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Abstract

We consider the numerical taxonomy problem of fitting a positive distance function
D :

(
S
2

)
→ R>0 by a tree metric. We want a tree T with positive edge weights and includ-

ing S among the vertices so that their distances in T match those in D. A nice application is in
evolutionary biology where the tree T aims to approximate the branching process leading to the
observed distances in D [Cavalli-Sforza and Edwards 1967]. We consider the total error, that is
the sum of distance errors over all pairs of points. We present a deterministic polynomial time
algorithm minimizing the total error within a constant factor. We can do this both for general
trees, and for the special case of ultrametrics with a root having the same distance to all vertices
in S.

The problems are APX-hard, so a constant factor is the best we can hope for in polynomial
time. The best previous approximation factor was O((log n)(log log n)) by Ailon and Charikar
[2005] who wrote “Determining whether an O(1) approximation can be obtained is a fascinating
question”.
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1 Introduction

Taxonomy or hierarchical classification of species goes back at least to discussions between Aristotle
and his teacher Plato1 (∼350BC) while modern taxonomy is often attributed to Linnaeus2 (∼1750).
The discussions of evolution in the nineteenth century, clarified the notion of evolutionary trees,
or phylogenies, and the notion that species were close due to a common past ancestor. Such
evolutionary trees are seen in the works of Hitchcock3 (1840) and Darwin4 (1859). Viewing the
descendants of each node as a class, the evolutionary tree induces a hierarchical classification.

In the 1960s came the interest in computing evolutionary trees based on present data, the so-
called numerical taxonomy problem [11, 49, 50]. Our focus is on the following simple model by
Cavalli-Sforza and Edwards from 1967 [11]. In an evolutionary tree, let the edge between the child
and its parent be weighted by the evolutionary distance between them. Then the evolutionary
distance between any two species is the sum of weights on the unique simple path between them.
We note that the selection of the root plays no role for the distances. What we are saying is that
any tree with edge weights, induces distances between its nodes; a so-called tree metric assuming
that all weights are positive.

We now have the converse reconstruction problem of numerical taxonomy [11, 49, 50]: given a
set S of species with measured distances between them, find a tree metric matching those observed
distances on S. Thus we are looking for an edge-weighted tree T which includes S among its nodes
with the right distances between them. Importantly, T may have nodes not in S representing
ancestors explaining proximity between different species. The better the tree metric T matches the
measured distances on S, the better the tree T explains these measured distances.

Other applications This very basic reconstruction problem also arises in various other contexts.
First, concerning the evolutionary model, it may be considered too simplistic to just add up dis-
tances along the paths in the tree. Some changes from parent to child could be reverted for a
grandchild. Biologists [12, 34] have suggested stochastic models for probabilistic changes that also
have a chance of being reverted further down. However, Farach and Kannan [32] have shown that
applying logarithms appropriately, we can convert estimated distances into some other distances
for which we find a matching tree metric that we can then convert back into a maximum likelihood
stochastic tree. The basic point is that finding tree metrics can be used as powerful tool to invert
evolution even in cases where tree metric model does not apply directly.

Obviously, the numerical taxonomy problem is equally relevant to other historical sciences with
an evolutionary branching process leading to evolutionary distances, e.g., historical linguistics.

More generally, if we can approximate distances with a tree metric, then the tree of this metric
provides a very compact and convenient representation that is much easier to navigate than a general
distance function. Picking any root, the tree induces a distance based hierarchical classification,
and referring to the discussions between Plato and Aristotle’s, humans have been interested in such
hierarchical classifications since ancient time.

It is not just humans but also computers that understand trees and tree metrics much better
than general metrics. Many questions that are NP-hard to answer in general can be answered very

1https://iep.utm.edu/classifi/, Internet Encyclopedia of Philosophy
2https://britannica.com/science/taxonomy/The-Linnaean-system
3https://en.wikipedia.org/wiki/Edward Hitchcock
4https://en.wikipedia.org/wiki/On the Origin of Species
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efficiently based on trees (see, e.g., Chapter 10.2 “Solving NP-Hard Problems on Trees” in the text
book [41]).

Computing “good” tree representations is nowadays also a major tool to learn from data. In
this context, we are sometimes interested in a special kind of tree metrics, called ultrametrics,
defined by rooted trees whose sets of leaves is S and where the leaf-to-root distance is the same
for all points in S. Equivalently, an ultrametric is a metric so that for any three points i, j, k, the
distance from i to j is no bigger than the maximum of the distance from i to j and the distance
from j to k 5.

An ultrametric can be seen as modeling evolution that is linear over time. This may be not
the case in biology where the speed of evolution depends on the local evolutionary pressure for
example. However, ultrametrics are key objects in machine learning and data analysis, see e.g.:
[10], and there are various algorithms for embedding arbitrary metrics into ultrametrics such as the
popular “linkage” algorithms (single, complete or average linkage), see also [24, 45].

1.1 Tree fitting (Numerical Taxonomy Problem)

Typically our measured distances do not have an exact fit with any tree metric. We then have the
following generic optimization problem for any Lp-norm:

Problem: Lp-fitting tree (ultra) metrics

Input: A set S with a distance function D :
(
S
2

)
→ R>0. 6

Desired Output: A tree metric (or ultrametric) T that spans S and fits D in the sense of
minimizing the Lp-norm

‖T −D‖p =

 ∑
{i,j}∈(S2)

|distT (i, j)−D(i, j)|p


1/p

. (1)

Cavalli-Sforza and Edwards [11] introduced this numerical taxonomy problem for both tree and
ultrametrics in the L2-norm in 1967. Farris suggested using L1-norm in 1972 [34, p. 662].

1.2 Our result

In this paper we focus on the L1-norm, that is, the total sum of errors. The problem is APX-hard,
both for tree metrics and ultrametrics (see Section 9 and also [3]), so a constant approximation
factor is the best we can hope for in polynomial time. The best previous approximation factor for
both tree metrics and ultrametrics was O((log n)(log logn)) by Ailon and Charikar [3].

In this paper we present a deterministic polynomial time constant factor approximation both
for tree metrics and for ultrametrics, that is, in both cases, we can find a tree T minimizing the
L1-norm within a constant factor of the best possible.

Thus, we will prove the following theorem.

Theorem 1. The L1-fitting tree metrics problem can be solved in deterministic polynomial time
within a constant approximation factor. The same holds for the L1-fitting ultrametrics problem.

5https://en.wikipedia.org/wiki/Ultrametric space.
6
(
S
k

)
denotes all subsets of S of size k.

2



1.3 History of Lp tree fitting

Since Cavalli-Sforza and Edwards introduced the tree fitting problem, the problem has collected an
extensive literature. In 1977 [54], it was shown that if there is a tree metric coinciding exactly with
D, it is unique and it can be found in time linear in the input size, i.e., O(|S|2) time. The same
then also holds trivially for ultrametrics. Unfortunately there is typically no tree metric coinciding
exactly with D, and in 1987 [27] it was shown that for L1 and L2 the numerical taxonomy problem
is NP-hard, both in the tree metric and the ultrametric cases. The problems are in fact APX-hard
(see Section 9), which rules out the possibility of a polynomial-time approximation scheme. Thus,
a constant factor, like ours for L1, is the best one can hope for from a complexity perspective for
these problems.

For the L∞ numerical taxonomy problem, there was much more progress. In 1993 [33] it was
shown that for the ultrametric case an optimal solution can be found in time proportional to the
number of input distance pairs (i.e.: the number of entries in S). More recently, it was shown
that when the points are embedded into Rd and the distances are given by the pairwise Euclidean
distances, the problem can be approximated in subquadratic time [25, 22]. For the general trees
case (still in the L∞-norm objective), [2] gave an O(|S|2) algorithm that produces a constant factor
approximation and proved that the problem is APX-hard (unlike the ultrametric case).

The technical result from [2] was a general reduction from general tree metrics to ultrametrics.
It modifies the input distance matrix and asks for fitting this new input with an ultrametric that
can later be converted to a tree metric for the original distance matrix. The result states that for
any p, if we can minimize the restricted ultrametric Lp error within a factor α in polynomial-time,
then there is a polynomial-time algorithm that minimizes the tree metric Lp error within a factor
3α. The reduction from [2] imposes a certain restriction on the ultrametric, but the restriction is not
problematic and in Section 8, we will even argue that the restriction can be completely eliminated
with a slightly modified reduction. With n species, the reduction from tree metrics to ultrametrics
can be performed in time O(n2). Applying this to the optimal ultrametric algorithm from [33]
for the L∞-norm objective yielded a factor 3 for general metrics for the L∞-norm objective. The
generic impact is that for any Lp, later algorithms only had to focus on the ultrametric case to
immediately get results for the often more important tree metrics case, up to losing a factor 3
in the approximation guarantee. Indeed, the technical result of this paper is a constant factor
approximation for ultrametric. Thus, when it comes to approximation factors, we have

TreeMetric ≤ 3 ·UltraMetric

For Lp norms with constant p, the developments have been much slower. Ma et al. [43]
considered the problem of finding the best Lp fit by an ultrametric where distances in the ultrametric
are no smaller than the input distances. For this problem, they obtained an O(n1/p) approximation.

Later, Dhamdhere [28] considered the problem of finding a line metric to minimize additive
distortion from the given data (measured by the L1 norm) and obtained an O(log n) approximation.
In fact, his motivation for considering this problem was to develop techniques that might be useful
for finding the closest tree metric with distance measured by the L1 norm. Harp, Kannan and
McGregor [39] developed a factor O(min{n, k log n}1/p) approximation for the closest ultrametric
under the Lp norm where k is the number of distinct distances in the input7.

7The authors erroneously claim that they get the same approximation for the closest tree metric problem. However,
the known reduction may create ω(k) distinct distances.
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The best bounds known for the ultrametric variant of the problem are due to Ailon and Charikar
[3]. They first focus on ultrametrics in L1 and show that if the distance matrix has only k distinct
distances, then it is possible to approximate the L1 error within a factor k+2. Next they obtain an
LP-based O((log n)(log logn)) approximation for arbitrary distances matrices. Finally they sketch
how it can be generalized to an O(((log n)(log logn))1/p) approximation of the Lp error for any
p. Using the reduction from [2], they also get an O(((log n)(log logn))1/p) approximation for tree
metrics under the Lp-norm objective. The O(((log n)(log log n))1/p) approximation comes from an
O((log n)(log logn)) approximation of the p’th moment Fp:

‖T −D‖pp =

 ∑
{i,j}∈(S2)

|distT (i, j)−D(i, j)|p

 . (2)

Technically, Ailon and Charikar [3] present a simple LP relaxation for L1 ultrametric fitting—an LP
that will also be used in our paper. They get their O((log n)(log logn)) approximation using an LP
rounding akin to the classic O(log n) rounding of Leighton and Rao for multicut [42]. The challenge
is to generalize the approach to deal with the hierarchical issues associated with ultrametric and
show that this can be done paying only an extra factor O(log log n) in the approximation factor.
Next they show that their LP formulation and rounding is general enough to handle different
variants, including other Lp norms as mentioned above, but also they can handle the weighted
case, where for each pair of species i, j, the error contribution to the overall error is multiplied
by a value wij . However, this weighted problem captures the multicut problem (and the weighted
minimization correlation clustering problem) [3]. Since the multicut cannot be approximated within
a constant factor assuming the unique games conjecture [19] and the best known approximation
bound remains O(log n), it is beyond reach of current techniques to do much better in these more
general settings.

Ailon and Charikar [3] conclude that “Determining whether an O(1) approximation can be
obtained is a fascinating question. The LP formulation used in our [their] work could eventually
lead to such a result”. For their main LP formulation for the (unweighted) L1 ultrametric fitting,the
integrality gap was only known to be somewhere between 2 and O((log n)(log log n)). To break the
log n-barrier we must come up with a radically different way of rounding this LP and free ourselves
from the multicut-inspired approach.

For L1 ultrametric fitting, we give the first constant factor approximation, and we show this can
be obtained by rounding the LP proposed by Ailon and Charikar, thus demonstrating a constant
integrality gap for their LP. Our solution breaks the log n barrier using the special combinatorial
structure of the L1 problem.

Stepping a bit back, having different solutions for different norms should not come as a surprise.
As an analogue, take the generic problem of placing k facilities in such a way that each of n cities is
close to the nearest facility. Minimizing the vector of distances in the L1 norm is called the k-median
problem. In the L2 norm it is called the k-means problem, and in the L∞-norm is called the k-center
problems. Indeed, while the complexity of the k-center problem has been settled in the mid-1980s
thanks to Gonzalez’ algorithm [37], it has remained a major open problem for the next 15 years
to obtain constant factor approximation for the k-median and the k-means problems. Similarly,
our understanding of the k-means problems (L2-objective) remains poorer than our understanding
of the k-median problem, and the problem is in fact provably harder (no better than 1 + 8/e-
approximation algorithm [38] while k-median can be approximated within a factor 2.675 at the

4



Norm L1 Lp, p <∞ L∞
Treemetric Θ(1) O(((log n)(log log n))1/p) Θ(1)

Ultrametric Θ(1) O(((log n)(log log n))1/p) 1

Table 1: Tree fitting approximation factors.

moment [9]).
For our tree fitting problem, the L∞ norm has been understood since the 1990s, and our

result shows that the L1 norm admits a constant factor approximation algorithm. The current
status of affairs for tree and ultrametrics is summarized in Table 1. The status for Lp tree fitting
is that we have good constant factor approximation if we want to minimize the total error L1

or the maximal error L∞. For all other Lp norms, we only have the much weaker but general
O(((log n)(log log n))1/p) approximation from [3]. In particular, we do not know if anything better
is possible with L2. The difference is so big that even if we are in a situation where we would
normally prefer an L2 approximation, our much better approximation guarantee with L1 might be
preferable.

1.4 Other related work

Computational Biology. Researchers have also studied reconstruction of phylogenies under
stochastic models of evolution (see Farach and Kannan [32] or Mossel et al. [46] and the references
therein, see also Henzinger et al. [40]).

Finally, related to our hierarchical correlation clustering problem is the hierarchical clustering
problem introduced by Dasgupta [26] where the goal is, given a similarity matrix, to build a
hierarchical clustering tree where the more similar two points are, the lower in the tree they are
separated (formally, a pair (u, v) induces a cost of similarity(u, v) times the size of the minimal
subtree containing both u and v, the goal is to minimize the sum of the costs of the pairs). This has
received a lot of attention in the last few years ([5, 14, 15, 16, 18, 23, 24, 44, 47], see also [1, 6, 13, 21]),
but differs from our settings since the resulting tree may not induce a metric space.

Metric Embeddings. There is a large body of work of metric embedding problems. For example,
the metric violation distance problem asks to embed an arbitrary distance matrix into a metric
space while minimizing the L0-objective (i.e.: minimizing the number of distances that are not
preserved in the metric space). The problem is considerably harder and is only known to admit an
O(OPT1/3)-approximation algorithm [30, 31, 35] while no better than a 2 hardness of approximation
is known. More practical results on this line of work includes [51] and [36]. Sidiropoulos et al [48]
also considered the problem of embedding into metric, ultrametric, etc. while minimizing the total
number of outlier points.

