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Abstract

We study the k-server problem with time-windows. In this problem, each request i arrives at

some point vi of an n-point metric space at time bi and comes with a deadline ei. One of the k

servers must be moved to vi at some time in the interval [bi, ei] to satisfy this request. We give an

online algorithm for this problem with a competitive ratio of poly log(n,∆), where ∆ is the aspect

ratio of the metric space. Prior to our work, the best competitive ratio known for this problem

was O(k poly log(n)) given by Azar et al. (STOC 2017).

Our algorithm is based on a new covering linear program relaxation for k-server on HSTs. This

LP naturally corresponds to the min-cost flow formulation of k-server, and easily extends to the

case of time-windows. We give an online algorithm for obtaining a feasible fractional solution for

this LP, and a primal dual analysis framework for accounting the cost of the solution. Together,

they yield a new k-server algorithm with poly-logarithmic competitive ratio, and extend to the

time-windows case as well. Our principal technical contribution lies in thinking of the covering LP

as yielding a truncated covering LP at each internal node of the tree, which allows us to keep account

of server movements across subtrees. We hope that this LP relaxation and the algorithm/analysis

will be a useful tool for addressing k-server and related problems.

1 Introduction

The k-Server problem, originally proposed by Manasse, McGeoch, and Sleator [MMS90], is perhaps

the most well-studied problem in online algorithms. Given an n-point metric space and an online

sequence of requests at various locations, the goal is to coordinate k servers so that each request is

served by moving a server to the corresponding location. The objective of the algorithm is to minimize

the total distance moved by the servers (i.e., the movement cost). It has been known for more than

two decades that the best deterministic competitive ratio for this problem is between k [MMS90] and

2k − 1 [KP95], although determining the exact constant remains open. For randomized algorithms,

even obtaining a tight asymptotic bound is still open, although there has been tremendous progress in

the last decade culminating in a poly-logarithmic competitive ratio [BBMN11, BCL+18, BGMN19].

We focus on the k-server with time-windows (k-ServerTW) problem, where each request arrives

at a location in the metric space at some time b with a deadline e ≥ b. The algorithm must satisfy

the request by moving a server to that location at any point during this time interval [b, e]. (If

e = b for every request, this reduces to k-Server.) The techniques used to solve the standard k-Server

problem seem to break down in the case of time-windows. Nonetheless, an O(k poly log n)-competitive

deterministic algorithm was given for the case where the underlying metric space is a tree [AGGP17];
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this gives anO(k poly log n)-competitive randomized algorithm for arbitrary metric spaces using metric

embedding results.

For the special case of k-ServerTW on an unweighted star, [AGGP17] obtained competitive ratios

of O(k) and O(log k) using deterministic and randomized algorithms respectively. The deterministic

competitive ratio of O(k) extended to weighted stars as well (which is same as Weighted Paging),

but a randomized (poly)-logarithmic bound already turned out to be more challenging; a bound of

poly log(n) was obtained only recently [GKP20]. This raises the natural question: can we obtain

a poly-logarithmic competitive ratio for the k-ServerTW problem on general metric spaces? The

technical gap between Weighted Paging and k-Server is substantial and bridging this gap for randomized

algorithms was the preeminent challenge in online algorithms for some time. Moreover, the approaches

eventually used to bridge this gap do not seem to extend to time-windows, so we have to devise a new

algorithm for k-Server as well in solving k-ServerTW. We successfully answer this question.

Theorem 1.1 (Randomized Algorithm). There is an O(poly log(n∆))-competitive randomized algo-

rithm for k-ServerTW on any n-point metric space with aspect ratio ∆.

Theorem 1.1 follows from our main technical result Theorem 1.2 below. Indeed, since any n-

point metric space can be probabilistically approximated using λ-HSTs with height H = O(logλ ∆)

and expected stretch O(λ logλ n) [FRT04], we can set λ = O(log ∆) and use the rounding algorithm

from [BBMN11, BCL+18] to complete the reduction.

Theorem 1.2 (Fractional Algorithm for HSTs). Fix δ′ ≤ 1/n2. There is an O(poly(H,λ, log n))-

competitive fractional algorithm for k-ServerTW using k
1−δ′ servers such that for any instance on a

λ-HST with height H and λ ≥ 10H, and for each request interval R = [b, e] at some leaf ` in this

instance, there is a time in this interval at which the number of servers at ` is at least 1.

Apart from the result itself, a key contribution of our paper is an approach to solve a new covering

linear program for k-Server. Previous results in k-Server (e.g., [BCL+18]) used a very different LP

relaxation, and it remains unclear how to extend that relaxation to the case of time-windows. The

covering LP in this paper is easy to describe and flexible. It is quite natural, following from the

min-cost LP formulation for k-Server (see §A). We hope that this relaxation, and indeed our online

algorithm and accounting framework for obtaining a feasible solution will be useful for other related

problems.

1.1 Our Techniques

The basis of our approach is a restatement of k-Server (and thence k-ServerTW) as a covering LP

without box constraints. This LP has variables x(v, t) that try to capture the event that a server

leaves the subtree rooted at v at some time t. There are several complications with this LP: apart

from having an exponential number of constraints, it is too unstructured to directly tell us how to

move servers. E.g., the variable for a node may increase but that for its parent or child edges may

not. Or the online LP solver may increase variables for timesteps in the past, which then need to be

translated to server movements at the present timestep.

Our principal technical contribution is to view this new LP as yielding “truncated” LPs, one for

each internal node v of the tree. This “local” LP for v restricts the original LP to inequalities and

variables corresponding to the subtree below v. This truncation is contingent on prior decisions taken

by the algorithm, and so the constraints obtained may not be implied by those for the original LP.

However, we show how the primal—and just as importantly—the dual solutions to local LPs can be

composed to give primal/dual solutions to the original LP. These are then crucial for our accounting.
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The algorithm for k-Server proceeds as follows. Suppose a request comes at some leaf `, and

suppose ` has less than 1− δ′ amounts of server at it (else we deem it satisfied):

1. Consider a vertex vi on the backbone (i.e., the path ` = v0, v1, . . . , vH = r from leaf ` to the root

r). If vi has off-backbone children whose descendant leaves contain non-trivial amounts of server, we

move servers from these descendants to ` until the total server movement has cost roughly some small

quantity γ. Since the cost of server movement grows exponentially up the tree, and the movement

cost is roughly the same for each vi, more server mass is moved from closer locations. Since there are

H levels in the HST, the total movement cost is roughly Hγ. This concludes one “round” of server

movement. This server movement is now repeated over multiple rounds until ` has 1− δ′ amount of

server at it. (This can be thought of as a discretization of a continuous process.)

2. To account for server movement at node vi, we raise both primal and dual variables of the local LP

at vi. The primal increase tells us which children of vi to move the servers from. The dual increase

allows us to account for the server movement. Indeed, we ensure that the total dual increase for the

local LP at each vi—and hence by our composition operations, the dual increase for the global LP—is

also approximately γ in each round. Moreover, we show this dual scaled down by β ≈ O(log n) is

feasible. This means that the O(Hγ) cost of server movement in each round can be approximately

charged to this increase of the global LP dual, giving us Hβ = O(H log n)-competitiveness.

3. The choice of dual variables to raise for the local LP at node v is dictated by the corresponding

dual variables for the children of v. Each constraint in the local LP at v is composed from the local

constraints at some of its children. It is possible that there are several constraints at v that are

composed using the same constraint at a child u of v. We maintain the invariant that the total dual

values of the former is bounded by the dual value of the latter. Now, we can only raise those dual

variables at v where there is some slack in this invariant condition.

Finally, to extend our results to k-ServerTW, we say that a request (`, I = [b, q]) becomes critical

(at time q) if the amount of server mass at ` at any time during I was at most 1− δ′. We proceed as

above to move server mass to `. However, after servicing `, we also service active request intervals at

nearby leaves: we service these piggybacked requests according to (a variation of) the earliest deadline

rule while ensuring that the total cost incurred remains bounded by (a factor times) the cost incurred

to service `. We use ideas from [AGGP17] (for the case of k = 1) to find this tour, but we need a new

dual-fitting-based analysis of this algorithm. Moreover, new technical insights are needed to fit this

dual-fitting analysis (which works only for k = 1) with the rest of our analytical framework. Indeed,

the power of our LP relaxation for k-Server lies in the ease with which it extends to k-ServerTW.

1.2 Roadmap

In §2, we describe the covering LP relaxation for both k-Server and k-ServerTW. In §3 we define the

notion of “truncated” constraints used to define local LPs at the internal nodes of the HST, and show

how constraints for the children’s local LPs can be composed to get constraints for the parent LP.

We then give the algorithm and analysis for the k-Server problem in §4 and §5 respectively: although

we could have directly described the algorithm for k-ServerTW, it is easier to understand and build

intuition for the algorithm for k-Server first, and then see the extension to the case of time-windows.

This extension appears in §6: the algorithm is similar to that in §4, the principal addition being the

issue of piggybacked requests. We give the analysis in §7: many of the ideas in §5 extend easily, but

again new ideas are needed to account for the piggybacked requests. We conclude with some open

problems in §8.
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1.3 Related Work

The k-Server problem is arguably the most prominent problem in online algorithms. Early work fo-

cused on deterministic algorithms [FRR94, KP95], and on combinatorial randomized algorithms [Gro91,

BG00]. k-Server has also been studied for special metric spaces, such as lines, (weighted) stars, trees:

e.g., [CKPV91, CL91, FKL+91, MS91, ACN00, BBN12a, Sei01, CMP08, CL06, BBN12b, BBN10].

[BEY98] gives more background on the k-Server problem. Works obtaining poly-logarithmic competi-

tive ratio are more recent, starting with [BBMN15], and more recently, by [BCL+18] and [Lee18]; this

resulted in the first poly log k-competitive algorithm. ([BGMN19] gives an alternate projection-based

perspective on [BCL+18].) A new LP relaxation was introduced by [BCL+18], who then use a mirror

descent strategy with a multi-level entropy regularizer to obtain the online dynamics. However, it is

unclear how to extend their LP when there are time-windows, even for the case of star metrics. Our

competitive ratio for k-Server on HSTs is poly log(n∆) as against just poly log(k) in their work, but

this weaker bound is in exchange for a more flexible algorithm/analysis that extends to time-windows.

Online algorithms where requests can be served within some time-window (or more generally,

with delay penalties) have recently been given for matching [EKW16, AAC+17, ACK17], TSP [AV16],

set cover [ACKT20], multi-level aggregation [BBB+16, BFNT17, AT19], 1-server [AGGP17, AT19],

network design [AT20], etc. The work closest to ours is that of [AGGP17] who show O(k log3 n)-

competitiveness for k-Server with general delay functions, and leave open the problem of getting poly-

logarithmic competitiveness. Another related work is [GKP20] who showO(log k log n)-competitiveness

for Weighted Paging, which is the same as k-Server with delays for weighted star metrics. This work

also used a hitting-set LP: this was based on two different kinds of extensions of the request intervals

and was very tailored to the star metric, and is unclear how to extend it even to 2-level trees. Our

new LP relaxation is more natural, being implied by the min-cost flow relaxation for k-Server, and

extends to time-windows.

Algorithms for the online set cover problem were first given by [AAA+09]: this led to the general

primal-dual approach for covering linear programs (and sparse set-cover instances) [BN09], and to

sparse CIPs [GN14]. Our algorithm also uses a similar primal-dual approach for the local LPs defined

at each node of the tree; we also need to crucially use the sparsity properties of the corresponding

set-cover-like constraints.

2 A Covering LP Relaxation

For the rest of the paper, we consider the k-Server problem on hierarchically well-separated trees

(HSTs) with n leaves, rooted at node r and having height H. (The standard extension to general

metrics via tree embeddings was outlined in §1.) Define the level of a node as its combinatorial height,

with the leaves at level 0, and the root at level H. For a non-root node v, the length of the edge

(v, p(v)) going to its parent p(v) is cv := λlevel(v). So leaf edges have length 1, and edges between

the root and its children have length λH−1. We assume that λ ≥ 10H. For a vertex v, let χv be its

children, Tv be the subtree rooted at v, and Lv be the leaves in this subtree. Let nv := |Tv|. For a

subset A of nodes of a tree T , let TA denote the minimal subtree of T containing the root node and

set A, i.e., the subtree consisting of all nodes in A and their ancestors.

Request Times and Timesteps. Let the request sequence be R := r1, r2, . . .. For k-Server, each

request ri ∈ R is a tuple (`qi , qi) for some leaf `qi and distinct request time qi ∈ Z+, such that qi−1 < qi
for all i. In k-ServerTW each request ri is a tuple (`ei , Ii = [bi, ei]) for a leaf `i and (request) interval

Ii = [bi, ei] with arrival/start time bi and end time ei. The algorithm sees this request ri at time bi;

4



τ1
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τ3

τ4 τ5

τ5

τ2

τ1 τ2 τ3 τ4 τ5

τ5

Figure 1: Example of a tuple (A,τττ): the set A is given by the leaves in bold, the tree TA by the bold edges,
and τττ is shown against each vertex in TA. Bold circles on the timeline denote request arrival times, the dots
denote timesteps. Each shown timestep has the corresponding request arriving at the shown leaf at the arrival
time (bold dot) preceding it.

again bi−1 < bi for all i. A solution must ensure that a server visit `i during interval Ii. The set of all

starting and ending times of intervals are called request times; we assume these are distinct integers.
1

Between any two request times q and q + 1, we define a large collection of timesteps (denoted by

τ or t)—these timesteps take on values {q+ iη} for some small value η ∈ (0, 1). (Each request arrival

time is also a timestep). We use T to denote the set of timesteps. Our fractional algorithm moves

a small amount of server to the request location rq at some of the timesteps t ∈ [q, q + 1). Given a

timestep τ , let bτc refer to the request time q such that τ ∈ [q, q + 1).

2.1 The Covering LP Relaxation

We first give a covering LP relaxation for k-Server, and then generalize it to k-ServerTW. Consider

an instance of k-Server specified by an HST and a request sequence r1, r2, . . .. Our LP relaxation M

has variables x(v, t) for every non-root node v and timestep t, where x(v, t) indicates the amount of

server traversing the edge from v to its parent p(v) at timestep t. The objective function is∑
v 6=r

∑
t

cv x(v, t). (1)

There are exponentially many constraints. Let A be a subset of leaves. Let τττ := {τu}u∈TA be a set of

timesteps for each node in TA, i.e., nodes in A and their ancestors.2 These timesteps must satisfy two

conditions: (i) each (leaf) ` ∈ A has a request at time bτ`c, and (ii) for each internal node u ∈ TA,

τu = max`∈A∩Tu τ`; i.e., τu is the latest timestep assigned to a leaf in u’s subtree by τττ . For the tuple

(A,τττ), the LP relaxation contains the constraint ϕA,τττ :∑
v∈TA,v 6=r

x(v, (τv, τp(v)]) ≥ |A| − k. (2)

Define x(v, I) :=
∑

t∈I x(v, t) for any interval I. We now prove validity of these constraints. (In §A we

show these constraints are implied by the usual min-cost flow formulation for k-Server, giving another

proof of validity.)

1k-Server (without time-windows) can be modeled by time-intervals of length 1, where each ei = bi + 1.
2We use boldface τττ to denote a vector of timesteps, and τu to be the value of this vector for a vertex u.
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Claim 2.1. The linear program M is a valid relaxation for the k-Server problem.

Proof. Consider a solution to the k-server instance that ensures that for a request at a leaf ` at time

q, there is a server at ` at time q. We assume that this solution has the eagerness property—if leaves

` and `′, requested at times q and q′ respectively, are two consecutive locations visited by a server,

the server moves from q to q′ at timestep q + η (which is less than q′).

Now for a constraint of the form (2), let A1, A2, . . . , Ak be the subsets of A that are served by the

different servers (some of these sets may be empty). Define xi(v, t) ← 1 if server i crosses the edge

(v, p(v)) from v to p(v) (i.e., upwards) at timestep t, and 0 otherwise. We show that∑
v∈T (Ai),v 6=r

xi(v, (τv, τp(v)]) ≥ |Ai| − 1.

