in the ultimate iteration is unknown, the service

transmits the solution found in the penultimate iteration, in addition to a "singleton" solution to the last

request to be served.

The �nal step in the service is to “upgrade” the level of all eligible requests which are still pending after

the transmission of the service. The level of those requests is assigned the level of the service.

Algorithm 1: Network Design with Deadlines Framework

1 Event Function UponReqest(q)

2 Set Sq ← ND({q})
3 Set Iq ← c(Sq)

γ .

4 Set `q ← blog (Iq)c // the level of the request

5 Event Function UponDeadline(q) // upon the deadline of a pending request q
6 Start a new service λ, which we now describe.

7 Set `λ ← `q + 1.

8 Set Qλ ← ∅.
// buy all cheap elements

9 Set E0 ←
{
e ∈ E

∣∣∣c(e) ≤ 2`λ
|E|

}
.

// add eligible requests by order of deadline, until budget is exceeded
10 Set S ← ∅.
11 while there exists a pending q′ /∈ Qλ such that `q′ ≤ `λ do
12 Let qlast /∈ Qλ be the pending request with the earliest deadline such that `q′ ≤ `λ.

13 Set Qλ ← Qλ ∪ {qlast}
14 Set S′ ← NDE0←0(Qλ).

15 if c(S′) ≥ γ · 2`λ then break;

16 Set S ← S′.

17 Transmit the solution E0 ∪ S ∪ Sq
last

. // serve Qλ

// upgrade still-pending requests to service’s level
18 foreach pending request q′ such that `q′ ≤ `λ do
19 Set `q′ ← `λ

2.2 Analysis

To prove Theorem 2.1, we require the following de�nitions.

De�nitions and Algorithm’s Properties

Before delving into the proof of Theorem 2.1, we �rst de�ne some terms used throughout the analysis, and

prove some properties of the algorithm.

For a service λ, we call the value set to `λ the level of λ; observe that this value does not change once

de�ned. Similarly, for a request q, we call `q the level of q. Note that unlike services, the level of a request

may change over time (more speci�cally, the level can be increased).

8

This �gure shows a possible set of services in a run of the algorithm. Each service is denoted by a star,

where the location of the star indicates the time and level of the service. Primary services are denoted by

red stars, and secondary services are denoted by blue stars. Each secondary service charges a previous

service, of level one below its own; this charging is denoted by a directed edge from the secondary service

to the charged service.

Since every service can charge – or be charged – at most once, the edges form disjoint paths. A property

maintained by the algorithm is that a service “dominates” the quadrant of lesser-or-equal level and time –

once such a service occurs, no future secondary service would charge a service in this quadrant.

Figure 1: Visualization of Services

De�nition 2.4 (Service Pointer). Let q be a request. We de�ne ptrq to be the last service λ such that

λ sets `q ← `λ in Line 19. If there is no such service, we write ptrq = null. Similarly, we de�ne

ptrq(t) to be the last service λ before time t such that λ sets `q ← `λ in Line 19 (with ptrq(t) = null

if there is no such service).

De�nition 2.5 (Eligible Requests). Consider a service λ and a request q which is pending upon the

start of λ, and has `q ≤ `λ at that time. We say that q was eligible for λ.

De�nition 2.6 (Types of Services). For a service λ, we say that:

1. λ is charged if there exists some future service λ′, which is triggered by a pending request q
reaching its deadline such that ptrq(tλ′) = λ. We say that λ′ charged λ.

2. λ is imperfect if the break command of Line 15 was reached in λ. Otherwise, we say that λ is

perfect.

3. λ is primary if, when triggered by the expired deadline of the pending request q, this request q
has ptrq(tλ) = null. Otherwise, λ is secondary.

A visualization of a possible set of services can be seen in Figure 1.

Fix any input set of requestsQ. We denote by Λ the �nal set of services by the algorithm. For every service

λ ∈ Λ, we denote by Qλ the set of requests served by λ (this is identical to the �nal value of the variable

Qλ in the algorithm). We de�ne c(λ) to be the cost of the service λ. For any subset Λ′ ⊆ Λ, we also write

c(Λ′) =
∑

λ∈Λ′ c(λ). Note that alg = c(Λ).

We denote the set of primary services made by the algorithm by Λ1, and the set of secondary services by

Λ2, such that Λ = Λ1 ∪ Λ2. We denote the set of charged services by Λ◦.

9

Proposition 2.7. Each service λ ∈ Λ◦ is charged by at most one service.

Proof. Assume for contradiction that λ is charged by both λ1 and λ2, at times t1 and t2 respectively,

and assume without loss of generality that t1 < t2. λ2 charged λ due to the pending request q2,

such that `q2 = `λ and ptrq2(tλ2) = λ. Note that q2 was pending before both λ and λ2, and was thus

pending before λ1. But after λ1, all pending requests are of level at least `λ1 = `λ+1, in contradiction

to having `q2 = `λ immediately before λ2.

The following lemma we prove shows that for a set of requests which exist in the same time, the collection

of charged services which serve them has at most one service from each level.

De�nition 2.8. We say that a set of requests Q′ = {q1, · · · , qk} is intersecting if there exists time t
such that t ∈ [rqi , dqi] for every i ∈ {1, · · · , k}. We call t an intersection time of Q′.

Lemma 2.9. Let Q′ be an intersecting set of requests. Let ΛQ′ ⊆ Λ◦ be the set of charged services in
which a request from Q′ is served. Then for every j ∈ Z, there exists at most one service λ ∈ ΛQ′ such
that `λ = j.

Proof. Assume for contradiction that there exists j ∈ Z for which there exist two distinct services

λ1, λ2 ∈ ΛQ′ such that `λ1 = `λ2 = j. Assume without loss of generality that tλ1 < tλ2 . In addition,

let q1 ∈ Q′ be a request served by λ1, and de�ne q2 ∈ Q′ to be a request served by λ2. Let t be an

intersection time of Q′.

Since λ1 is charged, there exists a request q′ which was pending at its deadline, triggering a service

λ′, such that ptrq′(tλ′) = λ1. From the de�nition of ptrq′ , we have that `q′ = `λ at time tλ′ . Thus, the

service λ′ must be of level exactly j + 1. Also note that q′ was eligible for λ1. Consider the following

two cases:

1. tλ′ > tλ2 . Since q′ was pending at tλ1 and at tλ′ , and since tλ1 < tλ2 < tλ′ , we have that q′ was

pending at tλ2 . Observe that `q′ = `λ1 at tλ2 , since λ1 occurred before λ2. But this means that

q′ was eligible for λ2, but was not served (since it was pending at tλ′). Thus, λ2 set `q′ ← `λ2
in Line 19, in contradiction to having ptrq′(tλ′) = λ1.

2. tλ′ < tλ2 . Consider that since ptrq′(tλ′) = λ1, we know that q′ was eligible for λ1. The service

λ1 added eligible requests by order of increasing deadline, and thus we know that the deadline

of q′ is after the deadline of q1. We know that Q′ is an intersecting set of requests, and thus

rq2 ≤ dq1 . Therefore, we have that rq2 < dq′ = tλ′ < tλ2 , and thus q2 was pending at tλ′ . We

know that q2 was eligible for λ2, and thus `q2 ≤ j at that time. But this contradicts the fact that

after λ′, every pending request has level at least `λ′ = j + 1.

We now move on to proving Theorem 2.1. The proof consists of upper-bounding the cost of the algorithm

and lower-bounding the cost of the optimal solution.

10

Upper-bounding alg

We prove the following lemma, which provides an upper bound on the cost of the algorithm.

Lemma 2.10. alg ≤ O(γ) ·
(∑

λ∈Λ1
2`λ +

∑
λ∈Λ◦ 2`λ

)

Proposition 2.11. The total cost of a service λ is at most O(γ) · 2`λ .

Proof. The cost of the service λ is the cost of the transmission in Line 17. The cost of this transmission

is at most the sum of the three following costs: C(E0), c(S), and c(Sq
last

). The total cost of E0, by

de�nition of E0, is at most 2`λ .

The cost c(S) is at most γ · 2`λ . To see this, observe that the loop of Line 11 either ends in the �rst

iteration (in which case S = ∅ and the cost is zero), or continues for two or more iterations. In the

second case, consider the iteration before last – since we did not break out of the loop, we have that

c(S) ≤ γ · 2`λ .

As for the cost c(Sq
last

), consider the initial level of qlast. Levels only increase over time, and we know

that upon the service λwe had that `q
last
≤ `λ. Thus, the initial level of qlast was at most `λ. According

to the way in which the initial level is set, we thus have that c(Sq
last

) ≤ 2γ · 2`λ .

Summing over the three costs completes the proof.

Proposition 2.12. Only imperfect services can be charged.

Proof. Observe that a perfect service serves all eligible requests. Thus, Line 19 is not called in such a

service, which implies that the service is not charged.

Proof of Lemma 2.10. Observe that alg = c(Λ1) + c(Λ2). First, observe that through Proposition 2.11

we have that c(Λ1) ≤ O(γ) ·
∑

λ∈Λ1
2`λ .

It remains to show that c(Λ2) ≤ O(γ) ·
∑

λ∈Λ◦ 2`λ . Observe that every secondary service λ of

level j charges a previous service λ′ ∈ Λ◦ of level (j − 1). From Proposition 2.11, we have that

c(λ) ≤ O(γ) · 2j , and thus c(λ) ≤ O(γ) · 2`λ′ . Summing over all secondary services completes the

proof, where Proposition 2.7 guarantees that no charged service is counted twice.

Lower-bounding opt

Fix the optimal solution for the given input, which consists of the services Λ∗ made in various points in

time. Denote by opt the cost of this optimal solution. To complete the proof of Theorem 2.1, we require

the following two lemmas which lower-bound the cost of the optimal solution.

Lemma 2.13.
∑

λ∈Λ1
2`λ ≤ O(1) · opt

11

Lemma 2.14.
∑

λ∈Λ◦ 2`λ ≤ O(log |E|) · opt

Proof of Lemma 2.13. Observe that two primary services λ1, λ2 of the same level are triggered by two

requests q1, q2 which are disjoint – i.e. [rq1 , dq1] ∩ [rq2 , dq2] = ∅. Otherwise, if q1 and q2 are not

disjoint, then without loss of generality assume that dq1 ∈ [rq2 , dq2]. In this case, λ1 would consider

q2, which is eligible (as q1, q2 are of the same level). This would either lead to λ1 serving q2, or

ptrq2(tλ2) 6= null, both of which are contradictions to λ2 being primary.

Therefore, the requests triggering primary services of any speci�c level form a set of disjoint intervals.

Now, let mj be the number of primary services of level j, and let jmax be the maximum level of a

primary service. Denoting x+ = max(x, 0), we have that

∑
λ∈Λ1

2`λ =

jmax∑
j=−∞

mj · 2j

≤
jmax∑
j=−∞

(
mj −max

j′>j
{mj′}

)+

· 2j+1

= 4 ·
jmax∑
j=−∞

(
mj −max

j′>j
{mj′}

)+

· 2j−1

where the inequality is through changing the order of summation and summing a geometric series.