There is also a rich literature on metric embedding problems where the measure of interest is
the multiplicative distortion, and the goal of the problem is to approximate the absolute distortion
of the metric space (as opposed to approximating the optimal embedding of the metric space).
Several such problems have been studied in the context of approximating metric spaces via tree
metrics (e.g. [8, 29]). The objective of these works is very different since they are focused on the
absolute expected multiplicative distortion over all input metrics while we aim at approximating

5



the optimal expected additive distortion for each individual input metric.
While these techniques have been very successful for designing approximation algorithms for

various problems in a variety of contexts, they are not aimed at numerical taxonomy. Their goal
is to do something for general metrics. However, for our tree-fitting problem, the idea is that
the ground-truth is a tree, e.g., a phylogeny, and that the distances measured, despite noise and
imperfection of the model, are close to the metric of the true tree. To recover an approximation
to the true tree, we therefore seek a tree that compares well against the best possible fit of a tree
metric.

1.5 Techniques

We will now discuss the main idea of our algorithm. Our solution will move through several
combinatorial problems that code different aspects of the L1-fitting of ultrametrics, but which do
not generalize nicely to other norms.

Our result follows from a sequence of constant-factor-approximation reductions between prob-
lems. To achieve our final goal, we introduce several new problems that have a key role in the
sequence of reductions. Some of the reductions and approximation bounds have already been ex-
tensively studied (e.g.: Correlation Clustering). A roadmap of this sequence of results is given in
Figure 1.

1.5.1 Correlation Clustering

Our algorithms will use a subroutine for what is known as the unweighted minimizing-disagreements
correlation clustering problem on complete graphs [7]. We simply refer to this problem as Correla-
tion Clustering throughout the paper.

First, for any family P of disjoint subsets of S, let

E(P ) =
⋃
T∈P

(
T

2

)
Thus E(P ) represents the edge sets over an isolated clique over each set T in P . Often P will be a
partition of S, that is,

⋃
P = S.

The correlation clustering takes as input an edge set E ⊆
(
S
2

)
and seeks a partition P minimizing

|E∆E(P )|,

where ∆ denotes symmetric difference. It is well-known that correlation clustering is equivalent to
ultrametric fitting with two distances (see, e.g., [39]).

A randomized polynomial time 2.06 + ε factor approximation from [20] (see also [4]) and a
2.5 deterministic approximation algorithm [52] are known. We shall use this as a subroutine with
approximation factor

CorrClust = O(1) (D) from Figure 1

We note that Ailon and Charikar, who presented the previous best O((log n)(log log n)) approx-
imation for tree metrics and ultrametrics at FOCS’05 [3] had presented a 2.5 approximation for
correlation clustering at the preceding STOC’05 with Newman [4]. In fact, inspired by this con-
nection they proposed in [3] a pivot-based (M + 2)-approximation algorithm for the L1 ultrametric
problem where M is the number of distinct input distances.

6



Problem Introduced in

TreeMetric Beginning of Section 1

UltraMetric Beginning of Section 1

Correlation Clustering (CorrClust) Section 1.5.1

Hierarchical Correlation Clustering (HierCorrClust) Section 1.5.2

Hierarchical Cluster Agreement (HierClustAgree) Section 1.5.3

TreeMetric ≤ (3 + o(1)) ·UltraMetric (A)

UltraMetric ≤ HierCorrClust (B)

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1) (C)

CorrClust = O(1) (D)

HierClustAgree = O(1) (E)

Approximation factors. Abbreviated problem names used as approximation factors.

1: procedure TreeMetric(S,D) . See Section 8
2: Reduction to UltraMetric based on [2]

3:

4: procedure UltraMetric(S,D) . See Section 7
5: Reduction to HierCorrClust based on [3, 39]

6:

7: procedure HierCorrClust(S,E(∗), δ(∗)) . NEW. See Section 3
8: for t ∈ [`] do Q(t) ← CorrClust(E(t))
9: return HierClustAgree(S,Q(∗), δ(∗))

10:

11: procedure CorrClust(S,E) . See Section 1.5.1
12: Use Algorithm from [7]

13:

14: procedure HierClustAgree(S,Q(∗), δ(∗)) . NEW. See Section 4
15: x(∗) ← Solve(LP-relaxation(S,Q(∗), δ(∗)))
16: L(∗) ← LP-Cleaning(S,Q(∗), x(∗))
17: return Derive-Hierarchy(S,L(∗))

Figure 1: Roadmap leading to our result for L1-fitting tree metrics.
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1.5.2 Hierarchical correlation clustering

We are going to work with a generalization of the problem of L1-fitting ultrametric which is implicit
in previous work [3, 39], but where we will exploit the generality in new interesting ways.

Problem Hierarchical Correlation Clustering.
Input The input is ` weights δ(1), . . . , δ(`) ∈ R>0 and ` edge sets E(1), . . . , E(`) ⊆

(
S
2

)
.

Desired output ` partitions P (1), . . . , P (`) of S that are hierarchical in the sense that P (t) subdi-
vides P (t+1) and such that we minimize

∑̀
t=1

δ(t)|E(t) ∆ E(P (t))| (3)

Thus we are having a combination of ` correlation clustering problems where we want the output
partitions to form a hierarchy, and where the objective is to minimize a weighted sum of the costs
for each level problem.

We shall review the reduction from L1-fitting of ultrametrics to hierarchical correlation cluster-
ing in Section 7. The instances we get from ultrametrics will always satisfy E(1) ⊆ · · · ⊆ E(`), but
as we shall see shortly, our new algorithms will reduce to instances where this is not the case, even
if the original input is from an ultrametric.

1.5.3 Hierarchical cluster agreement

We will be particularly interested in the following special case of Hierarchical Correlation Clustering.
Problem Hierarchical Cluster Agreement.
Input The input is ` weights δ(1), . . . , δ(`) ∈ R>0 and ` partitions Q(1), . . . Q(`) of S.
Desired output ` partitions P (1), . . . , P (`) of S that are hierarchical in the sense that P (t) subdi-
vides P (t+1) and such that we minimize

∑̀
t=1

δ(t)|E(Q(t)) ∆ E(P (t))| (4)

This is the special case of hierarchical correlation clustering, where the input edge set E(t) are
the disjoint clique edges from E(Q(t)). The challenge is that the input partitions may disagree in
the sense that Q(t) does not subdivide Q(t+1), or equivalently, E(Q(t)) 6⊆ E(Q(t+1)), so now we have
to find the best hierarchical agreement.

We are not aware of any previous work on hierarchical cluster agreement, but it plays a central
role in our hierarchical correlation clustering algorithm, outlined below.

1.6 High-level algorithm for hierarchical correlation clustering

Our main technical contribution in this paper is solving Hierarchical Correlation Clustering. Re-
ductions from Ultrametric to Hierarchical Correlation Clustering, and from general Tree Metric
to Ultrametric are already known from [3, 39] and [2] respectively. We discuss both reductions in
Sections 7 and 8. This includes removing some restrictions in the reduction from Tree Metrics to
Ultrametrics.

Focusing on Hierarchical Correlation Clustering, our input is the ` weights δ(1), . . . , δ(`) ∈ R>0

and ` edge sets E(1), . . . , E(`) ⊆
(
S
2

)
.
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Step 1: Solve correlation clustering independently for each level The first step in our
solution is to solve the correlation clustering problem defined by E(t) for each level t = 1, . . . , `
independently, thus obtaining an intermediate partitioning Qt. As we mentioned in Section 1.5.1,
this can be done so that Qt minimizes |E(t)∆E(Qt)| within a constant factor.

Step 2: Solve hierarchical cluster agreement We now use the ` weights δ(1), . . . , δ(`) ∈ R>0

and ` partitions Q(1), . . . , Q(`) of S as input to the hierarchical cluster agreement problem, which we
solve using an LP very similar to the one Ailon and Charikar [3] used to solve general hierarchical
correlation clustering. However, when applied to the special case of hierarchical cluster agreement,
it allows a special simple LP rounding where the LP decides which sets from the input partitions
are important to the hierarchy, and which sets can be ignored. Having decided the important
sets, it turns out that a very simple combinatorial algorithm can generate the hierarchical output
partitions P (1), . . . , P (`) bottom-up. The result is a poly-time constant factor approximation for
hierarchical cluster agreement, that is

HierClustAgree = O(1)

The output partitions P (1), . . . , P (`) are also returned as output to the original hierarchical corre-
lation clustering problem.

We now provide a high level overview and the intuition behind the hierarchical cluster agreement
algorithm. The algorithm can be broadly divided into two parts.

LP cleaning. We start by optimally solving the LP based on the weights δ(1), . . . , δ(`) and
partitions Q(1), . . . , Q(`). For each level t ∈ {1, . . . , `}, we naturally think of the relevant LP
variables as distances, and call them LP distances. That is because a small value means that the
LP wants the corresponding species to be in the same part of the output partition at level t, and
vice versa, while the LP constraints also enforce the triangle inequality. The weights δ(1), . . . , δ(`)

impact the optimal LP variables, but will otherwise not be used in the rest of the algorithm.
Using the LP distances, we clean each set in every partition Q(t) independently. The objective

of this step (LP-Cleaning - Algorithm 2) is to keep only the sets whose species are very close to each
other and far away from the species not in the set. All other sets are disregarded. Even though this
is not a binary decision, it can be thought of as one, since the algorithm may only slightly modify
each surviving set. The property that we can clean each set independently to decide whether it is
important or not, without looking at any other sets makes this part of our algorithm quite simple.

Omitting exact thresholds for simplicity, the algorithm works as follows. We process each set
CI ∈ Q(t) by keeping only those species that are at very small LP distance from at least half of
the other species in CI and at large LP distance to almost all the species outside CI . Let us note
that by triangle inequality and the pigeonhole principle, all species left in a set are at relatively
small distance from each other. After this cleaning process, we only keep a set if at least 90% of
its species are still intact, and we completely disregard it otherwise. The LP cleaning algorithm
outputs the sequence L(∗) = (L(1), . . . , L(`)) where L(t) is the family of surviving cleaned sets from
Q(t).

Derive hierarchy. Taking L(∗) as input, in the next step the algorithm Derive-Hierarchy
(Algorithm 3) computes a hierarchical partition P (∗) = (P (1), . . . , P (`)) of S. This algorithm works
bottom-up while initializing an auxiliary bottom most level of the hierarchy with |S| sets where
each set is a singleton and corresponds to a species of S. Then the algorithm performs ` iterations
where at the t-th iteration it processes all the disjoint sets in L(t) and computes partition P (t) while

9



ensuring that at the end of the iteration P (1), . . . , P (t) are hierarchical. An interesting feature of
our algorithm is that, once created, no further computation processing the upper levels can modify
the already created partitions. Next, we discuss how to compute P (t) given L(t) and all the lower
level sets in partitions P (1), . . . , P (t−1).

Consider a set CLP ∈ L(t). Now if for each lower level set C ′, either C ′ ∩CLP = ∅ or C ′ ⊆ CLP ,
then introducing CLP at level t does not violate the hierarchy property. Otherwise let C ′ be a lower
level set such that C ′ ∩ CLP 6= ∅ and C ′ 6⊆ CLP . Note that we already mentioned, once created,
C ′ is never modified while processing upper level sets. Thus, to ensure the hierarchy condition, the
algorithm can either extend CLP so that it completely covers C ′ or can discard the common part
from CLP .

In the process of modifying CLP (where we can add or discard some species from it), at any
point we define the core of CLP to be the part that comes from the initial set. Now to resolve
the conflict between CLP and C ′ we work as follows. If the core of CLP intersects the core of C ′

then we extend CLP so that C ′ becomes a subset of it. Omitting technical details, there are two
main ideas here: first, we ensure that the number of species in C ′ (resp. CLP ) that are not part
of its core is negligible with respect to the size of C ′ (resp. CLP ). Furthermore, since the cores
of CLP , C

′ have at least one common species, using triangular inequality we can claim that any
pair of species from the cores of C ′, CLP also have small LP distance; therefore, nearly all pairs of
species in CLP , C

′ have small LP distance, meaning that the extension of CLP is desirable (i.e. its
cost is within a constant factor from the LP cost while it ensures the hierarchy).

Here we want to emphasize the point that because of the LP-cleaning, we can ensure that for
any lower level set C ′ at level t there exists at most one set whose core has an intersection with the
core of C ′. We call this the hierarchy-friendly property of the LP cleaned sets. This property is
crucial for consistency, as it ensures that at level t there cannot exist more than one sets that are
allowed to contain C ′ as a subset.

In the other case, where the cores of CLP and C ′ do not intersect, the algorithm removes
CLP ∩ C ′ from CLP . The analysis of this part is more technical but follows the same arguments,
namely using the aforementioned properties of LP-cleaning along with triangle inequality.

After processing all the sets in L(t), the algorithm naturally combines these processed sets with
P (t−1) to generate P (t), thus ensuring that P (1), . . . , P (t) are hierarchical.

High-level analysis We will prove that the partitions P (1), . . . , P (`) solves the original hierar-
chical clustering problem within a constant factor.

Using triangle inequality, we are going to show that the switch in Step 1, from the input edge
sets E(1), . . . , E(`) to the partitions Q(1), . . . , Q(`) costs us no more than the approximation factor
of correlation clustering used to generate each partition. This then becomes a multiplicative factor
on our approximation factor for hierarchical cluster agreement, more specifically,

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1)

We will even show that we can work with the LP from [3] for the original hierarchical correlation
clustering problem, and get a solution demonstrating a constant factor integrality gap.

1.7 Organization of the paper

In Section 2 we present the LP formulation and related definitions for Hierarchical Correlation Clus-
tering. In Section 3 we show how to reduce Hierarchical Correlation Clustering to Hierarchical Clus-
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ter Agreement. In Section 4 we present the algorithm for Hierarchical Cluster Agreement, and in
Section 5 we analyze it. In Section 6 we show that the LP formulation for Hierarchical Corre-
lation Clustering has constant integrality gap. In Section 7 we show how Lp-fitting ultrametrics
reduces to Hierarchical Correlation Clustering. In Section 8 we discuss the reduction from Lp-
fitting tree metrics to Lp-fitting ultrametrics. In Section 9 we prove APX-Hardness of L1-fitting
ultrametrics and L1-fitting tree metrics. We conclude in Section 10.

2 LP definitions for Hierarchical Correlation Clustering

In this section we present the IP/LP formulation of Hierarchical Correlation Clustering, implicit in
[3, 39]. In what follows we use [n] to denote the set {1, . . . , n}.

