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TOWARDS THE SAMPLING LOVÁSZ LOCAL LEMMA

VISHESH JAIN, HUY TUAN PHAM, AND THUY DUONG VUONG

Abstract. Let Φ = (V, C) be a constraint satisfaction problem on variables v1, . . . , vn such that
each constraint depends on at most k variables and such that each variable assumes values in
an alphabet of size at most [q]. Suppose that each constraint shares variables with at most ∆
constraints and that each constraint is violated with probability at most p (under the product
measure on its variables). We show that for k, q = O(1), there is a deterministic, polynomial
time algorithm to approximately count the number of satisfying assignments and a randomized,
polynomial time algorithm to sample from approximately the uniform distribution on satisfying
assignments, provided that

C · q
3
· k · p ·∆7

< 1, where C is an absolute constant.

Previously, a result of this form was known essentially only in the special case when each constraint
is violated by exactly one assignment to its variables.

For the special case of k-CNF formulas, the term ∆7 improves the previously best known ∆60

for deterministic algorithms [Moitra, J.ACM, 2019] and ∆13 for randomized algorithms [Feng et
al., arXiv, 2020]. For the special case of properly q-coloring k-uniform hypergraphs, the term ∆7

improves the previously best known ∆14 for deterministic algorithms [Guo et al., SICOMP, 2019]
and ∆9 for randomized algorithms [Feng et al., arXiv, 2020].

1. Introduction

The celebrated Lovász Local Lemma (LLL) is a fundamental tool in probabilistic combinatorics
which provides a sufficient condition for avoiding a collection of “bad events” in a probability space.
In a quite general form, it may be stated as follows.

Theorem 1.1 ([EL73]). Let C be a finite set of events in a probability space. For C ∈ C, let Γ(C)
denote a subset of C such that C is independent of the collection of events C \ (C ∪ Γ(C)). Suppose
there exist positive real numbers x : C → (0, 1) such that

P[C] ≤ x(C)
∏

D∈Γ(C)

(1− x(D)) for all C ∈ C. (1.1)

Then,

P[∧C∈CC] ≥
∏

C∈C

(1− x(C)) > 0.

In most applications of the LLL (cf. [AS04,MT10,MR98]), the underlying probability measure P[·]
is generated by a collection of independent random variables X1, . . . ,Xn and for each “bad event”
C ∈ C, there is a subset vbl(C) ⊆ {X1, . . . ,Xn} such that C depends only on Xi ∈ vbl(C). This
is often referred to as the “variable-version” setting of the LLL. Moreover, for many applications
(cf. [AS04]), the following “symmetric” case of the variable-version setting suffices.

Corollary 1.2. Let X1, . . . ,Xn denote a collection of independent random variables. Let C =
{C1, . . . , Cm} denote a collection of events and for C ∈ C, let vbl(C) denote a subset of {X1, . . . ,Xn}
such that C depends only on Xi ∈ vbl(C). Suppose there exist p ∈ (0, 1) and D ≥ 0 satisfying

• For each C ∈ C, P[C] ≤ p.
• For each i ∈ [m], #{j ∈ [m] : vbl(Cj) ∩ vbl(Ci) 6= ∅} ≤ (D + 1), and
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• e · p · (D + 1) ≤ 1, where e is the base of the natural logarithm.

Then,

P[∧i∈[m]Ci] ≥
m∏

i=1

(1− e · P[Ci]) > 0.

As a classical application of Corollary 1.2, consider the problem of satisfiability of a k-CNF
formula over Boolean variables x1, . . . , xn. Recall that a k-CNF formula over Boolean variables
x1, . . . , xn is a collection of constraints C1, . . . , Cm such that each Ci depends on exactly k variables
and such that each Ci is satisfied by all but exactly one assignment to its variables. Corollary 1.2
shows that if each constraint shares variables with at most (roughly) 2k/e other constraints, then
the formula has a satisfying assignment.

Unfortunately, the original proof of Theorem 1.1 is non-constructive and does not provide an
efficient algorithm to find a satisfying assignment of the formula when this condition is met. In a
breakthrough work [Bec91], Beck showed that if 2k/e is replaced by 2k/48, then it is in fact possible
to efficiently find a satisfying assignment. Beck’s bound was improved by many works over a period
of nearly 20 years (e.g. [Alo91,MR98,Sri08,Mos09]) culminating in the landmark work of Moser and
Tardos [MT10], which gives an efficient algorithmic proof of Theorem 1.1 provided further that one
is in the variable setting and some other technical assumptions are satisfied. There has been much
work on extending the result of Moser and Tardos to more general settings and the algorithmic
aspects of the LLL remain an active area of research (see, e.g., [AIS19] and the references therein).

In this work, we are concerned with the following.

Problem 1.3. Suppose that conditions similar to the LLL are satisfied. Can we approximately
count the total number of satisfying assignments? Can we sample from approximately the uniform
distribution on satisfying assignments?

This problem has attracted much attention in the past five years. Below, we only discuss results
for approximate counting, noting that similar results also hold for approximate sampling.

In [BGG+19], Bezáková et al. showed that if P 6= NP, then it is not possible to efficiently approx-
imately count solutions of a Boolean k-CNF formula in which every variable is allowed to be present
in d constraints for d ≥ 5 · 2k/2, even when the k-CNF formula is monotone. For monotone k-CNFs,
Hermon, Sly, and Zhang [HSZ19] showed that the Glauber dynamics mix rapidly for d ≤ c2k/2,
thereby providing an approximate counting algorithm within a constant factor of the hard regime.
For not necessarily monotone k-CNFs, Moitra [Moi19] provided a novel method to deterministically
approximately count satisfying assignments for d . 2k/60 (where . hides polynomial factors in
k), which runs in polynomial time for k = O(1). Using a Markov chain on a certain “projected
space” inspired by Moitra’s method, Feng, Guo, Yin, and Zhang [FGYZ20] relaxed the restriction

to d . 2k/20 and removed the requirement k = O(1), although their algorithm is not deterministic.
We also mention here the work of Guo, Jerrum, and Liu [GJL19] on “partial rejection sampling”.
For k-CNFs, their method allows one to perfectly sample from the uniform distribution on satisfying
assignments, either for “extremal formulas” (and d in the LLL regime), or for formulas for which
the intersections between the constraints satisfy some rather stringent size restrictions (and for d
matching the hardness regime).

Very recently, work of Feng, He, and Yin [FHY20] addressed Problem 1.3 in the special case
where each constraint is violated by a very small number of configurations of its variables. Their
results are obtained in the following setting.
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Definition 1.4. (1) A constraint satisfaction problem (CSP) is said to be atomic if each constraint
is violated by at most one assignment to its variables.

(2) A (k, d, q)-CSP on variables x1, . . . , xn is a constraint satisfaction problem in which each xi
takes values in [q], each constraint depends on exactly k variables, and each variable features in at
most d constraints.

In [FHY20], a fast randomized algorithm is provided in the setting of Corollary 1.2, assuming
that the CSP is atomic and that pD350 . 1. For (k, d, q)-CSPs which are atomic, they obtain better

bounds, leading to an algorithm for k-CNF Boolean formulas with d . 2k/13, and an algorithm for
proper q-colorings of k-uniform hypergraphs with q & d9/(k−12) (this improves on a previous bound

of q & d14/(k−14) for q, k = O(1) due to Guo, Liao, Lu, and Zhang [GLLZ19], although [GLLZ19]
provides a deterministic algorithm).

For not-necessarily-atomic CSPs, [FHY20] simply decompose each constraint into atomic con-
straints, which leads to the restriction

p(DN)350 . 1, (1.2)

where N is an upper bound on the number of violating assignments to the variables of any constraint
(hence, N = 1 for an atomic CSP). To see that this condition is vastly more restrictive than
Corollary 1.2, consider the case of Boolean CSPs for which each constraint depends on at most k
variables. Then, p ≥ 2−k so that (1.2) fails to be applicable as soon as N & 2k/350. In contrast,
Corollary 1.2 shows that a solution exists, provided that D . 2k/N for all N . 2k.

The restriction N & 2k/350 arising from (1.2) is rather undesirable, since in many applications of
the LLL (cf. [AS04]), N = Θ(2ck) with the constant c ∈ (0, 1) coming from various concentration
inequalities. One of the main open problems mentioned in the works [GLLZ19,FHY20] is whether
one can go beyond the “atomic CSP” framework to provide an affirmative answer to Problem 1.3
for general CSPs.

1.1. Our results. We provide, for the first time, approximate counting and sampling algorithms
for general CSPs under LLL-like conditions.