Now, consider the optimal solution. For each primary service λ triggered by a request q, we know that

`q = `λ − 1, and that ptrq(tλ) = null. Thus, `λ − 1 was the initial level of q, set in UponReqest.

Thus, we have that ND
∗({q}) ≥ ND({q})

γ ≥ 2`λ−1
.

This implies that the optimal solution must createmjmax services of cost at least 2jmax−1
each, to serve

the (disjoint) requests which trigger level jmax primary services. In addition, the optimal solution must

create at least (mjmax−1−mjmax)+ additional services, of cost at least 2jmax−2
each, to service requests

that trigger level (jmax − 1) primary services. Repeating this argument, for each level j the optimal

solution must pay an additional cost of

(
mj −maxj′>j{mj′}

)+ · 2j−1
. Overall, we have that

opt ≥
jmax∑
j=−∞

(
mj −max

j′>j
{mj′}

)+

· 2j−1

and thus

∑
λ∈Λ1

2`λ ≤ 4 · opt.

It remains to prove Lemma 2.14, i.e. charging 2`λ for each service λ ∈ Λ◦ to the optimal solution times

O(log |E|). To do this, we split this charge of 2`λ between the services of the optimal solution. Proposition

2.15 shows that this charge is valid.

For a service λ∗ ∈ Λ∗ made by the optimal solution, denote the set of requests served in λ∗ by Qλ∗ . Recall

that for a service λ ∈ Λ made by the algorithm, Qλ is the set of requests served by λ. For every λ ∈ Λ and

λ∗ ∈ Λ∗, we de�ne for ease of notation Qλ∩λ∗ , Qλ ∩Q∗λ.

For a set of requests Q′, we denote the cost of the optimal o�ine solution for ND on Q′ by ND
∗(Q′).

We also use ND
∗
E0←0(Q′) to refer to the cost of the optimal o�ine solution for Q′ where the costs of the

12

(a) Charging Scheme (b) Charges to Optimal Service

Sub�gure 2a shows the services of Λ◦ and the services of the optimal algorithm, as well as the charging

of costs to the optimal solution. The amount min{2`λ ,ND
∗
Eλ0←0

(qλ∩λ∗)} is charged by the service λ ∈ Λ◦

to the optimal service λ∗. In the proof of Lemma 2.14, we show that these charges are su�cient, i.e. each

service λ ∈ Λ◦ charges at least 2`λ .

Sub�gure 2b shows the validity of the charging, given in Proposition 2.15. This proposition shows that

the total amount charged to an optimal service λ∗ exceedes its cost by a factor of at most O(log |E|). This

is shown by partitioning the services which charge cost to λ∗ into three types. The �rst type (green) is

low-level services, which are shown to charge a total of at most O(1) · c(λ∗). The second type (yellow) is

medium-level services. Each of these charges at most c(λ∗), but there are at most O(log |E|) such yellow

services. The last type (red), high-level services, are shown to charge 0 to λ∗.

Figure 2: Visualization of Services

elements E0 ⊆ E is set to 0. For a service λ ∈ Λ, we denote by Eλ0 the value set to E0 in Line 9 during the

service λ. The outline of the charging scheme is given in Figure 2.

Proposition 2.15. There exists a constant β such that for every optimal service λ∗ ∈ Λ∗, we have that∑
λ∈Λ◦

min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ β log |E| · c(λ∗) (1)

Proof. Fix an optimal service λ∗ ∈ Λ∗. Denote by Λ′ ⊆ Λ◦ the subset of charged services made by

the algorithm in which a request from Qλ∗ is served (other services, for which Qλ∩λ∗ = ∅, need not

be considered). Observe that Qλ∗ is an intersecting set, as the optimal solution served Qλ∗ is a single

point in time. Lemma 2.9 implies that for every level j, there exists at most one j-level service in Λ′.
De�ne ` = blog(c(λ∗))c. Now, consider the following cases for a service λ ∈ Λ′:

1. `λ ≤ `. Each such λ contributes at most 2`λ to the left-hand side of Equation 1. Summing over

at most one service from each level yields a geometric sum which is at most 2`+1 ≤ 2 · c(λ∗).

2. ` < `λ < `+dlog |E|e+1. For such λ, observe that min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ ND
∗(Qλ) ≤

c(λ∗). Summing over at most a single service from each level, the total contribution to the left-

hand side of Equation 1 from these levels is at most dlog |E|e · c(λ∗).

3. `λ ≥ ` + dlog |E|e + 1. Observe that min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ ND
∗
Eλ0←0

(Qλ∗). We now

claim that ND
∗
Eλ0←0

(Q∗λ) = 0, which implies that the total contribution from these levels to the

13

left-hand side of Equation 1 is 0.

Indeed, consider that every element in λ∗ costs at most c(λ∗) ≤ 2`+1
. Thus, since 2`λ ≥

2`+1 · |E|, we have that λ added all elements of λ∗ to Eλ0 in Line 9. Thus, λ∗ is itself a feasible

solution for Qλ∗ of cost 0, completing the proof.

Summing over the contributions from each level completes the proof.

Proof of Lemma 2.14. It is enough to show that for every charged service λ ∈ Λ◦, we have that

2`λ ≤
∑
λ∗∈Λ∗

min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} (2)

Summing over all λ ∈ Λ◦ and using Proposition 2.15 would immediately yield the lemma.

If one of the summands on the right-hand side of Equation 2 is 2`λ , the claim clearly holds, and the

proof is complete. Otherwise, the right-hand side is exactly

∑
λ∗∈Λ∗ ND

∗
Eλ0←0

(Qλ∩λ∗). Observe that⋃
λ∗∈Λ∗ Qλ∩λ∗ = Qλ, and thus a feasible solution for Qλ is to take the union of the elements of the

optimal solutions for Qλ∩λ∗ for every λ∗. This implies that

ND
∗
Eλ0←0

(Qλ) ≤
∑
λ∗∈Λ∗

ND
∗
Eλ0←0

(Qλ∩λ∗)

We claim that 2`λ ≤ ND
∗
Eλ0←0

(Qλ), which completes the proof. Indeed, from Proposition 2.12, we

know that λ is an imperfect service. This means that during the construction of Qλ, the loop of Line

11 was completed in the break command of Line 15. Observing the value of the variable S′ at that

line, we have that c(S′) ≥ γ · 2`λ . Since S′ was obtained from a call to NDEλ0←0(Qλ), the guarantee

of the approximation algorithm for ND implies that ND
∗
E0←0(Qλ) ≥ 2`λ .

Proof of Theorem 2.1. The competitiveness of the algorithm results immediately from Lemmas 2.10,

2.13 and 2.14.

As for the running time, it is clear that the main cost of the algorithm is calling the approximation

algorithm ND, and that this is doneO(|Q|) times (every iteration of the loop in Line 11 adds a request

to the ongoing service).

3 Applications and Extensions of the Deadline Framework

In this section, we apply the framework to solving some network design problems in the deadline model,

as well as describe some extensions of the framework.

3.1 Edge-Weighted Steiner Tree and Steiner Forest

In this subsection, we consider the edge- weighted Steiner tree problem with deadlines. In this problem,

we are given a (simple) graph G = (V,E) of n nodes, with a cost function c : E → R+
on the edges. In

addition, the input designates a node ρ ∈ V as the root. Requests arrive over time, each with an associated

deadline, where each request is a terminal u ∈ V .

14

At any point in time, the algorithm may transmit some subset of edges E′ ⊆ E, at a cost which is∑
e∈E′ c(e). A pending request q for a node u ∈ V is considered served by this transmission if u is in

the same connected component as ρ in the subgraph G′ = (V,E′).

A more general problem is the edge-weighted Steiner forest problem with deadlines. In this problem, we

are again given a simple graph G = (V,E) of n nodes, and a cost function c : E → R+
on the edges.

Each request is now a pair of terminals (u1, u2) ∈ V . Again, the algorithm can transmit a subset of edges

E′, paying

∑
e∈E′ c(e), and serving any pending request q on (u1, u2) such that u1, u2 are in the same

connected component inG′ = (V,E′). Observe that Steiner tree with deadlines is a special case of Steiner

forest with deadlines where each requested pair contains the root ρ.

The Steiner forest with deadlines problem is a special case of the ND problem we described in Section 2.

The collection of elements in this case is the set of edges. For a request q between two terminals (u1, u2),

the set Xq of transmissions satisfying q is the set of all transmissions E′ ⊆ E such that u1 and u2 are in

the same connected component in the subgraph (V,E′).

We apply the framework of Section 2 to the Steiner forest with deadlines problem, thus obtaining an

algorithm for both Steiner tree and Steiner forest with deadlines. The following theorem is due to Goemans

and Williamson [25].

Theorem 3.1 ([25]). There exists a deterministic 2-approximation for (o�ine) edge-weighted Steiner

forest.

Plugging the algorithm of Theorem 3.1 into the framework of Section 2, and observing that log |E| ≤
2 log n, we obtain the following theorem.

Theorem 3.2. There exists an O(log n)-competitive deterministic algorithm for edge-weighted Steiner
forest with deadlines which runs in polynomial time.

Strong Edge-Weighted Steiner Forest

In the original Steiner forest problem (without deadlines), requesting pairs could be used to ensure con-

nectivity between more than two nodes in the graph. Indeed, one could guarantee connectivity between

k nodes by releasing k − 1 pair requests.

In the Steiner forest with deadlines problem, this is no longer the case. Since the transmissions serving the

k − 1 pair requests can occur in di�erent times, there is no guarantee that there exists a point in time in

which all k nodes are connected.

This motivates the strong Steiner forest problem with deadlines, in which requests consist of subsets of

nodes which must be connected at the same time. The corresponding o�ine problem is still regular Steiner

forest (since subset requests can be reduced to pair requests in the o�ine setting). Thus, we can apply the

framework to the approximation algorithm of Goemans and Williamson [25] as for the standard Steiner

forest with deadlines, and obtain the following theorem.

Theorem 3.3. There exists an O(log n)-competitive deterministic algorithm for strong edge-weighted
Steiner forest with deadlines which runs in polynomial time.

3.2 Multicut

In this subsection, we consider the multicut problem with deadlines. In this problem, we are again given

a (simple) graph G = (V,E) of n nodes, with a cost function c : E → R+
on the edges. Requests arrive

15

over time, each with an associated deadline, where each request is a pair of terminals {u1, u2} ∈ V .

At any point in time, the algorithm may choose to momentarily disrupt a subset of edges E′ ⊆ E, at a

cost of

∑
e∈E′ c(e). A pending request q, which consists of the pair or terminals {u1, u2}, is served by this

disruption if u1 and u2 are in two distinct connected components in the graph G′ = (V,E\E′).

This problem is a special case of the ND problem we described in Section 2. The collection of elements in

this case is again the set of edges. For any request q for a pair of terminals {u1, u2}, the set of satisfying

transmissionsXq is the collection of subsets of edges of the formE′ such that u1 and u2 are in two distinct

connected components in the subgraph (V,E\E′).

The following result is due to Garg et al. [24].

Theorem 3.4 ([24]). There exists a deterministic, polynomial-time, O(log n)-approximation for multi-

cut.

Plugging the approximation algorithm of Theorem 3.4 into the framework of Section 2, and observing that

log |E| ≤ 2 log n, yields the following theorem.

