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1Université libre de Bruxelles, Brussels, Belgium
2Technische Universität München, Munich, Germany

1{samuel.fiorini,gwenael.joret,yelena.yuditsky}@ulb.be
2weltge@tum.de

December 21, 2022

Abstract

We give a strongly polynomial-time algorithm for integer linear programs defined by integer
coefficient matrices whose subdeterminants are bounded by a constant and that contain at most
two nonzero entries in each row. The core of our approach is the first polynomial-time algorithm
for the weighted stable set problem on graphs that do not contain more than k vertex-disjoint odd
cycles, where k is any constant. Previously, polynomial-time algorithms were only known for k = 0
(bipartite graphs) and for k = 1.

We observe that integer linear programs defined by coefficient matrices with bounded subde-
terminants and two nonzeros per column can be also solved in strongly polynomial-time, using a
reduction to b-matching.

1 Introduction

Many discrete optimization problems can be naturally formulated as integer (linear) programs of the
form

max {wᵀx : Ax 6 b, x ∈ Zn}, (IP)

where A ∈ Zm×n, b ∈ Zm, w ∈ Zn. While general integer programs cover NP-hard problems,
polynomial-time algorithms have been developed for various interesting classes. Prominent exam-
ples include Papadimitriou’s algorithm [34] (recently improved by Eisenbrand and Weismantel [14]),
Lenstra’s algorithm [27] (improved by Kannan [23] and Dadush [8]), and several algorithms for block-
structured integer programs, see, e.g. [18, 21, 7]. These methods can be found at the core of many
approaches for combinatorial optimization problems. Illustrative examples are algorithms by Goemans
and Rothvoß [16] and Jansen, Klein, Maack, and Rau [20] for bin packing and scheduling problems,
respectively.

One of the most fundamental efficiently solvable classes consists of integer programs of the form (IP)
whose coefficient matrix A is totally unimodular, i.e., each square submatrix of A has a determinant
within {−1, 0, 1}. In this case, an optimal solution of (IP) can be easily obtained from its linear program-
ming relaxation max{wᵀx | Ax 6 b, x ∈ Rn}. Such integer programs include maximum flows, min-
imum cost flows, maximum matchings in bipartite graphs, or maximum stable sets in bipartite graphs,
and we refer to Schrijver’s books [38, 39] for more background and examples.

*A preliminary version of this paper appeared in Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 13–24. Denver, CO, USA, 2022.
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Recently, Artmann, Weismantel, and Zenklusen [1] showed that integer programs of the form (IP)
can be still solved in (strongly) polynomial time when A is totally 2-modular. Here, we say that an
integer matrix is totally ∆-modular if each of its subdeterminants (determinants of square submatrices
of any size) is within {−∆, . . . ,∆}. In view of other work on linear and integer programs with bounded
subdeterminants [41, 43, 3, 11, 13, 33], it is tempting to believe that integer programs defined by totally
∆-modular matrices can be solved in polynomial time whenever ∆ is a constant. While this question is
still open (even for ∆ = 3), we prove the following result.

Theorem 1. For every integer ∆ > 0 there exists a strongly polynomial-time algorithm for solving
integer programs of the form (IP) where A is totally ∆-modular and contains at most two nonzero
entries in each row or in each column.

We remark that if we do not restrict the coefficient matrices to be totally ∆-modular, then the above
class covers NP-hard problems such as stable set (two nonzero entries per row, see below) or integer
knapsack (two nonzero entries per column, see [22, §A6]).

Our main motivation for studying the above class of integer program stems from the fact that it
captures the weighted stable set problem in graphs that do not contain k + 1 vertex-disjoint odd cycles,
where k > 0 is a fixed constant. In fact, given an undirected graphG and vertex weightsw : V (G)→ R,
the weighted stable set problem can be formulated as maximizing

∑
v∈V (G)w(v)xv subject to xv ∈ Z,

0 6 xv 6 1 for each vertex v ∈ V (G) and xu+xv 6 1 for each edge uv ∈ E(G). Bringing this into the
form (IP), the largest subdeterminant of the coefficient matrix is equal to 2ocp(G), where ocp(G) is the
largest number of vertex-disjoint odd cycles in G, called the odd cycle packing number of G (this is a
well-known fact proved, e.g., in [17]). Thus, the following result is a direct consequence of Theorem 1.

Theorem 2. For every integer k > 0 there exists a strongly polynomial-time algorithm for solving the
weighted stable set problem in graphs that do not contain k+1 vertex-disjoint odd cycles, that is, graphs
G with ocp(G) 6 k.

Determining the complexity of the stable set problem for graphs with bounded odd cycle packing
number was an open problem pioneered by Bock, Faenza, Moldenhauer, and Ruiz-Vargas [2]. Note
that ocp(G) = 0 holds if and only if G is bipartite, in which case the stable set problem is polynomi-
ally solvable. The result of Artmann et al. [1] led to the first polynomial-time algorithm for the case
ocp(G) = 1 and it was recently shown that the corresponding stable set polytopes admit quadratic-size
extended formulations [5].

Considering the family of graphs G with ocp(G) 6 k for some constant k > 2, a polynomial-time
algorithm has been obtained recently under the additional assumption that the genus of G is bounded by
a constant [4]. Without the latter assumption, it was known that the stable set problem admits a PTAS.
In fact, the stable set problem in graphs G excluding an odd Kt minor admits a PTAS, as shown by
Tazari [42] using structural results by Demaine, Hajiaghayi and Kawarabayashi [9]. Notice that if G has
an odd Kt minor, then in particular ocp(G) > bt/3c. Moreover, Bock et al. [2] state that the problem
even admits a PTAS if ocp(G) = O(

√
|V (G)|/ log log |V (G)|). However, previous to our work, an

exact polynomial-time algorithm was not even known for graphs G with ocp(G) = 2.
While the statement of Theorem 1 directly implies Theorem 2, the proof of the latter result is actually

at the core of our approach. In fact, using proximity results by Cook, Gerards, Schrijver, and Tardos [6]
we show that integer programs defined by a totally ∆-modular coefficient matrix with at most two
nonzero entries in each row can be reduced to the weighted stable set problem on graphs with odd cycle
packing number at most log2 ∆. The reduction is efficient provided that ∆ is a constant. Our proof
of Theorem 2 is based on new structural results about graphs with bounded odd cycle packing number,
Theorems 18 and 26, as well as recent connections between stable sets in surface embedded graphs G
and integer circulations in the dual of G established in [4].

In the case matrix A has at most two nonzero entries in each column, we give an efficient reduction
to the subcase where all entries of A are in {−1, 0,+1}, again provided that the original coefficient
matrix is totally ∆-modular for some constant ∆. For such matrices it is known that the corresponding
integer program can be solved in strongly polynomial time [39, Thm. 36.1].
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2 Overview

Consider an integer program of the form (IP), where A is totally ∆-modular for some constant ∆ > 1
and has at most two nonzeros per row or per column. In both cases, we will employ a proximity result
by Cook et al. [6], see Theorem 3, to reduce to integer programs with a particular structure. In the case
of at most two nonzeros per row, we will obtain the integer programming formulation of a weighted
stable set problem on a graph G with ocp(G) 6 k := blog2 ∆c. In the case of at most two nonzeros
per column, we will obtain an integer program where the two nonzero entries are within {−1,+1}. The
latter case is considerably simpler and can be treated using a reduction due to Tutte and Edmonds, see
Section 8.

In fact, the main body of this work is concerned with a strongly polynomial algorithm for the
weighted stable set problem on graphs with bounded odd cycle packing number. We start in Section 4
by providing first structural results on graphs G with ocp(G) 6 k, see Theorem 18. Our findings are
based on various deep results on graph minors.

An odd cycle transversal of a graph G is a vertex subset meeting all odd cycles of G. The minimum
size of an odd cycle transversal is called the odd cycle transversal number of G, and is denoted oct(G).
Trivially, ocp(G) 6 oct(G) for every graph G. Hence, a small odd cycle transversal number always
guarantees a small odd cycle packing number. However, as was originally observed by Lovász and
Schrijver (see [40]), there is no counterpart to this fact: a small odd cycle packing number does not
guarantee a small odd cycle transversal number. In fact, there are n-vertex graphs with ocp(G) = 1 and
oct(G) as big as Ω(

√
n). These graphs are known as Escher walls, see Fig. 1 (see Section 4.1 for the

precise definition).

Figure 1: An Escher wall of height 5.

The starting point for our first structural result is a theorem of Reed [35] stating that every graph
with ocp(G) 6 k and oct(G) > f(k, h) contains an Escher wall of height h, where f is a computable
function. This allows us to assume that our graph G contains a large Escher wall, since graphs with
small odd cycle transversals are easily dealt with.

Then, using a result of Geelen, Gerards, Reed, Seymour, and Vetta [15], we show that G cannot
contain a large complete graph minor that is “well attached” to the Escher wall since otherwise we
would obtain a packing of k+ 1 odd cycles in G. Next, we use the celebrated Excluded Minor Structure
Theorem of Robertson and Seymour [36], and more precisely a recent version of the theorem due to
Kawarabayashi, Thomas, and Wollan [26], which comes with explicit bounds and an efficient algorithm.
This allows us to conclude that G has a “near embedding” in a surface S of bounded genus: after
removing a bounded number of vertices, we can embed a subgraph G0 ⊆ G in S in such a way that the
rest of G sits in a bounded number of “large vortices” and in a possibly unbounded number of “small
vortices”. A vortex is a pair of a (sub)-graph and a linearly ordered subset of some vertices of the graph.
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Each vortex (large or small) can be drawn, with edge crossings, in a disk contained in S (each vortex gets
its own disk). The interiors of these disks are mutually disjoint, and disjoint from G0. Each large vortex
has bounded “depth”, and each small vortex has at most 3 vertices in common with G0. See Fig. 2 for
an illustration.

Figure 2: Theorem 18 illustrated. The surface part G0 is shown in black. Small vortices are depicted in
green, and large vortices in blue.

Gearing toward the stable set problem, we prove a more precise structural result in Section 5. We
elaborate on the differences between our first structural result, Theorem 18, and the refined result, The-
orem 26. Instead of assuming that oct(G) is large, we assume the more restrictive condition that G
has high “resilience”. That is, there is no small vertex subset X such that ocp(H) < ocp(G) for every
(connected) component H of G−X .

A very useful consequence of having high resilience is that all the small vortices are bipartite.
Among the further properties gained in the refined result, we can make the distance (in the vertex-face
incidence graph) between any two large vortices, as well as the “face-width” (also known as “represen-
tativity”) of G0, arbitrarily large. This is based on results of Diestel, Kawarabayashi, Müller and Wollan
[10, Section 5]. Moreover, we can make sure that every odd cycle in G0 defines a Möbius band in S.
This implies in particular that all the faces of G0 are even, and relies on previous work [4, Theorem
10.9]. Finally, we prove that each large vortex can be made bipartite in a strong sense: we can assume
that every such vortex is bipartite, even when it is augmented with the boundary of corresponding face
of G0, see Theorem 25. All these properties are achieved at the cost of deleting a bounded number of
extra vertices from G.

We point out that the near embedding guaranteed by each one of Theorems 18 and 26 can be con-
structed in polynomial time.

In Section 6, we explain the final preprocessing steps that we perform on the given instance of the
maximum weight stable set problem. The first step is to ensure high resilience. If the resilience is
small, we can find a suitable vertex subset X in polynomial time by combining a brute-force search
and the FPT algorithm of Kawarabayashi and Reed [24] to compute the odd cycle packing number of
each component of G − X . Once X is found, one can solve the given weighted stable set instance in
strongly polynomial time by recursing on k. The second step is to translate the stable set problem to a
problem on the edges of G, a key idea from the recent works [4, 5]. This is done through solving the
linear programming (LP) relaxation. The LP relaxation can in fact be solved in strongly polynomial
time, using Tardos’s algorithm [41]. The third step is to collapse all small vortices to gadgets with edge
costs, see Lemma 29. Each gadget (a path or a subdivided Y graph) can be added to the surface part G0

without creating edge crossings. This involves the solution of a small (constant) number of weighted
stable set instances on each small vortex, which again can be performed in strongly polynomial time.
The fourth and last step is to slightly modify G0 in order to ensure that each face of G0 is bounded by a
cycle, which in particular implies that G0 is 2-connected.

In Section 7, we present our main algorithm for solving instances of the weighted stable set problem
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on graphs G with ocp(G) 6 k, where k is any constant, in strongly polynomial time. Our algorithm
exploits the structure from the three previous sections, which can be assumed without loss of generality.
Let G1, . . . , Gt denote the subgraphs of G obtained from the large vortices by adding the boundary of
the corresponding faces of G0. Each such boundary is an even cycle, which equals the intersection of
G0 and the corresponding Gi. Recall that the number t of large vortices is bounded.

Viewing any solution to the problem as an edge subset, we can decompose the solution into several
parts, one global part contained in G0 and several local parts, one contained in Gi for each i ∈ [t] :=
{1, . . . , t}. From [4, Proposition 3.1], we know that the part of the solution in G0 is a 0/1 circulation
in a well-chosen orientation of the dual graph G∗0. This circulation satisfies g extra constraints, where
g := eg(S) is the Euler genus of S. Topologically, these g extra constraints mean that the circulation
from our solution is homologous to the all-one circulation.

The main result of [4] (see also Morell, Seidel and Weltge [30]) tells us how to solve the problem on
the surface part G0 alone. If we knew that the feasible solution avoids the boundary cycle of each Gi,
i ∈ [t], then we would be done after performing a single homologous circulation computation on G∗0,
and taking the empty solution within each Gi, i ∈ [t]. Unfortunately, this is in general not the case, and
we cannot simply ignore the subgraphs G1, . . . , Gt. The global solution may interact nontrivially with
some local solutions through the boundary cycle of the corresponding Gi.

In addition to being bipartite, the subgraphs Gi, i ∈ [t] have a particularly nice structure in terms
of their cutsets, which is known as “linear decomposition” of bounded “adhesion”. This means that for
each vertex v on the boundary ofGi, we have a “bag”X(v) ⊆ V (Gi) containing v. For each z ∈ V (Gi),
the set of boundary vertices v ∈ V (Gi) with z ∈ X(v) form a path contained in the boundary of Gi.
For z, z′ ∈ V (Gi), there can be an edge between z and z′ only if the corresponding paths intersect.
Moreover, if two boundary vertices v, v′ ∈ V (Gi) are consecutive on the boundary then X(v) ∩X(v′)
has a bounded number of vertices. Using the bags X(v) and their properties, we can define a bounded
size “cutset” Y (e) for each boundary edge e = vv′ ∈ E(Gi).

The strategy we employ is to consider an optimal solution and derive from the corresponding global
solution, after an uncrossing step, a t-vertex directed graph embedded in S. We call this a “sketch” of
the optimal solution. This sketch describes how the global solution connects the different subgraphs Gi,
i ∈ [t] and the corresponding local solutions. Despite the fact that the sketch has a bounded number
of vertices, it may have an unbounded number of directed edges (parallel or anti-parallel edges as well
as loops). Hence the algorithm cannot possibly guess the whole sketch. Instead, the algorithm guesses
the edges of the sketch one by one and focuses on a single face of the partial sketch at a time. Each
time an edge of the sketch is guessed, we also guess the intersection of the optimal stable set with the
two corresponding cutsets Y (e) and Y (e′), where e is a boundary edge of some Gi, i ∈ [t] and e′

is a boundary edge of some Gi′ , i′ ∈ [t] (possibly i = i′). The final technical hurdle that we need
to overcome is that the sketch might have some face that has an unbounded number of directed edges
(loops). The cure we propose to that is to only remember the relevant part of the face boundary. Each
time a part of the boundary is erased from our records, we have to solve some maximum weight stable
set problem “between” two cutsets inside the same Gi, i ∈ [t]. We obtain a dynamic program that can
be solved in strongly polynomial time, see Theorem 40.

To the best of our knowledge, our Theorems 18 and 26 have just the right ingredients to permit
an efficient algorithm for solving the stable set problem on graphs with bounded odd cycle packing
number. Let us mention that some of the ideas underlying these theorems are already present in the
works of Kawarabayashi and Reed [25, 24] giving FPT algorithms for odd cycle packing and odd cycle
transversal.

3 Integer programs with two nonzero entries per row

Let us consider the integer program (IP) under the assumption that A is totally ∆-modular for some
integer constant ∆ > 1, and that every row of A has at most two nonzero entries.
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We mention a related result due to Hochbaum, Megiddo, Naor, and Tamir [19] who gave a 2-
approximation for the class of integer programs with at most two nonzero entries per row that minimize
a nonnegative objective over nonnegative variables, with running time polynomial in the size of the
coefficient matrix and an upper bound on each variable. However, their techniques do not seem to be
applicable to obtain an exact algorithm for our case.

In fact, we follow a different approach: In this section, we will describe a strongly polynomial
reduction to the weighted stable set problem on a graph G with ocp(G) 6 k = blog2 ∆c, consisting of
four steps.

As a first step, we will employ the following proximity result by Cook et al. [6] to efficiently elimi-
nate variables that appear with a coefficient of absolute value greater than 1.

Theorem 3 (Cook et al. [6]). Let A be a totally ∆-modular m × n matrix and let b and w be vectors
such that Ax 6 b has an integral solution and max{wᵀx : Ax 6 b} exists. Then for each optimal
solution x̄ to max{wᵀx : Ax 6 b}, there exists an optimal solution z∗ to max{wᵀx : Ax 6 b, x ∈ Zn}
with ||x̄− z∗||∞ 6 n∆.