Definition 2 (IP/LP formulation of Hierarchical Correlation Clustering). Given is a set S, `
positive numbers δ(1), . . . , δ(`) and edge-sets E(1), . . . , E(`) ⊆

(
S
2

)
. The objective is:

min
∑̀
t=1

δ(t)

 ∑
{i,j}∈E(t)

x
(t)
i,j +

∑
{i,j}6∈E(t)

(1− x(t)
i,j )


subject to the constraints

x
(t)
i,j ≤ x

(t)
i,k + x

(t)
j,k ∀{i, j, k} ∈

(
S

3

)
, t ∈ [`] (5)

x
(t)
i,j ≥ x

(t+1)
i,j ∀{i, j} ∈

(
S

2

)
, t ∈ [`− 1] (6)

x
(t)
i,j ∈

{
{0, 1} if IP
[0, 1] if LP

∀{i, j} ∈
(
S

2

)
, t ∈ [`] (7)

Concerning the IP, the values x
(t)
i,j encode the hierarchical partitions, with x

(t)
i,j = 0 meaning

that i, j are in the same part of the partition at level t, and x
(t)
i,j = 1 meaning that they are not.

Inequality (5) ensures that the property of being in the same part of a partition is transitive.
Inequality (6) ensures that the partitions are hierarchical.

In the LP, where fractional values are allowed, x
(t)
i,j is said to be the LP-distance between i, j at

level t. If their LP-distance is small, one should think of it as the LP suggesting that i, j should be
in the same part of the output partition, while a large LP-distance suggests that they should not.
Notice that for any given level t, the LP-distances satisfy the triangle inequality, by (5).

We also note that the Correlation Clustering problem directly corresponds to the case where
` = δ1 = 1.

3 From Hierarchical Correlation Clustering to Hierarchical Clus-
ter Agreement Problem

Our main technical contribution is proving the following theorem.

Theorem 3. The Hierarchical Correlation Clustering problem can be solved in deterministic poly-
nomial time within a constant approximation factor.
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In this section, we present a deterministic reduction from Hierarchical Correlation Clustering
to Hierarchical Cluster Agreement that guarantees:

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1) (C) from Figure 1

In Sections 4 and 5 we present a deterministic polynomial time constant factor approximation
algorithm for Hierarchical Cluster Agreement; combined with a known deterministic polynomial
time constant factor approximation algorithm for Correlation Clustering [52], it completes the proof
of Theorem 3.

Assume that Correlation Clustering can be approximated within a factor α and that Hierarchical
Cluster Agreement can be approximated within a factor β (Section 4). We prove Inequality (C),
by providing an algorithm to approximate Hierarchical Correlation Clustering within a factor (α+
1)(β + 1)− 1.

Suppose we have a Hierarchical Correlation Clustering instance S, δ(1), . . . , δ(`), E(1), . . . , E(`).
Our algorithm first solves the Correlation Clustering instance S,E(t) to acquire partitionQ(t), for ev-
ery level t. Then, we solve the Hierarchical Cluster Agreement instance S, δ(1), . . . , δ(`), E(Q(1)), . . . ,
E(Q(`)) and obtain hierarchical partitions P (1), . . . , P (`).

The proof that the hierarchical partitions P (1), . . . , P (`) are a good approximation to the Hi-
erarchical Correlation Clustering instance follows from two observations. First, by definition, the
cost of Hierarchical Correlation Clustering is related to certain symmetric differences. Since the
cardinality of symmetric differences satisfy the triangle inequality, we can switch between the cost
of Hierarchical Correlation Clustering and Hierarchical Cluster Agreement under the same output,
with only an additive term related to |E(t)4E(Q(t))| and not related to the output. Second, by
definition of Q(t), the cardinality of the symmetric difference |E(t)4E(Q(t))| is minimized within a
factor α.

More formally, for this proof we need to define the following three concepts:

• For any t ∈ [`], OPT
(t)
CorrClust is an optimal solution to the Correlation Clustering instance at

level t, that is a partition minimizing

|E(t)4E(OPT
(t)
CorrClust)|

• OPTHierCorrClust = (OPT
(1)
HierCorrClust, . . . , OPT

(`)
HierCorrClust) is an optimal solution to the

Hierarchical Correlation Clustering instance, that is a sequence of hierarchical partitions
minimizing ∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

• OPTHierClustAgree = (OPT
(1)
HierClustAgree, . . . , OPT

(`)
HierClustAgree) is an optimal solution to

the Hierarchical Cluster Agreement instance, that is a sequence of hierarchical partitions
minimizing ∑̀

t=1

δ(t)|E(Q(t))4E(OPT
(t)
HierClustAgree)|
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Notice, for any t, the difference between OPT
(t)
CorrClust and OPT

(t)
HierCorrClust. The first one opti-

mizes locally (per level), meaning that |E(t)4E(OPT
(t)
CorrClust)| ≤ |E

(t)4E(OPT
(t)
HierCorrClust)|, and

therefore
∑`

t=1 δ
(t)|E(t)4E(OPT

(t)
CorrClust)| ≤

∑`
t=1 δ

(t)|E(t)4E(OPT
(t)
HierCorrClust)|. This does not

contradict the definition of OPTHierCorrClust, as the sequence OPT
(1)
CorrClust, . . . , OPT

(`)
CorrClust is

not a sequence of hierarchical partitions.
The cost of our solution is

∑̀
t=1

δ(t)|E(t)4E(P (t))| ≤
∑̀
t=1

δ(t)|E(t)4E(Q(t))|+
∑̀
t=1

δ(t)|E(Q(t))4E(P (t))| (8)

By definition of P (1), . . . , P (`), they minimize the second term of (8) within a factor β. There-

fore, the second term is upper bounded by β
∑`

t=1 δ
(t)|E(Q(t))4E(OPT

(t)
HierClustAgree)|, which, by

optimality of OPTHierClustAgree is upper bounded by β
∑`

t=1 δ
(t)|E(Q(t))4E(OPT

(t)
HierCorrClust)|.

Using the triangle inequality again, we further upper bound the second term by:

β
∑̀
t=1

δ(t)|E(Q(t))4E(t)|+ β
∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

Therefore, we can rewrite (8) as:

∑̀
t=1

δ(t)|E(t)4E(P (t))| ≤ (β + 1)
∑̀
t=1

δ(t)|E(t)4E(Q(t))|+ β
∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

Since Q(t) is obtained by solving Correlation Clustering at level t within a factor α, we get

∑̀
t=1

δ(t)|E(t)4E(Q(t))| ≤ α
∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
CorrClust)|

By optimality of OPT
(t)
CorrClust, for each t ∈ [`], we have

∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
CorrClust)| ≤

∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

which proves that

∑̀
t=1

δ(t)|E(t)4E(P (t))| ≤ ((β + 1)α+ β)
∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

= ((α+ 1)(β + 1)− 1)
∑̀
t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|
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4 Constant approximation Algorithm for Hierarchical Cluster
Agreement

In this section we introduce our main algorithm, which consists of three parts: Solving the LP
formulation of the problem, the LP-Cleaning subroutine and the Derive-Hierarchy subroutine.

Informally, the LP-Cleaning subroutine uses the fractional solution of the LP relaxation of
Hierarchical Cluster Agreement to decide which of our input-sets are important and which are
not. The decision is not a binary one, because important sets are also cleaned, in the sense that
bad parts of them may be removed. However, at least a 0.9 fraction of them is left intact, while
unimportant sets are completely discarded.

The Derive-Hierarchy part then receives the cleaned input-sets by LP-Cleaning, and applies a
very simple combinatorial algorithm on them to compute the output.

We notice that the weights δ(∗) are only used for solving the LP. Moreover, the fractional LP-
solution is only used by LP-Cleaning to guide this “nearly-binary” decision for each input-set. The
rest of the algorithm is combinatorial and does not take the LP-solution into account.

4.1 LP Definitions for Hierarchical Cluster Agreement

The IP-formulation of Hierarchical Cluster Agreement is akin to the IP-formulation of Hierarchi-
cal Correlation Clustering. Namely, the constraints are exactly the same for both problems. The
only difference is in the objective function where we replace the general edge-sets E(1), . . . , E(`)

with the disjoint clique edges from E(Q(1)), . . . , E(Q(`)). Similarly for the LP-relaxation of Hierar-
chical Cluster Agreement. Here each component in Q(t) is called a level -t input cluster.

To simplify our discussion, we use x(∗) to denote a fractional solution to the LP-relaxation of

Hierarchical Cluster Agreement, that is a vector containing all x
(t)
i,j , {i, j} ∈

(
S
2

)
, t ∈ [`]. One can

think of x(∗) as the optimal fractional solution, but in principle it can be any solution.

We use x(t), for some particular t ∈ [`], to denote the vector containing all x
(t)
i,j , {i, j} ∈

(
S
2

)
.

As previously, we use the term LP distances to refer to the entries of x(∗), and notice that for
any particular t ∈ [l] the LP distances even satisfy the triangle inequality, by the LP constraints.

Given x(∗) we define B
(t)
<r(i) to be the ball of species with LP-distance less than r from i at level

t. More formally, B
(t)
<r(i) = {j ∈ S | x(t)

i,j < r}. Similarly, for a subset S′ of S we define the ball

B
(t)
<r(S

′) = {j ∈ S | ∃i ∈ S′ s.t. x
(t)
i,j < r}.

We also define the LP cost of species i, j at level t as

cost
(t)
i,j =

{
δ(t)x

(t)
i,j if {i, j} ∈ E(Q(t))

δ(t)(1− x(t)
i,j ) otherwise

as well as the LP cost of species in a set S′ ⊆ S at level t as

cost
(t)
S′ =

∑
{i,j}∈(S2)

i∈S′ or j∈S′

cost
(t)
i,j

and in case S′ only contains a single species i, we write cost
(t)
i instead of cost

(t)
{i}.

Then the LP cost at level t is denoted as cost(t) = cost
(t)
S .

Finally, the LP cost is simply cost(∗) =
∑`

t=1 cost
(t).
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4.2 Main Algorithm

The pseudocode for our main algorithm for Hierarchical Cluster Agreement is given in Algorithm 1.

Algorithm 1 Hierarchical Cluster AgreementAlgorithm

Input A set S, a sequence Q(∗) = (Q(1), · · · , Q(`)) of partitions of S, and weights
δ(∗) = (δ(1), · · · , δ(`))

Returns A sequence P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S

1: x(∗) ← Solve(LP-relaxation(S,Q(∗), δ(∗)))
2: L(∗) ← LP-Cleaning(S,Q(∗), x(∗))
3: return Derive-Hierarchy(S,L(∗))

Our LP relaxation has size polynomial in S, `, and the two subroutines also run in polynomial
time, as we show later. Therefore the whole algorithm runs in polynomial time.

4.3 LP cleaning Algorithm

In Algorithm 2 we provide the pseudocode of the LP Cleaning step of our algorithm.
Intuitively, the aim of this algorithm is to clean the input sets so that (ideally) all species

remaining in a set have small LP distances to each other, and large LP distances to species not in
the set.

Algorithm 2 LP-Cleaning

Input A set S, a sequence Q(∗) = (Q(1), · · · , Q(`)) of partitions of S,
and a fractional solution x(∗)

Returns A sequence L(∗) = (L(1), · · · , L(`)) of families of disjoint subsets of S

1: for t← 1, . . . , ` do
2: L(t) ← ∅
3: for CI ∈ Q(t) do

4: CLP ←

{
i ∈ CI

∣∣∣∣∣ |B
(t)
<0.1(i) ∩ CI | > 1

2 |CI |,
|B(t)

<0.6(i) \ CI | ≤ 0.05|CI |

}
5: if |CLP | ≥ 0.9|CI | then
6: L(t) ← L(t) ∪ {CLP }
7: return L(∗) = (L(1), · · · , L(`))

Formally Algorithm 2 takes a sequence Q(∗) = (Q(1), . . . , Q(`)) of partitions of S and a fractional
solution x(∗) containing LP distances. It outputs a sequence of families of disjoint subsets of S,
L(∗) = (L(1), . . . , L(`)). Here each component of L(t) is called a level -t LP-cluster.

In the algorithm, for each input partition Q(t) we process every level-t input-cluster CI ∈ Q(t)

separately. For this we remove all the species in CI that do not have very small LP distance to
at least half the species in CI or that have small LP distance to many species not in CI . More
formally, we remove all the species in CI with LP distance less than 0.1 to at most half the species
in CI or with LP distance less than 0.6 to more than 0.05|CI | species not in CI .
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After the cleaning step we discard CI if less than 9/10 fraction of the species survive. Otherwise
we create an LP-cluster CLP containing the species in CI that survive. Next we add the level-t
LP-cluster CLP to L(t).

Out of several properties that we prove concerning the output of the LP-Cleaning, we briefly
mention the following one: The output sequence L(∗) is hierarchy-friendly in the sense that no
two LP-clusters at the same level t can be intersected by the same LP-cluster at level t′ < t. We
formally prove this in Lemma 7.

The LP-Cleaning subroutine trivially runs in time polynomial in S, `.

4.4 Derive-hierarchy Algorithm

In this section, we introduce Derive-Hierarchy (Algorithm 3). It takes as input a hierarchy-
friendly sequence L(∗) = (L(1), · · · , L(`)) of families of disjoint subsets of S and outputs a sequence
P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S. The execution of the algorithm can be seen,
via a graphical example, in Figure 2.

Algorithm 3 Derive-Hierarchy

Input A set S, and a hierarchy-friendly sequence L(∗) = (L(1), · · · , L(`))
of families of disjoint subsets of S

Returns A sequence P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S

1: Construct an empty forest F
2: for i ∈ S do
3: Create a singleton tree T with a node ui and add it to F
4: Set C(ui)← C+(ui)← {i}
5: for t← 1, . . . , l do
6: for CLP ∈ L(t) do
7: Create a node u and set C(u)← CLP

8: for all roots v ∈ F s.t. C(v) ∩ C(u) = ∅ do
9: C(u)← C(u) \ C+(v)

10: C+(u)← C(u)
11: for all roots v ∈ F s.t. C(v) ∩ C(u) 6= ∅ do
12: C+(u)← C+(u) ∪ C+(v)
13: Make v a child of u in F
14: Set P (t) to contain the extended-clusters C+(v) of all roots v ∈ F
15: return P (∗) = (P (1), · · · , P (`))

The algorithm works bottom-up while performing ` iterations for t = 1, . . . , `. In the process
it incrementally builds a forest F . Throughout the algorithm each non leaf node u in F can be
identified by an LP-cluster in L(∗). Moreover for each node u the algorithm maintains two sets
C(u) and C+(u) ⊆ S.

The algorithm starts by initializing F with |S| trees where each tree contains a single node ui
identified by a species i ∈ S. Also it initializes both sets C(ui), C

+(ui) with {i}. Next in iteration
t the algorithm processes the LP-clusters in L(t) and at the end of the iteration, the C+() sets
associated with the root nodes in F define the partition P (t). Precisely here, the C+() set of a root
node contains all the species descending from the respective root.
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Figure 2: Example of Derive-Hierarchy (Algorithm 3). Nodes 1, 2, 3, 4 (left) are the roots of the for-
est before inserting the new LP-cluster L(u) (dashed line). Each node is described by its extended-
cluster, with the shaded part being the core-cluster. Core-cluster of nodes 2 and 3 intersect L(u);
thus they become children of u and the extended-cluster of u covers the extended-clusters of 2, 3
(right). Notice that the core-cluster of u is reduced due to node 1.