Theorem 3.5. There exists a deterministicO(log2 n)-competitive algorithm for multicut with deadlines
which runs in polynomial time.

Strong Multicut

As was the case in Steiner forest, using pair requests in the original o�ine multicut problem could ensure

disconnection between subsets of nodes, which is not the case for the deadline problem. This again mo-

tivates a strong version of multicut with deadlines, in which each request is a collection of nodes to be

simultaneously disconnected from one another through disrupting some edges.

As in the Steiner forest problem, the fact that these subset requests can be reduced in the o�ine case to

pair requests allows us to use the approximation algorithm of Theorem 3.4 in the framework of Section 2,

yielding the following theorem.

Theorem 3.6. There exists an O(log2 n)-competitive deterministic algorithm for strong multicut with
deadlines which runs in polynomial time.

3.3 Node-Weighted Steiner Forest

The Steiner forest (and Steiner tree) problems have also been considered in the setting in which vertices,

rather than edges, are bought. In this subsection, we apply the framework in this setting.

Formally, in the node-weighted Steiner forest with deadlines problem, we are given a graph G = (V,E)
such that |V | = n, and a cost function c : V → R+

over the vertices. Each request q is of two terminals

u1, u2 ∈ V , and comes with an associated deadline. At any point in time, the algorithm may transmit a

subset of vertices V ′ ⊆ V , at a cost of

∑
v∈V ′ c(v). This transmission serves a pending request q if u1 and

u2 are in the same connected component in the subgraph induced by V ′ (and in particular u1, u2 ∈ V ′).
The node-weighted Steiner forest is a special case of the ND problem we described in Section 2. The

collection of elements in this case is the set of nodes. For a request q for a pair of terminals (u1, u2), the set

of satisfying transmissions Xq is the collection of node subsets V ′ ⊆ V such that u1 and u2 are connected

in the subgraph induced by V ′.

16

We apply the framework of Section 2 to the node-weighted Steiner forest with deadlines problem, thus

obtaining an algorithm for the node-weighted versions of both Steiner tree and Steiner forest with dead-

lines.

The following theorem is due, independently, to Bateni et al. [7] and Chekuri et al. [19].

Theorem 3.7 ([7, 19]). There exists a polynomial-time, deterministic O(log n)-approximation algo-

rithm for node-weighted Steiner forest.

Applying the framework of Section 2 yields the following theorem.

Theorem 3.8. There exists anO(log2 n)-competitive deterministic algorithm for node-weighted Steiner
forest with deadlines which runs in polynomial time.

3.4 Edge-Weighted Steiner Network

The (edge-weighted) Steiner network problem with deadlines is identical to the Steiner forest with dead-

lines problem in Subsection 3.1, except that every pair request q on two terminals u1, u2 ∈ V also has an

associated demand f(q) ∈ N. A transmission of edges E′ now serves a pending request q if there exist

f(q) edge-disjoint paths from u1 to u2 in the graph (V,E′).

The edge-weighted Steiner network is again a special case of ND. As in the Steiner forest, the elements

are the edges of the graph. For each request q for a pair of terminals {u1, u2} with demand f(q), the

set of satisfying transmissions Xq is the collection of subsets of edges E′ ⊆ E such that there exist f(q)
edge-disjoint paths from u1 to u2 in (V,E′).

The following Theorem is due to Jain [31].

Theorem 3.9 ([31]). There exists a polynomial-time, deterministic, 2-approximation for o�ine edge-

weighted Steiner network.

Plugging the o�ine approximation algorithm of Theorem 3.9 into the framework of Section 2, and again

observing that log |E| ≤ 2 log n, yields the following theorem.

Theorem 3.10. There exists anO(log n)-competitive deterministic algorithm for edge-weighted Steiner
network with deadlines which runs in polynomial time.

3.5 Directed Steiner Tree

In the directed Steiner tree problem with deadlines, we are given a (simple) directed graph G = (V,E),

costs c : E → R+
to the edges and a designated root ρ ∈ V . Each request q is a terminal v ∈ V . At

any point in time, the algorithm may transmit a set of directed edges E′ ⊆ E. A pending request q for

a terminal v is served by this transmission if there exists a (directed) path from ρ to v in the subgraph

G′ = (V,E′).

This problem is also a special case of ND in the same way as the undirected Steiner tree. That is, the

elements are the edges of the tree, and a set of edges E′ ⊆ E is in Xq , for a request q of a terminal v, if

there exists a directed path from ρ to v in the graph (V,E′).

The following theorem is due to Grandoni et al. [26].

17

Theorem 3.11 ([26]). There exists a randomized O(log2 n
log logn)-approximation for directed Steiner tree,

which runs in quasi-polynomial time (speci�cally, O(nlog5 n) time).

As a result of plugging the algorithm of Theorem 3.11 into the framework of Section 2, and again observing

that log |E| ≤ 2 log n, yields the following theorem.

Theorem 3.12. There exists a randomized O(log3 n
log logn)-competitive algorithm for directed Steiner tree

with deadlines, which runs in quasi-polynomial time.

3.6 Facility Location

In the facility location with deadlines problem, we are given a graph G = (V,E), such that |V | = n. We

are also given a facility opening cost f : V → R+
, and weights w : E → R+

to the edges. Requests arrive

over time on the nodes of the graph, each with an associated deadline.

At any point in time, the algorithm may choose a node v ∈ V , open a facility at that node, and choose some

subset of pending requests Q′ to connect to that facility. This action serves the pending requests of Q′.
Immediately after performing this atomic action, the facility disappears. The total cost of this transmission

is f(v) (the opening cost of the facility) plus

∑
q∈Q′ δ(v, q), where δ is the shortest-path metric on nodes

induced by the edge weights w.

The set of elements in this case is the set of nodes V (where buying a node means opening a facility at

that node). Observe that facility location does not conform neatly to the ND structure of the problems

addressed in our framework – indeed, opening facilities does not immediately serve requests, and paying

an additional connection cost is required. One could force the problem into the framework by adding the

connections (i.e. shortest paths from a request to facility) as elements – however, as each request requires

a di�erent connection, this would result in Θ(n|Q|) elements, whereQ is the set of requests. The resulting

loss over the approximation algorithm in this case would be Θ(log n+ log |Q|).

Nevertheless, we show that the framework can be applied without any modi�cation to the facility location

problem, with only the facilities as elements, yielding the desired guarantee (O(log n) loss). In this sub-

section, we modify the necessary parts in the analysis of the framework in order to �t the facility location

problem.

First, we consider a constant-approximation algorithm for the o�ine facility location problem. There are

many such algorithms; the following is due to Jain and Vazirani [32].

Theorem 3.13 ([32]). There exists a polynomial-time, deterministic γFL-approximation for o�ine fa-

cility location, where γFL = 3.

In this subsection, we prove that plugging the approximation algorithm of Theorem 3.13 into the frame-

work of Section 2 yields the following theorem.

Theorem 3.14. There exists an O(log n)-competitive deterministic algorithm for facility location with
deadlines, which runs in polynomial time.

18

Remark 3.15. While the framework for facility location is the same as for ND, an important remark

must be made about the nature of facility location solutions.

In the original framework for ND, we hold solutions in variables, where a solution S is a subset of

the universe of elements E . In facility location, a solution S to FL(Q) (the o�ine facility location

problem on the set of requests Q) is of di�erent form – S contains a subset F ⊆ E = V of facilities

to open, plus a mapping φ : Q → F from the input requests to the facilities of F , which determines

the connection cost of the solution.

The cost of the solution S = (F, φ), referred to as c(S) in the framework, is now the opening cost∑
v∈F f(v) plus the connection cost

∑
q∈Q δ(q, φ(q)). As for transmissions in Line 17, transmitting

E0 ∪S ∪Sq
last

refers to transmitting the facilities of E0, S and Sq , and connecting requests according

to the mappings of S and Sq .

Analysis

Consider that theorem 3.14 would result immediately if we could reprove Lemmas 2.10, 2.13 and 2.14 for

facility location with deadlines. The proofs of Lemmas 2.10 and 2.13 go through in an identical way to the

original framework. As for Lemma 2.14, the only change required is in the proof of Proposition 2.15. We

now go over the necessary changes.

Proof of Proposition 2.15 for facility location. We use the notation de�ned in the original proof of Propo-

sition 2.15.

Observe that the proof of the proposition goes through until the case analysis of each service λ ∈ Λ′.
The two �rst cases (namely, that `λ ≤ ` or ` < `λ < `+ dlog |E|e+ 1) go through entirely.

The di�erence is in the third case, in which `λ ≥ `+dlog |E|e+1. As was the argument in the original

proof, it holds that all facilities that were opened in λ∗ are also open in λ. Now, consider that there

exists a solution for Qλ∩λ∗ which connects each request to its facility in λ∗. Therefore, we have that

NDEλ0←0(Qλ∩λ∗) is at most the connection cost of the requests of Qλ∩λ∗ in λ∗. Summing over all

services λ of this class yields that the total contribution to the left-hand side of Equation 1 is at most

the connection cost incurred by the optimal solution in λ∗, which is at most c(λ∗).

Combining this third case with the previous two cases completes the proof.

3.7 Exponential-Time Algorithms

In online algorithms, one is often interested in the information-theoretic bounds on competitiveness, with-

out limitations on running time. The framework of Section 2 supports such constructions – plugging in

the algorithm which solves the o�ine problem optimally yields the following theorem.

Theorem 3.16. There exists an O(log |E|)-competitive algorithm for ND with deadlines (with no guar-
antees on running time). In particular, there exists an O(log n)competitive algorithm for all problems in
this paper, where n is the number of nodes in the input graph.

4 Delay Framework

We now consider the ND problem with delay. This problem is identical to the problem with deadlines,

except that instead of a deadline, each request q is associated with a continuous, monotone-nondecreasing

19

delay function dq(t), which is de�ned for every t, and tends to in�nity as t tends to in�nity (ensuring that

every request must be served eventually).

The framework we present for problems with delay requires an approximation algorithm for the prize-

collecting variant of the o�ine problem. In the prize-collecting ND problem, denoted PCND, the input is

again a set of requestsQ, and an additional penalty function π : Q→ R+
. A solution is a subset of elements

E which serves some subsetQ′ ⊆ Q of the requests. The cost of the solution is

∑
e∈E c(e)+

∑
q∈Q\Q′ π(q)

– that is, the total cost of the elements bought plus the penalties for unserved requests.

Theorem 4.1. If there exists a γ deterministic (randomized) approximation algorithm for PCND which
runs in polynomial time, then there exists a O(γ log |E|)-competitive deterministic (randomized) algo-
rithm for ND with delay, which runs in polynomial time.

Note that Remarks 2.2 and 2.3 apply here as well.

4.1 The Framework

We now describe the framework for ND with delay.

Calls to the prize-collecting approximation algorithm. The framework makes calls to the approx-

imation algorithm PCND for the prize-collecting problem. Such a call is denoted by PCND(Q, π), where

Q is the set of requests and π : Q → R+
is the penalty function. Some calls are made with the subscript

E0 ← 0, for some subset of elements E0. This notation means calling PCND on the modi�ed input in

which the cost of the elements E0 is set to 0. The framework also makes calls to ND, an approximation

algorithm for the original (not prize-collecting) variant of ND. This approximation algorithm is obtained

through calling PCND with penalties of∞ for each request.

