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Abstract

We consider the classical problem of prediction with expert advice. In the �xed-time setting, where
the time horizon is known in advance, algorithms that achieve the optimal regret are known when there
are two, three, or four experts or when the number of experts is large. Much less is known about the
problem in the anytime setting, where the time horizon is not known in advance. No minimax optimal
algorithm was previously known in the anytime setting, regardless of the number of experts. Even
for the case of two experts, Luo and Schapire have left open the problem of determining the optimal
algorithm.

We design the �rst minimax optimal algorithm for minimizing regret in the anytime setting. We
consider the case of two experts, and prove that the optimal regret is γ

√
t/2 at all time steps t, where γ

is a natural constant that arose 35 years ago in studying fundamental properties of Brownian motion.
The algorithm is designed by considering a continuous analogue of the regret problem, which is solved
using ideas from stochastic calculus.

∗Email: nickhar@cs.ubc.ca. University of British Columbia, Department of Computer Science.
†Email: cvliaw@cs.ubc.ca. University of British Columbia, Department of Computer Science.
‡Email: perkins@math.ubc.ca. University of British Columbia, Department of Mathematics.
§Email: srand@cs.ubc.ca. University of British Columbia, Department of Computer Science.

ar
X

iv
:2

00
2.

08
99

4v
2 

 [
cs

.L
G

] 
 2

6 
A

ug
 2

02
1



Contents

1 Introduction 1

2 Discussion of results and techniques 2
2.1 Formal problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Randomized formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 An expression for the regret involving the gap . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Basic facts about con�uent hypergeometric functions . . . . . . . . . . . . . . . . . . . . . 9

3 Upper bound 10
3.1 Analysis when gap increments are ±1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Proof of Lemma 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Analysis of Algorithm 1 for general cost vectors . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Proof of Proposition 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Proof of Lemma 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Lower bound 19
4.1 Large regret in�nitely often . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Derivation of a continuous-time analogue of Algorithm 1 24
5.1 De�ning the continuous regret problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Connections to stochastic calculus and the backward heat equation . . . . . . . . . . . . . 25

5.2.1 Satisfying the backward heat equation . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Resolving the non-negativity issue . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Optimizing the boundary to minimize continuous regret . . . . . . . . . . . . . . . . . . . 31

A Standard concavity facts 32

B Additional proofs for Section 5 32
B.1 Proof of Lemma 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2 Additional proofs from Appendix B.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.3 Discussion on the statement of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.4 Continuous regret against any continuous semi-martingale . . . . . . . . . . . . . . . . . . 38

C Remark on oblivious adversaries 39



1 Introduction

We study the problem of prediction with expert advice, whose origin can be traced back to the 1950s [36].
The problem is a sequential game between an adversary and an algorithm as follows. There are n actions,
which are called “experts”. At each time step, the algorithm computes a distribution over the experts, then
randomly chooses an expert according to that distribution; concurrently, the adversary chooses a cost
in [0, 1] for each expert, with knowledge of the algorithm’s distribution but not its random choice. The
cost of each expert is then revealed to the algorithm, and the algorithm incurs the cost that its chosen
expert incurred. The goal is to design an algorithm whose expected regret is small. That is, the goal is to
minimize the di�erence between the algorithm’s expected total cost and the total cost of the best expert.
This problem and its variants have been a key component in numerous results; we refer the reader to [5].

The most well-known algorithm for the experts problem is the celebrated multiplicative weights update
algorithm (MWU) [42, 54]. In the �xed-time setting (where a time horizon T is known in advance), MWU
su�ers a regret of

√
(T/2) lnn at time T , where n is the number of experts [12, 13]. This bound on the

regret of MWU is known to be tight for any evenn [33]. It is also known that
√

(T/2) lnn is asymptotically
optimal for large n and T . (A precise statement may be found in the references [13, Corollary 3.2.2] [14,
Theorem 3.7].) Interestingly, MWU is not optimal for small values of n. For n = 2, Cover [18] observed
decades earlier that a natural dynamic programming formulation of the problem leads to a simple analysis
showing that the minimax optimal regret is

√
T/2π, asymptotically for large T (a proof of this can also

be found in [13, §3], [37, Theorem 18.5.5]).
For some applications, the time horizon T is not known in advance; examples include any sort of online

tasks (e.g., online learning), or tasks requiring convergence over time (e.g., convergence to equilibria). An
alternative model, more suited to those scenarios, is the anytime setting1, in which algorithms are not given
T but must bound the regret for all T . Yet another model is to assume that T is random with a known
distribution [43]. For example, the geometric horizon setting of Gravin, Peres, and Sivan [32] assumes that T
is a geometric random variable. In this setting, they gave the optimal algorithm for two and three experts.
Moreover, they propose a conjecture on the relationship between the �xed-time and the geometric horizon
settings that could lead to optimal bounds for all n.

Our focus is the anytime setting. One can convert algorithms for the �xed-time setting to the anytime
setting by the well-known “doubling trick” [13, §4.6]. This involves restarting the �xed-time horizon
algorithm every power-of-two steps with new parameters. If the �xed-time algorithm has regretO(T c) at
time T for some c ∈ (0, 1) then the doubling trick yields an algorithm with regretO(tc) at time t for every
t ≥ 1. On the one hand, this is a conceptually simple and generic reduction. On the other hand, restarting
the algorithm and discarding its state is clearly wasteful and probably not very practical.

Instead of using the doubling trick, one can use variants of MWU with a dynamic step size; see, e.g.,
[14, §2.3], [45, Theorem 1], [11, §2.5]. This is a much more elegant and practical approach and is even
simpler to implement. However, the analysis is more subtle than for MWU with a �xed step size. It is
known that, with an appropriate choice of step sizes, MWU can guarantee2 a regret of

√
t lnn for all t ≥ 1

and all n ≥ 2 (see [11, Theorem 2.4] or [30, Proposition 2.1]). However, it is unknown whether
√
t lnn is

the minimax optimal anytime regret, for any value of n. Indeed, Luo and Schapire [43] have also stated
that “�nding the minimax solution to this setting seems to be quite challenging, even for the simplest case
of n = 2”.
Results and techniques. This work considers the anytime setting withn = 2 experts. We show that the
optimal regret is γ

2

√
t, where γ ≈ 1.30693 is a fundamental constant that arises in the study of Brownian

motion [46]. (Note that γ/2 ≈ 0.653 < 0.833 ≈
√

ln 2.) This also answers a question that has been left
1Other authors have referred to this setting as an “unknown time horizon” or “bounds that hold uniformly over time”.
2It can be shown, by modifying arguments of [33], that this is the optimal anytime analysis for MWU with step sizes c/

√
t.
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open by Luo and Schapire [43]. It is not a priori obvious why this fundamental constant should play a
role in both Brownian motion and regret. Nevertheless, some connections are known. For example, in
the �xed-time setting, the optimal algorithms for n ∈ {2, 3, 4} (see [32]) and the optimal lower bound for
n → ∞ all involve properties of random walks. Since Brownian motion is a continuous limit of random
walks, a connection between anytime regret and Brownian motion is plausible.

Our techniques to analyze the optimal anytime regret are a signi�cant departure from previous work
on regret minimization. First, we de�ne a continuous-time analogue of the problem which expresses the
regret as a stochastic integral. This allows us to utilize tools from stochastic calculus to arrive at a potential
function whose derivative gives the optimal continuous-time algorithm. Remarkably, the optimal discrete-
time algorithm is the discrete derivative of the same potential function. We note that Freund [28] has used
stochastic di�erential equations for a continuous-time formulation of the experts problem, although he
did not discuss the discrete-time problem.

The potential function that we derive involves a “con�uent hypergeometric function”. Such functions
often arise in solutions to di�erential equations, and are useful in discrete mathematics [31, §5.5].
Application. An interesting application of our results is to a problem in probability theory that does
not involve regret at all. Let (Xt)t≥0 be a standard random walk. Then E [ |Xτ | ] ≤ γ E [

√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be improved.3 This result is originally due to Davis [20,
Eq. (3.8)], who proved it �rst for Brownian motion and later derived the result for random walks (via the
Skorokhod embedding). We give a new derivation of Davis’ result from our results in Subsection 2.4.
Related work. The minimax regret for the experts problem has been well-studied in the �xed-time
horizon setting. As mentioned above, some tight asymptotics of the minimax regret were known decades
ago: for n = 2, it is

√
T/2π [18], whereas asymptotically in n, it is

√
T ln(n)/2 [12, 13]. Recent work,

building on results of Gravin et al. [32], shows that the minimax regret is
√

8T/9π for n = 3 [1] and√
πT/8 for n = 4 [6]. The anytime setting is not as well understood. In the two-experts setting, Luo

and Schapire [43] demonstrate that, if the time horizon T is chosen by an adversary and unknown to the
algorithm then the algorithm may be forced to incur regret at least

√
T/π. This exceeds the minimax

regret of
√
T/2π in the �xed-time setting, which establishes that the adversary has more power to cause

regret in the anytime setting.
Recently, there has been a line of work that makes connections between the experts problem (in the

�nite-time horizon and geometric-time horizon setting) and PDEs [4, 6, 7, 24, 25, 39, 40]. There is also
work connecting regret minimization to option pricing [21] and to the Black-Scholes formula [2], which
is based on Brownian motion and stochastic calculus. Intuitively, stochastic calculus is a crucial tool to
optimally hedge against future costs, which we exploit too.

Our algorithm chooses the distribution on the experts using the discrete derivative of a potential func-
tion. This idea has also been used in the AdaNormalHedge algorithm [44], although their potential function
was not derived in continuous time.

Our work crucially uses stopping times for Brownian motion hitting a time-dependent boundary. Such
techniques have also been used for non-adversarial bandits to approximate Gittins indices (see, e.g., [10]).

2 Discussion of results and techniques

2.1 Formal problem statement

We will formulate the problem in the style of online convex optimization [52], in which at each time step
a deterministic algorithm picks a distribution on experts. An alternative formulation would be to have a

3At �rst glance, the inequality may seem to contradict the Law of the Iterated Logarithm. However, we remark that if τ :=
inf{t > 0 : |Xt| ≥ c

√
t ln ln t} for some c ∈ (0,

√
2) then E [

√
τ ] =∞ (despite τ being a.s. �nite) and the inequality is trivial.
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randomized algorithm pick a single expert; see, e.g., [14, Chapter 4]. Using the randomized formulation in
the anytime setting has certain subtleties which we discuss in Subsection 2.1.1.

Letn denote the number of experts. There is a deterministic algorithmA, and a deterministic adversary
B that knows A. For each integer t ≥ 1, there is a prediction task that is said to occur at time t. In this
task, A picks a probability distribution xt ∈ [0, 1]n, and B picks a cost vector `t ∈ [0, 1]n. The coordinate
`t,j denotes the cost of the jth expert at time t.

After xt is chosen the vector `t is revealed, so xt depends on `1, . . . , `t−1 (and implicitly x1, . . . , xt−1).
The vector `t depends on A and on `1, . . . , `t−1 (and implicitly x1, . . . , xt, since A is deterministic and
known to B). The game can end whenever B wishes, or continue forever. Since A is deterministic and
known to B, the entire sequence of interactions, including the ending time, can be predetermined by B.

The cost incurred by the algorithm at time t is the inner product 〈xt, `t 〉. This may be thought of as
the “expected cost” of the algorithm, although the algorithm is actually deterministic. The total expected
cost of the algorithm up to time t is

∑t
i=1〈xi, `i 〉. For j ∈ [n], the total cost of the jth expert up to time t

is Lt,j =
∑t

i=1 `i,j . The regret at time t of algorithm A against adversary B is the di�erence between the
algorithm’s total expected cost and the total cost of the best expert, i.e.,

Regret(n, t,A,B) =
t∑
i=1

〈xi, `i 〉 − min
j∈[n]

Lt,j .

Anytime setting. This work focuses on the anytime setting. In this setting, one may view the algorithm
as running forever, with the goal of minimizing, for all t, the regret normalized by

√
t. Alternatively, one

may view the game as ending at a time chosen by the adversary, and the algorithm must minimize the
regret at that ending time. (It does not matter whether the adversary chooses the ending time in advance
or dynamically, since A and B are deterministic so all interactions are predetermined.) These two views
are equivalent because the algorithm cannot distinguish between them.

Formally, the goal is to design an algorithm which achieves the in�mum in the following expression
de�ning the minimax anytime regret.

AnytimeNormRegret(n) := inf
A

sup
B

sup
t≥1

Regret(n, t,A,B)√
t

. (2.1)

This precise value was previously unknown even for n = 2. The best known bounds at present are

0.564 ≈
√

1/π ≤ AnytimeNormRegret(2) ≤
√

ln 2 ≈ 0.833. (2.2)

The lower bound, due to [43], demonstrates a gap between the anytime setting and the �xed-time setting,
where the optimal normalized regret is

√
1/2π [18]. Our main result is that AnytimeNormRegret(2) =

γ/2 ≈ 0.653 and consequently neither inequality in (2.2) is tight.
As mentioned above, MWU with a dynamic step size shows that AnytimeNormRegret(n) ≤

√
lnn

for all n ≥ 2 [11, §2.5]. The lower bound lim infn→∞AnytimeNormRegret(n)/
√

lnn ≥
√

1/2 follows
from the bound in the �xed-time setting [13]. Thus, the upper bound is loose by at most a factor

√
2.

2.1.1 Randomized formulations

Several alternative formulations of the problem arise ifA selects a single expert It ∈ [n] randomly at each
time t, and the adversary chooses an ending time τ . We mention three possibilities, di�ering in the power
of the adversary B.

• The most powerful adversary allows `t to depend on I1, . . . , It. In this case it is easy to design B
with Regret(n, t,A,B) = Ω(t).

3



• An adversary of intermediate power allows the cost vector `t and the event τ = t to be determined
by I1, . . . , It−1. This is analogous to the “non-oblivious opponent” of [14, §4.1]. Interestingly, one
can design such an adversary B for which E

[
Regret(n,τ,A,B)√

τ log log τ

]
= Ω(1). The surprising aspect is the

√
log log τ in the denominator, which arises due to the law of the iterated logarithm. We prove this

result in Appendix C.

• The weakest adversary requires that `t and τ depend only onA and not its random choices I1, I2, . . ..
This is analogous to the “oblivious opponent” of [14, §4.1]. The expected regret in this model is
identical to the regret in the deterministic model described at the start of Subsection 2.1.

We favour this third model because it is consistent with the online convex optimization literature, and
moreover its minimax regret has the ideal asymptotics Θ(

√
t). It is intriguing that in the anytime setting,

the non-oblivious opponent has more power than the oblivious opponent. In contrast, the two adversaries
have the same power in the �xed time setting [14, §4.1].

2.2 Statement of results

To state our results, we require two de�nitions.

erfi(x) =
2√
π

∫ x

0
ez

2
dz

M0(x) = ex −
√
πx erfi(

√
x)

(2.3)

The �rst is the imaginary error function, a well-known special function that relates to the Gaussian error
function. The second is an example of a con�uent hypergeometric function, a very broad class of special
functions that includes, e.g., Bessel functions and Laguerre polynomials. (See Subsection 2.6 for formal
de�nitions.) Our analysis makes use of a few elementary properties of these functions. A key constant
used in this paper is γ, which is de�ned to be the smallest4 positive root5 of M0(x2/2), i.e.,

γ := min
{
x > 0 : M0(x2/2) = 0

}
≈ 1.3069... (2.4)

Theorem 2.1 (Main result). In the anytime setting with two experts, the minimax optimal normalized
regret (over deterministic algorithms A and adversaries B) is

AnytimeNormRegret(2) = inf
A

sup
B

sup
t≥1

Regret(2, t,A,B)√
t

=
γ

2
. (2.5)

The proof of this theorem has two parts: an upper bound, in Section 3, which exhibits an optimal al-
gorithm, and a lower bound, in Section 4, which exhibits an optimal randomized adversary. The algorithm
is very short, and it appears below in Algorithm 1.

One might imagine that some form of duality theory is involved in our matching upper and lower
bounds. Indeed, if the costs are in {0, 1} one may write AnytimeNormRegret(2) as the value of an in�nite-
dimensional linear program, although we do not explicitly adopt this viewpoint. Instead, γ arises in our
lower bound as the maximizer in (4.3), whereas γ arises in our upper bound as the minimizer in (5.19).
We are not aware of any direct relationship between those two equations. Nevertheless, our algorithm
and our lower bound can be seen as constructing feasible primal and dual solutions, respectively, to the
aforementioned linear program.