In the t-th iteration, for each cluster CLP ∈ L(t) the algorithm adds a root node u to forest F
while initializing the set C(u) with CLP . Next for the root node u the algorithm decides on its
children by processing the pre-existing roots in the following way. For consistency first it detects
all the pre-existing root nodes v such that C(u) does not intersect C(v). Then it removes from
C(u) all the species that are descending from v; i.e. sets C(u) ← C(u) \ C+(v). Lastly it sets u
as a parent of all other pre-existing root nodes v such that C(u) intersects C(v). Also accordingly
it modifies the set of leaf nodes of the subtree rooted at u by setting C+(u) ← C+(u) ∪ C+(v).
Notice here that some of the root-nodes may correspond to sets from levels lower than t, in case
no parent was assigned to them.

At the end of iteration t the algorithm completes processing all the LP-clusters in L(1), . . . , L(t)

and constructs partitions P (1), . . . , P (t). At the end of the ` iterations it outputs the ` partitions
P (∗) = (P (1), . . . , P (`)).

The Derive-Hierarchy subroutine trivially runs in time polynomial in S, `.

5 Analysis of Hierarchical Cluster Agreement Algorithm

In this section, we proceed with our analysis. We first lay out some terminology, then provide
some results related to the LP Cleaning, then some structural results, and finally prove that our
algorithm is a constant factor approximation for Hierarchical Cluster Agreement.

5.1 Terminology

Notice that throughout the execution of the algorithm, F is an incrementally updated graph (that
is, no deletions occur). In fact it is always a forest, as we start with |S| isolated nodes and only
introduce new nodes as parents of roots of some of the existing trees. Moreover, this process implies
that the subtree rooted at any specific node is never modified.

From now on we use F to refer to the final instance of the incrementally updated forest. We
use F(u) to refer to the state of this incrementally updated forest after introducing u; therefore
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F(u) \ {u} denotes the state of the forest exactly before introducing node u. We naturally identify
the leaves of F with the species of S.

For any node u in the forest F , the Derive-Hierarchy algorithm defines C(u), which we call
the core-cluster of u, and C+(u), which we call the extended-cluster of u. Furthermore, notice
that each core-cluster C(u) is a subset of some LP-cluster CLP (Line 7 of Algorithm 3); we call
this the LP-cluster of u and denote it by L(u). Moreover, each LP-cluster L(u) is a subset of an
input-cluster CI (Line 3 of Algorithm 2); we call this the input-cluster of u and denote it by I(u).
These concepts are well defined for any new node u and never change throughout the algorithm.
We remind the reader that LP-Cleaning discards some of the input clusters, in the sense that they
have no corresponding LP-cluster, and therefore they do not match I(u), for any node u.

Directly from the algorithm we get that

C(u) ⊆ L(u) ⊆ I(u)

C(u) ⊆ C+(u)

To help with our discussion, we also define the following variables related to the Derive-Hierarchy
algorithm (Algorithm 3):

∆−(u) = L(u) \ C(u)

∆+(u) = C+(u) \ C(u)

For a node u ∈ F , we define its level t(u) to be the value of iteration t in Algorithm 3 when
internal node u was introduced, and 0 when u is a leaf node.

5.2 LP-Cleaning Results (Algorithm 2)

We start with some observations that are heavily used in proving structural results regarding the
core and the extended-clusters. These are in turn used for lower-bounding the LP cost.

The most important reason we are using the LP-Cleaning subroutine is so that any two species
belonging in the same LP-Cluster at level t have small LP-distance.

Lemma 4. Given a node u ∈ F and a species i in u’s LP-cluster L(u), it holds that the LP-distance

from i to any other species in L(u) is less than 0.2 for all levels t ≥ t(u), that is B
(t)
<0.2(i) ⊇ L(u).

Proof. It suffices to prove that x
(t)
i,j < 0.2 for all j ∈ L(u) only for level t = t(u), as the LP

constraints enforce x
(t+1)
i,j ≤ x(t)

i,j .

By pigeonhole principle, since both B
(t)
<0.1(i) ∩ I(u) and B

(t)
<0.1(j) ∩ I(u) have size more than

|I(u)|/2 (Line 4 of Algorithm 2), there exists a node k ∈ I(u) for which both x
(t)
i,k and x

(t)
j,k are less

than 0.1. Since the LP-distances in x(t) satisfy the triangle inequality, it follows that x
(t)
i,j < 0.2

(enforced by the LP constraints).

For the analysis, it is convenient that our relations involve the LP-clusters instead of the input-
clusters. Therefore, we rephrase Line 4 of Algorithm 2 in terms of LP-clusters, effectively proving
that few species outside of an LP-cluster L(u) have small LP-distances to L(u).

Lemma 5. For any node u ∈ F it holds that |B(t(u))
<0.4 (L(u))| ≤ (1 + 1

6)|L(u)|. In particular,

|B(t(u))
<0.4 (L(u)) \ L(u)| ≤ 1

6 |L(u)|.
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Proof. Let t = t(u). We claim that species close to some species in L(u) are close to all species in
L(u). Formally, we claim that for any i ∈ L(u)

B
(t)
<0.4(L(u)) ⊆ B(t)

<0.6(i)

Let j ∈ B(t)
<0.4(L(u)). We bound the LP-distance between i, j by finding an intermediate i′ that

is close to both and applying the triangle inequality forced by the LP constraints. By definition
of j, there exists a species i′ ∈ L(u) with LP-distance less than 0.4 from j. By Lemma 4, the

LP-distance between i and i′ is less than 0.2, and thus by triangle inequality x
(t)
i,j < 0.6.

Line 4 of Algorithm 2 gives that

|B(t)
<0.6(i) \ I(u)| ≤ 0.05|I(u)| =⇒ |B(t)

<0.6(i)| ≤ 0.05|I(u)|+ |I(u)|

Combining these two relations, and by |L(u)| ≥ 0.9|I(u)| (Line 5 of Algorithm 2):

|B(t)
<0.4(L(u))| ≤ |B(t)

<0.6(i)| ≤ (1 + 0.05)

0.9
|L(u)| = (1 +

1

6
)|L(u)|

The following lemma is just a convenient application of the triangle inequality of our LP, that
is heavily used in subsequent proofs. Informally, it states that, under certain mild conditions, the
LP-distance is small not only if i, j belong in the same LP-cluster (or core-cluster), but even if they
happen to be in different clusters that are both intersected by the same third cluster.

Lemma 6. Let u, v, w ∈ F be three arbitrary nodes. Assume that the LP-cluster of v intersects the
LP-clusters of u and w and tmax = max{t(u), t(v), t(w)}. Then for any i, j ∈ {L(u)∪L(v)∪L(w)}
their LP-distance at level tmax is less than 0.6, and B

(tmax)
<0.4 (L(u)) ⊇ L(u) ∪ L(v) ∪ L(w).

Proof. If both i, j are either in L(u) or L(v) or L(w) then the claim follows trivially from Lemma 4.
Otherwise we use triangle inequality twice, with species in the intersections of the clusters as
intermediates. More formally, let k ∈ L(u)∩L(v), k′ ∈ L(v)∩L(w). Lemma 4 implies three things:

(1) x
(tmax)
i,k < 0.2, for any i ∈ L(u) ∪ L(v)

(2) x
(tmax)
k,k′ < 0.2, as both k, k′ ∈ L(v)

(2) x
(tmax)
k′,j < 0.2, for any node j ∈ L(v) ∪ L(w)

Since the LP-distances x(tmax) respect the triangle inequality it holds that x
(tmax)
i,j < 0.6. The

claim about the ball of L(u) follows by taking the distance from k to j.

We are now ready to prove the hierarchy-friendly property of the output of LP-Cleaning, as we
informally claimed when introducing the algorithm. We claim that two LP-clusters of the same
level cannot be intersected by the same lower level LP-cluster.

Lemma 7. Given two nodes v, w ∈ F on the same level, there is no lower level node u such that
L(u) intersects both L(v) and L(w).

In particular, there is also no C(u) intersecting both L(v) and L(w).
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Proof. The intuition is that L(v), L(w) are close and thus Algorithm 2 would discard at least one
of them.

Without loss of generality, let |L(v)| ≥ |L(w)|. L(v), L(w) are disjoint as they are subsets of
different parts of the partition Q(t(v)), by Algorithm 2.

By Lemma 6 |B(t(w))
<0.4 (L(w))| ≥ |L(v)|+ |L(w)| ≥ 2|L(w)|, which contradicts Lemma 5.

We finally present a simple lower bound on the LP cost.

Lemma 8. Let CI ∈ Q(t) be an input-cluster at level t, and CLP be the respective LP-cluster from

Algorithm 2. Fix a species i ∈ CI \ CLP . Then the fractional LP cost cost
(t)
i = Ω(δ(t)|CI |).

Proof. There are two reasons for i to be in CI \ CLP , by Line 4 of Algorithm 2. Either half the
species in CI are at distance at least 0.1 from i, or more than 0.05|CI | species not in CI are at
distance at most 0.6 from i.

In the first case cost
(t)
i ≥ 0.1 · (1

2 |CI |)δ(t), and in the second case cost
(t)
i ≥ (1−0.6) ·0.05|CI |δ(t).

5.3 Derive-Hierarchy results (Algorithm 3)

In this section we present several structural results related to our algorithm.
We start with pointing out that our algorithm ends up with the same output, no matter the

order in which we process LP-clusters of the same level. This is due to the input sequence L(∗)

being hierarchy-friendly.

Remark 9. The output of Algorithm 3 is the same, irrespective of the order in which LP-clusters
of the same level are processed in Line 6.

Proof. For each level, fix any ordering in which LP-clusters of the same level are processed, and
run the algorithm. For any t ∈ [`], let Ft−1 be the state of the forest just before processing the first
node of level t. We show that for any level-t LP-cluster CLP with corresponding node u (that is
t(u) = t and L(u) = CLP ), no matter when it was actually processed due to the ordering we fixed,
the effect is the same as if it was the first level-t LP-cluster processed. More formally, let N(u) be
the set of children of u, and Ct−1(u), C+

t−1(u), Nt−1(u) be the core-cluster, the extended-cluster and
the set of children of u in the case where CLP was the first LP-cluster of level-t to be processed.
Then C(u) = Ct−1(u), C+(u) = C+

t−1(u), N(u) = Nt−1(u).
The main idea is that if a root v ∈ Ft−1 has a core-cluster intersecting L(u), then it is still a

root just before inserting u; else v would have another parent w of level t, meaning C(v) ⊆ L(v)
would also intersect C(w) ⊆ L(w) (Line 11), which contradicts that L(∗) is hierarchy-friendly.

For u’s children, we first show that N(u) ⊆ Nt−1(u). Suppose this was not true, then there
would exist a level-t node v ∈ N(u) \ Nt−1(u). That would imply that u’s and v’s core clusters
intersect (Line 11). But, core-clusters are always subsets of their corresponding LP-clusters, and
LP-clusters of the same level are disjoint.

Before proving Nt−1(u) ⊆ N(u), we need to show that C(u) = Ct−1(u). We show it by proving
that L(u) \C(u) = L(u) \Ct−1(u). If a species i is in L(u) \C(u), then it is in the extended-cluster
of some node v processed before u such that their core-clusters do not intersect (Line 8). If t(v) = t,
then i is either in C(v) (contradiction as it would then not be in L(u)), or in the extended-cluster
of one of its children w, which we proved are of lower-level. Thus w was a root in Ft−1. Again by
L(∗) being hierarchy-friendly, C(w) ⊆ L(w) does not intersect L(u), meaning it does not intersect
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Ct−1(u) ⊆ L(u) and so i would also be in L(u) \ Ct−1(u) (Line 8). If t(v) < t, then v itself was a
root in Ft−1. The same argument in reverse order is used to prove that if i is in L(u) \ Ct−1(u)
then it is in L(u) \ C(u).

We now see that Nt−1(u) ⊆ N(u); that is because if v ∈ Nt−1(u), then v is a root in Ft−1 with
a core-cluster intersecting L(u), and by L(∗) being hierarchy-friendly it is also a root in F(u) \ {u}.
As C(v) intersects Ct−1(u) = C(u), we get v ∈ N(u) (Line 11).

Finally, a species i in C+
t−1(u)\Ct−1(u) is part of the extended cluster of a node in Nt−1(u); this

child is still a root in F(u) \ {u} by L(∗) being hierarchy-friendly, therefore i ∈ C+(u) \ C(u). The
other way around, a species i in C+(u) \ C(u) is part of the extended cluster of a node in N(u);
this child is a root in Ft−1 as u has no children of level t, therefore i ∈ C+(u) \ Ct−1(u).

Next, we prove two claims that we have already mentioned informally while introducing Algo-
rithm 3 (Derive-Hierarchy). First we claim that the incrementally built graph is always a forest
and also for any node u, its extended-cluster contains exactly the species descending from u. We
notice that the previously stated results do not require these properties.

Lemma 10. For any u ∈ F , F(u) is a forest of rooted trees with |S| leaves identified with the
species of S, and for each u ∈ F , C+(u) is the set of u’s descending species.

Proof. We prove this inductively based on the order in which the nodes are added in F . The base
case for both the claims follows by the initialization of the forest with |S| leaves identified with the
species of S.

When we insert a node, it becomes the parent of some of the existing roots, therefore the forest
structure is preserved.

Next let u be some node in F and let v1, . . . , vk be the children of u. Then by construction
all these children nodes are added to F before u, and thus by induction argument for each vm the
set of descending species of vm is exactly the set C+(vm). Now we need to prove the same for
node u. Note that the set of descending species of u is precisely the set

⋃
m∈[k]C

+(vm). Moreover

by construction C+(u) = C(u) ∪ (
⋃

m∈[k]C
+(vm)). Hence to prove the claim we need to show

that C(u) ⊆
⋃

m∈[k]C
+(vm). For the sake of contradiction let w ∈ C(u) be a species such that

w /∈
⋃

m∈[k]C
+(vm). As F(u) \ {u} is a forest, there exists a unique node r which is the root

node of the tree of F(u) \ {u} that contains w. Hence again by induction argument w ∈ C+(r).
By our assumption, as r is not a child of u, C(u) ∩ C(r) = ∅. Thus Algorithm 3 (Line 8) sets
C(u)← C(u) \ C+(r) and hence w /∈ C(u), which is a contradiction.

This simple lemma alone is enough to prove the following corollaries:

Corollary 11. For any u ∈ F , the extended-clusters of the root nodes in F(u) form a partition of
S.

Proof. As F(u) is a forest, each species is a descendant of exactly one such root and thus belongs
in exactly one such extended cluster.

Corollary 12. The output of our algorithm is a sequence of hierarchical partitions of S.

Proof. By Corollary 11 the output of the algorithm is a sequence of partitions of S. To see that
the output partitions are hierarchical, notice that if two species are in the same rooted tree at some
point in the algorithm, then they are never separated as we only add nodes in the forest.

21



Corollary 13. For any node u ∈ F , the species removed from its LP-cluster and the species inserted
in its core cluster are disjoint, ∆−(u) ∩∆+(u) = ∅.