Theorem 1.5. Let Φ = (V, C) denote a constraint satisfaction problem on variables v1, . . . , vn and
constraints C1, . . . , Cm. For each constraint C ∈ C, let vbl(C) ⊆ V denote the variables it depends
on. Suppose there exist p ∈ (0, 1), ∆ ≥ 1, k ≥ 1, q ≥ 1 satisfying the following conditions.

• The domain of each variable v1, . . . , vn is of size at most q.
• For each C ∈ C, | vbl(C)| ≤ k.
• For each C ∈ C, P[C] ≤ p.
• For each i ∈ [m], #{j ∈ [m] \ {i} : vbl(Cj) ∩ vbl(Ci) 6= ∅} ≤ ∆, and
• q3 · k · p ·∆7 ≤ c, where c is an absolute constant.

Then, for any ε ∈ (0, 1), the number of satisfying assignments of Φ can be deterministically approx-
imated to within relative error (1± ε) in time

(n
ε

)poly(k,∆,log q)
.

Remark. (1) For Boolean k-CNFs with k = O(1), this provides a deterministic approximate counting

algorithm for ∆ . 2k/7, where . hides polynomial factors in k. As mentioned above, the previously
best known algorithm, either randomized or deterministic, requires ∆ . 2k/13 [FHY20].

(2) For properly q-coloring k-uniform hypergraphs, this provides a deterministic approximate
counting algorithm for q & ∆7/(k−4). The previous best known algorithms required q & ∆9/(k−12)

[FHY20] or q & ∆14/(k−14) for deterministic algorithms [GLLZ19].
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The framework for proving Theorem 1.5 also lends itself naturally to an approximate sampling
algorithm.

Theorem 1.6. Under the same conditions as Theorem 1.5 and for any ε ∈ (0, 1), there is a random-
ized algorithm to sample from a distribution which is ε-close in total variation distance to the uniform

distribution on satisfying assignments of Φ. The running time of the algorithm is
(
n
ε

)poly(k,∆,log q)
.

1.2. Techniques. The works [Bec91,Alo91,MR98,Sri08] on the algorithmic local lemma predating
Moser’s work [Mos09] employ the following two step strategy: one first finds a “good” partial assign-
ment with the property that the residual formula “factorizes” into logarithmic sized components, at
which point, one can extend the partial assignment to a complete satisfying assignment efficiently
using exhaustive enumeration. For sampling from (approximately) the uniform distribution on satis-
fying assignments, one therefore only needs to generate these initial partial assignments according to
the correct distribution. To accomplish this, we use a generalization of a linear program introduced
by Moitra [Moi19] to approximate the marginal distribution (induced by the uniform distribution
on satisfying assignments) of an unassigned variable, conditioned on partial assignments satisfying
certain conditions.

The key conceptual contribution of our work is the following insight: the combinatorial conditions
guaranteeing the factorization of the residual formula into logarithmic sized components are essen-
tially the same as those ensuring that the LP can be solved efficiently (see the proof of Lemmas 4.9
and 5.1). This provides a unifying view of the works [Bec91,Alo91,MR98,Sri08] on the algorithmic
LLL, and the recent works [Moi19, GLLZ19], and in our opinion, sheds considerable light on the
latter two works.

From a technical viewpoint, our main contribution is a considerable generalization, refinement,
and simplification of the framework introduced by Moitra [Moi19]. In particular, we eliminate any
need to use the algorithmic local lemma of Moser and Tardos [MT10] (which was an essential ingre-
dient in [Moi19,GLLZ19] and leads to additional degradation in the quantitative bounds); instead,
we show how to efficiently exploit a certain “pseudo-random property” of the initial partial assign-
ment in a direct manner to remove this loss (Lemma 5.2). Our framework also treats approximate
counting and approximate sampling on the same footing in a very simple manner, whereas the
previous works [Moi19,GLLZ19] suffered from additional losses in going from approximate counting
to approximate sampling.

We believe that our analysis lays bare the limits of this approach towards approximate counting
and sampling. The term ∆7 in Theorems 1.5 and 1.6 comes from the aggregation of two sources of
slack. The first is the use of {2, 3}-trees as in [Alo91,MR98,Sri08] – even for the algorithmic LLL,
{2, 3}-trees only lead to ∆4 instead of ∆, and being able to use “denser witness trees” was the major
innovation in the works of Moser [Mos09] and Moser and Tardos [MT10]. Another reason for the
slack is a certain “factorization property” required to even write down the linear program efficiently.
We believe that with some additional ideas, this second source of slack may be overcome, and leave
this as an interesting direction for future research.

1.3. Organization. In Section 2, we collect some preliminaries. In Section 3, we present a slightly
simpler algorithm which proves Theorem 1.5 with ∆7 replaced by ∆10; the analysis of a key step
in this algorithm is completed in Section 4. The ideas introduced in Sections 3 and 4 are further
refined in Section 5 to prove Theorem 1.5 in Section 5.2 and Theorem 1.6 in Section 5.3.

2. Preliminaries

2.1. Lovász Local Lemma. As mentioned in the introduction, the LLL provides a sufficient condi-
tion guaranteeing that the probability of avoiding a collection C of “bad events” in a probability space
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is positive. In particular, when the LLL condition (1.1) is satisfied, the so-called LLL distribution,

µS [·] := P[· | ∧C∈CC]

is well-defined (here, the subscript S is chosen to represent “satisfying”). The LLL distribution is
the central object of study in this paper. We begin by recording a standard comparison between
the LLL distribution µS [·] and the product distribution on the variables P[·].

Theorem 2.1 (cf. [HSS11, Theorem 2.1]). Under the conditions of Theorem 1.1, for any event B
in the probability space,

µS [B] ≤ P[B]
∏

C∈Γ(B)

(1− x(C))−1.

Remark. The above comparison is one-sided, as it ought to be, since for any C ∈ C, µS [C] = 0 while
P[C] may be positive.

For the remainder of this paper, we will restrict ourselves to the variable-version symmetric setting
described in Corollary 1.2, in which case, we choose x(C) = e · P[C] for all C ∈ C, with e the base
of the natural logarithm.

2.2. {2,3}-trees. One of the key tools in our analysis will be the notion of {2, 3}-trees, which goes
back to Alon’s work on the algorithmic local lemma [Alo91].

Definition 2.2. Let G = (V,E) be a graph and let distG(·, ·) denote the graph geodesic distance.
A {2, 3}-tree is a subset of vertices T ⊆ V such that

• for any u, v ∈ T , distG(u, v) ≥ 2;
• if one adds an edge between every u, v ∈ T such that distG(u, v) = 2 or 3, then T is

connected.

The next lemma bounds the number of {2, 3}-trees of a given size in terms of the maximum
degree of the graph.

Lemma 2.3 (cf. [Alo91, Lemma 2.1]). Let G = (V,E) be a graph with maximum degree d. Then,
for any v ∈ V , the number of {2, 3}-trees in G of size t containing v is at most (ed3)t−1/2.

Before stating the next lemma, we need some notation. Let H = (V,E) be a hypergraph. Let
Lin(H) denote its line graph i.e. V (Lin(H)) = E and there is an edge between u 6= v ∈ V (Lin(H))
if and only if the hyperedges u, v ∈ E share a vertex in V . Finally, let L2(H) denote the graph
with the same vertex set as Lin(H) and with an edge between two vertices u 6= v ∈ V (L2(H)) if
and only if distLin(H)(u, v) ≤ 2. Then, a simple greedy argument shows the following.

Lemma 2.4 (cf. [GLLZ19, Lemma 14]). Let H = (V,E) be a hypergraph such that each hyperedge
in E intersects at most d other hyperedges (equivalently, the degree of Lin(H) is at most d). Let
B ⊆ E(H) be a collection of hyperedges which induce a connected subgraph in L2(H). Then, for
any e∗ ∈ B, there exists a {2, 3}-tree T ⊆ B in Lin(H) such that e∗ ∈ T and |T | ≥ |B|/d.

3. A simpler algorithm for a more restrictive regime

In this section and the next one, we present a simpler algorithm which proves a version of
Theorem 1.5 provided that p ≤ (105q3k∆10)−1. The design and analysis of this algorithm already
contains the basic ideas. Later, in Section 5, we will introduce some key additional ingredients to
refine this algorithm and its analysis in order to prove Theorems 1.5 and 1.6.