4In fact, γ is the unique positive root. See Fact 2.7.
5The roots of certain con�uent hypergeometric functions have appeared in studying some natural phenomena of Brownian

motion; for some examples see [8, 20, 34, 46].
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Comparison to existing techniques. A duality viewpoint is adopted by Gravin et al. [32] in the �xed-
time and geometric horizon settings using von Neumann’s minimax theorem (see also [37, §18.5]). Their
dual problem is characterized by properties of random walks, which allows one to determine the optimal
dual value directly without reference to the primal. It is conceivable that some form of von Neumann’s
minimax theorem can be applied for the anytime setting, although it is unclear due to the appearance of the
supremum and 1/

√
t in (2.5). Our results of Section 4 may be viewed as using random walks to construct

feasible dual solutions of value γ/2− ε ∀ε > 0, but it is not obvious that these solutions converge to the
optimal dual value. The only way we know of to prove optimality of those dual solutions is to construct
an algorithm whose regret is γ

√
t/2. This is the more challenging part of this paper, which we discuss in

Sections 3 and 5.
A conjecture for n experts. We suspect that the roots of con�uent hypergeometric functions may also
have a key role to play in designing optimal algorithms when there are n > 2 experts. For r ∈ (0, 1], we
de�ne α(r) as the smallest positive root of the function x 7→M(−r, 1/2, x2/2) de�ned in Subsection 2.6.
With this de�nition, we have that γ = α(1/2) where γ is as de�ned in (2.4). A plausible conjecture is that
limn→∞

AnytimeNormRegret(n)
α(1/n) = 1. It can be shown that limn→∞

α(1/n)√
lnn

= 1/
√

2. Hence, our conjecture
roughly states that, for large n, the optimal regret for n experts in the anytime setting is

√
t ln(n)/2. This

last bound matches the guarantee in the �xed time setting.

Remark. Our lower bound can be strengthened to show that, for any algorithm A,

sup
B

lim sup
t≥1

Regret(2, t,A,B)√
t

≥ γ

2
.

The key aspect is here the lim sup rather than a sup. In particular, even ifA is granted a “warm-up” period
during which its regret is ignored, an adversary can still force it to incur large regret afterwards. This
strengthened result is proved in Subsection 4.1.

The algorithm’s description and analysis relies heavily on a function R : R≥0 × R→ R de�ned by

R(t, g) =


0 (t = 0)
g
2 + κ

√
t ·M0 (g2/2t) (t > 0 and g ≤ γ

√
t)

γ
√
t

2 (t > 0 and g ≥ γ
√
t)

where κ =
1√

2π erfi(γ/
√

2)
(2.6)

and M0 as de�ned in (2.3). The function R may seem mysterious at �rst, but in fact arises naturally from
the solution to a stochastic calculus problem6 in Section 5. In our usage of this function, t will correspond
to the time and g will correspond to the gap between (i.e., absolute di�erence of) the total loss for the two
experts. One may verify thatR is continuous on R>0×R because the second and third cases agree on the
curve

{
(t, γ
√
t) : t > 0

}
since γ satis�es M0(γ2/2) = 0. We next de�ne a function p to be

p(t, g) = 1
2

(
R(t, g + 1)−R(t, g − 1)

)
. (2.7)

This is the discrete derivative of R at time t and gap g. The algorithm constructs its distribution xt so that
p(t, g) is the probability mass assigned to the expert with the greatest accumulated loss so far at time t. It
is shown later that p(t, g) ∈ [0, 1/2] whenever t ≥ 1 and g ≥ 0 so that p is indeed a probability and the
algorithm is well de�ned. We remark that p(t, 0) = 1/2 (Lemma 3.5) for all t ≥ 1 so the algorithm places
equal mass on both experts when their cumulative losses are equal.

6As we will see below, the regret against a random adversary is a stochastic integral. Viewing this problem in continuous
time, then designing a function to minimize the integral leads to a PDE which R solves.
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Algorithm 1 The algorithm achieving the minimax anytime regret for two experts. At each time step,
each expert incurs a cost in the interval [0, 1], so the cost vector `t lies in [0, 1]2.

1: Initialize L0 ← [ 0
0 ].

2: for t = 1, 2, . . . do
3: If necessary, swap indices so that Lt−1,1 ≥ Lt−1,2.
4: The current gap is gt−1 ← Lt−1,1 − Lt−1,2.
5: Set xt ←

[
p(t, gt−1), 1−p(t, gt−1)

]
, where p is the function de�ned by (2.7).

6: . Observe cost vector `t and incur cost 〈xt, `t 〉.
7: Lt ← Lt−1 + `t
8: end for

2.3 Techniques

Lower Bound. A common approach to prove lower bounds in the experts problem is to consider a
random adversary. With 2 experts, this adversary changes the gap by ±1 at each step. In the �xed-time
setting, the adversary has no control over the time horizon; it is known to both the adversary and the
algorithm beforehand. The adversary in the anytime setting has the additional power to choose the time
horizon, without informing the algorithm, and therefore it is perhaps unsurprising that an adversary using
a �xed time horizon does not provide the optimal anytime lower bound.

To obtain the optimal lower bound, we allow the adversary to select a random time τ at which the game
ends. In general, a random adversary in the anytime setting could generate an in�nitely long sequence
of random bits as its costs, then select the ending time τ as a function of the entire sequence. We will
consider a weaker random adversary in which τ is not a function of the entire sequence, but instead the
event τ = t is known at time t; that is, τ is a stopping time [38, §9.1]. There is an adversary of this weaker
form that is nonetheless optimal, as we discuss next.

First, let us view the regret as a discrete stochastic process. To analyze this stochastic process, we
use an elementary identity known as Tanaka’s Formula for random walks, which allows us to write the
regret process as Regret(t) = Zt + gt/2 where Zt is a martingale with Z0 = 0 and gt is the current
gap at time t. When τ is a stopping time satisfying certain hypotheses, the Optional Stopping Theorem
(OST) yields E [Zτ ] = Z0 = 0. We will restrict our attention to adversaries whose stopping times satisfy
the hypotheses of the OST. (The stopping times in the �xed-time and geometric horizon settings trivially
satisfy the hypotheses.) It is not a priori obvious that there is an optimal adversary in the anytime setting
satisfying this restriction.

Concretely, we will consider adversaries that select τ to be the �rst time that the gap gt exceeds7

some time dependent boundary f(t). This approach follows an established doctrine that connects optimal
stopping and stochastic control problems to free-boundary problems [16, 47]. The conclusion of the OST
is then that E [ Regret(τ) ] = E [ gτ ] /2 ≥ E [ f(τ) ] /2. However, the hypotheses of the OST must be
respected, otherwise the adversary could just select the boundary f(t) to be arbitrarily large, and the
resulting regret lower bound would violate known upper bounds.

To understand what boundaries f(t) to consider, let us discuss the OST hypotheses. First, it is not
su�cient for the stopping time to be almost surely �nite. (Otherwise, one could use a boundary f(t) =
Θ(
√
t ln ln t) and the Law of the Iterated Logarithm [26] to prove lower bounds that contradict the O(

√
t)

upper bound of Cover or MWU.) At this point a lucky guess is required: we will consider boundaries of
the form f(t) = c

√
t, since this is consistent with the known Θ(

√
t) regret bounds. It is known [8, 53] that

choosing c < 1 is necessary and su�cient to ensure that E [ τ ] < ∞, which is a su�cient hypothesis for
the OST. Unfortunately this only yields a regret lower bound of

√
t/2, which is trivial. (The algorithm can

7Note that τ = min { t ≥ 0 : gt ≥ f(t) } is a stopping time.

6



easily be forced to have regret 1/2 at time t = 1.) Therefore, the condition E [ τ ] <∞ is too restrictive.
Fortunately there is a less-widely known hypothesis for the OST that leads to optimal results in our

setting. Concretely, if Zt is a martingale with bounded increments (i.e. supt≥0 |Zt+1 − Zt| ≤ K for some
K > 0) and τ is a stopping time satisfying E [

√
τ ] <∞, then E [Zτ ] = 0. The crucial detail is to bound

the expected square root of τ . This result is stated formally in Theorem 4.2. It remains to choose as large a
boundary as possible such that the associated stopping time of hitting the boundary satis�es E [

√
τ ] <∞.

Using classical results of Breiman [8] and Greenwood and Perkins [34], we show that the optimal choice
of c is γ.
Upper Bound. Our analysis of Algorithm 1, to prove the upper bound in Theorem 2.1, uses a deceptively
simple argument whereR de�ned in (2.6) acts as a potential function. Speci�cally, we show that the change
in regret from time t − 1 with gap gt−1 to time t with gap gt is at most R(t, gt) − R(t − 1, gt−1). By
telescoping, this immediately implies that maxg R(t, g) is an upper bound on the regret at time t. The
analysis has a number of key features. First, note that the potential function R is bivariate; it depends on
both the time t as well as the state gt. To deal with this bivariate potential, we use a tool known as the
discrete Itô formula. This formula allows us to relate the regret to the potentialR, while elegantly handling
changes to both time and state. In fact, the potentialR turns out to be an extremely tight approximation to
the actual regret. Previously, there have been several works that make use of bivariate potentials (e.g. [15,
44]). However, to the best of our knowledge, our work is the �rst to use the discrete Itô formula in the
setting of regret minimization.

The function R and the use of discrete Itô do not come “out of thin air”; they come from considering
a continuous-time analogue of the problem. This continuous viewpoint brings a wealth of analytical tools
that do not exist (or are more cumbersome) in the discrete setting. As discussed in the lower bound section
above, in discrete-time it is natural to assume the gap process evolves as a re�ected random walk. In
order to formulate the continuous-time problem, we assume that the continuous adversary evolves the
gap between the best and worst expert as a re�ected Brownian motion (the continuous-time analogue of
a random walk). Using this adversary, the continuous-time regret becomes a stochastic integral.

The most natural way to analyze an integral is to use the fundamental theorem of calculus (FTC).
However, the continuous-time regret is de�ned by a stochastic integral so the FTC cannot be applied8.
However there is a stochastic analog of the FTC, namely the (continuous) Itô formula, which we state in
Theorem 5.3. We use it to provide an insightful decomposition of the continuous-time regret. In partic-
ular, this decomposition suggests that the algorithm should satisfy an analytic condition known as the
backwards heat equation. A key resulting idea is: if the algorithm satis�es the backward heat equation,
then there is a natural potential function that upper bounds the regret of the algorithm. This enables a
systematic approach to obtain an explicit continuous-time algorithm and a potential function that bounds
the continuous algorithm’s regret. To go back to the discrete setting, using the same potential function,
we replace applications of Itô’s formula with the discrete Itô formula. Remarkably, this leads to exactly the
same regret bound as the continuous setting.

2.4 Application

As mentioned in Section 1, the following theorem of Davis can be proven as a corollary of our techniques.
Intriguingly, the proof involves regret, despite the fact that regret does not appear in the theorem statement.

Theorem 2.2 (Davis [20]). Let (Xt)t≥0 be a standard random walk. Then E [ |Xτ | ] ≤ γ E [
√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be improved.
8The integrator is re�ected Brownian motion, which is not of bounded variation.

7



Proof. We begin by proving the �rst assertion. Suppose that Regret(T ) is the regret process when Algo-
rithm 1 is used against a random adversary. As discussed in Subsection 2.3 and (4.2), we can write the
regret process as Regret(T ) = ZT + gT /2 where ZT is a martingale and gT evolves as a re�ected random
walk.9 Moreover, if τ is a stopping time satisfying E [

√
τ ] <∞, then E [Zτ ] = 0 (see Theorem 4.2).

The upper bound in Theorem 2.1 asserts that γ
√
T/2 ≥ Regret(T ) = ZT + gT /2 simultaneously for

all T ≥ 0. Hence, γ E [
√
τ ] /2 ≥ E [ gτ ] /2. Replacing gτ with |Xτ | (since both gt and |Xt| are re�ected

random walks), the proof of the �rst assertion is complete.
The fact that no constant smaller than γ is possible is a direct consequence of the results of Breiman [8]

and Greenwood and Perkins [34] as mentioned in Subsection 2.3 (see also Section 4 or [20]).

Remark. Davis [20] proved Theorem 2.2 for both random walks and Brownian motion. We are also able
to recover the result for Brownian motion as a corollary of our continuous-time result (Theorem 5.2). The
proof is very similar to that above.

Remark. In retrospect, our arguments in Section 5 have some similarities with Davis’ proof of the Brown-
ian Motion version of Theorem 2.2 [20, Theorem 1.1]. For example, in Section 5, we see that the backwards
heat equation appears naturally in the design of the continuous algorithm. Analogously, the backwards
heat equation also appears in the proof of Theorem 1.1 in [20] but as a result of searching for a super-
martingale.

2.5 An expression for the regret involving the gap

In our two-expert prediction problem, the most important scenario restricts each cost vector `t to be either
[ 1

0 ] or [ 0
1 ]. That is, at each time step, some expert incurs cost 1 and the other expert incurs no cost. This

restricted scenario is equivalent to the condition gt − gt−1 ∈ {±1} ∀t ≥ 1, where gt := |Lt,1 − Lt,2| is
the gap at time t. To prove the optimal lower bound it su�ces to consider this restricted scenario. The
optimal upper bound is �rst proven in the restricted scenario, then extended to general cost vectors in
Subsection 3.3. With the sole exception of Subsection 3.3, we assume the restricted scenario.

We now present an expression, valid for any algorithm, that emphasizes how the regret depends on the
change in the gap. This expression will be useful in proving both the upper and lower bounds. Henceforth
we write Regret(t) := Regret(2, t,A,B) where A and B are usually implicit from the context.

Proposition 2.3. Assume the restricted setting in which gt−gt−1 ∈ {±1} for every t ≥ 1. When gt−1 6=
0, let pt denote the probability mass assigned by the algorithm to the “worst expert”, i.e., if Lt−1,1 ≥ Lt−1,2

then pt = xt,1 and otherwise pt = xt,2. The quantity pt may depend arbitrarily on `1, . . . , `t−1. Then

Regret(T ) =
T∑
t=1

pt · (gt − gt−1) · 1[gt−1 6= 0] +
T∑
t=1

〈xt, `t 〉 · 1[gt−1 = 0]. (2.8)

Furthermore, assume that if gt−1 = 0, then pt = xt,1 = xt,2 = 1/2. In this case

Regret(T ) =

T∑
t=1

pt · (gt − gt−1). (2.9)

Remark. Observe that (2.9) is a discrete analog of a Riemann-Stieltjes integral of p with respect to g.
If (gt)t≥0 is a random process, then (2.9) is called a discrete stochastic integral. In the speci�c case that
(gt)t≥0 is a re�ected random walk (the absolute value of a standard random walk), then (2.8) is the Doob
decomposition [38, Theorem 10.1] of the regret process

(
Regret(t)

)
t≥0

, i.e., the �rst sum is a martingale
and the second sum is an increasing predictable process.

9Equality holds because our algorithm satis�es p(t, 0) = 1/2; this is discussed in the text preceding (4.2).
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Proof. De�ne ∆R(t) = Regret(t) − Regret(t − 1). The total cost of the best expert at time t is L∗t :=
min {Lt,1, Lt,2}. The change in regret at time t is the cost incurred by the algorithm minus the change in
the total cost of the best expert, so ∆R(t) = 〈xt, `t 〉 − (L∗t − L∗t−1).
Case 1: gt−1 6= 0. In this case, the best expert at time t − 1 remains a best expert at time t. Note that
this uses the assumption that gt − gt−1 ∈ {±1} so gt−1 ≥ 1. If the worst expert incurs cost 1, then the
algorithm incurs cost pt and the best expert incurs cost 0, so ∆R(t) = pt and gt − gt−1 = 1. Otherwise,
the best expert incurs cost 1 and the algorithm incurs cost 1 − pt, so ∆R(t) = −pt and gt − gt−1 = −1.
For either choice of cost, we have ∆R(t) = pt · (gt − gt−1).
Case 2: gt−1 = 0. Both experts are best, but one incurs no cost, so L∗t = L∗t−1 and ∆R(t) = 〈xt, `t 〉.

The above two cases prove (2.8). For the last assertion, we have that 〈xt, `t 〉 = 1/2 = pt · (gt − gt−1)
whenever gt−1 = 0. Hence, we can collapse the two sums in (2.8) into one to get (2.9).

2.6 Basic facts about con�uent hypergeometric functions

For any a, b ∈ R with b 6∈ Z≤0, the con�uent hypergeometric function of the �rst kind is de�ned as

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
, (2.10)

where (x)n :=
∏n−1
i=0 (x+ i) is the Pochhammer symbol. See, e.g., Abramowitz and Stegun [3, Eq. (13.1.2)].

For notational convenience, for i ∈ {0, 1, 2, . . . , }, we write

Mi(x) = M(i− 1/2, i+ 1/2, x). (2.11)

Fact 2.4. If b /∈ Z≤0 then d
dxM(a, b, x) = a

b ·M(a+ 1, b+ 1, x). Consequently,
(1) M ′0(x) = −M1(x); and
(2) M ′1(x) = 1

3 ·M2(x).

