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Abstract

We present a 380-approximation algorithm for the Nash Social Welfare problem with sub-
modular valuations. Our algorithm builds on and extends a recent constant-factor approxima-
tion for Rado valuations [15].

1 Introduction

Nash Social Welfare is the following optimization problem.

Nash Social Welfare (NSW). Given m indivisible items and n agents with valuation functions
vi : 2

[m] → R+, we want to allocate items to the agents, that is find a partition of the m items
(S1, S2, . . . , Sn) that maximizes the geometric average of the valuations,

NSW(S1, S2, . . . , Sn) =

(

n
∏

i=1

vi(Si)

)1/n

.

Among the possible objectives considered in allocation of indivisible goods, it can be viewed as a
compromise between Maximum Social Welfare (maximizing the summation

∑n
i=1 vi(Si), which does

not take fairness into account), and Max-Min Welfare (maximizing min1≤i≤n vi(Si), which focuses
solely on the least satisfied agent and ignores the possible additional benefits to others). The notion
of Nash Social Welfare goes back to John Nash’s work [20] on bargaining in the 1950s. It also came
up independently in the context of competitive equilibria with equal incomes [21] and proportional
fairness in networking [17]. An interesting feature of Nash Social Welfare is that the problem is
invariant under scaling of the valuations vi by independent factors λi; i.e., each agent can express
their preference in a “different currency" and this does not affect the problem.

The difficulty of the problem naturally depends on what class of valuations vi we consider.
Unlike the (additive) Social Welfare Maximization problem, the Nash Social Welfare problem is
non-trivial even in the case where the vi’s are additive, that is vi(S) =

∑

j∈S vij where vij is agent
i’s valuation item j. It is NP-hard in the case of 2 agents with identical additive valuations (by a
reduction from the Subset Sum problem), and APX-hard for multiple agents [18]. A constant-factor
approximation for the additive case was discovered in a remarkable work by Cole and Gatskelis [11],
and subsequently via a very different algorithm by Anari et al. [3]. The algorithm of [11] is based
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on consideration of market equilibria and market-clearing prices. The algorithm of [3] uses a convex
relaxation inspired by Gurvits’s work on the permanent of doubly stochastic matrices, which relies
on properties of real stable polynomials. Inspired by these exciting breakthroughs, a series of follow-
up work has been developed along these two lines [2,5,7,10,16]. The best approximation factor for
additive valuations currently stands at e1/e ≃ 1.45 [5].

A particularly compelling question is whether a constant-factor approximation is possible for
submodular valuations (where a (1− 1

e )-approximation is known for (additive) social welfare max-
imization [13, 22], and submodular valuations are the largest natural class for which such a result
is known, assuming only value-oracle access to the valuations). Some progress has been made for
Nash Social Welfare with valuations beyond additive ones: a constant factor for concave piece-wise
linear separable utilities [2], and for budget-additive valuations [7, 14]; in fact the approximation
factor for budget-additive valuations now matches the e1/e for additive valuations [7]. Recently, [19]

designed an algorithm to estimate the optimal value within a factor of e3

(e−1)2 ≃ 6.8 for certain

subclasses of submodular valuations, such as coverage and summations of matroid rank functions,
by extending the techniques of [3] using stable polynomials. And most recently, [15] designed a
constant-factor (772) approximation algorithm for the class of “Rado valuations”, which includes
matroid rank functions and more generally valuations defined by a certain matching problem with
a matroid constraint. [15] presents another significantly different approach to the problem: Instead
of market/pricing-inspired techniques or techniques based on stable polynomials, this paper uses a
combination of combinatorial matching techniques and a convex programming relaxation.

For general submodular valuations, the best result prior to this work was an O(n)-approximation
which also applies to subadditive valuations [4, 16]. However, for subadditive or even fractionally
subadditive valuations we cannot expect a constant factor in the value oracle model [4], for the same
reasons that this is impossible for the Social Welfare Maximization problem [12]. In the special
case of a constant number of agents n with submodular valuations, [16] presents a (1 − 1/e − ǫ)-
approximation for any ǫ > 0; this algorithm uses an extensive enumeration which makes the running
time exponential in n.

Our result and techniques.

Theorem 1 (Main Result). There exists a polynomial-time constant-factor approximation algorithm
for the Nash Social Welfare problem with monotone submodular valuation functions, accessible by
value queries.

The approximation factor that we obtain is 380. We made only modest effort to optimize the
constant. We believe that the best constant achievable with the techniques of this paper would still
be a triple-digit number.

Our techniques can be viewed as a natural extension of the approach in [15]. In hindsight, the
strength of the approach of [15] is that it is rather modular and isolates the issue of providing at least
some nonzero value to each agent as a separate matching problem. The question then remains how
to deal with the remaining items and for this we develop some new techniques. The approach of [15]
relies on the existence of a tractable Eisenberg-Gale relaxation with useful polyhedral properties
for Rado valuations; this approach might be possibly extended to gross substitutes valuations, but
probably not beyond that. The main new components that we introduce are: (i) a new non-
convex relaxation of the problem (the Mixed Multilinear Relaxation), (ii) an algorithm to solve
it approximately, and (iii) a randomized rounding technique using concentration of submodular
functions to obtain an integer solution. We present a more detailed overview at the beginning of
Section 3.
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2 Preliminaries

Nash Social Welfare (NSW). Given a set of m indivisible items G and a set of n agents A, with
valuation functions vi : 2

G → R+ for each i ∈ A, we want to allocate the items to the agents, that is
find a partition (S1, S2, . . . , Sn) of G in order to maximize the geometric average of the valuations,

NSW(S1, . . . , Sn) =

(

n
∏

i=1

vi(Si)

)1/n

.

Monotone Submodular Functions. Let G be a finite ground set and v : 2G → R.

• v is submodular if for any S, T ⊆ G,

v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ).

• v is monotone if v(S) ≤ v(T ) whenever S ⊆ T .

Multilinear Extension For a set function v : 2G → R, we define its multilinear extension
V : [0, 1]G → R by

V (x) =
∑

S⊂G

v(S)
∏

i∈S

xi
∏

j∈G\S

(1− xj).

The following is well-known and used in prior work (e.g., [6]).