Throughout this section and the next one, we fix an arbitrary ordering of the variables v1, . . . , vn ∈
V and an arbitrary ordering of the constraints C1, . . . , Cm ∈ C. Moreover, for notational conve-
nience, we will assume that the domain of each variable is [q]; a straightforward modification of the
proof shows that we only need the size of the domains to be bounded above by q.
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3.1. Step 1: Finding a guiding assignment. The goal of this step is to find a partial assignment
of the variables, which will serve as a “guide” for the rest of the algorithm. This step is very much
inspired by analogous routines for the algorithmic local lemma [Bec91,Alo91,MR98], and general-
izes a similar step in the works [Moi19,GLLZ19]. We note that in the works [Moi19,GLLZ19], it
is critical that one is able to efficiently find a partial assignment satisfying each constraint without
assigning values to too many variables in any constraint – while this is indeed possible in the special
settings considered in these works, in our setting, such a partial assignment need not exist. The
key result of this subsection is Proposition 3.5. We will first present a randomized construction
achieving the guarantees of Proposition 3.5, and then show how to derandomize it using standard
techniques.

We consider the following randomized greedy procedure to construct a partial assignment of
v1, . . . , vn, where p′ > 0 is a parameter which will be specified later.

(R1) Let A0 = V denote the set of initially “available variables” and let F0 = ∅ denote the set of
initially “frozen variables”. Initialize the stage to i = 1.

(R2) Select the first variable (according to our order) in Ai−1. Denote this variable by v∗i . If no
such variable exists, terminate the process.

(R3) Assign v∗i a uniformly random value from its alphabet [q]. Let Pi denote the partial assignment
resulting after the assignment to v∗i .

(R4) Let

Fi = {j ∈ [m] : P[Cj | Pi] > p′}

denote the set of “dangerous constraints” under Pi. We “freeze” all the variables involved in
any of the “dangerous constraints”, i.e. we set

Fi = Fi−1 ∪
⋃

j∈Fi

((vbl(Cj) ∩Ai) \ {v
∗
i }) and Ai = Ai−1 \ (Fi ∪ {v∗i }).

(R5) Increment i by 1 and return to (R2).

Note that the process terminates at the first stage s satisfying As = ∅. Let P1, . . . , Ps denote the
partial assignments generated during the course of the process. Let F = ∪s

i=1Fi denote the set of
constraints declared “dangerous” at any point during the process. Finally, let ν denote the distribu-
tion on partial assignments given by the random partial assignment Ps. We emphasize that s itself
is a random variable.

The following simple observation will be useful later.

Lemma 3.1. For all i ∈ [s] and for all j ∈ [m],

P[Cj | Pi] ≤ p′q.

Proof. Fix j ∈ [m]. If j /∈ F , then we are done, so assume that j ∈ F . Let i be the first stage for
which Cj ∈ Fi. Then, P[Cj | Pi−1] ≤ p′, and since Pi extends Pi−1 by assigning v∗i , we have

P[Cj | Pi] ≤
P[Cj | Pi−1]

minu∈[q] P[v
∗
i = u]

≤ p′q.

Note that if Cj ∈ Fi, all variables in vbl(Cj) are added to Fi. Hence, no variable in vbl(Cj) is
assigned a value during the remainder of the process so that P[Cj | Pi+k] = P[Cj | Pi] for all
0 ≤ k ≤ s− i. �
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For h ∈ [n], let S(h) be the σ-algebra generated by the output of the procedure on partial
assignments of v1, . . . , vh. Also, for each h ∈ [n], let ι(h) = max{i ∈ [h] : v∗i = vh′ for some h′ ≤ h}.
In other words, ι(h) denotes the number of variables in v1, . . . , vh which are assigned values by the
partial assignment.

Lemma 3.2. Let T ⊆ C be a collection of constraints such that for any C,C ′ ∈ T with C 6= C ′,
vbl(C) ∩ vbl(C ′) = ∅. Then, letting

Mh =
∏

C∈T

P[C | Pι(h)],

we have
Eν [Mh+1 | S(h)] = Mh.

Proof. Since the variables v1, . . . , vn are processed in order, given S(h), it is determined whether
vh+1 is frozen or not. If vh+1 is frozen, then Mh+1 = Mh.

Otherwise, vh+1 is not frozen. Note that, in this case, ι(h+1) = ι(h)+1 and v∗ι(h+1) = vh+1. Since

vbl(C) are disjoint for C ∈ T , there is at most one constraint CT ∈ T such that vh+1 ∈ vbl(CT ). If
there is no such constraint CT , then Mh+1 = Mh.

Consider now the case that vh+1 is not frozen, and there exists a unique constraint CT ∈ T such
that vh+1 ∈ vbl(CT ). We have P[C | Pι(h+1)] = P[C | Pι(h)] for all C 6= CT . Moreover, since vh+1 is
assigned a uniformly distributed value in [q], we have

Eν

[
P[CT | Pι(h+1)] | S(h)

]
=

1

q

∑

a∈[q]

P[CT ∧ Pι(h) ∧ vh+1 = a]

P[Pι(h) ∧ vh+1 = a]

=
P[CT , Pι(h)]

P[Pι(h)]

= P[CT | Pι(h)].

Combining these cases gives the desired conclusion. �

Since P[C] ≤ p for all C ∈ C, the following is an immediate corollary of Lemma 3.2.

Corollary 3.3. Let T ⊆ C be a collection of constraints such that for any C,C ′ ∈ T with C 6= C ′,
vbl(C) ∩ vbl(C ′) = ∅. Then,

Eν

[
∏

C∈T

P[C | Ps]

]
≤ p|T |.

We are now ready to state and prove the key property of guiding partial assignments, which
is that they “factorize” the constraint satisfaction problem into small connected components. Let
H = (V, C) denote the hypergraph induced by the constraint satisfaction problem and let G(C)
denote its line graph. Let G2(F) = (F , E) denote the graph whose vertices are F , and Ci 6= Cj ∈ F
are adjacent if and only if distG(C)(Ci, Cj) ≤ 2.

Lemma 3.4. Let p ≤ p′/(10∆3). The ν-probability that G2(F) has a connected component of size

at least L is at most n∆ · 2−L/∆.

Proof. Suppose that C is a connected component in G2(F) with |C| ≥ L. By Lemma 2.4, there
exists a {2, 3}-tree T in G(C) with |T | ≥ |C|/∆ ≥ L/∆. Let T denote the set of {2, 3}-trees in G(C)
of size L/∆. Then,

ν[G2(F) has a connected component of size ≥ L] ≤ ν[G2(F) contains a {2, 3}-tree of size ≥ L/∆]

≤
∑

T∈T

ν[T ⊆ F ]

7



≤
∑

T∈T

(p/p′)L/∆

≤ |F|(e∆3)L/∆(p/p′)L/∆

≤ n∆(e∆3p/p′)L/∆

≤ n∆ · 2−L/∆.

The fourth line uses Lemma 2.3 and the last line uses the assumed bound on p/p′. Let us explain
the third line. By Corollary 3.3 and Markov inequality, for any T ∈ T,

ν[T ⊆ F ] ≤ ν

[(
∏

C∈T

P[C | Ps]

)
> p′|T |

]
≤

(
p

p′

)|T |

≤

(
p

p′

)L/∆

. �

The preceding lemma shows that with high probability, our random greedy process returns a par-
tial assignment satisfying the condition in Lemma 3.4 (for L sufficiently large). Using the standard
method of conditional expectations, we can find such a partial assignment deterministically.

Proposition 3.5. There exists a deterministic algorithm running in time O(npoly(log q,log∆,k)) which
generates a sequence of partial assignments P1, . . . , Ps with the following properties.

(1) For all i ∈ [s], Pi assigns values to i variables, and Pi extends Pi−1.
(2) As = ∅.
(3) For all i ∈ [s] and j ∈ [m], P[Cj | Pi] ≤ p′q.
(4) Every connected component in G2(F) has size at most L = 10∆ log(∆n).

Proof. Let L′ = 10 log(∆n), and let T denote the collection of all {2,3}-trees of size L′ in G(C).

Note that |T| ≤ poly(nlog2 ∆), and indeed, it is easily seen (cf. [Alo91]) that the collection T can be

constructed in time poly(nlog2 ∆).
Now, for a partial assignment X, define

H(X) =
∑

T∈T

∏

C∈T

(
P[C | X]/p′

)
.

By the proof of Lemma 3.4, if we can find a sequence of partial assignments P1, . . . , Ps satisfying
properties (1), (2), (3) such that H(Ps) < 1, then (4) is also satisfied, since any {2, 3}-tree in G(C)
of size L′ contributes at least 1 to the sum.

To find such a sequence of partial assignments, we follow the same greedy procedure as before,
except now, after having chosen Pi−1 and v∗i , we choose the value of v∗i to be

argmin
a∈[q]

H(Pi−1 ∧ v∗i = a).