Investment counter. The algorithm maintains for each request q an investment counter hq . Raising this

counter corresponds to paying for delay (both past and future) incurred by the request q. When referring

to the value of the counter at a point in time t, we write hq(t).

De�nition 4.2 (Residual delay). We de�ne the residual delay of a pending request q at time t to be

ρq(t) = max(0, dq(t)−hq(t)). Intuitively, this is the amount of delay incurred by q which no service

has covered until time t. For a set of requestsQ pending at time t, we also de�ne ρQ(t) =
∑

q∈Q ρq(t).

De�nition 4.3 (Penalty function πt→t′). At a time t, and for every future time t′ > t, we de�ne the

penalty function πt→t′ on pending requests at time t in the following way. For a request q pending

at time t, we have that πt→t′(q) = max(0, dq(t
′) − hq(t)). Intuitively, the penalty for a request,

as evaluated at time t, is the future residual delay of the request if the algorithm does not raise its

investment counter until time t′.

As in the deadline framework, the delay framework assigns a level `q to each pending request q.

De�nition 4.4 (Critical level). At any point during the algorithm, we say that a level j becomes

critical if the total residual delay of requests of level at most j reaches 2j .

20

Algorithm’s description. The framework is given in Algorithm 2. The algorithm consists of waiting

until any level j becomes critical, and then calling UponCritical(j). Whenever a new request q is released,

the function UponReqest(q) is called.

The algorithm maintains the level of each pending request q, denoted `q . This level is initially the log-

arithmic class of the cost of the cheapest solution (i.e. set of elements) serving q (in fact, the algorithm

estimates this by calling the approximation algorithm ND and dividing by its approximation ratio). Over

time, the level of a request may increase.

When a level j becomes critical, this triggers a service λ of level `λ = j + 1. Intuitively, the service λ is

responsible for all pending requests of level at most `λ – these are called the eligible requests for λ. The

service �rst starts by raising the investment counters of eligible requests until they all have zero residual

delay.

After doing so, the service observes the �rst point in the future in which such an eligible request has

positive residual delay. The goal of the service is to push this point in time (called the forwarding time) as

far into the future as possible, while spending at most O(γ · 2`λ) cost.

There are two methods of accomplishing this: the �rst is to raise the investment counters of the requests,

and the second is serving the requests. The best course of action is to combine both methods in a smart

manner – deciding which eligible requests are to be served, and raising the investment counter for the

remainder of the eligible requests.

To achieve this, the service �nds a solution to a prize-collecting instance which captures the problem of

pushing back the forwarding time to some future time t′. In this instance, the requests are the eligible

requests for λ, and the penalty for a request q is the amount by which its investment counter hq must

be raised so that q’s future residual delay would be 0 at time t′. The forwarding time, as well as the

corresponding prize-collecting solution, are returned by the call to the function ForwardTime.

If the solution returned by ForwardTime does not serve any requests (i.e. it only raises investment coun-

ters), the service modi�es it to serve some arbitrary eligible request. While this does not a�ect the approx-

imation ratio of the algorithm, it bounds the number of services by the number of requests, which bounds

the running time of the algorithm.

Now, the algorithm increases the investment counter of eligible requests which are not served by the

solution (paying for their future delay until the forwarding time). The algorithm also upgrades the level

of those requests, in a similar way to the deadline algorithm.

Finally, the service transmits its solution, serving the remainder of the eligible requests.

4.2 Analysis

As in the deadline case, we �rst consider some de�nitions and properties of the algorithm before delving

into the proof of Theorem 4.1.

De�nitions and Algorithm’s Properties

Let λ be a service which occurs at some time t, making a call to ForwardTime(E0, Qλ, j). This call returns

the time τ and a solutionS for PCNDE0←0(Qλ, πtλ→τ), where πτ is as de�ned in λ. We prove the following

property.

Proposition 4.5. The time τ and solution S returned by ForwardTime have the following properties:

1. The cost of S as a solution to PCNDE0←0(Qλ, πt→τ) is at most 2γ · 2j .

21

Algorithm 2: Network Design with Delay Framework

1 Event Function UponReqest(q)

2 Set Sq ← ND({q})
3 Set Iq ← c(Sq)

γ .

4 Set `q ← blog (Iq)c // the level of the request

5 Event Function UponCritical(j) // Upon a level j becoming critical at time t
6 Start a new service λ, which we now describe.

7 Set `λ ← j + 1.

8 foreach request q such that `q ≤ `λ do // Clean residual delay of eligible requests
9 Set hq ← hq + ρq(t)

10 Set E0 =
{
e ∈ E

∣∣∣c(e) ≤ 2`λ
|E|

}
. // Buy all cheap elements

// Forward time
11 Let Qλ be all pending requests of level at most `λ.

12 Set (τ, S)← ForwardTime(E0, Qλ, `λ).

13 Let Q′λ ⊆ Qλ be the subset of requests served in S.

// make sure that the service serves at least one pending request
14 if Q′λ = ∅ then for an arbitrary q ∈ Qλ, set Q′λ ← {q} and S ← Sq .

// pay for future delay of requests unserved by the transmission, and upgrade requests
15 foreach q ∈ Qλ\Q′λ do
16 Raise hq by πt→τ (q).

17 Set `q ← `λ.

18 Transmit the solution E0 ∪ S, serving the requests Q′λ.
2

2

For the sake of the algorithm and its analysis, no requests outside Q′λ are considered served by this transmission.

Procedure 3: Time Forwarding Procedure

/* This function, called at time t, returns a future time t′′ and a solution S ⊆ E to transmit which is a
“good” solution to minimize the future delay of Qλ until time t′′. See Proposition 4.5 for the formal
guarantee of this function. */

1 Function ForwardTime(E0, Qλ, j)
2 Set t′ ← t, Q′λ ← ∅ and S ← ∅.
3 while Qλ\Q′λ 6= ∅ do
4 Let t′′ > t be the time in which

∑
q∈Qλ\Q′λ

(πt→t′′(q)− πt→t′(q)) reaches γ · 2j .
5 Set S′ ← PCNDE0←0(Qλ, πt→t′′).

6 if c(S′) ≥ γ · 2j then break
7 Set Q′λ ⊆ Qλ to be the set of requests served in S′.
8 Set t′ ← t′′ and S ← S′.

9 return (t′′, S)

22

2. Either S serves all requests in Qλ or PCND
∗
E0←0(Qλ, πt→τ) ≥ 2j .

Proof. To prove the �rst property, consider the �nal values of the variables t′ and t′′ in ForwardTime,

where the �nal value of t′′ is the returned time τ . Observe that the function maintains that S has a

cost of at most γ · 2j as a solution for PCNDE0←0(Qλ, πt→t′ .

Observing the lines in which the �nal values of t′ and t′′ were set, we have one of two cases. In the �rst

case, in which t′′ = t′, we are done. Otherwise, we have that

∑
q∈Qλ\Q′λ

(πt→t′′(q)−πt→t′(q)) = γ ·2j .
In words, the total penalty increase for the requests not served in S from πt→t′ to πt→t′′ is γ ·2j . Thus,

the solution S has a total cost of at most 2γ · 2j , proving the �rst property.

As for the second property, consider the loop of ForwardTime. If it �nishes through the loop’s

condition, S serves all requests in Qλ and we are done. Otherwise, the loop is ended by the break
command, in which case we know that the cost of S′ as a solution to PCNDE0←0(Qλ, πt→t′′) is at least

γ · 2j . But since S′ is a γ approximation for this problem, we have that PCND
∗
E0←0(Qλ, πt→t′′) ≥ 2j ,

completing the proof.

For every service λ, we denote by tλ the time in which λ occurred. In the running of λ, consider time τ
as returned by ForwardTime. We call this time the forwarding time of λ, and denote it by τλ. We call the

value set to `λ the level of λ; observe that this value does not change once de�ned.

Similarly, for a request q, we call `q the level of q. Note that unlike services, the level of a request may

change over time (more speci�cally, the level can be increased).

We rede�ne some of the de�nitions we used in the deadline case to �t the delay case.

De�nition 4.6 (Service Pointer). Let q be a request. We de�ne ptrq to be the last service λ such that

λ sets `q ← `λ in Line 17. If there is no such service, we write ptrq = null. Similarly, we de�ne

ptrq(t) to be the last service λ before time t such that λ sets `q ← `λ in Line 17 (with ptrq(t) = null

if there is no such service).

De�nition 4.7. Consider a service λ and a request q which is pending upon the start of λ, and has

`q ≤ `λ at that time. We say that q was eligible for λ.

In the algorithm, the set of eligible requests for a service λ is the value of the variable Qλ. We use this

notation throughout the analysis, denoting the set of requests eligible for a service λ by Qλ.

De�nition 4.8. For a service λ:

1. We say that λ is charged if there exists some future service λ′, which is triggered by some level

j becoming critical, and there exists a pending request q which is of level j and has positive

residual delay immediately before λ′, such that ptrq(tλ′) = λ. We say that λ′ charged λ.

2. We say that λ is perfect if the solution S returned by ForwardTime serves all ofQλ. Otherwise,

we say that λ is imperfect.

3. We say that λ is primary if, when triggered upon `λ − 1 becoming critical, every pending

request q of level exactly `λ − 1 with positive residual delay has ptrq(tλ) = null. Otherwise,

λ is secondary.

23

Fix any input set of requests Q. We denote by Λ the �nal set of services by the algorithm. We denote the

set of primary services made by the algorithm by Λ1, and the set of secondary services by Λ2, such that

Λ = Λ1 ∪ Λ2. We denote the set of charged services by Λ◦.

The algorithm explicitly maintains the following invariant.

Invariant 4.9. At any point t during the algorithm, for every set of pending requestsQ′ of level at most
j, it holds that ρQ′(t) ≤ 2j .

The following observation is ensured by Lines 18 and 16.

Observation 4.10. Let λ be a service, and let q be a request eligible for λ. Then q has no residual delay
between tλ and τλ.

Proposition 4.11. Each service is charged by at most one service.

Proof. Assume for contradiction that there exists a service λ at time t which is charged by both λ1

and λ2, at times t1 and t2 respectively, and assume without loss of generality that t1 < t2. Service

λ2 charged λ due to the pending request q2, such that `q2 = `λ and ptrq2(tλ2) = λ. q2 was pending

before both λ and λ2, and was thus pending before λ1. But after λ1, all pending requests are of level

at least `λ1 = `λ + 1, in contradiction to having `q2 = `λ immediately before λ2.

Proposition 4.12. Suppose a service λ ∈ Λ◦ is charged by a service λ′. Then tλ′ ≥ τλ.

Proof. Suppose for contradiction that tλ′ < τλ. Denote the level of service λ by j. The service λ′ must

be triggered by level j becoming critical. Let Q′ be the set of requests of level at most j with positive

residual delay immediately before tλ′ . Since λ′ charged λ, there must be a request q ∈ Q′ such that

ptrq(tλ′) = λ. Thus, q was eligible for λ. But thus Observation 4.10 contradicts q ∈ Q′.