Proof. See [3, Eq. (13.4.9)].

Fact 2.5. The following identities hold:
(1) M0(x) = −

√
πx erfi(

√
x) + ex.

(2) M1(x) =
√
π erfi(

√
x)

2
√
x

.

(3) M2(x) = 3(2ex
√
x−
√
π erfi(

√
x))

4x3/2
.

(4) 2
3 ·M2(x) · x+M1(x) = ex.

Proof.
(2): See [3], equations (7.1.21) or (13.6.19), and use that erfi(x) = −i erf(ix), where i =

√
−1.

(1): Di�erentiating the right-hand side (using the de�nition of erfi in (2.3)) yields −
√
π erfi(

√
x)

2
√
x

. So the
right-hand side is an anti-derivative of −M1(x), by part (2). Thus, the identity (1) follows from Fact 2.4(1)
and the initial condition M0(0) = 1.

(3): This follows directly by di�erentiating (2) and Fact 2.4(2).
(4): Immediate from (2) and (3).

Fact 2.6. The function M0(x) is decreasing and concave on [0,∞).

Remark. In fact, M0(x) is decreasing and concave on R but we will not require this fact.
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Remark. The functionM0(x2/2) is also decreasing and concave on [0,∞). Indeed, the concavity follows
from the fact that if f is a non-increasing concave function on R and g is a convex function on R then
f(g(x)) is concave. Although this fact is crucial for our algorithm, we do not explicitly make reference to
this in the paper.

Proof. By Fact 2.4, we have M ′0(x) = −M1(x) and M ′′0 (x) = −1
3 ·M2(x). Note that the coe�cients of

M1(x),M2(x) in their Taylor series are all non-negative. As x ≥ 0, we have that M ′0(x),M ′′0 (x) ≤ 0 as
desired.

Fact 2.7. The function x 7→M0(x2/2) has a unique positive root at x = γ. Moreover M0(x2/2) > 0 for
x ∈ (0, γ) and M0(x2/2) < 0 for x ∈ (γ,∞).

Proof. The Maclaurin expansion of M0(x2/2) is given by

M0

(
x2

2

)
= 1−

∞∑
k=1

1

(2k − 1)k!

x2k

2k
.

Note that M0(0) = 1. It is clear, from the series expansion above (and Fact 2.6), that M0(x2/2) is strictly
decreasing in x on (0,∞) and limx→∞M0(x2/2) = −∞. Hence, M0(x2/2) contains a positive root γ
and it is unique. Finally, it is clear that M0(x2/2) is positive on (0, γ) and negative on (γ,∞).

Claim 2.8. For any ε > 0, there exists aε ∈ (−1,−1/2) such that the smallest10 positive root cε of
z 7→M(aε, 1/2, z

2/2) satis�es cε ≥ γ − ε.

Proof. Following Perkins’ notation [46], let λ0(−c, c) be such that c is the smallest positive root of x 7→
M(−λ0(−c, c), 1/2, x2/2). By [46, Proposition 1], the map c 7→ λ0(−c, c) is strictly decreasing and con-
tinuous on R>0, so it has a continuous inverse α. From (2.4) and Fact 2.5(1), we see that λ0(−γ, γ) = 1/2,
hence α(1/2) = γ. By continuity, for all ε > 0, there exists δ ∈ (0, 1/2) such that α(1/2 + δ) > γ − ε.
Then we may take aε = −(1/2 + δ) and cε = α(1/2 + δ).

3 Upper bound

In this section, we prove the upper bound in Theorem 2.1 via a sequence of simple steps. The main ideas of
the proof are contained in the restricted setting where the gap changes by±1 each step. This corresponds
to each loss vector `t being either [ 1

0 ] or [ 0
1 ]. We �rst prove the upper bound in Theorem 2.1 in this

restricted setting. In Subsection 3.3, we extend the analysis to general loss vectors in [0, 1]2 through the
use of concavity arguments.

The proof in this section uses the potential functionRwhich, as explained in Subsection 2.3, is de�ned
via continuous-time arguments in Section 5. Moreover, the structure of the proof is heavily inspired by
the proof in the continuous setting.

Moving forward, we need a few observations about the functions R and p, which were de�ned in
equations (2.6) and (2.7). First, we require two straightforward calculations. These are special cases of
Lemma 5.9 (with R̃γ = R̃ and Rγ = R). For convenience, we restate them here without the subscript but
only prove Lemma 5.9 later in the paper.

Lemma 3.1. Consider the function R̃(t, g) = g
2 + κ

√
tM0

(
g2

2t

)
. Then ∂

∂g R̃(t, g) = 1
2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
.

Note that R(t, g) = R̃(t, g) for g ≤ γ
√
t and R(t, g) = R̃(t, γ

√
t) = γ

√
t/2 for g ≥ γ

√
t. So one should

think of R̃ as the “untruncated” version of R.
10In fact, there is a unique positive root.
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Lemma 3.2. ∂
∂gR(t, g) = 1

2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
+

.

Lemma 3.3. For any t > 0, R(t, g) is concave and non-decreasing in g.

Proof. The fact that R(t, g) is non-decreasing in g follows from Lemma 3.2. The concavity of R(t, g) (in
g) follows from the fact that erfi is non-decreasing, so ∂

∂gR(t, g) is non-increasing in g.

As a consequence of Lemma 3.3, we can easily get the maximum value of R(t, g) for any t.

Lemma 3.4. For any t > 0, we have R(t, g) ≤ γ
√
t/2.

Proof. Lemma 3.3 shows thatR(t, g) is non-decreasing in g. By de�nition,R(t, g) is constant for g ≥ γ
√
t.

It follows that maxg R(t, g) ≤ R(t, γ
√
t) = γ

√
t/2.

In the de�nition of the prediction task, the algorithm must produce a probability vector xt. Recalling
the de�nition of xt in Algorithm 1, it is not a priori clear whether xt is indeed a probability vector. We
now verify that it is, since Lemma 3.5 implies that p(t, g) ∈ [0, 1/2] for all t, g.

Lemma 3.5. Fix t ≥ 1. Then
(1) p(t, 0) = 1/2;
(2) p(t, g) is non-increasing in g; and
(3) p(t, g) ≥ 0.

Proof. For the �rst assertion, we have

p(t, 0) =
1

2
(R(t, 1)−R(t,−1)) =

1

2

(
1

2
+ κ
√
tM0(1/2t) +

1

2
− κ
√
tM0(1/2t)

)
=

1

2
.

For the second equality, we used that 1 ≤ γ ≤ γ
√
t for all t ≥ 1. The second assertion follows from con-

cavity of R, which was shown in Lemma 3.3, and an elementary property of concave functions (Fact A.1).
The �nal assertion holds because R is non-decreasing in g, which is also shown in Lemma 3.3.

3.1 Analysis when gap increments are ±1

In this subsection we prove the upper bound of Theorem 2.1 for a restricted class of adversaries (that
nevertheless capture the core of the problem). The analysis is extended to all adversaries in Subsection 3.3.

Theorem 3.6. Let A be the algorithm described in Algorithm 1. For any adversary B such that each cost
vector `t is either [ 1

0 ] or [ 0
1 ], we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

Our analysis relies on an identity known as the discrete Itô formula, which is the discrete analogue of
Itô’s formula from stochastic analysis (see Theorem 5.3). To make this connection (in addition to future
connections) more apparent, we de�ne the discrete derivatives of a function f to be

fg(t, g) =
f(t, g + 1)− f(t, g − 1)

2
,

ft(t, g) = f(t, g)− f(t− 1, g),

fgg(t, g) =
(
f(t, g + 1) + f(t, g − 1)

)
− 2f(t, g).

It was remarked earlier that p(t, g) (see (2.7)) is the discrete derivative of R, and this is because

p(t, g) = Rg(t, g). (3.1)
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Lemma 3.7 (Discrete Itô formula). Let g0, g1, . . . be any sequence of real numbers (not necessarily ran-
dom) satisfying |gt − gt−1| = 1. Then for any function f and any �xed time T ≥ 1, we have

f(T, gT )− f(0, g0) =
T∑
t=1

fg(t, gt−1) · (gt − gt−1) +
T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
. (3.2)

This lemma is a small generalization of [29, §2] and [41, Theorem 2] to accommodate a bivariate func-
tion f that depends on t. The proof is essentially identical.

Proof. By telescoping, f(T, gT ) − f(0, g0) =
∑T

t=1

(
f(t, gt) − f(t − 1, gt−1)

)
. Consider a �xed t ∈ [T ].

We can write

f(t, gt)− f(t− 1, gt−1) =

(
f(t, gt)−

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

)
+

(
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1)

)
.

(3.3)

For the �rst bracketed term, by considering the cases gt = gt−1 + 1 and gt = gt−1 − 1, we have

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
=
f(t, gt−1 + 1)− f(t, gt−1 − 1)

2
· (gt − gt−1)

= fg(t, gt−1) · (gt − gt−1).
(3.4)

Note that the above step is the only place where the assumption that |gt−gt−1| = 1 is used. For the second
bracketed term, we have

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1) =

f(t, gt−1 + 1) + f(t, gt−1 − 1)− 2f(t, gt−1)

2
+ (f(t, gt−1)− f(t− 1, gt−1))

=
1

2
fgg(t, gt−1) + ft(t, gt−1).

This gives the desired formula.

Now we show that the regret involves a discrete integral of the same form as (3.2). Let us recall that
Lemma 3.5(1) guarantees p(t, 0) = 1/2, i.e., xt = [1/2, 1/2]. Hence, (2.9) gives

Regret(T ) =
T∑
t=1

p(t, gt−1) · (gt − gt−1) (3.5)

where g0 = 0 and gt ≥ 0 for all t ≥ 1.
Key technical step. The following is the most non-obvious step of the proof. We apply the discrete Itô
formula to (3.5), taking f = R. Since p = Rg = fg , observe that the main di�erence between (3.2) and (3.5)
is the absence of 1

2fgg(t, gt−1) + ft(t, gt−1) in (3.5). In the continuous setting, we will see that a key idea
is to try to obtain a solution satisfying (1

2∂gg + ∂t)f = 0; this is the well-known backwards heat equation.
In the discrete setting, by a remarkable stroke of luck, we have the following analogous property.

Lemma 3.8 (Discrete backwards heat inequality). 1
2Rgg(t, g) +Rt(t, g) ≥ 0 for all t ≥ 1 and g ≥ 0.

This lemma is the most technical part of the discrete analysis. Its proof appears in Subsection 3.2.
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Proof (of Theorem 3.6). Apply Lemma 3.7 to the function R and the sequence g0, g1, . . . of (integer) gaps
produced by the adversary B. Then, for any time T ≥ 0,

R(T, gT )−R(0, g0)

=

T∑
t=1

Rg(t, gt−1) · (gt − gt−1) +

T∑
t=1

(1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(by Lemma 3.7)

≥
T∑
t=1

p(t, gt−1) · (gt − gt−1) (by (3.1) and Lemma 3.8)

= Regret(T ) (by (3.5)).

Since g0 = 0 and R(0, 0) = 0, applying Lemma 3.4 shows that Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2.

This completes the proof of Theorem 3.6. However, the proof does not reveal why Algorithm 1 is
optimal. The constant γ in the regret bound appears due to properties of the function R, whose de�nition
has yet to be explained. In Section 5, we will de�ne the functionR speci�cally to obtain γ in the preceding
analysis. In Section 4, we prove a matching lower bound and show that γ is indeed the right constant.

We remark that the proof of Theorem 3.6 may also be viewed as an amortized analysis, in which the
algorithm incurs amortized regret at most γ

2 (
√
t −
√
t− 1) ≈ γ/4

√
t at each time step t. This viewpoint

may be helpful to see how the potential function used in our setting relates to the potential functions in
traditional algorithm design [17, §17.3].

3.2 Proof of Lemma 3.8

Lemma 3.9. For all u ∈ [0, 1/2], we have M0(u) ≥
√

1− 2u.

Proof. The Maclaurin expansion of M0(u) is given by

M0(u) = 1−
∞∑
k=1

1

(2k − 1)k!
uk.

Note that dk

dxk

√
1− 2x = − (2k−3)!!

(1−2x)(2k−1)/2 , where (n)!! denotes the double factorial (note that (−1)!! = 1).11

Hence, the Maclaurin expansion of
√

1− 2u is

√
1− 2u = 1−

∞∑
k=1

(2k − 3)!!

k!
uk.

It is not hard to verify that (2k − 3)!! ≥ 1
2k−1 . This implies that M0(u) ≥

√
1− 2u.

Lemma 3.10. For all z ∈ [0, 1) and x ∈ R, we have

M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
≥ 2
√

1− z2M0

(
x2

2(1− z2)

)
.

11If n ∈ Z≥0, we de�ne (n)!! =
∏dn/2e−1
k=0 (n− 2k). If n ∈ Z<0, we de�ne (n)!! via the recursive relation (n)!! = (n+2)!!

n+2
so

that (−1)!! = (1)!!
1

= 1.
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Proof. Fix z ∈ [0, 1) and consider the function

hz(x) = M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
− 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Note that hz(0) ≥ 0 by applying Lemma 3.9 with u = z2/2. We will show that x = 0 is the minimizer of
hz which implies the lemma.

Indeed, computing derivatives, we have

h′z(x) = −M1

(
(x+ z)2

2

)
· (x+ z)−M1

(
(x− z)2

2

)
· (x− z) + 2M1

(
x2

2(1− z2)

)
· x√

1− z2
.

As h′z(0) = 0, x = 0 is a critical point of hz . We will now show that hz is convex which certi�es that
x = 0 is indeed a minimizer.

To obtain h′′z , we di�erentiate term-by-term. Let u = (x+z)2

2 . Then

d

dx
M1

(
(x+ z)2

2

)
· (x+ z) =

M2

(
(x+z)2

2

)
· (x+ z)2

3
+M1

(
(x+ z)2

2

)
=

2M2(u) · u
3

+M1(u)

=
2u(2eu

√
u−
√
π erfi(

√
u))

4u3/2
+

√
π erfi(

√
u)

2
√
u

= eu = exp

(
(x+ z)2

2

)
.

The �rst equality is by Fact 2.4 and the third equality is by identities (2) and (3) in Fact 2.5. We can similarly
show that

d

dx
M1

(
(x− z)2

2

)
· (x− z) = exp

(
(x− z)2

2

)
.

Finally, for the last term, we have

d

dx
M1

(
x2

2(1− z2)

)
· x√

1− z2
=

1

3
M2

(
x2

2(1− z2)

)
· x2

(1− z2)3/2
+M1

(
x2

2(1− z2)

)
· 1√

1− z2

=
1√

1− z2

(
2

3
M2

(
x2

2(1− z2)

)
· x2

2(1− z2)
+M1

(
x2

2(1− z2)

))

=
exp

(
x2

2(1−z2)

)
√

1− z2
,

where the �rst equality uses Fact 2.4 and the last equality is by identity (4) in Fact 2.5.
Hence, we have

h′′z(x) =
2ex

2/2(1−z2) − (e(x+z)2/2 + e(x−z)2/2)
√

1− z2

√
1− z2

.

So to check that h′′z(x) ≥ 0 for all x ∈ R, it su�ces to check that

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ ex2/2(1−z2).

14



Indeed, we have

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ (e(x+z)2/2 + e(x−z)2/2)e−z

2/2

2

= ex
2/2 (exz + e−xz)

2

≤ ex2/2ex2z2/2

= ex
2(1+z2)/2

≤ ex2/2(1−z2),

where the �rst inequality is because 1 − a ≤ e−a for all a ∈ R, the second inequality is because (ea +
e−a)/2 = cosh(a) ≤ ea

2/2 for all a ∈ R, and the last inequality is because 1 + a ≤ 1/(1 − a) for all
a < 1. This proves that hz is convex which concludes the proof that x = 0 is a minimizer for hz and
hence, completes the proof of the lemma.

Proof (of Lemma 3.8). The inequality Rt(t, g) + 1
2Rgg(t, g) ≥ 0 is equivalent to

R(t, g + 1) +R(t, g − 1) ≥ 2R(t− 1, g). (3.6)

We �rst prove the claim for t = 1. In this case, the RHS of (3.6) is identically 0. On the other hand, the LHS
of (3.6) is non-decreasing in g by Lemma 3.3. Hence, it su�ces to prove the inequality for g = 0. With
t = 1 and g = 0, we have

R(1, 1) +R(1,−1) = 2κM0(1/2).

As M0 is decreasing (Fact 2.6) and 1/2 ≤ γ2/2, we have M0(1/2) ≥ M0(γ2/2) = 0. So (3.6) holds for
t = 1 and g ≥ 0.