We claim that H(Pi) ≤ H(Pi−1) for all i ∈ [s]. Indeed, for every T ∈ T, there exists at most one
CT ∈ T such that v∗i ∈ vbl(CT ). Therefore,

∑

a∈[q]

P[v∗i = a]H(Pi−1 ∧ v∗i = a) =
∑

T∈T

∑

a∈[q]

(p′)−1
P[CT | Pi−1 ∧ v∗i = a]P[v∗i = a]

∏

C∈T\CT

P[C | Pi−1]

p′

= H(Pi−1),

which shows that it is possible to choose Pi to ensure H(Pi) ≤ H(Pi−1). Finally, since

H(∅) ≤ (n∆) · (e∆3)L
′

· (p/p′)L
′

< 1,

we are done. �
8



3.2. Step 2: Approximate counting. Let P0 = ∅ and P1, . . . , Ps denote the sequence of par-
tial assignments returned by Proposition 3.5. As before, we will denote the vertices which are
successively assigned values by v∗1, . . . , v

∗
s and we will denote their values under Ps by a∗1, . . . , a

∗
s.

For a partial assignment X, let SX denote the number of (complete) satisfying assignments
extending X. We will use SP0 (or S∅) to denote the set of all complete satisfying assignments.
Then,

|SPs |

|SP0 |
=

|SP1 |

|SP0 |
·
|SP2 |

|SP1 |
· · ·

|SPs |

|SPs−1 |

=

s∏

i=1

µS [v
∗
i = a∗i | Pi−1],

where recall that µS denotes the uniform measure on all satisfying assignments i.e. on SP0 . Thus,
to approximate |SP0 |, it suffices to approximate |SPs | and µS [v

∗
i = a∗i | Pi−1] for all i ∈ [s].

Lemma 3.6. For Ps returned by Proposition 3.5, |SPs | can be computed exactly in time npoly(∆,k,log q).

Proof. Since As = ∅, the set of variables left unassigned by Ps is precisely Fs. Let G1, . . . , Gr denote
the maximal connected components of G2(F) and let V ′

1 , . . . , V
′
r denote the variables appearing in

any constraint in G1, . . . , Gr. By the maximality of G1, . . . , Gr, the sets V ′
1 , . . . , V

′
s are mutually

disjoint. Also, by the maximality of G1, . . . , Gr, there does not exist any C ∈ C such that vbl(C)∩
V ′
i 6= ∅ and vbl(C) ∩ V ′

j 6= ∅ for some i 6= j ∈ [r], since otherwise, some vertex in Gi would be

connected in G2(F) to some vertex in Gj . Finally, note that |Gi| ≤ L, and hence |V ′
i | ≤ kL for all

i ∈ [r].
Since any v ∈ Fs must belong to some C ∈ F and since any C ∈ F must belong to some Gi, it

follows that
Fs ⊆ V ′

1 ∪ · · · ∪ V ′
s .

Moreover, as seen in the previous paragraph, there are no constraints involving variables from both
V ′
i and V ′

j for i 6= j. Therefore, for each i ∈ [r], we can exhaustively enumerate all assignments to

V ′
i ∩ Fs, check how many of them satisfy all relevant constraints, and finally take the product over

i ∈ [r] in the claimed time. �

Approximating µS [v
∗
i = a∗i | Pi−1] for i ∈ [s] is much more involved and will be the content of

the next section. Let δ ∈ (0, 1) and q−n ≤ r− ≤ r+ ≤ qn be parameters. In Proposition 4.8, we will
construct a subroutine Algr−,r+,δ with the following properties. Suppose p′ ≤ (10000q3k∆7)−1 and

let b ∈ [q].

• Algr−,r+,δ runs in time poly(n, k, q) · 2log(1/δ)·poly(∆,k,log q).
• Algr−,r+,δ returns YES if and only if

r−(1− δ) ≤
µS[v

∗
i = b | Pi−1]

µS [v∗i = a∗i | Pi−1]
≤ r+(1 + δ).

Let ε ∈ (0, 1) be a parameter. Then, using such a subroutine along with binary search on the
parameters r−, r+, we can clearly approximate µS [v

∗
i = a∗i | Pi−1] up to a multiplicative factor

of exp(ε/n) for each i ∈ [s] in time (n/ε)poly(∆,k,log q). Together with Lemma 3.6, this therefore
provides an approximation of |SP0 | up to relative error exp(ε).

4. Efficient estimation of the marginals

We will continue to use the notation and conventions of the previous section. Throughout, we fix
a partial assignment Ps as returned by Proposition 3.5. By considering the fixed order v1, . . . , vn of
the variables, this fixes the identity of the variables v∗1 , . . . , v

∗
s as well as the intermediate sequence

9



of partial assignments P1, . . . , Ps−1. Throughout, we also fix ℓ ∈ [s]. Our goal is to efficiently
approximate the conditional probabilities pℓ(a) := P[v∗ℓ = a | Pℓ−1] for all a ∈ [q]. We will use µS to
denote the uniform measure over all (complete) satisfying assignments, and for a partial assignment
x, µS [· | x] to denote the uniform measure on all (complete) satisfying assignments extending x. For
partial assignments x, x′, the notation x′ → x means that x is an extension of x′ (i.e. each variable
that is assigned in x′ is also assigned in x to the same value). Finally, we emphasize that P[·] will
always mean the product measure on the variables v1, . . . , vn.

4.1. Idealized coupling procedure and the idealized decision tree. Let p′′ > 0 be a param-
eter which will be chosen later. Fix a 6= b ∈ [q]. Let Pℓ(a) denote the partial assignment extending
Pℓ−1 obtained by setting v∗ℓ = a and let Pℓ(b) be defined analogously. We begin by describing a cou-
pling between assignments extending Pℓ(a) and Pℓ(b), which will motivate subsequent discussion.
We note that this coupling is not meant to actually be implemented by the algorithm.

(C1) Initialize the partial assignments X = Pℓ(a) and Y = Pℓ(b). Initialize (VS)X,Y = {v∗1 , . . . , v
∗
ℓ }

(the collection of “set” variables) and (VD)X,Y = {v∗ℓ } (the collection of “dangerous” variables).
(C2) Choose the lowest numbered constraint A ∈ C such that (VD)X,Y ∩ vbl(A) 6= ∅ and vbl(A) ∩

((VD)X,Y ∪ (VS)X,Y )
c 6= ∅. If no such A ∈ C exists, then terminate.

(C3) Choose the lowest numbered variable v ∈ vbl(A) ∩ ((VD)X,Y ∪ (VS)X,Y )
c.

(C4) Sample a pair of values (vX , vY ) according to the maximal coupling of the marginal distribution
of µS at v, conditioned on X and Y respectively.

(C5) Update X by assigning v = vX , and update Y by assigning v = vY . Update (VS)X,Y by
adding v.

(C6) Let DX,Y = {u ∈ (VS)X,Y : X(u) 6= Y (u)}. Let FX,Y = {C ∈ C : P[C | X] > p′′ or
P[C | Y ] > p′′}. Update

(VD)X,Y = DX,Y ∪
⋃

C∈FX,Y

(vbl(C) ∩ (VS)
c
X,Y ),

and return to (C2).

We record a few simple observations.

(O1) The set (VS)X,Y increases throughout the process.
(O2) FX,Y is non-decreasing throughout the process. Indeed, once C ∈ FX,Y , no other v ∈ vbl(C)

can be chosen in (C3), so that the conditional probability of C with respect to all subsequent
partial assignments remains the same.

(O3) The set (VD)X,Y is non-decreasing throughout the process.

The above coupling process may be viewed as randomly traversing root-to-leaf trajectories in an
idealized deterministic rooted decision tree T , defined using the following inductive procedure.

(T1) The root of the tree consists of the partial assignments (x0, y0) := (Pℓ(a), Pℓ(b)).
(T2) Given a node (x, y) (consisting of partial assignments on the same variables (VS)x,y), construct

Dx,y,Fx,y as in (C6). Let

(VD)x,y = Dx,y ∪
⋃

C∈Fx,y

(vbl(C) ∩ (VS)
c
x,y).

(T3) If there is no A ∈ C with (VD)x,y ∩ vbl(A) 6= ∅ and vbl(A) ∩ ((VD)x,y ∪ (VS)x,y)
c 6= ∅, then

(x, y) is a leaf of T .
(T4) Otherwise, let A ∈ C be the lowest numbered such constraint, and let vx,y be the lowest

numbered variable in vbl(A) ∩ ((VD)x,y ∪ (VS)x,y)
c. The children of (x, y) in T consist of all

possible extensions of (x, y) obtained by assigning a value to the variable vx,y.
10



The next lemma collects some useful properties of T .

Lemma 4.1. For T as defined above,

(1) For any node (x, y) ∈ T ,

P[Cj | x] ≤ p′′q and P[Cj | y] ≤ p′′q for all j ∈ [m].