In the second step, we introduce auxiliary integer variables to obtain an equivalent integer program
in which all constraints are of the form xi + xj 6 bij , xi + xj = bij , or describe variable bounds.

By modifying the objective function, we are able to eliminate constraints of the second type in the
third step.

Finally, we show that for integer programs of the resulting type, Theorem 3 can be significantly
strengthened, allowing us to restrict all variables attain values in {0, 1}. With some final simple process-
ing we end up with a weighted stable set problem over some graph whose odd cycle packing number is
indeed bounded by log2 ∆.

3.1 Reduction to coefficients in {−1, 0,+1}

Let us start by identifying a small set of variables whose elimination yields an integer program defined
by a submatrix of A that has all its entries in {−1, 0,+1}. To this end, consider the following lemma.

Lemma 4. Let A ∈ Zm×n be totally ∆-modular. There exists a subset J ⊆ [n] with |J | 6 log2 ∆ such
that for each i ∈ [m], we have Aᵀ

i ∈ {−1, 0,+1}n or there is some j ∈ J with Aij 6= 0.

Proof. We define J ⊆ [n] iteratively, initializing J with the empty set. For later use, we also define a
set I ⊆ [m], which is initially empty. Suppose that there exists a row index i ∈ [m] such that none of
the two conditions in the above statement is satisfied. Then there is a column index j ∈ [n] \ J with
|Aij | > 2. We add i to I and j to J and repeat the process until every row index satisfies one of the two
conditions above.

It is easy to see that throughout all steps, and in particular at the end of the process, the submatrix A′

ofA induced by I and J is a (square) triangular matrix whose diagonal entries are integers with absolute
value at least two. We conclude ∆ > |det(A′)| > 2|J | and hence |J | 6 log2 ∆.

Now, consider an integer program of the form (IP), where the coefficient matrix A is totally ∆-
modular for some constant ∆ and such that A has at most two nonzero entries in each row. Let us first
solve the LP relaxation max{wᵀx : Ax 6 b}. This linear program can be solved in strongly polynomial
time using the algorithm of Tardos [41] since the absolute values of all entries inA are bounded by ∆. If
the LP is infeasible, then (IP) is infeasible as well and we are done. If the LP is unbounded, then (IP) is
either infeasible or unbounded. In this case we may stop or repeat the process with w = 0 to distinguish
between the latter two cases.

Thus, we may assume that the LP relaxation has an optimal solution, say x̄. Let J be as in Lemma 4.
The proof of Lemma 4 shows that such a set J can be efficiently computed. By Theorem 3, we know
that every optimal integer solution z̄ (if one exists) satisfies

z̄j ∈ {z ∈ Z : |x̄j − z| 6 n∆} =: Sj for all j ∈ J.
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Thus, for each j ∈ J we may guess a value zj ∈ Sj , and solve a subproblem of (IP) in which we fix
xj = zj for j ∈ J . In this approach, the total number of subproblems (guesses) that we have to consider
is ∏

j∈J
|Sj | 6 (2n∆ + 1)|J | 6 (2n∆ + 1)log2 ∆ = poly(n).

By Theorem 3, if (IP) is feasible, then at least one subproblem has an optimal solution that is also optimal
for (IP). If all subproblems are infeasible, then so is (IP).

It remains to observe that each subproblem arises from (IP) by deleting all variables indexed by J .
The resulting subproblem has the property that every constraint either involves at most one variable, or
two variables with coefficients in {−1,+1}. After replacing each constraint of the form αxj 6 β by
xj 6 bβ/αc if α > 0 or −xj 6 b−β/αc if α < 0, we can in fact assume that the constraint matrix
of each subproblem has all its entries in {−1, 0,+1}. Moreover, the constraint matrix is still totally
∆-modular.

3.2 Reduction to edge constraints and variable bounds

We have seen that it suffices to consider integer programs (IP) with a totally ∆-modular matrix A ∈
{−1, 0,+1}m×n having at most two nonzero entries per row. Next, we will construct an equivalent
integer program together with a graph G with ocp(G) 6 log2 ∆ such that every constraint that is not
a variable bound (xi 6 ui or xi > `i) is of the form xi + xj 6 bij or xi + xj = bij for some edge
ij ∈ E(G).

As before, we may assume that the LP relaxation of the given IP has an optimal solution, which we
can compute in strongly polynomial time. By Theorem 3, we may then add variable bounds to obtain an
equivalent integer program

max {wᵀx : Ax 6 b, x ∈ [`, u] ∩ Zn}

for some `, u ∈ Zn. At this point, we can assume that every row of A has exactly two nonzero entries.
This means that every constraint in Ax 6 b is of one of the types

xi + xj 6 αij xi − xj 6 βij − xi − xj 6 ψij

with i, j ∈ [n], i 6= j, αij , βij , ψij ∈ Z. We may assume that for every pair i, j there is at most one
constraint of every type. For every constraint of the second type, let us introduce an auxiliary integer
variable yij and replace the constraint by two new (equivalent) constraints

xi + yij 6 βij + 1, xj + yij = 1.

Similarly, for every constraint of the third type, let us introduce two auxiliary integer variables zij , z′ij
and replace the constraint by the three constraints

zij + z′ij 6 ψij + 2, xi + zij = 1, xj + z′ij = 1.

By case analysis, it is easy to see that every replacement yields a matrix that is still totally ∆-modular.
Moreover, every pair of variables appears in at most one constraint. Thus, we may create an undirected
graph G and associate every variable to a vertex of G such that every constraint that is not a variable
bound is of the form yi + yj 6 bij or yi + yj = bij for some edge ij ∈ E(G), and every edge of G
corresponds to exactly one such constraint. We see that the coefficient matrix of the integer program is
an edge-vertex incidence matrix of G and hence ocp(G) 6 log2 ∆.

3.3 Eliminating equations

Our current integer program is of the form

max {f(x) : x ∈ [`, u] ∩ ZV (G) : Ax 6 b, A|Fx = b|F }, (1)

7



whereG is an undirected graph with ocp(G) 6 log2 ∆, f : RV (G) → R linear, `, u ∈ ZV (G), b ∈ ZE(G),
A is an edge-vertex incidence matrix of G, and A|F , b|F are the restrictions of A, b to some rows
F ⊆ E(G). Our goal is to eliminate the equations A|Fx = b|F by modifying the objective function f .
To this end, let

µ := max{f(x) : x ∈ [`, u]} −min{f(x) : x ∈ [`, u]}+ 1

and define g : RV (G) → R via
g(x) = f(x) + µ1ᵀA|Fx.

We consider the integer program

max {g(x) : x ∈ [`, u] ∩ ZV (G) : Ax 6 b}. (2)

Note that if (2) is infeasible, then so is (1). It suffices to prove the following lemma.

Lemma 5. Let x∗ be any optimal solution to (2). If x∗ is feasible for (1), then it is also optimal for (1).
Otherwise, (1) is infeasible.

Proof. Let ν := 1ᵀb|F and note that every point x that is feasible for (1) satisfies g(x) = f(x) + µν.
Suppose first that x∗ is feasible for (1). Clearly, every point x that is feasible for (1) is also feasible
for (2) and hence it satisfies f(x) = g(x)− µν 6 g(x∗)− µν = f(x∗), which shows that x∗ is indeed
optimal for (1).

Suppose now that x∗ is not feasible for (1). Then we must have 1ᵀA|Fx
∗ 6 1ᵀb|F − 1 = ν − 1 and

see that
g(x∗) 6 f(x∗) + µ(ν − 1) 6 max{f(x) : x ∈ [`, u]}+ µ(ν − 1)

holds. For the sake of contradiction, suppose that there exists a point x̄ feasible for (1). Then x̄ satisfies

g(x̄) = f(x̄) + µν > min{f(x) : x ∈ [`, u]}+ µν,

which implies

g(x∗)− g(x̄) 6 max{f(x) : x ∈ [`, u]} −min{f(x) : x ∈ [`, u]}+ µ(ν − 1)− µν
= µ− 1 + µ(ν − 1)− µν = −1 < 0.

Since x̄ is feasible for (2), this is a contradiction to the optimality of x∗. Thus, (1) is infeasible.

3.4 Reduction to stable set

In the previous sections we have reduced the original integer program to a series of integer programs of
the form

max {wᵀx : x ∈ [`, u] ∩ ZV (G) : Ax 6 b}, (3)

where G is an undirected graph with ocp(G) 6 log2 ∆, and w, `, u ∈ ZV (G), b ∈ ZE(G), and A is an
edge-vertex incidence matrix of G. In what follows, we will show that by fixing and translating some
variables, we may restrict all variables to only attain values in {0, 1}, in which case we end up with a
stable set problem over a subgraph of G. To this end, we will consider the LP relaxation

max {wᵀx : x ∈ [`, u] : Ax 6 b}, (4)

and show that Theorem 3 can be significantly strengthened for problems with the above structure, at
least for extremal solutions. Here, we say that a solution to a linear program is extremal if is a vertex of
the underlying polyhedron.

Proposition 6. Suppose that the integer program (3) is feasible. For every extremal optimal solution x∗

of the linear relaxation (4) there exists an optimal solution x̄ to (3) such that ||x∗ − x̄||∞ 6 1/2.
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In the proof of the above result we make use of the following two auxiliary facts.

Lemma 7 ([4, Prop. 5.1]). Let H be an undirected graph and B an edge-vertex incidence matrix of H .
Then all vertices of the polyhedron conv{x ∈ ZV (H) : Bx 6 1} are contained in {0, 1}V (H).

Lemma 8. Let H be an undirected graph, B an edge-vertex incidence matrix of H , and w ∈ RV (H). If
max{wᵀx : Bx 6 1} is attained at 1

21, then max{wᵀz : Bz 6 1, z ∈ ZV (H)} is attained at a point in
{0, 1}V (H).

Proof. We may assume that H is connected. Consider P := {x ∈ RV (H) : Bx 6 1} and Q :=
conv{x ∈ ZV (H) : Bx 6 1}. If H is bipartite, then one side V ′ ⊆ V (H) of the bipartition satisfies
w(V ′) > 1

2w(V (H)). Choosing z∗ ∈ {0, 1}V (H) as the characteristic vector of V ′ yields

wᵀz∗ = w(V ′) > 1
2w(V (H)) = max{wᵀx : x ∈ P} > max{wᵀz : z ∈ Q},

and hence z∗ is as claimed, since z∗ ∈ Q.
If H is not bipartite, then B has full column rank and hence P does not contain a line. Clearly, then

also Q ⊆ P does not contain a line. This means that max{wᵀz : z ∈ Q} is attained at a vertex of Q,
which is in {0, 1}V (H) by Lemma 7.

Proof of Proposition 6. It is known that x∗ is half-integer, i.e., x∗ ∈ 1
2Z

V (G), see [31, Prop. 2.1]. After
translating the feasible region by an integer vector (which may change `, u, b), we may assume that

x∗v = 0 for all v ∈ V0

x∗v = 1/2 for all v ∈ V∗,

where V0 ⊆ V (G) and V∗ = V (G) \ V0. Note that this implies ` 6 0 and u > χV∗ , where χV∗

denotes the characteristic vector of V∗. A crucial observation is that if a constraint associated to an edge
vv′ ∈ E(G) is ‘tight’ at x∗ (i.e., x∗v + x∗v′ = bvv′), then we have either v, v′ ∈ V0 or v, v′ ∈ V∗.

Let z ∈ ZV (G) by any optimal solution to (3). We claim that∑
v∈V0

wvzv 6 0. (5)

Otherwise, we may consider the point x(ε) such that x(ε)v = εzv for v ∈ V0 and x(ε)v = 1/2 for
v ∈ V∗. Choosing ε > 0 small enough, we see that x(ε) is feasible for (4) and satisfies wᵀx(ε) > wᵀx∗,
a contradiction to the optimality of x∗.

Let H be the graph on vertex set V∗ and whose edges are the tight edges of G with both ends in V∗,
and let B be an edge-vertex incidence matrix of H . Observe that the restriction of x∗ to V∗, which is
equal to 1

21, is an optimal solution to max{wᵀ
|V∗x : Bx 6 1} and hence by Lemma 8 there exists some

y ∈ {0, 1}V∗ with By 6 1 and
∑

v∈V∗ wvyv >
∑

v∈V∗ wvzv. Let x̄ be the vector in {0, 1}V (G) that
agrees with y on V∗ and that is zero on V0. By (5) and the previous inequality, we have wᵀx̄ > wᵀz.

Moreover, we claim that x̄ is feasible for (3): Since ` 6 0 and u > χV∗ , we see that x̄ ∈ [`, u] holds.
Moreover, as x∗ is feasible for (4), all right-hand sides of edge constraints are nonnegative, and so x̄
satisfies all edge constraints with both ends in V0. The edge constraints with one end in V0 and one end
in V∗ have a right-hand side of at least one, and hence are also satisfied by x̄. It remains to consider edge
constraints with both ends in V∗. By construction of y, x̄ satisfies all such constraints that are tight at x∗.
The right-hand sides of all remaining constraints are at least 2 and are hence trivially satisfied by x̄.

Thus, x̄ is an optimal solution for (3). Moreover, since all entries of x̄ are in {0, 1}, we see that
‖x∗ − x̄‖∞ 6 1/2 holds.

To finally reduce (3) to a stable set problem, we proceed as follows. First, we compute (again in
strongly polynomial time) an extremal optimal solution x∗ to (4). Recall that if no such point exists,
then (3) is infeasible. As mentioned in the above proof, x∗ is half-integer and hence by translating all
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variables by an integer vector, we may assume that x∗ ∈ {0, 1/2}V (G). By Proposition 6, we see that
there exists an optimal solution to (3) in {0, 1}V (G). Thus, we may restrict all variables in (3) to attain
values in {0, 1}. For each edge constraint consider its right-hand side β. If β < 0, then the problem is
infeasible. If β = 0, then the constraint can be replaced by fixing the respective variables to 0, and we
remove the edge from G. If β > 1, then the constraint is redundant, and so we also remove the edge
from G. The constraints x ∈ [`, u] ∩ ZV (G) may result in further fixings of variables, or, again, directly
imply infeasibility. For each variable that is fixed to 0, we delete the corresponding vertex from G. For
each variable that is fixed to 1, we delete the corresponding vertices and all its neighbors from G. Note
that, given an optimal solution for the resulting integer program, it is easy to recover an optimal solution
for the integer program (3). Finally, observe that the resulting integer program is a stable set problem on
a subgraph H of G, which clearly satisfies ocp(H) 6 ocp(G) 6 log2 ∆.

4 Structure of graphs with bounded odd cycle packing number

In this section we combine a number of results from the literature on graph minors to obtain a first
structural description of graphs with bounded odd cycle packing number, Theorem 18.

4.1 Walls

Given an integer h > 2, an elementary wall of height h is the graph obtained from the 2h× h grid with
vertex set [2h]× [h] by removing all edges with endpoints (2i−1, 2j−1) and (2i−1, 2j) for all i ∈ [h]
and j ∈ [bh/2c], all edges with endpoints (2i, 2j) and (2i, 2j + 1) for all i ∈ [h] and j ∈ [b(h− 1)/2c],
and removing the two vertices of degree at most 1 in the resulting graph. A brick of an elementary wall
W is a cycle of length 6 of W .

Figure 3: An elementary wall of height 6.

An elementary wall of height 6 is depicted in Fig. 3. In an elementary wall W of height h, there is
a unique set of h vertex-disjoint paths linking the bottom row (vertices of the form (i, 1)) to the top row
(vertices of the form (i, h)). These paths are called the vertical paths of W . We enumerate the vertical
paths as Q1, . . . , Qh so that the first coordinates of their vertices are increasing. There is also a unique
set of h vertex-disjoint paths linking Q1 to Qh, called the horizontal paths of W .

A subdivision of an elementary wall of height h is called a wall of height h. Bricks, vertical paths,
and horizontal paths of a wall are defined as expected, as the subdivided version of their counterparts in
the elementary wall.

An Escher wall of height h is any graph that can be obtained from a bipartite wall W of height h by
adding h− 1 vertex-disjoint paths R1, . . . , Rh−1 in such a way that each Ri has one endpoint in the ith
brick of the top row of W and the other in the (h− i)th brick of the bottom row, Ri has no other vertex
in V (W ), and Ri ∪W contains an odd cycle. It is moreover required that the endpoints of Ri are not
included in any other brick than the ith and the (h− i)th bricks of the respective rows. The Escher wall
is said to extend the wall W . See Fig. 1 for an illustration.

A wall W ′ that is a subgraph of a wall W is called a subwall of W if every horizontal path of W ′ is
a subpath of a horizontal path of W , and every vertical path of W ′ is a subpath of a vertical path of W .
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Notice that if W is a wall of height h in a graph G and X is a vertex subset of G with |X| < h,
then X avoids at least one vertical path and one horizontal path of W . Moreover, all vertical paths
and horizontal paths of W avoided by X are contained in the same component of G − X , which we
call the W -majority component of G −X . We will need the following easy lemma about W -majority
components and Escher walls.

Lemma 9. Let G be a graph and let W be a bipartite wall of height h in G that can be extended to an
Escher wall W ′. Let X ⊆ V (G) with |X| < (h − 1)/4. Then the W -majority component of G − X
contains an odd cycle of W ′ intersecting every horizontal path of W .