For the remainder of the proof, we assume that t > 1. We consider a few cases depending on the value
of g and t.
Case 1: g ≤ min{γ

√
t−1, γ

√
t− 1}. In this case, g+1 ≤ γ

√
t, g ≤ γ

√
t− 1, and g−1 ≤ γ

√
t. Hence,

R(t, g + 1) =
g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
R(t, g − 1) =

g − 1

2
+ κ
√
t ·M0

(
(g − 1)2

2t

)
R(t− 1, g) =

g

2
+ κ
√
t ·M0

(
g2

2(t− 1)

)
.

So (3.6) is equivalent to

√
t ·M0

(
(g + 1)2

2t

)
+
√
t ·M0

(
(g − 1)2

2t

)
≥ 2
√
t− 1 ·M0

(
g2

2(t− 1)

)
, (3.7)

or rearranging, is equivalent to

M0

(
(g + 1)2

2t

)
+M0

(
(g − 1)2

2t

)
≥ 2
√

1− 1/t ·M0

(
g2

2(t− 1)

)
.

The latter inequality is true by Lemma 3.10 using x = g/
√
t and z = 1/

√
t ∈ (0, 1).
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Case 2: γ
√
t− 1 ≤ g ≤ γ

√
t− 1. Let R̃ be the function de�ned in Lemma 3.1. In this case, we have

R(t, g + 1) = γ
√
t = R̃(t, γ

√
t) ≥ R̃(t, g + 1) =

g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
.

The inequality is by Lemma 3.1 which implies that R̃(t, g + 1) is non-increasing for g ∈ (γ
√
t − 1,∞).

Using the lower bound onR(t, g+ 1), (3.6) is again implied by (3.7) and we have already veri�ed that (3.7)
is true.
Case 3: γ

√
t− 1 ≤ g ≤ γ

√
t− 1. In this case

R(t, g + 1) =
g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
R(t, g − 1) =

g − 1

2
+ κ
√
t ·M0

(
(g − 1)2

2t

)
R(t− 1, g) =

γ

2

√
t− 1.

As g ≤ γ
√
t− 1, we have M0

(
(g−1)2

2t

)
≥ M0

(
(g+1)2

2t

)
≥ M0

(
γ2

2

)
= 0. Here, the �rst two inequalities

are because M0 is decreasing (Fact 2.6). Hence,

R(t, g + 1) +R(t, g − 1) ≥ g ≥ γ
√
t− 1 = 2R(t− 1, g),

which is precisely (3.6).
Case 4: max{γ

√
t− 1, γ

√
t − 1} ≤ g. In this case, R(t − 1, g) and R(t, g + 1) are constant in g but

R(t, g−1) is non-decreasing in g. Hence, it su�ces to check (3.6) for g = max{γ
√
t− 1, γ

√
t−1}which

holds by either case 2 (if γ
√
t− 1 ≤ γ

√
t− 1) or case 3 (if γ

√
t− 1 ≤ γ

√
t− 1).

3.3 Analysis of Algorithm 1 for general cost vectors

In this section, we prove the upper bound of Theorem 2.1 in full generality.

Theorem 3.11. LetA be the algorithm described in Algorithm 1. For any adversary B (allowing any cost
vectors `t ∈ [0, 1]2), we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

In Subsection 3.1, since the gap was integer-valued, the identity of the best expert could only change
when the gap is exactly 0 (at which time there are two best experts). In general, the gap can be real-valued,
so the best expert can switch abruptly, which a�ects our formula for the regret. We will need to generalize
Proposition 2.3 to deal with this possibility. Let ∆R(t) = Regret(t)− Regret(t− 1).

Proposition 3.12. Let gt−1 be the gap after time t− 1 but before playing an action at time t. Let gt be the
gap after time t. Let p(t, gt−1) denote the probability mass assigned to the worst expert at time t. Suppose
that p(t, 0) = 1/2 for all t ≥ 1.

1. If a best expert at time t− 1 remains a best expert at time t then

∆R(t) = (gt − gt−1)p(t, gt−1).

2. If a best expert at time t− 1 is no longer a best expert at time t then

∆R(t) = gt − (gt + gt−1)p(t, gt−1).

Moreover, gt + gt−1 ≤ 1.
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The proof of this is very similar to that of Proposition 2.3 and appears in Appendix 3.3.1

Remark. Note that, at any speci�c time, the set of best experts may have size either one or two so the
choice of the best expert in Proposition 3.12 may be ambiguous. However, note that if gt−1 = 0 (i.e., there
are two best experts at time t− 1) then p(t, gt−1) = 1/2 so both formulas give ∆R(t) = 1

2gt. On the other
hand, if gt = 0 (i.e., there are two best experts at time t) then both formulas give ∆R(t) = −gt−1p(t, gt−1).
Hence there is no issue with the ambiguity.

We will need the following identity which is essentially the same as Lemma 3.7 but without specializing
to the case where |gt − gt−1| = 1.

Lemma 3.13. Let g0, g1, . . . be a sequence of real numbers. Then for any function f and any �xed time
T ≥ 1, we have

f(T, gT )− f(0, g0) =
T∑
t=1

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

+
T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
.

(3.8)

Proof. The proof is identical to the proof of Lemma 3.7 except that we do not perform the simpli�cation
in (3.4).

When we assumed the gaps were integer-valued, we had

∆R(t) = R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

because both sides were equal to Rg(t, gt−1) · (gt − gt−1); see (2.9) and (3.4). This does not hold in the
general setting, but we will be able to prove the following inequality.

Lemma 3.14. For all t ≥ 1,

∆R(t) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

The proof of Lemma 3.14 appears in Appendix 3.3.2. Given Lemma 3.14, we can now prove our upper
bound in general.

Proof (of Theorem 3.11). Fix any T ≥ 1. Then

R(T, gT )−R(0, g0) =
T∑
t=1

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

+

T∑
t=1

(
1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(Lemma 3.13)

≥
T∑
t=1

∆R(t) (Lemma 3.14 and Lemma 3.8)

= Regret(T ).

As g0 = 0 and R(0, 0) = 0, we have Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2, where the last inequality is by

Lemma 3.4.
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3.3.1 Proof of Proposition 3.12

Proof (of Proposition 3.12). Fix t and for notational convenience, let p = p(t, gt−1) throughout the proof.
In addition, throughout the proof, we use expert 1 to refer to the worst expert at time t − 1 (chosen
arbitrarily if the choice of worst expert is not unique) and use expert 2 to refer to the other expert. Let
`t,1, `t,2 ∈ [0, 1] be the respective losses at time t and Lt,1, Lt,2 be the respective cumulative losses up to
time t. Note that gt−1 = Lt−1,1 − Lt−1,2. Finally, we set L∗t = mini∈{1,2} Lt,i. By assumption, L∗t−1 =
Lt−1,2.

For the �rst assertion we have L∗t = Lt,2 (because a best expert remains a best expert). Note that
`t,1 − `t,2 = (Lt,1 −Lt,2)− (Lt−1,1 −Lt−1,2) = gt − gt−1. So the change in the cost of the algorithm can
be written as

p`t,1 + (1− p)`t,2 = p(`t,1 − `t,2) + `t,2 = p(gt − gt−1) + `t,2.

On the other hand, the change in the cost of the best expert isL∗t−L∗t−1 = Lt,2−Lt−1,2 = `t,2. Subtracting
this from the above equation gives ∆R(t) = (gt − gt−1)p.

In the second assertion, we have L∗t = Lt,1, so gt = Lt,2 − Lt,1. Again, the algorithm incurs cost
p`t,1 + (1−p)`t,2. This time, note that `t,1− `t,2 = (Lt,1−Lt,2)− (Lt−1,1−Lt−1,2) = −gt− gt−1. So the
algorithm incurs cost −p(gt + gt−1) + `t,2. On the other hand, the change in the cost of the best expert is

L∗t − L∗t−1 = Lt,1 − Lt−1,2 = Lt,1 − Lt−1,1 + Lt−1,1 − Lt−1,2 = `t,1 + gt−1 = `t,2 − gt,

where the last equality uses the identity `t,1 − `t,2 = −gt − gt−1. Subtracting this last quantity with the
change in the algorithm’s cost gives ∆R(t) = gt − p(gt + gt−1).

To complete the proof for the second assertion, it remains to check that gt + gt−1 ≤ 1. From above,
we have the identity, gt + gt−1 = `t,2 − `t,1 ≤ `t,2 ≤ 1, as desired.

3.3.2 Proof of Lemma 3.14

Proof (of Lemma 3.14). Fix t ≥ 1. We will consider the two cases corresponding to the two cases in
Proposition 3.12.
Case 1: A best expert at time t − 1 remains a best expert at time t. In this case, ∆R(t) = (gt −
gt−1)p(t, gt−1), so it su�ces to check that

p(t, gt−1) · (gt − gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (3.9)

Rearranging, the above inequality is equivalent to

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
− p(t, gt−1) · (gt − gt−1) ≥ 0.

If gt−1 is �xed then notice that the LHS of the above expression is concave in gt. To see this, Lemma 3.3
implies that R(t, gt) is concave in gt, the second term is constant in gt, and the last term is linear in gt.
Hence, it su�ces to verify the inequality when gt = gt−1± 1 (Fact A.2). Indeed, if |gt− gt−1| = 1 then, as
in (3.4)

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
=
R(t, gt−1 + 1)−R(t, gt−1 − 1)

2
· (gt − gt−1)

= p(t, gt−1) · (gt − gt−1),

where the second equality used the de�nition of p.
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Case 2: A best expert at time t− 1 is no longer a best expert at time t. This case is nearly identical
to the previous case but in this case ∆R(t) = gt−(gt+gt−1)p(t, gt−1) with the promise that gt+gt−1 ≤ 1.
Hence, the inequality we need to verify is that

gt − (gt + gt−1)p(t, gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (3.10)

Once again, we do this via a concavity argument. Fix gt−1 ∈ [0, 1]. Since gt + gt−1 ≤ 1, we have
gt ∈ [0, 1 − gt−1]. Notice that the LHS of (3.10) is linear in gt and the RHS of (3.10) is concave in gt (by
Lemma 3.3). Hence, again by Fact A.2, it su�ces to check the inequality assuming gt ∈ {0, 1−gt−1}. Note
that the case gt = 0 is handled by case 1 since the LHS of (3.9) and (3.10) are identical (see also the remark
after Proposition 3.12).

Now assume that gt = 1− gt−1. Then (3.10) becomes

1− gt−1 − p(t, gt−1) ≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

Recall that p(t, g) = R(t,g+1)−R(t,g−1)
2 so that the above inequality is equivalent to

1− gt−1 −
R(t, gt−1 + 1)−R(t, gt−1 − 1)

2
≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

Rearranging the inequality becomes

1 ≤ gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1).

Note that gt−1 ≤ 1 ≤ γ
√
t (since t ≥ 1 and γ ≥ 1). Hence, by de�nition of R, the RHS of the above

inequality is

gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1) = gt−1 +
1− gt−1

2
+ κ
√
tM0

(
(1− gt−1)2

2

)
− gt−1 − 1

2
− κ
√
tM0

(
(gt−1 − 1)2

2

)
= 1,

and obviously, 1 ≤ 1. This proves that the desired inequality holds with equality.

4 Lower bound

The main result of this section is the following theorem, which implies the lower bound in Theorem 2.1.

Theorem 4.1. For any algorithm A and any ε > 0, there exists an adversary Bε such that

sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (4.1)

As remarked earlier, the sup can be replaced by a lim sup; see Subsection 4.1.
It is common in the literature for regret lower bounds to be proven by random adversaries; see, e.g.,

[14, Theorem 3.7]. We will also consider a random adversary, but the novelty is the use of a non-trivial
stopping time at which it can be shown that the regret is large.
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A random adversary. Suppose an adversary produces a sequence of cost vectors `1, `2, . . . ∈ {0, 1}2
as follows. For all t ≥ 1,

• If gt−1 > 0 then `t is randomly chosen to be one of the vectors [ 1
0 ] or [ 0

1 ], uniformly and independent
of `1, . . . , `t−1. Thus gt − gt−1 is uniform in {±1}.

• If gt−1 = 0 then `t = [ 1
0 ] if xt,1 ≥ 1/2, and `t = [ 0

1 ] if xt,2 > 1/2. In both cases gt = 1.
As remarked above, the process (gt)t≥0 has the same distribution as the absolute value of a standard
random walk (which is also known as a re�ected random walk).

We now obtain from (2.8) a lower bound on the regret of any algorithm against this adversary. The
adversary’s behavior when gt−1 = 0 ensures that 〈xt, `t 〉 ≥ 1/2, showing that

Regret(T ) ≥
T∑
t=1

pt (gt − gt−1) · 1[gt−1 6= 0]︸ ︷︷ ︸
martingale

+
1

2

T∑
t=1

1[gt−1 = 0]︸ ︷︷ ︸
local time

∀T ∈ N.

(Equality holds if the algorithm sets xt = [1/2, 1/2] whenever gt−1 = 0.) The �rst sum is a martingale
indexed by T . (This holds because gt − gt−1 has conditional expectation 0 when gt−1 6= 0, and 1[gt−1 6=
0] = 0 when gt−1 = 0.) The second sum is called the local time of the random walk. Using Tanaka’s
formula [38, Ex. 10.8], the local time can be written as

∑t
s=1 1[gs−1 = 0] = gt − Z ′t where Z ′t is a

martingale with uniformly bounded increments and Z ′0 = 0. Thus, combining the two martingales, we
have

Regret(t) ≥ Zt +
gt
2

∀t ∈ Z≥0, (4.2)

where Zt is a martingale with uniformly bounded increments and Z0 = 0.
Intuition for a stopping time. Optional stopping theorems assert that, under some hypotheses, the
expected value of a martingale at a stopping time equals the value at the start. Using such a theorem, at a
stopping time τ it would hold that E [ Regret(τ) ] ≥ E [ gτ ] /2 (under some hypotheses on τ and Z). Thus
it is natural to design a stopping time τ that maximizes E [ gτ ] and satis�es the hypotheses. We know from
(2.2) that the optimal anytime regret at time t is Θ(

√
t), so one reasonable stopping time would be

τ(c) := min
{
t > 0 : gt ≥ c

√
t
}

for some constant c yet to be determined. If τ(c) and Z satisfy the hypotheses of the optional stopping
theorem, then it will hold that E [ Regret(τ(c)) ] ≥ c

2 E[
√
τ(c) ]. From this, it follows, fairly easily, that

AnytimeNormRegret(2) ≥ c/2; this will be argued more carefully later.
An optional stopping theorem. The optional stopping theorems appearing in standard references
require one of the following hypotheses: (i) τ is almost surely bounded, or (ii) E [ τ ] is bounded and the
martingale has bounded increments, or (iii) the martingale is almost surely bounded and τ is almost surely
�nite. See, e.g., [9, Theorem 5.33], [26, Theorem 4.8.5], [38, Theorem 10.11], [35, Theorem 12.5.1], [49,
Theorem II.57.4], or [55, Theorem 10.10]. These will not su�ce for our purposes. For example, condition
(ii) is the only useful hypothesis for our setting. It is known [8, 53] that E [ τ(c) ] <∞, with τ(c) as above,
if and only if c < 1; this yields a weak lower bound on the regret. Instead, we will require the following
theorem, which has a weaker hypothesis (due to the square root). We are unable to �nd a reference for
this theorem, although it is presumably folklore, so we provide a proof of this theorem.

Theorem 4.2. Let Zt be a martingale and K > 0 a constant such that |Zt−Zt−1| ≤ K almost surely for
all t. Let τ be a stopping time. If E [

√
τ ] <∞ then E [Zτ ] = E [Z0 ].
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Before we prove Theorem 4.2, some preliminary de�nitions are required. For a martingale (Xt)t∈N,
de�ne its maximum processX∗t = max0≤s≤t|Xs| and its quadratic variation process [X]t =

∑
1≤s≤t(Xs−

Xs−1)2.

Theorem 4.3 (Davis [19]). There exists a constant C such that for any martingale (Xt)t∈N with X0 = 0,
E [X∗∞ ] ≤ C E

[
[X]

1/2
∞
]
.

Proof of Theorem 4.2. De�ne the stopped process Zt∧τ , which is also a martingale [38, Theorem 10.15].
Since E [

√
τ ] <∞ we have Pr [ τ <∞ ] = 1. On the event {τ <∞}, (Zt∧τ )t≥0 has a well-de�ned limit,

which is used as the almost sure de�nition of Zτ .
We claim that Zt∧τ

L1−→ Zτ ∈ L1 from which the theorem concludes as follows. By optional stopping
[38, Lemma 10.10], since τ ∧ t ≤ t, E [Zt∧τ ] = E [Z0 ]. This last equality holds for any �xed t ≥ 0. Hence,
E [Zτ ] = limt→∞ E [Zt∧τ ] = E [Z0 ].