(2) Assuming that e · p′′q ·∆ ≤ 1, for any node (x, y) ∈ T and for any v /∈ (VD)x,y,

TV(µS [v = · | x],P[v = ·]) ≤ (1− 3p′′q)−∆ − 1,

TV(µS [v = · | y],P[v = ·]) ≤ (1− 3p′′q)−∆ − 1.

(3) For any leaf (x, y) ∈ T , there is a partition V = (VD)x,y ∪ (VG)x,y ∪ (VR)x,y such that every
variable in (VG)x,y is assigned to the same value by both x and y and such that there is no
constraint C ∈ C with variables in both (VD)x,y and (VR)x,y.

Proof. (1) is immediate from (O2) and the same argument as Lemma 3.1.
(3) follows immediately using the termination criterion (T3) by taking (VG)x,y = (VS)x,y\(VD)x,y,

and (VR)x,y = ((VD)x,y ∪ (VS)x,y)
c.

Finally, for (2), setting µ(·) = µS[v = · | x] and ν(·) = P[v = ·], we get

TV(µS [v = · | x],P[v = ·]) = TV(µ, ν)

=
∑

a∈[q]:µ(a)>ν(a)

(µ(a)− ν(a))

≤
∑

a∈[q]:µ(a)>ν(a)

1

q

(
(1− 3p′′q)−∆ − 1

)

≤ (1− 3p′′q)−∆ − 1,

where the second line uses the definition of total variation distance, and the third line uses (1) and
Theorem 2.1. The same argument works for y as well. �

The idealized coupling process and decision tree are naturally associated to the following quan-
tities.

Definition 4.2. For T as defined above,

• For any node (x, y) ∈ T , let Sx denote the set of (complete) satisfying assignments extending
x, and let Sy denote the set of (complete) satisfying assignments extending y.

• For any node (x, y) ∈ T , let µcp(x, y) denote the probability that the idealized coupling
process reaches (x, y). For any (x, y) /∈ T , µcp(x, y) = 0.

• For any node (x, y) ∈ T , let

pxx,y =
µcp(x, y)

µS[x | x0]
,

pyx,y =
µcp(x, y)

µS[y | y0]
.

We conclude this subsection with some simple, but crucial, relations between these quantities.

Lemma 4.3. For T , Sx,Sy, p
x
x,y, p

y
x,y as above,

(1) pxx,y, p
y
x,y ∈ [0, 1].

(2) px0
x0,y0 , p

y0
x0,y0 = 1.

11



(3) For every non-leaf node (x, y) ∈ T whose children are defined on the set (VS)x,y ∪ {vx,y},
letting v = vx,y and letting xv(a) denote the extension of x obtained by setting v to a (and
similarly for yv(a)),

pxx,y =
∑

b∈[q]

p
xv(a)
xv(a),yv(b) for all a ∈ [q],

pyx,y =
∑

b∈[q]

p
yv(a)
xv(b),yv(a) for all a ∈ [q].

(4) For every node (x, y) ∈ T ,
|Sx| · p

x
x,y

|Sy| · p
y
x,y

=
|Sx0 |

|Sy0 |
.

(5) For every non-leaf node (x, y) ∈ T whose children are defined on the set (VS)x,y ∪{vx,y} and
for η = (1− 3p′′q)−∆ − 1, if η ≤ 1/(2q), then (letting v = vx,y)

∑

b6=a

p
xv(a)
xv(a),yv(b) ≤ 4qη · pxx,y for all a ∈ [q].

∑

b6=a

p
yv(a)
xv(b),yv(a) ≤ 4qη · pyx,y for all a ∈ [q].

Proof. (1) and (2) are trivial.
For (3), we note that for any a ∈ [q],

∑

b∈[q]

p
xv(a)
xv(a),yv(b) =

∑
b∈[q] µcp(xv(a), yv(b))

µS [xv(a) | x0]

=
µcp(x, y) · µS[v = a | x]

µS [x | x0] · µS [v = a | x]

= pxx,y.

The same argument also applies to pyx,y.
For (4), we have indeed that

pxx,y
pyx,y

=
µS [y | y0]

µS[x | x0]

=
|Sy|/|Sy0 |

|Sx|/|Sx0 |
.

Finally, for (5), Πx,y denote the optimal coupling of µS[u = · | x] and µS [u = · | y], we have for
any a ∈ [q],

∑
b6=a p

xv(a)
xv(a),yv(b)

pxx,y
=

∑
b6=a µcp(xv(a), yv(b))

µcp(x, y)µS [v = a | x]

=

∑
b6=aΠx,y(a, b)

µS[v = a | x]

≤

∑
b6=aΠx,y(a, b)

(1/q) − η

≤ 2q · TV(µS [v = · | x], µS [v = · | y])

≤ 2q (TV(µS [v = · | x],P[v = ·]) + TV(P[v = ·], µS [v = · | y]))

≤ 4qη,
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where the third line follows from (2) of Lemma 4.1, the fourth line follows from the characterization
of the total variation distance in terms of optimal coupling, and the last line follows again from (2)
of Lemma 4.1. �

4.2. Setting up the linear program. The most important property of the quantities defined
above is (3) in Lemma 4.3, which shows that given |Sx|/|Sy |, p

x
x,y, p

y
x,y at any node (x, y) ∈ T , one

obtains the key quantity |Sx0 |/|Sy0 |. What makes this property useful is the following observation,
which shows that for (x, y) ∈ T which are leaves, the ratio |Sx|/|Sy| can be computed efficiently.

Lemma 4.4. For any leaf (x, y) ∈ T , |Sx|/|Sy | can be computed in time poly(n, k, q) · q|(VD)x,y |.

Proof. Let (x, y) ∈ T be a leaf and let (VD)x,y, (VG)x,y, (VR)x,y be the partition of V as in (3) of
Lemma 4.1. All the unassigned variables (under x, y) are in (VD)x,y∪(VR)x,y and note that there are
no constraints with variables in both (VD)x,y and (VR)x,y. Further, the number of ways of assigning
values to variables in (VR)x,y so that they satisfy all constraints with variables in (VR)x,y ∪ (VG)x,y
is the same (and hence, does not contribute to the ratio) since each variable in (VG)x,y is assigned
to the same value by both x and y. Therefore, the ratio |Sx|/|Sy| is equal to the ratio of the number
of ways of assigning values to the unassigned variables in (VD)x,y such that all constraints with
variables in (VD)x,y ∪ (VG)x,y are satisfied. This can be done by exhaustive enumeration in the
claimed time. �

Motivated by the preceding discussion, let L ≥ 2 be a parameter to be chosen later and consider
the L-truncated decision tree defined as follows.

Definition 4.5. For L ≥ 2 and with T as before, we define the L-truncated decision tree TL to
consist of those nodes (x, y) ∈ T for which |(VS)x,y| ≤ L+ ℓ. We let LL denote the leaves of TL, Lg

L
denote those leaves in LL which have |(VS)x,y| ≤ L + ℓ − 1 (in particular, these are also leaves of

T ), and let Lb
L denote the remaining leaves.

We now set up a linear program to mimic the quantities pxx,y, p
y
x,y for each node of TL. Formally,

given parameters r− ≤ r+, η = (1 − 3p′′q)−∆ − 1 and TL, we check whether the following linear
program in variables p̂xx,y and p̂yx,y is feasible:

(LP1) For all (x, y) ∈ TL, 0 ≤ p̂xx,y, p̂
y
x,y ≤ 1.

(LP2) For every (x, y) ∈ Lg
L,

r− ≤
p̂xx,y|Sx|

p̂yx,y|Sy|
≤ r+.

(LP3) p̂x0
x0,y0 = p̂y0x0,y0 = 1. Moreover, for every node (x, y) ∈ TL \ LL whose children are defined on

the set (VS)x,y ∪ {vx,y} and letting v = vx,y,

p̂xx,y =
∑

b∈[q]

p̂
xv(a)
xv(a),yv(b) for all a ∈ [q],

p̂yx,y =
∑

b∈[q]

p̂
yv(a)
xv(b),yv(a) for all a ∈ [q].

(LP4) For every node (x, y) ∈ TL \ LL whose children are defined on the set (VS)x,y ∪ {vx,y} and
letting v = vx,y, for every a ∈ [q],

∑

b6=a

p̂
xv(a)
xv(a),yv(b) ≤ 4qη · p̂xx,y,

∑

b6=a

p̂
yv(a)
xv(b),yv(a) ≤ 4qη · p̂yx,y.
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Claim 4.6. The above LP is feasible for r− = r+ = |Sx0 |/|Sy0 |.

Proof. This follows immediately by taking p̂xx,y = pxx,y, p̂
y
x,y = pyx,y and using Lemma 4.3. �

Claim 4.7. For every r−, r+, η which can be represented in poly(n, q) bits, the feasibility of the
above LP can be checked in time poly(n, qL).