Proof. Let P1, . . . , Ph denote the horizontal paths of W from top to bottom, and let Q1, . . . , Qh denote
the vertical paths of W from left to right. Let R1, . . . , Rh−1 denote the extra paths in G that together
extend the wall W to the Escher wall W ′, as in the definition above. Let t := d(h − 1)/2e. For each
i ∈ [t], let Ci be the odd cycle of W ′ obtained as follows: Start with the endpoint of Ri on the top row,
walk left to the endpoint of the vertical path Qi, walk down following Qi until hitting Pi+1, walk right
along Pi+1 until hitting Qh+1−i, walk down following Qh+1−i until the bottom row, walk left until the
other endpoint ofRi, and finally followRi. Observe that each vertex ofX is contained in at most two of
the cycles C1, . . . , Ct. Thus X avoids some cycle Ci, since |X| < (h− 1)/4 6 d(h− 1)/2e/2 = t/2.
Finally, observe that Ci must be in the W -majority component of G − X since Ci intersects every
horizontal path of W .

Reed [35] proved that large Escher walls are unavoidable in graphs with bounded odd cycle packing
number but big odd cycle transversal number. Kawarabayashi and Reed [24] subsequently gave a short
algorithmic proof of this fact.

Theorem 10 ([35, 24]). There exists a computable function f : Z>0 × Z>0 → Z>0 such that, for every
integers k > 1 and h > 2, every graph G with ocp(G) 6 k and oct(G) > f(k, h) contains an Escher
wall of height h as a subgraph.
Moreover, for every fixed integer k > 1, there is an algorithm that, given an n-vertex graph G with
ocp(G) 6 k, finds in time Ok(n2) either a vertex subset X of size at most f(k, h) such that G −X is
bipartite, or an Escher wall of height h in G.

The subscript k in the notation Ok(n2) indicates that the hidden constant factor depends on k. We
note that a more precise bound on the time complexity of the algorithm is given in [24], it is almost
linear in the number of vertices and edges of G.

4.2 Odd Kt models

Given a graph H , an H model M in a graph G consists of one (non-empty) tree M(v) ⊆ G for each
vertex v ∈ V (H), called a branch set, and one edge M(uv) ∈ E(G) with one endpoint in M(u) and
the other in M(v) for each edge uv ∈ E(H) such that all branch sets are pairwise vertex disjoint. For
convenience, we denote by

⋃
M the subgraph

⋃
v∈V (H)M(v) ∪

⋃
uv∈E(H)M(uv) of G defined by the

model M . Note that G has an H minor if and only if G has an H model.
Given a wall W in G, and an H model M in G with |H| = t, we say that the wall W grasps the

model M if for every v ∈ V (H) there are t distinct horizontal paths P v1 , . . . , P
v
t of W and t distinct

vertical paths Qv1, . . . , Q
v
t of W such that V (P vi ) ∩ V (Qvi ) ⊆M(v) for each i ∈ [t].

We will also need to consider special types of models. AnH modelM inG is odd if, for every cycle
C contained in

⋃
M , the number of edges of C that belong to branch sets is even. The reason for this

terminology is that, if H is K3, then this amounts to requiring that every such cycle C is odd. In this
sense, odd Kt models with t > 3 generalize odd cycles. In fact, an odd Kt model readily gives many
vertex-disjoint odd cycles in G, as the following easy lemma shows.

Lemma 11. If G is a graph containing an odd Kt model then ocp(G) > bt/3c.
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Recall that a block of a graph G is an inclusion-wise maximal subgraph of G which is 2-connected,
or an edge, or a vertex. The following easy observation about blocks and Kt models will be useful.

Lemma 12. SupposeG is a graph,M is aKt model inG, andX is a vertex subset ofGwith |X| 6 t−2.
Then there is a block of G−X that intersects all the branch sets of M avoided by X , and this block is
unique. This block is called the main block of G−X (w.r.t. the model M ).

Proof. Let M ′ be the model obtained from M by dropping the at most |X| 6 t− 2 branch sets of M hit
by X . For two edges e, e′ in G−X , we write e ≡ e′ if e = e′ or if there is a cycle of G−X containing
both e and e′. This is an equivalence relation on the edges of G−X , whose equivalence classes are the
edge sets of the blocks of G−X . If e and e′ both link two distinct pairs of branch sets of M ′ then e and
e′ are equivalent, as is easily checked. Thus, all the edges connecting two branch sets of M ′ belong to
the same block of G−X .

We will use the following theorems about odd Kt models due to Geelen et al. [15].1

Theorem 13 ([15]). There exists a universal constant c1 > 1 such that, for every integer ` > 1 and
every graph G, if G contains a Kt model with t = dc1`

√
log2 `e then either G contains an odd K`

model, or there is a subset X of vertices of G with |X| < 8` such that the main block of G − X is
bipartite.

Lemma 14. Let k > 1 be an integer and let t := d3c1k
√

log2(3k)e, with c1 the constant from Theo-
rem 13. Suppose G is a graph having a Kt model M that is grasped by a bipartite wall W of height
h > 96k + 1 in G, such that W can be extended to an Escher wall W ′ of G. Then ocp(G) > k.

Proof. Apply Theorem 13 with ` = 3k. If the theorem yields an odd K` model, then ocp(G) > k, as
noted in Lemma 11, and we are done. Thus we may assume that Theorem 13 gives a vertex subset X of
G with |X| < 8` = 24k such that the main block U of G−X is bipartite.

Note that |X| < 24k 6 (h − 1)/4, and hence by Lemma 9 the W -majority component of G − X
contains an odd cycle C from the Escher wall W ′ that meets all its horizontal paths.

Let B1 and B2 be two distinct branch sets of M avoided by X . Since |X| < 24k and since the
model M is grasped by W , we can find two horizontal paths Pi1 and Pi2 with i1 6= i2 such that Pij
avoids X and meets Bj , for j = 1, 2. Now, let uj be a vertex of U in Bj , for j = 1, 2. Since the cycle
C intersects the horizontal path Pij , we can find an uj–V (C) path Zj inside Bj ∪ Pij , for j = 1, 2. We
thus find two vertex disjoint paths Z1 and Z2 between {u1, u2} and V (C) in G−X , implying that the
odd cycle C is contained in the bipartite block U , a contradiction.

4.3 Excluding a Kt model grasped by a wall

Next, we turn to a structure theorem for graphs containing some (large) wallW and having noKt model
that is grasped by the wall W . This theorem is at the heart of the graph minors series of Robertson
and Seymour, see [36]. In this paper we will use the following recent variant of the theorem, due to
Kawarabayashi et al. [26], which comes with an efficient algorithm. (The necessary definitions will be
given after the theorem.)

Theorem 15 ([26, Theorem 2.11]). Let t, r > 0 be integers and let

h := 49152t24r + t107t26 .

1We remark that the theorem appears with the value c1 = 32 in [24, Theorem 5.2]. However, the proof in that paper uses
an inequality that is known to be valid only for large enough k, which is why we decided to leave c1 unspecified, as in [15].
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Let G be a graph and let W be a wall of height h in G. Then either G has a Kt model grasped by W ,
or there is an (α0, α1, α2)-near embedding (σ,G0, A,V,W) of G in a surface S with

α0 := t107t26

α1 := 2t2

α2 := t107t26

eg(S) 6 t(t+ 1),

and such that G′0 contains a flat wall W ′0 of height r that can be lifted to a subwall W0 of W .
Furthermore, for some function T , there is an algorithm with running time T (t, r) ·nO(1) that, given

an n-vertex graph G and a wall W as above, finds one of the two structures guaranteed by the two
outcomes of the theorem.

We remark that in the above statement we dropped one property of the near embedding that appears
in [26, Theorem 2.11], namely ‘W -centrality’, because we are not going to need it in this paper. This is
because the existence of a large flat wall gives us a weaker version of the property that is good enough
for our purposes.

Let us now introduce the necessary definitions. We note that the terminology and notations used here
are not the original ones from [26] but are taken instead from a related paper by Diestel, Kawarabayashi,
Müller, and Wollan [10].2 In the next section we will use results on near-embeddings from [10], which
is why we chose their terminology.

A vortex is a pair V = (H,Ω) where H is a graph and Ω = Ω(V ) is a linearly ordered set
(u1, u2, . . . , un) of some vertices in H . With a slight abuse of notation, we will denote the (unordered)
set of vertices {u1, u2, . . . , un} by Ω as well. Also, we sometimes treat the vortex V as the correspond-
ing graph H when convenient; for instance, we may simply write V ⊆ G to mean that H is a subgraph
of the graph G. The vertices of V − Ω(V ) are called internal vertices.

Given a vortex V = (H,Ω) and a vertex subset A, we denote by V − A the vortex obtained by
deleting the vertices in A. If V is a set of vortices, we let V −A := {V −A : V ∈ V, V −A 6= ∅}.

A surface S is a non-empty compact connected Hausdorff topological space in which every point
has a neighborhood that is homeomorphic to the plane [29]. Let S(h, c) denote the surface obtained
by removing 2h + c open disks with disjoint closures from the sphere and gluing h cylinders and c
Möbius strips onto the boundaries of these disks. As stated by the classification theorem of surfaces,
every surface is topologically equivalent to S(h, c), for some h and c. The Euler genus eg(S) of a surface
S ∼= S(h, c) is 2h+ c. Let S be a surface and let ∆ be a closed disk in the surface. We denote by bd(∆)
and int(∆) the boundary and the interior of ∆, respectively.

Definition 16 (Linear decomposition and adhesion). Let V = (H,Ω) be a vortex with Ω = (u1, u2, . . . , un).
A linear decomposition of V is a collection of sets (X1, X2, . . . , Xn) such that

• for each i ∈ [n], Xi ⊆ V (H) and ui ∈ Xi, and moreover ∪ni=1Xi = V (H);

• for every uv ∈ E(H), there exists i ∈ [n] such that {u, v} ⊆ Xi, and

• for every x ∈ V (H), the set {i : x ∈ Xi} is an interval in [n].

The adhesion of the linear decomposition is max(|Xi ∩Xi+1| : 1 6 i 6 n− 1).

Definition 17 ((α0, α1, α2)-near embedding). Let α0, α1, α2 ∈ N, and let S be a surface. A graph G is
(α0, α1, α2)-nearly embeddable in S if there is a set of verticesA ⊆ V (G) with |A| 6 α0 and an integer
α′ 6 α1 such that G−A can be written as the union of t+ 1 edge-disjoint graphs G0, G1, . . . , Gt with
the following properties:

2While the translation between the formalism of [26] and that of [10] is not difficult, there are two aspects we ought to
comment on: (1) Going from a ‘vortex of depth at most d’ in the first paper to ‘a vortex having a linear decomposition of
adhesion at most d’ in the second can be done in time O(nd+3) using [26, Theorem 12.2]. (2) Flat subwalls w.r.t. a near
embedding are defined slightly differently in the two papers, which led us to introduce the notion of ‘lift’ in the statement.
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(i) For each i ∈ [t], Vi := (Gi,Ωi) is a vortex where Ωi = V (Gi ∩ G0). For all 1 6 i < j 6 t,
Gi ∩Gj ⊆ G0.

(ii) The vortices V1, . . . , Vα′ have a linear decomposition of adhesion at most α2. Let V be the collec-
tion of those vortices.

(iii) The vortices Vα′+1, . . . , Vt have |Ωi| 6 3 for each α′ + 1 6 i 6 t. Let W be the collection of
those vortices.

(iv) There are closed disks ∆1, . . . ,∆t in S with disjoint interiors and an embedding σ : G0 ↪→
S−∪ti=1 int(∆i) such that σ(G0)∩bd(∆i) = σ(Ωi) for each i ∈ [t] and the linear ordering of Ωi

is compatible with the cyclic ordering of σ(Ωi).

We call the tuple (σ,G0, A,V,W) an (α0, α1, α2)-near embedding of G. Below we sometimes denote
∆(V ) the disk ∆i for vortex V = Vi. We call vortices in V large vortices and vortices in W small
vortices.

Given a near embedding (σ,G0, A,V,W) of a graph G in a surface S, we define a corresponding
graph G′0, obtained from G0 by adding an edge vw for every non-adjacent vertices v, w in G0 that
are in a common small vortex V ∈ W . These extra edges are drawn without crossings, in the discs
accommodating the corresponding vortices. We will refer to these edges as the virtual edges ofG′0. IfH ′

and H are subgraphs of G′0 and G−A, respectively, such that H is obtained from H ′ by replacing each
virtual edge uv of H ′ with an u–v path contained in some vortex inW , in such a way that all the paths
are internally (vertex) disjoint, then we call H a lift of H ′ (w.r.t. the near embedding (σ,G0, A,V,W)),
and say that H ′ can be lifted to H .

A cycle C in a graph H embedded in a surface S is flat if C bounds a disc in S. A wall W in H is
flat if the boundary cycle of W (which is defined in the obvious way) bounds a closed disc D(W ) with
the wall W drawn inside it.

4.4 Graphs with bounded odd cycle packing number

We may now state a structure theorem for graphs with bounded odd cycle packing number, which follows
from the results mentioned above.

Theorem 18. There is a computable function f1(k, r) such that, for every integers k > 1 and r > 0,
and every graph G with ocp(G) 6 k and oct(G) > f1(k, r), there is an (α0, α1, α2)-near embedding
(σ,G0, A,V,W) of G in a surface S with

α0 := t107t26

α1 := 2t2

α2 := t107t26

eg(S) 6 t(t+ 1),

and such that G contains a bipartite wall W of height h that can be extended to an Escher wall W ′ of
G, and G′0 contains a flat wall W ′0 of height r that can be lifted to a subwall W0 of W , where

h := 49152t24r + t107t26

t := d3c1(k + 1)
√

log2(3(k + 1))e

and c1 is the constant from Theorem 13.
Furthermore, for some function T , there is an algorithm with running time T (k, r) ·nO(1) that, given

an n-vertex graph G, finds these structures.
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Proof. For k > 1 and r > 0, let f1(k, r) := f(k, h), where f is the function from Theorem 10.
Let us show that the theorem holds with this choice of f1. Let G be a graph with ocp(G) 6 k and
oct(G) > f1(k, r), for some integers k > 1 and r > 0. By Theorem 10, there is a bipartite wall W of
height h inG that can be extended to an Escher wallW ′ ofG. Apply Theorem 15 toG with the wallW .
If the theorem yields a Kt model grasped by W , then ocp(G) > k + 1 by Lemma 14, a contradiction.
Thus we obtain the second outcome of the theorem, as desired.

5 Refining a near embedding

Theorem 18 already gives a good description of the structure of a graph G with bounded odd cycle
packing number but large odd cycle transversal number. The goal of this section is to refine this struc-
ture further, in order to apply our main algorithm to it. This refinement relies on the following three
ingredients: (1) tools developed by Diestel et al. [10] in their work on the excluded minor theorem for
graphs with large treewidth; (2) the odd S-path theorem of Geelen et al. [15], and (3) the Erdős-Pósa
property of 2-sided odd cycles for graphs embedded in surfaces, proved in [4]. Below, we first introduce
these results together with all the necessary definitions. Then we explain how to use them to obtain an
improved version of Theorem 18.

5.1 Definitions and tools

Given a near embedding (σ,G0, A,V,W) of a graph G in a surface S, and a vortex V ∈ W , we say that
V is properly attached if |Ω(V )| 6 3, for every two distinct vertices u, v ∈ Ω(V ) there is an u–v path
in V with no inner vertex in Ω(V ), and for every three distinct vertices u, v, w ∈ Ω(V ) there is an u–v
path in V and a v–w path, each with no inner vertex in Ω(V ), in V that are internally disjoint.

Consider a graph H embedded in S. A curve C in S is said to be H-normal if it intersects (the
embedding of) H only at vertices. The distance in S between two points x, y ∈ S is the minimum of
|C ∩ V (H)| over all H-normal curves C linking x to y. The distance in S between two vertex subsets
A,B of H is the minimum distance in S between a vertex of A and a vertex of B. In the context of near
embeddings, the distance in S between two vortices V and W is the distance in S between Ω(V ) and
Ω(W ). A noose is a simple, closed, H-normal and noncontractible curve in S. For a surface S that is not
a sphere, the face-width (also known as representativity) of the embedding of H in S is the minimum of
|C ∩ V (H)| over all nooses C.

Vertex-disjoint cycles C1, . . . , Ct of H are concentric if they bound closed discs with D(C1) ⊇
· · · ⊇ D(Ct) in S. These cycles enclose a vertex subset Ω if Ω ⊆ D(Ct). They tightly enclose Ω if
moreover, for every i ∈ [t] and every point v ∈ bd(D(Ci)), there is a vertex w ∈ Ω at distance at most
t− i+ 2 from v in S.

In the context of a near-embedding (σ,G0, A,V,W) of a graph G in a surface S, concentric cycles
C1, . . . , Ct in G′0 (tightly) enclose a vortex V ∈ V if they (tightly) enclose Ω(V ).

For integers 3 6 β 6 r, an (α0, α1, α2)-near embedding (σ,G0, A,V,W) of a graph G in a surface
S is (β, r)-good if the following properties are satisfied.

(1) G′0 contains a flat wall W ′0 of height r.

(2) If S is not the sphere, then the face-width of G′0 in S is at least β.

(3) For every vortex V ∈ V there are β concentric cycles C1(V ), . . . , Cβ(V ) in G′0 tightly enclosing V
and bounding closed discs D1(V ) ⊇ · · · ⊇ Dβ(V ), such that Dβ(V ) contains Ω(V ) and D(W ′0)
does not meet D1(V ). For distinct V, V ′ ∈ V , the discs D1(V ) and D1(V ′) are disjoint.

(4) All vortices inW are properly attached.