It remains to show that Zτ∧t
L1−→ Zτ ∈ L1. The L1 convergence is proven using the dominated

convergence theorem [38, Corollary 6.26], which requires exhibiting a random variable that bounds |Zt∧τ |
for all t and has �nite expectation. For notational convenience, let Xt = Zt∧τ . Clearly |Xt| ≤ X∗t ≤ X∗∞,
so it remains to show that E [X∗∞ ] <∞. Using Theorem 4.3 and that Z has increments bounded by K ,

E [X∗∞ ] ≤ C E
[

[X]1/2∞

]
= C E

( ∑
1≤s≤τ

(Zs − Zs−1)2
)1/2

 ≤ CK E
[
τ1/2

]
< ∞.

The dominated convergence theorem states that Zt∧τ
L1−→ Zτ ∈ L1, as required.

Optimizing the stopping time. Since the martingale Zt de�ned above has bounded increments, The-
orem 4.2 may be applied so long as E[

√
τ(c) ] < ∞, in which case the preceding discussion yields

AnytimeNormRegret(2) ≥ c/2. We reiterate that the condition E[
√
τ(c) ] <∞ is a stronger assumption

than τ(c) being almost surely �nite. So it remains to determine

sup{ c ≥ 0 : E[
√
τ(c) ] <∞ }, (4.3)

where τ(c) is the �rst time at which a standard random walk crosses the two-sided boundary ±c
√
t. We

will use the following result, in which M is the con�uent hypergeometric function de�ned in Subsec-
tion 2.6.

Theorem 4.4 ([8, Theorem 2], [34, Theorem 5]). Let c > 1 and a < 0 be such that c is the smallest positive
root of the function x 7→ M(a, 1/2, x2/2). Then Pr [ τ(c) > u ] = uaπ(u), where π is a slowly-varying
function, i.e. limx→∞ π(ax)π(x)−1 for all a > 0.

Fact 4.5 ([27, Lemma VIII.8.2]). Let π be a slowly-varying function. Then for all ε > 0 there exists Mε

such that π(x) ≤ xε for all x ≥Mε.

By combining Theorem 4.4 and Fact 4.5, we see that if c is the smallest positive root of the function
x 7→M(a, 1/2, x2/2) then for any δ > 0, there exists a constant Cδ such that Pr [ τ(c) > u ] ≤ Cδua+δ .

Recall the de�nition of γ in (2.4). For intuition, let us apply Theorem 4.4 with c = γ, which is de�ned
so that it is the root for a = −1/2 (see (2.11) and Fact 2.5). It then follows that (ignoring the slowly varying
function for now),

E
[√

τ(γ)
]

=

∫ ∞
0

Pr
[√

τ(γ) > s
]

ds =

∫ ∞
0

Pr
[
τ(γ) > s2

]
ds ∼ K

∫ ∞
0

s−1 ds,
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by Theorem 4.4. This integral is in�nite, so Theorem 4.2 cannot be applied to τ(γ). However, the integral
is on the cusp of being �nite. By slightly decreasing a below−1/2, and slightly modifying c to be the new
root, we should obtain a �nite integral, showing that E[

√
τ(c) ] is �nite. The following proof uses analytic

properties of M to show that this is possible.

Proof of Theorem 4.1. Fix any ε > 0 that is su�ciently small. Consider the random adversary and the
stopping times τ(c) described above. By Claim 2.8, there exists aε ∈ (−1,−1/2) and cε ≥ γ − ε such that
cε is the unique positive root of z 7→M(aε, 1/2, z

2/2). Let δ > 0 be a constant such that aε + δ < −1/2.
Then for some constant Cδ ,

E
[√

τ(cε)
]

=

∫ ∞
0

Pr
[
τ(cε) > s2

]
ds ≤ Cδ

∫ ∞
0

s2(aε+δ) ds < ∞, (4.4)

since aε + δ < −1/2. It follows that τ(cε) is almost surely �nite, and therefore Regret(τ(cε)) and gτ(cε)

are almost surely well de�ned. Applying Theorem 4.2 to the martingale Zt appearing in (4.2), we obtain
that

E [ Regret(τ(cε)) ] ≥ E
[
Zτ(cε) +

gτ(cε)

2

]
= E [Z0 ] +

1

2
E
[
gτ(cε)

]
=

1

2
E
[
gτ(cε)

]
=

1

2
E
[
cε
√
τ(cε)

]
,

where the second equality is because Z0 = 0 deterministically. By the probabilistic method, there exists a
�nite sequence of cost vectors `1, . . . , `t (depending on A and ε) for which the regret of A at time t is at
least cε

√
t/2. The adversary Bε (which knows A) provides this sequence of cost vectors to algorithm A,

thereby proving (4.1).

4.1 Large regret in�nitely often

In this subsection, we prove the following extension of Theorem 4.1, which shows that one can achieve
regret γ

√
t/2 in�nitely often.

Theorem 4.6. For any algorithm A and any ε > 0, there exists an adversary Bε such that

lim sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (4.5)

The basic idea of the proof of Theorem 4.6 is quite simple. Initially, we run a re�ected random walk
starting at the origin and wait until it crosses the (γ − ε)

√
t boundary. By the arguments in Theorem 4.1,

we know that, in expectation, the regret is large at the �rst instant when the random walk crosses the
boundary. We then “restart” the random walk except now the starting position is the current position
of the random walk instead of the origin. The key observation is that Theorem 4.4 is only sensitive to
the asymptotics of the boundary and not the starting position. Thus, essentially the same arguments in
Theorem 4.1 can be used to show that (i) the random walk crosses the (γ − ε)

√
t boundary a second time

and (ii) the regret is large at the time when the random walk crosses the boundary for the second time.
To formally prove Theorem 4.6, we need a more general version of Theorem 4.2. Let F be a σ-algebra

and let (Ft)t∈Z≥0
be a �ltration (i.e. F0 ⊆ F1 ⊆ . . . and Ft ⊆ F for all t ≥ 0). For a stopping time τ ,

the stopped σ-algebra is de�ned as Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ Z≥0} [38, De�nition 9.19].
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Finally, let G ⊆ F be a sub σ-algebra. For a random variable X , the conditional expectation of X given G,
denoted E [X | G ], is a random variable Y satisfying E [Y 1A ] = E [X1A ] for all A ∈ G [38, De�nition
8.11]. Here, 1A is the indicator of the event A.

Theorem 4.7. Let (Zt)t∈Z≥0
be a martingale with respect to a �ltration {Ft} and K > 0 a constant such

that |Zt −Zt−1| ≤ K almost surely for all t. Let σ ≤ τ be stopping times and suppose that E [
√
τ ] <∞.

Then the random variables Zσ, Zτ are almost surely well-de�ned and E [Zτ | Fσ ] = Zσ .

Proof. De�ne the stopped processZt∧τ , which is also a martingale [38, Theorem 10.15]. Since E [
√
τ ] <∞

we have Pr [ τ <∞ ] = 1. On the event {τ <∞}, (Zt∧τ )t≥0 has a well-de�ned limit, which is used as
the almost sure de�nition of Zτ . As {τ <∞} ⊆ {σ <∞}, the same argument shows that (Zt∧σ)≥0 has
a well-de�ned limit, and we use this as the almost sure de�nition of Zσ .

The arguments in the proof of Theorem 4.2 show that Zt∧τ
L1−→ Zτ ∈ L1 and Zt∧σ

L1−→ Zσ ∈ L1. By
the de�nition of conditional expectation, we need to check that E [Zτ1A ] = E [Zσ1A ] for allA ∈ Fσ . To
that end, �xA ∈ Fσ and note thatA∩{σ ≤ t} ∈ Fσ∧t. For any �xed t, t∧σ ≤ t and τ ≤ t, so the optional
sampling theorem [38, Theorem 10.11] applied to the stopped process yields E [Zt∧τ | Ft∧σ ] = Zt∧σ .
Hence,

E
[
Zτ∧t1A1{σ≤t}

]
= E

[
Zσ∧t1A1{σ≤t}

]
. (4.6)

Since Zτ∧t
L1−→ Zτ ∈ L1, it follows that Zτ∧t1A1{σ≤t}

L1−→ Zτ1A1{σ<∞}. This is because

E
[
|Zτ∧t1A1σ≤t − Zτ1A1σ<∞|

]
≤ E [ |Zτ∧t1A1σ≤t − Zτ1A1σ≤t| ] + E [ |Zτ1A1σ<∞ − Zτ1A1σ≤t| ]
≤ E [ |Zt∧τ − Zτ | ] + E [ |Zτ |1t<σ<∞ ] .

The quantity E [ |Zt∧τ − Zτ | ] → 0 because Zt∧τ
L1−→ Zτ . Next, Zτ ∈ L1 and 1t<σ<∞ → 0 a.s. so

E [ |Zτ |1t<σ<∞ ] → 0 by dominated convergence. Finally, note that Zτ1A1σ<∞ = Zτ1A as 1σ<∞ = 1
a.s. Hence,

E
[
Zτ∧t1A1{σ≤t}

] t→∞−−−→ E [Zτ1A ] . (4.7)

Similarly,
E
[
Zσ∧t1A1{σ≤t}

] t→∞−−−→ E [Zσ1A ] . (4.8)

Combining (4.6), (4.7), and (4.8) gives E [Zτ1A ] = E [Zσ1A ] as desired.

The proof of Theorem 4.6 makes use of the following result which is a generalization of Theorem 4.4
to the setting where the boundary is asymptotically a square root curve. This will allow us to consider a
random walk hitting a square root boundary but where both the boundary and the starting position of the
particle may not be at the origin.

Theorem 4.8 ([34, Theorem 5]). Let c > 1 and a < 0 be such that c is the smallest positive root of
the function x 7→ M(a, 1/2, x2/2). Let f(t) be a function such that limt→∞ f(t)t−1/2 = c. Let τ =
inf { t > 0 : gt ≥ f(t) }. Then Pr [ τ > u ] = uaπ(u), where π is a slowly-varying function.

Proof of Theorem 4.6. We use the same adversary as in Theorem 4.1 so that

Regret(t) ≥ Zt +
gt
2
,

where Zt is a martingale with Z0 = 0 and gt evolves as a re�ected random walk. Let Ft := σ(g0, . . . , gt)
be the natural �ltration. Finally, let cε ≥ γ − ε and aε be as in the proof of Theorem 4.1.

De�ne the stopping times τ0 := 0 and τi := inf
{
t > τi−1 : gt ≥ cε

√
t
}

for i ≥ 1. Note that, by the
strong Markov property, for each i ≥ 1, the process {gτi−1+t}t≥0 is a re�ected random walk started at
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position gτi−1 > 0. Moreover, observe that τi is similar to the stopping time used in Theorem 4.1 in that
the asymptotics of the boundary are the same but the boundary itself and starting point may be perturbed
by a (random) additive constant.

Let us assume that E
[√

τi−1

]
< ∞ and we now show that E

[√
τi
]
< ∞. Let δ > 0 be a constant

such that aε + δ < −1/2. On the event that {τi−1 < ∞}, Theorem 4.8 and Fact 4.5 imply that there is
a (random) constant Cδ , which may depend on τi−1 and gτi−1 (which are both Fτi−1-measurable), such
that Pr

[
τi − τi−1 > u | Fτi−1

]
≤ Cδuaε+δ . Hence, following the proof of Theorem 4.1, this implies that

E
[√

τi − τi−1 | Fτi−1

]
< ∞. Since E

[√
τi−1

]
< ∞, this implies that E

[√
τi
]
< ∞. Hence, we can

apply Theorem 4.7 to obtain that E
[
Zτi | Fτi−1

]
= Zτi−1 for all i ≥ 1.

We will now inductively construct a sequence of events which satisfy the conclusions of the theorem.
To that end, de�ne the events

Ai = {τi <∞, Zτi ≥ . . . ≥ Zτ1 ≥ 0} .

For the base case, we have A1 = {τ1 <∞, Zτ1 ≥ 0}. In the proof of Theorem 4.1, we have already
veri�ed that Pr [A1 ] > 0 (this also follows from the previous paragraph). For the inductive step, suppose
that Pr [Ai−1 ] > 0. The condition that E

[
Zτi | Fτi−1

]
= Zτi−1 implies that, for any B ∈ Fτi−1 with

Pr [B ] > 0, the eventB∩
{
τi <∞, Zτi ≥ Zτi−1

}
has positive probability. TakingB = Ai−1 implies that

Pr [Ai ] > 0.
To conclude, for any n ≥ 1, the event An has positive probability. Hence, there exists a sequence of

times T1, . . . , Tn < ∞ and loss vectors up to time Tn that guarantee gTi ≥ cε
√
Ti for all i ∈ [n] and

ZTn ≥ . . . ≥ ZT1 ≥ 0. In particular, for all i ∈ [n],

Regret(Ti) ≥ ZTi +
gTi
2
≥ cε

2

√
Ti.

As n ≥ 1 was arbitrary, the theorem follows.

5 Derivation of a continuous-time analogue of Algorithm 1

The purpose of this section is to show how the potential function R de�ned in (2.6) arises naturally as
the solution of a stochastic calculus problem. The derivation of that function is accomplished by de�ning,
then solving, an analogue of the regret minimization problem in continuous time. The main advantage of
considering this continuous setting is the wealth of analytic methods available, such as stochastic calculus.

5.1 De�ning the continuous regret problem

Continuous time regret problem. The continuous regret problem is inspired by (2.9). Notice that,
when the adversary chooses cost vectors in {[ 1

0 ] , [ 0
1 ]}, the sequence of gaps g0, g1, g2, . . . live in the sup-

port of a re�ected random walk. The goal in the discrete case is to �nd an algorithm p that bounds the
regret over all possible sample paths of a re�ected random walk. In continuous time it is natural to consider
a stochastic integral with respect to re�ected Brownian motion, denoted |Bt|, instead. Our goal now is to
�nd a continuous-time algorithm whose regret is small for almost all re�ected Brownian motion paths.

De�nition 5.1 (Continuous Regret). Let p : R>0 × R≥0 → [0, 1] be a continuous function that satis-
�es p(t, 0) = 1/2 for every t > 0. Let Bt be a standard one-dimensional Brownian motion. Then, the
continuous regret of p with respect to B is the stochastic integral

ContRegret(T, p,B) =

∫ T

0
p(t, |Bt|) d |Bt| . (5.1)
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Remark. The condition p(t, 0) = 1/2 is due to (5.1) being inspired by (2.9), which requires this condition.

In this de�nition we may think of p as a continuous-time algorithm and B as a continuous-time ad-
versary. The goal for the remainder of this section is to prove the following result.

Theorem 5.2. There exists a continuous-time algorithm p∗ such that

ContRegret(T, p∗, B) ≤ γ
√
T

2
∀T ∈ R≥0, almost surely. (5.2)

Remark. A natural question arises upon reviewing the de�nition of continuous regret: What role does
Brownian motion play in De�nition 5.1 and is it the “correct” stochastic process to consider in order to
uncover the optimal algorithm? In the analysis that follows, the only properties of re�ected Brownian
motion that we use are its non-negativity and that its quadratic variation is t. It turns out that one can
generalize Theorem 5.2 by allowing any non-negative, continuous semi-martingale X to control the gap
process, and by letting time grow at the rate of the quadratic variation of X . See Appendix B.4 for more
details.

5.2 Connections to stochastic calculus and the backward heat equation

Since ContRegret(T ) evolves as a stochastic integral with respect to a semi-martingale12 (namely re�ected
Brownian motion), Itô’s lemma provides an insightful decomposition. The following statement of Itô’s
lemma is a specialization of [48, Theorem IV.3.3] for the special case of re�ected Brownian motion.13

Notation. Up to now, we have used the symbol g as the second parameter to the bivariate functions p and
R. Henceforth, it will be more consistent with the usual notation in the literature to use x to denote g. We
will also use the notationC1,2 to denote the class of bivariate functions that are continuously di�erentiable
in their �rst argument and twice continuously di�erentiable in their second argument.