Lemma 2. Let V : [0, 1]G → R be the multilinear extension of a set function v : 2G → R. Then

• If v is monotone non-decreasing, then V is non-decreasing along any line with direction d ≥ 0.

• If v is submodular, then V is concave along any line with direction d ≥ 0.

We use the following shorthand notation: For a singleton set {j}, we write v(j) to denote v({j}).
For a set S (either containing or not containing j), we write v(S + j) to denote v(S ∪ {j}) and
v(S − j) to denote v(S \ {j}). We denote by 1S the indicator vector of S, i.e. (1S)j = 1 if j ∈ S
and 0 otherwise. We also write 1j instead of 1{j} to simplify the notation.

3 Our algorithm and analysis

Algorithm 1 Nash Social Welfare algorithm

1: procedure NSW(A,G, v1, . . . , vn):
2: Find a matching τ : A → G maximizing

∏

i∈A vi(τ(i))
3: H := τ(A), G′ := G \ H, A′ := {i ∈ A : vi(G

′) > 0}
4: y := IteratedContinuousGreedy(A′,G′, v1, . . . , vn)
5: (R1, . . . , Rn) := RandomizedRounding(y)
6: Find a matching σ : A → H maximizing

∏

i∈A vi(Ri + σ(i))
7: Return (R1 + σ(1), R2 + σ(2), . . . , Rn + σ(n))
8: end procedure

Our algorithm at a high level is described in Algorithm 1. We are strongly inspired by the
algorithm of [15] for Rado valuations and follow their high-level structure. We preserve some
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of the components of their algorithm but replace components which previously relied on special
properties of Rado valuations. The new components are: a new relaxation of the Nash Social Welfare
problem, and the subroutines IteratedContinuousGreedy and RandomizedRouding, which
are described and analyzed in Sections 3.3 and 3.4, respectively. The analysis can be summarized
as follows (with a numbering of phases analogous to [15]).

Phase I: Initial Matching. We find an optimal assignment of 1 item for each agent, i.e. a
matching τ : A → G maximizing

∏

i∈A vi(τ(i)). This is also the starting point in [15]. H denotes
the items allocated in this matching.

Phase II: Mixed Multilinear Relaxation. We formulate an optimization program which aims
to assign the items in H integrally and the remaining items fractionally under a certain relaxed
objective. However, we do not have a concave relaxation at our disposal, such as the Eisenberg-
Gale program in [15]; no such tractable relaxation is known for general submodular functions.
Instead, we propose a new relaxation involving a product of multilinear functions.

max
∏

i∈A

Vi(xi) (Mixed-Multilinear)

s.t.
∑

i∈A

xij ≤ 1 ∀j ∈ G

xij ≥ 0

xij ∈ {0, 1} ∀i ∈ A, j ∈ H

Here, Vi(xi) =
∑

S⊆G vi(S)
∏

j∈S xij
∏

j′∈G\S(1− xij′) is the multilinear extension of vi.

Although the items in H could be allocated arbitrarily, we will use a matching in the end.
Similarly to [15], we prove that this does not hurt the solution significantly. In the next phase, we
deal with the question of solving the fractional part of the relaxation.

Phase III: Iterated Continuous Greedy Algorithm. We ignore the items in H for a moment
and try to solve the optimization problem restricted to the item set G′ = G \ H and the subset of
agents A′ who have positive value for these items.

max
∏

i∈A′

Vi(yi) (MultilinearProduct)

s.t.
∑

i∈A′

yij ≤ 1 ∀j ∈ G′

yij ≥ 0

A natural idea is to apply the continuous greedy algorithm of [6]. However, a direct application
doesn’t work since the objective function is not concave even in nonnegative directions (a product
of concave functions is not necessarily concave). We can obtain an objective function concave
in nonnegative directions, if we take a logarithm of the objective function: The logarithm of a
non-decreasing concave function is non-decreasing concave, and we get a summation instead of a
product.

4



max
∑

i∈A′

log Vi(yi) (LogMultilinear)

s.t.
∑

i∈A′

yij ≤ 1 ∀j ∈ G′

yij ≥ 0

Nevertheless, the continuous greedy algorithm still doesn’t work as such, because it gives a
multiplicative approximation; but we require an additive approximation on the logarithmic scale.

Our solution is an iterated version of the continuous greedy algorithm, where we run the con-
tinuous greedy algorithm, scale the solution by a factor of 1/2, and repeat as long as there is some
tangible gain. The intuition is that as long as our solution has low value, the continuous greedy
process makes progress at a high rate and hence we gain more in the continuous greedy process
than what we lose in the scaling step. The output of the iterated continuous greedy algorithm is a
solution y satisfying

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
= O(n)

where y∗ is the optimal solution. This is a stronger guarantee than just approximating the optimum
of (LogMultilinear) which will be useful in the analysis.

Phase IV: Randomized Rounding. Our next goal is to round or at least sparsify the fractional
solution y. Since our relaxation doesn’t have polyhedral properties which were used for sparsification
in [15], we resort to a more elementary approach: randomized rounding. We simply allocate each
item j to agent i with probability yij.

Ideally, we would like to argue that the contribution to each agent is strongly concentrated, and
thus the value of the assignment is close to the value of the fractional solution. It is known that
submodular functions satisfy concentration bounds which can be useful here; the only problem is
that the concentration bounds work well only for items with small contributions.

Hence, we partition the items for each agent into “large” and “small”: Large items are defined
greedily by choosing the maximum marginal profit, as long as the total fractional mass of large
items does not exceed some constant c > 0. In the analysis, we apply randomized rounding only
to the small items. Since their marginal contributions are bounded, we can apply the Efron-Stein
inequality and prove that we lose only a constant factor by rounding the small items. The result
is a sparsified fractional solution, where only large items are assigned fractionally and their total
fractional mass is bounded for each agent.

Phase V: Matching Recombination. The last piece of the puzzle is what to do with large
items. Luckily, [15] contains a component which is useful exactly for this purpose. A key lemma
in [15] shows that for any fractional solution y and any matching π : A → H (imagine the optimal
matching on top of y), there is another matching ρ : A → H such that the value of (y, ρ) is
comparable to the value of (y, π), and for each agent, either the item matched in ρ has a significant
value, or there is no item outside of H which has a significant value. The matching is obtained by
an alternating-cycle procedure applied to the matching π and the initial matching τ .