This is a weakening of the notion of (β, r)-rich near embeddings from [10], obtained by dropping some
of the properties in the latter that we will not need.
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The heart of the proof of the main result in [10] (Theorem 2 in that paper) is a procedure that starts
with a near embedding of a graph G in a surface S together with a large enough flat wall and iteratively
improves the near embedding until it becomes ‘(β, r)-rich’. While this is not explicitly discussed in [10],
it can be checked that all the steps of this procedure can be realized in polynomial time when all the
parameters involved are bounded by constants. Specifically, one can check that the following theorem
follows from the proof in [10] for the weaker notion of (β, r)-good embeddings.3

Theorem 19 (implicit in [10]). Suppose we are given integers 3 6 β 6 r, an (α̃0, α̃1, α̃2)-near embed-
ding (σ̃, G̃0, Ã, Ṽ, W̃) of a graph G in a surface S̃, with all vortices in W̃ being properly attached, and
a flat wall W̃ ′0 in G̃′0 of height

6α̃+eg(S̃)(r + α̃(β + α̃+ 3) + p),

where α̃ := max06i62 α̃i and p := 2α̃(β + 2α̃ + eg(S̃) + 2) + 4. Then we can find a (β, r)-good
(α0, α1, α2)-near embedding (σ,G0, A,V,W) of G in a surface S, with

α0 := α̃0 + p(2 eg(S̃) + α̃1)

α1 := α̃1 + eg(S̃)

α2 := α̃2 + α̃1 + eg(S̃)

eg(S) 6 eg(S̃)

and such that the flat wall W ′0 in G′0 guaranteed by property (1) in the definition of (β, r)-good is a sub-
wall of W̃ ′0. Moreover, this near embedding can be computed in polynomial time provided r, β, α̃0, α̃1, α̃2, eg(S̃)
are all constants.

An embedding of a graph G in a surface S is cellular if every face is homeomorphic to an open disk.
A graph G is cellularly embedded in S if the embedding is cellular.

Theorem 20 (Robertson and Vitray [37], [29, Proposition 5.5.2]). Let S be a surface with eg(S) > 0
and let G be a graph that is embedded in S with face-width at least 2. Then there is precisely one block
Q of G that contains a noncontractible cycle. Moreover, Q is cellularly embedded in S and all its faces
are bounded by cycles. Each block Q′ of G distinct from Q is a planar subgraph of G contained in the
closure of some face of Q. Finally, the face-width of Q is equal to the face-width of G.

A corollary of this result is that if G is a 2-connected graph that is embedded in S with face-width at
least 2, then all the faces of G are bounded by cycles.

A cycle in a graph embedded in a surface is 1-sided if the curve corresponding to the cycle has a
neighborhood homeomorphic to a Möbius strip. A cycle is 2-sided if it is not 1-sided. While the odd
cycle transversal number of a graph cannot be bounded from above by a function of its odd cycle packing
number (as evidenced by Escher walls), such a bound exists if we restrict ourselves to odd cycles that
are 2-sided in a graph embedded in a fixed surface, as proved by Conforti, Fiorini, Huynh, Joret, and
Weltge [4]. This fact will be used in our refined structure theorem.

Theorem 21 ([4]). There exists a computable function f ′ : Z>0 × Z>0 → Z>0 such that the following
holds. Let G be a cellularly embedded graph in a surface S of Euler genus g such that G has no k + 1
vertex-disjoint 2-sided odd cycles. Then there exists a subset X of vertices of G with |X| 6 f ′(g, k)
such that X meets all 2-sided odd cycles of G.

We also need the following result due to Geelen et al. [15], and known as the odd S-paths theorem.

Theorem 22 ([15, Lemma 11]). Let H be a graph and let h ∈ Z>1. For every set S ⊆ V (H), either

3We remark that since we focus on (β, r)-good embeddings, in the proof of Theorem 2 in [10] we can stop as soon as
properties (P1)–(P4) are established (i.e. end of first paragraph on page 1208). The bounds in Theorem 19 were calculated
accordingly.
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(i) there are h vertex-disjoint paths, each of which has an odd number of edges and both its endpoints
in S, or

(ii) there is a set X such that |X| 6 2h− 2 and H −X contains no such path.

Notice that in case (i) we can assume that each path is actually an S-path, that is, none of its internal
vertices is in S. This can be achieved by shortening the paths if necessary.

5.2 Resilience and gadgets

First, we introduce some extra definitions.

Definition 23 (ρ-resilience and rich component). Given ρ ∈ Z>0, a graph G is said to be ρ-resilient if,
for all sets X ⊆ V (G) with |X| 6 ρ, there is a component H of G −X such that ocp(H) = ocp(G).
We call H a rich component of G−X .

Notice that, in the above definition, the rich componentH ofG−X is unique when ocp(G) > 0, and
that G− V (H) is bipartite. Notice also that if ρ′ > ρ, ρ′-resilient graphs are automatically ρ-resilient.

It is not hard to see that, in order to solve the maximum weight stable set problem on graphs G with
ocp(G) 6 k, one can reduce to ρ-resilient instances where ρ = ρ(k) can be chosen arbitrarily. The idea
is that if one can find a set X ⊆ V (G) with |X| 6 ρ such that each component H of G − X satisfies
ocp(H) < ocp(G), then after guessing which vertices of X to include in the stable set, one can reduce
to the maximum weight stable set problem on graphs with odd cycle packing number at most k−1. This
is discussed in more detail at the beginning of Section 6.

Given two vertices x, y of a bipartite graphH , we let pH(x, y) denote the parity of all paths between
x, y ∈ V (H) (if there is any).

Let (σ,G0, A,V,W) be an (α0, α1, α2)-near embedding of a graph G in a surface S, and suppose
further that every vortex V ∈ W is bipartite. (Essentially, this property will be ensured by assuming
that the near embedding is (β, r)-good and that G is ρ-resilient for a sufficiently large ρ ∈ Z>0, as we
will explain later.) When solving a maximum weight stable set problem on G, we may then replace
each vortex V ∈ W by a small gadget that is embedded in the surface S, as we explain below. This
gadget-replacement operation is seen as a modification of the graph G0, and the resulting graph will be
denoted G+

0 (not to be confused with the graph G′0).
Let us describe the gadget-replacement operation. First, we make sure that the graphs in W are

connected: If a vortex V ∈ W is not connected, we simply replace V with a vortex for each component
of V , with the appropriate subset of Ω(V ) as boundary. Now, start with G+

0 := G0, and for each vortex
V ∈ W in turn, modify G+

0 as follows, see also Fig. 6 (on page 26).

(W1) If |Ω(V )| 6 1, we do not modify G+
0 .

(W2) If |Ω(V )| = 2, then let Ω(V ) = {v1, v2}. If pV (v1, v2) is even, then we add a path of length
2 between v1 and v2 in G+

0 , that is, we add a new vertex x and add the edges v1x and v2x. If
pV (v1, v2) is odd then we add a path of length 3 between v1 and v2 in G+

0 , that is, we add two
new vertices x, y and add the edges v1x, xy, yv2. Moreover, if V contains the edge v1v2, then
v1v2 is also added to G+

0 .

(W3) If |Ω(V )| = 3, then let Ω(V ) = {v1, v2, v3}. Note that there are only two options for the parities
of the paths between v1, v2, v3. Either (a) pV (v1, v2), pV (v1, v3) and pV (v2, v3) are all even or (b)
one of them is even, say without loss of generality pV (v1, v2), and the other two are odd. In case
(a), we add a star with the leaves v1, v2, v3 where each edge is subdivided once, more precisely,
we add four new vertices a1, a2, a3, x and add the edges v1a1, v2a2, v3a3, a1x, a2x, a3x. In case
(b), we add a star with the leaves v1, v2, v3 where two edges are subdivided once and the last
is subdivided twice, more precisely, we add five new vertices a1, a2, a3, a

′
3, x and add the edges

v1a1, v2a2, v3a3, a3a
′
3, a1x, a2x, a

′
3x. Again, if any two vertices in Ω(V ) are adjacent in V , then

the corresponding edge is also added to G+
0 .
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We refer to the vertices and edges we add in the above process as the set of virtual vertices and
virtual edges of G+

0 , respectively. Let us point out the following easy observation.

Observation 24. ocp(G+
0 ) 6 ocp(G−A).

5.3 Bipartizing enlarged vortices

Figure 4: The graph H2 from the proof of Theorem 25. The disk ∆(V ) of vortex V is (the shaded blue
area. One parity-breaking path is highlighted in red.

Later, we will assume that the vortices V ∈ V are bipartite, even when augmented with the boundary
of the face that contains the corresponding disk ∆(V ). The next result explains how that can be achieved,
and is used later within the proof of Theorem 26. Before stating the result, let us introduce some standard
terminology regarding walks. A walk in a graph G is a sequence W = (v0, e1, v1, . . . , et, vt) of vertices
vi and edges ei such that for all i ∈ [t], the edge ei links vi−1 to vi. Let W = (v0, e1, v1, . . . , et, vt) be
a walk. The length of W is t, and W is odd or even according to the parity of its length. The walk W
is closed if v0 = vt. Let W be a closed walk. Seeing W as an Eulerian multigraph, we can partition
the edges of W as C1 ∪ · · · ∪ C`, where each Ci is a cycle. We say that W is 1-sided if the number of
1-sided cycles among C1, . . . , C` is odd. Otherwise, W is 2-sided.

Theorem 25. Let k ∈ Z>0 and let G be a graph with ocp(G) 6 k. Assume that G has an (α0, α1, α2)-
near embedding (σ,G0, A,V,W) such that all vortices in W are bipartite. Assume that G+

0 has no
2-sided odd closed walk. Let V ∈ V be a fixed vortex. Let C1, C2 be concentric cycles in G+

0 bounding
closed disks D1, D2 such that D1 ⊇ D2 ⊇ ∆(V ), and D1 is disjoint from D(V ′) for all vortices
V ′ ∈ V \ {V }. For i ∈ [2], let Hi denote the subgraph of G obtained by taking the union of G+

0 ∩Di

and V . Let q := max{k+ 1, 2α2 + 5}. Assume that G is (2q4)-resilient, and that there is no Z ⊆ V (G)
with |Z| 6 2q4 such that the rich component ofG−Z is entirely contained inH2. Then there is a vertex
subset X ⊆ V (H2) of size |X| < 2q4 such that H1 −X is bipartite.

Proof. Firstly note that as we assume that G+
0 has no 2-sided odd closed walks, G+

0 ∩ D1 is a planar
graph with all faces even, hence a bipartite planar graph. Therefore, there is a partition of V (G+

0 ∩D1)
into two disjoint stable sets B and W . Observe that every odd cycle contained in H1 must contain an
internal vertex from V .

To simplify the presentation of the proof, we perform a small modification to our graphs. For every
vertex v ∈W ∩ V (C2), we add a unique pendant vertex v′. Let N be the collection of the new pendant
vertices we added in the modification.

We apply the odd S-path theorem, Theorem 22, to H2 and S := (B ∩ V (C2)) ∪N , with h := q4.
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Case (i). There is a packing P of h vertex-disjoint odd S-paths in H2. We trim each path in P by
removing every end belonging to N . Now P is a packing of V (C2)-paths which we call parity-breaking
paths.

Pick any edge e0 of C2. For a parity-breaking path P ∈ P , we call the unique path linking the ends
of P and contained in C2 − e0 the arc of P . Notice that taking the union of P and its arc gives an odd
cycle contained in H2, which we call the special cycle of P and denote by C(P ). We say that C(P )
extends the parity-breaking path P . Since C(P ) contains an internal vertex of V for each P ∈ P , we
conclude that each path P ∈ P contains an internal vertex of V .

We call a transaction any subset Q ⊆ P consisting only of L–R paths, where L and R are
disjoint sets of consecutive vertices of C2. We claim that the number of paths in any transaction
Q = {Q1, . . . , Qs} ⊆ P is at most 4α2 + 2 paths. For i ∈ [s], let `i ∈ L be the left endpoint of
Qi, ri ∈ R the right endpoint of Qi and mi ∈ Ω(V ) denote the first vertex of Qi that is in vortex V .

Let (X1, . . . , Xn) be a linear decomposition of V of adhesion at most α2. By renumbering the paths
if necessary, we may assume that mi appears before mi+1 in Ω(V ) := (u1, . . . , un), for each i < s. Let
j(i) denote the index of mi in Ω(V ), for each i ∈ [s]. Hence j(1) < . . . < j(s).

Now, setting X0 := Xn+1 := ∅, consider the set

Y := (Xj(1)−1 ∩Xj(1))∪ (Xj(1) ∩Xj(1)+1)∪ (Xj(s)−1 ∩Xj(s))∪ (Xj(s) ∩Xj(s)+1)∪ {uj(1), uj(s)} .

This set is of size at most 4α2 + 2. Let K denote the union of all components of V − Y whose interval
is contained in {j(1) + 1, . . . , j(s)− 1}. (By the interval of component K, we mean the union over all
vertices v ∈ V (K) of the sets {j ∈ [n] : v ∈ Xj}, which is an interval in [n] since K is connected.)

Consider any V (C2)-path Q ⊆ H2 starting at one of the vertices `2, . . . , `s−1 and vertex-disjoint
from Q1, Qs and Y . Let us follow the path starting from its left endpoint `i, 1 < i < s. Until it enters
the vortex V , the path is confined within the planar region R delimited by `1Q1m1, `sQsms, C2 and
the boundary of ∆(V ). When the path Q enters V , it is confined within K. When the path Q leaves V ,
it goes back to the planar regionR. And so on. See Fig. 5 for an illustration. Hence, Q will never reach
a vertex in R.

This implies that Y hits all the paths in transaction Q. Since Q is a packing, we see that |Q| 6
|Y | 6 2α2 + 4, which proves our claim.

Figure 5: Illustration of the proof of Theorem 25. The figure shows the initial segments `iQimi, i ∈ [s]
of a transaction Q := {Q1, . . . , Qs} (in black) and the cutset Y (in red).

Next, break C2 into a path by removing the edge e0 that was selected above. Choosing a direction
of traversal of this path, we obtain a linear ordering on the vertices of C2. For each parity-breaking path
P ∈ P , let s(P ) and t(P ) be the endpoints of P where s(P ) appears before t(P ) with respect to their
order on C2. We write s(P ) < t(P ) to indicate this. Let v be a relation on the paths in P with P v P ′
if and only if P = P ′ or s(P ′) < s(P ) < t(P ) < t(P ′) (equivalently, the arc for P is contained in the
arc for P ′). It is easy to see that v is a partial order on the paths in P .

By Dilworth’s theorem there must be either a chain or an antichain of size
√
h = q2 in the poset

(P,v). Since every chain defines a transaction and
√
h > q > 2α2 + 4, our claim implies that there is

an antichain of size
√
h in (P,v). Let P ′ ⊆ P be such an antichain.
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We define a new relation � on P ′, with P � P ′ if and only if P = P ′ or s(P ) < t(P ) < s(P ′) <
t(P ′) (equivalently, the arc of P is entirely to the left of that for P ′). It is easy to see that � is again a
partial order4, this time on the paths in P ′. By Dilworth’s theorem there is either a chain or antichain of
size 4
√
h = q in (P ′,�). If there is an antichain in (P ′,�) of size q then we get a transaction of size q.

We then reach a contradiction on the number of paths in P ′, since q > 2α2 + 4.
Hence there is a chain in (P ′,�) of size q. Let P ′′ ⊆ P ′ be the set of paths in this chain. Let

C := {C(P ) : P ∈ P ′′} be the collection of special cycles extending each of the q paths in P ′′. This is
a packing of q > k odd cycles in H2 ⊆ G, contradicting our hypothesis that ocp(G) 6 k. Hence, Case
(i) cannot occur.

Case (ii). There is a vertex subset X ⊆ V (H2) such that |X| 6 2h − 2 < 2q4 that hits all the odd
S-paths in H2. We claim that X is the required set in our theorem. If X happens to contain any vertex
v′ ∈ N , we delete this vertex and add its neighbor v ∈ W ∩ V (C2) to the hitting set X . Below, we
assume that X and N are disjoint.

Toward a contradiction, assume that H1 −X contains an odd cycle C3. This odd cycle contains an
internal vertex of V . By Menger’s theorem applied to the graph H1−X , we can either find two disjoint
V (C2)–V (C3) paths or one vertex v that hits all such paths. In the first case, we can find an odd S-path
Q in H1 − X using the odd cycle C3, the two V (C2)–V (C3) paths and possibly some vertices in N
with the incident edges. Notice that Q contains an internal vertex of V , because G+

0 ∩D1 is bipartite,
and thus contains no odd S-path. It follows that Q is fully contained in H2 −X , contradicting the fact
that X meets all odd S-paths in H2. In the second case, consider the set X ∪ {v}. Observe that C3 is
fully contained in H2, as follows from the fact that G+

0 ∩D1 is bipartite and {v} separates V (C2) from
V (C3) inH1−X . Since |X∪{v}| 6 2h−2+1 6 2h andG is (2h)-resilient, G−(X∪{v}) has a rich
component. If this rich component contains some vertex of odd the cycle C3, then the rich component
has to be fully contained in H2 since X ∪ {v} separates V (C2) from V (C3), which contradicts our
hypothesis. Hence, the rich component is disjoint from C3. This is a contradiction to the fact that the
odd cycle packing number of the rich component equals that of G. This concludes the proof of the
theorem.

5.4 Final structure

We may now summarize the final structure that we obtain using the tools from this section.