Theorem 5.3 (Itô’s formula). Let f : R≥0 × R→ R be C1,2. Then, almost surely,

f(T, |BT |)− f(0, |B0|) =

∫ T

0
∂xf(t, |Bt|) d |Bt|+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)︸ ︷︷ ︸
=:
∗
∆f(t,|Bt|)

]
dt. (5.3)

The integrand of the second integral is an important quantity arising in PDEs and stochastic processes
(see, e.g., [23, pp. 263]). We will denote it by

∗
∆f(t, x) := ∂tf(t, x) + 1

2∂xxf(t, x). Some discussion about
the statement of Theorem 5.3 appears in Appendix B.3.
Applying Itô’s formula to the continuous regret. Comparing these equations, it is natural to assume
that p = ∂xf for a function f that is C1,2 with f(0, 0) = 0, ∂xf ∈ [0, 1], and ∂xf(t, 0) = 1/2; the latter
two conditions are needed for De�nition 5.1 to be applicable. Itô’s formula then yields

ContRegret(T, p = ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d |Bt| = f(T, |BT |)−

∫ T

0

∗
∆f(t, |Bt|) dt. (5.4)

Path independence and the backward heat equation. At this point a useful idea arises: as a thought
experiment, suppose that

∗
∆f = 0. Then the second integral would vanish, and we would have the ap-

pealing expression ContRegret(T, p,B) = f(T, |BT |). Moreover, since f is a deterministic function, the
right-hand side depends only on |BT | rather than the entire Brownian path B|[0,T ]. Thus, the same must

12A semi-martingale is a stochastic process that can written as the sum of a local martingale and a process of �nite variation.
13Speci�cally, we are using the statement of Itô’s formula that appears in Remark 1 after Theorem IV.3.3 in [48] withXt = |Bt|

and At = t. Note that y in their notation is t in ours and 〈 |B|, |B| 〉t = t.
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be true of the left-hand side: at time T , the continuous regret of the algorithm p depends only on T and
|BT | (the gap). We say that say that such an algorithm has path independent regret. Our supposition that
led to these attractive consequences was only that

∗
∆f = 0, which turns out to be a well studied condition.

De�nition 5.4. Let f : R>0×R→ R be aC1,2 function. If
∗
∆f(t, x) = 0 for all (t, x) ∈ R>0×R then we

say that f satis�es the backward heat equation. A synonymous statement is that f is space-time harmonic.

We may summarize the preceding discussion with the following proposition.

Proposition 5.5. Let f : R>0 × R → R be a C1,2 function that satis�es
∗
∆f = 0 everywhere with

f(0, 0) = 0. Let p = ∂xf . Then, ∫ T

0
p(t, |Bt|) d |Bt| = f(T, |BT |). (5.5)

Suppose that a function f satis�es the hypothesis of Proposition 5.5 and in addition p = ∂xf ∈ [0, 1]
with p(t, 0) = 1/2. Then, we would have

ContRegret(T, p,B) = f(T, |BT |). (5.6)

We are unable to derive a function that satis�es the properties required for (5.6) to hold along with
maxx≥0 f(T, x) ≤ γ

√
T/2. Instead, we will begin by relaxing the constraint that p(t, x) ∈ [0, 1] and

allow p(t, x) to be negative. We will overload the notation ContRegret(·) to include such functions. In
the next section, we will derive a family of such functions that all achieve ContRegret(T, p, |BT |) =
f(T, |BT |) = O(

√
T ). This is done by setting up and solving the backwards heat equation. Next, we use a

“smoothing” argument to obtain a family of functions that all achieve ContRegret(T, p, |BT |) = O(
√
T ),

and that do satisfy p(t, x) ∈ [0, 1]. Finally, we will optimize ContRegret(T, ·, |BT |) over this family of
functions to prove Theorem 5.2. The constant γ will appear as a consequnce of this optimization problem.

5.2.1 Satisfying the backward heat equation

The main result of this section is the derivation of a family of functions p̃ : R>0 × R → R that satisfy
p̃(t, x) ≤ 1, p̃(t, 0) = 1/2 and

ContRegret(T, p̃, B) = f(T, |BT |) = O(
√
T ), (5.7)

but do not necessarily satisfy p̃(t, x) ≥ 0.
The �rst step is to �nd a function f which satis�es the partial di�erential equation

∗
∆f = 0. Since

the boundary condition p̃(t, 0) = 1/2 is a condition on p̃ = ∂xf , not on f itself, it will be convenient to
solve a PDE for p̃ instead, and then to derive f by integrating. However, some care is needed since not
all antiderivates of p̃ (in x) will satisfy the backwards heat equation. Fortunately, we have a useful lemma
showing that if p̃ satis�es the backward heat equation, then we can construct an f that also does.

Lemma 5.6. Suppose that h : R>0 × R→ R is a C1,2 function. De�ne

f(t, x) :=

∫ x

0
h(t, y) dy − 1

2

∫ t

0
∂xh(s, 0) ds.

Then,
(1) f ∈ C1,2,
(2) If

∗
∆h = 0 over R>0 × R then

∗
∆f = 0 over R>0 × R,

(3) h = ∂xf .
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Proof. Lemma 5.6 First, we check that f ∈ C1,2. Let (t, x) ∈ R>0 × R. It is easy to check via standard
applications of the Dominated Convergence Theorem (DCT) and the Fundamental Theorem of Calculus
(FTC) that

(1) ∂tf(t, x) =
∫ x

0 ∂th(t, y) dy − 1
2∂xh(t, 0),

(2) ∂xf(t, x) = h(t, x), and
(3) ∂xxf(t, x) = ∂xh(t, x).

All of the above partial derivatives are clearly continuous since h is C1,2.
Next, we show that if

∗
∆h(t, x) = 0 for all (t, x) ∈ R>0×R, then

∗
∆f(t, x) = 0 for all R>0×R. Indeed,

∗
∆f(t, x) =

(
∂t +

1

2
∂xx

)
f(t, x)

=

∫ x

0
∂th(t, y) dy − 1

2
∂xh(t, 0) +

1

2
∂xh(t, x) (by (1) and (3))

=

∫ x

0

(
∂th(t, y) +

1

2
∂xxh(t, y)

)
︸ ︷︷ ︸

=0

dy (by FTC)

= 0,

as claimed.

De�ning boundary conditions for p. Obtaining a particular solution to the backward heat equation
requires su�cient boundary conditions in order to uniquely identify p̃. The boundary condition mentioned
above is that p̃(t, 0) = 1/2 for all t. This condition together with the backward heat equation clearly do
not su�ce to uniquely determine p̃. Therefore, we impose some reasonable boundary conditions on p̃.

What should the value be at the boundary? Intuitively, x 7→ p̃(t, x) should be a decreasing function
because p̃ represents the weight placed on the worst expert as a function of the gap. Therefore, it is natural
to consider an “upper boundary” which speci�es the point at which the di�erence in experts’ total costs is
so great that the algorithm places zero weight on the worst expert. The upper boundary can be speci�ed
by a curve, { (t, φ(t)) : t > 0 } for some continuous function φ : R>0 → R>0. We will incorporate this
idea by requiring p̃(t, φ(t)) = 0 for all t > 0.

Where should the boundary be? One reasonable choice for the boundary is to use φα(t) = α
√
t for

some constant α > 0, as this is similar to the boundary used by the random adversary in the lower bound
of Section 4. For now, we leave α as an unknown parameter whose value can be optimized later. These
conditions are combined into the following partial di�erential equation:

(backward heat equation) ∂tu(t, x) + 1
2∂xxu(t, x) = 0 for all (t, x) ∈ R>0 × R (5.8)

(upper boundary) u(t, α
√
t) = 0 for all t > 0 (5.9)

(lower boundary) u(t, 0) = 1
2 for all t > 0. (5.10)

Next we show that the following function solves this PDE. De�ne p̃α : R>0 × R→ R by

p̃α(t, x) :=
1

2

(
1− erfi (x/

√
2t)

erfi (α/
√

2)

)
. (5.11)

Lemma 5.7. p̃α satis�es the following properties:
(1) p̃α is C1,2 over R>0 × R,
(2) p̃α satis�es the constraints in (5.8), (5.9) and (5.10), and
(3) For all t > 0 and all x ≥ 0, p̃α(t, x) ≤ 1/2.
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Proof. Lemma 5.7 Let us assume that we can write u(t, x) = v(x/
√
t). Then, we have ∂tu(t, x) =

− x
2t3/2

v′(x/
√
t), and 1

2∂xxu(t, x) = 1
2tv
′′
(x/
√
t). The backward heat equation enforces that v′′(x/

√
t) =

x√
t
v′(x/

√
t). By a change of variables (z = x/

√
t), we obtain the following ordinary di�erential equation

v′′(z) = z · v′(z). (5.12)

Hence, v′(z) = C · e
z2

2 for some constant C . We can then integrate to obtain v(z) =
∫ z

0 Ce
y2/2 dy+D =∫ z/√2

0

√
2Cer

2
dr + D, for some constant D. For the last equality, we made the change of variables

r = y/
√

2 in the integral. Therefore, by the de�nition of erfi (and a di�erent constant C), we have
v(z) = C erfi(z/

√
2) +D. Hence, for some constants C,D ∈ R, we have

u(t, x) = C erfi(x/
√

2t) +D.

Plugging in the boundary condition at x = 0 and recalling that erfi(0) = 0 we see thatD = 1/2. Plugging
in the boundary condition that u(t, α

√
t) = 0 and using that D = 1/2 we see that C = − 1

2 erfi(α/
√

2)
.

Therefore, we have that the following function

u(t, x) =
1

2

(
1−

erfi
(
x/
√

2t
)

erfi
(
α/
√

2
) )

satis�es the backwards heat equation and the boundary conditions. Moreover, u ∈ C1,2 on R>0 ×R.

Lemma 5.7 shows that p̃α(t, x) nearly de�nes a valid continuous time algorithm, in that it satis�es the
conditions of De�nition 5.1 except for non-negativity. Next, we will integrate p̃α as described in Lemma 5.6.
De�ne the function R̃α : R>0 × R→ R as

R̃α(t, x) =
x

2
+ κα

√
t ·M0

(
x2

2t

)
where κα =

1√
2π erfi(α/

√
2)
. (5.13)

Lemma 5.8. R̃α(t, x) =
∫ x

0 p̃α(t, y) dy − 1
2

∫ t
0 ∂xp̃α(s, 0) ds.

First we need to compute some derivatives.

Lemma 5.9. The following identities hold for every α > 0.

1. ∂xR̃α(t, x) = p̃α(t, x) = 1
2

(
1− erfi(x/

√
2t)

erfi(α/
√

2t)

)
.

2. ∂xxR̃α(t, x) = ∂xp̃α(t, x) = −κα · exp(x2/2t)√
t

.

Proof. The proof is a straightforward calculation. We have

∂xR̃α(t, x) =
1

2
− κα

x√
t
·M1

(
x2

2t

)
=

1

2
− 1√

2π erfi(α/
√

2)
· x√

t
·
√
π erfi(x/

√
2t)

2 · x/
√

2t

=
1

2

(
1− erfi(x/

√
2t)

erfi(α/
√

2)

)
,
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where the �rst equality uses Fact 2.4 and the second equality uses the identity (2) in Fact 2.5. This proves
the �rst identity.

For the second identity, using the de�nition of erfi(·), we have

∂xxR̃α = ∂xp̃α(t, x) = − exp(x2/2t)√
2π erfi(α/

√
2)
√
t

= −κα ·
exp(x2/2t)√

t
.

Proof (of Lemma 5.8). By the �rst identity in Lemma 5.9, we have∫ x

0
p̃α(t, y) dy = R̃α(t, x)− R̃α(t, 0) (5.14)

Note that R̃α(t, 0) = κα
√
t. Next, the second identity of Lemma 5.9 implies that −∂xp̃α(s, 0) = κα√

s
.

Hence,

− 1

2

∫ t

0
∂xp̃α(s, 0) ds = κα

√
t = R̃α(t, 0). (5.15)

Summing (5.14) and (5.15) gives∫ x

0
p̃α(t, y) dy − 1

2

∫ t

0
∂xp̃α(s, 0) ds = R̃α(t, x)− R̃α(t, 0) + R̃α(t, 0) = R̃α(t, x).

By Lemma 5.7, the function p̃α satis�es the hypothesis of the function h in Lemma 5.6. Hence, we can
apply Lemma 5.6 with h = p̃α and f = R̃α to assert the following properties on R̃α.

Lemma 5.10. R̃α satis�es the following properties:
(1) R̃α is C1,2,
(2) R̃α satis�es

∗
∆R̃α = 0 over R>0 × R,

(3) ∂xR̃α(t, x) = p̃α(t, x).

Lemma 5.10 shows that R̃α satis�es the hypotheses of Proposition 5.5. Hence, we have

ContRegret(T, p̃α, B) = R̃α(T, |BT |).

Since erfi(·) is a strictly increasing function with erfi(0) = 0, observe that ∂xR̃α = p̃α has exactly one root
at α
√
t. In particular, for any �xed T > 0, the function R̃α(T, x) is maximized at x = α

√
T . Therefore,

for every T we have

R̃α(T, |BT |) ≤ max
x≥0

R̃α(T, x) ≤ R̃α(T, α
√
T ) =

(
α

2
+ καM0

(
α2

2

))√
T ,

where the equality is by de�nition of R̃α in (5.13). To summarize, we have shown that

ContRegret(T, p̃α, B) ≤
(
α

2
+ καM0

(
α2

2

))√
T . (5.16)

This establishes (5.7), as desired.

5.2.2 Resolving the non-negativity issue

The only remaining step is to modify p̃α so that it lies in the interval [0, 1/2]. We modify p̃α in the most
natural way: by modifying all negative values to be zero. Speci�cally, we set

pα(t, x) :=

{
0 (t = 0)
(p̃α(t, x))+ (t > 0)

=

0 (t = 0)
1
2

(
1− erfi(x/

√
2t)

erfi(α/
√

2)

)
+

(t > 0) . (5.17)
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Here, we use the notation (x)+ = max{0, x}. Note that pα(t, 0) = 1/2 for all t > 0 and pα(t, x) ∈ [0, 1/2]
for all t, x ≥ 0. So pα de�nes a valid continuous-time algorithm. From (5.17), we obtain a truncated version
of R̃α as

Rα(t, x) :=


0 (t = 0)

R̃α(t, x) (t > 0 ∧ x ≤ α
√
t)

R̃α(t, α
√
t) (t > 0 ∧ x ≥ α

√
t)

. (5.18)

It is straightforward to verify that ∂xRα = pα. This is because for x ≤ α
√
t, pα(t, x) = p̃α(t, x) and

Rα(t, x) = R̃α(t, x) (we have computed the derivatives in Lemma 5.10). In addition, Rα(t, x) is constant
(in x) for x ≥ α

√
t so its derivative (in x) is 0.

If Rα were su�ciently smooth then we could immediately apply Itô’s formula (Theorem 5.3) to obtain
a formula for the regret of pα. For x < α

√
t, we have

∗
∆Rα(t, x) = 0 by Lemma 5.10 and for x > α

√
t, it is

not di�cult to verify that
∗
∆Rα(t, x) > 0. Itô’s formula would then suggest that ContRegret(T, pα, B) ≤

Regret(T, |BT |). The only �aw is that ∂xxRα is not well-de�ned on the curve
{

(t, α
√
t) : t > 0

}
so

Rα is not in C1,2 and Theorem 5.3 cannot be applied directly. The reader who believes that this issue is
unlikely to be problematic may wish to take Lemma 5.11 on faith and skip ahead to Subsection 5.3.

Figure 1: The relationships between p̃α, R̃α, Rα,n, pα, and Rα. Since Rα is not su�ciently smooth, Itô’s
formula (Theorem 5.3) cannot be applied. Instead, we show that Rα is the limit of Rα,n which are smooth
truncations of R̃α. Since each R̃α,n is smooth, Itô’s formula can be applied to each of them.

Lemma 5.11. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

Here, we will present a high-level overview of the proof of this lemma; the details can be found in
Appendix B.1. Let φ(x) be a smooth function satisfying φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For
n ∈ N, de�ne φn(x) = φ(nx) and the approximations

Rα,n(t, x) := R̃α(t, x)φn(x− α
√
t) + R̃α(t, α

√
t)(1− φn(x− α

√
t)).

It is relatively straightforward to check that Rα,n(t, x)
n→∞−−−→ Rα(t, x) pointwise and similarly for the

derivatives. The important property is that Rα,n is smooth so Itô’s formula may be applied. Lemma 5.11
is then proved by taking limits and controlling the error terms.

The remainder of this section proves Theorem 5.2 by setting p∗ = pα for the optimal α.

Remark. The de�nition of pα has an interesting interpretation. Let B be a Brownian Motion. Fix a
time t and a position x > 0. Now let τ = inf { s > t : |Bs| ≥ α

√
s }. It is known [22] that pα(t, x) =

Pr [Bτ < 0 | Bt = x ]. In words, pα(t, x) is the probability that a Brownian Motion started at time t
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and position x crosses the bottom −α
√
t boundary before crossing the top +α

√
t boundary. As a sanity

check, one may observe that pα(t, α
√
t) = 0 and pα(t, 0) = 0.5. Interestingly, the optimal algorithms

for two experts in both the �nite-time horizon setting [18] and the geometric time horizon setting have a
similar interpretation [33]. In both cases, the optimal algorithm is to assign the probability that a random
walk started at position x > 0 at time t remains positive at the stopping time. In the �nite-time case,
the stopping time is a deterministic quantity T whereas in the geometric-time case, the stopping time is a
geometric random variable. A similar connection also exists for three and four experts [6, 33].