We adapt this lemma and apply it in our setting: After switching to the matching ρ, either the
matching item ρ(i) itself provides a constant fraction of agent i’s value, or the large items contribute
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at most a constant fraction of agent i’s value. Hence, in both cases we can simply discard the large
items in the analysis and lose only a constant factor.

We remark that in the algorithm, we apply randomized rounding to all items in G \H, without
distinguishing large and small items. This does not hurt and the algorithm is more natural this way;
in any case the large items may provide some additional value. Also, we do not find the particular
matching ρ described here; we simply find the most profitable matching at the end. This provides
a solution at least as good as the one we analyze in our proof.

In the following, we describe each phase in detail.

3.1 Phase I: Initial Matching

First, we solve the Nash Social Welfare problem under the restriction that we only allocate at most
one item to each agent. To achieve this, consider the complete bipartite graph between A and G
and assign an edge weight ωij = log vi(j) to every edge (i, j) ∈ A × G. We can find an optimal
assignment τ : A → G by computing the maximum-weight matching in this bipartite graph; i.e.,
τ(i) is the item matched to agent i. We define H = τ(A) to be the set of matched items. We note
that each item in the matching has positive value vi(τ(i)) > 0 for the respective agent, otherwise
there is no matching of positive value, which means that OPT = 0.

3.2 Phase II: Mixed Multilinear Relaxation

In this section, we describe our new “Mixed Multilinear" relaxation for the Nash Social Welfare
Problem, and a restricted “Matching+Multilinear" version of it, which we show to be within a
constant factor of each other. Although these relaxations are new, they are naturally analogous to
the relaxations in [15].

Mixed Multilinear Relaxation. For each valuation vi : 2G → R+, we define its multilinear
extension Vi : [0, 1]

G → R+ as

Vi(yi) =
∑

S⊆G

vi(S)
∏

j∈S

yij
∏

j′∈G′\S

(1− yij′).

We propose the following relaxation of the Nash Social Welfare problem.

max
∏

i∈A

Vi(xi) (Mixed-Multilinear)

s.t.
∑

i∈A

xij ≤ 1 ∀j ∈ G

xij ≥ 0 ∀i ∈ A, j ∈ G \ H

xij ∈ {0, 1} ∀i ∈ A, j ∈ H

Note that although H was chosen by matching one item to each agent, this might not be the
case in the optimal solution. Indeed in (Mixed-Multilinear), we allow H to be allocated arbitrarily;
but the assignment cannot be fractional. (If we allowed all items to be assigned fractionally, the
relaxation would have an infinite integrality gap, for well-known reasons.) This relaxation is difficult
to deal with, because it’s hard to find a good assignment of H. Instead, just like in [15], we consider
a restricted version of this relaxation, where H is required to be allocated by a matching.
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max
∏

i∈A

Vi(yi + 1σ(i)) (Matching+Multilinear)

s.t.
∑

i∈A

yij ≤ 1 ∀j ∈ G\H

yij ≥ 0 ∀i ∈ A, j ∈ G \ H

yij = 0 ∀i ∈ A, j ∈ H

σ : A → H is a matching.

Denote by OPT the optimum value of (Mixed-Multilinear), and by OPTH the optimal value of
the above program (Matching+Multilinear). Similar to Theorem 3.2 in [15], we have:

Lemma 3.

OPTH ≥
1

31/3
OPT.

Proof. Consider an optimum solution x∗ of (Mixed-Multilinear), that is x∗
i = y∗

i + 1H∗

i
where

y∗ ∈ [0, 1]A×G is a fractional assignment of the items in G′ and (H∗
1 , . . . ,H

∗
n) is a partition of H. We

construct a feasible solution (y∗, σ) for (Matching+Multilinear), where σ : A → H is a matching
such that for H∗

i 6= ∅, σ(i) is the most valuable item in H∗
i , and the remaining items in H are

matched arbitrarily to agents such that H∗
i = ∅.

Let ki = |H
∗
i | be the number of H-items allocated to agent i in the optimal solution. If ki > 0,

σ(i) is the most valuable of them, and by submodularity vi(H
∗) ≤ kivi(σ(i)). This also implies

Vi(y
∗
i + 1H∗

i
) ≤ max{ki, 1}Vi(y

∗
i + 1σ(i)). Hence, we can write

OPT =

(

∏

i∈A

Vi(yi + 1H∗

i
)

)1/n

≤

(

∏

i∈A

max{ki, 1} Vi(y
∗
i + 1σ(i))

)1/n

≤

(

∏

i∈A

3ki/3 Vi(y
∗
i + 1σ(i))

)1/n

= 31/3

(

∏

i∈A

Vi(y
∗
i + 1σ(i))

)1/n

≤ 31/3 OPTH

where we used the AMGM inequality, the fact that max{k, 1} ≤ 3k/3 for every integer k ≥ 0, and
∑n

i=1 ki = n.

We remark that the factor of 31/3 is tight due to the following instance: |H| = |G \ H| = n,
n/3 agents have the valuation v(S) = |S ∩ H|, and the remaining 2n/3 agents have the valuation
v′(S) = min{|S|, 1}. The optimal Nash Social Welfare is 31/3, since n/3 agents can get value 3 from
3 items of H each, and the remaining agents get value 1 from items in G \H. If H is allocated as a
matching, we get Nash Social Welfare 1, since each agent receives value 1.
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3.3 Phase III: The Iterated Continuous Greedy Algorithm

In this section, we describe the details of Phase III where we aim to find a fractional solution of our
(LogMultilinear) relaxation of Nash Social Welfare. We do this for a subset of items G′ = G \ H,
and a subset of agents A′ who have positive value for these items.

max
1

n

∑

i∈A′

log Vi(yi) (LogMultilinear)

s.t.
∑

i∈A′

yij ≤ 1 ∀j ∈ G′

yij = 0 ∀i ∈ A′, j ∈ H

y ≥ 0

We recall that Vi(yi) =
∑

S⊆G vi(S)
∏

j∈S yij
∏

j′∈G\S(1 − yij′) is the multilinear extension of
vi. In this section we assume that the vector yi always has 0 in coordinates indexed by j ∈ H, so
effectively we are working with vectors in [0, 1]G

′

.
We design a variant of the continuous greedy algorithm which approximates the optimal solution

within an additive error of 1.