Defining x(v, t) :=
∑

i xi(v, t) by summing over all i gives (2). For any server i and set Ai, define E′

to be the edges (v, p(v)) for which xi(v, (τv, τp(v)]) = 1. If |E′| < |Ai| − 1, then deleting the edges in

E′ from the tree leaves a connected component C with at least two vertices from Ai. Server i serves

at least two leaf vertices C ∩ Ai, say v, w, requested at times qv = bτvc, qw = bτwc respectively. Say

qv < qw, and let u be the least common ancestor of v, w. Notice that τu ≥ τv, and if the path from v

to u is labeled v0 = v, v1, . . . , vh = u, then the intervals (τvi , τvi+1 ] partition (τv, τu]. Since the server

is at v at timestep τv (by the construction above) and is at w at time qw ≤ τw, there must be an edge

(vi, vi+1) such that it crosses this edge upwards during (τvi , τvi+1 ]. Then this edge should be in E′, a

contradiction.

Remark 2.2. We could have replaced the constraint (2) by its simpler version involving xi(v, (qv, qp(v)]),

where qv := bτvc: that would be valid and sufficient. However, since our algorithm works at the level

of timesteps, it is convenient to use (2).

Extension to Time-Windows. We now extend these ideas to k-ServerTW. In constraint (2) for

a pair (A,τττ), the timesteps for ancestors of (a leaf in) A could be inferred from the values assigned

by τ to A. We now generalize this by (i) allowing A to contain non-leaf nodes, as long as they are

independent (in terms of the ancestor-descendant relationship), and (ii) the timestep assigned to an

internal node is at least that of each of its descendants in A. Formally, consider a tuple (A, f,τττ),

where A is a subset of tree nodes such that no two of them have an ancestor-descendant relationship,

the function f : A → R maps each node v ∈ A to a request (`v, [bv, ev]) given by a leaf `v ∈ Tv and

an interval [bv, ev] at `v, and the assignment τττ maps each node u ∈ TA to a timestep τu satisfying the

following two (monotonicity) properties:

(a) For each node v ∈ TA, τv ≥ maxu∈A∩Tv eu.

(b) If v1, v2 are two nodes in TA with v1 being the ancestor of v2, then τv1 ≥ τv2 .
Given such a tuple (A, f,τττ), we define the constraint ϕA,f,τττ

3

∑
v∈A,v 6=r

x(v, (bv, τp(v)]) +
∑

v∈TA\A,v 6=r

x(v, (τv, τp(v)]) ≥ |A| − k. (3)

Note the differences with constraint (2): the LHS for a node v ∈ A has a longer interval starting

from bv instead of from τv. Also, (3) does not use the timesteps {τv}v∈A: these will be useful later

in defining the truncated constraints. In the special case of k-Server where ev = bv + 1, the above

constraint is similar to (2), though the terms for nodes in A differ slightly. The objective function is

the same as (1). We denote this LP by MTW .

3The condition v 6= r in the first summation is invoked only when A = {r}, in which case the LHS is empty.
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1 2 3 4 5 6 7 8

[1,4] [2,5]
[3,6]

τ1 τ2 τ3

τ1

τ2
τ3

τ3

Figure 2: Example of a tuple (A, f,τττ) for k-ServerTW: the set A is given by the bold nodes, the tree TA by the
bold edges, and τττ is shown against each internal vertex in TA. Arrows indicate the mapping f to a leaf request
interval.

Claim 2.3. The linear program MTW is a valid relaxation for k-ServerTW.

Proof. Consider a solution to the instance that ensures a server moves only when a request becomes

critical (although at this time, it can serve several outstanding requests). Now for a constraint of the

form (3), let L denote the set of leaves corresponding to the nodes in A. let L1, L2, . . . , Lk be the

subsets of L that are served by the different servers (some of these sets may be empty), and let Ai be

the subset of A corresponding to Li. Define xi(v, t) ← 1 if server i crosses the edge (v, p(v)) at time

t, and x(v, t) :=
∑

i xi(v, t). We show that∑
v∈A,v 6=r

xi(v, (bv, τp(v)]) +
∑

v∈TA\A,v 6=r

xi(v, (τv, τp(v)]) ≥ |Ai| − 1;

recall that bv, v ∈ A, is the starting time of the request interval given by f(v). Summing the above

inequality over all i gives (3).

For sake of brevity, let Iv denote the interval (bv, τp(v)] or (τv, τp(v)] depending on whether v ∈ A.

Define E′ as the set of edges (v, p(v)) for which xi(v, Iv) ≥ 1. We need to show that |E| ≥ |Ai| − 1.

Suppose not. Then deleting the edges in E′ from the tree T leaves a connected component with at

least two vertices from Ai.

Call this component C, and let u, v be two distinct vertices in Ai ∩ C. Let f(u) and f(v) be

(`u, Ru = (bu, eu]), (`v, Rv = (bv, ev]) respectively. Let w be the lca of `u and `v. Note that w is also

the lca of u and v. Suppose server i satisfies Ru before satisfying Rv. We claim that the server i

reaches w at some time during (bu, τw]. To see this, we consider two cases:

• Server i visits u at time eu when the request Ru becomes critical: Since it reaches v by time ev,

it must have visited w during (eu, ev] ⊆ (bu, τw].

• Server i visits u before Ru becomes critical. In this case, it would have visited u strictly after

bu ((because all start and end times of requests are distinct). Since it reaches w at or before

ev ≤ τw, the desired statement holds in this case as well.

Let the sequence of nodes in B from u to w be v0 = u, v1, . . . , vh = w. Note that all the edges

(vi, p(vi)), i < h, lie below w and so are not in E′. Observe that the intervals Ivi , i = 0, . . . , h − 1,

partition (bu, τw]. As outlined in the two cases above, the server i leaves u strictly after bu and reaches

w by time τw. Therefore, there must be an edge (vi, p(vi)), i < h, such that it crosses this edge during

Ivi . Then this edge should be in E′, a contradiction.
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3 The Local LPs: Truncation and Composition

We maintain a collection of local LPs Lv, one for each internal vertex v of the tree. While the

constraints of local LPs for the non-root nodes are not necessarily valid for the original k-Server

instance, those in the local LP Lr are implied by constraints of M or MTW . This gives us a handle

on the optimal cost. The constraints in the local LP at a node are related to those in its children’s

local LPs, allowing us to relate their primal/dual solutions, and their costs.

To define the local LPs, we need some notation. Our (fractional) algorithm A moves server mass

around over timesteps. In the local LPs, we define constraints based on the state of our algorithm

A. Let kv,t be the server mass that A has in v’s subtree Tv at timestep t (when v is a leaf, this is

the amount of server mass at v at timestep t). We choose three non-negative parameters δ, δ′, γ. The

first two help define lower and upper bounds on the amount of (fractional) servers at any leaf, and γ

denotes the granularity at which movement of server mass happens. We ensure δ′ � δ � γ, and set

δ′ = 1
n2 , δ = 1

10n3 , γ = 1
n4 .

Definition 3.1 (Active and Saturated Leaves). Given an algorithm A, a leaf ` is active if it has at

least δ amount of server (and inactive otherwise). The leaf is saturated if ` has more than 1 − δ′
amount of server (and unsaturated otherwise).

The server mass at each location should ideally lie in the interval [δ, 1 − δ′], but since we move

servers in discrete steps, we maintain the following (slightly weaker) invariant:

Invariant (I1). The server mass at each leaf lies in the interval [δ/2, 1− δ′/2].

Constraints of Lv are defined using truncations of the constraints ϕA,τττ . For a node v and subset

of nodes A in T , let the subtree TAv be the minimal subtree of Tv containing v and all the nodes in

A ∩ Tv.

Definition 3.2 (Truncated Constraints). Consider a node v, a subset A of leaves in T and a set

τττ := {τu}u∈TAv of timesteps satisfying the conditions: (i) each (leaf) ` ∈ A has a request at time bτ`c,
and (ii) for each internal node u ∈ TAv , τu = max`∈A ∩Tv. The truncated constraint ϕA,τττ,v is defined

as: ∑
u:u6=v,u∈TAv

yv(u, (τu, τp(u)]) ≥ |A ∩ Tv| − kv,τv − 2δ(n− nv); (4)

recall that kv,τv is the amount of server mass in Tv at the end of timestep τv. We say that the

truncated constraint ϕA,τττ,v ends at τv.

The truncated constraint ϕA,τττ,v can be thought of as truncating an actual LP constraint of the

form (2) for the nodes in TAv only. One subtle difference is the last term that weakens the constraint

slightly; we will see in Lemma 3.5 that this weakening is crucial. The truncated constraint ϕA,f,τττ ,v in

case of k-ServerTW is defined analogously: given a node v, a tuple (A, f,τττ) satisfying the conditions

stated above (3) with the restriction that A lies in Tv and τττ is defined for nodes in TAv only, the

truncated constraint ϕA,f,τττ ,v (ending at τv) is defined as (see Definition 6.1 for a formal definition):∑
u∈A∩Tv ,u 6=v

yv(u, (bu, τp(u)]) +
∑

u∈TAv \A,u 6=v

yv(u, (τu, τp(u)]) ≥ |A ∩ Tv| − kv,τv − 2δ(n− nv) (5)
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A few remarks about the truncation: first, this truncated constraint uses local variables yv that

are “private” for the node v instead of the global variables x. In fact, we can think of x as denoting

variables yr local to the root, and therefore ϕA,τττ,r = ϕA,τττ (or ϕA,f,τττ ,r = ϕA,f,τττ ). Second, a truncated

constraint is not necessarily implied by the LP relaxation M (or MTW ) even when we replace yv by

x, since a generic algorithm is not constrained to maintain kv,τv servers in subtree Tv after timestep

τv. But, at the root (i.e., when v = r), we always have kv,τv = k and the last term is 0, so replacing

yr by x in its constraints gives us constraints of the form (2) from the actual LP.

Definition 3.3 (⊥-constraints). A truncated constraint where |A| = 1 is called a ⊥-constraint.

Such⊥-constraints play a special role when a subtree has only one active leaf, namely the requested

leaf. In the case of k-Server, if |A| = 1 then the constraint (4) has no terms on the LHS but a positive

RHS, so it can never be satisfied. Nevertheless, such constraints will be useful when forming new

constraints by composition.

Composing Truncated Constraints. The next concept is that of constraint composition: a trun-

cated constraint ϕA,τττ,v can be obtained from the corresponding truncated constraints for the children

of v. Consider a subset X of v’s children. For u ∈ X, let Cu := ϕA(u),τττ(u),u be a constraint in Lu

ending at τu := τ(u)u, given by some linear inequality 〈aCu , yu〉 ≥ bCu . Then defining A := ∪u∈XA(u)

and τ : TA → T obtained by extending maps τττ(u) and setting τv = maxu∈X τu, the constraint ϕA,τττ,v
is written as: 4

∑
u∈X

(
yv(u, (τu, τv]) + 〈aCu , yv〉

)
≥
∑
u∈X

bCu −
(
kv,τv −

∑
u∈X

ku,τu

)
+ 2δ

(
nv −

∑
u∈X

nu

)
. (6)

The constraints ϕA(u),τττ(u),u used their local variables yu, whereas this new constraint uses yv. Every

constraint in Lv can be obtained this way, and so the constraints of Lr (which are implied by M)

can be obtained by recursively composing truncated constraints for its children’s local LPs. In case

of k-ServerTW, the composition operation holds for the constraints ϕA,f,τττ ,v: a minor change is that

the terms in LHS involving a vertex u ∈ A have yv(u, (bu, τv]), where bu is the starting time of the

request corresponding to f(u). (We see the details later in (22).)

3.1 Constraints in Terms of Local Changes

The local constraints (4) and the composition rule (6) are written in terms of ku,τu , the amount of

server that our algorithm A places at various locations and times. It will be more convenient to

rewrite them in terms of server movements in A.

Definition 3.4 (g, r,D). For a vertex v and timestep t, let the give g(v, t) and the receive r(v, t)

denote the total (fractional) server movement out of and into the subtree Tv on the edge (v, p(v))

at timestep t. For interval I, let g(v, I) :=
∑

t∈I g(v, t) and define r(v, I) similarly, and define the

“difference” D(v, I) := g(v, I)− r(v, I).

Restating the composition rule in terms of the quantities D defined above shows the utility of the

extra term on the RHS of the truncated constraint.

Lemma 3.5. Consider a vertex v, a timestep τ and a subset X of children of v such that at timestep

τ all active leaves in Tv are descendants of the nodes in X. For each u ∈ X, consider a truncated

4The vector aCu has one coordinate for every node in TAu , whereas yv has one coordinate for each node in TAv ⊇ TAu .
We define the inner product 〈aCu , yv〉 by adding extra coordinates (set to 0) in the vector aCu .
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constraint Cu := ϕA(u),τττ(u),u given by some linear inequality 〈aCu , yu〉 ≥ bCu. Define (A,τττ) as in (6)

with τ := τv, and assume Invariant (I1) holds. Then the truncated constraint ϕA,τττ,v from (6) implies

the inequality 5:∑
u∈X

(
yv(u, (τu, τv]) + 〈aCu , yv〉

)
≥
∑
u∈X

(
D(u, (τu, τv]) + bCu

)
+
(
nv −

∑
u∈X

nu
)
δ, (7)

We call this the composition rule. An analogous statement holds for a tuple (A, f,τττ) for a vertex v in

the case of k-ServerTW, except that τu is replaced by bu for every vertex u ∈ A on the LHS (see (22)).

Proof. Note that kv,τv =
∑

u∈X ku,τv +
∑

w 6∈X kw,τv =
∑

u∈X ku,τu−
∑

u∈X D(u, (τu, τv])+
∑

w 6∈X kw,τv .

in (6) gives

∑
u∈X

(
yv(u, (τu, τv]) + 〈aCu , yv〉

)
≥
∑
u∈X

(
D(u, (τu, τv]) + bCu

)
−
∑
w 6∈X

kw,τv + 2δ
(
nv −

∑
u∈X

nu

)
.

Finally, since all active leaves in Tv at timestep τv are descendants of X, Invariant (I1) implies that∑
w 6∈X kw,τv ≤ δ

∑
w/∈X nw ≤ δ

(
nv −

∑
u∈X nu

)
. This is where the weakening in (4) is useful.

3.2 Timesteps and Constraint Sets

Recall that T is the set of all timesteps. For each vertex v we define a subset R(v) ⊆ T of relevant

timesteps, such that the local LP Lv contains a non-empty set of constraints Lv(τ) for each τ ∈ R(v).

Should we say what the variables are in this LP? Each constraint in Lv(τ) is of the form ϕA,τττ,v
for a tuple (A,τττ) ending at τ . Overloading notation, let Lv :=

⋃
τ∈R(v) L

v(τ) denote the set of all

constraints in the local LP at v. The objective function of this local LP is
∑

u∈Tv ,τ cu y
v(u, τ). What

does τ sum over?

The timesteps in R(v) are partitioned into Rs(v) and Rns(v), the solitary and non-solitary

timesteps for v. The decision whether a timestep belongs to R(v) is made by our algorithm. and is

encoded by adding τ to either Rs(v) or Rns(v). For each timestep τ ∈ Rs(v), the algorithm creates

a constraint set Lv(τ) consisting of a single ⊥-constraint (recall Definition 3.3); for each timestep

τ ∈ Rns(v) it creates a constraint set Lv(τ) containing only non-⊥-constraints obtained by composing

constraints from Lw(τw) for some children w of v and timesteps τw ∈ R(w), where τw ≤ τ .

For each τ , a constraint C ∈ Lv(τ) corresponds to a dual variable zC , which is raised only at

timestep τ . We ensure the following invariant.

Invariant (I2). At the end of each timestep τ ∈ Rns(v), the objective function value of the dual

variables corresponding to constraints in Lv(τ) equals γ. I.e., if a generic constraint C is given

by 〈aC · yv〉 ≥ bC , then ∑
C∈Lv(τ)

bC · zC = γ ∀τ ∈ Rns(v). (I2)

Furthermore, bC > 0 for all C ∈ Lv(τ) and τ ∈ R(v).

5When y ≥ 0, a constraint 〈a, y〉 ≥ b is said to imply a constraint 〈a′, y〉 ≥ b′ if a ≤ a′ and b ≥ b′.
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No dual variables zC are defined for ⊥-constraints, and (the first statement of) Invariant (I2) does

not apply to timesteps τ ∈ Rs(v). In the following sections, we show how to maintain a dual solution

that is feasible for Dv (the dual LP for Lv) when scaled down by some factor β = poly log(nλ).