Lemma 4.13. LetQ′ be an set of requests, and let rQ′ = maxq∈Q′ rq . Let Λ be the set of charged services
for which a request fromQ′ was eligible and such that for every λ ∈ Λ we have τλ ≥ rQ′ . Then for every
j ∈ Z, there exists at most one service λ ∈ Λ such that `λ = j.

Proof. Assume for contradiction that there exists j ∈ Z for which there exist two distinct services

λ1, λ2 ∈ Λ such that `λ1 = `λ2 = j. Assume without loss of generality that tλ1 < tλ2 .

Let λ′ be the service that charged λ1. The service λ′ must be a level j + 1 service.

Consider the two following cases:

1. tλ′ > tλ2 . Since λ′ charged λ, there must be a request q such that `q = `λ1 and ptrq(tλ′) = λ1.

Since ptrq(tλ′) = λ1, we have that q was eligible for λ1. Thus, since tλ1 < tλ2 < tλ′ , q
was pending at λ2. Since the levels of requests can only increase over time, it must be that

`q ≤ `λ1 = `λ2 immediately before tλ2 . But then q was eligible for λ2, and thus λ2 would call

Line 7 on q, in contradiction to having ptrq(tλ′) = λ1.

24

2. tλ′ < tλ2 . Using Proposition 4.12, we know that tλ′ ≥ τλ1 . Since λ1 ∈ Λ, we thus have that

tλ′ ≥ tQ′ . Now, consider all pending requests of Q′ before λ2. Since tQ′ ≤ tλ′ < tλ2 , these

requests were also pending before λ′. Since after λ′ all pending requests are of level at least

`λ′ = j + 1, none of these requests are eligible for λ2. This is in contradiction to λ2 ∈ Λ.

This concludes the proof.

Upper-bounding alg.

Proposition 4.14. The total delay cost of the algorithm is at most
∑

q∈Q hq , for the �nal values of the
counters {hq}q∈Q.

Proof. Consider a request q, served in some service λ at time t. Since q was served in λ, we know that

`q ≤ `λ at t. From Line 9, we know that the service λ raised hq so that the residual delay of q becomes

0. After this line, hq is at least dq(t). Since q is served in λ, its delay does not increase further.

To bound the cost of the algorithm, it is thus enough to bound the total cost of transmissions plus the sum

of the �nal values of hq over requests q ∈ Q.

We de�ne the cost of a service λ, denoted by c(λ), as the sum of the cost of the transmission made in that

service and the total amount by which

∑
q∈Q hq is raised in that service. From Proposition 4.14, we know

that

∑
λ∈Λ c(λ) is an upper bound to the cost of the algorithm. We denote this sum by âlg.

Lemma 4.15. âlg ≤ O(γ) ·
(∑

λ∈Λ1
2`λ +

∑
λ∈Λ◦ 2`λ

)

Proposition 4.16. The total cost of a service λ is at most O(γ) · 2`λ .

Proof. The cost incurred in λ is at most the sum of the following costs:

1. The cost of raising the investment counters at Line 9, which is at most 2`λ (using Invariant 4.9).

2. The cost of transmitting the elements E0 in Line 18, which is at most 2`λ .

3. The added cost of transmitting S in Line 18 (given that the transmission already contains E0),

and the cost of raising investment counters of requests by πt→ τ in Line 16. Observe that this

cost is in fact the cost of S as a solution for PCNDE0←0(Qλ, πt→τ). Since S was obtained from

a call to ForwardTime(E0, Qλ, `λ), and using Proposition 4.5, we have that this cost is at most

2γ · 2`λ .

4. The cost of the possible transmission in Line 14. The transmission is of Sq , for a request q which

is eligible for λ. Thus, we know that the cost of the transmission is at most 2γ · 2`λ .

Overall, the costs sum to O(γ) · 2j , as required.

In a perfect service, all eligible requests are served. Thus, Line 17 is never called in a perfect service. The

next observation follows.

25

Observation 4.17. Only imperfect services can be charged.

Proof of Lemma 4.15. Observe that âlg = c(Λ1) + c(Λ2). First, observe that through Proposition 4.16

we have that c(Λ1) ≤ O(γ) ·
∑

λ∈Λ1
2`λ .

It remains to show that c(Λ2) ≤ O(γ) ·
∑

λ∈Λ◦ 2`λ . Observe that every secondary service λ of level

j charges a previous service λ′ ∈ Λ◦ of level j − 1, which is imperfect by Observation 4.17. From

Proposition 4.16, we have that c(λ) ≤ O(γ) · 2j , and thus c(λ) ≤ O(γ) · 2`λ′ . Summing over all

secondary services completes the proof, where Proposition 4.11 guarantees that no charged service is

counted twice.

Lower-bounding opt.

Fix the set of services Λ∗ made in the optimal solution. To complete the proof of Theorem 4.1, we require

the following two lemmas which lower-bound the cost of the optimal solution.

Lemma 4.18.
∑

λ∈Λ1
2`λ ≤ O(1) · opt

Lemma 4.19.
∑

λ∈Λ◦ 2`λ ≤ O(log n) · opt

Proof of Lemma 4.18. Consider a service λ ∈ Λ1 of level j. λ is triggered upon level j − 1 becoming

critical. Let Qcrit

λ be the set of requests with positive residual delay of level at most j − 1 which

triggered λ. De�ne σλ to be the earliest release time of a request in Qcrit

λ .

Fix any level j. We claim that the intervals of the form [σλ, tλ] for every j-level service λ ∈ Λ1 are

disjoint. Assume otherwise, that some [σλ1 , tλ1] and [σλ2 , tλ2] intersect. Without loss of generality,

assume that tλ1 ∈ [σλ2 , tλ2]. Then there exists a request q ∈ Qcrit

λ2
which was pending during λ1,

after which `q would be at least j, in contradiction to q ∈ Qcrit

λ2
.

Now, de�neQ=
λ ⊆ Qcrit

λ to be the subset of requests inQcrit

λ which are of level exactly `λ−1. Denote

by t−λ the time tλ immediately before the service λ. Using Invariant 4.9, we have that ρQcrit

λ \Q
=
λ

(t−λ) ≤
2`λ−2

. Thus, we have that ρQ=
λ

(t−λ) ≥ 2`λ−2
. In addition, since λ ∈ Λ1, we have that ptrq(tλ) = null

for every q ∈ Q=
λ . Thus, Iq as de�ned in UponReqest is at least 2`q = 2`λ−1

.

Observe that according to the de�nition of Iq , and the approximation guarantee of ND, we have that

Iq is a lower bound to the cost of any solution which serves q. Thus, we have that during the interval

[σλ, tλ] the optimal solution has either served a request from Q=
λ (at a cost of at least 2`λ−1

), or paid

a delay of 2`λ−2
for the requests of Q=

λ .

Now, let mj be the number of primary services of level j, and let jmax be the maximum level of

a primary service. Denoting x+ = max(x, 0), consider the optimal solution. It must pay at least

2jmax−2
in either delay or service for each of the mjmax intervals of the form [σλ, tλ] (for λ ∈ Λ1 of

level jmax). For each such service λ, we charge the optimal solution 2jmax−2
either for its delay or for

a single service in the corresponding interval in which a request from Q=
λ was served.

Now, consider the next level jmax−1. We know that the optimal solution must incur 2jmax−3
for each

of the mjmax−1 intervals of this level. However, the optimal solution might already be charged for a

service of level jmax, and might use this service to save costs, serving an interval with cost less than

26

2jmax−3
. But this can only happen mjmax times, and can only hit a single interval of level jmax − 1

(since those intervals are disjoint). Thus, we can charge at least (mjmax−1 − mjmax)+
intervals an

amount of 2jmax−3
, either for delay or for a single service of a level-(jmax − 2) request.

Repeating this argument, we get that the optimal solution pays at least

(
mj −maxj′>j{mj′}

)+ ·2j−2

for each level j.

As for the cost of the algorithm, we have that

c(Λ1) ≤ O(1) ·
jmax∑
j=−∞

mj · 2j

≤ O(1) ·
jmax∑
j=−∞

(
mj −max

j′>j
{mj′}

)+

· 2j+1

≤ O(1) · opt

where the �rst inequality uses Proposition 4.16 and the second inequality is through changing the

order of summation and summing a geometric series.

It remains to prove lemma 4.19 by charging for each service λ ∈ Λ◦ the amount 2`λ to the optimal solution

times O(log |E|). As in the deadline case, we split the charge of 2`λ between the services made by the

optimal solution, and show that each charge is locally valid.

For a service λ∗ ∈ Λ∗ of the optimal solution, we denote by Qλ∗ the set of requests served by λ∗. We

de�ne the cost associated with λ∗, denoted by c(λ∗), to be the transmission cost of λ∗ plus the total delay

cost of the requests Qλ∗ in the optimal solution. Recall that for a service λ ∈ Λ made by the algorithm,

Qλ is the set of requests eligible for λ. We de�ne Qλ∩λ∗ = Qλ ∩Qλ∗ .
For a set of requests Q′, we denote the cost of the optimal o�ine solution for PCND on Q′, with respect

to a penalty function π : Q′ → R+
, by PCND

∗(Q′, π). We also use PCND
∗
E0←0(Q′, π) to refer to the cost

of the optimal o�ine solution for Q′ where the costs of the elements E0 ⊆ E is set to 0. We also write

PCND
∗(Q′, π) where π is de�ned on a superset of Q′; the penalty function in this case is the restriction of

π to Q′.

For a service λ ∈ Λ, we denote by Eλ0 the value set to E0 in Line 10 during the service λ. The outline of

the proof of Lemma 4.19 is shown in Figure 3.

Proposition 4.20. There exists a constant β such that for every optimal service λ∗ ∈ Λ∗, we have that∑
λ∈Λ◦

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)} ≤ β log |E| · c(λ∗) (3)

Proof. Fix any service λ∗ ∈ Λ∗ of the optimal solution. Observe that a service λ ∈ Λ◦ such that

Qλ ∩Qλ∗ = ∅ does not contribute to the left-hand side of Equation 3. Hence, it remains to consider

only λ ∈ Λ◦ such that Qλ ∩Qλ∗ 6= ∅; denote the set of such services by Λ′.

De�ne t∗ = maxq∈Qλ∗ rq . Each λ ∈ Λ′ is in one of the following cases.

Case 1: τλ ≤ t∗. Let Λ≤t
∗ ⊆ Λ′ be the subset of such services. For every request q eligible for λ,

de�ne hλq to be the value of the investment counter hq upon the start of λ. We have:

27

(a) Charging Scheme (b) Charges to Optimal Service

In a similar way to Sub�gure 2a, Sub�gure 3a shows the services of Λ◦ and the services of

the optimal algorithm, as well as the charging of costs to the optimal solution. The amount

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)} is charged by the service λ ∈ Λ◦ to the optimal service λ∗. The

proof of Lemma 4.19 shows that these charges are su�cient, i.e. each service λ ∈ Λ◦ charges at least 2`λ .