The Iterated Continuous Greedy Algorithm

1. Start with a feasible solution y(0), y
(0)
ij = 1

n for each i ∈ A′ and j ∈ G′.

2. For r = 1, 2, . . ., given a feasible solution y(r−1), initiate y(12 ) =
1
2y

(r−1) and run the following
continuous greedy algorithm:

• Let z(t) be a feasible solution (satisfying z ≥ 0 and
∑

i zij ≤ 1 for each j) which
maximizes the linear objective function

∑

i∈A′

zi · ∇Vi(yi(t))

Vi(yi(t))
.

• Evolve the solution y(t) according to the equation

d

dt
y(t) = z(t),

for t ∈ [12 , 1].

3. Set y(r) = y(1), the solution obtained in this iteration.

4. If 1
n

∑

i∈A′ log Vi(y
(r)) ≥ 1

n

∑

i∈A′ log Vi(y
(r−1)) + 1

8 , let r ← r + 1 and repeat.

5. Otherwise, return y(r).

Theorem 4. Let y∗ denote any feasible solution of the optimization program (LogMultilinear). As-
suming that vi(G

′) > 0 and vi is monotone submodular for each i ∈ A′, the Iterated Continuous
Greedy algorithm terminates in O(log n) iterations and returns a feasible solution y for (LogMulti-
linear) such that

1

n

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
≤ e.
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We note that by concavity of the logarithm, the conclusion also implies 1
n

∑

i∈A′ log
Vi(y

∗

i )
Vi(yi)

≤ 1,

i.e. our solution approximates the optimum of (LogMultilinear) within an additive error of 1. The
statement in the lemma is stronger and more convenient, though, which we will use later in several
places.

Proof. As a starting point, we have y
(0)
ij = 1

n . By concavity of Vi in positive directions, we have

the simple bound Vi(y
(0)
i ) ≥ 1

nVi(1). Hence, 1
n

∑

i∈A′ log Vi(y
(0)
i ) ≥ 1

n

∑

i∈A′ log Vi(1) − log n.
Now we apply the continuous greedy algorithm as above, and we iterate as long as after each
iteration we have 1

n

∑

i∈A′ log Vi(y
(r)) ≥ 1

n

∑

i∈A′ log Vi(y
(r−1)) + 1

8 . Since for any feasible solution,
∑

i∈A′ log Vi(y
(r)) ≤

∑

i∈A′ log Vi(1), this means that we cannot iterate more than O(log n) times.
It remains to prove that the solution satisfies the claimed inequality.

To prove this, assume at any time t that

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
> en. (*)

A possible direction for the continuous greedy algorithm to pursue is always z = y∗. For this
direction, we obtain

∑

i∈A′

y∗
i · ∇Vi(yi(t))

Vi(yi(t))
≥
∑

i∈A′

Vi(y
∗
i )− Vi(yi(t))

Vi(yi(t))
=
∑

i∈A′

(

Vi(y
∗
i )

Vi(yi(t))
− 1

)

> (e− 1)n

using the monotonicity and concavity of Vi in nonnegative directions in the first inequality, and our
assumption (*) in the second inequality. Since the continuous greedy algorithm chooses a direction

zi(t) by optimizing the expression
∑

i∈A′

zi·∇Vi(yi(t))
Vi(yi(t))

, we obtain the same bound for the greedy

direction zi(t), and finally by the chain rule we have

d

dt

∑

i∈A′

log Vi(yi(t)) =
∑

i∈A′

1

Vi(yi(t))
∇Vi(yi(t)) ·

dyi

dt
=
∑

i∈A′

zi(t) · ∇Vi(yi(t))

Vi(yi(t))
> (e− 1)n.

Hence the rate of increase in
∑

i∈A′ log Vi(yi(t)) is at least (e− 1)n as long as (*) is satisfied.
Each iteration starts by scaling the previous solution by a factor of 1

2 and then running continuous

greedy for t between 1
2 and 1. Again by concavity, we have Vi(

1
2y

(r−1)) ≥ 1
2Vi(y

(r−1)). By integration
over the course of the continuous greedy process, we obtain

∑

i∈A′

log Vi(y
(r)
i ) =

∑

i∈A′

log Vi

(

1

2
y
(r−1)
i

)

+

∫ 1

1/2

d

dt

∑

i∈A′

log Vi(yi(t))dt

≥
∑

i∈A′

log

(

1

2
Vi(y

(r−1)
i )

)

+

∫ 1

1/2
(e− 1)n dt

=
∑

i∈A′

log Vi(y
(r−1)
i ) +

(

e− 1

2
− log 2

)

n.

We note that all logarithms here are natural and e−1
2 − log 2 > 1

8 . Hence we gain at least 1
8n in each

iteration as long as (*) is satisfied, and we terminate otherwise.
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Discretization. As in the original continuous greedy algorithm [6], we need to discretize the
continuous process to obtain an actual polynomial-time algorithm. This can be done using standard
methods.

First, for any given yi(t), we can estimate by random sampling

∂Vi

∂yj

∣

∣

∣

yi(t)
= E[vi(Ri(t) + j)− vi(Ri(t)− j)]

where Ri(t) is a random set containing each item j independently with probability yij(t). Since
vi(Ri(t) + j) − vi(Ri(t)− j) ∈ [0, vi({j})], using poly(m,n) samples we can obtain estimates ωij of
∂Vi

∂yj
within an error of vi({j})

poly(m,n) with high probability.

Then we find a direction z(t) by solving the linear programming problem

max







∑

i∈A′

1

Vi(yi(t))

∑

j∈G′

ωijzij : zij ≥ 0,
∑

i

zij ≤ 1 ∀j







(using ωij in place of ∂Vi

∂yj
). If the estimates ωij are correct up to an error of vi({j})

poly(m,n) , the optimum

is correct up to a relative error of 1
poly(m,n) . Note that Vi(yi(t)) ≥

1
poly(m,n)

∑

i∈G′ vi({j}) since this

is true for the initial solution y(0) and the value can only decrease O(log n) times by a factor of 2;
apart from that it increases.