Awake Timesteps. For a vertex v, we maintain a subset Awake(v) of awake timesteps. The set

Awake(v) has the property that it contains all the solitary timesteps, i.e., Rs(v), and some non-solitary

ones. Hence Rs(v) ⊆ Awake(v) ⊆ Rs ∪ Rns(v) = R(v). Whenever we add a timestep to R(v), we

initially add it to Awake(v); some of the non-solitary ones subsequently get removed. A timestep τ is

awake for vertex v at some moment in the algorithm if it belongs to Awake(v) at that moment. For

any vertex v, define

prev(v, τ) := arg max{τ ′ ∈ Awake(v) | τ ′ ≤ τ} (8)

Note that as the set Awake(v) evolves over time, so does the identity of prev(v, τ). We show in Claim 5.5

that prev is well-defined for all relevant (v, τ) pairs. Motivate this better?

Starting configuration. At the beginning of the algorithm, assume that the root has 2k “dummy”

leaves as children, each of which has server mass 1/2 at time q = 0. All other leaves of the tree have

mass δ/2. (This ensures Invariant (I1) holds.) No requests arrive at any dummy leaf v; moreover, we

add a ⊥-constraint ϕA,τττ,v, where A = {v} and τv = 0. Should we say why? Assuming this starting

configuration only changes the cost of our solution by at most an additive term of O(k∆), where ∆ is

the aspect ratio of the metric space.

4 Algorithm for k-Server

We now describe our algorithm for k-Server. At request time q, the request arrives at a leaf `q. The

main procedure calls local update procedures for each ancestor of `q. Each such local update possibly

moves servers to `q, and also adds constraints to the local LPs and raises the primal/dual values to

account for this movement. We use ReqLoc(τ) to denote the location of request with deadline at time

bτc, i.e., `bτc.

4.1 The Main Procedure

In the main procedure of Algorithm 1, let the backbone be the leaf-root path `q = v0, v1, . . . , vH = r.

We move servers to `q from other leaves until it is saturated: this server movement happens in small

discrete increments over several timesteps. Each iteration of the while loop in line (1.4) corresponds

to a distinct timestep τ . Let activesib(v, τ) be the siblings v′ of v with active leaves in their subtrees

Tv′ (at timestep τ). Let i0 be the smallest index with non-empty activesib(vi0 , τ). The procedure

SimpleUpdate adds a ⊥-constraint to each of the sets Lvi(τ) for i = 0, . . . , i0. For i > i0, the

procedure FullUpdate adds (non-⊥) constraints to Lvi(τ). If activesib(vi, τ) is non-empty, it also

transfers some servers from the subtrees below activesib(vi, τ) to `q.

11



Algorithm 1: Main Procedure

1.1 foreach q = 1, 2, . . . do

1.2 get request rq; let the path from rq to the root be `q = v0, v1, . . . , vH = r.

1.3 τ ← q + η, the first timestep after q.

1.4 while kv0,τ ≤ 1− δ′ do

1.5 let i0 ← smallest index such that activesib(vi0 , τ) 6= ∅.

1.6 for i = 0, . . . , i0 do call SimpleUpdate(vi, τ).

1.7 for i = i0 + 1, . . . ,H do call FullUpdate(vi, τ).

1.8 τ ← τ + η. // move to the next timestep

4.2 The Simple Update Procedure

This procedure adds timestep τ to both Rs(v) and Awake(v), and creates a ⊥-constraint in the LP

Lv.

Algorithm 2: SimpleUpdate(v, τ)

2.1 let v0 ← ReqLoc(τ).
2.2 add timestep τ to the event set Rs(v) and to Awake(v). // “solitary” timestep for v

2.3 Lv(τ)← the ⊥-constraint ϕA,τττ,v, where A = {v0} and τw = τ for nodes w on the v0-v path.

4.3 The Full Update Procedure

The FullUpdate(v, τ) procedure is called for backbone nodes v that are above vi0 (using the notation

of Algorithm 1). It has two objectives. First, it transfers servers to the requested leaf node v0 from

the subtrees of the off-backbone children of v, incurring a total cost of at most γ. Second, it defines

the constraints Lv(τ) and runs a primal-dual update on these constraints until the total dual value

raised is exactly γ. This dual increase is at least the server transfer cost, which we use to bound the

algorithm’s cost. We now explain the steps of Algorithm 3 in more detail. (The notions of slack and

depleted constraints are in Definition 4.1.)

Consider a call to FullUpdate(v, τ) with u0 being the child of v on the path to the request v0

(See Figure 3). Each iteration of the repeat loop adds a constraint C to Lv(τ) and raises the dual

variable zC corresponding to it. For each node u in U := {u0}∪activesib(u0, τ), define τu := prev(u, τ)

to be the most recent timestep currently in Awake(u). This timestep τu may move backwards over

the iterations as nodes are removed from Awake(u) in line (3.17). One exception is the node u0:

we will show that τu0 stays equal to τ for the entire run of FullUpdate. Indeed, we add τ to

Awake(u0) during SimpleUpdate(u0, τ) or FullUpdate(u0, τ) before calling FullUpdate(v, τ),

and Claim 5.11 shows that τ stays awake in R(u0) during FullUpdate(v, τ).

1. We add a constraint C(v, σ, τ) to Lv(τ) by taking one constraint Cu ∈ Lu(τu) for each u ∈ U and

setting σ := (C1, . . . , C|U |). (The choice of constraint from Lu(τu) is described in item 3 below.)

Each Cu has form ϕA(u),τττ(u),u ending at τu := τττ(u)u for some tuple (A(u), τττ(u)). The new constraint

C(v, σ, τ) is the composition ϕA,τττ,v as in (6), where Iu := (τu, τ ]. Since U contains all the children

of v whose subtrees contain active leaves at τ , the set A = ∪uA(u) and the τττ obtained by extending

12



Algorithm 3: FullUpdate(v, τ)

3.1 let h← level(v)− 1 and u0 ∈ χv be child containing the current request v0 := ReqLoc(τ).
3.2 let U ← {u0} ∪ activesib(u0, τ); say U = {u0, u1, . . . , u`}, LU ← active leaves below U \ {u0}.
3.3 add timestep τ to event set Rns(v) and to Awake(v). // “non-solitary” timestep for v

3.4 set timer s← 0.
3.5 repeat
3.6 for u ∈ U do
3.7 let τu ← prev(u, τ) and Iu = (τu, τ ].
3.8 let Cu be a slack constraint in Lu(τu). // slack constraint exists since prev(u, τ) is awake

3.9 let σ ← (Cu0 , Cu1 , . . . , Cu`) be the resulting tuple of constraints.
3.10 add new constraint C(v, σ, τ) to constraint set Lv(τ).
3.11 while all constraints Cuj in σ are slack and dual objective for Lv(τ) less than γ do
3.12 increase timer s at uniform rate.
3.13 increase zC(v,σ,τ) at the same rate as s.

3.14 for all u ∈ U , define Su := Iu ∩ (Rns(u) ∪ {τu + η}) .
3.15 increase yv(u, t) for u ∈ U, t ∈ Su according to dyv(u,t)

ds = yv(u,t)
λh

+ γ
Mn·λh .

3.16 transfer server mass from Tu into v0 at rate dyv(u,Iu)
ds + bCu

λh
using the leaves in

LU ∩ Tu, for each u ∈ U \ {u0}
3.17 foreach constraint Cuj that is depleted do
3.18 if all the constraints in Luj (τuj ) are depleted then remove τuj from Awake(uj).

3.19 until the dual objective corresponding to constraints in Lv(τ) becomes γ.

the τττ(u) functions both satisfy the conditions of Lemma 3.5, which shows that ϕA(u),τττ(u),u implies:∑
u∈U

(
yv(u, Iu) + aCu · yv

)
︸ ︷︷ ︸

aC(v,σ,τ)·yv

≥
∑
u∈U

(
D(u, Iu) + bCu

)
+ (nv −

∑
u∈U

nu)δ︸ ︷︷ ︸
≤bC(v,σ,τ)

. (9)

2. Having added constraint C(v, σ, τ), we raise the new dual variable zC(v,σ,τ) at a constant rate in

line (3.13), and the primal variables yv(u, t) for each u ∈ U and any t in some index set Su using

an exponential update rule in line (3.15). The index set Su consists of all timesteps in Iu ∩Rns(u)

and the first timestep of Iu—which is τu + η if Iu is non-empty.6 We will soon show that Su is not

too large, yet captures all the “necessary” variables that should be raised (see Figure 3). Moreover,

we transfer servers from active leaves in Tu into ReqLoc(q) in line (3.16). This transfer is done

arbitrarily, i.e., we move servers out of any of the leaf nodes that were active at the beginning of

this procedure. Our definition of activesib(u0, τ) means that Tu has at least one active leaf and

hence at least δ servers to begin with. Since we move at most γ � δ amounts of server, we maintain

Invariant (I1), as shown in Claim 5.16. The case of u0 is special: since τu0 = τ , the interval Iu0 is

empty so no variables yv(u0, t) are raised.

Somewhat unusually for an online primal-dual algorithm, both the primal and dual variables are

used to account for our algorithm’s cost, and not for actual algorithmic decisions (i.e., the server

movements). This allows us to increase primal variables from the past, even though the corre-

sponding server movements are always executed at the current timestep.

6This timestep may not belong to R(u), but all other timesteps in Su lie in R(u); see also Figure 3.
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To describe the stopping condition for this process, we need to explain the relationships between

these local LPs, and define the notions of slack and depleted constraints. We use the fact that we

have an almost-feasible dual solution {zC}C∈Lu(τu) for each u ∈ U . This in turn corresponds to an

increase in primal values for variables yu(u′, τ ′) in Lu. It will suffice for our proof to ensure that when

we raise zC(v,σ,τ), we constrain it as follows:

Invariant (I3). For every u ∈ χv, t ∈ Rns(u), and every constraint C ∈ Lu(t) (which by

definition of Rns(u) is not a ⊥-constraint):(
1 +

1

H

)
zC ≥

∑
τ ′≥t

∑
σ:C∈σ

zC(v,σ,τ ′). (I3)

Definition 4.1 (Slack and Depleted Local Constraints). A non-⊥ constraint C ∈ Lu is slack if (I3)

is satisfied with a strict inequality, else it is depleted. By convention, ⊥-constraints are always slack.

We can now explain the remainder of the local update.

3. The choice of the constraint in line (3.8) is now easy: Cu is chosen to be any slack constraint in

Lu(τu). If τu ∈ Rs(u), this is the unique ⊥-constraint in Lu(τu).

The primal-dual update in the while loop proceeds as long as all constraints Cu in σ are slack:

once a constraint becomes tight, some other slack constraint Cu ∈ Lu(τu) is chosen to be in σ. If

there are no more slack constraints in Lu(τu), the timestep τu is removed from the awake set (in

line (3.17)). In the next iteration, τu gets redefined to be the most recent awake timestep before

τ (in line (3.7)). Claim 5.5 shows that there is always an awake timestep on the timeline of every

vertex.

4. The dual objective corresponding to constraints in Lv(τ) is
∑

C∈Lv(τ) b
C zC , where C is of the form

〈aC , yv〉 ≥ bC . The local update process ends when the increase in this dual objective due to raising

variables {zC | C ∈ Lv(τ)} equals γ.

For a constraint C ∈ Lu(t), the variable zC is only raised in the call FullUpdate(u, t). Subse-

quently, only the right side of (I3) can be raised. Hence, once a constraint C becomes depleted, it

stays depleted. It is worth discussing the special case when activesib(u0, τ) is empty, so that U = {u0}.
In this case, no server transfer can happen, and the constraint C(v, σ, τ) is same as a slack constraint

of Lu0(τ), but with an additive term of (nv − nu0)δ on the RHS, as in (9). We still raise the dual

variable zC(v,σ,τ), and prove that the dual objective value rises by γ.

There is a parameter M in line (3.15) that specifies the rate of change of yv. This value M should

be an upper bound on the size of the index set Su over all calls to FullUpdate, and over all u ∈ U .

Corollary 5.15 gives a bound of M ≤ 5HλHk
4γ + 1, independent of the trivial bound M ≤ T , where T

is the length of the input sequence.

5 Analysis Details

The proof rests on two lemmas: the first (proved in §5.1) bounds the movement cost in terms of the

increase in dual value, and the second (proved in §5.2) shows near-feasibility of the dual solutions.
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R(u0)

R(u1)

R(u2)
τ6τ1 τ3 τ5τ2 τ7 τ

rq

τ4

Figure 3: Illustration of FullUpdate(v, τ): leaves with filled dots are active and open dots are inactive, so
activesib(u0, τ) = {u1, u2}. The bold red squares or black circles denote timesteps in R(u) = Rs(u) ∪ Rns(u),
with the red squares being awake at timestep τ . Hence, Iu0

= Su0
= ∅, Iu1

= (τ3, τ ], Su1
= {τ4, τ5, τ6, τ7}, Iu2

=
(τ1, τ ], Su2 = {τ2}. Timesteps in Rs(u) always remain awake.

Lemma 5.1 (Server Movement). The total movement cost during an execution of the procedure

FullUpdate is at most 2γ, and the objective value of the dual Dv increases by exactly γ.

Lemma 5.2 (Dual Feasibility). For each vertex v, the dual solution to Lv is feasible if scaled down

by a factor of β, where β = O(log nMk
γ ) = O(H log(nλ)).

Theorem 5.3 (Competitiveness for k-server). Given any instance of the k-server problem on a λ-

HST with height H ≤ λ/10, Algorithm 1 ensures that each request location `q is saturated at some

timestep in [q, q+1). The total cost of (fractional) server movement is O(βH) = O(H2 log(nλ)) times

the cost of the optimal solution.

Proof. All the server movement happens within calls to FullUpdate. By Lemma 5.1, each iteration

of the while loop of line (1.4) in Algorithm 1 incurs a total movement cost of O(Hγ) over at most

H vertices on the backbone. Moreover, the call FullUpdate(r, τ) corresponding to the root vertex

r increases the value of the dual solution to the LP Lr by γ. This means the total movement

cost is at most O(H) times the dual solution value. Since all constraints of Lr are implied by the

relaxation M, any feasible dual solution gives a lower-bound on the optimal solution to M. By

Lemma 5.2, the dual solution is feasible when scaled down by β, and so the (fractional) algorithm is

O(βH) = O(H2 log(nλ))-competitive.

As mentioned in the introduction, using λ-HSTs with λ = O(log ∆) allows us to extend this result

to general metrics with a further loss of O(log2 ∆).

5.1 Bounds on Server Transfer and Dual Increase

The dual increase of γ claimed by Lemma 5.1 will follow from the proof of Invariant (I2). The upper

bound on the server movement will follow from a new invariant, which we state below. Then in §5.1

we show both invariants are indeed maintained throughout the algorithm.
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We first define the notion of the “lost” dual increase. Consider a call FullUpdate(v, τ). Let u

be v’s child such that request location v0 lies in Tu. We say that u is v’s principal child at timestep

τ . We prove (in Claim 5.11) that τ ∈ R(u) remains in the awake set and hence τu = τ throughout

this procedure call. The dual update raises zC(v,σ,τ) in line (3.13) and transfers servers from subtrees

Tu′ for u′ ∈ activesib(u, τ) into subtree Tu in line (3.16). This transfer has two components, which

we consider separately. The first is the local component dyv(u,t)
ds , and the second is the inherited

component bCu

λh
. In a sense, the inherited component matches the dual increase corresponding to the

term
∑

u′∈activesib(u,τ) b
Cu′ on the RHS of (9). The only term without a corresponding server transfer

is bCu itself, where Cu ∈ Lu(τ) is the constraint in σ corresponding to the principal child u. Motivated

by this, we give the following definition.

Definition 5.4 (Loss). For vertex u with parent v, consider a timestep τ ∈ Rns(v) such that τ ∈ R(u)

as well. If τ ∈ Rs(u), define loss(u, τ) := 0. Else τ ∈ Rns(u), in which case.

loss(u, τ) :=
∑

C∈Lu(τ)

∑
C(v,σ,τ):C∈σ

bC zC(v,σ,τ) . (10)

Invariant (I4). For node v and timestep τ ∈ Rns(v), let u be v’s principal child at timestep τ .