5.3 Optimizing the boundary to minimize continuous regret

By Lemma 5.11, ContRegret(T, ∂xRα, B) ≤ Rα(T, |BT |) ≤ Rα(T, α
√
T ), where the last inequality is be-

cause ∂xRα(t, x) = pα(t, x) is positive for x ∈ [0, α
√
t) and 0 for x ≥ α

√
t. As observed in (5.16), we have

the formula Rα(T, α
√
T ) = (α/2 + καM0(α2/2))

√
T . Thus, to minimize Rα(T, α

√
T ), it is convenient to

de�ne
h(α) := Rα(1, α) =

α

2
+ καM0(α2/2).

The only remaining task is now to solve the following optimization problem.

min
α>0

h(α) = min
α>0

{
α

2
+ κα ·M0

(
α2

2

)}
(5.19)

The following lemma veri�es that there exists some α for which ContRegret(T, ∂xRα, B) ≤ γ
√
T

2 ,
completing the proof of Theorem 5.2.

Lemma 5.12. The function h(α) is minimized at α = γ and h(γ) = γ/2. Consequently, for any �xed
T > 0, minαRα(T, α

√
T ) = Rγ(T, γ

√
T ) = γ

√
T

2 .

Lemma 5.12 follows easily from the following claim.

Claim 5.13. h′(α) = − exp(α2/2)

π erfi(α/
√

2)
·M0(α2/2). In particular, h′(α) < 0 for α ∈ (0, γ), h′(γ) = 0, and

h′(α) > 0 for α ∈ (γ,∞).

Proof. Recall that h(α) = α
2 + M0(α2/2)√

2π erfi(α/
√

2)
and that d

dx erfi(x/
√

2) =
√

2
πe

x2/2. Hence,

h′(α) =
1

2
− α ·M1(α2/2)√

2π erfi(α/
√

2)
− exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)2
(by Fact 2.4)

= −exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)2
(by Fact 2.5(2)).

This proves the �rst assertion.
Next, observe that exp(α2/2)

erfi(α/
√

2)2
is positive for all α > 0. Hence, by Fact 2.7, we have that h′(α) < 0 for

α ∈ (0, γ), h′(γ) = 0, and h′(α) > 0 for α ∈ (γ,∞).

Proof of Lemma 5.12. Claim 5.13 implies that γ is the global minimizer for h(α). Since γ is a root of
M0(α2/2), it follows that h(γ) = γ/2. This proves the �rst assertion. Next, for every α > 0, we have
Rα(T, α

√
T ) =

√
T · h(α) ≥

√
T · h(γ) = γ

√
T/2, which proves the second assertion.
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A Standard concavity facts

Fact A.1. Suppose f : R→ R is concave. Then for any α < β, the function g(t) = f(t+ β)− f(t+ α)
is non-increasing.

Fact A.2. Suppose that f : R → R is concave. Let α < β. Then f(x) ≥ min{f(α), f(β)} for all
x ∈ [α, β].

B Additional proofs for Section 5

B.1 Proof of Lemma 5.11

The main idea of the proof is that we will approximateRα by a sequence of smooth functions (i.e. functions
in C2,2).

Fix α > 0. Recall that R̃α(t, x) = x
2 + κα

√
t ·M0

(
x2

2t

)
for t > 0, x ∈ R, where κα = 1√

2π erfi(α/
√
2)

.
(For t = 0, it su�ces to de�ne R̃α(t, x) = 0.) We also have the truncated version, Rα, de�ned as

Rα(t, x) =


R̃α(t, x) t > 0 ∧ x ≤ α

√
t

R̃α(t, α
√
t) t > 0 ∧ x ≥ α

√
t

0 t = 0

.

Recall also that pα = ∂xRα. For convenience, we restate the lemma.

Lemma 5.11. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

For the remainder of this section, we will write f̃ = R̃α and f = Rα. Let φ(x) be any non-increasing
C2 function satisfying φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For concreteness, we may take

φ(x) =


1 x ≤ 0

(1− x) + 1
2π sin(2πx) x ∈ [0, 1]

0 x ≥ 1

. (B.1)

We leave it as an easy calculus exercise to verify that φ is indeed a non-increasing C2 function.
Next, de�ne φn(x) = φ(nx) and

fn(t, x) = f̃(t, x) · φn(x− α
√
t) + f(t, α

√
t) ·
(

1− φn(x− α
√
t)
)
.

Note that fn ∈ C2,2 on R>0 ×R for all n. The function fn is a smooth approximation to f and its limit is
exactly f (= Rα).

Claim B.1. For every t > 0, x ∈ R, limn→∞ fn(t, x) = f(t, x).

Proof. If x ≤ α
√
t then φn(x − α

√
t) = 1 so fn(t, x) = f̃(t, x) = f(t, x). In particular, this also

holds for the limit. Next, suppose that a = x − α
√
t > 0. If n > 1/a then φn(x − α

√
t) = 0 so

fn(t, x) = f̃(t, α
√
t) = f(t, x).

Recall that our goal is to relate f(T, |BT |) and
∫ T

0 ∂xf(t, |Bt|) d|Bt|. However, one cannot apply Itô’s
formula to f directly as it is not in C1,2. Instead, we will apply Itô’s formula to the smoothed version of f ,
namely fn, and then take limits. The remainder of this section does this limiting argument carefully.

For technical reasons (namely that f̃(t, x) has a pole when t → 0 and x 6= 0), we will not be able to
start the stochastic integral at 0. Hence, we will �x ε > 0 and, at the end of the proof, we will allow ε→ 0.

The following lemma bounds the stochastic integral of ∂xfn with respect to |Bt|.
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Lemma B.2. Almost surely, for every T ≥ ε∫ T

ε
∂xfn(t, |Bt|) d|Bt| ≤ fn(T, |BT |)− fn(ε, |Bε|)

−
∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

− 1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt.

(B.2)

Proof. The proof is by Itô’s formula (Theorem 5.3) applied to fn. We have, for all T ≥ ε,

fn(T, |BT |)− fn(ε, |Bε|) =

∫ T

ε
∂xfn(t, |Bt|) d|Bt|+

∫ T

ε
∂tfn(t, |Bt|) +

1

2
∂xxfn(t, |Bt|) dt. (B.3)

Computing derivatives of fn, we have

∂tfn(t, x) = (∂tf̃(t, x)) · φn(x− α
√
t)− α

2
√
t
f̃(t, x)φ′n(x− α

√
t)

+ ∂t(f(t, α
√
t)) · (1− φn(x− α

√
t)) +

α

2
√
t
f(t, α

√
t) · φ′n(x− α

√
t)

(B.4)

∂xfn(t, x) = (∂xf̃(t, x)) · φn(x− α
√
t) + f̃(t, x)φ′n(x− α

√
t)− f(t, α

√
t)φ′n(x− α

√
t) (B.5)

∂xxfn(t, x) = (∂xxf̃(t, x)) · φn(x− α
√
t) + 2(∂xf̃(t, x))φ′n(x− α

√
t)

+
(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(B.6)

Recalling the notation
∗
∆ = ∂t + 1

2∂xx, we have
∗
∆fn(t, x) =

( ∗
∆f̃(t, x)

)
· φn(x− α

√
t) + ∂t(f(t, α

√
t)) · (1− φn(x− α

√
t))

+ (∂xf̃(t, x))φ′n(x− α
√
t)

+
α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) · φ′n(x− α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(B.7)

By Lemma 5.10,
∗
∆f̃ = 0. By Claim B.3 below, ∂t(f(t, α

√
t)) > 0. Next, observe that (∂xf̃(t, x)) · φ′n(x−

α
√
t) ≥ 0. To see this, if x ≤ α

√
t then φ′n(x − α

√
t) = 0. On the other hand, if x > α

√
t then

φ′n(x − α
√
t) ≤ 0 because φn is non-increasing and ∂xf̃(t, x) ≤ 0 by Lemma 5.10 and (5.11). Hence, we

can lower bound (B.7) by
∗
∆fn(t, x) ≥ α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) · φ′n(x− α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t). (B.8)

Plugging (B.8) into (B.3) gives

fn(T, |BT |)− fn(ε, |Bε|) ≥
∫ T

ε
∂xfn(t, |Bt|) d|Bt|

+

∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

+
1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt.

(B.9)

Rearranging (B.9) gives the lemma.
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Claim B.3. If t > 0 then ∂t(f̃(t, α
√
t)) > 0.

Proof. Note that

f̃(t, α
√
t) =

√
t ·
(
α

2
+

M0(α2/2)√
2π erfi(α/

√
2)

)
=
√
t · f(1, α).

So it su�ces to check that f̃(1, α) > 0. To see this, note that f̃(1, 0) = κα > 0 and ∂xf̃(1, x) ≥ 0 as long
as x ≤ α (by the �rst identity of Lemma 5.9). Hence, f̃(1, α) > 0.

At this point, we would like to take limits on both sides of (B.2). This is achieved by the following two
lemmas.

Lemma B.4. Almost surely, for every T ≥ ε,
1. limn→∞

∫ T
ε

α
2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt = 0; and

2. limn→∞
∫ T
ε φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt = 0.

Lemma B.5. For every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|

as n→∞.

Within this section, Xn
L2

−→ X means that E
[

(Xn −X)2
]
→ 0 as n → ∞. We relegate the proofs

of Lemma B.4 and Lemma B.5 to Appendix B.2. We now take limits on both sides of (B.2) to obtain the
following bound on the stochastic integral of ∂xf .

Lemma B.6. Almost surely, for every T ≥ ε,∫ T

ε
∂xf(t, |Bt|) d|Bt| ≤ f(T, |BT |)− f(ε, |Bε|). (B.10)

Proof. By Lemma B.5, for every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Hence, there exists a subsequence nk such that∫ T

ε
∂xfnk(t, |Bt|) d|Bt|

a.s.−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Using Lemma B.2 to bound the left-hand-side and then Lemma B.4 to take limits gives that (B.10) holds
for any �xed T ≥ ε. Hence, almost surely, (B.10) holds for all rational T ≥ ε. As both sides of (B.10) are
continuous as a function of T , (B.10) holds for all T ≥ ε.

Proof (of Lemma 5.11). We will work in the probability 1 set where Lemma B.6 holds (for every rational
ε > 0) and t 7→ Bt is continuous.
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Fix T > 0. Note that ContRegret(T, ∂xf,B) is de�ned because ∂xf ∈ [0, 1/2] and ∂xf(t, 0) = 1/2
for all t > 0 (see (5.17)). Recalling De�nition 5.1, we have, for ε ≤ T ,

ContRegret(T, ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d|Bt|

=

∫ T

ε
∂xf(t, |Bt|) d|Bt|+

∫ ε

0
∂xf(t, |Bt|) d|Bt|

≤ f(T, |BT |)− f(ε, |Bε|) +

∫ ε

0
∂xf(t, |Bt|) d|Bt| (Lemma B.6).

The right-hand-side is continuous in ε so taking ε→ 0 (and recalling that f(0, 0) = 0), gives

ContRegret(T, ∂xf,B) ≤ f(T, |BT |).

B.2 Additional proofs from Appendix B.1

Before we prove Lemma B.4, we will need one key observation.

Lemma B.7. Fix ε > 0. Then there is a constant Cε > 0 (depending also on α) such that for t > 0 and x
satisfying |x− α

√
t| ≤ 1,

1. |f̃(t, x)− f(t, α
√
t)| ≤ Cε · (x− α

√
t)2; and

2. |∂xf̃(t, x)| ≤ Cε · |x− α
√
t|.

Proof. The key observation is that f(t, α
√
t) is already a �rst-order Taylor expansion of f̃(t, x) (in x) about

the point γ
√
t. Indeed, f̃(t, α

√
t) = f(t, α

√
t) and (∂xf̃)(t, α,

√
t) = 0. Hence, by Taylor’s Theorem (see

e.g. [51, Theorem 5.15])

|f̃(t, x)− f(t, α
√
t)| ≤ 1

2
· (x− α

√
t)2 · sup

t≥ε,|x−α
√
t|≤1

|∂xxf̃(t, x)|

By the second identity in Lemma 5.9, we have

|∂xxf̃(t, x)| = κα exp(x2/2t)√
2t

.

Since t ≥ ε and x ≤ 1 + α
√
t, we have

|∂xxf̃(t, x)| ≤ κα exp((1 + α
√
t)2/2t)√

2ε

=
κα exp(α2/2 + α/

√
t+ 1/t)√

2ε

≤ κα exp(α2/2 + α/
√
ε+ 1/ε)√

2ε
.

So one can take Cε = κα exp(α2/2+α/
√
ε+1/ε)√

2ε
. This gives the �rst assertion.

The second assertion is similar. Indeed, since (∂xf̃)(t, α
√
t) = 0, we have

|(∂xf̃)(t, x)| = |(∂xf̃)(t, x)− (∂xf̃)(t, α
√
t)|

≤ |x− α
√
t| · sup

t≥ε,|x−α
√
t|≤1

|∂xxf̃(t, x)|

≤ Cε · |x− α
√
t|.
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We also need a simple claim which bounds the value of |φ′n(x)| and |φ′′n(x)|.

Claim B.8. There is an absolute constant C > 0 such that |φ′n(x)| ≤ Cn and |φ′′n(x)| ≤ Cn2.

Proof. Note that φ′n(x) = n·φ′(x) and n2 ·φ′′(x). It is easy to see, from di�erentiating (B.1) or by continuity
and compact arguments, that there exists C > 0 such that |φ′(x)|, |φ′′(x)| ≤ C for all x ∈ R.

Proof (of Lemma B.4). We start with the second assertion. The �rst assertion is similar but simpler. We
claim that there exists a constant C ′ (depending on ε and α) such that∣∣∣φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)∣∣∣ ≤ C ′1[|Bt| − α
√
t ∈ [0, 1/n]] (B.11)

Indeed, if |Bt| − α
√
t /∈ [0, 1/n] then φ′′n(|Bt| − α

√
t) = 0 so both sides of (B.11) are equal to 0. On the

other hand, if |Bt| − α
√
t ∈ [0, 1/n] then Lemma B.7 shows that |f(t, α

√
t)− f̃(t, |Bt|)| ≤ Cε/n2 where

Cε is the constant from Lemma B.7. Next, Claim B.8 gives |φ′′n(|Bt|−α
√
t)| ≤ Cn2. So taking C ′ = Cε ·C

gives (B.11). Hence,∣∣∣∣∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε
C ′ · 1[|Bt| − α

√
t ∈ [0, 1/n]] dt

= C ′ ·m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
,

where m denotes the Lebesgue measure. By continuity of measure, we have

lim
n
m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
=

∫ T

ε
1
[
|Bt| = α

√
t
]

dt = 0 a.s.

This proves the second assertion.
For the �rst assertion, we can use the bound (from Lemma B.7 and Claim B.8)∣∣∣φ′n(x− α

√
t) ·
(
f(t, α

√
t)− f̃(t, x)

)∣∣∣ ≤ C ′

n
1[x− α

√
t ∈ [0, 1/n]] ≤ C ′

n
. (B.12)

Hence, ∣∣∣∣∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε

α

2
√
t

C ′

n
dt

≤ C ′α
√
T/n→ 0.

Proof (of Lemma B.5). By (B.5), we have

∂xfn(t, x)− ∂xf(t, x) =
(
∂xf̃(t, x)φn(x− α

√
t)− ∂xf(t, x)

)
+
(
φ′n(x− α

√
t) ·
(
f̃(t, x)− f(t, α

√
t)
))

.
(B.13)

For the �rst bracketed term, since ∂xf̃(t, x) = ∂xf(t, x) when x ≤ α
√
t and ∂xf(t, x) = 0 when x ≥ α

√
t,

we have ∣∣∣∂xf̃(t, x)φn(x− α
√
t)
∣∣∣ =

∣∣∣∂xf̃(t, x)φn(x− α
√
t)
∣∣∣1[x− α

√
t ∈ [0, 1/n]]

≤ C ′

n
,
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where the �nal inequality is by the second assertion in Lemma B.7. The second bracketed term has been
bounded in (B.12), and so we have proved∣∣∣∂xfn(t, x)− ∂xf(t, x)

∣∣∣ ≤ C ′′

n
for all t ≥ ε and all x. (B.14)

Tanaka’s formula (see [50, Theorem IV.43.3]) states that

|Bt| =
∫ t

0
sign(Bs) dBs + Lt =: Wt + Lt,

whereL is the local time at zero ofB andW is a Brownian motion. Recall that t 7→ Lt is a continuous non-
decreasing random process which increases only on the set { t : Bt = 0 }. Therefore by the Itô isometry
property, for any T ≥ ε,

E
[(∫ T

ε
∂xfn(t, |Bt|) d|B|t −

∫ T

ε
∂xf(t, |Bt|) d|B|t

)2]
≤ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|) dWt

)2
]

+ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)) dLt

)2
]

= 2 E

[ ∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)2 dt

]
+ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, 0) dLt

)2
]
.