Then we make a step of size δ = 1
poly(m,n) , where we set y(t+ δ) = y(t)+ δ ·z(t). The guarantee

we claim here is that

∑

i∈A′

log Vi(yi(t+ δ)) ≥
∑

i∈A′

log Vi(yi(t)) + δ

(

1−
1

poly(m,n)

)

∑

i∈A′

y∗
i · ∇Vi(yi(t))

Vi(yi(t))
.

This is true because we find the optimum of the linear programming problem within a 1
poly(m,n)

relative error, and also the values Vi(yi) and the partial derivatives ∂Vi

∂yj
can change only by a

factor of 1 ± 1
poly(m,n) between yi(t) and yi(t + δ), as long as t ≤ 0.99 (since Vi(yi) and ∂Vi

∂yj
are

nonnegative and linear in each coordinate separately). Hence, we can mimic the continuous analysis
for t ∈ [0.5, 0.99] within a 1

poly(m,n) relative error at every step, and we lose a factor of 49/50 by

ignoring the improvement between [0.99, 1]. These errors are easily absorbed for example in the gap
between e−1

2 − log 2 and 1
8 which we ignore above. So the theorem still holds for the discretized

algorithm, with high probability.

3.4 Phase IV: Randomized Rounding

In this section, our goal is to round the fractional solution y from Section 3.3. In the actual
algorithm, we use the following simple randomized rounding procedure.

RandomizedRounding(y)

1. For each item j ∈ G′ independently, select Zj ∈ {0, 1, . . . , n} where Zj = i with probability
yij, or Zj = 0 with probability 1−

∑

i∈A′ yij.

2. Define Ri = {j ∈ G \ H : Zj = i}.

3. Return (R1, . . . , Rn).

10



However, in the analysis we will proceed more carefully, separating the contributions of “large”
and “small” items. We first define what we mean by “large” and “small”. For any y ∈ [0, 1]G and
S ⊆ G, define vector y(S) to be the vector obtained by setting all the coordinates not in S to 0.

y
(S)
i =

{

yi i ∈ S
0 i /∈ S.

For each agent i ∈ A′, we define the set Li of “large items” as follows, for a given constant c > 0. Let
us assume in the following that

∑

j∈G′ yij ≥ c for every agent i. This is without loss of generality,
since we can always extend the instance with dummy items of value 0, which can be allocated
fractionally to any agent and it doesn’t change the outcome of our algorithm in any way.

FindLargeSet(i, y)

1. Start with an empty set at time 0, L
(0)
i = ∅.

2. At time t ≥ 1, add the item with the largest marginal value to L
(t−1)
i . More specifically, let

L
(t)
i = L

(t−1)
i ∪ {jt} where

jt = argmax
j∈G′\L

(t−1)
i

(

Vi(y
(L

(t−1)
i )

i + 1j)− Vi(y
(L

(t−1)
i )

i

)

3. As long as
∑t

t′=1 yijt′ < c and G′ \ L
(t)
i 6= ∅, let t← t+ 1 and repeat step 2.

4. Return Li := L
(t)
i .

We have two simple corollaries for the set Li.

• For any agent i ∈ A′,

c ≤
∑

j∈Li

yij < c+ 1,

• For any i ∈ A′, j ∈ G′\Li,

Vi(y
(Li)
i + 1j)− Vi(y

(Li)
i ) ≤

1

c
Vi(y

(Li)
i ).

The first property follows from the stopping rule (including our assumption that each agent
gets

∑

j∈G′ yij ≥ c in the fractional solution). As for the second one, if the marginal value is 0

for any j ∈ G′\L
(t−1)
i , it is trivially true. Otherwise, consider any item j in Li that we did not

include in the procedure; (by submodularity) in every step we included an item jt of marginal

value Vi(y
(L

(t−1)
i )

i + 1jt) − Vi(y
(L

(t−1)
i )

i ) ≥ Vi(y
(Li)
i + 1j) − Vi(y

(Li)
i ) and by multilinearity the total

contribution of the included items is

Vi(y
(Li)
i ) =

|Li|
∑

t=1

yijt(Vi(y
(L

(t−1)
i )

i + 1jt)− Vi(y
(L

(t−1)
i )

i )) ≥ c(Vi(y
(Li)
i + 1j)− Vi(y

(Li)
i )).

Now we can describe our modified rounding procedure. We note that this procedure is used
only in the analysis.

11



RestrictedRandomizedRounding(y)

1. Compute the set Li (specified above) for each agent i ∈ A′.

2. For each item j ∈ G′, assign j to a random player according to yij:
Let Zj = i with probability yij , or Zj = 0 with probability 1−

∑

i∈A′ yij.

For each i ∈ A′, let Si = {j ∈ G
′\Li : Zj = i} and y

(s)
i = y

(Li)
i + 1Si

.

3. Return y(s).

Note that only “small items” are included in the sets S1, . . . , Sn, and large items are still as-
signed fractionally in y(s). Thus the solution y(s) can be viewed as “sparsified” rather than rounded.
We note that the notion of sparsity here is in terms of the summation of fractional variables

(
∑

i∈A′

∑

j∈Li
y
(s)
ij < (c+ 1)n) rather than the size of the support of y(s).

The notion of large/small is agent-specific, so y(s) might not even be a feasible solution; an item
could be allocated fully as a small item and still fractionally as a large item for other agents. We
will show at the end that large items can be in fact discarded. However, for now we analyze the
value of y(s).

Lemma 5. Suppose that
1

n

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
≤ α.

Then with probability Ω(ǫ), the solution y(s) obtained by RestrictedRandomizedRounding(y)
with parameter c > 0 satisfies

1

n

∑

i∈A′

Vi(y
∗
i )

Vi(y
(s)
i )
≤ (1 + ǫ)(2 + 4/c)α.

Proof. Using the notation from RestrictedRandomizedRounding(y), for every i ∈ A′, we define

a monotone submodular function ui : 2G
′\Li → R, where ui(S) = Vi(y

(Li)
i + 1S). Recall that

y
(s)
i = y

(Li)
i + 1Si

; that is, Vi(y
(s)
i ) = ui(Si). The sets S1, . . . , Sn are determined by the random

variables (Zj : j ∈ G
′). Our goal is to upper-bound

V (Z) = V (Zj : j ∈ G
′) =

1

n

∑

i∈A′

Vi(y
∗
i )

Vi(y
(s)
i )

=
1

n

∑

i∈A′

Vi(y
∗
i )

ui(Si)
.