Proof. For the sake of contradiction let i ∈ ∆−(u) ∩ ∆+(u). Since the extended clusters of root
nodes in F(u) \ {u} form a partition, let v be the unique such root for which i ∈ C+(v). Now as
i ∈ ∆−(u), C(v)∩C(u) = ∅ (Line 8 of Algorithm 3). But again i ∈ ∆+(u) implies C(v)∩C(u) 6= ∅
(Line 11 of Algorithm 3) and both these can never be satisfied together.

Corollary 14. If two nodes u, v ∈ F do not have an ancestry-relationship, then their extended
clusters do not intersect.

Proof. If their extended clusters intersected, then they would have a descending species in common,
which implies an ancestry-relationship.

We also need the following result.

Lemma 15. For any node u ∈ F , its extended-cluster is equal to the union of the core clusters of
all descendant nodes v of u.

Proof. We prove this inductively. As a base-case, the claim trivially holds for the |S| initial leaves.
For an internal node u, let v1, . . . , vk be the children of u and let D(u) be the descendant nodes of
u. Then D(u) = ∪m∈[k]D(vm). Also, by induction, for each vm, C+(vm) = ∪w∈D(vm)C(w). Now
as C+(u) = C(u) ∪ (∪m∈[k]C

+(vm)) we have C+(u) = C(u) ∪ (∪w∈D(u)C(w)). which proves our
claim.

5.4 Managing removals and extensions

Using the developed toolkit of structural results, we are ready to show that for any node u ∈ F ,
all three of the LP-cluster L(u), the core-cluster C(u) and the extended-cluster C+(u) are similar;
more than that, we show lower bounds of the LP cost related to ∆−(u) = L(u)\C(u) and ∆+(u) =
C+(u) \ C(u).

In particular, we claim that the following inequality holds for every u ∈ F .

|∆+(u)| ≤ 0.3|C(u)| (9)

We prove this claim inductively, based on the order in which nodes are added in F . As a base
case, we initially create a node ui for each species i ∈ S with C(ui) = C+(ui) = {i}, meaning that
∆+(ui) = ∅.

For any other node u, we argue about the size of its extended-cluster C+(u) in relation with
the core-clusters of its descendants, as suggested by Lemma 15. We now partition the descendants
of u in three parts and argue about each one of them.

Informally, for a node u we define its top-non-intersecting descendants J as the set of highest
level descendant nodes in F whose core-clusters do not intersect C(u) (the reader is encouraged to
consult Figure 3 before proceeding). More formally, using v ≺F u to denote that v is a descendant
of u in forest F , we have:

J =

v ∈ F
∣∣∣∣∣∣
v ≺F u
C(u) ∩ C(v) = ∅
C(u) ∩ C(w) 6= ∅,∀w s.t. v ≺F w ≺F u
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Figure 3: Part of the forest F(a). Intervals around nodes denote core-clusters (two core-clusters
intersect if a vertical line intersects both); colored nodes {d, e, f, h, i, j} have core-clusters not
intersecting the core-cluster of a. In particular, the circle-shaped colored nodes are a’s top-non-
intersecting descendants (denoted by J = {d, e, f, h}). Their proper descendants define J+ =
{g, i, j}. R = {b, c} contains all other proper descendants of a.

Notice that, by definition, if two nodes v, w belong in u’s top-non-intersecting descendants,
then none is an ancestor of the other. Therefore u’s top-non-intersecting descendants J naturally
partitions the proper descendants of u in three parts: J itself, the set J+ of proper descendants of
nodes in J , and R containing the rest of the proper descendants of u (i.e., the proper descendants
of u that are not descendants of any node in J). We also define sets of species related to these sets:

SJ =
⋃
v∈J

C(v) (10)

SJ+ =
⋃

v∈J+

C(v) \ (C(u) ∪ SJ)

SR =
⋃
v∈R

C(v) \ (C(u) ∪ SJ ∪ SJ+)

The apparent asymmetry of not excluding C(u) from SJ follows from the definition of u’s top-
non-intersecting descendants J ; the core-clusters of nodes in J are disjoint from C(u), meaning
SJ would be the same even if we excluded species in C(u). Note that this is not the case for the
core-clusters in J+ as proper descendants of nodes in J might still intersect C(u), as in Figure 3.

Notice that by Lemma 15 we have C+(u) = C(u) ∪ (SJ ∪ SJ+ ∪ SR), thus

∆+(u) = SJ ∪ SJ+ ∪ SR (11)

If v ∈ J ∪J+∪R, and its core-cluster does not intersect the core-cluster of u, then by definition
of J we have that v is in descendants (not necessarily proper) of J . Therefore v ∈ J ∪J+, meaning
that nodes in R have core-clusters that intersect C(u). Furthermore, by definition, each node v in
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u’s top-non-intersecting descendants has a parent whose core-cluster intersects C(u). Therefore,
for any species i ∈ C(u) and any species j ∈ SJ ∪ SR, by Lemma 6 we have that their LP-distance
is small, that is

x
(t(u))
i,j < 0.6,∀i ∈ C(u), j ∈ SJ ∪ SR (12)

Species in SJ ∪ SR are not in C(u), and so by Corollary 13 they are not in L(u) as they belong
in ∆+(u). Then Lemma 5 gives

|SJ ∪ SR| <
1

6
|L(u)| (13)

We are left to argue about species in J+, that is in core-clusters of the descendants of u’s
top-non-intersecting descendants. By Lemma 15, these species all belong in the extended-clusters
of u’s top-non-intersecting descendants,

⋃
v∈J C

+(v) ⊇ SJ
⋃
SJ+ . By Corollary 14 these extended-

clusters are disjoint, thus SJ+ ⊆
⋃

v∈J ∆+(v). By the inductive hypothesis (9) we get

|SJ+ | ≤ 0.3|SJ | (14)

Therefore, by Inequality (13) we get that

|SJ+ | < 1

6
· 0.3|L(u)| = 1

6
· 0.3|C(u) ∪∆−(u)| (15)

By (13) and (15) we bound the size of ∆+(u):

|∆+(u)| < 1.3 · 1

6
|L(u)| (16)

We are only left with bounding |L(u)|. For this we prove that

|∆−(u)| < 0.1|C(u)| (17)

which, combined with (16), proves our initial claim.
Before proving (17) we make some definitions (see Figure 4). Roughly speaking, we want to

identify an appropriate set K of nodes such that the union of their extended-clusters both contains
∆−(u) and its cardinality is reasonably boundable. In fact, the nodes in K are descendants of
roots of F(u) \ {u} that satisfy the condition in Line 8 of Algorithm 3 (i.e., nodes v such that
C(v) ∩ C(u) = ∅, and C+(v) ∩ L(u) 6= ∅).

We now give a formal constructive definition of the set K. Let M be the set containing all the
non-descendants of u at level at most t(u) whose core-clusters intersect L(u). We define K ′ to be
the set of parents of the nodes in M . Finally, K is obtained from K ′ by removing the nodes who
have a proper ancestor in K ′. Notice by Corollary 14, their extended-clusters are disjoint. We also
define sets of species associated with K as follows.

SK =
⋃
v∈K

C(v) (18)

SK+ =
⋃
v∈K

C+(v)
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Figure 4: Part of the forest F(a). Intervals around nodes denote core-clusters (two core-clusters
intersect if a vertical line intersects both); for node a we also denote its LP-cluster by horizontal
dotted lines. All other depicted nodes are not descendants of a. The diamond-shaped nodes
{c, f, g, j} are contained in M , colored nodes {b, d, e, g} are contained in K ′, and circle-shaped
nodes {b, d} are contained in K ⊆ K ′.

Note ∆−(u) ⊆ SK+ . Next we claim for each node v ∈ K, C(v)∩L(u) = ∅. Now if we can prove
this claim then it implies SK ∩L(u) = ∅ and thus we can write ∆−(u) ⊆ SK+ \SK . Next we prove
the claim. Notice that for any node v ∈ M , v is not a descendant of u but C(v) ∩ L(u) 6= ∅; thus
there always exists a node w ∈ K such that w is an ancestor of v and C(w) ∩ L(u) = ∅.

Now, for the sake of contradiction, assume there exists a node w ∈ K such that C(w)∩L(u) 6= ∅.
But then w ∈M , and following the previous argument there exists a node w′ ∈ K such that w′ is
an ancestor of w and C(w′) ∩ L(u) = ∅. This is a contradiction, as by construction both w and w′

cannot be present in K.
Furthermore, notice that no node w ∈ K is at level t(w) = t(u), as that would imply a child

w′ ∈ M of w; but C(w′) intersects C(w) (and therefore L(w)) as w′ is a child of w, and C(w′)
intersects L(u) since w ∈M . This is a contradiction, by Lemma 7.

We conclude that K contains nodes at level at most t(u) − 1, which allows us to apply the
inductive hypothesis |∆+(w)| ≤ 0.3|C(w)| for nodes w ∈ K. Thus, from ∆−(u) ⊆ SK+ \SK we get

|∆−(u)| ≤ 0.3|SK | (19)

Furthermore, all nodes in K have a child whose core-cluster intersects C(u), and so by Lemma 6

the LP -distance between a species i ∈ L(u) and a species j ∈ SK is small, x
t(u)
i,j < 0.6. By Lemma 5

we get |SK | < 1
6 |L(u)|, which gives us |∆−(u)| ≤ 1

6 · 0.3|L(u)|.
By the definition of ∆−(u) = L(u) \ C(u) we get |C(u)| ≥ (1− 1

6 · 0.3)|L(u)|, by which

|∆−(u)| ≤
1
6 · 0.3

1− 1
6 · 0.3

|C(u)| (20)

which concludes the proof of claim (17), and as previously argued, the proof of claim (9).
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As a byproduct of this analysis, we can also give some lower bounds on the LP cost.

Lemma 16. Given a node u ∈ F , cost
(t(u))
I(u) = Ω(δ(t(u))|L(u)||∆−(u)|).

Proof. Fix a j ∈ SK , as defined in (18). We have shown that for all i ∈ L(u), the LP-distance with j

is small, x
(t(u))
i,j < 0.6. If j ∈ SK is not in the input-cluster I(u), then cost

(t(u))
i,j = δ(t(u))(1−x(t(u))

i,j ) >

δ(t(u))(1− 0.6) for each {i, j} pair with i ∈ L(u). Else, it was removed from the input-cluster in the

LP-Cleaning step, cost
(t(u))
j = Ω(δ(t(u))|I(u)|) by Lemma 8.

By the algorithm, I(u) ⊇ L(u), so summing up these costs gives cost
(t(u))
I(u) = Ω(δ(t(u))|L(u)||SK |)

which is Ω(δ(t(u))|L(u)||∆−(u)|) by (19).

Lemma 17. Given a node u ∈ F , cost
(t(u))
I(u) = Ω(δ(t(u))|C(u)||∆+(u)|).

Proof. Let SJ , SJ+ , SR be defined as in (10). It holds that ∆+(u) = SJ ∪SJ+∪SR by (11) and these
three sets are pairwise disjoint by definition. By (14), the size of SJ+ is small compared to |SJ |
which implies that |∆+(u)| = Ω(|SJ ∪ SR|). Furthermore, by (12), for any i ∈ C(u), j ∈ SJ ∪ SR,

we have that their LP-distance is small, that is x
(t)
i,j < 0.6.

We fix such a j ∈ SJ ∪ SR, therefore j 6∈ C(u). If j ∈ SJ ∪ SR is not in the input-cluster

I(u), then cost
(t(u))
i,j = δ(t(u))(1 − x(t(u))

i,j ) > δ(t(u))(1 − 0.6) for each {i, j} pair with i ∈ C(u). Else,
j ∈ I(u), but j 6∈ L(u). That is because, j is not in C(u), and if it was in L(u) then it would
contradict Corollary 13. Therefore j was removed from the input-cluster in the LP-Cleaning step

(Line 4 of Algorithm 2), and cost
(t(u))
j = Ω(δ(t(u))|I(u)|) by Lemma 8. Summing these costs proves

our claim.

5.5 Approximation factor

In this section we prove that Algorithm 1 is an O(1) approximation of the LP cost.
We first make some definitions. Let t ∈ [`]. An input-cluster CI ∈ Q(t) is strong if there exists

a level-t node u ∈ F such that I(u) = CI . Similarly, a part P of the output partition P (t) is strong
if there exists a level-t node u ∈ F such that C+(u) = P . In both cases we say that u is the
corresponding node. We characterize an input-cluster as weak if it is not strong, and similarly a
part of the output partition P (t) as weak if it is not strong.

We start with upper bounding the cost of Algorithm 1. The upper bound is related to the input-
clusters (distinguishing between strong and weak) and the parts of the output partitions (again
distinguishing between strong and weak). Informally, for weak input-clusters and weak parts, the
cost of our algorithm is proportional to the sum of squares of their size. For a strong input-cluster
with corresponding node u, the cost of our algorithm is proportional to its size times the number of
species of the input-cluster that did not end up in u’s core-cluster. For a strong part of the output
partitions, the cost of our algorithm is proportional to its size times the number of its species that
did not end up in u’s core-cluster.

Lemma 18. Suppose we are given a Hierarchical Cluster Agreement instance S,Q(∗), δ(∗) and LP-
distances x(∗). Then the cost of the output of Algorithm 1 at level t is at most

δ(t)

 ∑
CI∈Q(t)

CI is weak

(
|CI |

2

)
+

∑
P∈P (t)

P is weak

(
|P |
2

)
+
∑
u∈F
t(u)=t

(
|I(u) \ C(u)||I(u)|+ |∆+(u)||C+(u)|

)
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Proof. The cost at level t is δ(t) times the number of pairs {i, j} that do not end up in the same
part of the output partition P (t) but {i, j} ∈ E(Q(t)), plus the number of pairs {i, j} that end up
in the same part of the output partition but {i, j} 6∈ E(Q(t)). This is

δ(t)|E(Q(t)) \ E(P (t))|+ δ(t)|E(P (t)) \ E(Q(t))|

= δ(t)
∑

CI∈Q(t)

|
(
CI

2

)
\ E(P (t))|+ δ(t)

∑
P∈P (t)

|
(
P

2

)
\ E(Q(t))|

= δ(t)
∑

CI∈Q(t)

CI is weak

|
(
CI

2

)
\ E(P (t))|+ δ(t)

∑
CI∈Q(t)

CI is strong

|
(
CI

2

)
\ E(P (t))|

+δ(t)
∑

P∈P (t)

P is weak

|
(
P

2

)
\ E(Q(t))|+ δ(t)

∑
P∈P (t)

P is strong

|
(
P

2

)
\ E(Q(t))|

Notice that if i, j are in the same core-cluster C(u) of some node u at level t(u) = t, then
{i, j} ∈ E(Q(t)) ∩ E(P (t)). Also, for each strong input-cluster there exists a corresponding node u,
and vice-versa (similarly for strong parts of the output-partitions). Therefore:

δ(t)
∑

CI∈Q(t)

CI is strong

|
(
CI

2

)
\ E(P (t))| ≤ δ(t)

∑
u∈F
t(u)=t

(
|I(u)|

2

)
−
(
|C(u)|

2

)

δ(t)
∑

P∈P (t)

P is strong

|
(
P

2

)
\ E(Q(t))| ≤ δ(t)

∑
u∈F
t(u)=t

(
|C+(u)|

2

)
−
(
|C(u)|

2

)

For an input cluster CI with a corresponding node u at level t such that I(u) = CI , and since
always C(u) ⊆ I(u)(

|I(u)|
2

)
−
(
|C(u)|

2

)
= |I(u) \ C(u)||I(u)| −

(
|I(u) \ C(u)|

2

)
≤ |I(u) \ C(u)||I(u)|

Notice that subtraction is needed since |I(u) \ C(u)||I(u)| double-counts the pairs in
(
I(u)\C(u)

2

)
.