Sub�gure 3b shows the validity of the charging, given in Proposition 4.20. As in the deadline case, this

proposition shows that the total amount charged to an optimal service λ∗ exceedes its cost by a factor of

at most O(log |E|). The argument is similar to Proposition 2.15. However, in addition to the three types

of services in the deadline case (green, yellow, red), there is an additional type of service (pink), which

consists of services λ with τλ ≤ tλ∗ . These pink services are shown to charge a total of at most c(λ∗).

Figure 3: Visualization of Services

∑
λ∈Λ≤t∗

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)} ≤
∑

λ∈Λ≤t∗

PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)

≤
∑

λ∈Λ≤t∗

∑
q∈Qλ∩λ∗

πtλ→τλ(q)

=
∑

λ∈Λ≤t∗

∑
q∈Qλ∩λ∗

max{0, dq(τλ)− hλq }

=
∑
q∈Qλ∗

∑
λ∈Λ≤t∗ |q∈Qλ

max{0, dq(τλ)− hλq }

Now, �x any request q ∈ Qλ∗ . We claim that

∑
λ∈Λ≤t∗ |q∈Qλ max{0, dq(τλ) − hλq } ≤ dq(t

∗). To

see this, consider the services in the sum by order of occurrence, denoted λ1, · · · , λl. We prove by

induction that

∑i
i′=0 max{0, dq(τλi′) − h

λi′
q } ≤ dq(t

∗) for every i ∈ [l], which proves the claim.

Clearly, this holds for the base case of i = 1, since max{0, dq(τλ1)− hλ1q } ≤ dq(τλ1) ≤ dq(t∗).

We prove the inductive claim for i > 1 by assuming it holds for i− 1. Observe that λ1, · · · , λi−1 paid

the penalty for q (otherwise it would not be eligible for λi). Thus, we have that at the end of λi−1

we have that hq ≥
∑i−1

i′=0 max{0, dq(τλi′) − h
λi′
q } ≤ dq(t

∗). Since hλiq can only be larger, and since

max{0, dq(τλi)− hλiq } ≤ dq(t∗)− hλiq , the inductive claim holds.

Overall, for this case, we have that∑
λ∈Λ≤t∗

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗)} ≤
∑
q∈Qλ∗

dq(t
∗) ≤ c(λ∗)

28

where the last inequality is due to the fact that λ∗ occurs no earlier than t∗, and thus the optimal

solution incurs the delay of Qλ∗ up to t∗.

Case 2: τλ > t∗. Denote by Λ>t
∗ ⊆ Λ′ the set of such services. Using Lemma 4.13, for every level j

there exists at most one j-level service in Λ>t
∗
. De�ne ` = blog(c(λ∗i))c, and consider the following

subcases for λ ∈ Λ>t
∗
:

1. `λ ≤ `. In this case, we have that λ contributes at most 2`λ to the left-hand side of Equation 3.

Summing over at most a single service from each level yields a geometric sum which is at most

2`+1 ≤ 2 · c(λ∗).

2. ` < `λ < `+ dlog |E|e+ 1. For such λ, observe that

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)} ≤ ND
∗(Qλ∗) ≤ c(λ∗)

and thus the service λ contributes at most c(λ∗) to the left-hand side of Equation 3. Summing

over at most one λ from each level, their total contribution to the left-hand side of Equation 3

is at most dlog |E|e · c(λ∗).

3. `λ ≥ ` + dlog |E|e + 1. We claim that PCND
∗
Eλ0←0

(Qλ∩λ∗) = 0, and thus the contribution to

the left-hand side of Equation 3 from these services is 0.

To prove this claim, observe that PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ) ≤ ND
∗
Eλ0←0

(Q∗λ). Consider that

every element in λ∗ costs at most c(λ∗) ≤ 2`+1
. Thus, since 2`λ ≥ 2`+1 · |E|, we have that

λ added all elements of λ∗ to E0 in Line 10. Note that since λ∗ served Qλ∗ , we have that

ND
∗
Eλ0←0

(Q∗λ) = 0, as required.

Summing over the contributions from each level completes the proof.

Proof of Lemma 4.19. As in the deadline case, it is enough to show that for every charged service

λ ∈ Λ◦, we have that

2`λ ≤
∑
λ∗∈Λ∗

min{2`λ , PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)} (4)

Summing over all λ ∈ Λ◦ and using Proposition 4.20 would immediately yield the lemma.

If one of the summands on the right-hand side of Equation 4 is 2`λ , the claim clearly holds, and the

proof is complete. Otherwise, the right-hand side is exactly

∑
λ∗∈Λ∗ PCND

∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ).

Now, since

⋃
λ∗∈Λ∗ Qλ∩λ∗ = Qλ, we can construct a feasible solution for PCNDEλ0←0(Qλ, πtλ→τλ)

by buying the elements in PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ) for every λ∗ ∈ Λ∗, and paying the penalty for

unserved requests. Clearly, the cost of this solution is at most

∑
λ∗∈Λ∗ PCND

∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ),

and thus

PCND
∗
Eλ0←0

(Qλ, πtλ→τλ) ≤
∑
λ∗∈Λ∗

PCND
∗
Eλ0←0

(Qλ∩λ∗ , πtλ→τλ)

From Observation 4.17, we know that λ is an imperfect service. Proposition 4.5 thus implies that

29

2`λ ≤ PCND
∗
Eλ0←0

(Qλ, πtλ→τλ), which completes the proof.

Proof of Theorem 4.1. The competitiveness guarantee results immediately from Lemmas 4.15, 4.19 and

4.18.

As for the running time of the algorithm, it is clear that it is determined by either Line 10, which takes

O(|E|) time in each service, or by the number of calls made to the prize-collecting approximation

algorithm PCND in the function ForwardTime. We claim that the total number of calls made in each

service is O(k2), with k = |Q| the number of requests in the input.

To see this, �x any service λ at time t. Observe that the number of calls made to PCND in a service λ
is exactly the number of iterations of the loop in ForwardTime. Denote the iterations of this loop in

the service λ by I1, · · · , Il. For every iteration Ii, we denote by ti the value of the variable t′′ set in

iteration Ii, and denote by Si the PCND solution computed in Ii.

Observe the state after iteration ik – we know that the requests of Qλ gather a total delay of at least

kγ · 2`λ between t and tk. Thus, there exists a request q1 ∈ Qλ which has delay of at least γ · 2`λ .

In any solution Si for i > k (except possibly the �nal one Sl), we have that q is served. This is since

otherwise the cost of Si would exceed γ · 2`λ , in contradiction to the loop not ending at the break
command in ForwardTime.

Next, consider the iterations ik+1, · · · , i2k. Using the same argument, we know that there exists a

request q2 ∈ Qλ\{q1} that gathers at least γ · 2`λ delay until time t2k. Thus, Si for 2k ≤ i < l serves

q2. Repeating this argument, we know that for i ≥ k2
the solution Si must serve all requests Qλ,

ending the loop.

Note that the number of services performed in the algorithm is at most k, since each service serves

some pending request (as ensured by Line 14). Thus, the total running time consists of O(k3) calls to

PCND, and O(k|E|) time for Line 10. This completes the proof.

5 Applications and Extensions of the Delay Framework

In this section, we apply the framework of Section 4 to various problems, as we did for the deadline case.

The requirement for the delay framework is an approximation algorithm for the prize-collecting problem.

For some of the problems we consider, we cite appropriate prize-collecting algorithms. For others, we

use a simple construction which yields a prize-collecting approximation algorithm from an approximation

algorithm for the original problem.

Edge-Weighted Steiner Tree and Forest. The following result is due to Hajiaghayi and Jain [28].

Theorem 5.1 ([28]). There exists a polynomial-time, deterministic 3-approximation for EW prize-

collecting Steiner forest.

Plugging the algorithm of the previous theorem into the framework of Section 4.1 yields the following

result.

Theorem 5.2. There exists an O(log n)-competitive deterministic algorithm for EW Steiner forest with
delay which runs in polynomial time.

30

Multicut. The result of Garg et al. [24], stated in Theorem 3.4, is in fact an approximation with respect

to the optimal fractional solution for the following LP relaxation (where Pq is the collection of paths

connecting the two terminals of q).

minimize

∑
e∈E xec(e)

subject to

∑
e∈P xe ≥ 1 ∀q ∈ Q,∈ Pq

xe ≥ 0 ∀e ∈ E

(5)

The corresponding prize-collecting LP relaxation, for a penalty function π, is the following.

minimize

∑
e∈E xec(e) +

∑
q∈Q pqπ(q)

subject to

∑
e∈P xe + pq ≥ 1 ∀q ∈ Q,∈ Pq

xe ≥ 0 ∀e ∈ E

(6)

The following construction is a folklore construction of a prize-collecting approximation algorithm from

an approximation algorithm for the original problem. First, we solve the prize-collecting LP in Equation

6 to obtain a solution ({xe}e∈E , {pq}q∈Q). For each request q such that pq ≥ 1
2 the algorithm pays the

penalty. The remainder of the requests are solved by calling the approximation algorithm for the original

(non-prize-collecting) problem. This construction can easily be seen to lose only a constant factor (namely,

2) over the approximation ratio of the original approximation algorithm.

For the case of multicut, �rst observe that this construction is indeed implementable – that is, the prize-

collecting LP can be solved in polynomial time by using a classic separation oracle based on min-cut queries

for each request. Thus, the resulting approximation guarantee for the construction is O(log n). Plugging

the resulting algorithm into the framework of Section 4 yields the following result.

Theorem 5.3. There exists a deterministic O(log2 n)-competitive algorithm for multicut with delay
which runs in polynomial time.

Node-Weighted Steiner Forest. The following result is due to Bateni et al. [7].

Theorem 5.4 ([7]). There exists a polynomial time, deterministic O(log n)-approximation for node-

weighted prize-collecting Steiner forest.

Plugging the algorithm of the previous theorem into the framework of Section 4.1 yields the following

result.

Theorem 5.5. There exists anO(log2 n)-competitive deterministic algorithm for EW Steiner forest with
delay which runs in polynomial time.

31

Edge-Weighted Steiner Network. The following result is due to Hajiaghayi and Nasri [29].

Theorem 5.6 ([29]). There exists a polynomial-time, deterministic 3-approximation for EW prize-

collecting Steiner network.

Plugging the algorithm of the previous theorem into the framework of Section 4.1 yields the following

result.

Theorem 5.7. There exists an O(log n)-competitive deterministic algorithm for EW Steiner network
with delay which runs in polynomial time.

Directed Steiner Tree The recent result of Grandoni et al. [26] for directed Steiner tree is based on an

approximation algorithm to a problem called Group Steiner Tree on Trees with Dependency Constraint

(GSTTD), which they show is equivalent to directed Steiner forest. Their algorithm for GSTTD is an

approximation with respect to the optimal solution to a rather complex LP relaxation, which involves

applying Sherali-Adams strengthening to a base relaxation for GSTTD.

At the time of writing this paper, we could not �nd a consideration of the prize-collecting variant of directed

Steiner tree. We conjecture that a construction similar to shown here for Steiner forest would also apply

for directed Steiner tree, yielding a prize-collecting algorithm with only a constant loss in approximation

over the original algorithm of [26].

While proving the existence of such a component is beyond the scope of this paper, we nonetheless state

the resulting guarantee for directed Steiner tree with delay assuming that the component exists.