Proof. This follows from standard guarantees on the running time of linear programming (cf.

[Kha79]) since the number of variables and constraints in the LP are O(qL+O(1)) and since |Sx|/|Sy |
can be represented using poly(n, q) bits. �

4.3. Analysis of the linear program. We now show that the feasibility of the above LP (for
sufficiently large L and appropriately chosen p′′) implies that r− (respectively r+) is an approximate
lower (respectively upper) bound for |Sx0 |/|Sy0 |. Given this, we will be able to use binary search in
order to approximate |Sx0 |/|Sy0 |. The key point is that the approximation error decays exponentially
in L, which will allow us to take L small enough to ensure that this procedure is efficient.

Proposition 4.8. Let p′′ ≤ (100q2k∆4)−1, p′ ≤ p′′/(100∆3q), and L ≥ 8k∆2. Then, the feasibility
of the above LP with parameters r−, r+ implies that

(
1− 4 · 2−L/(k∆2)

)
r− ≤

|Sx0 |

|Sy0 |
≤
(
1 + 4 · 2−L/(k∆2)

)
r+.

Proof. By iterating the condition (LP3), we have
∑

(x,y)∈LL:x→σ

p̂xx,y = 1 for all σ ∈ Sx0 ,

∑

(x,y)∈LL:y→σ

p̂yx,y = 1 for all σ ∈ Sy0 .

Therefore,

|Sx0 | =
∑

σ∈Sx0

∑

(x,y)∈LL:x→σ

p̂xx,y,

|Sy0 | =
∑

σ∈Sy0

∑

(x,y)∈LL:y→σ

p̂yx,y.

At the end of this subsection, we will prove the following.

Lemma 4.9. For all p′′ ≤ (100q2k∆4)−1, p′ ≤ p′′/(100∆3q), and L ≥ 8k∆2,

1

|Sx0 |

∑

σ∈Sx0

∑

(x,y)∈Lb
L
:x→σ

p̂xx,y ≤ 2−L/(k∆2),

1

|Sy0 |

∑

σ∈Sy0

∑

(x,y)∈Lb
L
:y→σ

p̂yx,y ≤ 2−L/(k∆2).

Given this lemma, we have

|Sx0 | =
∑

σ∈Sx0

∑

(x,y)∈Lg
L
:x→σ

p̂xx,y +
∑

σ∈S(x0)

∑

(x,y)∈Lb
L
:x→σ

p̂xx,y

=


 ∑

(x,y)∈Lg
L

p̂xx,y · |Sx|


± |Sx0 | · 2

−L/(k∆2),
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where the first term follows by interchanging sums and the second term follows by Lemma 4.9. A
similar estimate also holds for |Sy0 |.

Thus, we have

|Sx0 | · (1± 2−L/(k∆2))

|Sy0 | · (1± 2−L/(k∆2))
=

∑
(x,y)∈Lg

L
p̂xx,y · |Sx|∑

(x,y)∈Lg
L
p̂yx,y · |Sy|

∈

[
r− ·

∑
(x,y)∈Lg

L
p̂yx,y · |Sy|∑

(x,y)∈Lg
L
p̂yx,y · |Sy|

,
r+ ·

∑
(x,y)∈Lg

L
p̂yx,y · |Sy|∑

(x,y)∈Lg
L
p̂yx,y · |Sy|

]

∈ [r−, r+],

where the second line follows from (LP2). Thus

|Sx0 |

|Sy0 |
∈ [(1 − 4 · 2−L/(k∆2))r−, (1 + 4 · 2−L/(k∆2))r+],

as desired. �

Proof of Lemma 4.9. We will only prove the statement for |Sx0 |; the proof of the other statement
is identical.

For a node (x, y) ∈ T , let (VS)
′
x,y = (VS)x,y \ {v

∗
1 , . . . , v

∗
ℓ−1}. For a node (x, y) ∈ T which is not

a leaf, we will use vx,y to denote the variable such that the children of (x, y) are defined on the set
(VS)x,y ∪ {vx,y}. When (x, y) ∈ T is clear from context, we will denote vx,y simply by v.

Consider the following way of generating random root-to-leaf paths of TL. At a non-leaf node
(x, y) ∈ T , sample a value for v = vx,y according to µS[v = · | x] to generate an assignment x′ on
(VS)x,y ∪ {vx,y}. Then, choose a random element b′ of [q] and go to the node (x′, yv(b′)) ∈ T , where
the probability of choosing each b ∈ [q] is

p(x, y, x′, yv(b)) =
p̂x

′

x′,yv(b)

p̂xx,y
.

Note that by (LP3), p(x, y, x′, yv(·)) is indeed a probability distribution. Let (X,Y ) denote the
random leaf of TL returned by this process and let µ̂ denote the probability distribution on LL

induced by this process.
Let (xf , yf ) ∈ LL and denote the corresponding root-to-leaf path by (x0, y0), . . . , (xf , yf ). Then,

µ̂[(X,Y ) = (xf , yf )] =

f∏

t=1

µS[xt | xt−1]×

f∏

t=1

p(xt−1, yt−1, xt, yt) =
|Sxf

|

|Sx0 |
·
p̂
xf
xf ,yf

p̂x0
x0,y0

=
|Sxf

|

|Sx0 |
· p̂

xf
xf ,yf ,

where the final equality follows by (LP3).
Therefore,

1

|Sx0 |

∑

σ∈Sx0

∑

(x,y)∈Lb
L
:x→σ

p̂xx,y =
∑

σ∈Sx0

∑

(x,y)∈Lb
L
:x→σ

µ̂[(X,Y ) = (x, y)]

|Sx|

=
∑

(x,y)∈Lb
L

µ̂[(X,Y ) = (x, y)]

≤ µ̂[(X,Y ) ∈ {(x, y) ∈ TL : |(VS)
′
x,y| ≥ L}].

In order to bound the quantity on the right, we will first find a more convenient combinatorial
characterization of the event. For this, fix (x, y) ∈ TL such that |(VS)

′
x,y| ≥ L. Recall the notation

Dx,y,Fx,y from (T2). We also need some further notation.
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• For i ∈ [m], we say that Ci is x-frozen if P[Ci | x] > p′′. We denote the set of x-frozen
constraints by F ′

x.
• For i ∈ [m], we say that Ci has a disagreement if vbl(Ci) ∩ Dx,y 6= ∅. Denote all such

constraints by Dx,y.
• For i ∈ [m], we say that Ci ∈ C is bad if Ci ∈ Fx,y ∪ Dx,y. We denote the set of bad

constraints by Bx,y.
• G(C) = (C, E) is the graph whose vertices are constraints in C, and for i 6= j, there is an

edge between Ci and Cj if and only if vbl(Ci) ∩ vbl(Cj) 6= ∅.
• G2(C) = (C, E′) is the graph whose vertices are constraints in C, and for i 6= j, there is

an edge between Ci and Cj if and only if there exists k with vbl(Ci) ∩ vbl(Ck) 6= ∅, and
vbl(Cj) ∩ vbl(Ck) 6= ∅.

Claim 4.10. |Bx,y| ≥ L/(k∆).

Proof. First, note that by (O3), (T3), and (T4), for every v ∈ (V ′
S)x,y, there exists some C ∈ C such

that vbl(C) ∩ (VD)x,y 6= ∅ and v ∈ vbl(C).
Next, note that by (T2), for every v ∈ (VD)x,y, there exists some B ∈ Bx,y such that v ∈ vbl(B).
Therefore,

L ≤ |(V ′
S)x,y|

≤ k · |{C ∈ C : vbl(C) ∩ (VD)x,y 6= ∅}|

≤ k · |{C ∈ C : vbl(C) ∩ vbl(B) 6= ∅ for some B ∈ Bx,y}|

≤ k∆ · |Bx,y|. �

Fix C∗ ∈ C such that v∗ℓ ∈ vbl(C∗).

Claim 4.11. There exists a {2, 3}-tree T ⊆ Bx,y in G(C) with |T | ≥ L/(k∆2) and such that T
contains C∗.

Proof. By (T4), (O3), and induction, the induced subgraph of G2(C) on Bx,y is connected. Moreover,
C∗ ∈ Dx,y ⊆ Bx,y. Given this, the claim follows from Lemma 2.4 and the previous claim. �

Let L̂ = L/(k∆2) and let TL̂ denote the collection of {2, 3}-trees in G(C) of size L̂ which contain
C∗. Then, by the previous discussion,

µ̂[(X,Y ) ∈ {(x, y) ∈ TL : |(VS)
′
x,y| ≥ L}] ≤

∑

T∈T
L̂

µ̂[T ⊆ BX,Y ]

≤ (e∆3)L̂ · µ̂[T ⊆ BX,Y ],

where the final inequality uses Lemma 2.3.
Finally, let us fix T ∈ T

L̂
and estimate

µ̂[T ⊆ BX,Y ].