Theorem 26. There are computable functions ρ(k) and g(k) such that, for every integer k > 1, and for
every graph G with ocp(G) = k that is ρ(k)-resilient, there is an (g(k), g(k), g(k))-near embedding
(σ,G0, A,V,W) of G in a non-orientable surface S with eg(S) 6 g(k) with the following properties:

• all vortices inW are bipartite;

• there is no 2-sided odd walk in G+
0 ;

• the embedding of G+
0 in S has face-width at least 2;

• for each vortex V ∈ V , there is a flat cycle C(V ) in G+
0 bounding a closed disk D(V ) containing

int(∆(V )), where ∆(V ) is the disk that the near embedding associated to V ; for every two
distinct vortices V,W ∈ V , the closed disks D(V ) and D(W ) do not intersect;

• for each vortex V ∈ V , the union of the subgraph of G+
0 contained in D(V ) and V is bipartite;

• every face of G+
0 that does not contain int(∆(V )) for any V ∈ V is bounded by a cycle.

Furthermore, there is a polynomial-time algorithm finding such a near embedding of G when k is a
fixed constant.

4In fact, � is a unit interval order.
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Proof. Let k > 1, and let G be as in the theorem statement. Let

t := d3c1(k + 1)
√

log2(3(k + 1))e

α̃0 := t107t26

α̃1 := 2t2

α̃2 := t107t26

α̃ := max
06i62

α̃i

α1 := α̃1 + t(t+ 1)

α2 := α̃2 + α̃1 + t(t+ 1)

q := max(k + 1, 2α2 + 5)

β := 3f ′(t(t+ 1), k) + 3t(t+ 1) + 6q4α1 + 2

p := 2α̃(β + 2α̃+ t(t+ 1) + 2) + 4

α0 := α̃0 + p(2t(t+ 1) + α̃1)

r := max(α0 + 4, 3f ′(t(t+ 1), k) + 3t(t+ 1) + 25q4 + 2)

r̃ := 6α̃+t(t+1)(r + α̃(β + α̃+ 3) + p)

h := 49152t24r̃ + t107t26

where c1 is the constant from Theorem 13 and f ′ is the function from Theorem 21. Define

g(k) := max(α0 + 3f ′(t(t+ 1), k) + 3t(t+ 1) + 2q4α1, α2)

ρ(k) := max(f1(k, r̃), α0 + 3f ′(t(t+ 1), k) + 3t(t+ 1) + 2q4α1 + 1),

where f1(k, r̃) is the function from Theorem 18. Observe that oct(G) > ρ(k) > f1(k, r̃). Apply
Theorem 18 to G, using r̃ for the value of r in that theorem. Let (σ̃, G̃0, Ã, Ṽ, W̃) denote the resulting
(α̃0, α̃1, α̃2)-near embedding of G in a surface S̃, with eg(S̃) 6 t(t + 1). Let also W be the resulting
bipartite wall of height h in G, that can be extended to an Escher wall W ′ of G, and let W̃ ′0 denote the
given flat wall of height r̃, which can be lifted to a subwall W̃0 of W .

We may assume that all vortices in W̃ are properly attached, as is easily checked. Apply Theorem 19
to the near embedding (σ̃, G̃0, Ã, Ṽ, W̃) with the flat wall W̃ ′0, to obtain a (β, r)-good near embedding.
Let (σ,G0, A,V,W) denote the resulting (β, r)-good (α0, α1, α2)-near embedding of G in a surface S
with eg(S) 6 eg(S̃), and let W ′0 denote the resulting flat wall in G′0 of height r, which can thus be lifted
to a subwall W0 of W .

Next, let us show that every vortex V ∈ W must be bipartite. Since |A|+ |Ω(V )| 6 α0 + 3 6 ρ(k)
by resilience there is a rich component C of G− (A ∪ Ω(V )). Also, since |A|+ |Ω(V )| < r, there is a
W0-majority component C ′ of G− (A∪Ω(V )), and a W -majority component C ′′ of G− (A∪Ω(V )).
Observe thatC ′′ = C ′, sinceC ′′ includes an horizontal path ofW avoided byA∪Ω(V ), which intersects
a vertical path of W0 avoided by A∪Ω(V ). Since |A|+ |Ω(V )| < (h−1)/4, by Lemma 9, C ′′ contains
an odd cycle. Hence we must have C = C ′ = C ′′. Now, a key observation is that the component C
must be vertex disjoint from the vortex V , because C contains a vertex not in V (namely, a vertex of
W0 not in Ω(V )). Since ocp(G) = ocp(C), it follows that V is bipartite (otherwise we would have
ocp(G) > ocp(C)), as claimed.

Now that we have established that all vortices in W are bipartite, we may consider the graph G+
0

resulting from gadget-replacement. Apply Theorem 21 to G+
0 . Note that we cannot have k + 1 vertex-

disjoint 2-sided odd cycles in G+
0 , since ocp(G+

0 ) 6 ocp(G) 6 k. Hence, we obtain a set Y of vertices
of G+

0 meeting all 2-sided odd cycles of G+
0 , of size |Y | 6 f ′(eg(S), k), where f ′ is the function from

Theorem 21. By Lemma 10.8 in [4], we may extend Y by adding at most eg(S) vertices of G+
0 , so that

the resulting set Y ′ meets all 2-sided odd walks of G+
0 . Finally, using the definition of the gadgets, we

observe that for every vortex V ∈ W , we may replace the corresponding virtual vertices that are in Y ′
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(if any) by the at most three vertices in Ω(V ), keeping the property that all 2-sided odd walks of G+
0 are

hit. Let X denote the resulting set, which is thus a subset of V (G0). Note that

|X| 6 3|Y ′| 6 3(f ′(eg(S), k) + eg(S)) 6 3f ′(t(t+ 1), k) + 3t(t+ 1).

Modify the (α0, α1, α2)-near embedding (σ,G0, A,V,W) of G in S by removing all vertices in X
from G0 and from the vortices, and adding them to the apex set A, and replacing the flat wall W ′0 by a
subwall of W ′0 of height r − |X| avoiding X . For the sake of readability, with some abuse of notation
we denote the resulting near embedding by (σ,G0, A,V,W) again, and the flat subwall by W ′0 again
(and let W0 denote a lift of the new wall W ′0 in the new near embedding). Thus |A| 6 α0 + |X| now.
Observe that this near embedding is (β′, r′)-good for β′ := β − |X| and r′ := r − |X|.

Next, for each vortex V ∈ V , we apply Theorem 25 to the near embedding for vortex V , with q as
defined in the beginning of the proof, and with D1, D2 being two of the β′ concentric cycles around V
that survived. Let us quickly justify that the condition about sets Z in that theorem is indeed satisfied:
Suppose Z ⊆ V (G) with |Z| 6 2q4 is such that the rich component K of G − Z is entirely contained
in H2 (using the notations of the theorem). Then K is vertex disjoint from the wall W0, by our choice
of D2. On the other hand, similarly as argued above for vortices inW , since W0 has height r′ > |Z|,
the W0-majority component of G − Z is the same as the W -majority component of G − Z, and must
contain an odd cycle (as argued above with the Escher wall W ′). Hence, this component must be K,
a contradiction. The application of Theorem 25 results in a set YV of vertices meeting all odd cycles
contained in the union of G+

0 ∩ D1 and V , with |YV | 6 2q4. Again, modifying YV to avoid virtual
vertices as above, we obtain a setXV that contains no virtual vertex fromG+

0 , with |XV | 6 3|YV | 6 6q4,
such that XV meets all odd cycles contained in the union of G+

0 ∩D1 and V .
Let X ′ be the union of XV for all vortices V ∈ V . Thus |X ′| 6 6q4|V| 6 6q4α1. Similarly

as before, modify the current near embedding by removing all vertices of X ′ from G0 and from the
vortices, and adding them to the apex set A. Thus, now we have |A| 6 α0 + |X|+ |X ′| 6 g(k).

Observe that, since β′ > |X ′|, for each vortex V ∈ V one of the β′ concentric cycles around V
survives.

If S is orientable, then G+
0 must be bipartite since G+

0 cannot have 2-sided odd cycles. Since all
vortices in V and inW are bipartite, we deduce that G − A is bipartite, a contradiction with resilience
since |A| 6 α0 + |X|+ |X ′| < ρ(k). Hence, S must be non-orientable.

Furthermore, since β > |X|+ |X ′|+ 2, the embedding of G′0 in S has face-width at least 2, and the
same holds for G+

0 , as is easily checked.
Finally, the last property can be achieved easily by possibly creating extra bipartite vortices in W

attaching on at most one vertex of G0. Indeed, suppose that there is a face of G+
0 that does not contain

int(∆(V )) for any V ∈ V , and that is not bounded by a cycle. Then, by Theorem 20 and using the
notations of that theorem, there is a block Q′ 6= Q of G+

0 that is drawn (in a planar way) in the closure
of the corresponding face of Q. Noticing that Q′ must be bipartite, it can be made into a vortex in W
attaching on at most one vertex of G0, by modifying the near embedding in an appropriate way. (Note
that all properties of our near embedding established above still hold after this modification.)

In summary, the resulting near embedding satisfy all the desired properties. It is not difficult to check
that the above proof can be carried out in polynomial time when k is a constant.

For simplicity, let us simply call k-near embedding the near-embedding of G described in Theo-
rem 26.

6 Preprocessing and postprocessing

While the previous two sections provided general structural results, we will now employ techniques
specific to the stable set problem to show that every instance of the maximum weight stable set problem
for graphs with bounded odd cycle packing number can be reduced to very specific instances in strongly
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polynomial time. In other words, we will describe the first steps of our main algorithm to obtain a highly
structured instance.

To this end, let G be a graph with ocp(G) 6 k, where k > 1 is a constant. We assume that we
have already established a strongly polynomial time algorithm for the stable set problem on graphs with
odd cycle packing number at most k − 1. Note that such an algorithm exists for graphs with odd cycle
packing number equal to 0, i.e., bipartite graphs (see e.g. [38]).

As a first step, we check whether G is ρ(k)-resilient. To this end, for each X ⊆ V (G) with |X| 6
ρ(k) we check whether every connected componentH ofG−X satisfies ocp(H) 6 k−1, which can be
efficiently done using the algorithm of Kawarabayashi and Reed [25]. In the case that such a subset X
has been found, we simply enumerate all stable sets S1, . . . , S` ⊆ X and compute a maximum-weight
stable set S′i in G− (X ∪N(Si)) for each i ∈ [`]. The latter can be done efficiently since all connected
components of G − (X ∪ N(Si)) have odd cycle packing number at most k − 1. A maximum-weight
stable set for G is given by Si ∪ S′i whose weight is maximum over all i ∈ [`], and we are done.

Suppose now that G is ρ(k)-resilient. Since ρ(k) > g(k), we obtain from Theorem 26 a k-near
embedding of G−A for some apex set A ⊆ V (G) with |A| 6 g(k). As a next step, it appears natural to
enumerate all stable sets of the apex set A and perform as for the set X above. However, given a stable
set S ⊆ A, instead of computing a maximum weight stable set in G− (A ∪N(S)), we will compute a
maximum weight stable set S′ in G− A, by setting the weights of the vertices in N(S) \ A to be zero,
and replace S′ by S′ \ N(S). This slight modification will be needed since we want to work with the
whole of G − A. We do not want to explicitly delete vertices beyond those of A since the structure we
have on G−A from Theorem 26 is quite delicate.

At this point, we may assume that A = ∅.

6.1 Edge-induced weights

Next, it will be convenient to replace the vertex weights by “equivalent” weights that are induced by
edge costs. This notion was introduced in [4] and is crucial for several parts of our algorithm. We
say that vertex weights w : V (G) → Q>0 are edge-induced if there exist nonnegative edge costs
c : E(G) → Q>0 such that w(v) =

∑
e∈δ(v) c(e), where δ(v) := {e ∈ E(G) | v ∈ e} denotes the

set of edges incident to v. In this case we will also say that w is induced by c. The following result
states that we may efficiently reduce to edge-induced weights. It is a consequence of an earlier result by
Nemhauser and Trotter [32].

Proposition 27. Given a graph G and vertex weights w : V (G) → Q>0, in strongly polynomial time
we can compute edge-induced vertex weights w′ : V (G)→ Q>0 and sets S0, S1 ⊆ V (G) such that for
every w′-maximal stable set S in G, the set (S \ S0) ∪ S1 is a w-maximal stable set in G.

Proof. Let x∗ denote an optimal solution to the LP relaxation

max
{∑

i∈V (G)
w(i)xi : xi + xj 6 1 for all ij ∈ E(G), x ∈ [0, 1]V (G)

}
,

which we can compute in strongly polynomial time with Tardos’s algorithm [41]. We define S0 := {i ∈
V (G) : x∗i = 0}, S1 := {i ∈ V (G) : x∗i = 1}, and w′ : V (G)→ Q>0 via

w′(i) =

{
w(i) if i ∈ V (G− S0 − S1)

0 else.

Consider any w′-maximal stable set S in G and note that S \ (S0 ∪ S1) is a w-maximal stable set in
G− S0 − S1. The result by Nemhauser and Trotter [32] states that adding S1 to S \ (S0 ∪ S1) yields a
w-maximal stable set in G.

It remains to argue that w′ is edge-induced. Consider the dual of the above LP, given by

min{y(E(G)) + z(V (G)) : y(δ(i)) + zi > w(i) for all i ∈ V (G), y ∈ RE(G)
>0 , z ∈ RV (G)

>0 },
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where y(F ) :=
∑

e∈F ye and z(V (G)) :=
∑

i∈V (G) zi. Let (y∗, z∗) ∈ QE(G) × QV (G) denote an
extremal optimal solution of the dual.

Define edge costs c : E(G)→ R>0 via

c(e) =

{
y∗e if e ⊆ V (G− S0 − S1)

0 else.

We claim that w′(i) =
∑

e∈δ(i) c(e) holds for all i ∈ V (G), which implies that w′ is edge-induced.
Clearly, the claim holds for all vertices in S0 ∪S1. For a vertex i ∈ V (G−S0−S1) recall that we have
0 < x∗i < 1. Thus, by complementary slackness we have y∗(δ(i)) + z∗i = w(i) and z∗i = 0. Moreover,
observe that for every edge ij ∈ δ(i) with j ∈ S0 ∪ S1 we cannot have x∗i + x∗j = 1, and hence, again
by complementary slackness, we must have y∗ij = 0. This yields

w′(i) = w(i) = y∗(δ(i)) =
∑

ij∈δ(i):j /∈S0∪S1

y∗ij =
∑
e∈δ(i)

c(e).

6.2 Slack sets and edge costs

Given edge-induced vertex weights, we will associate a cost to every stable set that allows us to treat
some of the following steps in a more elegant way.

Consider any stable set S ⊆ V (G). We say that an edge of G is slack with respect to S if none of
its two endpoints belongs to S. The other edges are called tight. Notice that an edge is tight if and only
if exactly one of its endpoints is in S. By σ(S) ⊆ E(G) we denote the set of edges that are slack with
respect to S, i.e., σ(S) = {e ∈ E(G) : e ∩ S = ∅}, and say that σ(S) is the slack set of S. Moreover,
we call a set of edges F ⊆ E(G) a slack set if F is the slack set of some stable set in G.

Given edge costs c : E → R>0, we say that the cost of S is the total cost of its slack edges,
i.e., c(S) := c(σ(S)) =

∑
e∈σ(S) c(e). With this definition, finding a maximum-weight stable set is

equivalent to finding a minimum-cost stable set:

Lemma 28. Let w : V (G) → R>0 be induced by c : E(G) → R>0. For every stable set S in G we
have w(S) + c(S) = c(E(G)).

Proof. Since w is induced by c, we have w(S) =
∑

v∈S w(v) =
∑

v∈S
∑

e∈δ(v) c(e). Since S is a
stable set, the latter is equal to c(E(G) \ σ(S)) = c(E(G))− c(σ(S)) = c(E(G))− c(S).

For the following parts it will be useful to observe that, in a bipartite graph with edge-induced vertex
weights, the minimum cost of a stable set is always zero, which is attained by each side of the bipartition.
The corresponding slack set is the empty set.

6.3 Replacing small vortices by gadgets

Recall that the k-near embedding (σ,∅,V,W) we get from Theorem 26 includes vortices W ∈ W
with |Ω(W )| 6 3 (recall that we assume A = ∅, and that this is without loss of generality due to our
preprocessing). Suppose that we replace the interior of each W ∈ W by a gadget as in the definition of
G+

0 in Section 5.2. In what follows, we will show that we can compute edge costs c+ for the resulting
graph such that every minimum c+-cost stable set in that graph can be turned into a minimum c-cost
stable set in the original graph, both in strongly polynomial time. To this end, it suffices to apply the
following lemma sequentially, which is implicit in [5]:

Lemma 29. Let G,W be two given graphs such that W is bipartite and |V (G) ∩ V (W )| 6 3, and let
c : E(G) ∪ E(W ) → R>0 be given edge costs. Let G+ be the graph that arises from G according to
(W1)–(W3) in Section 5.2. In strongly polynomial time, we can compute edge costs c+ : E(G+)→ R>0

such that for any given minimum c+-cost stable set in G+ we can obtain a minimum c-cost stable set in
G ∪W , again in strongly polynomial time.
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The proof of Lemma 29 relies on the following fact:

Lemma 30. Let W be a graph with two vertices v1, v2 such that all v1–v2 paths in W have the same
parity p.

(i) Suppose that p is odd, and let S1, S2 denote stable sets in W with S1 ∩ {v1, v2} = {v1, v2} and
S2 ∩ {v1, v2} = ∅. Then there exist stable sets S3, S4 in W satisfying S3 ∩ {v1, v2} = {v1},
S4 ∩ {v1, v2} = {v2}, S1 ∪ S2 = S3 ∪ S4, and S1 ∩ S2 = S3 ∩ S4.