Theorem 5.8. If there exists a γ-approximation for prize-collecting directed Steiner tree which runs in
quasi-polynomial time, then there exists an O(γ log n)-competitive algorithm for directed Steiner tree
with delay which also runs in quasi-polynomial time.

5.1 Facility Location

The following result is due to Xu and Xu [35].

Theorem 5.9. [[35]] There exists a polynomial-time, deterministic 1.8526-approximation for prize-

collecting facility location.

In this subsection we prove the following result.

Theorem 5.10. There exists a deterministic O(log n)-competitive algorithm for facility location with
delay.

As previously observed in the deadline case, the facility location problem does not conform to the ND

structure, and thus the framework cannot be applied to facility location in a black-box fashion and still

obtainO(log n) loss. In the deadline case, we showed that the framework of Section 2 could still be directly

applied to facility location; the only necessary modi�cation was in the analysis – namely, the proof of

Lemma 2.14.

In facility location with delay, however, this is not the case – a minor modi�cation to the framework itself

is required. The modi�cation is simply to ensure that during any ongoing service, the investment counter

of a pending request never surpasses the cost of connecting that request to an open facility.

32

Snippet 4: Facility Location Modi�cation

1 Let F be the set of facilities opened in S.

2 foreach q ∈ Q\Q′λ do
3 if hq + πt′′(q) ≥ minu∈F δ(u, q) then
4 Set hq = max(hq,minu∈F δ(u, q))
5 Set Q′λ ← Q′λ ∪ {q}
6 Modify S to also serve q by connecting q to arg minu∈F δ(u, q).

7 else
8 Set hq ← hq + πt′′(q).

9 Set `q ← `λ.

The modi�cation consists of replacing the foreach loop of Line 16 with the modi�cation in Snippet 4.

As was the case in facility location with deadlines, Remark 3.15 applies to the nature of solutions in the

facility location with delay algorithm.

Analysis

We show that the application of the framework in Section 2, with the modi�cation of Snippet 4, to the

approximation algorithm of Theorem 5.9 proves Theorem 5.10. As in the deadline case, we would like to

reprove Lemmas 4.15, 4.18 and 4.19 for facility location with delay, which would prove the theorem.

For Lemma 4.15, consider that the cost of serving additional requests in the snippet is bounded by the

investment counters of those requests – thus, losing a factor of 2, we ignore this additional cost. The

remaining argument is identical to the original proof of Lemma 4.15.

Lemma 4.18 goes through without modi�cation. It remains to prove Lemma 4.19 for our case. As in the

deadline case, the only part of the proof which needs to be modi�ed is the local-charging proposition,

which is Proposition 4.20.

Proof of Proposition 4.20 for facility location. We use the notation de�ned in the original proof of Propo-

sition 4.20. The proof breaks down in the third subcase of case 2 – that is, the case of a service λwhich

forwarded past time t∗, such that `λ ≥ `+ dlog |E|e+ 1. Let Λ� be the collection of services in this

subcase. We claim that ∑
λ∈Λ�

PCND
∗
Eλ0←0

(Qλ∩λ∗ , πλ,τλ) ≤ 2 · cconn(λ∗)

where cconn(λ∗) ≤ c(λ∗) is the connection cost incurred by the optimal solution in λ∗. To show this,

for every λ ∈ Λ� we de�ne the following solution S for PCNDEλ0←0(Qλ∩λ∗ , πλ,τλ):

1. Open facilities at all nodes in Eλ0 , at cost 0.

2. For every request q ∈ Qλ∩λ∗ :

(a) If λ is the last service in Λ� for which q is eligible, connect q to the closest facility in Eλ0 .

(b) Otherwise, pay the penalty πλ,τλ(q).

33

This solution has no opening cost, only connection and penalty costs. We now count the costs of those

solutions by each request separately, attributing to a request q ∈ Qλ∗ the connection and penalty cost

incurred for it by the solutions.

Fix a request q ∈ Qλ∗ , and denote by λ1, · · · , λl ∈ Λ� the services for which q was eligible, ordered

by time of occurrence. For every i ∈ [l], denote by Si the solution corresponding to λi. Denote by E∗

the set of facilities opened in λ∗ and observe that, as in the original proof, for every λi for i ∈ [l] we

have that E∗ ⊆ Eλi0 . Thus, the total cost due to q is:

penalty: penalty cost πλi,τλi is paid in Si for i such that λi does not serve q. The services λi in which

the solution pays the penalty for q do not serve q; observe that in such services hq increases by πλi,τλi .
After each such λi, we also have that hq ≤ min

v∈Eλi0
δ(v, q) – otherwise, the if condition in Line 3

in the snippet would force q to be served, in contradiction. In particular, hq ≤ minv∈E∗ δ(v, q) after

each such λi. This implies that the sum of penalty costs for q is at most minv∈E∗ δ(v, q), which is the

connection cost of q in λ∗.

connection: There exists at most one index i ∈ [l] such that Si connects q. Using again the fact that

E∗ ⊆ Eλi0 , the connection cost of request q in Si is at most the connection cost of q in λ∗.

We completes the proof of Equation 9. Thus, we have that the contribution from services λ ∈ Λ� to

the left-hand side of Equation 3 is at most 2 · c(λ∗), completing the proof of the proposition.

5.2 Exponential-Time Algorithms

As in the deadline case, one can use the framework of Section 4 to obtain the following information-

theoretic upper bound on competitiveness.

Theorem 5.11. There exists an O(log |E|)-competitive algorithm for ND with delay (with no guar-
antees on running time). In particular, there exists an O(log n)-competitive algorithm for all problems
considered in this paper, where n is the number of nodes in the input graph.

6 Request-Based Regime

In problems with deadlines or with delay, the usual regime is that the number of requests is unbounded,

and potentially much larger than the size of the underlying universe (e.g. the number of nodes in the

graph). This is the regime we addressed in this paper thus far. However, for o�ine network design, the

opposite regime is used – i.e. that the universe is large, and the number of requests is much smaller. For

such a regime, it is preferable to give guarantees in the number of requests k. In this section, we obtain

the best of both worlds, namely a guarantee in the minimum between the number of requests and the size

of the universe. The following theorem states the result of this section.

Theorem 6.1. If there exists a γ deterministic (randomized) approximation algorithm for ND, then
there exists an O(γ log(min{k, |E|}))-competitive deterministic (randomized) algorithm for ND with
deadlines, which runs in polynomial time.

6.1 Proof of Theorem 6.1

To prove Theorem 6.1, we �rst show how to modify the framework of Section 2 to beO(γ log k)-competitive,

where γ is the approximation ratio of the encapsulated approximation algorithm. We then describe a sim-

34

ple way to combine this modi�ed framework with the original framework of Section 2 to prove Theorem

6.1.

Modi�ed O(γ log k)-Competitive Framework

We describe the needed modi�cation to the framework of Section 2 to achieve (γ log k)-competitiveness.

For the sake of describing the framework, we assume that the number of requests k is known in advance

(this assumption is later relaxed using standard doubling techniques). The single modi�cation required is

in the de�nition of E0, as de�ned in UponDeadline. Instead of adding all cheap elements (those that cost

at most
2`λ
|E|), we instead iterate over pending requests which are cheap.

Namely, the new framework is obtained by replacing Line 9 with Snippet 5, which de�nesE0 in a di�erent

way.

Snippet 5: Facility Location Modi�cation

1 while there exists a pending request q which is not served by E0, such that c(Sq) ≤ γ·2`λ
k do

2 Set E0 ← E0 ∪ Sq

Analysis

The following theorem states the competitiveness of the modi�ed framework.

Theorem 6.2. The framework of Section 2, when modi�ed with Snippet 5, is O(γ log k)-competitive.

The proof of Theorem 6.2 is very similar to the proof of Theorem 2.1. Lemma 2.10 goes through in an

almost identical way – it is enough to notice that the cost of E0 as de�ned in Snippet 5 never exceeds

γ · 2`λ .

Lemma 2.13 also goes through in an identical manner. It remains to prove the following analogue to Lemma

2.14.

Lemma 6.3 (Analogue of Lemma 2.14).
∑

λ∈Λ◦ 2`λ ≤ O(log k) · opt

To prove Lemma 6.3, we only need to prove the following analogue of Proposition 2.15. The proof of

Lemma 6.3 from this analogue is identical to the proof of Lemma 2.14 from Proposition 2.15.

Proposition 6.4 (Analogue of Proposition 2.15). There exists a constant β such that for every optimal
service λ∗ ∈ Λ∗, we have that∑

λ∈Λ◦

min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ β log k · c(λ∗) (7)

Proof. The proof is very similar to the proof of Proposition 2.15. Fix an optimal service λ∗ ∈ Λ∗.
Denote by Λ′ ⊆ Λ◦ the subset of charged services made by the algorithm in which a request from

Qλ∗ is served (other services, for which Qλ∩λ∗ = ∅, need not be considered). Observe that Qλ∗ is

an intersecting set, as the optimal solution served Qλ∗ is a single point in time. Lemma 2.9 implies

that for every level j, there exists at most one j-level service in Λ′. De�ne ` = blog(c(λ∗))c. Now,

35

consider the following cases for a service λ ∈ Λ′:

1. `λ ≤ `. Each such λ contributes at most 2`λ to the left-hand side of Equation 1. Summing over

at most one service from each level yields a geometric sum which is at most 2`+1 ≤ 2 · c(λ∗).

2. ` < `λ < `+ dlog ke+ 1. For such λ, observe that min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ ND
∗(Qλ) ≤

c(λ∗). Summing over at most a single service from each level, the total contribution to the

left-hand side of Equation 1 from these levels is at most dlog ke · c(λ∗).

3. `λ ≥ `+ dlog ke+ 1. Observe that min{2`λ ,ND
∗
Eλ0←0

(Qλ∩λ∗)} ≤ ND
∗
Eλ0←0

(Qλ∩λ∗). We now

claim that ND
∗
Eλ0←0

(Qλ∩λ∗) = 0, which implies that the total contribution from these levels to

the left-hand side of Equation 7 is 0.

Indeed, consider that ND
∗({q}) ≤ c(λ∗) for every request q ∈ Qλ∗ (since λ∗ is itself a feasible

solution). If, in addition, we have that q ∈ Qλ, then q was pending immediately before λ. From

the approximation guarantee of ND, we have that c(Sq) ≤ γ ·ND
∗({q}) ≤ γ · c(λ∗) ≤ γ · 2`+1

.

Thus, since 2`λ ≥ 2`+1 · k, Snippet 5 guarantees that Eλ0 serves q. Since this holds for every

q ∈ Qλ∩λ∗ , we have that ND
∗
Eλ0←0

(Qλ∩λ∗) = 0.

Summing over the contributions from each level completes the proof.

Proof of Theorem 6.2. The proof of the theorem results immediately from Lemmas 2.10, 2.13 and 6.3.

The analysis of the running time remains the same.

Proof of Theorem 6.1

First, we describe the doubling we use to relax the assumption that k is known to the algorithm. We do

this by guessing a value k̂ for the number of requests – initially a constant – and running the framework

of Theorem 6.2 for that value. When the number of requests exceeds k̂, we send all new requests to a new

instance of the algorithm (which is run in parallel to the previous instances), in which the guessed number

of requests is k̂2
. We then set k̂ ← k̂2

.