By the definition of Li and by submodularity, we know that for any i ∈ A′, j ∈ G′\Li and S ⊆ G′\Li,

0 ≤ ui(S ∪ {j}) − ui(S) ≤
Vi(y

(Li)
i )

c
=

ui(∅)

c
.

Since ui(Si) is a function of the independent random variables (Zj : j ∈ G′), by the Efron-Stein

12



inequality, we have

Var[ui(Si)] ≤ E





∑

j∈G′

(

ui(Si)−min
Zj

ui(Si)

)2




= E





∑

j∈Si

(ui(Si)− ui(Si\{j}))
2





≤
ui(∅)

c
· E





∑

j∈Si

(ui(Si)− ui(Si\{j}))





≤
ui(∅)

c
· E[ui(Si)] =

ui(∅)

c
· Vi(yi)

where we used the submodularity of ui in the last inequality. By Chebyshev’s inequality, we have

Pr

[

ui(Si) ≤
Vi(yi)

2

]

≤
Var[ui(Si)]

(Vi(yi)/2)2
≤

4ui(∅)

c Vi(yi)
.

Therefore,

E

[

Vi(yi)

ui(Si)

]

≤
Vi(yi)

Vi(yi)/2
+

Vi(yi)

ui(∅)
· Pr

[

ui(Si) ≤
Vi(yi)

2

]

≤ 2 +
4

c
.

Combining this with 1
n

∑

i∈A′

Vi(y∗

i )
Vi(yi)

≤ α, we can write

E[V (Z)] =
1

n

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
E

[

Vi(yi)

ui(Si)

]

≤ (2 + 4/c)α.

By Markov’s inequality, we conclude that with probability Ω(ǫ), V (Z) ≤ (1 + ǫ)(2 + 4/c)α.

3.5 Phase V: Matching recombination

Now we have a fractional solution y(s) with good properties; however, we ignored the fact that H
should be also allocated. Our goal in this section is to prove that there exists a matching which
works well with our fractional solution y(s), and at the same time it has additional properties which
allow us round the large items (or in fact discard them!) and still obtain a good value of Nash Social
Welfare.

We proceed very much as in [15]. First, we prove that there exists a matching σ which obtains
a good value together with y(s).

Matching extension. Here we show that there exists a matching σ : A → H which complements
well the fractional solution y(s).

Lemma 6. Let x∗ be the optimal solution of (MixedMultilinear), i.e. x∗
i = y∗

i + 1H∗

i
where y∗ ∈

[0, 1]A×G is a feasible solution of (LogMultilinear) and (H∗
1 , . . . ,H

∗
n) is a partition of H. Let y′ ∈

[0, 1]A×G be an arbitrary fractional solution, satisfying

1

n

∑

i∈A′

Vi(y
∗
i )

Vi(y′
i)
≤ β

13



and y′
i = 0 for i /∈ A′. Then there is a matching π : A → H such that

NSW (y′, π) =

(

∏

i∈A

Vi(y
′
i + 1π(i))

)1/n

≥
1

β + 1

(

∏

i∈A

Vi(x
∗
i )

)1/n

=
1

β + 1
OPT.

Proof. Suppose that agent i receives ki = |H∗
i | items from H in the optimal solution, and let

π(i) ∈ H∗
i be the most valuable item in H∗

i (as a singleton). We extend this to a matching
π : A → H, by allocating any remaining items arbitrarily to agents such that H∗

i = ∅. By the
AMGM inequality, we can write

OPT

NSW (y, π)
=

(

∏

i∈A

Vi(x
∗
i )

Vi(yi + 1π(i))

)1/n

≤
1

n

∑

i∈A

Vi(x
∗
i )

Vi(yi + 1π(i))

By submodularity, we have Vi(x
∗
i ) = Vi(y

∗
i + 1H∗

i
) ≤ Vi(y

∗
i ) + kiVi(1π(i)). Thus, we obtain

OPT

NSW (y, π)
≤

1

n

∑

i∈A

Vi(y
∗
i ) + kiVi(1π(i))

Vi(yi + 1π(i))

≤
1

n

(

∑

i∈A′

Vi(y
∗
i )

Vi(yi + 1π(i))
+
∑

i∈A

ki

)

≤
1

n

(

∑

i∈A′

Vi(y
∗
i )

Vi(yi)
+
∑

i∈A

ki

)

using monotonicity of Vi in the denominator. Note that Vi(y
∗
i ) = 0 and vi(π(i)) > 0 for every agent

i /∈ A′, because these agents do not derive any value from G′ = G \ H and hence vi(H
∗
i ) > 0 for

these agents; that’s why we can switch to A′ in the first summation. Finally, using the assumption
1
n

∑

i∈A′

Vi(y
∗

i )
Vi(yi)

≤ β and the fact that 1
n

∑

i∈A ki =
1
n

∑

i∈A |H
∗
i | = 1, we obtain

OPT

NSW (y, π)
≤ β + 1.

Corollary 7. The fractional solution y(s) = RestrictedRandomizedRounding(y) satisfies with
constant probability

max
π

NSW(y(s), π) ≥
1

7 + 12/c
OPT.

Proof. Since y from the Iterated Continuous Greedy algorithm satisfies 1
n

∑

i∈A′

Vi(y∗

i )
Vi(yi)

≤ e, we

apply Lemma 5 with α = e. For ǫ = 3/e − 1, we get 1
n

∑

i∈A′

Vi(y∗

i )

Vi(y
(s)
i

)
≤ 3(2 + 4

c ) with constant

probability. Then, we apply Lemma 6 with y′ = y(s) and β = 3(2 + 4
c ). We conclude that there is

a matching π such that NSW(y, π) ≥ 1
7+12/cOPT .