We denote the vertices of T in G(C) by C ′
1 = C∗, C ′

2, . . . , C
′
L̂
. Note, in particular, that v∗ℓ /∈

vbl(C ′
j) for 2 ≤ j ≤ L̂. By multiplying the result by an overall factor of 2L̂, it suffices to bound the

probability
µ̂[C ′

2, . . . , C
′
t ∈ DX,Y ∧C ′

t+1, . . . , C
′
L̂
∈ FX,Y \ DX,Y ],

which is at most
µ̂[C ′

2, . . . , C
′
t ∈ DX,Y ∧C ′

t+1, . . . , C
′
L̂
∈ F ′

X ].

Using the law of total probability, this is equal to

Eµ̂

[
µ̂[C ′

2, . . . , C
′
t ∈ DX,Y | X] · µ̂[C ′

t+1, . . . , C
′
L̂
∈ F ′

X | X]
]
. (4.1)
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Claim 4.12. For any possible realization x of X,

µ̂[C ′
2, . . . , C

′
t ∈ Dx,Y | x] ≤ (4kqη)t−1.

Proof. Let j ∈ [t]. Given x, we have C ′
j ∈ Dx,Y only if there is some v ∈ vbl(C ′

j) for which

Y (v) 6= x(v). Since | vbl(C ′
j)| ≤ k, we see by (LP4) that this happens with probability at most

4kqη. Moreover, since vbl(C ′
j) are disjoint for different values of [j], these events are independent,

which gives the desired conclusion. �

Using this claim, we see that the quantity in (4.1) is bounded above by

(4kqη)t−1 · µ̂[C ′
t+1, . . . , C

′
L̂
∈ F ′

X ]. (4.2)

Claim 4.13. µ̂[C ′
t+1, . . . , C

′
L̂
∈ F ′

X ] ≤ (2p′q/p′′)L̂−t.

Proof. Let

X = {x : (x, y) ∈ T
L̂

for some y ∧ C ′
t+1, . . . , C

′
L̂
∈ F ′

x},

so that our goal is to bound µ̂[X]. We will use an argument similar to Lemma 3.2.
For h ∈ {0, . . . , L}, let Th ⊆ TL denote those nodes (x, y) ∈ T for which |(VS)x,y| ≤ h + ℓ and

let Lh denote the leaves of Th. To any (x, y) ∈ TL, we can naturally associate a root-to-leaf path
(x0, y0), . . . , (xL, yL) = (x, y), where (xi, yi) ∈ Ti and nodes are possibly repeated at the end of
the path. Interpreting µ̂ as a distribution on root-to-leaf paths of this form, let S(h) denote the
sigma-algebra induced on Th and let

Mh =

L̂∏

j=t+1

P[C ′
j | Xh] · exp(−ηqW (Xh, Yh)),

where

W (Xh, Yh) = #
{
j ∈ [h− 1] : vXj ,Yj

∈ vbl(C ′
t+1) ∪ · · · ∪ vbl(C ′

L̂
)
}
.

Then, Mh is measurable with respect to S(h) and using the argument in Lemma 3.2, it is readily
seen that

Eµ̂[Mh+1 | S(h)] ≤ Mh.

Indeed, we only need to check that given (Xh, Yh) and letting CT denote the unique constraint (if
any) containing v = vXh,Yh

, we have

Eµ̂

[
P[CT | Xh+1] | S(h)

]
=
∑

a∈[q]

P[CT ∧Xh ∧ v = a] · µ̂[v = a | Xh]

P[Xh ∧ v = a]

=
∑

a∈[q]

P[CT ∧Xh ∧ v = a]

P[Xh]
·
µ̂[v = a | Xh]

P[v = a]

≤
∑

a∈[q]

P[CT ∧Xh ∧ v = a]

P[Xh]

q−1 + η

q−1

≤ exp(ηq)P[CT | Xh],

where the third line follows from (2) of Lemma 4.1. Since

P[C ′
j | X0] ≤ p′q,

it therefore follows that

Eµ̂[ML] ≤ (p′q)L̂−t.
17



Also, for any (x, y) ∈ TL, we have that W (x, y) ≤ k(L̂− t). Hence, by Markov’s inequality and the
assumption on p′′,

µ̂[X] ≤ µ̂[ML ≥ (p′′)L̂−t exp(−ηqk(L̂− t))]

≤

(
p′q exp(ηqk)

p′′

)L̂−t

≤

(
2p′q

p′′

)L̂−t

. �

Using the preceding claim along with (4.2) and simplying using the bounds on p′, p′′ completes
the proof. �

5. Proof of Theorems 1.5 and 1.6

We are now ready to prove Theorems 1.5 and 1.6. The algorithms in this section exploit a
refinement of the analysis in the previous section, which we present in Section 5.1. Following this,
we present the proof of Theorem 1.5 in Section 5.2 and the proof of Theorem 1.6 in Section 5.3. We
will freely use the notation introduced in the previous two sections.

5.1. Refined analysis of the linear program. As in Section 3, fix an ordering v1, . . . , vn of the
variables. Let p′ ≤ p′′ be parameters to be chosen later. Recall that in Section 3.1, we generate a
partial assignment on a subset v∗1 , . . . , v

∗
s of the variables (where s is itself random) and “freeze” the

remaining variables. This process depends on the parameter p′ in (R4). As before, for i ∈ [s], we
let Pi denote the partial assignment on v∗1, . . . , v

∗
i and we let ν denote the distribution on partial

assignments given by the final partial assignment Ps. Once again, we emphasize that s is random.
For our approximate sampling algorithm, we will also need the following variation of this proce-

dure. We consider the same randomized greedy procedure as in Section 3.1, except now, in (R3), we
assign v∗i a random value chosen according to the distribution µS [v

∗
i = · | Pi−1]. For now, the reader

should ignore the question of how to efficiently implement such a procedure. We let νS denote the
distribution on partial assignments given by the final partial assignment Ps, noting again that s is
random.

Given v∗1 , . . . , v
∗
i and a ∈ [q], we denote by Pi(a) the partial assignment extending Pi−1 by setting

v∗i = a. As before, for h ∈ [n], we let ι(h) be the largest index i such that v∗i = vw for some w ≤ h
i.e. ι(h) is the number of variables among {v1, . . . , vh} assigned values by the partial assignment.

For each variable v, there are at most ∆ constraints C ∈ C such that v ∈ vbl(C). Let L̂ =

L/(k∆2), and let T
L̂,v

be the set of {2, 3}-trees in G(C) of size L̂ containing one of these constraints.

For any T ∈ TL̂,v, we let C∗
v denote the unique C ∈ T satisfying v ∈ vbl(C). Recall that Fx,y

denotes the constraints C ∈ C for which P[C | x] > p′′ or P[C | y] > p′′.
For ℓ ∈ [s], we define the idealized decision tree T starting from the root node (x0, y0) :=

(Pℓ(a), Pℓ(b)) and the L-truncated decision tree TL as in Section 4. Let η = (1− 3p′′q)−∆ − 1. The
following lemma was proved during the course of the proof of Lemma 4.9.

Lemma 5.1. For all p′ = p′′ ≤ (1000q2k∆4)−1 and p ≤ p′′/(1000∆3q),

1

|Sx0 |

∑

σ∈Sx0

∑

(x,y)∈Lb
L
:x→σ

p̂xx,y ≤
∑

T∈T
L̂,v∗

ℓ

∏

C∈T,C 6=C∗

v∗
ℓ

(
4kqη +

2P[C | Pℓ−1]

p′′

)
,

1

|Sy0 |

∑

σ∈Sy0

∑

(x,y)∈Lb
L
:y→σ

p̂yx,y ≤
∑

T∈T
L̂,v∗

ℓ

∏

C∈T,C 6=C∗

v∗
ℓ

(
4kqη +

2P[C | Pℓ−1]

p′′

)
.

Remark. Note that there is no factor of q multiplying 2P[C | Pℓ−1]/p
′′ since v∗ℓ /∈ vbl(C) for any C

that features in the product.
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For h ∈ [n+ 1], let E(h) denote the event that for all variables v ∈ V ,

∑

T∈T
L̂,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
≤ n42−L/(k∆2).

The next lemma, together with Markov’s inequality, shows that E(h) occurs with high probability
with respect to both ν and νS .

Lemma 5.2. Let p′ = p′′ ≤ (100q2k∆4)−1, p ≤ p′′/(100∆3), and L ≥ 8k∆2. Then, for all
h ∈ [n + 1] and v ∈ V ,

Eν


 ∑

T∈T
L̂,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤ 2−L/(k∆2),

and

EνS


 ∑

T∈T
L̂,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤ 2−L/(k∆2).