(ii) Suppose that p is even, and let S1, S2 denote stable sets in W with S1 ∩ {v1, v2} = {v1} and
S2∩{v1, v2} = {v2}. Then there exist stable sets S3, S4 in W satisfying S3∩{v1, v2} = {v1, v2},
S4 ∩ {v1, v2} = ∅, S1 ∪ S2 = S3 ∪ S4, and S1 ∩ S2 = S3 ∩ S4.

Proof. We repeat the arguments from [44, proof of Thm. 1]. In each of the above cases, let K denote
the connected component of W [S1 ∪ S2] that contains v1. Note that v2 /∈ K. It is easy to see that
S3 := (S1∩K)∪ (S2 \K) and S4 := (S1 \K)∪ (S2∩K) are stable sets inW satisfying the claim.

Proof of Lemma 29. Let Ω := V (G)∩V (W ) and let cG, cW denote the restrictions of c ontoE(G), E(W ),
respectively. If |Ω| 6 1, observe that G+ = G. In this case, we may simply set c+ := cG. To see this,
first observe that for every stable set S in G ∪W , the set S′ = S ∩ V (G) is a stable set in G+ with
c+(S′) 6 c(S). Moreover, every stable set S′ in G+ can be easily extended to a stable set S in G ∪W
with c(S) = c+(S′): If |S′ ∩ Ω| = 1, S arises from S′ by adding the side of the bipartition of W that
contains the vertex in S′ ∩ Ω. Otherwise, S arises from S′ by adding the other side of the bipartition.

Next, let us consider the case |Ω| = 3 and assume that all paths in W joining two vertices from Ω
have even length. The remaining cases (two paths have odd length or the case |Ω| = 2) are similar or
easier and are left to the reader. Suppose that Ω = {v1, v2, v3} and let a1, a2, a3, x denote the virtual
vertices as in (W3) in Section 5.2. For each I ⊆ [3] let SI denote a minimum cW -cost stable set in W
with SI ∩Ω = {vi : i ∈ I}. Note that we may compute all these stable sets in strongly polynomial time
since W is bipartite. Moreover, observe that we have cW (S∅) = cW (S{1,2,3}) = 0. We define c+ by
setting

c+(e) := c(e) for e ∈ E(G),

c+(viai) := cW (S[3]\{i}) for i = 1, 2, 3, and

c+(aix) := cW (S{i}) for i = 1, 2, 3.

The costs c+ for the other cases are depicted in Fig. 6.
It remains to prove the following: a) For every stable set S in G ∪W , there is a stable set S′ in G+

with c+(S′) 6 c(S). b) Moreover, for every stable set S′ in G+, in strongly polynomial time we can
compute a stable set S in G ∪W with c(S) 6 c+(S′).

To prove a), let S be a stable set in G ∪ W and set I := {i : vi ∈ S}. Let S′ arise from S
as follows. First, we delete the vertices from V (W ) \ V (G). Next, if |I| ∈ {0, 3}, then we may
add virtual vertices to S′ so that all virtual edges are tight with respect to S′. In this case, we obtain
c+(S′) = cG(S ∩ V (G)) 6 c(S). If |I| ∈ {1, 2}, then we may add virtual vertices to S′ so that exactly
one virtual edge e with c+(e) = cW (SI) is slack with respect to S′. In this case, we obtain

c+(S′) = cG(S ∩ V (G)) + c+(e) = cG(S ∩ V (G)) + cW (SI)

6 cG(S ∩ V (G)) + cW (S ∩ V (W ))

= c(S).

To prove b), let S′ be a stable set in G+ and set I := {i : vi ∈ S′}. We let S arise from S′ by
deleting its virtual vertices and adding SI . If |I| ∈ {0, 3}, then we immediately obtain

c(S) = cG(S ∩ V (G)) + cW (SI) = cG(S ∩ V (G)) 6 c+(S′).
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Figure 6: Gadgets used in the definition of G+
0 in Section 5.2. Vertices of G0 are depicted in black,

virtual vertices and virtual edges in blue. The edge costs c+ for the proof of Lemma 29 are given in
red, where we use the shorthand notation c∅ := cW (S∅), ci := cW (S{i}), cij := cW (S{i,j}), and
c123 := cW (S{1,2,3}).

If |I| = 1, we may assume that I = {3} holds. Let F denote the set of virtual edges that are slack with
respect to S′. It suffices to show that c+(F ) > cW (S{3}) holds since then we obtain

c(S) = cG(S ∩ V (G)) + cW (S{3}) 6 cG(S ∩ V (G)) + c+(F ) = c+(S′).

If a3x ∈ F , then c+(F ) > c+(a3x) = cW (S{3}). Otherwise, v1a1 ∈ F and v2a2 ∈ F and hence

c+(F ) > c+(v1a1) + c+(v2a2) = cW (S{2,3}) + cW (S{1,3}) > cW (S{3}) + cW (S{1,2,3})

= cW (S{3}),

where the last inequality is due to Lemma 30 and Lemma 28.
It remains to consider the case |I| = 2, in which we may assume that I = {1, 2} holds. Again,

let F denote the set of virtual edges that are slack with respect to S′. It suffices to show that c+(F ) >
cW (S{1,2}) holds since then we obtain

c(S) = cG(S ∩ V (G)) + cW (S{1,2}) 6 cG(S ∩ V (G)) + c+(F ) = c+(S′).

If v3a3 ∈ F , then c+(F ) > c+(v3a3) = cW (S{1,2}). Otherwise, a1x ∈ F and a2x ∈ F and hence

c+(F ) > c+(a1x) + c+(a2x) = cW (S{1}) + cW (S{2}) > cW (S∅) + cW (S{1,2})

= cW (S{1,2}),

where the last inequality is again due to Lemma 30 and Lemma 28.

Going back to our instance G and its k-near embedding (σ,∅,V,W), from now on we may assume
thatW = ∅, and hence G0 = G+

0 .

6.4 Increasing connectivity

In subsequent steps, we will require thatG0 is 2-connected. If this happens not to be the case, we enlarge
G0 using the following construction. Below, we assume the notations of Theorem 26.
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Recall that the embedding of G0 = G+
0 has face-width at least 2. It is known that, for any cellularly

embedded graph H , the faces of H are all bounded by cycles if and only if H is 2-connected and has
face-width at least 2, see Mohar [28, Proposition 3.8]. Hence, it suffices to make sure that the faces of
G0 are all bounded by cycles.

Suppose that there is a face f of G0 whose boundary is not a cycle. By Theorem 26, f contains
the disk ∆(V ) for some vortex V ∈ V . By Theorem 20, G0 has a unique block H0 containing a
noncontractible cycle. This block H0 is cellularly embedded in S and all its facial walks are cycles.
Each block of G0 that is distinct from H0 is a planar graph drawn inside some face of H0. Let f̂ denote
the face of H0 containing f . The boundary of f̂ is a cycle, say C. Moreover, the boundary of f is a
cactus graph containing C together with some extra cacti hanging from vertices of C, where a cactus
graph is a graph where every two simple cycles have at most one vertex in common.

Let W = (v0, e1, v1, . . . , e`, v`) denote the facial walk of f . We modify the graph G by adding, for
each index j ∈ {0, 1, . . . , `}, two new vertices v′j and v′′j , as well as the edges vjv′j , v

′
jv
′′
j and v′′j v

′′
j+1

(indices are computed modulo `+1). All these new vertices and edges are added toG0. Next, the vortex
V is updated by replacing each vertex vj of the walk W belonging to Ω(V ) by the corresponding vertex
v′′j . In case some vertex v ∈ Ω(V ) repeats in W , we perform the operation only once, for the occurrence
of v in W that is found by following bd(f) until it reaches v. See Fig. 7 for an illustration. Finally, we
set sufficiently high costs on the edges vjv′j and v′jv

′′
j for j ∈ [`] to force these edges to be tight in every

optimal solution, and we set zero costs on all the edges of the form v′′j v
′′
j+1.

Figure 7: Thickening the boundary of a face of G0 toward 2-connectivity. The disk ∆(V ) is shown in
blue.

Notice that these modifications do not change the minimum cost of a stable set in (G, c). Notice that
for every minimum cost stable set S in the new edge-weighted graph, S 3 vj if and only if S 3 v′′j ,
for all j. Hence, we can trivially map any minimum cost stable set in the new edge-weighted graph to a
minimum cost stable set in the original edge-weighted graph.

Notice also that the thickening process described above preserves the property thatG0 has no 2-sided
odd closed walk, and also the property that, for each vortex V ∈ V , the union of G0 ∩D(V ) and V is
bipartite (where the disk D(V ) is modified as described as above).

From now on, we may assume that each face of G0 = G+
0 is bounded by a cycle, and in particular

that G0 is 2-connected.

6.5 Slack vectors

In Section 6.2 we have reduced the task of finding a maximum-weight stable set to that of finding a
minimum-cost stable set. The latter task is equivalent to finding a minimum-cost slack set F , provided
that we are able to efficiently compute a stable set S with σ(S) = F . To this end, let us consider the set

Y = Y(G) :=
{
y ∈ ZE(G)

>0 | ∃x ∈ ZV (G) : yvw = 1− xv − xw for all vw ∈ E(G)
}
,

which we call the set of slack vectors of G. Notice that if F is a slack set of G, then its characteristic
vector belongs to Y , in which case x can be chosen as the characteristic vector of the corresponding
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stable set.

Lemma 31. Let G be a connected non-bipartite graph and let y ∈ Y(G). In strongly polynomial time,
we can compute the unique vector x ∈ ZV (G) with yvw = 1− xv − xw for all vw ∈ E(G).

Proof. Since y ∈ Y we know that there exists some x with the desired properties. Let C denote an
odd cycle in G and let e1, . . . , et denote the edges along C. Letting u ∈ e1 ∩ et, we can compute xu
by observing that

∑t
i=1(−1)i−1yei = 1 − 2xu holds. The remaining entries of x can be computed by

simple propagation: If we know the value xv for some v ∈ V (G), then for each neighbor w of v we
have xw = 1− xv − yvw.

In particular, given a minimum-cost slack set of a graph G, we obtain a minimum-cost stable set by
applying the above lemma for each non-bipartite connected component, and by selecting one side of a
bipartition of each bipartite connected component.

In our setting, instead of computing minimum-cost slack sets it turns out to be more convenient to
compute minimum-cost slack vectors. In fact, this will be our approach in the next section. Clearly,
most slack vectors are not characteristic vectors of slack sets. However, for nonnegative edge costs, the
minimum cost of a slack vector is always attained by a characteristic vector of a slack set:

Lemma 32. Let G be a graph with edge costs c : E(G) → Q>0 and let y ∈ Y(G). In strongly
polynomial time, we can find a slack set F with c(F ) 6 c(y) and a stable set S with σ(S) = F .

Proof. We may assume that G is connected. If G is bipartite, we may return F = ∅. Suppose that G is
non-bipartite. Given y ∈ Y(G), we first compute x ∈ ZV (G) with yuv = 1−xu−xv for all uv ∈ E(G)
using Lemma 31.

In what follows, we will iteratively modify x in a way that the resulting vector y remains nonnegative
and without increasing its cost. In each iteration, none of the sets V01 := {v ∈ V (G) : xv ∈ {0, 1}} and
E0 := {e ∈ E(G) : ye = 0} will become smaller, and the size of at least one of the sets will strictly
increase. If x ∈ {0, 1}V (G), then x is the characteristic vector of a stable set and the support of y is the
associated slack set, in which case we are done.

Otherwise, let H be a connected component of the graph (V (G), E0) containing a vertex v with
xv /∈ {0, 1}. Note that H is bipartite: In fact, there exists some α > 2 such that xa = α for all a ∈ A
and xb = 1−α for all b ∈ B, where A,B is a bipartition of H . For X ∈ {A,B} let EX denote the sets
of edges of G with at least one vertex in X . Note that EA ∩ EB = E(H).

If c(EA) > c(EB), we may add some integer t > 0 to all xa, a ∈ A and subtract it from all xb,
b ∈ B in such a way that a new edge becomes part of E0. If c(EA) 6 c(EB), we may add some integer
t > 0 to all xb, b ∈ B and subtract it from all xa, a ∈ A in such a way that a new edge becomes part of
E0 or all vertices of H become part of V01.

The fact that optimal solutions are attained at characteristic vectors of slack sets will be exploited in
the next section to reduce the search space.

Let V1 = (H1,Ω1), . . . , Vt = (Ht,Ωt) denote the vortices in V . For each i ∈ [t], let Gi denote the
graph that is obtained by augmenting Hi with the boundary of the face fi of G0 containing ∆(Vi). Thus
G0 ∩Gi is the boundary cycle of face fi. In our approach, we will decompose a slack vector y ∈ Y(G)
into yi ∈ ZE(Gi) for i = 0, 1, . . . , t. Notice that each yi is a slack vector of Gi. We will regard y0 as a
global solution, and each yi with i ∈ [t] as a local solution. The following lemma allows us to combine
feasible solutions for each of G0, G1, . . . , Gt into a solution for G, as long as the solutions coincide on
the boundary of each fi, i ∈ [t].

Lemma 33. Let G be a connected graph that is the union of connected graphs G0, G1, . . . , Gt such
that for each i ∈ {1, . . . , t}, Gi is bipartite and G0 ∩ Gi is connected. A vector y ∈ RE(G) satisfies
y ∈ Y(G) if and only if y0 ∈ Y(G0), y1 ∈ Y(G1), . . . , yt ∈ Y(Gt), where yi ∈ RE(Gi) denote the
restriction of y to the coordinates in E(Gi).
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The proof of Lemma 33 is based on the following characterization of Y(G) from [4]. For every walk
W = (v0, e1, v1, . . . , e`, v`) in G and vector y ∈ RE(G), we use the notation

ωW (y) :=
∑̀
i=1

(−1)i−1yei .

Proposition 34 ([4, Proposition 6.1]). Let G be a connected graph. If G is bipartite, then

Y(G) = {y ∈ ZE(G)
>0 | ωW (y) = 0 for all even closed walks W in G} .

Otherwise, for any odd cycle C contained in G, we have

Y(G) = {y ∈ ZE(G)
>0 | ωC(y) is odd, ωW (y) = 0 for all even closed walks W in G} .

Proof of Lemma 33. The forward implication is clear. Assume that the vector y ∈ RE(G) satisfies
yi ∈ Y(Gi) for each i ∈ {0, 1, . . . , t}. Let W = (v0, e1, v1, . . . , e`, v`) denote any closed walk in
G. We claim that ωW (y) = 0 in case W is even, and ωW (y) ≡ 1 (mod 2) in case W is odd. By
Proposition 34, the claim implies that y ∈ Y(G).

Assume that W is not fully contained in any of the graphs Gi for i > 1. This can be done without
loss of generality, since otherwise W is contained in Gi for some i > 1. In this case, ωW (y) = ωW (yi),
which is 0 if W is even or an odd number if W is odd, because yi ∈ Y(Gi).

We will show that there is a closed walk W0 in G0 with the same parity as W such that ωW (y) =
ωW0(y) = ωW0(y0) (notice that the last equality is trivial). The claim then directly follows from Propo-
sition 34, since no matter what the parity of W is, we find a correct value for ωW (y).

If W is not fully contained in G0, then there are indices i ∈ {1, . . . , t} and j, k ∈ {0, . . . , `} such
that j < k, vj , vk ∈ V (G0) ∩ V (Gi), and the subwalk vjWvk := (vj , ej+1, vj+1, . . . , ek, vk) has all its
edges inE(Gi)\E(G0). Let P denote any vj–vk path contained inG0∩Gi, and let Z := (vjWvk)P

−1

denote the closed walk obtained by composing vjWvk and P−1.
Since Gi is bipartite, Z is even. Because yi ∈ Y(Gi), this yields ωvjWvk(yi) = ωP (yi). Let

W ′ := P (vkWvj) denote the closed walk obtained from W by substituting P for vjWvk. Since
Z = (vjWvk)P

−1 is even, W ′ has the same parity as W . Moreover,

ωW ′(y) = ωW (y)± (ωP (y)− ωvjWvk(y))︸ ︷︷ ︸
=0

= ωW (y) .

Notice that W ′ contains less edges of E(Gi) \ E(G0) than W .
Iterating this reasoning a finite number of times, we find a closed walk W0 contained in G0, such

that W0 has the same parity as W and ωW (y) = ωW0(y), establishing the claim.

7 Final algorithm

By combining Theorem 26 and the results of the previous section, we may assume that we are given a
graph G with edge costs c, together with t + 1 subgraphs G0, G1, . . . , Gt whose union is G, where t is
at most g(k), such that:

• G0 is 2-connected and cellularly embedded in a non-orientable surface S of Euler genus at most
g(k). In particular, every face of G0 is bounded by a cycle;

• Every odd cycle of G0 is 1-sided (in particular, every face boundary cycle of G0 is even);

• For all i ∈ [t], there is a vortex Vi := (Gi,Ωi) that has a linear decomposition of adhesion at most
g(k), where Ωi is the vertex set of the boundary of some face fi of G0, and the linear ordering of
Ωi is compatible with the cyclic ordering of the boundary of fi;
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• For all i ∈ [t], Gi is bipartite, and G0 ∩Gi is the cycle bounding fi;

• For distinct i, j ∈ [t], the boundaries of fi and fj are vertex disjoint.

For i ∈ [t], we call the face fi a vortex face and the cycle G0 ∩Gi the boundary cycle of Gi.
Going back to the definition of k-near embedding, eachGi corresponds to the union of a vortex V in

V and its cycle C(V ). To obtain the third property, we can easily modify the linear decomposition of V
by creating a bag for each vertex of C(V ) that is not in Ω(V ) in order to obtain a linear decomposition
of Gi without increasing the adhesion by more than 2. By increasing g(k) by 2, we can assume that the
adhesion of the enlarged vortex Vi is at most g(k).