The server mass entering subtree Tu during the procedure FullUpdate(v, τ) is at most

γ − loss(u, τ)

λlevel(u)
. (I4)

Moreover, timestep τ ∈ R(u) stays awake during the call FullUpdate(v, τ).

Multiplying the amount of transfer by the cost of this transfer, we get that the total movement

cost is at most O(γ). Invariants (I2) and (I4) prove Lemma 5.1. We now show these invariants hold

over the course of the algorithm.

5.1.1 Proving Invariants (I2) and (I4)

To prove these invariants, we define a total order on pairs (v, τ) with τ ∈ R(v) as follows:

define: (v1, τ1) ≺ (v2, τ2) if τ1 < τ2, or if τ1 = τ2 and v1 is a descendant of v2.

Since calls to FullUpdate are made in this order, we also prove the invariants by induction on this

ordering: Assuming both invariants hold for all pairs (v, τ) ≺ (v?, τ?), we prove them for the pair

(v?, τ?). The base case is easy to settle: at q = 0, we only have ⊥-constraints at the dummy leaf nodes.

The only non-trivial statement among Invariants (I2) and (I4) for these nodes is to check that bC > 0

for any such ⊥-constraint C at a dummy leaf v. Note that bC = 1−kv,0−2δ(n−1) = 1
2−2δ(n−1) > 0.

DOuble-check this.

We start off with some supporting claims before proving the inductive step Invariants (I2) and (I4).

First, we show that the notion of prev timestep in the FullUpdate procedure is well-defined.

Claim 5.5. Let u be any non-root vertex. Then the first timestep in R(u) corresponds to a ⊥-

constraint. Therefore, for any timestep τ such that Tu has an active leaf at timestep τ , prev(u, τ) is

well-defined.
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Proof. If u is any of the dummy leaf nodes, then this follows by construction, the first timestep has a

⊥-constraint. Else, let q be the first time when a request arrives below u. Let τf be the first timestep

after q. In the first iteration of the while loop in Algorithm 1 (corresponding to timestep τf ), we

would call SimpleUpdate(u, τf ) because there are no active leaves below u at this timestep. Hence

we would add a ⊥-constraint at timestep τf , proving the first part of the claim. To show the second

part, let τ be a timestep such that Tu has an active leaf below it at timestep τ . This means that

τ ≥ τf . Since Lu(τf ) is a ⊥-constraint, τf is awake, and so prev(u, τ) is well-defined.

Next, we define fill(u, τ) to to be the set of timesteps that load the constraints in Lu(τ). Formally,

we have

Definition 5.6 (fill). Given a node u and its parent v, timestep τ ∈ Rns(u), and constraint C ∈ Lu(τ),

define fill(C) to be the timesteps τ ′ such that some constraint C ′ ∈ Lv(τ ′) appears on the RHS of

inequality (I3) corresponding to C. All these timesteps τ ′ must be after τ . Extending this, let

fill(u, τ) :=
⋃

C∈Lu(τ)

fill(C). (11)

In other words, fill(u, τ) is the set of timesteps τ ′ ∈ Rns(v) such that when we called FullUpdate(v, τ ′),

the node u was either the v’s principal child at timestep τ ′ or else belonged to the active sibling set,

and moreover prev(u, τ ′) = τ . The following lemma shows part of their structure. Recall that (v?, τ?)

denotes the current pair in the inductive step.

Claim 5.7 (Structure of fill times). Fix a node u with parent v, and a timestep τ ∈ Rns(u) such that

(v, τ) ≺ (v?, τ?). Then for any τ ′ ∈ fill(u, τ), either (a) τ ′ = τ , and u is the principal child of v at

timestep τ ′, or else (b) τ ′ > τ , and u is not v’s principal child at timestep τ ′.

Proof. Suppose τ = τ ′. Since we call FullUpdate only for ancestors of the requested node v0,

and τ ∈ Rns(u), so v0 belongs to Tu (and hence u is the principal child of v at timestep τ). Else

suppose τ ′ > τ , and suppose u is indeed v’s principal child at this timestep. Then during the call

FullUpdate(v, τ ′), we have prev(u, τ ′) = τ ′ throughout the execution of FullUpdate(v, τ ′) (by the

second statement in Invariant (I4)), and hence τ ′ /∈ fill(u, τ), giving a contradiction.

We now give an upper bound on the server mass entering a subtree at any timestep τ < τ?.

Claim 5.8. Let τ ∈ R(u), τ < τ?. The server mass entering Tu at timestep τ is at most(
1 +

1

λ− 1

)
γ

λlevel(u)
− loss(u, τ)

λlevel(u)
.

Proof. Since τ < τ?, we can apply the induction hypothesis to all pairs (v, τ) where v is an ancestor

of u. Servers enter u at timestep τ because of FullUpdate(w, τ) for some ancestor w of u. When w

is the parent of u, Invariant (I4) shows this quantity is at most γ−loss(u,τ)
λh

, where h = level(u). For any

other ancestor w of v, Invariant (I4) implies a weaker upper bound of γ
λh+k

, where level(w) = h+k+1.

Simplifying the resulting geometric sum γ−loss(u,τ)
λh

+
∑

h′≥h+1
γ

λh′
completes the proof.

Next, we give a lower bound on the amount of server moving out of some subtree Tw. Such

transfers out of w takes place in line (3.16) with w being either the node u referred to on this line,

or a descendant of such a node. Moreover, the server movement out of Tw at timestep τ is denoted

g(w, τ), which is non-zero only for those timesteps τ when w is not on the corresponding backbone.

We split this transfer amount into two:

(i) gloc(w, τ): the local component of the transfer, i.e., due to the increase in yv variables.
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(ii) ginh(w, τ): the inherited component of the transfer, i.e., due to the bCu term.

Lemma 5.9. Let u be a non-principal child of v? at timestep τ?, and I := (τ1, τ
?] for some timestep

τ1 < τ?. Let S be the timesteps in Rns(u) ∩ (τ1, τ
?] that have been removed from Awake(u) by the

moment when FullUpdate(v?, τ?) is called. Then

ginh(u, (τ1, τ
?]) ≥

(
1 +

1

H

)
|S| γ

λlevel(u)
−
∑
τ∈S

loss(u, τ)

λlevel(u)
.

Proof. Consider timesteps τ ∈ S and τ ′ ≥ τ such that τ ′ ∈ fill(u, τ). (We use the term phase here

to denote a range of values of the timer s.) Consider the phase during FullUpdate(v?, τ ′) when

τ ′u := prev(u, τ ′) equals τ : since τ ′ ∈ fill(u, τ), we know that there will be such a phase. Whenever we

raise the timer s by a small ε amount during this phase, we raise some dual variable zC(v?,σ,τ ′) by the

same amount, where σ contains a constraint C from Lu(τ). Thus we contribute ε to the LHS of (I3)

for constraint C. For such a constraint C, let [s1(τ ′, C), s2(τ ′, C)] be the range of the timer s during

which we raise a dual variable of the form zC(v?,σ,τ ′) such that C ∈ σ.

The timestep τ was removed from Awake(u) by line (3.17) because (I3) became tight for all

constraints C ∈ Lu(τ), so:(
1 +

1

H

) ∑
C∈Lu(τ)

bCzC =
∑

C∈Lu(τ)

bC
∑

C(v?,σ,τ ′):C∈σ

zC(v?,σ,τ ′)

Now the definition of loss(u, τ) allow us to split the expression on the RHS as follows:

= loss(u, τ) +
∑

C∈Lu(τ)

bC
∑

C(v?,σ,τ ′):C∈σ,τ ′>τ

zC(v?,σ,τ ′)

= loss(u, τ) +
∑

τ ′∈fill(u,τ),τ ′>τ

∑
C∈Lu(τ)

bC
(
s2(τ ′, C)− s1(τ ′, C)

)
. (12)

We now bound the second expression on the RHS in another way. For a timestep τ ′ ∈ fill(u, τ)

with τ ′ > τ , consider the phase when timer s lies in the range [s1(τ ′, C), s2(τ ′, C)] for a constraint

C ∈ Lu(τ). Since τ ′ > τ , Claim 5.7 implies that u is not the principal child of v? at timestep τ ′, so

raising s by ε units during this phase means that line (3.16) moves ε · bC
λh

servers out of Tu, where

h := level(u). Hence the increase in ginh(u, I) due to transfers corresponding to timestep τ ∈ S is at

least ∑
τ ′∈fill(u,τ),τ ′>τ

∑
C∈Lu(τ)

bC(s2(τ ′, C)− s1(τ ′, C))

λh
by (12)

=

(
1 +

1

H

) ∑
C∈Lu(τ)

bCzC
λh
− loss(u, τ)

λh

=

(
1 +

1

H

)
γ

λh
− loss(u, τ)

λh
.

The final equality above uses (u, τ) ≺ (v?, τ?), because τ had been removed from Awake(u) before

the call to FullUpdate(v?, τ?), which means we can use the induction hypothesis Invariant (I2) for

timestep τ ∈ Rns(u). Finally, summing over all timesteps in S completes the proof.

Corollary 5.10. Let u be a non-principal child of v? at timestep τ?, and I := (τ1, τ
?]. Consider the

moment when FullUpdate(v?, τ?) is called. If none of the timesteps in I∩R(u) belong to Awake(u),

then
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(i) ginh(u, I) ≥ r(u, I),

(ii) 0 ≤ gloc(u, I) ≤ D(u, I), and

(iii) gloc(u, I) ≥ yv?(u, I).

Finally, bC > 0 for any constraint C ∈ Lv
?
(τ?) of the form aC · yv ≥ bC .

Proof. Since timesteps in Rs(u) always stay awake, I ∩R(u) = I ∩Rns(u); call this set S. Since u is

a non-principal child at timestep τ?, we have τ? 6∈ Rns(u). This means τ < τ? for any τ ∈ S, and so

Claim 5.8 gives an upper bound on the server movement into u at timestep τ , and Lemma 5.9 gives a

lower bound on the server movement out of u. Combining the two,

ginh(u, I)− r(u, I) ≥
(

1

H
− 1

λ− 1

)
γ|S|
λh
≥ 4

5H
· γ|S|
λh
≥ 0, (13)

since λ ≥ 10H and H ≥ 2, which proves (i). To prove (ii),

gloc(u, I) = (g − ginh)(u, I)
by (i)

≤ (g − r)(u, I)
by defn.

= D(u, I).

To prove (iii), whenever we raised yv
?
(u, τ ′) for some timestep τ ′, we raised gloc(u, τ ′′) for some τ ′′ ≥ τ ′)

with the same rate. Both timesteps τ ′, τ ′′ appear before τ?, because we consider the moment when we

call FullUpdate(v?, τ?). Since interval I ends at τ?, it must contain either only τ ′′ or both τ ′, τ ′′,

giving us that gloc(u, I) ≥ yv?(u, I).

�Anupam 5.1: Stopping here.� We now prove the final statement. If C ∈ Lv
?
(τ?) is a ⊥- AG 5.1

constraint C added by SimpleUpdate(v?, τ?). bC = 1 − kv?,τ? − 2δ(n − nv?) (using (4)). Since

kv?,τ? ≤ 1 − δ′ (otherwise the while loop in Algorithm 1 would have terminated), we see that bC ≥
δ′ − 2δn > 0. The other case is when C is of the form C(v?, σ, τ?) as in (9). By the induction

hypothesis (Invariant (I2)), bCu > 0 and D(u, Iu) ≥ 0 by (ii) above. Since nv? >
∑

u∈U nu, it follows

that bC > 0.

Having proved all the supporting claims, we start off with proving that the second statement

in Invariant (I2) holds at (v?, τ?).

Claim 5.11 (Principal Node Awake). Suppose we call FullUpdate(v?, τ?). If u is the principal

child of v? at timestep τ?, this call does not remove the timestep τ? from Awake(u).

Proof. At the beginning of the call to FullUpdate(v?, τ?), the timestep τ? has just been added to

R(u) (and to Awake(u)) in the call to FullUpdate(u, τ?) or to SimpleUpdate(u, τ?), and cannot

yet be removed from Awake(u). So we start with τu = τ?. For a contradiction, if we remove τ? from

Awake(u) in line (3.17), then all the constraints in Lu(τ?) must have become depleted. For each such

constraint C ∈ Lu(τ?), the contributions to the RHS in (I3) during this procedure come only from

the newly-added constraints C(v?, σ, τ?) ∈ Lv
?
(τ?). So if all constraints in Lu(τ?) become depleted,

the total dual objective raised during this procedure is at least∑
C∈Lu(τ?)

∑
C(v?,σ,τ?)∈Lv? (τ?):C∈σ

bC(v?,σ,τ?) zC(v?,σ,τ?) ≥ (1 + 1/H)
∑

C∈Lu(τ?)

bC zC ,

where we use that bC(v?,σ,τ?) ≥ bC (because in (9), bCu ≥ 0 by the induction hypothesis (Invariant (I2))

and D(u, Iu) ≥ 0 by Corollary 5.10), and that each constraint in Lu(τ?) satisfies (I3) at equality. The

induction hypothesis Invariant (I2) applied to (u, τ?) implies that
∑

C∈Lu(τ?) b
C zC = γ, so the RHS

above is (1 + 1/H)γ. So the total dual increase during FullUpdate(v?, τ?), which is at least the LHS

above, is strictly more than γ, contradicting the stopping condition of FullUpdate(v?, τ?).

19



Next, we prove the remainder of the inductive step, namely that Invariants (I2) and (I4) are

satisfied with respect to (v?, τ?) as well.

Claim 5.12 (Inductive Step: Active Siblings Exist). Consider the call FullUpdate(v?, τ?), and let

u0 be the principal child of v? at this timestep. Suppose activesib(u0, τ
?) 6= ∅. Then the dual objective

value corresponding to the constraints in Lv
?
(τ?) equals γ; i.e.,∑

C∈Lv? (τ?)

zC b
C = γ.

Moreover, the server mass entering Tu0 going to the requested node in this call is at most

γ − loss(u0, τ
?)

λlevel(u)
.

Proof. Let U ′ := activesib(u0, τ
?) be the non-principal children of v? at timestep τ?; let U := {u0}∪U ′

as in FullUpdate. The identity of the timesteps τu and intervals Iu change over the course of the

call, so we need notation to track them carefully. Let Iu(s′) be the set Iu when the timer value is s′;

similarly, let Ds(u, Iu(s′)) be the value of D(u, Iu(s′)) when the timer value is s, and yv
?

s (u, Iu(s′)) is

defined similarly.

For u ∈ U ′, Corollary 5.10(ii,iii) implies that for any interval Iu(s),

D0(u, Iu(s)) ≥ yv?0 (u, Iu(s)). (14)

Since the timestep τ? stays awake for the principal child u0 (due to Claim 5.11), the interval Iu0(s)

equals (τ?, τ?], which is empty, for all values of the timer s.

The dual increase is at most γ due to the stopping criterion for FullUpdate, so we need to show

this quantity reaches γ. Indeed, suppose we raise the timer from s to s + ds when considering some

constraint Cs(v, σ, τ)—the subscript indicates the constraint considered at that value of timer s. The

dual objective increases by bCs(v,σ,τ) ds. We now use the definition of bCs(v,σ,τ) from (9), substitute

(nv−
∑

u∈U nu) ≥ 1, and use that all bCu terms in the summation are non-negative (by Invariant (I2))

to drop these terms. This gives the first inequality below (recall that Iu0(s) stays empty):

bCs(v,σ,τ) ≥
∑
u∈U ′

Ds(u, Iu(s)) + δ ≥
∑
u∈U ′

D0(u, Iu(s)) + δ ≥
∑
u∈U ′

yv
?

0 (u, Iu(s)) + δ. (15)

The second inequality above uses that Ds ≥ D0 for non-principal children, and the third uses (14).

Let

Y (s) :=
∑
τ ′

∑
u∈U ′

(
yv

?

s (u, τ ′)− yv?0 (u, τ ′)
)

to be the total increase in the yv
?

variables during FullUpdate(v?, τ?) until the timer reaches s.

This is also the total amount of server transferred to the requested node due to the local component

of transfer in line (3.16) until this moment.