Similarly, for a part P of the output partition P (t) with a corresponding node u at level t such
that C+(u) = P , and since always C(u) ⊆ C+(u)(
|C+(u)|

2

)
−
(
|C(u)|

2

)
= |C+(u) \ C(u)||C+(u)| −

(
|C+(u) \ C(u)|

2

)
≤ |C+(u) \ C(u)||C+(u)|

= |∆+(u)||C+(u)|

For each term of Lemma 18, we show a matching lower bound for the LP cost. First, we give a
lower bound of the LP cost related to the weak input-clusters.
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Lemma 19. The LP cost at level t cost(t) is

Ω

δ(t)
∑

CI∈Q(t)

CI is weak

(
|CI |

2

)
Proof. Let CI ∈ Q(t) be an input-cluster and CLP be the corresponding LP-cluster by Algorithm 2.

By Lemma 8, cost
(t)
CI\CLP

= Ω(δ(t)|CI \ CLP ||CI |).
If CI has no corresponding node u with I(u) = CI , t(u) = t, this means that |CLP | < 0.9|CI |,

therefore |CI \ CLP | = Ω(|CI |), which makes the aforementioned cost Ω(δ(t)|CI |2) = Ω(δ(t)
(|CI |

2

)
).

Summing over all these input-clusters may only double-count each pair, which completes the
proof.

Next, we give a lower bound of the LP cost related to the strong input-clusters.

Lemma 20. The LP cost at level t cost(t) is

Ω

δ(t)
∑
u∈F
t(u)=t

(|I(u) \ C(u)||I(u)|)


Proof. Summing the cost of Lemma 16 over all nodes u at level t(u) = t gives a cost of

Ω

δ(t)
∑
u∈F
t(u)=t

(|L(u) \ C(u)||L(u)|)


since we may only double-count some pairs. Similarly, summing the cost of Lemma 8 over all
species in such nodes gives a cost of

Ω

δ(t)
∑
u∈F
t(u)=t

(|I(u) \ L(u)||I(u)|)


We prove our claim by summing these two, and noticing that |L(u)| ≥ 0.9|I(u)| by Line 5 of

Algorithm 2.

The following lemma lower bounds the LP cost in relation to the strong parts of the output
partition P (t).

Lemma 21. The LP cost at level t cost(t) is

Ω

δ(t)
∑
u∈F
t(u)=t

(
|∆+(u)||C+(u)|

)
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Proof. Summing the cost of Lemma 17 over all nodes u at level t(u) = t proves our claim, since we
may only double-count some pairs.

The following lemma lower bounds the LP cost in relation to the weak parts of the output
partition P (t).

Lemma 22. The LP cost at level t cost(t) is

Ω

δ(t)
∑

P∈P (t)

P is weak

(
|P |
2

)
Proof. Fix any such part P . By Algorithm 3, each part of the output-partition P (t) corresponds
to the extended-cluster of some node u ∈ F . We use CP to refer to the core-cluster of this node
corresponding to P , and notice that |CP | = Ω(|P |) by (9). Furthermore, by Lemma 4 any two

species i, j ∈ CP ⊆ P have x
(t)
i,j < 0.2.

We take two cases based on whether there exists an input-cluster CI ∈ Q(t) such that |CI∩CP | >
|CP /2|. Since Q(t) is a partition, there may be at most one such CI for each part P . If none exists,
then there exist Ω(

(|CP |
2

)
) pairs of species in CP which belong in different input-clusters, and thus

cost
(t)
CP

= Ω(δ(t)
(|CP |

2

)
) = Ω(δ(t)

(|P |
2

)
) by (9).

For the remaining parts, we first partition them based on parts that have the same corresponding
input-cluster. Let P1, . . . , Pk be such a maximal group with the same corresponding input cluster
CI , meaning that |CI | = Ω(

∑k
r=1 |CPr |) = Ω(

∑k
r=1 |Pr|). If CI does not correspond to any node u

at level t such that I(u) = CI , then cost
(t)
CI

= Ω(δ(t)
(|CI |

2

)
) by Lemma 8, which is Ω(δ(t)

∑k
r=1

(|Pr|
2

)
).

Else there exists such a node u with I(u) = CI , while by the statement of our Lemma there is no
v such that C+(v) = Pr for r ∈ [k]. Therefore all these parts are disjoint from C+(u) (Corollary 12),
and thus disjoint from C(u). This implies

k⋃
r=1

CPr ∩ I(u) ⊆ I(u) \ C(u)

Then

|I(u) \ C(u)| ≥ |
k⋃

r=1

CPr ∩ I(u)| >
k∑

r=1

|CPr |/2 = Ω(
k∑

r=1

|Pr|)

By Lemma 20 the LP cost at level t is Ω(δ(t)|I(u) \ C(u)||I(u)|) = Ω(δ(t)
∑k

r=1

(|Pr|
2

)
).

We combine all our lower bounds in the following corollary.

Corollary 23. The LP cost at level t is

Ω

δ(t)

 ∑
CI∈Q(t)

CI is weak

(
|CI |

2

)
+

∑
P∈P (t)

P is weak

(
|P |
2

)
+
∑
u∈F
t(u)=t

(
|I(u) \ C(u)||I(u)|+ |∆+(u)||C+(u)|

)


Proof. Follows by summing the LP cost at level t by Lemmas 19, 20, 21, 22.
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We are now ready to combine all the aforementioned results:

Lemma 24. Given a Hierarchical Cluster Agreement instance S,Q(∗), δ(∗) and LP-distances x(∗),
the output of Derive-Hierarchy(S,LP-Cleaning(S,Q(∗), x(∗))) is a sequence of hierarchical partitions
P (∗) with cost O(cost(∗)).

Proof. By Corollary 12, the output is a sequence of hierarchical partitions of S.
For any level t, by Lemma 18 and Corollary 23 the cost of the output of Derive-Hierarchy(S,LP-

Cleaning(S,Q(∗), x(∗))) is within a constant factor from the LP cost. Summing over all levels t proves
our lemma.

Lemma 24 directly proves:
HierClustAgree = O(1) (E) from Figure 1

as Algorithm 1 simply picks x(∗) to be an optimal fractional solution to the LP relaxation.
Combining this with Inequality (C) concludes the proof of Theorem 3.

6 Constant integrality gap

In this section, we prove that the LP formulation for Hierarchical Correlation Clustering (Section 2)
has constant integrality gap. This directly extends to the integrality gap of the LP formulation
used by Ailon and Charikar for ultrametrics [3], as the LP formulation for Hierarchical Corre-
lation Clustering is a generalization of the one for ultrametrics (implicit in [3, 39], discussed in
Section 7).

Notice that this is not direct from our algorithm, as for Hierarchical Correlation Clustering we
do not directly work with the LP from Section 2; we rather reduce our problem to an instance of
Hierarchical Cluster Agreement, and then round the LP of this instance.

We start with some definitions. Suppose we have an instance of Hierarchical Correlation Clus-
tering S, δ(∗) = (δ(1), . . . , δ(`)), E(∗) = (E(1), . . . , E(`)). We say that x is an LP vector if it consists
of LP distances xi,j satisfying the triangle inequality and being in the interval [0, 1], for all species
i, j ∈ S. For any E ⊆

(
S
2

)
, we extend the previously used notion of LP cost as:

cost(t)(E, x) =
∑
{i,j}∈E

(xi,j) +
∑
{i,j}6∈E

(1− xi,j)

Notice that for any LP vector x and edge-sets E1, E2 ⊆
(
S
2

)
, we have that

cost(t)(E1, x) ≤ cost(t)(E2, x) + δ(t)|E14E2| (21)

That is because only pairs in their symmetric difference may be charged differently by cost(E1, x)
and cost(E2, x), and the maximum such difference is δ(t), as the LP-distances are between 0 and 1.

The LP formulation of Correlation Clustering, which is a special case of the formulation of
Hierarchical Correlation Clustering, has constant integrality gap [17]. Therefore, for a Correlation
Clustering instance S,E, integral solution Q whose cost is within a constant factor from the optimal
integral solution OPT , and any t and LP vector x, it holds that

δ(t)|E4Q| = O(δ(t)|E4OPT |) = O(cost(E, x)) (22)
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Finally, let Q(∗) = (Q(1), . . . , Q(`)) be partitions of S such that for each t ∈ [`], Q(t) is a solution
to Correlation Clustering with input S,E(t) whose cost is within a constant factor from the optimal.
Let x(∗) = (x(1), . . . , x(`)) be ` LP vectors satisfying (6) that are an optimal fractional solution to
Hierarchical Correlation Clustering.

We need to prove that some integral solution P (∗) = (P (1), . . . , P (l)) to Hierarchical Corre-
lation Clustering has cost within a constant factor of the optimal fractional solution. We pick
P (∗) = Derive-Hierarchy(S,LP-Cleaning(S,Q(∗), x(∗))), that is the integral solution suggested by
Lemma 24. Formally, we prove

∑̀
t=1

δ(t)|P (t)4E(t)| = O

(∑̀
t=1

cost(E(t), x(∗))

)
It holds that

∑̀
t=1

δ(t)|P (t)4E(t)| ≤
∑̀
t=1

δ(t)(|P (t)4E(Q(t))|+ |E(Q(t))4E(t)|)

By Lemma 24 we have that

∑̀
t=1

δ(t)|P (t)4E(Q(t))| = O

(∑̀
t=1

cost(E(Q(t)), x(∗))

)

≤ O

(∑̀
t=1

(cost(E(t), x(∗)) + |E ∩ E(Q(t))|

)

with the later following by (21). Therefore we bound
∑`

t=1 δ
(t)|P (t)4E(t)|:

∑̀
t=1

δ(t)|P (t)4E(t)| ≤
∑̀
t=1

δ(t)(|P (t)4E(Q(t))|+ |E(Q(t))4E(t)|)

= O

(∑̀
t=1

(cost(E(t), x(∗)) + |E(t) ∩ E(Q(t))|

)

= O

(∑̀
t=1

cost(E(t), x(∗))

)

with the last step following from (22).

7 From L1-fitting ultrametrics to hierarchical correlation cluster-
ing

For completeness, we here review the reduction from ultrametrics to hierarchical correlation clus-
tering implicit in previous work [3, 39].
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Given an L1-fitting ultrametrics instance with input D :
(
S
2

)
→ R>0, we construct an input

to the Hierarchical Correlation Clustering instance as follows. Let D(1) < . . . < D(`+1) be the
distances that appear in the input distance function D. For t = 1, . . . , `, define

δ(t) = D(t+1) −D(t) and E(t) =

{
{i, j} ∈

(
S

2

)
| D(i, j) ≤ D(t)

}
(23)

Now given the solution to this hierarchical correlation clustering problem, to construct a corre-
sponding ultrametric tree, we first complete the partition hierarchy with P (0) partitioning S into
singletons and P (`+1) consisting of the single set S. Moreover, we set δ(0) = D(1).

To get the ultrametric tree U , we create a node for each set in the hierarchical partitioning.
Next, for t = 0, . . . , `, the parent of a level t node u is the node on level t + 1 whose set contains
the set of u, and the length of the parent edge is δ(t)/2. Then nodes on level t are of height∑t−1

i=0 δ
(t)/2 = D(t)/2 and if two species have their lowest common ancestor on level t, then their

distance is exactly D(t).
The construction is reversible in a manner that given any ultrametric tree U with leaf set S

and all distances from {D(1), . . . , D(`+1)}, we get the partitions P (1), . . . , P (`) as follows. First,
possibly by introducing nodes with only one child, for each species i we make sure it has ancestors
of heights D(t)/2 for t = 1, . . . , ` + 1. Then, for t = 1, . . . , `, we let partitions P (t) consist of the
sets of descendants for each level t node in U .

With this relation between U and P (1), . . . , P (`), it follows easily that they have the same cost
relative to D in the sense that

∑̀
t=1

δ(t)|E(t) ∆E(P (t))| =
∑

{i,j}∈(S2)

|distU (i, j)−D(i, j)|.

Thus, with (23), the hierarchical correlation clustering is equal to L1-fitting ultrametrics with
ultrametric distances from the set of different distances in D.

Finally, from Lemma 1(a) in [39], we have that among all ultrametrics minimizing the L1 dis-
tance to D, there is at least one using only distances from D. This implies that an α-approximation
algorithm for hierarchical correlation clustering implies an α-approximation algorithm for L1-fitting
ultrametrics, that is

UltraMetric ≤ HierCorrClust (B) from Figure 1

Combining this with Theorem 3 concludes the second part of Theorem 1, namely that the
L1-fitting ultrametrics problem can be solved in deterministic polynomial time within a constant
approximation factor.

8 Tree metric to ultrametric

Agarwala et al. [2] reduced tree metrics to certain restricted ultrametrics. In fact, their reduction
may make certain species have distance 0 in the final tree, which means that it is actually a
reduction from tree pseudometrics8 to certain restricted ultrametrics. In this section we show that
the restrictions are not needed, and that the reduction can be made in a way that does not introduce
zero-distances.

8Pseudometrics are a generalization of metrics that allow distance 0 between distinct species.
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8.1 Tree pseudometric to (unrestricted) ultrametric

The claim from [2] is that approximating a certain restricted ultrametric within a factor α can be
used to approximate tree pseudometric within a factor 3α. Here we completely lift these restrictions
for L1, and show that they can be lifted for all Lp with p ∈ {2, 3, . . .} with an extra factor of at
most 2.

We will need the well-known characterization of ultrametrics discussed in the introduction, that
U is an ultrametric iff it is a metric and ∀{i, j, k} ∈

(
S
3

)
: U(i, j) ≤ max{U(i, k), U(k, j)}.

For simplicity, we prove the theorem only for p <∞, as for L∞ the 3 approximation [2] cannot
be improved by our theorem.

Theorem 25. For any integer 1 ≤ p <∞, a factor α ≥ 1 approximation for Lp-fitting ultrametrics
implies a factor 3 · 2(p−1)/p · α approximation for Lp-fitting tree pseudometrics.
In particular, for L1 it implies a factor 3α.

Proof (Extending proof from [2]). The restriction from Agarwala et al. [2] is as follows. For every
species i ∈ S, we have a “lower bound” βi. Moreover, we have a distinguished species k ∈ S with
an upper bound γk.