The goal of this section is to compute a minimum c-cost slack vector ofG. Since S is non-orientable,
we know that G0 is not bipartite. We define a dynamic program (DP) to perform this task.

7.1 The sketch

Let G∗0 denote the dual graph of G0. By [4, Lemma 7.1], G∗0 has an orientation such that in the local
cyclic order of the edges incident to each dual node f , the edges alternatively leave and enter f . This is
known as an alternating orientation. We denote by D any alternating orientation of G∗0. (In fact, D is
unique up to reversal, but we will not need this.) Notice that D has no loops, but could have parallel or
anti-parallel directed edges. The set of vortex faces {f1, . . . , ft} is a bounded size subset of V (D).

Proposition 35 (Conforti et al. [4, Proposition 3.1]). Let G0 be a graph that is 2-connected, non-
bipartite and cellularly embedded in a surface S of Euler genus g in such a way that every odd cycle
of G0 is 1-sided. One can compute in polynomial time an alternating orientation D of G∗0 and even
closed walks W1, . . . , Wg−1 in G0 such that, letting C be any odd cycle of G0 and letting ω : ZA(D) →
Z2 × Zg−1 be the map defined as

ω(y0) := (ωC(y0) (mod 2), ωW1(y0), . . . , ωWg−1(y0)) ,

we get the representation

Y(G0) = {y0 ∈ ZA(D)
>0 | y0 is a circulation in D and ω(y0) = (1,0)} .

In the proposition above, we identify the spaces RE(G0) and RA(D) through the bijection between
E(G0) and A(D). Topologically, the condition ω(y0) = (1,0) means that y0 belongs to the same
integer homology class as the all-one circulation, which encodes the empty stable set. The proof in [4]
shows that each Wi can be chosen such that Wi does not use an edge more than twice.

Consider any minimum cost slack vector y ∈ Y(G) and let y0 be the restriction of y to E(G0).
By Lemma 32, we may assume that y0 ∈ {0, 1}E(G0). By Proposition 35, y0 is a 0/1-circulation in D
such that ω(y0) = (1,0), see Fig. 8. We denote the support of y0 by supp(y0) ⊆ A(D). Since y0 is a
circulation, (V (D), supp(y0)) is a Eulerian subgraph of D.

Fix any vertex f ∈ V (D). We let δ+(f) (resp. δ−(f)) denote the set of directed edges of D
leaving (resp. entering) f . Consider the directed edges e+ ∈ δ+(f) ∩ supp(y0) and the directed edges
e− ∈ δ−(f) ∩ supp(y0). Since y0 is a circulation, we have the same number of edges of each type.
Hence, we can match each e+ with some e−.

We call such a matching cross-free if there are no two matched pairs {e−1 , e
+
1 } and {e−2 , e

+
2 } with

e±i ∈ δ±(f) for i ∈ [2], such that e−2 is between e−1 and e+
1 in the cyclic ordering around f , and e+

2 is
between e+

1 and e−1 in the cyclic ordering around f . An example of a cross-free matching is given in
Fig. 9.

It is easy to see that a cross-free matching always exists. An inductive way to build such a matching
is to find one in-edge e− ∈ δ−(f) ∩ supp(y0) and one out-edge e+ ∈ δ+(f) ∩ supp(y0) that are
consecutive, match them, delete them and repeat.
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Figure 8: Illustration of G0 (black) with vortex faces (gray) and y0 (red). Here, y0 corresponds to the
slack edges of a stable set in G0 (blue).

Figure 9: Cross-free matching: each edge is matched to the edge of the same color.

Suppose that a cross-free matching is chosen at each vertex f ∈ V (D), and consider the unique
directed cycle decomposition

y0 = χA(C1) + · · ·+ χA(Cq)

where the edge set A(Ci) of each directed cycle Ci is a union of matched pairs {e−, e+}. After renum-
bering if necessary, we may assume that each directed cycle Ci with i 6 p goes through some vortex
face fj (j ∈ [t]), and that no directed cycle Ci with i > p goes through some vortex face.

Consider any vertex f ∈ V (D) \ {f1, . . . , ft}. Since the matching at f is cross-free, it is possible
to slightly perturb the drawings of the directed cycles Ci going through f in order to avoid any crossing
at f (see Fig. 9). This yields simple closed curves γ1, . . . , γq in S which do not intersect, except at
vortex faces. By taking the union of γi for i 6 p, we obtain a directed graph Σ embedded in S with
V (Σ) = {f1, . . . , ft}, which we call the sketch, see Fig. 10 for an illustration. As a subset of S, the
sketch Σ is the union of the simple closed curves γi that go through one of f1, . . . , ft. The remaining
closed curves are not represented in the sketch.

Along with the sketch, we get a decomposition the circulation y0 as a sum y0 = ysketch
0 +ynon−sketch

0

of two circulations:

y0 = χA(C1) + · · ·+ χA(Cp)︸ ︷︷ ︸
=ysketch0

+χA(Cp+1) + · · ·+ χA(Cq)︸ ︷︷ ︸
=ynon−sketch

0

.

Our DP guesses the sketch in an edge-by-edge fashion. We call a partial sketch any subgraph of
the sketch obtained during this process. At any “point” in the DP, the partial sketch is a directed graph
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Figure 10: Sketch edges (red) of the circulation from Fig. 8.

Π ⊆ Σ embedded in S with V (Π) = V (Σ). Even if Π has a bounded number of vertices, it may contain
arbitrarily many loops, parallel and anti-parallel edges. Remembering the whole partial sketch is not
feasible since it would lead to an exponentially large DP table. Instead, the DP focuses on a single face
at a time. When considering a single face of a partial sketch, the DP may decide to add another sketch
edge inside the face (and branches whenever this splits the face), or to not add any further edge.

Note that the embedding of the partial sketch Π in S is in general non-cellular: there might be faces
that are not homeomorphic to open disks. However, we can regard each face of Π as a surface with
boundary, that is, a surface with a bounded number of open disks with disjoint closures removed.

Let Π ⊆ S denote the partial sketch, and let SQΠ denote the topological space obtained from S by
first removing a small open disk around each vertex f ∈ V (Π), making sure that the closures of these
disks are pairwise disjoint, and then repeatedly cutting along each edge e ∈ E(Π). Below, we call the
connected components of SQΠ the faces of Π. (This is a slight shift in terminology, which should not
cause any confusion.)

Let F be a face of the partial sketch Π. We denote by h(F) the number of holes of F, that is, the
number of components of bd(F). Also, we denote by F̂ the surface (without boundary) obtained from F
by capping each hole with a disk. Finally, we denote by eg(F) the Euler genus of F̂.

Actually, each face will be considered together with some intervals of its boundary indicating where
further slack edges may be attached. The union of these intervals will be called a window, which
we encode in a combinatorial fashion, explained below in Section 7.2. The top cell of the DP table
corresponds to the empty partial sketch, which has a unique face, namely S with one hole per vortex
face and its window is the full boundary. Going down the DP table, edges gradually get added inside
the current face. Each addition modifies the face and its window in a controlled way, as is explained in
Section 7.3.

7.2 Sectors and clocks

A proper sector is a sequence σ = (e0; e1, e2, . . . , eq; eq+1) of directed edges of D (q ∈ Z>0), all
incident to some common vortex face fi ∈ V (D), and consecutive in some cyclic ordering of the
edges incident to fi. The edges e1, . . . , eq are called the internal edges and are assumed to be distinct.
The edges e0 and eq+1 are called delimiters. We assume that these are distinct from e1, . . . , eq, thus
no delimiter can be an internal edge. Edge e0 is the left delimiter, and edge eq+1 the right delimiter.
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Figure 11: A window (green) encoded by the two clocks ((e1; ; e2), (e3; ; e4), (e5; ; e6)) and
((e7; e8; e9), (e10; e11; e12), (e13; ; e14)).

Possibly, e0 = eq+1, in which case all the edges incident to fi distinct from the delimiter appear as
internal edges. A full sector σ = (; e1, e2, . . . , eq; ) is defined similarly. There is no delimiter, and all
the edges incident to fi appear. A clock is any sequence C = (σ1, . . . , σ`) of internally disjoint (proper
or full) sectors appearing on a common hole of a face of a partial sketch.

We encode a window of a given face F of the partial sketch Π as a set of disjoint clocks. Each clock
corresponds to a different hole of face F, that is, to a different component of bd(F). If C is a set of
clocks, we let Del(C) denote the set of all delimiters in C, i.e., Del(C) is the set of edges e that appear as
delimiters of at least one sector inside a clock of C.

Let ϑ be a component of bd(F). Hence, ϑ is a simple closed curve bounding a hole in F. Notice that
ϑ is 2-sided in S. Such a curve is made of several pieces. Each piece either corresponds to an edge γ ∈
E(Π) or some connected subset of the boundary of the disk around some fi ∈ V (Π). Combinatorially,
each edge γ ∈ E(Π) is encoded by a pair of directed edges e, e′ ∈ A(D), each of them incident to some
vortex face. The edges e and e′ are those which γ extends in the sketch. They are boundary edges of two
sectors of the same clock (possibly, these sectors coincide). The parts of ϑ which are between edges of
Π are encoded as the internal edges of sectors. For an illustration, see Fig. 11.

The genus of F cannot be deduced from the encoding of one of its windows. In the DP table, this
information is recorded as additional information. If C encodes a window of F, we let (slightly abusively)
eg(C) := eg(F). Notice that eg(C) ∈ {0, . . . , g}. Also, we let h(C) := h(F) = |C| denote the number
of clocks of C. Hence h(C) ∈ {1, . . . , t}. Finally, we let del(C) denote the total number of delimiters in
C, and ||C|| denote the total number of edges in C (both delimiters and internal edges).

7.3 Operations on sets of clocks

Consider the addition of a single edge γ to the partial sketch, inside the current face F. As a subset of
F, γ is a simple curve that starts and ends at a point of bd(F), and is internally disjoint from bd(F). By
cutting F along γ, we obtain either one new face F′ or two new faces F′1 and F′2. There are three cases
to consider, see Fig. 12.

Merge operation (topological) Edge γ connects two distinct holes. Cutting F along γ does not dis-
connect the face, and merges the two holes that are connected by γ. This operation decreases the
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number of holes by 1, and does not change the Euler genus.

Simplify operation (topological) Both endpoints of γ are on the boundary of the same hole, and γ does
not separate F. Let γ̂ be any simple closed curve in F̂ arising by completing γ. Cutting F along γ
decreases the Euler genus by 1 if γ̂ is 1-sided, or 2 if γ̂ is 2-sided. In the first case, the number of
holes of F remains the same and in the second case it goes up by 1.

Split operation (topological) Both endpoints of γ are on the boundary of the same hole, and γ separates
F. Cutting F along edge γ splits face F into two surfaces with boundary F′1 and F′2 such that
eg(F′1) + eg(F′2) = eg(F), h(F′1) + h(F′2) = h(F) + 1 and h(F′i) > 1 for i ∈ [2].

Figure 12: The three operations arising when an edge is added to the partial sketch. From top to bottom:
merge, simplify and split.

A crucial observation in order to prove that the DP table is of polynomial size and that its dependence
graph is acyclic is that the merge and simplify operations both decrease the quantity h(F) + eg(F) (in
fact, precisely by 1). In most cases, this also applies to the split operation, except when of the two
components of FQγ is a disk. In that case, we have h(F′i) = 1 and eg(F′i) = 0 for some i ∈ [2], hence
h(F′3−i) + eg(F′3−i) = h(F) + eg(F).

In order to avoid building an exponentially large DP table, we have to deal with this issue. Toward
this aim, we take advantage of the fact that we encode each hole of F by a linear structure, and limit the
order in which edges can be inserted to the partial sketch. Let p and q denote the endpoints of γ. Let ϑ
denote the component of bd(F) containing both p and q, and let o ∈ ϑ be the point marked as a starting
point. Assume that we cut open ϑ at o, p is to the left of q. We make sure that no edge with an endpoint
in the part of ϑ between o and p will ever be added to the partial sketch later. At the combinatorial level,
this is achieved by deleting the corresponding sectors in the clock that encodes ϑ.

Let C be the set of clocks encoding F. The first two of the three operations above (merge and
simplify) yield a new set of clocks C′ encoding F′. In each case, there are actually two possibilities for
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what C′ can be. For the last operation (split), we obtain two sets of clocks C′1 and C′2 from C. There can
be several possibilities according to how the number of holes and the genus splits. Before giving more
details, we introduce some useful notation to manipulate clocks.

If C is a clock and e is an internal edge of one of its sectors, we let Ce denote the clock obtained by
deleting all the edges and sectors to the right of e, and making e the right delimiter of the sector it belongs
to. The clock eC is defined similarly. Also, the clock C−1 is simply the clock C read backwards. If
C1, . . . , Cp are internally disjoint clocks, we denote by (C1, . . . , Cp) the clock obtained by juxtaposing
them.

Merge operation (combinatorial) Let C and C ′ denote the two clocks of C to be merged. Suppose
that the edge γ that we add to the partial sketch extends edges e, e′ ∈ A(D), where e and e′ are
respectively internal edges of C and C ′. To obtain C′ from C, we replace clocks C and C ′ by a
single clock that is either (Ce, e′C ′, C ′e′, eC) or (Ce, (C ′e′)−1, (e′C ′)−1, eC).

Simplify operation (combinatorial) Let C denote the clock corresponding to the single hole inter-
secting the edge γ added to the partial sketch. Assume that this edge extends internal edges
e, e′ ∈ A(D), where e is to the left of e′ in clock C. In order to obtain C′ from C, we replace C
either by the single clock (Ce, (eCe′)−1, e′C), or by the two clocks (Ce, e′C) and (eCe′).

Split operation (combinatorial) Using the same notation as in the previous operation, we first replace
clock C by the two clocks C ′ := e′C and C ′′ := eCe′, and split the resulting set of clocks into
two sets C′1 and C′2, one containing C ′ and the other containing C ′′. Notice that the sub-clock Ce
gets deleted in the process, because of our precedence rule.

7.4 Dynamic program

7.4.1 Cutsets and local optimization in vortices

Consider a vortex Vi = (Gi,Ωi), where i ∈ [t]. Let u1, . . . , un denote the vertices of Ωi, enumerated
consecutively. By assumption, u1, . . . , un is also a consecutive enumeration of all the vertices on the
boundary of face fi. Each directed edge e ∈ V (D) incident to fi corresponds to a unique edge ujuj+1 of
the boundary cycle of Gi. Below, we do not always distinguish between a dual edge in δ+(fi) ∪ δ−(fi)
and its corresponding primal edge in the boundary cycle of Gi.

Let (X1, . . . , Xn) denote a linear decomposition of Vi with adhesion at most g(k). Recall that for
every v ∈ V (Gi), the set {j ∈ [n] : Xj 3 v} is an interval.

Let e := ujuj+1 denote any edge of G0 ∩Gi, with j < n. We define Ye := (Xj−1 ∩Xj) ∪ (Xj ∩
Xj+1) ∪ (Xj+1 ∩ Xj+2) ∪ {uj , uj+1}, where X0 := Xn+1 := ∅. The vertices of Gi − Ye can be
partitioned into four parts, namely, the vertices whose interval ends before index j, the vertices whose
interval is {j}, the vertices whose interval is {j + 1}, and the vertices whose interval starts after index
j + 1. Every two vertices in different parts are non-adjacent. Hence, Ye is a vertex cutset in Gi. The
vertices whose interval is either {j} or {j + 1} are said to be detached by Ye. For the edge e := u1un,
we let Ye := {u1, un}. The rest is similar. Notice that |Ye| is at most 3g(k) + 2.

Let σ := (e0; e1, e2, . . . , eq; eq+1) be a sector, where each directed edge ej ∈ A(D) is incident
to fi ∈ V (D). We assume that, as edges of the boundary cycle of Gi, e0 = u`u`+1 and eq+1 =
u`+q+1u`+q+2. We letG[σ] denote the union of all connected components ofGi−Ye0−Yeq+1 containing
vertices whose interval is contained in the interval {` + 2, . . . , ` + q}. We think of G[σ] as the part of
Gi “between” cutsets Ye0 and Yeq+1 .

Now let Se0 ⊆ Ye0 and Seq+1 ⊆ Yeq+1 be stable sets such that Se0 ∩ Yeq+1 = Seq+1 ∩ Ye0 . Consider
all stable sets S of G[σ] such that S ∪Se0 ∪Seq+1 is a stable set for which both e0 and eq+1, but none of
the primal edges for e1, e2, . . . , eq, are slack. We call such stable sets admissible. (Possibly, there is no
admissible stable set.) The internal cost of S is the sum of the cost c(e) over all slack edges e ∈ E(Gi)
that have at least one endpoint in V (G[σ]). We denote by β(G[σ], c) the minimum internal cost of an
admissible stable set S. In case there is no admissible stable set, we let β(G[σ], c) := +∞.
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Let C denote a set of clocks. Let S = {Se | e ∈ Del(C)} denote a collection of stable sets, where
Se ⊆ Ye for each delimiter e ∈ Del(C). Each stable set Se is a guess on how the optimal stable set
should intersect cutset Ye. We say that S is conflict-free if for each distinct e, e′ ∈ Del(C) we have
Se ∩ Ye′ = Se′ ∩ Ye.