Subclaim 5.13. Y (s) < γ.

Proof. Suppose not, and let s? be the smallest value of the timer such that Y (s?) = γ. Note that

Y (s) is a continuous non-decreasing function of s. For any s ∈ [0, s?), we get Y (s) < Y (0) + γ, where

Y (0) = 0 by definition. Since the intervals Iu(s′) ⊆ Iu(s) for s′ ≤ s, all the increases in the yv
?
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variables during [0, s] correspond to timesteps in Iu(s). Thus for any s < s?,

Y (0) + γ > Y (s) =⇒
∑
u∈U ′

yv
?

0 (u, Iu(s)) + γ >
∑
u∈U ′

yv
?

s (u, Iu(s)). (16)

The dual increase during [s, s+ ds] is

bCs(v,σ,τ) ds
by (15,16)

>
( ∑
u∈U ′

yv
?

s (u, Iu(s)) + δ − γ
)
ds

=
(
λh dY (s)− γ

Mn

∑
u∈U ′

|Su| ds
)

+ (δ − γ) ds > λh dY (s) ≥ dY (s).

The second line uses (a) the update rule in line (3.15) with dY (s) denoting Y (s+ds)−Y (s), (b) that

M ≥ |Su| and |U ′| ≤ n, so the second expression is bounded by γ, and (c) that δ > 2γ. Integrating

over [0, s?], the total dual increase is strictly more than Y (s?) = γ, which contradicts the stopping

condition of FullUpdate. ♠
Combining Subclaim 5.13 (and specifically its implication (16)) with (14) implies that for all

values s of the timer: ∑
u∈U ′

yv
?

s (u, Iu(s)) <
∑
u∈U ′

D0(u, Iu(s)) + γ. (17)

Therefore, the increase in dual objective during [s, s+ ds] is at least

bCs(v,σ,τ) ds
(9)

≥
( ∑
u∈U ′

(
D0(u, Iu(s)) + bCu,s

)
+ δ + bCu0

)
ds

(17)
>

( ∑
u∈U ′

(
yv

?

s (u, Iu(s)) + bCu,s
)

+ (δ − γ) + bCu0

)
ds

≥
∑
u∈U ′

(
λh dyv

?

s (u, Iu(s))− γ

Mn
|Su| ds+ bCu,s ds

)
+ γ ds+ bCu0 ds

≥
∑
u∈U ′

(
λh dyv

?

s (u, Iu(s)) + bCu,s
)
ds+ bCu0 ds

= λh[amount of server transferred in [s, s+ ds]] + bCu0 ds

Here Cu,s is the constraint corresponding to u ∈ U ′ when the timer equals s. The third inequality

above follows from the update rule in line (3.15), and that δ ≥ 2γ. The last equality follows from

line (3.16). Integrating over the entire range of the timer s, we see that the total dual objective

increase is at least λh[total server transfer] + loss(u0, τ
?). Since the total dual increase is at most γ,

the total server transfer is at most γ−loss(u0,τ?)
λh

. This proves the second part of Claim 5.12.

We now prove that the FullUpdate process does not stop until the dual increase is γ. For each

u ∈ U ′, the subtree Tu contains at least one active leaf and hence at least δ servers when FullUpdate

is called. Since the total server transfer is at most γ � δ, we do not run out of servers. It follows that

until the dual objective reaches γ, we keep raising yv
?

s (u, Iu(s)) for some non-empty interval Iu(s) for

each u ∈ U ′, and this also raises the dual objective as above.

It remains to consider the general case when activesib(u0, τ
?) may be empty.

Claim 5.14 (Inductive Step: General Case). At the end of any call FullUpdate(v?, τ?), the total

dual objective raised during the call equals γ.
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Proof. If activesib(u0, τ
?) is non-empty, this follows from Claim 5.12. So assume that activesib(u0, τ

?) is

empty. In this case, there are no yv(u, t) variables to raise because the interval Iu0 is empty. As we raise

s, we also raise zC(v?,σ,τ?) in line (3.13). Since we do not make all the constraints in Lu0(τ?) depleted

(Claim 5.14), the total dual increase must reach γ, because bC(v?,σ,τ?) > 0 by Corollary 5.10.

This completes the proof of the induction hypothesis for the pair (v?, τ?). Before we show dual

feasibility, we give an upper bound on the parameter M .

Corollary 5.15 (Bound on M). For node u and timestep τ , let τu := prev(u, τ). There are at most
5HλHk

4γ + 1 timesteps in (τu, τ ] ∩Rns(u). So we can set M to 5HλHk
4γ + 1.

Proof. Let I := (τu, τ ]. By the choice of τu, none of the timesteps in S := I ∩ Rns(u) belong to

Awake(u). The proof of Corollary 5.10, and specifically (13), shows that ginh(u, I) − r(u, I) ≥ 4|S|γ
5Hλh

.

This difference cannot be more than the total number of servers, so |S| ≤ 5HλHk
4γ . Since the set |Su|

defined in line 3.14 in FullUpdate is at most |S|+1 (because of the first timestep of Iu), the desired

result follows.

5.2 Approximate Dual Feasibility

For β ≥ 1, a dual solution z is β-feasible if z/β satisfies satisfies the dual constraints. We now show

that the dual variables raised during the calls to FullUpdate(v, τ) for various timesteps τ remain

β-feasible for β = O(ln nMk
γ ). First we show Invariant (I1), and also give bounds on variables yv(u, t).

Claim 5.16 (Proof of Invariant (I1)). For any timestep τ and leaf v, the server amount kv,τ remains

in the range [δ/2, 1− δ′/2].

Proof. Recall that γ ≤ 4δ ≤ 4δ′. Lemma 5.1 proves that the total server mass entering the request

location in any timestep is at most 2γ. Since the request location must have less than 1 − δ′ at the

start of the timestep, kv,τ remains at most 1−δ′+2γ ≤ 1− δ′/2. Similarly, we move server mass from a

leaf only when it is active, i.e., has at least δ server mass. Hence, kv,τ remains at least δ−2γ ≥ δ/2.

Claim 5.17 (Bound on yv Values). For any vertex v, any child u of v, and timestep τ , the variable

yv(u, τ) ≤ 4γM + k.

Proof. For a contradiction, consider a call FullUpdate(v, τ ′) during which we are about to raise

yv(u, τ) beyond 4γM +k. Any previous increases to yv(u, τ) happen during calls FullUpdate(v, τ ′′)

for some τ ′′ ∈ [τ, τ ′]. Moreover, whenever we raise yv(u, τ) by some amount, we move out at least the

same amount of server mass from the subtree Tu. Hence, at least 4γM + k amount of server mass has

been moved out of Tu in the interval [τ, τ ′]. Since we have a non-negative amount of server in Tu at

all times, we must have moved in at least 4γM amounts of server into Tu during the same interval.

All this movement happens at timesteps in R(u). Moreover, for each individual timestep τ ′′ ∈ R(u),

we bring at most 2γ servers into Tu, so there must be at least 2M timesteps in R(u)∩ [τ, τ ′]. Finally,

since we are raising yv(u, τ) at timestep τ ′, the interval Iu (defined in line (3.7)) at timestep τ ′ must

contain [τ, τ ′], which means |Iu ∩Rns(u)| > M (because no timestep in Rs(u) can lie in [τ, τ ′]). This

contradicts the definition of M .

Claim 5.18. Let t be any timestep typo: in R(u), and v be the parent of u. Define t1 to be the last

timestep in R(u) ∩ [0, t], and t2 to be the next timestep, i.e., t1 + η. Let C be a constraint in Lv

containing the variable yv(u, t) on the LHS. Then C contains at least one of yv(u, t1) and yv(u, t2).

Moreover, whenever we raise z(C) in line (3.13) of the FullUpdate procedure, we also raise either

yv(u, t1) or yv(u, t2) according to line (3.15).
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Proof. Suppose yv(u, t) appears in a constraint Lv(τ). Define Iu = (τu, τ ] as in line (3.7). It follows

that t ∈ Iu, and so τu < t. Therefore, τu ∈ R(u) ∩ [0, t], so either t1 > τu and hence belongs to Iu,

or else t1 = τu in which case t2 ∈ Iu. It follows that the index set Su contains either t1 or t2. This

implies the second statement in the claim.

We now show the approximate dual feasibility. Recall that the constraints added to Lv(τ) are of

the form C(v, σ, τ) given in (9), and we raise the corresponding dual variable zC(v,σ,τ) only during the

procedure FullUpdate(v, τ) and never again.

Lemma 5.19 (Approximate Dual Feasibility). For a node v at height h + 1, the dual variables zC
are βh-feasible for the dual program Dv, where βh = (1 + 1/H)hO(lnn+ lnM + ln(k/γ)).

Proof. We prove the claim by induction on the height of v. For a leaf node, this follows vacuously,

since the primal/dual programs are empty. Suppose the claim is true for all nodes of height at most

h. For a node v at height h+ 1 > 0 with children χv, the variables in Lv are of two types: (i) yv(u, t)

for some timestep t and child u ∈ χv, and (ii) yv(u′, t) for some timestep t and non-child descendant

u′ ∈ Tv \ χv. We consider these cases separately:

I. Suppose the dual constraint corresponds to variable yv(u, t) for some child u ∈ χv. Let L′ be

the set of constraints in Lv containing yv(u, t) on the LHS. The dual constraint is:∑
C∈L′

zC ≤ cu = λh. (18)

Let t1, t2 be as in the statement of Claim 5.18. When we raise zC for a constraint C ∈ L′ in

line (3.13) at unit rate, we raise either yv(u, τ1) or yv(u, t2) at the rate given by line (3.15).

Therefore, if we raise the LHS of the dual constraint (18) for a total of Γ units of the timer,

we would have raised one of the two variables, say yv(u, τ1), for at least Γ/2 units of the timer.

Therefore, the value of yv(u, τ1) variable due to this exponential update is at least

γ

Mn
(eΓ/2λh − 1).

By Claim 5.17, this is at most 4γM + k, so we get

Γ = λh ·O (lnn+ lnM + ln(k/γ)) = β0cu,

hence showing that (18) is satisfied up to β0 factor.

II. Suppose the dual constraint corresponds to some variable yv(u′, τ) with u′ ∈ Tu, and u ∈ χv.
Suppose u′ is a node at height h′ < h. Now let L′ be the constraints in Lu (the LP for the child

u) which contain yu(u′, τ). By the induction hypothesis:∑
C∈L′

zC ≤ βh−1 cu′ . (19)

Let L′′ denote the set of constraints in Lv (the LP for the parent v) which contain yv(u′, τ).

Each constraint C(v, σ, τ) in this set L′′ has the coordinate σu corresponding to the child u being

a constraint in L′, which implies:∑
C(v,σ,τ)∈L′′

zC(v,σ,τ) =
∑
C∈L′

∑
C(v,σ,τ)∈L′′:σu=C

zC(v,σ,τ) ≤ (1 + 1/H)
∑
C∈L′

zC , (20)
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where the last inequality uses Invariant (I3). Now the induction hypothesis (19) and the fact

that βh = (1 + 1/H)βh−1 completes the proof.

Lemma 5.19 means that the dual solution for Lr is βH -feasible, where βH = O(ln nMk
γ ). This

proves Lemma 5.2 and completes the proof of our fractional k-server algorithm.

6 Algorithm for k-ServerTW

In this section, we describe the online algorithm for k-ServerTW. The structure of the algorithm

remains similar to that for k-Server. Again, we have a main procedure (Algorithm 4) which considers

the backbone consisting of the path from the requested leaf node to the root node. It calls a suitable

subroutine for each node on this backbone to add local LP constraints and/or transfer servers to v0.

We say that a request interval Rq = [b, q] at a leaf node `q becomes critical (at time q) if it has

deadline q, and it has not been served until time q, i.e., if k`q ,t < 1 − 2δ′ for all timesteps t ∈ [b, q):

for technical reasons we allow a gap of up to 2δ′ instead of δ′. In case this node becomes critical at q,

the algorithm ensures that `q receives at least 1− δ′ amount of server at time q. This ensures that we

move at least δ′ amount of server mass when a request becomes critical. The parameters δ, δ′ remain

unchanged, but we set γ to 1
n4∆

. We extend the definition of ReqLoc from §4 in the natural way:

ReqLoc(τ) = location of request with deadline at time bτc, and

ReqInt(τ) = request interval with deadline at time bτc.

Algorithm 4: Main Procedure for Time-Windows

4.1 foreach q = 1, 2, . . . do
4.2 if ReqInt(q) exists and is critical then
4.3 let the path from `q := ReqLoc(q) to the root be `q = v0, v1, . . . , vH = r.

4.4 let Zq, {Fv,q | v ∈ Zq} ← BuildTree(q)

4.5 τ ← q + η, the first timestep after q
4.6 while kv0,τ ≤ 1− δ′ do
4.7 let i0 ← smallest index such that activesib(vi0 , τ) 6= ∅.
4.8 for i = 0, . . . , i0 do call SimpleUpdate(vi, τ, λ

i · γ/λi0).
4.9 for i = i0 + 1, . . . ,H do call FullUpdate(vi, τ).

4.10 τ ← τ + η. // create a new timestep

4.11 serve requests at leaves in {Fvi,q | vi ∈ Zq} using server mass at v0.

Here are the main differences with respect to Algorithm 1:

(i) When we service a critical request at a leaf `q, we would like to also serve active requests at

nearby nodes. The procedure BuildTree(q) returns a set of backbone nodes Zq ⊆ {v0, . . . , vH},
and a tree Fvi,q rooted at each node vi ∈ Zq. In line (4.11), we service all the outstanding requests

at the leaf nodes of these subtrees {Fvi,q | vi ∈ Zq} using the server at v0. (These are called

piggybacked requests.)

(ii) For a node vi with i ≤ i0, the previous SimpleUpdate procedure in §4.2 would define the set

Lvi(τ) in the local LP Lvi to contain just one ⊥-constraint. For the case of time-windows, we

give a new SimpleUpdate procedure in §6.3, which defines a richer set of constraints based on
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Figure 4: Example of BuildTree procedure when processing v: (a) tree rooted at v, with cv = 5, cv1 = cv2 = 2,
all leaves have cost 1. For each leaf, the earliest deadline of an active request is shown. FindLeaves(q, v)
returns the subtree in (b) with S = {v1, v2}. FindLeaves(q, v1) and FindLeaves(q, v2) return trees in (c) with
S being {v3, v4} and {v5, v6} respectively. The dashed arrows indicate the associated leaf requests. The heavier
edges in (a) indicate the tree returned by BuildTree(q, v). The nodes (w, q) for w ∈ {v, v1, v2, v3, v4, v5, v6}
get added to Fch(v).

a charging forest Fch(vi). This procedure also raises some local dual variables; this dual increase

was not previously needed in the case of the ⊥-constraint. Finally, the procedure constructs the

tree Fvi,q rooted at vi which is used for piggybacking requests. Although this construction of

the charging tree is based on ideas used by [AGGP17] for the single-server case, we need a new

dual-fitting analysis in keeping with our analysis framework.

(iii) We need a finer control over the amount of dual raised in the call SimpleUpdate in line (4.8).

Fix a call to SimpleUpdate(vi, τ, ξ); hence i ≤ i0 at this timestep. To prove dual feasibility,

we want the increase in the dual objective function value to match the cost (with respect to

vertex vi) of the server movement into vi during this iteration of the while loop. This server

mass entering vi is dominated by the server mass transferred to the request location v0 by

FullUpdate(vi0+1, τ), which is roughly γ/λi0 . The cost of transferring this server mass to vi
from its parent is λi · γ/λi0 . We pass this value as an argument ξ to SimpleUpdate in line (4.8),

indicating the extent to which we should raise dual variables in this procedure.

Moreover, we need to remember these values: for each node v and timestep τ ∈ Rns(v), we

maintain a quantity Γ(v, τ), which denotes the total dual objective value raised for the con-

straints in Lv(τ). If these constraints were added by SimpleUpdate(v, τ, ξ), we define it as ξ;

and finally, if they were added by FullUpdate(v, τ) procedure, this stays equal to the usual

amount γ (as in the algorithm for k-Server). In case τ ∈ Rs(v), this quantity is undefined.