Matching recombination. Now that we know a good matching exists, we want to show that
there exists another matching ρ with some additional desirable properties. The matching ρ should
be such that each agent a either gets significant value from the matching item ρ(a) alone, or there
is no item of very large value contributing to agent a in the fractional solution. The solution is
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a procedure we borrow almost verbatim from [15]: a careful combination of the initial matching
τ and a matching π optimal with respect to our fractional solution y. Our goal is to prove the
following lemma, analogous to Lemma 6.1 in [15]. Since our setup here is somewhat different, we
repeat the whole argument in a self-contained manner. Also, we remark that while this is an actual
algorithmic step in [15], we only need this procedure in the analysis.

Lemma 8. Let d ≥ 2. Let τ : A → G be the matching maximizing
∏

a∈A vi(τ(a)), H = τ(A) the

items allocated in this matching. Let y ∈ [0, 1]A
′×G′

and let π : A → H be any matching. Then
there is a matching ρ : A → H such that

NSW(y, ρ) ≥
1

d+ 2
NSW(y, π)

and for every agent a ∈ A,

(i) either va(ρ(a)) ≥
1
dVa(ya) (in which case the ρ-matching item itself recovers a constant fraction

of agent a’s value)

(ii) or for every item j ∈ G′, va(j) < 1
dVa(ya) (in which case there are no items with large

contributions to Va(ya)).

Proof. Let τ be the initial optimal matching and H = τ(A). Let y ∈ [0, 1]A
′×G′

and let π : A → H
be any matching. (We will use the optimal matching with respect to y but that is not relevant
now.)

We will construct a new matching ρ which combines τ and π in a certain way. First, whenever
τ(a) = π(a), we set ρ(a) = τ(a) = π(a). Next, we consider the two matchings as sets of edges
(a, π(a)) and (a, τ(a)) and consider their symmetric difference, π∆τ . The symmetric difference
consists of alternating paths and cycles covering the agents such that π(a) 6= τ(a).

Let B = {a ∈ A : va(π(a)) <
1

d−1Va(ya)}. We define a modified matching π′ where π′(a) = π(a)
for a /∈ B and π′(a) = ∅ for a ∈ B, meaning that agents a ∈ B don’t get any items in π′. If
π(a) contributes less than 1

d−1Va(ya), we have Va(ya + 1π(a)) ≤ Va(ya) + va(π(a)) ≤
d

d−1Va(ya) ≤
d

d−1Va(ya + 1π′(a)), and so

NSW(y, π′) =

(

∏

a∈A

Va(ya + 1π′(a))

)1/n

≥

(

∏

a∈A

d− 1

d
Va(ya + 1π(a))

)1/n

=
d− 1

d
NSW(y, π).

(1)
Consider an alternating path/cycle C in π∆τ and its set of agents A(C). We distinguish two

cases.

1. B ∩A(C) = ∅ (π provides good value for all agents in A(C)). In this case we set ρ(a) = π(a)
for all a ∈ A(C).

2. B ∩ A(C) 6= ∅ (some agents in A(C) don’t get good value from π). We remove from C every
edge (a, π(a)) such that a ∈ B (which means that π′(a) = ∅); this breaks C into alternating
paths. Let us consider one such alternating path, denoting the agents on it a1, a2, . . . , ak and
the items i1, i2, . . . , ik. If k = 1, the path consists of just one edge (a1, i1). If k > 1, the
path consists of edges (a1, i1), (i1, a2), (a2, i2), . . . , (ak, ik), where ij = τ(aj) for j ≤ k and
ij = π(aj+1) for j < k. We also have a1 ∈ B (this is an agent who does not get any item in
π′) and a2, . . . , ak /∈ B.
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We use the following criterion to decide whether we should use the π-edges or the τ -edges
from this alternating path: Let

ϕ(a1, . . . , ak) =
Va1(ya1)

Va1(ya1 + 1τ(a1))

k
∏

j=2

Vaj (yaj + 1π(aj ))

Vaj (yaj + 1τ(aj ))

=
Va1(ya1)

Va1(ya1 + 1i1)

k
∏

j=2

Vaj (yaj + 1ij−1)

Vaj (yaj + 1ij )
.

This is the factor incurred in the objective function if we switch from π′ to τ on this alternating
path. We call this alternating path τ -favorable1, if ϕ(a1, . . . , ak) ≤ dk, and we define ρ(aj) =
τ(aj) = ij for 1 ≤ j ≤ k. Otherwise, we call it π-favorable and we define ρ(a1) = ∅,
ρ(aj) = π(aj) = ij−1 for 2 ≤ j ≤ k.

If we view the process as starting from the matching π′ and then applying a swap for each
τ -favorable path, we obtain a solution (y, ρ) of value

NSW(y, ρ) =





∏

(a1,...,ak)∈Pτ

ϕ(a1, . . . , ak)





− 1
n

NSW(y, π′)

≥





∏

(a1,...,ak)∈Pτ

dk





− 1
n

NSW(y, π′)

where Pτ is the set of τ -favorable alternating paths. Since the alternating paths are disjoint
in terms of the agents they cover,

∏

(a1,...,ak)∈Pτ
dk ≤ dn, and together with (1) we obtain that

NSW(y, ρ) ≥
1

d
NSW(y, π′) ≥

d− 1

d2
NSW(y, π) ≥

1

d+ 2
NSW(y, π).

Now we turn to the guarantee for each agent a ∈ A. If ρ(a) = τ(a) (i.e. the agent receives an
item from the initial matching), then we have either va(ρ(a)) ≥

1
dVa(ya) which satisfies (i), or by

the optimality of the initial matching, we have for every j ∈ G \ H, va(j) ≤ va(τ(a)) = va(ρ(a)) <
1
dVa(ya) which satisfies (ii).

If ρ(a) = π(a), then this means that a was on a π-favorable alternating path, and also a /∈ B
because otherwise we would have set ρ(a) = π′(a) = ∅. So this means that va(ρ(a)) = va(π(a)) ≥
1

d−1Va(ya) by the definition of B. So we satisfy (i).
The last case is that ρ(a) = ∅. This means that a = a1 ∈ B is the starting point of a π-favorable

path P , and ρ(a) = π′(a) = ∅. Consider any item j ∈ G \ H. In the initial matching τ , we could
replace the τ -edges on P by the π-edges, and in addition assign j to agent a1. However, this would
not result in an improvement since τ was optimal (as a stand-alone matching). Therefore, we have
the following inequality:

va1(j)

va1(τ(a1))
·

k
∏

j=2

vaj (π(aj))

vaj(τ(aj))
≤ 1.