7.4.2 Reachable sets of clocks and their properties

Let CS denote the set of clocks that has one clock per vortex, each clock having a single sector, which
is a full sector. CS is the set of clocks corresponding to the empty partial sketch. Let C and C′ denote
two sets of clocks. We say that C′ is reachable from C if C′ can be obtained from C after performing
any number of merge, simplify and split operations. If no confusion may arise, we simply say that C′ is
reachable to mean that it is reachable from CS.

Lemma 36. The number of sets of clocks reachable from CS is polynomial inm0 := |A(D)| = |E(G0)|.

Proof. Let C denote any set of clocks reachable from CS. Since no operation can increase the number of
clocks, we have h(C) 6 h(CS) = t. That is, C has at most t clocks.

Let C be any clock of C. Notice that all the clocks that can be obtained from C by performing
any number of split operations (and no merge or simplify operation) are of the form eCe′ or e′C. This
implies that the number of sets of clocks that can be obtained from C by performing any number of split
operations is polynomial. More precisely, let C1, . . . , Cs denote the clocks of C and ||Ci|| denote the
number of edges in Ci for i ∈ {1, . . . , s}. Notice that s 6 t and

∑s
i=1 ||Ci|| 6 m0. Using the AM-GM

inequality, we can bound the number of sets of clocks that can be obtained from C, via split operations
only, by

s∏
i=1

||Ci||2 =

(
s∏
i=1

||Ci||

)2

6

(∑s
i=1 ||Ci||
s

)2s

6 m2t
0 .

Consider the sequence of operations that were performed on CS in order to obtain C. We can split this
sequences into blocks, where each block has some number (possibly zero) of split operations followed
by a single merge or simplify operation. Since each merge or simplify operation decreases eg(C)+h(C),
there can be at most eg(CS) + h(CS) = g + t blocks.

It follows that we can bound the possibilities for C by

g+t∑
b=1

(
m2t

0 2m2
0

)b
6
(
m2t

0 2m2
0

)g+t+1
6 m

poly(g,t)
0 = m

Ok(1)
0 .

Lemma 37. For every set of clocks C reachable from CS, the number of delimiters del(C) is at most
2g + 4t = Ok(1).

Proof. Let us call a proper sector σ = (e0; e1, . . . , eq; eq+1) almost full if e0 = eq+1. Let f(C) be defined
as twice the number of full sectors, plus the number of almost full sectors in C.

Every merge or simplify operation increases del(C)+f(C) by at most 2, and decreases eg(C)+h(C)
by 1. The split operations increase neither del(C) + f(C) nor eg(C) + h(C). Since initially, eg(CS) +
h(CS) = g + t and del(CS) + f(CS) = 2t, it follows that del(C) 6 2(g + t) + 2t = 2g + 4t. That is,
there are at most 2g + 4t = Ok(1) delimiters in C.

7.4.3 The dynamic programming table

Let B1 ⊆ Z2 ×Zg−1 be a polynomial size set such that every z0 ∈ {0, 1}A(D) satisfies ω(z0) ∈ B1. For
instance, we may take B1 := {0, 1} × ([−2m0, 2m0]g−1 ∩ Zg−1), where m0 = |A(D)|. (Recall that
each closed walk Wi uses an edge at most twice.) We guess the contribution of ysketch

0 to ω(y0). We
denote this guess by ψsketch ∈ B1.
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We define a DP table as follows. A general cell of the DP table has the form (CF,SF, ψF, dF),
where CF is a reachable set of clocks encoding the boundary of some face F of some partial sketch,
SF = {Se | e ∈ Del(C)F} is a conflict-free set of guesses on the intersection of the optimal stable set
within the cutset Ye associated to each delimiter e of CF, ψF ∈ B1 represents the contribution toward
satisfying the homology constraint that is still needed in face F, and dF ∈ B2 := [−2m0, 2m0]t ∩ Zt
represents the demand in flow balance inside face F.

The top cells of the DP table are the cells (CS,∅, ψsketch,0), where ψsketch ∈ B1.

Lemma 38. The DP table has polynomially many cells. More precisely, it has mOk(1)
0 cells, where

m0 := |A(D)| = |E(G0)| as before.

Proof. By Lemma 36, there are at mostmpoly(g,t)
0 choices for the set of clocks CF (this is true even when

taking into account the extra attribute eg(CF) ∈ {0, . . . , g}). By Lemma 37, the number of possible sets
of guesses SF is bounded by(

23g+2m0

)2g+4t+1
= 2O(g(g+t))m

O(g+t)
0 = m

Ok(1)
0

since there can be at most m0 choices for e ∈ Del(CF), and given e at most 23g+2 choices for the stable
set Se ⊆ Ye, since g = g(k) is an upper bound on the adhesion of each vortex Vi, i ∈ [t]. The size of
each of the sets B1 and B2 is bounded by mO(g+t)

0 = m
Ok(1)
0 . It follows easily from these observations

that the number of cells in the DP table is mOk(1)
0 .

We say that cell ξ′ := (CF′ ,SF′ , ψF′ , dF
′
) is a successor of cell ξ := (CF,SF, ψF, dF) if the following

conditions are satisfied. First, CF′ is obtained from CF by a single merge, simplify or split operation.
For each choice of two distinct internal edges e+ and e− of CF, say e+ ∈ δ+(fi+) and e− ∈ δ−(fi−)
where i+, i− ∈ [t] (possibly, i+ = i−), there is a bounded number of choices of what CF′ can be, see
Section 7.3. Second, the set SF′ equals the set SF to which guesses Se+ ⊆ Ye+ and Se− ⊆ Ye− are
added. Both Se+ and Se− are stable sets in the corresponding vortices Vi+ and Vi− . Third, ψF′ ∈ B1 is
arbitrary. Fourth, dF

′
= dF in case of a simplify operation, and in case of a merge operation, dF

′
equals

dF with the component corresponding to fi+ decreased by 1, and the component corresponding to fi−
increased by 1. In case of a split operation, dF

′
can be an arbitrary element of B2.

We call a cell ξ := (CF,SF, ψF, dF) of the DP table a bottom cell if ξ has no successor. This occurs
when no operation can be applied to CF, because there is no suitable pair e+, e− of internal edges in CF.

We define the dependence graph of the DP table as the directed graph with one vertex per cell, and
directed edges of the form (ξ, ξ′) where cell ξ′ is a successor of cell ξ. The dependence graph has one
source vertex per top cell. The sink vertices coincide with the bottom cells.

Lemma 39. The dependence graph of the DP table is acyclic.

Proof. We use once again the observation that each time we apply a merge or simplify operation to a
set of clocks C, the quantity eg(C) + h(C) decreases by 1. A split can never increase eg(C) + h(C). If a
split operation leaves eg(C) + h(C) unchanged, then in most cases del(C) decreases. In case del(C) is
unchanged, then ||C|| decreases. The result follows easily from these observations.

Now, we explain how to compute the value val(ξ) ∈ Q>0∪{+∞} for each cell ξ := (CF,SF, ψF, dF).
We will define val(ξ) as the minimum of four auxiliary values associated to the cell:

val(ξ) := min
{

valno−op(ξ), valmerge(ξ), valsimplify(ξ), valsplit(ξ)
}
.

We explain how each auxiliary value is computed below.
If dF = 0 and ψF = 0, we define valno−op(ξ) as the sum of β(G[σ], c) taken on the sectors σ

of CF, where the guess for each delimiter is given by SF. This corresponds to completing the current
solution to a solution where no further boundary edge of a vortex is made slack (this corresponds to
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setting y0(e) := 0 for each boundary edge e that is still undecided). In case ψF 6= 0 or dF 6= 0, we let
valno−op(ξ) := +∞.

If ξ is a bottom cell, we let valmerge(ξ) := valsimplify(ξ) := valsplit(ξ) := +∞. From now on,
assume that ξ is not a bottom cell.

Let e+ ∈ δ+(fi+), and e− ∈ δ−(fi−), where i+, i− ∈ [t]. For ψ ∈ B1, we let ϕ(e+, e−, ψ) denote
the minimum cost of a unit integer flow φ in A(D) from fi+ to fi− such that φ(e+) = φ(e−) = 1,
φ(e) = 0 for all other edges incident to a vortex face, and ω(φ) = ψ. These values can be precomputed
in strongly polynomial time, see [4] or Morell, Seidel and Weltge [30].

Assume that both e+ and e− are internal edges in the corresponding sectors of CF. Furthermore,
assume that Se+ ⊆ Ye+ and Se− ⊆ Ye− are stable sets that can be added to SF without creating
conflicts. We let cadd(Se+ , Se−) denote the additional cost incurred by adding Se+ and Se− to our set of
guesses. When guesses Se+ and Se− are added, we also optimize over the vertices that are detached by
Ye+ or Ye− to figure out which of those vertices should be added to the solution, and which should be
left out. The cost cadd(Se+ , Se−) is defined as the sum of c(e) over the new edges e that are made slack
by our decisions.

We let
valmerge(ξ) := min

(
val(ξ′) + ϕ(e+, e−, ψF − ψF′) + cadd(Se+ , Se−)

)
where the minimum is taken over successor cells ξ′ := (CF′ ,SF′ , ψF′ , dF

′
) reached from ξ by performing

a single merge operation for a suitable choice of edges e+, e− ∈ A(D) and such that ψF − ψF′ ∈ B1.
We define valsimplify(ξ) similarly (with the extra constraint that e+ and e− are in the same clock).
Finally, we let

valsplit(ξ) := min
(

val(ξ′1) + val(ξ′2) + ϕ(e+, e−, ψF − ψF′1 − ψF′2) + cadd
← (Se+ , Se−)

)
,

where the minimum is taken over all pairs ξ′1 := (CF′1 ,SF′1 , ψF′1 , dF
′
1), ξ′2 := (CF′2 ,SF′2 , ψF′2 , dF

′
2)

of successor cells that result from a split operation performed on ξ for a suitable choice of edges
e+, e− ∈ A(D) from the same clock C ∈ CF, conflict-free guesses Se+ ⊆ Ye+ and Se− ⊆ Ye− , guesses
ψF′1 , ψF′2 ∈ B1 such that ψF − ψF′1 − ψF′2 ∈ B1, and guesses dF

′
1 , dF

′
2 ∈ B2 such that dF

′
1 + dF

′
2 = dF.

The cost cadd
← (Se+ , Se−) is defined similarly as cadd(Se+ , Se−), with the extra cost coming from the part

of the clock C that is “to the left” of both e+ and e−. Assume without loss of generality that e+ is to
the left of e− in the clock C. Then we add to cadd(Se+ , Se−) the sum of β(G[σ], c) for all sectors σ of
Ce+.

For everyψ ∈ B1, we letϕnon−sketch(ψ) denote the minimum cost of an integer circulation ynon−sketch
0

in D − f1 − · · · − ft with ω(ynon−sketch
0 ) = ψ.

Theorem 40. For each cell ξ of the corresponding DP table, the value val(ξ) is well defined and can be
computed in strongly polynomial time. The minimum cost of a slack vector can be derived in strongly
polynomial time as

min
(

val(CS,∅, ψsketch,0) + ϕnon−sketch
(

(1,0)− ψsketch
))

, (6)

where the minimum is taken over all guesses ψsketch ∈ B1 such that (1,0)− ψsketch ∈ B1. Moreover, a
corresponding optimum solution y ∈ Y(G) can be constructed in strongly polynomial time.

Proof. The fact that all values in the DP table are well-defined and can be computed in strongly poly-
nomial time follows directly from Lemmas 38 and 39. For each cell ξ of the DP table, we can define
a subset of zero, one or two successor cells to record how the minimum for val(ξ) is attained. This
partitions the dependence graphs in several out-branchings.

Consider the out-branching rooted at the top cell (CS,∅, ψsketch,0) for the guess ψsketch ∈ B1 that
attains the minimum in (6). Following this out-arborescence down from the root, we can construct a
vector ysketch

0 ∈ ZE(G0)
>0

∼= ZA(D)
>0 and vectors yi ∈ {0, 1}E(Gi) for i ∈ [t]. (The subgraphs G0, G1, . . . ,

Gt of G are defined as before.)
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The vector ysketch
0 is obtained as a sum of unit flows in D, from some fi+ to some fi− . Each vector

yi with i ∈ [t] is obtained as “disjoint sum” of contributions within {0, 1}E(Gi). The final vector ysketch
0

for the out-arborescence is an integer circulation in D with ω(ysketch
0 ) = ψsketch. For each i ∈ [t],

the final vector yi is the characteristic vector of some slack set in Gi. If we augment ysketch
0 with any

circulation ynon−sketch
0 realizing the minimum in ϕnon−sketch

(
(1,0)− ψsketch

)
, we obtain an integer

circulation y0 ∈ ZA(D)
>0

∼= ZE(G0)
>0 such that ω(y0) = (1,0). Moreover, y0(e) = yi(e) for each i ∈ [t]

and each edge e of G0 ∩Gi. By Lemma 33 and Proposition 35, we can combine the vectors y0, y1, . . . ,
yt in a single vector y ∈ ZE(G)

>0 . Since yi ∈ Y(Gi) for all i > 0, we get that y ∈ Y(G). Moreover,
the cost of y equals the right-hand side of (6). Thus, the minimum cost of a slack vector is at most the
right-hand side of (6). (Recall that if y is not the characteristic vector of a slack set, then it can be written
as a convex combination of such characteristic vectors.)

Finally, consider any minimum cost slack set F = σ(S) in G. By considering some sketch of its
characteristic vector χF ∈ {0, 1}E(G), we can infer an out-branching in the dependence graph rooted at
a top cell of the DP table. This out-branching proves that the minimum cost of a slack vector (which is
equal to the cost of F ) is at least the right-hand side of (6).

8 Integer programs with two nonzero entries per column

In this section, we provide the proof of Theorem 1 for the case of two nonzero entries per column. That
is, we describe a strongly polynomial time algorithm for integer programs of the form (IP) where A
is totally ∆-modular for some constant ∆ and contains at most two nonzero entries in each column.
To this end, we describe an efficient reduction to the case where the nonzero entries of A are within
{−1,+1}. For this case, the respective integer program can be solved in strongly polynomial time by
known reductions to the b-matching problem due to Tutte and Edmonds, as explained in Schrijver’s
book:

Theorem 41 ([39, Thm. 36.1], [12]). There is a strongly polynomial-time algorithm for solving integer
programs of the form (IP) whose coefficient matrix has at most two nonzero entries per column that are
within {−1,+1}.

As a first step, we solve the linear programming relaxation max{wᵀx : Ax 6 b}. This can be done
in strongly polynomial time using Tardos’s algorithm [41]. If the LP is infeasible, then so is the integer
program and we are done. If the LP is unbounded, we may first rerun our algorithm for w = 0. This
may return a feasible integer solution, in which case we can conclude that the integer program is also
unbounded (due to the rationality of A). Otherwise, the integer program is infeasible.

Thus, it remains to consider the (main) case in which we have obtained an optimal LP solution x∗.
In this case, we partition the matrix A as follows:

Claim 42. In strongly polynomial time, we can efficiently compute I ⊆ [m] and J ⊆ [n] such that

(i) all entries in the submatrix A[m]\I,[n]\J are within {−1, 0, 1},

(ii) |I| 6 2 log2 ∆, and |J | 6 log2 ∆.

Proof. First, we compute any square submatrix A′ of A that is upper-triangular and whose diagonal
elements all have absolute value at least 2, and that is not contained in any larger submatrix with these
properties. Let J ⊆ [n] correspond to the columns of A′. Note that ∆ > |det(A′)| > 2|J | and hence
|J | 6 log2 ∆. Let I ⊆ [m] denote the union of the supports of the columns (of A) indexed by J . Recall
that A contains at most two nonzero entries in each column and hence |I| 6 2|J |, which yields (ii).

To see that (i) holds, consider any i ∈ [m] \ I , j ∈ [n] \ J . Let us enlarge the submatrix A′ by first
adding row i, which results in a zero-row since i /∈ I . Thus, by also adding column j we see that A′

is properly contained in a square upper-triangular submatrix of A whose additional diagonal element is
Ai,j . By the maximality of A′ we obtain |Ai,j | 6 1, which yields the claim.
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As the set J is bounded in terms of ∆, using x∗ and Theorem 3 we can efficiently enumerate the
relevant values for all variables indexed by J . Thus, by deleting the respective columns and adapting
the right-hand side, we may assume that J = ∅.

Since we can bound the number of rows of AI,∗ in terms of ∆ and as all entries of A are within
{−∆, . . . ,∆}, we see that the number of distinct columns in AI,∗ can also be bounded in terms of ∆.
Thus, we may partition the columns into a constant number of sets J1, . . . , Jk ⊆ [n] such that AI,Jt
consists of identical columns for each t ∈ [k]. If one of these submatrices is all-zero, we remove the
respective set Jt. Note that, given any point z ∈ Zn we only need to know the sum

∑
j∈Jt zt for every

t ∈ [k] in order to determine whether AIz 6 bI . Again by using x∗ and Theorem 3 we can efficiently
enumerate the relevant values st, t ∈ [k] for these sums. Thus, we may assume that we are given
s1, . . . , sk ∈ Z such that any point x ∈ Zn maximizing wᵀx subject to∑

j∈Jt

xj = st for t = 1, . . . , k (7)

and
A[m]\Ix 6 b[m]\I (8)

is an optimal solution for our original problem, and that every optimal solution for our original problem
can be cast in that way.

We claim that every variable appears in at most two of the above constraints, in which case we are
done since we can apply the algorithm in Theorem 41. To this end, note first that every variable appears
in at most one of the constraints in (7), and in at most two of the constraints in (8), since A contains at
most two nonzero entries in each column. If a variable appears in one constraint in (7), it also appears
with a nonzero coefficient in AI , and hence it appears in at most one constraint in (8).
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