We first explain BuildTree and BuildWitness in §6.1, which build the set Zq and the trees to

satisfy the piggybacked requests, and the charging forest. Then we describe the modified local update

procedures in §6.3 and §6.4: the main changes are to SimpleUpdate, but small changes also appear

in FullUpdate.

6.1 The BuildTree procedure

To find the piggybacked requests, the main procedure calls the BuildTree procedure (Algorithm 5).

This procedure first obtains an estimate cost(q) of the cost incurred to satisfy the critical request at

time q, and defines Zq to be the first blogλ 2λcost(q)c nodes on the backbone. The estimate cost(q) is

the minimum cost of moving servers to ReqLoc(q) so that it has 1 − δ′ amount of server mass while

ensuring that all leaf nodes have at least δ − γ server mass. Since our algorithm moves servers from
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active leaf nodes only, and FullUpdate procedure never moves more than γ amount of server in one

function call (see Claim 7.11), cost(q) is a lower bound on the cost incurred by the algorithm to move

server mass to v0. For each node v in Zq, BuildTree then finds a tree Fv,q of cost at most H2 · cv.
Given a node v ∈ Zq, the tree Fv,q is built by calling the sub-procedure FindLeaves (Algorithm 6)

on nodes at various levels, starting with node v itself. (See Figure 4.) When called for a node w,

FindLeaves returns a subtree G of cost at most Hcw by adding paths from w to some set of leaves.

Specifically, it sorts the leaves in increasing order of deadlines of the current requests (i.e., in Earliest

Deadline First order). It then adds paths from w to these leaves one by one until either (a) all leaves

with current requests have been connected, or (b) the union of these paths contains some level with

cost at least cw. In the latter case, BuildTree calls FindLeaves for the set S of nodes at this

“tight” level. (If FindLeaves(q, w) returns a set of nodes S, nodes in S are said to be spawned by w,

and necessarily lie at some level lower than w.) A simple induction shows that the total cost of calls

to FindLeaves(q, w) for nodes w at any level cost at most Hcv, and hence the tree Fv,q returned by

BuildTree(q) costs at most H2cv.

Algorithm 5: BuildTree(q)

5.1 cost(q)← min-cost to increase server at ReqLoc(q) to 1− δ′, logcost(q)← blogλ(2λ cost(q))c
5.2 Zq ← {v0, v1, . . . , vlogcost(q)} // v0 = ReqLoc(q) is the request location, v1, v2, . . . are its ancestors.

5.3 foreach v ∈ Zq do

5.4 initialize a queue Q← {v}, subtree Fv,q ← ∅.

5.5 while Q 6= ∅ do

5.6 w ← dequeue(Q).

5.7 (G,S)← FindLeaves(q, w); we say that nodes of S are spawned by w at time q.

5.8 Fv,q ← Fv,q ∪G.

5.9 foreach u ∈ S do enqueue(Q, u).

5.10 BuildWitness(q, w, v).

5.11 return set Zq and subtrees {Fv,q}.

Algorithm 6: FindLeaves(q, w)

6.1 `1, `2, . . .← leaves of Tw in increasing order of deadline of outstanding requests at them.
6.2 Initialize G← ∅.
6.3 for i = 1, 2, . . . do
6.4 add the `i-w path in Tw to the subtree G.
6.5 if cost of vertices in G at some level ` (strictly below w’s level) is at least cw then
6.6 return (G,S), where S is the set of vertices at level ` in G.

6.7 return (G,∅).

For each node w that is either the original node v or else is spawned during FindLeaves, the

algorithm calls the procedure BuildWitness(q, w, v) to construct the charging tree: we describe this

next.
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v2 v3
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[0,6] [1,4] [3,8] [5,9] [7,11] [10,12] [2,13]
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Figure 5: The trees Fv,q returned by BuildTree(q) for node v at times q = 4, 8, 11 are shown in black/solid.
For each, the bold squares are nodes that lie in S. These are also nodes of the charging forest Fch(v), whose
edges are shown in red/dashed. The request intervals for only the relevant leaf nodes are shown: each bold square
is associated with the leaf request below it with the earliest end time. For example, the interval associated with
v3 at time q = 11 is [2, 13]: since this interval is active at time q = 4, we have edges from (v3, q = 11) to nodes
(w5, q = 4), (w6, q = 4) spawned by v3 at time q = 4.

6.1.1 BuildWitness and the Charging Forest

Algorithm 7: BuildWitness(q, w, v)

7.1 add node a := (w, q) to Fch(v)

7.2 let (`, I)← EarliestLeafReq(w, q).

7.3 let q′ ← arg max{q′′ | q′′ < q, (w, q′′) ∈ Fch(v)}.
7.4 if q′ ∈ I then

7.5 foreach node w′ spawned by w in BuildTree (q′, v) do

7.6 make (w′, q′) a child of (w, q) in the witness forest Fch(v).

Each node v maintains a charging forest Fch(v), which we use to build a lower bound on the

value of the optimal solution for servicing the outstanding requests below v, assuming there is just one

available server. The construction here is inspired by the analysis of [AGGP17]. We use this charging

forest to add constraints to Lv (during SimpleUpdate procedure) and to build a corresponding dual

solution. We need one more piece of notation: for node w and time q, let ` be the leaf below w

such that the active request at ` has the earliest deadline after q. (In case no active request lies

below w at time q, this is undefined). Let I be the corresponding request interval at `. We use

EarliestLeafReq(w, q) to denote the pair (`, I).

The procedure BuildWitness(q, w, v) adds a new vertex called (w, q) to the charging forest

Fch(v). To add edges, let q′ < q be the largest time such that Fch(v) contains a vertex of the

form (w, q′). Let (`, I) denote EarliestLeafReq(w, q). If time q′ also belongs to I, we add in an edge

from (w, q) to (w′, q′) for every node w′ that was spawned by w in the call to BuildTree(v, q′).

(See Figure 5.)

Here’s the intuition behind this construction: at time q′, there were outstanding leaf requests

below each of the nodes w′ which were spawned by w. The reason that interval I was not serviced

at time q′ (i.e., the leaf ` was not part of the tree returned by BuildTree(q′, v)) was because the

intervals chosen in that tree were preferred over I, and the total cost of servicing them was already

too high. This allows us to infer a lower bound.
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6.2 Reminder: Truncated Constraints

We now describe the procedures SimpleUpdate and FullUpdate in detail; both of these procedures

will add (truncated) constraints of the form ϕA,f,τττ ,v to the local LP for a node v as defined in (5).

For sake of completeness, we formally define this notion here:

Definition 6.1 (Truncated Constraints). Consider a node v, a subset A of nodes in Tv (where no

two them have an ancestor-descendant relationship), a function f : A→ R mapping each node u ∈ A
to a request (`u, [bu, eu]) at some leaf `u below u, and an assignment τu of timesteps to each u ∈ TAv .

The timesteps τττ must satisfy the following two (monotonicity) properties: (a) For each node u ∈ TAv ,

τu ≥ maxw∈A∩Tu ew; (b) If v1, v2 are two nodes in TAv with v1 being the ancestor of v2, then τv1 ≥ τv2 .
Given such a tuple (A, f,τττ , v), the truncated constraint ϕA,f,τττ ,v (ending at timestep τv) is defined as

follows: ∑
u∈A∩Tv ,u6=v

yv(u, (bu, τp(u)]) +
∑

u∈TAv \A,u 6=v

yv(u, (τu, τp(u)]) ≥ |A ∩ Tv| − kv,τv − 2δ(n− nv).

6.3 The Simple Update Procedure

The SimpleUpdate procedure is called with parameters: node vi, timestep τ with bτc = q, and target

dual increase ξ. In the case without time-windows, this procedure merely added a single ⊥-constraint.

Since we may now satisfy requests due to piggybacking, the new version of SimpleUpdate adds other

constraints and raises the dual variables corresponding to them.

Recall that BuildTree defines an estimate cost(q) and sets logcost(q) = blogλ 2λcost(q)c. After

defining Γ(vi, τ) := ξ, SimpleUpdate tries to add a constraint to Lvi—for this purpose we use the

highest index i? ≤ i for which we have previously added a node to the charging forest Fch(vi?) at time

q. Hence we set i? := min(i, logcost(q)). As explained in §6.1.1, Fch(vi?) has a tree rooted at (vi? , q),

call it T . The algorithm now splits in two cases:

(i) Tree T is just the singleton vertex (vi? , q): we add a ⊥-constraint in line (8.4) and add τ to

Rs(vi). The intuition is that the tree T gives us a lower bound for serving the piggybacked

requests. So if it has no edges, we cannot add a non-⊥ constraint.

(ii) Tree T has more than one vertex: in this case we add a (non-⊥) constraint to Lvi , details of

which are described below.

It remains to describe how to add the local constraints and set the dual variables in case T
contains more than one node. Recall that T is rooted at (vi? , q). The BuildTree procedure ensures

that the nodes spawned by any node w cost at least cw; applying this inductively ensures that if L is

the set of leaves of this tree T , we have
∑

a∈L ca ≥ cvi? . (Here we abuse notation by defining the cost

of a tuple a = (w, q) in T to equal the cost of the node w.) Hence, there is some level j such that

leaves in T corresponding to level-j nodes have cost at least cvi?/H. Let these leaves of T be denoted

Ls := {aj = (uj , qj)}rj=1.

For each leaf aj = (uj , qj) ∈ Ls of this charging tree, let (`j , Rj = [bj , ej ]) denote EarliestLeafReq(aj)

(as in line (7.2) of BuildWitness(qj , uj , vi)). Define A := {uj | ∃qj s.t. (uj , qj) ∈ Lj} to be the sub-

set of nodes of the original tree T corresponding to the nodes Ls from the charging tree, and define

f : uj 7→ (`j , Rj). Recall that TAvi denotes the minimal subtree rooted at vi and containing A (as

leaves). For each node uj ∈ A, define τuj = bj . Define the timestep τw for each internal node w in TAvi
to be τ . (Note that T was rooted at vi? , but we define τ for the portion of the backbone from vi? up

to vi as well.) We will show in Corollary 7.14 that setting τvi? to τ does not violate the monotonicity

property, i.e., ej ≤ q ≤ τ for all request intervals Rj .
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Algorithm 8: SimpleUpdate(vi, τ, ξ)

8.1 Γ(vi, τ)← ξ, add τ to Awake(vi).
8.2 i? ← min(i, logcost(q)).

8.3 if the charging tree T in Fch(vi?) containing (vi? , q) is a singleton then
8.4 Lvi(τ)← ⊥-constraint for ϕA,f,τττ ,vi , where

A = {vi}, f(vi) = (ReqLoc(τ),ReqInt(τ)), τvi = τ ; add τ to Rs(vi) // solitary timestep for vi

8.5 else
8.6 Let s be such that level-s leaves Ls in T have cost at least cvi?/H. // T not a singleton

8.7 foreach aj = (uj , qj) ∈ Ls do
8.8 Let (`j , Rj = [bj , ej ]) be EarliestLeafReq(aj) as defined in line (7.2) of

BuildWitness(qj , uj , vi?).
8.9 add uj to A, define τuj ← bi, f(uj) = (`j , Rj).

8.10 define τw ← τ for each internal node w in TAvi .
8.11 add the constraint ϕA,f,τττ ,vi (as shown in (21)) to Lvi(τ), and set the dual variable

accordingly; add τ to Rns(vi) // non-solitary timestep for vi

Now we add to Lvi(τ) the truncated constraint ψA,f,τττ ,vi , which can be written succinctly as∑
uj∈A

yvi(uj , (bj , τ ]) ≥ |A| − kvi,τvi − 2δ(n− nvi), (21)

Observe that the RHS above is positive because |A| ≥ 1 and kvi,τvi < 1 − δ′. Finally, we set the

dual variable for this single constraint to ξ/(|A| − kvi,τvi − 2δ(n − nvi)), so that the dual objective

increases by exactly ξ. We end by declaring timestep τ non-solitary, and hence adding it to Rns(vi).

6.4 The Full Update Procedure

The final piece is procedure FullUpdate(v, τ, γ). This is essentially the version in §4.3, with one

change. Previously, if activesib(u0, τ) was not empty, we could have had very little server movement,

in case most of the dual increase was because of bCu0 . To avoid this, we now force a non-trivial amount

of server movement. When the dual growth reaches γ, we stop the dual growth, but if there has been

very little server movement, we transfer servers from active leaves below activesib(u0, τ) in line (9.21).

The intuition for this step is as follows: in the SimpleUpdate(vi, v0, ξ) procedure for vi below v,

we need to match the dual increase (given by ξ) by the amount of server that actually moves into vi.

This matching is based on the assumption that at least γ/λh transfer happens during the FullUpdate

procedure. By adding this extra step to FullUpdate, we ensure that a roughly comparable amount

of transfer always happens.

Finally, let us elaborate on the constraint C(v, σ, τ). This is written as in (9), using the modified

composition rule for k-ServerTW from Lemma 3.5. Since we did not spell out the details, let us do

so now. As before, u0 is the principal child of v at τ , and U := {u0} ∪ activesib(u0, τ). Each of

the constraints Cu ∈ Lu(τu), u ∈ U has the form ϕA(u),f(u),τττ(u),u for some tuple (A(u), f(u), τττ(u))

for node u ending at τu := τ(u)u. Partition the set U into two sets based on whether Lu(τu) is a

{⊥}-constraint (i.e., whether τ is in Rs(u) or in Rns(u)): U ′ := {u ∈ U : Cu is a ⊥-constraint}, and

U ′′ := U \U ′. Recall that Iu denotes the interval (τu, τ ]. For a node u ∈ U ′, the ⊥ constraint is given by

ϕA(u),f(u),τττ(u),u, where A(u) = {u}, and let bu is the starting time of the request interval corresponding

to f(u). Let I ′u denote the interval (bu, τu]. The new constraint C(v, σ, τ) is the composition ϕA,f,τττ ,v
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of these constraints, and by Lemma 3.5 implies:∑
u∈U ′

yv(u, I ′u) +
∑
u∈U

(
yv(u, Iu) + aCu · yv

)
︸ ︷︷ ︸

aC(v,σ,τ)·yv

≥
∑
u∈U

(
D(u, Iu) + bCu

)
+ (nv −

∑
u∈U

nu)δ︸ ︷︷ ︸
≤bC(v,σ,τ)

. (22)

Observe that the dual update process itself in FullUpdate remains unchanged despite these new

added variables corresponding to I ′u: these variables {yv(u, τ)}τ∈I′u,u∈U ′ do not appear in line (9.15).

Hence all the steps here exactly match those for the k-Server setting, except for line (9.21). This

completes the description of the local updates, and hence of the algorithm for k-ServerTW.

Algorithm 9: FullUpdate(v, τ)

9.1 let h← level(v)− 1 and u0 ∈ χv be child containing the current request v0 := ReqLoc(τ).

9.2 let U ← {u0} ∪ activesib(u0, τ); say U = {u0, u1, . . . , u`}, LU ← active leaves below U \ {u0}.
9.3 add timestep τ to the event set Rns(v) and to Awake(v). // “non-solitary” timestep for v

9.4 set timer s← 0, Γ(v, τ)← γ.

9.5 repeat

9.6 for u ∈ U do

9.7 let τu ← prev(u, τ) and Iu = (τu, τ ].

9.8 let Cu be a slack constraint in Lu(τu). // slack constraint exists since prev(u, τ) is awake

9.9 let σ ← (Cu0 , Cu1 , . . . , Cu`) be the resulting tuple of constraints.

9.10 add new constraint C(v, σ, τ) to the constraint set Lv(τ).

9.11 while all constraints Cuj in σ are slack and dual objective for Lv(τ) less than γ do

9.12 increase timer s at uniform rate.

9.13 increase zC(v,σ,τ) at the same rate as s.

9.14 for all u ∈ U , define Su := Iu ∩ (Rns(u) ∪ {τu + η}) .
9.15 increase yv(u, t) for u ∈ U, t ∈ Su according to dyv(u,t)

ds = yv(u,t)
λh

+ γ
Mn·λh .

9.16 transfer server mass from Tu into v0 at rate dyv(u,Iu)
ds + bCu

λh
using the leaves in

LU ∩ Tu, for each u ∈ U \ {u0}
9.17 foreach constraint Cuj that is depleted do

9.18 if all the constraints in Luj (τuj ) are depleted then remove τuj from Awake(uj).