Recall that a2, . . . , ak /∈ B and therefore vaj (π(aj)) ≥
1

d−1Vaj (yaj ) for j = 2, . . . , k. This implies

that
vaj (π(aj ))

vaj (τ(aj ))
≥ 1

d

Vaj
(yaj

+1π(aj)
)

vaj (τ(aj ))
≥ 1

d

Vaj
(yaj

+1π(aj)
)

Vaj
(yaj

+1τ(aj)
) , and also obviously

va1 (j)

va1 (τ(a1))
≥

va1(j)

Va1(ya1+1τ(a1)
) .

1“reversible” in [15]
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Therefore, we have

va1(j)

Va1(ya1 + 1τ(a1))
·

k
∏

j=2

Vaj (yaj + 1π(aj ))

Vaj (yaj + 1τ(aj ))
≤ dk−1.

Finally, since the path is π-favorable, we have

ϕ(a1, i1, . . . , ak, ik) =
Va1(ya1)

Va1(ya1 + 1τ(a1))

k
∏

j=2

Vaj (yaj + 1π(aj ))

Vaj (yaj + 1τ(aj ))
> dk.

Combining the last two inequalities, we obtain

va1(j) <
1

d
Va1(ya1)

which means that agent a = a1 satisfies (ii).

3.6 Conclusion of the analysis

We conclude the analysis by showing that the matching ρ we proved to exist in Section 3.5 provides
a good value with our fractional solution, even if we ignore the contribution of large items. Hence
we can obtain an integral assignment which provides a constant-factor approximation relative to
OPT and thus prove Theorem 1.

Lemma 9. Let (S1, . . . , Sn) be the assignment obtained by RestrictedRandomizedRounding(y)

with parameter c > 0 and y
(s)
i = y

(Li)
i + 1Si

the sparsified fractional solution. Then there exists a
matching ρ : A → H such that

(

∏

i∈A

vi(Si + ρ(i))

)1/n

≥
OPT

(7 + 12/c)(c + 3)(c + 4)
.

Proof. Given the sparsified solution y(s) and the matching π provided by Corollary 7, satisfying

NSW(y(s), π) ≥
1

7 + 12/c
OPT,

let ρ be the matching provided by Lemma 8 with parameter d = c+ 2. This matching satisfies

NSW(y(s), ρ) ≥
1

c+ 4
NSW(y(s), π) ≥

1

(7 + 12/c)(c + 4)
OPT

and for every agent i ∈ A, either (i) vi(ρ(i)) ≥
1

c+2Vi(y
(s)
i ) or (ii) for every item j ∈ G′ = G\H,

vi(j) <
1

c+2Vi(y
(s)
i ).

For every agent i ∈ A, if (i) is the case, then we know that

vi(Si + ρ(i)) ≥ vi(ρ(i)) ≥
1

c+ 3

(

Vi(y
(s)
i ) + vi(ρ(i))

)

≥
Vi(y

(s)
i + 1ρ(i))

c+ 3
.

Otherwise in case (ii), we have

vi(Si + ρ(i)) ≥ Vi(y
(s)
i + 1ρ(i))−

∑

j∈Li

yijvi(j)

≥ Vi(y
(s)
i + 1ρ(i))− (c+ 1)

Vi(y
(s)
i )

c+ 2

≥
Vi(y

(s)
i + 1ρ(i))

c+ 2
,
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where the second inequality holds because
∑

j∈Li
yij ≤ c + 1. In conclusion, we know that for any

agent i ∈ A,

vi(Si + ρ(i)) ≥
1

c+ 3
Vi(y

(s)
i + 1ρ(i)).

Therefore, we obtain

(

∏

i∈A

vi(Si + ρ(i))

)1/n

≥
1

c+ 3
NSW(y(s), ρ) ≥

OPT

(7 + 12/c)(c + 3)(c + 4)
.

Now we can prove the main theorem.

Proof of Theorem 1. By Lemma 9, there is a matching ρ : A → H such that even if we count
only the contribution of the small items Si allocated in RestrictedRandomizedRounding(y),
we have

(

∏

i∈A

vi(Si + ρ(i))

)1/n

≥
OPT

(7 + 12/c)(c + 3)(c + 4)
.

This means that the same holds for the sets Ri allocated in our algorithm by RandomizedRounding(y),
since Si ⊆ Ri (the sets Ri include additionally the large items after rounding). In the final step, we
find a matching σ which is at least as good as ρ. We choose c = 1 which gives

(

∏

i∈A

vi(Ri + σ(i))

)1/n

≥

(

∏

i∈A

vi(Si + ρ(i))

)1/n

≥
OPT

19 · 4 · 5
=

OPT

380
.

4 Conclusion

We have shown a constant-factor approximation algorithm for Nash Social Welfare with submodular
valuations, which is the largest natural class of valuations that allows a constant-factor approxima-
tion (using value queries) even for additive welfare maximization. However, there are still several
directions and open problems to explore. An obvious one is to improve the approximation ratio
which is rather large. As we mentioned, we believe that a substantially smaller (say double-digit)
factor is hard to achieve with our approach.

Another open problem is the asymmetric Nash Social Welfare problem, where the objective
function is a weighted geometric mean of the agents’ valuation functions:

∏n
i=1(vi(Si))

ωi for some
ωi ≥ 0 (the problem we consider is ωi = 1/n). The goal is to get a constant-factor approximation
independent of the weights ωi. We remark that [15] gives an approximation guarantee dependent
on the weights ωi; we do not pursue this direction here. For the asymmetric problem, getting a
universal constant factor is open even in the the basic case of additive valuations.

Last but not least, solutions optimizing Nash Social Welfare often have additional fairness prop-
erties like the envy-free property, or envy-freeness up to one good (see [1]). A line of work has
been developed in trying to achieve approximation guarantees for Nash Social Welfare and certain
fairness guarantees at the same time [5, 8, 9]. However, our solution does not seem to have such
properties and constant-factor approximations with additional fairness guarantees are still unknown
for valuation classes beyond additive ones.
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