The cost of the i’th instance is at most γ log k̂i · opt, where k̂i is the value of k̂ used by the i’th instance.

Consider that the �nal instance is that in which k̂ ≥ k, and that for this instance we have k̂ ≤ k2
and thus

log k̂ ≤ 2 log k. Since log k̂ grows by a factor of 2 with each iteration, we have that the total cost of the

algorithm is at most 4γ log k · opt, as required.

To prove Theorem 6.1, we modify this by stopping the doubling process earlier: when k̂ exceeds |E|, we

start a new instance of the original framework of Section 2, and send all new requests to that instance.

This is easily seen to achieve the desired competitiveness bound.

Extension to Delay. The modi�cations seen in this section for deadlines can also be applied to the delay

framework of Section 4, achieving an identical guarantee to Theorem 6.1. However, as is the case in the

original delay framwork, we cannot allow a pending request which is not eligible to the current service to

be served by this service – otherwise, Proposition 4.14 would no longer hold, as the residual delay of an

ineligible request might be nonzero. This yields the following result.

36

Theorem 6.5. If there exists a γ deterministic (randomized) approximation algorithm for PCND, then
there exists an O(γ log(min{k, |E|}))-competitive deterministic (randomized) algorithm for ND with
delay, which runs in polynomial time.

6.2 Applications

We can apply this framework to the network design problems which conform to the structure of ND. In

Section 3, we chose to quote the approximation ratios of all o�ine approximation algorithms in terms of n
instead of k, since we were interested in a guarantee in n (the reader can verify that the original guarantees

of these algorithms are indeed in terms of k).

In this section, we are interested in a guarantee in min{k, n}. We thus replace n with min{n, k} in the

approximation ratios of all o�ine approximation algorithms stated in Section 3. Plugging those approxi-

mation algorithms into the framework, Theorem 6.1 yields the following results:

Table 2: Framework Applications

Edge-weighted Steiner forest with deadlines O(log min{k, n})
Multicut O(log2 min{k, n})
Edge-weighted Steiner network O(log min{k, n})
Node-weighted Steiner forest O(log2 min{k, n})
Directed Steiner tree O

(
log3 min{k,n}

log log min{k,n}

)

7 Conclusions and Open Problems

This paper presented frameworks for network design problems with deadlines or delay, which encapsu-

late approximation algorithms for the o�ine network design problem, with competitiveness which is a

logarithmic factor away from the approximation ratio of the underlying approximation algorithm. The

running time of these frameworks has a polynomial overhead over the running time of the encapsulated

approximation algorithm.

In particular, in the formal online model with unbounded computation, this provides O(log n) upper

bounds (with n the number of vertices in the graph), when the o�ine problem is solved exactly. For some

network design problems, as seen in Appendix A, this is relatively tight – that is, an information-theoretic

lower bound of Ω(
√

log n) exists. Whether there exists an improved framework which can bridge this gap

remains open.

For the remaining network design problems, the gap is still large, as no non-constant lower bound is

known. This raises the possibility of designing a framework which works for a restricted class of network

design problems (which excludes node-weighted Steiner tree and directed Steiner tree), but yields constant

competitiveness results for this restricted class. Either designing such a framework, or showing lower

bounds, is an open problem.

An additional open problem is to design a good approximation for prize-collecting directed Steiner tree.

Applying Theorem 4.1 to such a result would yield a competitive algorithm for directed Steiner tree with

delay.

37

References

[1] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general approach to

online network optimization problems. ACM Trans. Algorithms, 2(4):640–660, 2006.

[2] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, O�r Geri, Haim Kaplan, Rahul M.

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with delays.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages 1:1–1:20, 2017.

[3] Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover and vertex cover with

delay. CoRR, abs/1807.08543, 2018.

[4] Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. In Approximation
and Online Algorithms - 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24,
2018, Revised Selected Papers, pages 21–35, 2018.

[5] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 551–563, 2017.

[6] Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay or

with deadlines. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 60–71, 2019.

[7] Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, and Vahid Liaghat. Improved approxima-

tion algorithms for (budgeted) node-weighted steiner problems. SIAM J. Comput., 47(4):1275–1293,

2018.

[8] Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems (extended abstract).

In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, pages

344–353, New York, NY, USA, 1997. ACM.

[9] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwar-

czný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms for multi-level

aggregation. In 24th Annual European Symposium onAlgorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, pages 12:1–12:17, 2016.

[10] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí Sgall.

Better approximation bounds for the joint replenishment problem. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 42–54, 2014.

[11] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online

deterministic algorithm for matching with delays. In Approximation and Online Algorithms - 16th
International Workshop, WAOA 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers,
pages 51–68, 2018.

[12] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: Deterministic

online matching with delays. In Approximation and Online Algorithms - 15th International Workshop,
WAOA 2017, Vienna, Austria, September 7-8, 2017, Revised Selected Papers, pages 132–146, 2017.

38

[13] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line. In Struc-
tural Information and Communication Complexity - 25th International Colloquium, SIROCCO 2018,
Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages 237–248, 2018.

[14] Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization net-

works or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605, 2012.

[15] Niv Buchbinder, Moran Feldman, Joseph (Se�) Naor, and Ohad Talmon. O(depth)-competitive al-

gorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages

1235–1244, 2017.

[16] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for maximizing ad-

auctions revenue. In Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October
8-10, 2007, Proceedings, pages 253–264, 2007.

[17] Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko. On-

line make-to-order joint replenishment model: primal dual competitive algorithms. In Proceedings
of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco,
California, USA, January 20-22, 2008, pages 952–961, 2008.

[18] Rodrigo A. Carrasco, Kirk Pruhs, Cli� Stein, and José Verschae. The online set aggregation problem.

In LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires, Argentina,
April 16-19, 2018, Proceedings, pages 245–259, 2018.

[19] Chandra Chekuri, Alina Ene, and Ali Vakilian. Prize-collecting survivable network design in node-

weighted graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM
2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 98–109, 2012.

[20] Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment delay:

Theory and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 389–398, 1998.

[21] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 333–344, 2016.

[22] Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays for two

sources. In Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May
24-26, 2017, Proceedings, pages 209–221, 2017.

[23] Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57, 2008.

[24] Naveen Garg, Vijay V. Vazirani, Mihalis Yannakakis, and Mihalis Yannakakis. Approximate max-

�ow min-(multi)cut theorems and their applications. In Proceedings of the Twenty-�fth Annual ACM
Symposium on Theory of Computing, STOC ’93, pages 698–707, New York, NY, USA, 1993. ACM.

[25] Michel X. Goemans and David P. Williamson. A general approximation technique for constrained

forest problems. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’92, pages 307–316, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathemat-

ics.

39

[26] Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-approximation algorithm

for directed steiner tree: A tight quasi-polynomial-time algorithm. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 253–264, New York, NY, USA,

2019. ACM.

[27] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Online and stochastic survivable network

design. SIAM J. Comput., 41(6):1649–1672, 2012.

[28] Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree problem

via a new approach of primal-dual schema. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 631–640, Philadelphia, PA, USA, 2006. Society for

Industrial and Applied Mathematics.

[29] MohammadTaghi Hajiaghayi and Arefeh A. Nasri. Prize-collecting steiner networks via iterative

rounding. In LATIN 2010: Theoretical Informatics, 9th Latin American Symposium, Oaxaca, Mexico,
April 19-23, 2010. Proceedings, pages 515–526, 2010.

[30] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete Math.,
4(3):369–384, 1991.

[31] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Com-
binatorica, 21(1):39–60, 2001.

[32] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median

problems using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296, March

2001.

[33] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and other stories

about e/(e-1). Algorithmica, 36(3):209–224, 2003.

[34] J. Naor, D. Panigrahi, and M. Singh. Online node-weighted steiner tree and related problems. In 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 210–219, 2011.

[35] Guang Xu and Jinhui Xu. An improved approximation algorithm for uncapacitated facility location

problem with penalties. J. Comb. Optim., 17(4):424–436, 2009.

A Lower Bounds

Some of the more di�cult network design problems considered in this paper – namely, node-weighted

Steiner tree and directed Steiner tree – have an information-theoretic lower bound of Ω(
√

log n) on com-

petitiveness. This lower bound stems from containing the set cover with delay problem (denoted SCD),

�rst presented in [18].

Theorem A.1. Every randomized algorithm for node-weighted Steiner tree with deadlines (or delay) or
directed Steiner tree with deadlines (or delay) has a competitive ratio of Ω(

√
log n).

In the set cover with delay problem, n′ elements and m′ sets are given. Requests arrive on the elements

over time, each with an associated delay function. At any point in time, the algorithm may transmit a set

S at a cost c(S), serving all pending requests on elements in the set S.

40

This �gure describes a node-weighted Steiner tree graph of n′ + m′ + 1 nodes formed from a set cover

instance with m′ sets and n′ elements. In this graph, the root is connected to m′ nodes corresponding to

the sets of the set cover instance. There are also n′ nodes corresponding to the elements of the instance.

Each "set" node is connected to the "element" nodes corresponding to elements in the set. The cost of each

set node is exactly the cost of the set in the set cover instance; the cost of the remainder of the nodes is 0.

The reduction from SCD to node-weighted Steiner tree with deadlines consists of translating a request on

an element to a request on the corresponding element node.

The reduction of set cover to directed Steiner tree is similar – the only di�erences are that the edges are

now directed downward, and that the costs are on the edges from the root to the sets instead of on the set

nodes themselves.

Figure 4: Reduction from Set Cover to Node-Weighted Steiner Tree

In [3], a lower bound was presented for set cover with delay, which also applies to deadlines (as all requests

in this lower bound construction can be replaced with deadline requests). Speci�cally, they gave for every

i an instance of SCD in which:

1. The number of elements is n′ = 3i.

2. The number of sets is m′ = 2i.

3. The competitiveness of any randomized algorithm is at least Ω(
√
i).

Now, we use standard reductions from set cover to either node-weighted Steiner tree or directed Steiner

tree, both on a graph of n = n′ +m′ + 1 vertices. The reductions are shown in Figure 4. Using the lower

bound for SCD, we have that i = Ω(log n), and thus the competitive ratio of any randomized algorithm is

Ω(
√

log n), proving Theorem A.1.

41

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Considered Problems
	1.4 Related Work

	2 Model and Deadline Framework
	2.1 The Framework
	2.2 Analysis

	3 Applications and Extensions of the Deadline Framework
	3.1 Edge-Weighted Steiner Tree and Steiner Forest
	3.2 Multicut
	3.3 Node-Weighted Steiner Forest
	3.4 Edge-Weighted Steiner Network
	3.5 Directed Steiner Tree
	3.6 Facility Location
	3.7 Exponential-Time Algorithms

	4 Delay Framework
	4.1 The Framework
	4.2 Analysis

	5 Applications and Extensions of the Delay Framework
	5.1 Facility Location
	5.2 Exponential-Time Algorithms

	6 Request-Based Regime
	6.1 Proof of Theorem 6.1
	6.2 Applications

	7 Conclusions and Open Problems
	A Lower Bounds