9.19 until the dual objective corresponding to constraints in Lv(τ) becomes γ.

9.20 let α← total amount of servers transferred to v0 during this function call.

9.21
if activesib(u0, τ) 6= ∅ and α < γ

4Hλh
then

transfer more servers from LU to v0 until total transfer equals γ
4Hλh

.

7 Analysis for k-ServerTW

The analysis for k-ServerTW closely mirrors that for k-Server; the principal difference is due to the

additional intervals I ′u on the LHS of (22). If the intervals I ′u are very long, we may get only a tiny

lower bound for the objective value of the LPs: raising only a few yv variables variables could satisfy

all such constraints. The crucial argument is that the intervals I ′u are disjoint for any given vertex v

and descendant u′: this gives us approximate dual-feasibility even with these I ′u intervals, and even

with the dual increases performed in the SimpleUpdate procedure. To show this disjointness, we

have to use the properties of the charging forest. A final comment: timesteps in Rns(v) are now added
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by both FullUpdate and SimpleUpdate, whereas only SimpleUpdate adds timesteps to Rs(v).

7.1 Some Preliminary Facts

Claim 7.1 (Facts about Γ). Fix a node u with parent v, and timestep τ ∈ Rns(u).

(i) γ
λH
≤ Γ(u, τ) ≤ γ.

(ii) If FullUpdate(v, τ) is called, then Γ(u, τ) = γ.

(iii) If τ gets added to Rns(u) by SimpleUpdate procedure, then the dual objective value for the

sole constraint in Lu(τ) is Γ(u, τ).

Proof. The first claim follows from the fact that Γ(u, τ) is either set to γ (in FullUpdate) or λi γ
λi0

(in SimpleUpdate), and that 1 ≤ i ≤ i0 ≤ H in line (4.8). For the second claim, if τ gets added to

Rns(u) by FullUpdate, then the statement follows immediately. Otherwise it must be the case that

u = vi0 , and we call SimpleUpdate(u, τ, γ) in line (4.8) of Algorithm 4, giving Γ(u, τ) = γ again.

For the final claim, observe that Lu(τ) contains a single constraint C given by (21), and we set

z(C) to be Γ(u,τ)
|A|−ku,qu−2δ(n−nu) .

Claim 7.2 (Facts about Zq). Suppose the leaf `q becomes critical at time q, and vi is an ancestor of

`q such that all leaves in Tvi (including `q) are inactive at time q. Then vi+1 gets added to the set Zq.

Proof. We claim that logcost(q) is at least i+ 1. Since there are no active leaves in Tvi , all the server

mass needs to be brought into `q from leaves which are outside Tvi , and so the total cost of this transfer

is at least (1− δ′ − δ)cvi = (1− δ′ − δ)λi. It follows that logcost(q) = blogλ(2λ cost(q))c ≥ i+ 1.

7.2 Congestion of Intervals for ⊥-constraints

Recall from line (8.4) that Lv(τ) is a ⊥-constraint (i.e., timestep τ ∈ Rs(v)) exactly when the com-

ponent T of the charging forest Fch(vi?) containing the vertex (vi? , bτc) is a singleton.

Lemma 7.3 (Low Congestion I). For a vertex v, let Q be a set of times such that for each q ∈ Q,
there exists a timestep τq ∈ Rs(v) satisfying bτqc = q. Let `q := ReqLoc(q) and [bq, q] = ReqInt(q) be

the request location and interval corresponding to time q. Then the set of intervals {[bq, q]}q∈Q has

congestion at most H.

Proof. For brevity, let Jq := [bq, q]; i
?
q be the value of i? used in the call to SimpleUpdate on v at

timestep τq that added the ⊥-constraint.

Claim 7.4. Suppose there are times p < q ∈ Q such that p ∈ Jq. Then i?p < i?q.

Proof. Let vlca be the least common ancestor of leaves `p and `q, and vm be the higher of vlca and vi?p .

We first give two useful subclaims.

Subclaim 7.5. Let vi be an ancestor of `q. Suppose vi gets added to the set Zq′ for some q′ ∈ [p, q).

Then the set S returned by FindLeaves(q′, vi) is non-empty.

Proof. Since (a) the request at `q starts before p (and hence before q′), (b) the node `q ∈ Tvi , and

(c) the request at `q is not serviced until time q and hence is still active at time q′, the set S cannot

be empty. ♠

Subclaim 7.6. If i?q < m, then there exists a q′ ∈ [p, q) such that vi?q ∈ Zq′.
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v

vm = vi?p

vlca

`p `q

Figure 6: Illustration of proof of Subclaim 7.6: we consider the interesting case when vm = vi?p .

Proof. First consider the case when i?q < lca. At time p, the fact that τp ∈ Rs(v) implies that no leaf

in Tv other than `p is active (i.e., has more than δ amount of server mass). Therefore, at time p, no

leaf below vi?q is active. We claim that there must have been a time q′ ∈ (p, q) at which a request

below vi?q became critical. Indeed, if not, all leaves below vi?q continue to remain inactive until time q.

But then cost(q) ≥ (1− δ′ − δ)λi?q , and so logcost(q) > i?q , a contradiction. So let q′ be the first time

in (p, q) when a request below vi?q became critical. Repeating the same argument shows that i?q′ ≥ i?q ,
and so vi?q would be added to Zq′ .

The other case is when lca ≤ i?q < m, which means that m > lca and so m = i?p. In that case vi?q
is added to the set Zp itself. ♠

Now if i?q < m, then Subclaim 7.6 says that vi?q is added to some Zq′ for q′ ∈ [p, q). By Subclaim 7.5

the set returned by FindLeaves(q′, vi?q ) is non-empty: this means (vi?q , q) cannot be a singleton

component. This would contradict the fact that τq ∈ Rs(v). Similarly, if i?q = m = i?p, then vi?p = vi?q
and the argument immediately above also holds for q′ = p. Hence, it must be that i?q > i?p, which

proves Claim 7.4.

Claim 7.4 implies that p belongs to at most H other intervals {Jq}q∈Q. Indeed, if p lies in the

intervals for q < q′ < · · · , then q also lies in the interval for q′, etc. Hence the i? values for p, q, q′, q′′, . . .

must strictly increase, but then there can be only H of them, proving Lemma 7.3.

7.3 Relating the Dual Updates to i?

We first prove a bound on the number of iterations of the while loop in Algorithm 4: this uses the

lower bound on the server transfer that is ensured by line (9.21)).

Claim 7.7. Suppose a request at v0 becomes critical at time q. The total number of iterations of

while loop in Algorithm 4 is at most 8Hcost(q)
γ .

Proof. Let the ancestors of v0 be labeled v0, v1, . . . , vH . If the cheapest way of moving the required

mass of servers to v0 at time q moves αi mass from the active leaves which are descendants of siblings

of vi, then cost(q) =
∑

i αicvi .

For an ancestor vi of v0, define ti to be the earliest timestep by which either the algorithm moves

at least αi server mass from active leaves below the siblings of vi to v0, or activesib(vi, ti) becomes

empty. Since we transfer at least γ/4Hcvi amount of server mass from leaves below the siblings of vi
to v0 during each timestep in (q, ti], the number of timesteps in (q, ti] cannot exceed 4Hcviαi/γ.

During the algorithm, the set of active siblings of a node vi may become empty at ti while leaving

up to δ amount of server mass at a some leaves below the siblings of vi. While calculating cost(q),
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we had allowed leaving only δ − γ amount of server at a leaf, and so it is possible that the algorithm

may move an additional γn amount of server mass beyond what has been transferred by maxi ti.

Since we move at least γ
4H∆ amount of server in each call to FullUpdate procedure, it follows the

total number of such calls (beyond maxi ti) would be at most 4H∆n. Therefore, the total number of

timesteps before we satisfy the request at v0 is at most

4H∆n+ max
i

4Hcviαi
γ

≤ 4Hδ′

γ
+
∑
i

4Hcviαi
γ

=
8Hcost(q)

γ
,

where we have used the fact that cost(q) ≥ δ′ ≥ γn∆.

Next, we relate i? from the SimpleUpdate procedure to the increase in the dual variables.

Lemma 7.8. Suppose a request at v0 becomes critical at time q. Let v0, v1, . . . , vH be the path to the

root. For indices i′ ≤ i, let S(i, i′) be the set of timesteps τ such that (a) bτc = q, and (b) we call

SimpleUpdate(vi, τ, ξτ ) for some value of ξτ , and (c) i? = i′ during this function call. Then∑
τ∈S(i,i′)

ξτ ≤ 12Hcvi′ .

Proof. Suppose that i′ = i? < i, then i′ = logcost(q) for all timesteps τ ∈ S(i, i′). Since the parameter

ξτ ≤ γ for any timestep τ ∈ S(i, i′) by 7.1(i), Claim 7.7 implies that
∑

τ∈S(i,i′) ξτ ≤ |S(i, i′)| γ ≤
8Hcost(q). But cost(q) ≤ λlogcost(q) = λi

′
= cvi′ , which completes the proof of this case.

The other case is when i′ = i. We claim that for any timestep τ ∈ S(i, i′), at least ξτ
4Hcvi

amount

of server reaches the requested node. Indeed, we know that i0 ≥ i at this timestep, so line (9.21) of

the FullUpdate procedure ensures that at least γ
4Hλi0

= ξτ
4Hcvi

amount of server reaches v0, where

we used that ξτ = λi0−iγ. Since at most one unit of server reaches v0 when summed over all timesteps

corresponding to q, we get ∑
τ∈S(i,i′)

ξτ ≤ 4Hcvi .

7.4 Proving the Invariant Conditions

We begin by stating the invariant conditions and show that these are satisfied. Invariant (I2) statement

only changes slightly: we replace γ by Γ(v, τ) as given below.

Invariant (I5). At the end of each timestep τ ∈ Rns(v), the objective function value of the dual

variables corresponding to constraints in Lv(τ) equals Γ(v, τ). I.e., if a generic constraint C is

given by 〈aC · yv〉 ≥ bC , then∑
C∈Lv(τ)

bC · zC = Γ(v, τ) ∀τ ∈ Rns(v). (I5)

Furthermore, bC > 0 for all C ∈ Lv(τ) and τ ∈ R(v).

Claim 7.1 shows that the invariant above is satisfied whenever τ gets added to Rns(v) by

SimpleUpdate, and the second statement follows from the comment after (21). As before, the

quantity loss(u, τ) is defined by (10) whenever FullUpdate(v, τ) is called, v being the parent of u.
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The invariant condition (I4) is replaced by the following which also accounts for the extra transfer

which happens during line (9.21) in FullUpdate(v, τ) procedure:

Invariant (I6). Consider a node v and timestep τ such that FullUpdate(v, τ) is called. Let u

be the v’s principal child at timestep τ . The server mass entering subtree Tu during the procedure

FullUpdate(v, τ) is at most

γ − loss(u, τ)

λh
+

γ

4Hλh
. (I6)

We again use the ordering ≺ on pairs (v, τ) and assume that the above two invariant conditions

holds for all (v, τ) ≺ (v?, τ?). We now outline the main changes needed in the analysis done in Sec-

tion 5.1. Claim 5.5 still holds with the same proof. We can again define fill(u, τ), τ ∈ Rns(u) as in (11).

Note that τ ′ ∈ fill(u, τ) only if FullUpdate(v, τ) is called, where v is the parent of u. Claim 5.7 still

holds with the same proof. The statement of Claim 5.8 changes to the following:

Claim 7.9. Let τ ∈ R(u) for some τ < τ?. The server mass entering Tu at timestep τ is at most(
1 +

1

λ− 1

)(
1 +

1

4H

)
Γ(u, τ)

λlevel(u)
− loss(u, τ)

λlevel(u)
.

Proof. Consider the iteration of the while loop of Algorithm 4 corresponding to timestep τ . First

consider the case when u happens to be vi, i ≥ i0. In this case, Γ(u, τ) = γ. The result follows as in

the proof of Claim 5.8, where the extra term of γ
4Hλh

arises because of line (9.21) in the FullUpdate

procedure.

Now consider the case when u is a vertex of the form vi, i < i0. Note that γ
λh0

= Γ(vi,τ)
λh

, and so

the result follows in this case as well by using Invariant (I6), and the quantity loss(u, τ) = 0 here.

The classification of g(w, τ) into gloc(w, τ), ginh(w, τ) holds as before. The statement of Lemma 5.9

changes as given below, and the proof follows the same lines. We assume that FullUpdate(v?, τ?)

is called.

Lemma 7.10. Let u be a non-principal child of v? at timestep τ?, and I := (τ1, τ
?] for some timestep

τ1 < τ?. Let S be the timesteps in Rns(u) ∩ (τ1, τ
?] that have been removed from Awake(u) by the

moment when FullUpdate(v?, τ?) is called. Then

ginh(u, (τ1, τ
?]) ≥

(
1 +

1

2H

)
Γ(u, S)

λlevel(u)
−
∑
τ∈S

loss(u, τ)

λlevel(u)
,

where Γ(u, S) =
∑

τ∈S Γ(u, τ).

The statement and proof of Corollary 5.10 remains unchanged. The proof of Claim 5.11 also

remains unchanged, though we now need to use Claim 7.1 (part (iii)). We now restate the analogue

of Claim 5.12:

Claim 7.11 (Inductive Step Part I). Consider the call FullUpdate(v?, τ?), and let u0 be the prin-

cipal child of v? at this timestep. Suppose activesib(u0, τ
?) 6= ∅. Then the dual objective value

corresponding to the constraints in Lv
?
(τ?) equals γ; i.e.,∑
C∈Lv? (τ?)

zC b
C = γ.

34



Moreover, the server mass entering Tu0 going to the request node in this call is at most

γ − loss(u0, τ
?)

λh
+

γ

4Hλh
.

Since the update rule for the yv variables in line (9.15) of the FullUpdate procedure does

not consider the intervals I ′u (as stated in (22)), the proof proceeds along the same lines as that of

Claim 5.12. The extra additive term of γ
4Hλh

appears due to line (9.21) in FullUpdate procedure.

The statement and proof of Claim 5.14 remain unchanged. This shows that the two invariant condi-

tions (I5) and (I6) are satisfied. Finally, we state the analogue of Corollary 5.15 which bounds the

parameter M .

Corollary 7.12. For node u and timestep τ , let τu := prev(u, τ). There are at most 5Hλ2Hk
2γ timesteps

in (τu, τ ] ∩Rns(u). So we can set M to 5Hλ2Hk
2γ + 1.

Proof. The proof proceeds along the same lines as that of Corollary 5.15, except that the analogue

of (13) now becomes:

ginh(u, I)− r(u, I) ≥
(

1

2H
− 1

λ− 1

(
1 +

1

4H

))
Γ(u, S)

λh
≥ 2

5H
· γ|S|
λ2H

,

where the last inequality uses Claim 7.1(i). This implies the desired upper bound on |S|.
This shows that the algorithm FullUpdate is well defined. Next we give properties of the

charging forest, and then show that the dual variables in each of the local LPs are near-feasible.

7.5 Properties of the Charging Forest

Fix a vertex v and consider the charging forest Fch(v). Recall the notation from §6.1.1: a node in this

forest is a tuple ai = (wi, qi), and has a corresponding leaf request EarliestLeafReq(wi, qi) = (`i, Ri =

[bi, ei]). We begin with a monotonicity property, which is useful to show that (21) is properly defined

(and the τττ values are “monotone”).

Claim 7.13 (Monotonicity I). Suppose a2 = (w2, q2) is the parent of a1 = (w1, q1) in the forest

Fch(v). Then, e1 ≤ e2.

Proof. By definition of an edge in Fch(v), the request interval R2 for a2 must contain q1. At time q1,

the function FindLeaves(w2, q1) would have returned w1 as one of the vertices in the set S (i.e., w2

would have spawned w1 at time q1), and R2 was also an request below w2 at time q1, so R1 must end

no later than R2 does.

Corollary 7.14 (Monotonicity II). Let ai = (wi, qi) belong to a tree T of Fch(q) rooted at (v, q).

Then qi < ei ≤ q.

Proof. The first fact uses that Ri is active at time qi. The second fact follows by repeated application

of Claim 7.13, and that the earliest leaf request at the root (v, q) corresponds to the request critical

at time q, which ends at q.