Proof. We will first prove the statement for ν. Fix v ∈ V and observe that for any T ∈ T
L̂,v

, the

sets vbl(C) are disjoint for C ∈ T . Let S(t) denote the σ-algebra generated by the output of the
randomized greedy procedure on partial assignments of v1, . . . , vt. Then, by an identical argument
to Lemma 3.2, we see that

Mt =
∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(t−1)]

p′′

)

satisfies

Eν [Mt+1 | S(t)] = Mt

Thus, for any h ∈ [n + 1],

Eν




∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤

(
4kqη +

2p

p′′

)|T |−1

,

so that by linearity of expectation,

Eν


 ∑

T∈T
L̂,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤ |T

L̂,v
|

(
4kqη +

2p

p′′

)|T |−1

≤ ∆ · (e∆3)L̂ ·

(
4kqη +

2p

p′′

)L̂−1

.

The desired bound is obtained by using the assumptions on p and p′′.
Next, we prove the statement for νS . Fix v ∈ V . For T ∈ TL̂,v, let Wt(T ) be the number of

variables among v∗1 , . . . , v
∗
ι(t) that are contained in some C ∈ T . Also, as before, let S(t) denote the

σ-algebra generated by the output of the randomized greedy procedure on partial assignments of
v1, . . . , vt. Then, as in Claim 4.13, we have that

Mt =
∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(t−1)]

p′′

)
· exp(−ηqWt−1(T ))
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satisfies

EνS [Mt+1 | S(t)] ≤ Mt.

Thus, for any h ∈ [n + 1],

EνS




∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤

(
4kqη +

2p

p′′

)|T |−1

exp(ηqk)|T |−1.

so that by linearity of expectation,

EνS



∑

T∈T
L̂,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | Pι(h−1)]

p′′

)
 ≤ |TL̂,v|

(
8kqη +

4p

p′′

)|T |−1

≤ ∆ · (e∆3)L̂ ·

(
8kqη +

4p

p′′

)L̂−1

.

The desired bound is obtained by using the assumptions on p and p′′. �

Combining Lemmas 5.1 and 5.2 and the analysis in Section 4, we obtain the following proposition.

Proposition 5.3. Let p′ = p′′ ≤ (1000q2k∆4)−1, p ≤ p′′/(1000∆3), and δ ∈ (0, 1). Then, for
L ≥ 8k∆2 log(n/δ), the event ∧h∈[n+1]E(h) has probability at least 1− (δ/n2) with respect to both ν
and νS.

Moreover, on the event ∧h∈[n+1]E(h), the feasibility of the LP with parameters r− ≤ r+ implies
that (

1− 4 · n42−L/(k∆2)
)
r− ≤

|Sx0 |

|Sy0 |
≤
(
1 + 4 · n42−L/(k∆2)

)
r+.

5.2. Approximate counting: proof of Theorem 1.5. We have the following analogue of Proposition 3.5.

Lemma 5.4. Let p′ = p′′ ≤ (1000q2k∆4)−1, p ≤ p′′/(1000∆3), and L = 80k∆2 log(∆n). There

exists a deterministic algorithm running in time O(npoly(log q,∆,k)) which generates a sequence of
partial assignments P1, . . . , Ps with the following properties.

(1) For all i ∈ [s], Pi assigns values to i variables, and Pi extends Pi−1.
(2) As = ∅.
(3) For all i ∈ [s] and j ∈ [m], P[Cj | Pi] ≤ p′q.
(4) Every connected component in G(F) has size at most L/(k∆).
(5) The event ∧h∈[n+1]E(h) is satisfied.

Proof. The proof is a modification of the proof of Proposition 3.5. Let L′ = L/(k∆2). Recall that
for each variable v, TL′,v is the set of {2, 3}-trees in G(C) of size L′ containing C∗

v . Let T denote

the collection of all {2,3}-trees of size L′ in G(C). Note that |TL′,v| ≤ |T| ≤ poly(nlog2 ∆) and the

collections TL′,v, T can be constructed in time poly(nlog2 ∆).
For a partial assignment X, define

H(X) =
∑

v∈V

∑

T∈TL′,v

∏

C∈T,C 6=C∗

v

(
4kqη +

2P[C | X]

p′′

)
.

Note that

H(X) ≥
∑

T∈T

∏

C∈T

(
P[C | X]

p′′

)
.
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As in the proof of Proposition 3.5, if we can find a sequence of partial assignments P1, . . . , Ps

satisfying properties (1), (2), (3) such that H(P1), . . . ,H(Ps) < n42−L/(k∆2) < 1, then (4) and (5)
are also satisfied.

For this, we follow the same greedy procedure as in Section 3.1, except now, after having chosen
Pi−1 and v∗i , we choose the value of v∗i in (R3) to be

argmin
a∈[q]

H(Pi−1 ∧ v∗i = a).

Similar to Proposition 3.5, this ensures that H(Pi) ≤ H(Pi−1) for all i ∈ [s]. Thus, it is possible to
choose Pi to ensure H(Pi−1) ≤ H(Pi). Finally, since

H(∅) ≤ n ·∆ · (e∆3)L
′

·

(
4kqη +

2p

p′′

)L′

< n42−L/(k∆2),

we are done. �

Finally, given partial assignments P1, . . . , Ps satisfying the properties of Lemma 5.4, we can use
Lemma 3.6, Proposition 5.3 and the analysis of Section 4 to complete the proof of Theorem 1.5.

5.3. Approximate sampling: proof of Theorem 1.6. We consider the following sampling pro-
cedure. Fix a parameter ε ∈ (0, 1). Let L = 80k∆2 log(∆n/ε).

(S1) Fix an arbitrary ordering v1, . . . , vn of the variables. Initialize the set of frozen variables F0 = ∅,
the set of available variables A0 = V , ι(0) = 0, and P0 = ∅.

(S2) Let 1 ≤ i ≤ n. Given Pι(i−1), Fi−1, Ai−1, if E(i) does not hold, then output an arbitrary
satisfying assignment (which can be found using the algorithmic LLL in [MT10]) and terminate.
Otherwise, E(i) holds.

(S3) If vi /∈ Ai−1, then ι(i) = ι(i − 1), Fi = Fi−1, Ai = Ai−1. Increment i. If i ≤ n, return to (S2).
Otherwise, proceed to (S6).

(S4) If vi ∈ Ai−1, then approximate the marginal µS [vi = · | Pι(i−1)] within total variation distance
ε/(8n) using the LP. Then, assign vi a random value in [q] distributed according to the output
of the LP. Let ι(i) = ι(i− 1) + 1, and Pι(i) be the extension of Pι(i−1) resulting from assigning
a value to vi.

(S5) Let
Fi = {j ∈ [m] : P[Cj | Pι(i)] > p′′}.

Set
Fi = Fi−1 ∪

⋃

j∈Fi

(vbl(Cj) ∩Ai \ {vi}) and Ai = Ai−1 \ (Fi ∪ {vi}).

Increment i. If i ≤ n, return to (S2). Otherwise, proceed to (S6).
(S6) Let F = ∪i∈[n]Fi. Consider G2(F), which is the induced subgraph of G2(C) by the vertices

F . If any connected component of G2(F) has size larger than 80∆ log(∆n), then output an
arbitrary satisfying assignment and terminate.

(S7) Else, use exhaustive enumeration to uniformly sample a satisfying assignment of unassigned
variables appearing in each separate connected component of G2(F), and return the complete
satisfying assignment thus obtained.

It is immediate that the running time of the algorithm is as claimed in Theorem 1.6. Let
µAlg denote the distribution on satisfying assignments generated by the algorithm. We show that
TV(µAlg, µS) ≤ ε.

For this, we begin by observing that if we could sample from the true marginal distribution
µS [vi = · | Pι(i−1)] in (S4) and if we could output a uniform satisfying assignment extending the
current partial assignment for the early termination in (S2) and (S6), then the resulting distribution
on satisfying assignments output by the algorithm clearly coincides with µS.

21



Next, since the approximate marginals in (S4) are within ε/(8n) of the true marginals, it follows
from Proposition 5.3 and Lemma 3.4 that the early termination condition in (S2) and (S6) occurs
with probability at most ε/4. Therefore, TV(µAlg, µAlg′) ≤ ε/4, where Alg′ denotes the sampling
algorithm which is the same as above, except upon early termination in (S2) and (S6), we output
a uniformly random satisfying assignment extending the current partial assignment.

Finally, since the approximate marginals in (S4) are within ε/(8n) of the true marginals, it follows
that TV(µAlg′ , µS) ≤ ε/8, so that by the triangle inequality, TV(µAlg, µS) ≤ ε, as desired.
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