We want an ultrametric U such that

γk ≥ U(i, j) ≥ max{βi, βj} ∀{i, j} ∈
(
S

2

)
γk = U(k, i) ∀i ∈ S \ {k}.

We note that the conditions can only be satisfied if γk ≥ βi for all i ∈ S, so we assume this is the
case. We can even have βk = γk.

The result from [2] states that for any p and D :
(
S
2

)
→ R>0, if we can minimize the restricted

ultrametric Lp error within a factor α in polynomial-time, then there is a polynomial-time algorithm
that minimizes the tree pseudometric Lp error within a factor 3α.

We start with creating a new distance function D′.

D′(i, j) = min{γk,max{D(i, j), βi, βj}}.

Intuitively, we squeeze D′ to satisfy the restrictions. For any restricted ultrametric U , the error
between U and D′ can never be larger than the error between U and D, no matter the norm Lp.
Formally, since U is restricted, we have max{βi, βj} ≤ U(i, j) ≤ γk.

• If D(i, j) > γk, then D′(i, j) = γk ≥ U(i, j) and |U(i, j)−D′(i, j)|p < |U(i, j)−D(i, j)|p.

• If D(i, j) < max{βi, βj}, then D′(i, j) = max{βi, βj} ≤ U(i, j) and |U(i, j) − D′(i, j)|p <
|U(i, j)−D(i, j)|p.

• If max{βi, βj} ≤ D(i, j) ≤ γk, then D′(i, j) = D(i, j) and |U(i, j) − D′(i, j)|p = |U(i, j) −
D(i, j)|p.

We now ask for an arbitrary ultrametric fit U ′ for D′. With exactly the same reasoning, we can
only improve the cost if we replace U ′ with

U(i, j) = min{γk,max{U ′(i, j), βi, βj)}}.
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Clearly U now satisfies the restrictions (in the end of the proof we show that it is an ultrametric).
Our solution to Lp-fitting tree pseudometrics is to first create D′ from D, obtain ultrametric

U ′ by an α approximation to Lp-fitting ultrametrics, and then obtain the restricted ultrametric U
from U ′. Finally we apply the result from [2] to get the tree pseudometric.

Let OPTD,R be the closest restricted ultrametric to D, and OPTD′ be the closest ultrametric
to D′. It suffices to show that ‖U − D‖p ≤ 2(p−1)/pα‖OPTD,R − D‖p (equivalently ‖U − D‖pp ≤
2p−1αp‖OPTD,R −D‖pp, and that U is indeed an ultrametric.

By the above observations, it holds that

‖D′ − U‖p ≤ ‖D′ − U ′‖p ≤ α‖D′ −OPTD′‖p ≤ α‖D′ −OPTD,R‖p =⇒
‖D′ − U‖pp ≤ αp‖D′ −OPTD,R‖pp

By definition of D′, and since U is restricted, for any species i, j it holds min{D(i, j), U(i, j)} ≤
D′(i, j) ≤ max{D(i, j), U(i, j)}. The proof follows by a direct case study of the 3 cases D(i, j) ≤
max{βi, βj}, max{βi, βj} < D(i, j) ≤ γk, γk < D(i, j). Therefore

|D(i, j)− U(i, j)| = |D(i, j)−D′(i, j)|+ |D′(i, j)− U(i, j)|

For p ≥ 1 we have |x|p + |y|p ≤ (|x|+ |y|)p, meaning |D(i, j)−D′(i, j)|p + |D′(i, j)−U(i, j)|p ≤
|D(i, j)− U(i, j)|p.

Moreover, by the convexity of |x|p for real x, we get ((x + y)/2)p ≤ (|x|p + |y|p)/2, meaning
|D(i, j)− U(i, j)|p ≤ 2p−1(|D(i, j)−D′(i, j)|p + |D′(i, j)− U(i, j)|p). Therefore

|D(i, j)−D′(i, j)|p+|D′(i, j)−U(i, j)|p ≤ |D(i, j)−U(i, j)|p ≤ 2p−1(|D(i, j)−D′(i, j)|p+|D′(i, j)−U(i, j)|p)

The same holds if we replace U with OPTD,R, as we only used that U is restricted. We now
have
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‖D − U |pp =
∑

{i,j}∈(S2)

|D(i, j)− U(i, j)|p

≤
∑

{i,j}∈(S2)

2p−1(|D(i, j)−D′(i, j)|p + |D′(i, j)− U(i, j)|p)

= 2p−1(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + ‖D′ − U‖pp)

≤ 2p−1(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + αp‖D′ −OPTD,R‖pp)

≤ 2p−1αp(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + ‖D′ −OPTD,R‖pp)

= 2p−1αp
∑

{i,j}∈(S2)

(|D(i, j)−D′(i, j)|p + |D′(i, j)−OPTD,R(i, j)|p)

≤ 2p−1αp
∑

{i,j}∈(S2)

(|D(i, j)−OPTD,R(i, j)|p)

= 2p−1αp‖D −OPTD,R‖pp

Finally, we need to prove that U inherits that it is an ultrametric. This is clear if we proceed
in rounds; each round we construct a new ultrametric, and the last one will coincide with U .

More formally, let U0 = U ′. In the first |S| rounds, we take out a different i′ ∈ S at a time, and
let

Ur(i, j) = max{Ur−1(i, j), βi′}.

Suppose r > 0 is the first round where Ur is not an ultrametric. Then there exists a triple
{i, j, k} such that Ur(i, j) > max{Ur−1(i, k), Ur−1(k, j)} As we only increase distances, this may
only happen if Ur(i, j) > Ur−1(i, j). But this means that Ur(i, j) = max{βi, βj}, which is a lower
bound on Ur(i, k) and Ur(k, j) by construction.

Finally, U is simply
U(i, j) = min{γk, U|S|(i, j)}.

Suppose there exists a triple {i, j, k} that now violates the ultrametric property, then it holds that

U(i, j) > max{U|S|(i, k), U|S|(k, j)}

As we did not increase any distance, this means that both U(i, k) < U|S|(i, k) and U(k, j) <
U|S|(k, j); but distances can only reduce to γk which is an upper bound on U(i, j) by construction.

8.2 From tree metric to tree pseudometric

In this section we prove that in order to find a good tree metric, it suffices to find a good tree
pseudometric. This is a minor detail that we add for completeness. Informally, the construction

35



simply replaces 0 distances with some parameter ε, and accordingly adapts the whole metric. By
making the parameter ε very small, the cost is not significantly changed.

Technically, our main lemma is the following.

Lemma 26. Given is a set S, a distance function D :
(
S
2

)
→ R>0, a tree T with non-negative edge

weights describing a tree pseudometric on S, and a parameter α ∈ (0, 1]. In time polynomial in the
size of T we can construct a tree T ′ with positive edge weights describing a tree metric on S, such
that for any p ≥ 1, it holds that ‖T ′ −D‖p ≤ (1 + α)‖T −D‖p.

Proof. We construct T ′ from T as follows. First, we contract all edges with weight 0. This may
result in several species from S coinciding in the same node. For each such node u and species i
coinciding with some other species in u, we create a new leaf-node ui connected only with u with
edge-weight ε > 0 (to be specified later). We identify i with ui, instead of u.

T ′ describes a tree metric on S, as by construction each species i ∈ S is identified with a distinct
node in T ′, and T ′ only contains positive edge-weights.

If T matches D exactly, that is ‖T−D‖p = 0, then no pair of species i, j ∈ S have distT (i, j) = 0,
as D(i, j) > 0. But then no species coincided in the same node due to the contractions, meaning
that no distances changed, which proves our claim. From here on we assume that at least one pair
has distT (i, j) 6= D(i, j).

To specify the parameter ε we first make some definitions. Let Y be the set containing all
species i ∈ S for which we created a new leaf node in T ′. Moreover, let dmin be the smallest
positive |distT (i, j)−D(i, j)| among all i, j ∈ S. Then

ε = αdmin/(8|S|)

For any two species i, j, their distance stays the same, increases by ε, or increases by 2ε.
Therefore, for p = ∞ we directly get ‖T ′ − D‖p ≤ ‖T − D‖p + 2ε. By definition of dmin we have
also have ‖T − D‖p ≥ dmin =⇒ 2ε ≤ α‖T − D‖p/(4|S|) < α‖T − D‖p, which proves our claim.
Therefore we can assume that p <∞.

We start with a lower bound related to ‖T −D‖p. By definition of Y , for any i ∈ Y there exists
a j ∈ Y such that distT (i, j) = 0, meaning that |distT (i, j)−D(i, j)| = |D(i, j)| ≥ dmin. Therefore

‖T −D‖pp ≥
|Y |
2
dpmin

We now upper bound ‖T ′ − D‖p. If distT (i, j) 6= D(i, j), then |distT (i, j) − D(i, j)| ≥ dmin by
definition of dmin. For the rest of the pairs i, j, if their distance increased then either i ∈ Y or
j ∈ Y , by construction; thus there are at most |Y ||S| such pairs. Using these observations, we take
the following three cases:
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∑
{i,j}∈(S2)

distT (i,j)6=D(i,j)

|distT ′(i, j)−D(i, j)|p ≤
∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

(|distT (i, j)−D(i, j)|p + |2ε|p)

∑
{i,j}∈(S2)

distT (i,j)=D(i,j)
distT (i,j)=distT ′ (i,j)

|distT ′(i, j)−D(i, j)|p = 0

∑
{i,j}∈(S2)

distT (i,j)=D(i,j)
distT (i,j)<distT ′ (i,j)

|distT ′(i, j)−D(i, j)|p ≤
∑

{i,j}∈(S2)
distT (i,j)=D(i,j)

distT (i,j)<distT ′ (i,j)

|2ε|p ≤ |Y ||S||2ε|p

Adding these 3 upper bounds ‖T ′ −D‖pp by∑
{i,j}∈(S2)

distT (i,j)6=D(i,j)

(|distT (i, j)−D(i, j)|p + |2ε|p) + |Y ||S||2ε|p

Using our lower bound and the definition of ε

|Y ||S||2ε|p ≤ 2p+1|S||ε|p‖T −D‖pp/d
p
min ≤ (α/2)‖T −D‖pp

By the definition of ε and dmin, for i, j such that distT (i, j) 6= D(i, j) it holds that (|distT (i, j)−
D(i, j)|p + |2ε|p) ≤ (α/2)|distT (i, j)−D(i, j)|p. Therefore, we get

‖T ′ −D‖pp ≤
∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

(1 + α/2)|distT (i, j)−D(i, j)|p + (α/2)‖T −D‖pp

= (1 + α/2)‖T −D‖pp + (α/2)‖T −D‖pp = (1 + α)‖T −D‖pp

Therefore, for any p ≥ 1, we can approximate Lp-fitting tree metrics by using an approximation
to Lp-fitting tree pseudometrics. The error is at most (1 + α) times the approximation factor of
the tree pseudometric, as any tree metric is also a tree pseudometric.

Setting α = 1
|S| and using the result from [2], we conclude that

TreeMetric ≤ (3 + o(1)) ·UltraMetric (A) from Figure 1

This concludes the proof of Theorem 1.
As a final note, in the case of L0 (that is, we count the number of disagreements between D and

T ′) one cannot hope for a similar result. To see this, let S be a set of species, and let c1, c2 ∈ S be
two special species. The distance between any pair of species is 2, except if the pair contains either
c1 or c2, in which case the distance is 1. The optimal tree pseudometric simply sets the distance
between c1 and c2 to 0, and preserves everything else (1 disagreement).

Any tree metric requires at least |S|−3 disagreements: we say that a non-special species is good
if it has tree-distance 1 to both c1 and c2, and bad otherwise. Bad species have distance different
than 1 to at least one special species, while good species have distance less than 2 with each other;
the disagreements minimize at |S| − 3, when there is either one or two good species.

37



9 APX-Hardness

The problems of L1-fitting tree metrics and L1-fitting ultrametrics are regarded as APX-Hard in the
literature [3, 39]. However, we decided to include our own versions of these proofs for a multitude of
reasons: First and foremost, [3] attributes the APX-hardness to [53], which is an unpublished Master
thesis that is non-trivial to read. Also [39] claims that APX-Hardness of L1-fitting ultrametrics
follows directly by the APX-Hardness of Correlation Clustering [17]; but this is only true if all
the distances in the ultrametric are in {1, 2}. Second, we think that our proofs are considerably
simpler and more direct. Finally, our constant factor approximation algorithms for these problems
make it important to have formal proofs of their APX-Hardness, since the combination settles that
a constant factor approximation is best possible in polynomial time unless P=NP.

9.1 L1-fitting ultrametrics

The correlation clustering problem has been shown to be APX-Hard in [17]. As noted in [3, 39]
correlation clustering is the same as the L1-fitting ultrametrics in case both the input and the
output are only allowed to have distances in {1, 2}. We refer to this problem as L1-fitting {1, 2}-
ultrametrics. Therefore the L1-fitting {1, 2}-ultrametrics is also APX-Hard.

For completeness, we sketch this relation here. Let E ⊆
(
S
2

)
be an instance of correlation

clustering, then D(i, j) is an instance to L1-fitting {1, 2}-ultrametrics, where D(i, j) = 1 if {i, j} ∈
E, and D(i, j) = 2 otherwise. Similarly, given D we can obtain E by setting {i, j} ∈ S iff D(i, j) = 1.
Given any solution to correlation clustering (permutation P of S), we get a solution T to L1-
fitting {1, 2}-ultrametrics with T (i, j) = 1 if i, j are in the same part of P , and T (i, j) = 2
otherwise. As T is an ultrametric, we are guaranteed that T (i, j) ≤ max{T (i, k), T (j, k)}, therefore
if T (i, k) = T (j, k) = 1, then T (i, j) = 1 as only distances in {1, 2} are allowed. Thus distance-1 is
a transitive relation and P can be obtained by the equivalence classes of species with distance 1 in
T . The observation from [3] is that |E4E(P )| = ‖T −D‖1, which follows by trivial calculations.

The bird’s eye view of our approach for showing APX-Hardness of L1-fitting ultrametrics is the
following. For the sake of contradiction, we assume that L1-fitting ultrametrics is not APX-Hard.
We then show how to solve the L1-fitting {1, 2}-ultrametrics problem in polynomial time within
any constant factor greater than 1, contradicting the fact that it is APX-Hard. The main idea is
that we first solve the general L1-fitting ultrametrics problem. Then we apply a sequence of local
transformations that converts the general ultrametric to an ultrametric with distances in {1, 2}
without increasing the error. To achieve this, we first eliminate distances smaller than 1, then
eliminate distances larger than 2, and then eliminate distances in (1, 2).

We first prove the following result concerning the local transformations. We remind the reader
that an ultrametric T is defined as a metric with the property that for i, j, k ∈ S we have T (i, j) ≤
max{T (i, k), T (j, k)}.

Lemma 27. Let S be a set of species, D :
(
S
2

)
→ {1, 2} be a distance function with distances only

in {1, 2}, and T be a rooted tree such that each species i ∈ S corresponds to a leaf in T (more
than one species may correspond to the same leaf) and all leaves are at the same depth. Then, in
polynomial time, we can create a tree T1,2 describing an ultrametric with distances only in {1, 2}
such that ‖T1,2 −D‖1 ≤ ‖T −D‖1.