Now use (B.14) to bound the right-hand side by

2(C ′′/n)2T + 2(C ′′/n)2 E
[
L2
T

]
≤ C ′′′n−2T,

where the last inequality uses Tanaka’s formula (and the fact that Wt is also a standard Brownian motion)
to bound

E
[
L2
T

]
= E

[
(|BT | −WT )2

]
≤ 2 E

[
|BT |2

]
+ 2 E

[
|WT |2

]
= 4 E

[
|BT |2

]
= O(T ).

The result follows.

B.3 Discussion on the statement of Theorem 5.3

In this paper, we use the version of Itô’s formula that appears in Remark 1 after Theorem IV.3.3 in [48].
It states that if f ∈ C1,2, X is a continuous semimartingale14 and A is a process with bounded variation
then

f(AT , XT )− f(A0, X0) =

∫ T

0
∂xf(At, Xt) dXt +

∫ T

0
∂tf(At, Xt) dAt

+
1

2

∫ T

0
∂xxf(At, Xt) d〈X, X 〉t.

(B.15)

In our setting, we take Xt = |Bt| and At = t. We now explain the notation 〈X, X 〉.
(1) For a continuous local martingaleM , 〈M, M 〉 is the unique increasing continuous process vanish-

ing at 0 such that M2 − 〈M, M 〉 is a martingale [48, Theorem IV.1.8].
(2) If X is a continuous semimartingale with M being the (continuous) local martingale part then
〈X, X 〉 = 〈M, M 〉 [48, De�nition IV.1.20].

14A continuous semimartingale X is a process that can be written as X =M +N where M is a continuous local martingale
and N is a continuous adapted process of �nite variation.
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Tanaka’s formula [50, Theorem IV.43.3] asserts that |Bt| = Wt + Lt where Wt is a Brownian Motion
and Lt is the local time of Bt at 0, which is an increasing, continuous, adapated process. Hence, |Bt| is a
semimartingale with 〈 |B|, |B| 〉t = 〈W, W 〉t = t. Plugging these into (B.15) gives

f(T, |BT |)− f(0, |B0|) =

∫ T

0
∂xf(t, |Bt|) d |Bt|+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)
]

dt,

which is what appears in Theorem 5.3.

B.4 Continuous regret against any continuous semi-martingale

Recall that the continuous regret upper bound (Theorem 5.2) involved the adversary evolving the gap pro-
cess as a re�ected Brownian motion, which is a continuous semi-martingale. In this section, we generalize
the de�nition of continuous regret to allow arbitrary, non-negative, continuous semi-martingales to con-
trol the gap process, and derive an analogue of Theorem 5.2 in this generalized setting. We use the notation
[X]t to refer to 〈X, X 〉t, the quadratic variation process of X , which was introduced in Appendix B.3.

We begin with a generalized de�nition of continuous regret.

De�nition B.9 (Continuous Regret). Let p : R>0 × R≥0 → [0, 1] be a continuous function that satis�es
p(t, 0) = 1/2 for every t > 0. LetXt be a continuous, non-negative, semi-martingale. Then, the continuous
regret of p with respect to X is the stochastic integral

ContRegret(T, p,X) =

∫ T

0
p(t,Xt) dXt. (B.16)

The main result for this generalized setting is as follows.

Theorem B.10. There exists a continuous-time algorithm p∗ such that for any continuous, non-negative,
semi-martingale X ,

ContRegret(T, p∗, X) ≤ γ

2

√
[X]T ∀T ∈ R≥0, almost surely. (B.17)

We provide an overview of the proof of this result below. For the sake of exposition, we sketch the
proof of Theorem B.10 in the setting where we allow p∗ to take values in (−∞, 1]. Truncating p∗ as was
done in Subsection 5.2.2 yields Theorem B.10 as stated.

Proof sketch. Let p∗(t, x) := p̃γ([X]t, x) and R(t, x) := R̃γ(t, x). (See Eq. (5.11) and Eq. (5.13) for de�ni-
tions of p̃γ and R̃γ). Recall the following three important properties of R from Lemma 5.10:

(1) R is C1,2,
(2) R satis�es

∗
∆R = 0 over R>0 × R,

(3) ∂xR(t, x) = p̃γ(t, x).
Since R is C1,2, we may apply Itô’s formula (speci�cally Eq. (B.15) with At = [X]t, which is a bounded
variation process since it is increasing) to obtain

R([X]T , XT ) =

∫ T

0
∂xR([X]t, Xt) dXt +

∫ T

0
∂tR([X]t, Xt) +

1

2
∂xxR([X]t, Xt) d[X]t

=

∫ T

0
p∗(t,Xt) dXt +

∫ T

0
∂tR([X]t, Xt) +

1

2
∂xxR([X]t, Xt)︸ ︷︷ ︸

=
∗
∆R([X]t,Xt)

d[X]t (∂xR = p̃γ)

=

∫ T

0
p∗(t,Xt) dXt (

∗
∆R = 0)

= ContRegret(T, p∗, X).
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Next, recall the upper bound on R from Eq. (5.16):

R(t, x) = Rγ(t, x) ≤
(
γ

2
+ κγM0

(
γ2

2

))√
t =

γ

2

√
t,

where the �nal equality is because γ is a root of M0

(
x2

2

)
. Putting everything together, we have

ContRegret(T, p∗, X) = R([X]T , XT ) ≤ γ

2

√
[X]T ,

as desired.

C Remark on oblivious adversaries

In this section, we consider the following model. At each time step t, the algorithmA chooses a probability
vector xt ∈ [0, 1]n and then draws a random expert It ∈ [n] such that Pr[It = i] = xt,i. The adversary B
then chooses a loss vector `t ∈ [0, 1]n given {xs}s≤t, {`s}s≤t, and {Is}s<t. (Crucially, B does not know
It at time t.) In this setting, we consider the following notion of regret de�ned as

Regret(n, T,A,B) =
T∑
t=1

`t,It −min
i∈[n]

T∑
t=1

`t,i.

The following theorem shows that, with this de�nition, any algorithm must incur Ω(
√
t log log t) anytime

regret.

Theorem C.1. For any algorithm A, there exists an adversary B such that for all T ≥ 1,

E

[
sup
t≥T

Regret(2, t,A,B)√
(t/2) log log(t/2)

]
≥ 1

2
.

For the rest of this section, we write Regret(T ) = Regret(2, T,A,B). The adversary B that achieves
Theorem C.1 is extremely simple. At time t, the adversary chooses an index i∗ ∈ arg maxi∈[2] xt,i.15 It sets
a cost of 1 for expert i∗ and a cost of 0 for expert 3− i∗ (the other expert). More precisely,

`t =

{
[ 1

0 ] if xt,1 ≥ xt,2
[ 0

1 ] if xt,1 < xt,2
.

We now analyze this adversary. To do so, we set up some notation that is reminiscent of that used in
Section 3 and Section 4. Let Lt,1 =

∑
s≤t `s,1 and Lt,2 =

∑
s≤t `s,2. Let gt = |Lt,1 − Lt,2| be the gap

between the cumulative losses of the two experts. Note that |gt − gt−1| = 1 because for all t, exactly one
of `t,1, `t,2 is equal to 1 while the other is equal to 0. If gt = 0, let pt = max{xt,1, xt,2} and if gt > 0, let
pt be the probability mass placed on the worst expert (i.e. the expert with the highest cumulative cost at
time t). More precisely, if gt > 0, we set

pt =

{
xt,1 if Lt,1 > Lt,2

xt,2 if Lt,1 < Lt,2
.

Let Ber(p) denote the Bernoulli distribution with parameter p. In particular, if X ∼ Ber(p) then Pr[X =
1] = p and Pr[X = 0] = 1− p.

15For concreteness, we break ties in lexicographical order but the exact tie-breaking does not play a role.
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Proposition C.2. Suppose that whenever gt−1 = 0, the adversary sets a loss of 1 for an expert in
arg maxi∈[2]{xt,1, xt,2} and a loss of 0 for the other expert. Suppose further that |gt − gt−1| = 1 for
all t ≥ 1. Then Regret(T ) =

∑T
t=1(gt − gt−1) ·Rt where Rt ∼ Ber(pt).

We remark that Proposition C.2 does not use the adversary we have de�ned above and is true for any
adversary that sati�es the conditions of the hypothesis. We also remark that the proof of Proposition C.2
is nearly identical to the proof of Proposition 2.3.

Proof. De�ne ∆R(t) = Regret(t) − Regret(t − 1). The total cost of the best expert at time t is L∗t :=
min {Lt,1, Lt,2}. The change in regret at time t is the cost incurred by the algorithm minus the change in
the total cost of the best expert, so ∆R(t) = LIt − (L∗t −L∗t−1), where It ∈ [2] indicates which expert was
chosen by the algorithm at time t.
Case 1: gt−1 6= 0. In this case, the best expert at time t − 1 remains a best expert at time t. Note that
this uses the assumption that gt − gt−1 ∈ {±1} so gt−1 ≥ 1. If the worst expert incurs cost 1 then
with probability pt the algorithm follows the worst expert and incurs cost 1 and with probability 1 − pt,
the algorithm follows the best expert and incurs cost 0. In other words, the algorithm’s cost is given by
Rt ∼ Ber(pt). On the other hand, the best expert incurs cost 0, so ∆R(t) = Rt and gt − gt−1 = 1.

Next, if the best expert incurs cost 1 then with probability pt the algorithm follows the worst expert
and incurs cost 0 and with probability 1 − pt, the algorithm follows the best expert and incurs cost 1. In
this case, the algorithm’s cost is 1−Rt. On the other hand, the best expert incurs cost 1, so ∆R(t) = −Rt
and gt − gt−1 = −1.

For either choice of cost, we see that ∆R(t) = Rt · (gt − gt−1).
Case 2: gt−1 = 0. Both experts are best, but one incurs no cost, so L∗t = L∗t−1. Recall that pt =
max{xt,1, xt,2} and that we assume the adversary sets a loss of 1 for an expert in arg maxi∈[2]{xt,1, xt,2}.
Without loss of generality, we assume pt = xt,1. Hence, the algorithm’s cost is given byRt; it is equal to 1
with probability pt and and 0 with probability 1−pt. We conclude that ∆R(t) = Rt = Rt ·(gt−gt−1).

For the remainder of this section, we work with the adversary that is described early in this sec-
tion. Recall that the adversary sets a loss of 1 on an expert in arg maxi∈[2]{xt,1, xt,2} and a loss of 0
on the other expert. Before we proceed, we make a couple of simple observations. First, the hypothesis
of Proposition C.2 holds and we make use of this below. Second, we have that if gt = gt−1 + 1 then
pt ≥ 1/2 and if gt = gt−1 − 1 then pt ≤ 1/2. The observation is trivial when gt−1 = 0 since gt = 1 and
pt = max{xt,1, xt,2} ≥ 1/2. Now suppose that gt−1 ≥ 1 and gt = gt−1 + 1. We claim that this implies
pt ≥ 1/2. For the sake of contradiction, suppose pt < 1/2 (recall that pt is the mass on the worst expert).
Then the adversary sets a loss of 1 on the best expert which decreases the gap at from time t − 1 to t so
that gt = gt−1 − 1. This contradicts that the gap increases from t− 1 to t. A similar argument shows that
gt = gt−1 − 1 implies pt ≤ 1/2.

For notation, we also let MT = |{ t ∈ [T ] : gt = gt−1 + 1 }| be the number of times that the gap
increases by time T andNT = |{ t ∈ [T ] : gt = gt−1 − 1 }| be the number of times that the gap decreases
by time T . Note that at any time T ≥ 1, we have gT = MT −NT . In particular, MT ≥ NT which implies
the following proposition (since MT +NT = T and MT , NT are non-negative integers).

Proposition C.3. For any time T ≥ 1, we have MT ≥ dT/2e and NT ≤ bT/2c.

Next, we show that for this simple adversary, we have a simple lower bound on Regret(T ).

Claim C.4. Let X1, X2, . . . and Y1, Y2, . . . be sequences of i.i.d. Ber(1/2) random variables. There is a
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coupling between {Regret(t)}t≥1 and {(Xt), (Yt)}t≥1 such that for all T ≥ 1,

Regret(T ) ≥
MT∑
t=1

Xt −
NT∑
t=1

Yt. (C.1)

Proof. From Proposition C.2, we have that Regret(T ) =
∑T

t=1Rt · (gt − gt−1). We show that there is a
coupling between {Regret(t)}t≥1 and {(Xt), (Yt)}t≥1 such that for all t ≥ 1:

1. if gt = gt−1 + 1 then Rt · (gt − gt−1) = Rt ≥ XMt

2. if gt = gt−1 − 1 then Rt · (gt − gt−1) = −Rt ≥ −YNt .
Fix a t ≥ 1. We start with the case where gt = gt−1 + 1. As mentioned above, we have pt ≥ 1/2. To
de�ne the coupling, let At ∼ Ber(1/2) and Bt ∼ Ber(2pt − 1) be independent. We then set XMt = At
and Rt = At + (1 − At) · Bt. Clearly, Rt · (gt − gt−1) = Rt ≥ XMt . So it remains to check that Rt has
the desired distribution. Indeed, Rt = 0 if and only if At = 0 and Bt = 0. So Pr[Rt = 0] = Pr[At =
0] Pr[Bt = 0] = 0.5 · (2− 2pt) = 1− pt and Pr[Rt = 1] = pt as desired.

Next, suppose gt = gt−1 − 1 in which case pt ≤ 1/2. Let At ∼ Ber(1/2) and Bt ∼ Ber(2pt) be
independent. We set YNt = At and Rt = AtBt. Clearly, Rt ≤ YNt (equivalently, −Rt ≥ −YNt ). So it
remains to check that Rt has the desired distribution. Indeed, Rt = 1 if and only if At = Bt = 1. So
Pr[Rt = 1] = Pr[At = 1] Pr[Bt = 1] = pt and Pr[Rt = 0] = 1− pt as desired.

Although the RHS of (C.1) seems simpler to work than Regret(T ), one annoyance is that it still depends
on how the adversary and the algorithm interact. However, we can combine Proposition C.3 and Claim C.4
to establish a lower bound on Regret(T ) which does not depend on the interaction between the adversary
and the algorithm.

Claim C.5. Let X1, X2, . . . and Y1, Y2, . . . be sequences of i.i.d. Ber(1/2) random variables. There is a
coupling between {Regret(t)}t≥1 and {(Xt), (Yt)}t≥1 such that for all T ≥ 1,

Regret(T ) ≥
dT/2e∑
t=1

Xt −
bT/2c∑
t=1

Yt.

Proof. Proposition C.3 shows that MT ≥ dT/2e and NT ≤ bT/2c while Claim C.4 shows that

Regret(T ) ≥
MT∑
t=1

Xt −
NT∑
t=1

Yt.

The claim follows from the fact that for j ∈ {1, 2, . . . ,MT − dT/2e}, we have XdT/2e+j ≥ −YNT+j .

The following claim completes the proof of Theorem C.1 since

E

[
sup
t≥T

Regret(t)√
(t/2) log log(t/2)

]
≥ E

[
sup
t≥T

∑dt/2e
s=1 Xs −

∑bt/2c
s=1 Ys√

(t/2) log log(t/2)

]
.

Claim C.6. Let X1, X2, . . . and Y1, Y2, . . . be sequences of i.i.d. Ber(1/2) random variables. Then, for
any T ≥ 1, there is a stopping time τ ≥ T such that

E

[ ∑τ
t=1Xt −

∑τ
t=1 Yt√

τ log log τ

]
≥ 1/2.
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Proof. Let τ = inf
{
t ≥ T :

∑t
s=1(Xs − 1/2) ≥ 1

2

√
t log log t

}
. By the law of the iterated logarithm

(Theorem C.7 below), τ is �nite a.s. In addition, since {Yt− 1/2}t≥1 are mean-zero random variables that
are independent of τ , we have E

[ ∑τ
t=1(Yt−1/2)√
τ log log τ

]
= 0. Hence,

E

[ ∑τ
t=1Xt −

∑τ
t=1 Yt√

τ log log τ

]
= E

[ ∑τ
t=1(Xt − 1/2)√
τ log log τ

]
≥ E

[
1
2

√
τ log log τ

√
τ log log τ

]
=

1

2
.

Theorem C.7 (Law of the iterated logarithm [38, Theorem 22.11]). Let X1, X2, . . . be i.i.d. real random
variables such that E [X1 ] = 0 and Var [X1 ] = 1. Let Sn =

∑n
i=1Xi for n ∈ N. Then, almost surely,

lim sup
n→∞

Sn√
2n log log n

= 1.
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