The next result shows another key low-congestion property of the charging forest, which we then

use to build lower bounds for any single-server instance.
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Lemma 7.15 (Low Congestion II). Consider u, v such that u ∈ Tv. Let T1, . . . , Tl be distinct charging

trees in the forest Fch(v), where Tj is rooted at (v, qj) and contains a leaf vertex aj = (u, q′j), with the

corresponding EarliestLeafReq(aj) denoted (`j , Rj = [bj , ej ]). Then (a) the intervals {(q′j , qj ]}j∈[l] have

congestion at most H, and (b) the set of intervals {(bj , q′j ]}j∈[l] are mutually disjoint. Therefore, the

set of intervals {(bj , qj ]}j∈[l] have congestion at most H + 1.

Proof. Consider a timestep t, and let St ⊆ [l] be the set of indices j such that t ∈ (q′j , qj ]. For each

j ∈ St, consider the path Pj from aj = (u, q′j) to the root (v, qj) in Tj . For sake of concreteness, let

this path be (u1
j , q

1
j ) = (u, q′j), (u

2
j , q

2
j ), . . . , (u

nj
j , q

nj
j ) = (v, qj). Since t ∈ (q′j , qj ], there is an index i

such that t ∈ (qi−1
j , qij ]—call this index i(j).

Subclaim 7.16. For any two distinct j, j′ ∈ St, ui(j)j 6= u
i(j′)
j′ .

Proof. Suppose not. For sake of brevity, let w denote u
i(j)
j = u

i(j′)
j′ , i denote i(j) and i′ denote i(j′).

Assume wlog that qi
′
j′ < qij . So Tj and Tj′ have vertices (w, qij) and (w′, qi

′
j′) respectively. Now consider

the child of (ui−1
j , qi−1

j ) of (w, qij). The rule for adding edges in Tj states that we look at the highest

time q′ < qij for which there is a vertex (w, q′) in the charging forest, and so qi−1
j = q′. Also q′ ≥ qi

′
j′ .

But then, the intervals (qi−1
j , qij ] and (qi

′−1
j′ , qi

′
j′ ] are disjoint, which is a contradiction because both of

them contain t. ♠
Since all these u

i(j)
j vertices must lie on the path from u to v in T , there are only H of them.

Since they are distinct by the above claim, the number of intervals containing t is at most H, which

proves the first statement.

To prove the second statement, assume w.l.o.g. that {qj}j∈[l] are arranged in increasing order.

It suffices to show that for any j ∈ [l], (bj , q
′
j ] and (bj+1, q

′
j+1] are disjoint. Suppose not. Since

ej+1 ≥ q′j+1 (by Corollary 7.14), we have that Rj+1 contains q′j . Since (u, q′j+1) has no children Tj+1,

the construction of the charging forest means FindLeaves(u, q′j) should have returned the set S = ∅.

Now since v is added to the set Zq′j , all the active requests—in particular Rj+1— below u at time q′j
would be serviced at time q′j due to line (4.11)). This contradicts the fact that Rj+1 is active at time

q′j+1 > q′j .

7.6 Dual Feasibility of SimpleUpdate

Fix a vertex v and the local LP Lv, which has variables yv(u, τ) for u ∈ Tv and timesteps τ . First,

consider only the constraints in Lv added by the SimpleUpdate procedure, i.e., using (21).

Theorem 7.17. For a variable yv(u?, τ?), let S? be the set of timesteps τ such that SimpleUpdate

is called on v, and the (unique) constraint Cτ (of the form (21)) that it adds to Lv(τ) contains the

variable yv(u?, τ?) on the LHS. Then:∑
τ∈S?

z(Cτ ) ≤ O(H4) · cu? . (23)

Proof. In the call to SimpleUpdate, we use the charging tree rooted at a vertex vi? , where vi? lies

between v and u?. Motivated by this, for a node v′ on the path between u? and v, let S?(v′) denote

the subset of timesteps τ for which the corresponding vertex vi? is set to v′. We show:

Subclaim 7.18. For any v′ on the path between u? and v,∑
τ∈S?(v′)

z(Cτ ) ≤ O(H3) · cu? .
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Proof. Consider a timestep τ ∈ S?(v′). Let Tq be the tree in the charging forest Fch(v′) containing

(v′, q) for q = bτc. As described when defining (21), let Lsτ be the leaves of Tq corresponding to level

sτ . Since the variable involving u? appears in this constraint, we have u? ∈ Lsτ . Therefore, each leaf

in Lsτ has cost equal to cu? , By the choice of level, the total cost of this set is at least
cv′
H , so

|Lsτ | ≥
cv′

Hcu?
.

Moreover, the tree Tq was not a singleton so cu? ≤ cv′/λ, and since λ ≥ 10H, we get |Lsτ | ≥ 10.

Recall that we set

z(Cτ ) =
ξτ

|Lsτ | − kv′,τv′ − 2δ(n− nv′)
≤ 2ξτ
|Lsτ |

,

where the inequality uses that all leaves below v (except for the requested leaf) have at most δ servers,

and so kv′,τv′ + 2δ(n− nv′) ≤ 1 + 2nδ � |Lsτ |/2. Combine the above two facts, for any time q,

∑
τ :τ∈S?(v′),bτc=q

z(Cτ ) ≤ 2Hcu?

cv′
·

∑
τ :τ∈S?(v′),bτc=q

ξτ ≤ 24H2 cu? , (24)

where the last inequality follows from Lemma 7.8.

We need to sum over different values of q, so consider Q := {bτc | τ ∈ S?(v′)}. For each value

qj ∈ Q, choose τj to be one representative timestep in S? (in case there are many). For each qj ∈ Q,

there is a vertex of the form (u?j , q
′
j) in the tree in Fch(v′) rooted at (v′, qj). The constraint Cτj involves

yv(u?, (bj , τj ]), where bj is the left end-point of the leaf request EarliestLeafReq(u?, q′j). And τ? belongs

to all of these intervals (bj , τj ]. Write (bj , τj ] as (bj , qj ] ∪ (qj , τj ]. The intervals (qj , τj ] are mutually

disjoint for all j, and the intervals (bj , qj ] have congestion at most H + 1 by Congestion Lemma II

(Lemma 7.15). Therefore the intervals (bj , τj ] have congestion at most H + 2, and so |Q| ≤ H + 2.

Combining this with (24) completes the proof. ♠
Theorem 7.17 follows from the above claim by summing over all v′ on the path from u? to v.

7.7 Dual Feasibility

In this section, we show approximate dual feasibility of the entire solution due to both the SimpleUp-

date and FullUpdate procedures. The proof is very similar to the one for k-Server (in §5.2) except

for two changes: (i) we need to account for the intervals I ′u as in (22), and (ii) we have defined new

sets of constraints in SimpleUpdate procedure, so the result of Theorem 7.17 needs to be combined

with the overall dual feasibility result. Observe that the statements of Claim 5.16 and Claim 5.17

hold without any changes. We now prove the analogue of Lemma 5.19. First, a simple observation.

Claim 7.19. Consider a time q and vertex v such that a critical request at time q lies below v. Then

the total objective value of dual variables raised during FullUpdate procedure at v is at most 4Hcv/λ.

Proof. Let the height of v be h+1. During each call of FullUpdate at v, we raise the dual objective

by γ units (by Claim 7.11), and transfer at least γ
4Hλh

= γλ
4Hcv

server mass to the requested leaf node

`q. Since we transfer at most one unit of server mass to `q, the result follows.

Theorem 7.20 (Dual Feasibility for Time-Windows). For a node v at height h+ 1, consider the dual

variables z(C) for constraints added in Lv during the FullUpdate and the SimpleUpdate procedure.

These dual variables zC are βh-feasible for the dual program Dv, where βh = (1 + 1/H)hO(H4 +

H(lnn+ lnM + ln(k/γ))).
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Proof. We prove the claim by induction on the height of v. For a leaf node, this follows vacuously,

since the primal/dual programs are empty. Suppose the claim is true for all nodes of height at most

h. For a node v at height h+ 1 > 0 with children χv, the variables in Lv are of two types: (i) yv(u, t)

for some timestep t and child u ∈ χv, and (ii) yv(u′, t) for some timestep t and non-child descendant

u′ ∈ Tv \ χv.
We consider variables of the first type. Fix a child u and a timestep τ , and let CF be the set of

constraints in Lv added in FullUpdate subroutine that contain the variable yv(u, τ) in the LHS. We

group CF into three classes of constraints (and draw on the notation in (22)):

(i) The timestep t lies in Iu = (τu, τ ], where u is a non-principal child of v at the timestep τ at

which this constraint is added: call this set of constraints C1(t). The argument here is identical

to that in the proof of Lemma 5.19, and so we get∑
C∈C1

zC ≤ O(lnn+ lnM + ln(k/γ))cu.

(ii) The timestep t lies in the interval I ′u = (bu, τu], where u is a non-principal child of v at timestep

τu. Denote the set of such constraints by C2 = {C1, . . . , Cs}. For sake of concreteness, let the

interval I ′u in Cj be I ′j = (bj , τj ], and let Ij denote the corresponding Iu interval. Observe that

τj corresponds to a ⊥-constraint in Lu, and so always remains in Awake(u). Let qj denote bτjc.
Note that any constraint in C2 must contain one of the variables yv(u, qj + 1), j ∈ [s], and each

of these variables belongs to the corresponding Ij interval. So if X denotes the set {qj : j ∈ [s]},
then ∑

C∈C2

z(C) ≤
∑
t′∈X

∑
C∈C1(t′+1)

z(C) ≤ O(lnn+ lnM + ln(k/γ)) · |X| · cu, (25)

where the last inequality follows from case (i) above. It remains to bound |X|. We know from

the Congestion Lemma I (Lemma 7.3) that the intervals (bj , qj ], qj ∈ X, have congestion at most

H. Since the intervals (qj , qj + 1], qj ∈ X, are mutually disjoint, it follows that the intervals

(bj , qj + 1] have congestion at most H + 1. Since all of them contain the timestep t, it follows

that |X| ≤ H + 1. This shows that∑
C∈C2

z(C) ≤ O(H(lnn+ lnM + ln(k/γ)))cu.

(iii) The timestep t lies in the interval I ′u = (bu, τ ], where u′ is the principal child of u at timestep

τ : call such constraints C3. For a time q, let C3(q) be the subset of constraints in C3 which were

added at timesteps τ for which bτc = q. Claim 7.19 shows that∑
C∈C3(q)

z(C) ≤ 4H
cv
λ

= 4H cu.

Arguing as in case (ii) above, and again using Congestion Lemma I (Lemma 7.3), we see that

there are at most O(H) distinct time q such that the set C3(q) is non-empty. Therefore,∑
C∈CF

z(C) ≤ O(H2)cu.

Let C be the set of all constraints containing yv(u, t). Combining the observations above, and
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using Theorem 7.17 for the constraints in C added due to the SimpleUpdate procedure, we see that∑
C∈C

z(C) ≤ β0 cu.

It remains to consider the variables yv(u′, τ) with u′ ∈ Tu and u ∈ χv. The argument here follows

from induction hypothesis, and is identical to the one in the proof of Lemma 5.19.

7.8 The Final Analysis

We can now put the pieces together: this part is also very similar to §5, except for the cost of the

piggybacking trees. Recall that λ ≥ 10H.

1. Theorem 7.20 shows that the dual solution for the global LP (which is the same as the Lr) is

O(H4 + H logMnk/γ)-feasible. In each iteration of the while loop in Algorithm 4, we raise the

dual objective corresponding to this LP by γ units, as Claim 7.11 shows.

2. The total service cost in each call to the FullUpdate procedure is O(γ)—again by Claim 7.11,

the amount of server mass transferred during FullUpdate procedure at vertex v at height h+1

is at most γ
λh

, and the cost of moving a unit of server mass below Tv is O(λh). Therefore, the

cost to service the critical request in each iteration is O(γH). Therefore, the service cost for

each critical request is O(H) times the dual objective value.

3. Now we consider the service cost for piggybacked requests. The cost of all the trees is dominated

by the cost of tree for vlogcost(q), i.e., at most

O(H2cvlogcost(q)
) = O(H2 λlogcost(q)) ≤ O(H2λ cost(q)).

Since cost(q) is the least cost to move the required amount of server to the request location, the

cost of the trees is at most O(H2λ) times the cost incurred in the previous step.

Hence the competitiveness is

O(H4 +H logMnk/γ) ·O(H) ·O(H2λ).

It follows that our fractional algorithm for the k-ServerTW problem is O(H4λ(H3 + logMnk/γ))-

competitive. This proves Theorem 1.2.

8 Closing Remarks

Our work suggests several interesting directions for future research. Can our LP extend to variants

and generalizations of k-Server in the literature? One natural candidate is the hard version of the

k-taxi problem. Another interesting direction is to exploit the fact that our LP easily extends to

time-windows. The special case of k-ServerTW where k = 1 is known as online service with delay.

While poly-logarithmic competitive ratios are known for this problem (and also follow from our current

work), no super-constant lower bound on its competitive ratio bound is known. On the other hand, a

sub-logarithmic competitive ratio is not known even for simple metrics like the line. Can our LP (or

a variant) bridge this gap?

More immediate technical questions concern the k-ServerTW problem itself. For instance, can

the competitive ratio of the k-ServerTW problem be improved from poly log(n,∆) to poly log(k)?
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Another direction is to extend k-ServerTW to general delay penalties. Often, techniques for time-

windows extend to general delay functions by reducing the latter to a prize-collecting version of the

time-windows problem. Exploring this direction for k-ServerTW would be a useful extension of the

results presented in this paper.
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A Relating M to the Min-cost Flow Formulation for k-Server

We show that the constraints (2) of the LP relaxation M for k-Server are implied by the standard

min-cost flow formulation for k-Server on HSTs.

We first describe the min-cost flow formulation in detail. Consider an instance of the k-Server

problem consisting of an HST T , and a sequence of N request times. Recall that the set of timesteps

T varies from 1 to N in steps of η. We construct a time-expanded graph G with vertices V (G) :=

{vt | v ∈ V (T ), t ∈ T } ∪ {sG, tG}. The edges are of three types (there are no edge-capacities):

(i) cost-0 edges {(sG, v1), (vN , tG) | v ∈ V (T )} connecting the source and sink to the first and last

copies of each node,

(ii) cost-0 edges {(vt, vt+1) | v ∈ V (T ), t ∈ T } between consecutive copies of the same vertex, and

(iii) edges {(vt, p(v)t) | v ∈ V (T ), t ∈ T } of cost cv between each node and its parent, and {(vt, ut) |
v ∈ V (T ), u ∈ χv, t ∈ T } of cost zero between a node and its children. (This captures that

moving servers up the tree incurs cost, but moving down the tree can be done free of charge.)

The source sG has k units of supply, and sink tG has k units of demand (or equivalently, a supply of

−k). If the request for time q is at leaf `, we require that at least one unit of flow passes through

`q. To model this, we assign a supply of −1 to `q and +1 to `q+1. This is consistent with the proof

of Claim 2.1 where we assumed that after servicing ` at time q, the server stays at this leaf till time

q + 1.
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The integrality of the min-cost flow polytope implies that an optimal solution to this transporta-

tion problem captures the optimal k-server solution. Moreover, the max-flow min-cut theorem says

that if x is a solution to this transportation problem, then for all subsets S ⊆ V (G),

x(∂+(S)) ≥ supply(S). (26)

We now consider special cases of these constraints. Consider a tuple (A,τττ) corresponding to the

LP constraint (2): recall that A is a subset of leaves, and τττ assigns a timestep τu to each u ∈ TA,

with these timesteps satisfying the “monotonicity” constraints stated before (2). We now define a set

SA,τττ as follows: for each node v ∈ TA, we add the nodes vt, t > τv to SA,τττ . Finally, add the sink tG
to SA,τττ as well. Since each leaf in A contributes +1 to the supply of SA,τττ , and tG contributes −k, we

have supply(SA,τττ ) = |A| − k. Moreover,

x(∂+(SA,τττ )) =
∑

v 6=r:v∈TA
x(v, (qv, qp(v)]).

Thus, constraint (26) for the set SA,τττ is identical to the covering constraint ϕA,τττ given by (2).
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