Proof. We set T ′ = T and apply the following local transformation to T ′. If T (i, j) < 1, we
set T ′(i, j) = 1. It holds that ‖T ′ − D‖1 ≤ ‖T − D‖1 as D(i, j) ≥ 1 and T (i, j) < 1 implies
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|1−D(i, j)| < |T (i, j)−D(i, j)|. Furthermore T ′ still describes an ultrametric. To see this, notice
that max{T ′(i, k), T ′(j, k)} ≥ max{T (i, k), T (j, k)} ≥ T (i, j) as we do not decrease distances and T
is an ultrametric. Therefore if T ′(i, j) > max{T ′(i, k), T ′(j, k)}, this means that T ′(i, j) > T (i, j).
But this only happens if T ′(i, j) = 1, which is a lower bound on T ′(i, k), T ′(j, k) by construction.
This contradicts that T ′(i, j) > max{T ′(i, k), T ′(j, k)}, therefore T ′ describes an ultrametric. Notice
that no two species in S coincide in the same node in T ′ as the minimum distance between any two
distinct species is 1.

Similarly, we set T ′′ = T ′ and apply the following local transformation to T ′′. If T ′(i, j) > 2,
we set T ′′(i, j) = 2. It holds that ‖T ′′ − D‖1 ≤ ‖T ′ − D‖1 as D(i, j) ≤ 2 and T ′(i, j) > 2 implies
|2 − D(i, j)| < |T ′(i, j) − D(i, j)|. Furthermore T ′′ still describes an ultrametric. To see this,
notice that T ′′(i, j) ≤ T ′(i, j) ≤ max{T ′(i, k), T ′(j, k)}. If T ′′(i, j) > max{T ′′(i, k), T ′′(j, k)} then
max{T ′′(i, k), T ′′(j, k)} < max{T ′(i, k), T ′(j, k)} which only happens if either of T ′(i, k) or T ′(j, k)
dropped to 2, meaning that max{T ′′(i, k), T ′′(j, k)} = 2. But 2 is an upper bound on T ′′(i, j). This
contradicts that T ′′(i, j) > max{T ′′(i, k), T ′′(j, k)}, therefore T ′′ describes an ultrametric.

Now, by construction, the ultrametric tree describing T ′′ has leaves at depth 1 (the maximum
distance is 2) and internal nodes at depth between 0 and 0.5 (the minimum distance is 1). If an
internal node u has depth du ∈ (0, 0.5), let x1 be the number of pairs {i, j} ⊆

(
S
2

)
whose nearest

common ancestor is u and D(i, j) = 1, and x2 be the number of pairs {i, j} ⊆
(
S
2

)
whose nearest

common ancestor is u and D(i, j) = 2. If x2 ≥ x1, we remove u and connect the children of u directly
with the parent of u. We still have an ultrametric as we have an ultrametric tree describing the
metric. The L1 error is not larger, as the error of x2 pairs drops by twice the absolute difference
in depths between u and its parent (their distance increases but does not exceed 2), and the error
of x1 ≤ x2 pairs increases by the same amount. Otherwise x2 < x1. In this case we increase the
depth of u until it coincides with the depth of some of its children, and merge these children with
u. Similarly with the previous argument, we still have an ultrametric with smaller L1 error.

Each time we apply the above step, we remove at least one node from our tree. Therefore
when we can no longer apply this step, we spent polynomial time and acquired an ultrametric T1,2

with distances only in {1, 2} whose L1 error from D is ‖T1,2 − D‖1 ≤ ‖T ′′ − D‖1 ≤ ‖T ′ − D‖1 ≤
‖T −D‖1.

Theorem 28. L1-fitting ultrametrics is APX-Hard. In particular, L1-fitting ultrametrics where
the input only contains distances in {1, 2} is APX-Hard.

Proof. Let D :
(
S
2

)
→ {1, 2} be a distance function, OPT be the optimal ultrametric for the

L1-fitting ultrametrics problem, and OPT1,2 be the optimal ultrametric for the L1-fitting {1, 2}-
ultrametrics. We solve this L1-fitting ultrametrics instance in polynomial time and obtain T such
that ‖T − D‖1 ≤ (1 + ε)OPT for a sufficiently small constant ε, as we assumed that L1-fitting
ultrametrics is not APX-Hard. Notice that any solution to the L1-fitting {1, 2}-ultrametrics is also
a solution to the L1-fitting ultrametrics, meaning that ‖T −D‖1 ≤ (1 + ε)OPT ≤ (1 + ε)OPT1,2.

Let T1,2 be the ultrametric we get from T by applying Lemma 27. Then T1,2 is a solution to
the L1-fitting {1, 2}-ultrametrics instance, and ‖T1,2 − D‖1 ≤ ‖T − D‖1 ≤ (1 + ε)OPT1,2. This
contradicts the fact that L1-fitting {1, 2}-ultrametrics is APX-Hard.

9.2 L1-fitting tree metrics

In this section, we show that L1-fitting tree metrics is APX-Hard. Our reduction is based on the
techniques used in [27] to prove NP-Hardness of the same problem. The bird’s eye view of our
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approach is that we solve L1-fitting ultrametrics by solving L1-fitting tree metrics on a modified
instance. In this instance we introduce new species having small distance to each other and large
distance to the original species. Through a sequence of local transformations, we show that we can
modify the tree describing the obtained tree metric so as to consist of a star connecting the new
species, and an ultrametric tree connecting the original species (the center of the star and the root
of the ultrametric tree are connected by a large edge). This ultrametric would refute APX-Hardness
of L1-fitting ultrametrics, in case L1-fitting tree metrics was not APX-Hard.

Theorem 29. L1-fitting tree metrics is APX-Hard.

Proof. Let D :
(
S
2

)
→ {1, 2} be an input to L1-fitting ultrametrics, such that all distances in D

are in {1, 2}. Moreover, let n = |S| and OPTD,U be the ultrametric minimizing ‖OPTD,U − D‖1.
By Theorem 28, this problem is APX-Hard. For the sake of contradiction, assume L1-fitting tree
metrics is not APX-Hard.

Let ε ∈ (0, 1) be a sufficiently small constant, and M = 2(1 + ε)
(
n
2

)
+ 1 be a large value. We

extend S to S′ ⊇ S such that |S′| = 2n. For {i, j} ∈
(
S
2

)
we set D′(i, j) = D(i, j). For i, j ∈

(
S′\S

2

)
we set D′(i, j) = 2. For all other i, j we set D′(i, j) = M . As we assumed L1-fitting tree metrics not
to be APX-Hard, in polynomial time we can compute T , a tree metric such that for any other tree
metric T0 it holds that ‖T −D′‖1 ≤ (1 + ε)‖T0 −D′‖, for sufficiently small ε such that 0 < ε < 1.

We first show that each species k ∈ S′ \ S has an incident edge contained in all paths from
this species to any species in S. To do so, we need to upper bound ‖T − D′‖1. If we make a star
whose leaves are the species in S with distance 1 from the center, a second star whose leaves are
the species in S′ \ S with distance 1 from the center, and connect the two centers with an edge of
weight M − 2 then only pairs with both species in S may have the wrong distance, and the error
for each such pair is at most one. Therefore ‖T −D′‖1 ≤ (1 + ε)

(
n
2

)
. This means that if k ∈ S′ \ S,

then in the tree describing T there exists a path Πk starting from k and having weight larger than
1, such that the path from k to any species i ∈ S has Πk as a prefix. To see why this is true,
notice that otherwise two species i, j would exist such that the paths from k to i and from k to
j only share a prefix Πi,j of weight wΠi,j ≤ 1. But T (i, k) > M/2 as otherwise we would have
‖T −D′‖1 ≥ |T (i, k)−D′(i, k)| ≥ M/2 > (1 + ε)

(
n
2

)
, and similarly T (j, k) > M/2. Then T (i, j) =

T (i, k) + T (j, k)− 2 · wΠi,j > M − 2, meaning again ‖T −D′‖1 > |T (i, j)−D′(i, j)| > (1 + ε)
(
n
2

)
.

Using the aforementioned structural property, we show how to modify our tree so that all species
in S are close to each other, all species in S′ \S are close to each other, but species in S are far from
species in S′ \ S. Let k ∈ S′ \ S be the species minimizing

∑
i∈S |T (i, k)−D′(i, k)|. We transform

the tree describing T by inserting a node u in the path Πk at distance 1 from k, and creating a
star with u as its center and all species in S′ \ S as leaves at distance 1. Let T ′ be the resulting
tree metric and notice that ‖T ′ − D′‖1 ≤ ‖T − D′‖1 because the errors from species in S′ \ S to
species in S did not increase (by definition of k), the errors between species in S′ \ S are exactly
zero, and the errors between species in S stay exactly the same (we did not modify the part of the
tree formed by the union of paths between species in S).

Then, we modify the tree describing T ′ to obtain T ′′ so that the distance from any species in
S to any species in S′ \ S is M . If for any i ∈ S we have T ′(i, k) 6= M , we move i in the tree so
as to make its distance with k equal to M : if T ′(i, k) < M , we create a new leaf node connected
with i with distance M − T ′(i, k), and move i to this new leaf node. Else if T ′(i, k) > M there
exists an i′ (possibly by subdividing an edge) in the path from k to i having distance M from k
and we move i to this node. Notice that ‖T ′′ − D′‖1 ≤ ‖T ′ − D′‖1 because we move each i ∈ S
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by |M − T ′(i, k)| so that it has zero error with each k′ ∈ S′ \ S, meaning that the error drops by
|S′ \ S||M − T ′(i, k)| = n|M − T ′(i, k)| (|M − T ′(i, k)| for each k′ ∈ S′ \ S), and increases by at
most (n− 1)|M − T ′(i, k)| (|M − T ′(i, k)| for each i′ ∈ S \ {i}).

If we remove all nodes not in a path from k to any i ∈ S in the tree describing T ′′, then by
construction we have a tree TD,U rooted at k, having leaves identified with the species in S, and all
leaves having depth M . By the above discussion its error is ‖TD,U − D‖1 = ‖T ′′ − D′‖1. As some
species may coincide in the same nodes, we get an ultrametric T ′D,U of S having the aforementioned
properties so that no two species coincide in the same node, using Lemma 27.

Notice that OPTD,U has maximum distance between species less than M ; otherwise its error
would be at least M − 2, which is a contradiction to the fact that an ultrametric where all species
have distance 1 has error at most

(
n
2

)
< M − 2. But then we can take the tree describing this

optimal ultrametric, connect its root with a node u so that u has distance M −1 to all species in S,
and identify each species k′ ∈ S′ \ S with a leaf u′k′ connected with u with an edge of weight 1. If
the resulting tree metric is T1, then ‖OPTD,U−D‖1 = ‖T1−D′‖1. We conclude that ‖T ′D,U−D‖1 =
‖TD,U −D‖1 = ‖T ′′−D′‖1 ≤ ‖T ′−D′‖1 ≤ ‖T −D′‖1 ≤ (1 + ε)‖T1−D′‖1 = (1 + ε)‖OPTD,U −D‖1.
This contradicts Theorem 28.

10 Conclusion

We have given the first constant factor approximation for L1-fitting tree metrics, the first improve-
ment on the problem for the last 16 years. This problem was one of the relatively few remaining
problems for which obtaining a constant factor approximation or showing hardness was open.
Breaking through the best known O((log n)(log log n))-approximation had thus been stated as a
fascinating open problem.

Interestingly, our journey brought us to the study of a natural definition of hierarchical cluster
agreement that may be of broader interest, in particular to the data mining community where
correlation clustering has been a successful objective function and where hierarchical clustering is
often desired in practice.

Finding a polynomial time constant factor approximation (or showing that this is hard, e.g., by
reduction to unique games) for L2-fitting tree metrics is a great open problem. Recall from Section 8
that it suffices to focus on approximating the problem of fitting into an arbitrary ultrametric (no
need for restricted versions). Finally, the O((log n)(log log n))-approximation algorithm of Ailon
and Charikar for the weighted case (where the cost of an edge is weighted by an input edge weight)
could potentially be improved to O(log n) without improving multicut, and it would be interesting
to do so. Going even further would require improving the best known bounds for multicut, a
notoriously hard problem.
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[46] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden markov
models. In STOC, pages 366–375, 2005.

[47] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. In NeurIPS,
pages 2316–2324, 2016.

[48] Anastasios Sidiropoulos, Dingkang Wang, and Yusu Wang. Metric embeddings with outliers.
In SODA, pages 670–689, 2017.

44



[49] Peter H.A. Sneath and Robert R. Sokal. Numerical taxonomy. Nature, 193(4818):855–860,
1962.

[50] Peter H.A. Sneath and Robert R. Sokal. Numerical Taxonomy. The Principles and Practice
of Numerical Classification. Freeman, 1963.

[51] Rishi Sonthalia and Anna C. Gilbert. Tree! I am no tree! I am a low dimensional hyperbolic
embedding. In NeurIPS, 2020.

[52] Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res., 34(3):594–620, 2009. Announced at SODA
2007.

[53] Harold Todd Wareham. On the computational complexity of inferring evolutionary trees.
Master’s thesis, Memorial University of of Newfoundland, 1993.

[54] M.S. Waterman, T.F. Smith, M. Singh, and W.A. Beyer. Additive evolutionary trees. Journal
of Theoretical Biology, 64(2):199–213, 1977.

45


	1 Introduction
	1.1 Tree fitting (Numerical Taxonomy Problem)
	1.2 Our result
	1.3 History of Lp tree fitting
	1.4 Other related work
	1.5 Techniques
	1.5.1 Correlation Clustering
	1.5.2 Hierarchical correlation clustering
	1.5.3 Hierarchical cluster agreement

	1.6 High-level algorithm for hierarchical correlation clustering
	1.7 Organization of the paper

	2 LP definitions for Hierarchical Correlation Clustering
	3 From Hierarchical Correlation Clustering to Hierarchical Cluster Agreement Problem
	4 Constant approximation Algorithm for Hierarchical Cluster Agreement
	4.1 LP Definitions for Hierarchical Cluster Agreement
	4.2 Main Algorithm
	4.3 LP cleaning Algorithm
	4.4 Derive-hierarchy Algorithm

	5 Analysis of Hierarchical Cluster Agreement Algorithm
	5.1 Terminology
	5.2 LP-Cleaning Results (Algorithm 2)
	5.3 Derive-Hierarchy results (Algorithm 3)
	5.4 Managing removals and extensions
	5.5 Approximation factor

	6 Constant integrality gap
	7 From L1-fitting ultrametrics to hierarchical correlation clustering
	8 Tree metric to ultrametric
	8.1 Tree pseudometric to (unrestricted) ultrametric
	8.2 From tree metric to tree pseudometric

	9 APX-Hardness
	9.1 L1-fitting ultrametrics
	9.2 L1-fitting tree metrics

	10 Conclusion

