
Quasi-polynomial time approximation of output probabilities of
geometrically-local, shallow quantum circuits.

Nolan J. Coble*†, Matthew Coudron‡

June 8, 2021

Abstract

We present a classical algorithm that, for any 3D geometrically-local, polylogarithmic-depth
quantum circuit C acting on n qubits, and any bit string x ∈ {0, 1}n, can compute the quan-
tity | 〈x|C |0⊗n〉 |2 to within any inverse-polynomial additive error in quasi-polynomial time.
It is known that it is #P-hard to compute this same quantity to within 2−n2

additive error
[Mov20, KMM21]. The previous best known algorithm for this problem used O(2n1/3

poly(1/ε))
time to compute probabilities to within additive error ε [BGM20]. Notably, the [BGM20] paper
included an elegant polynomial time algorithm for this estimation task restricted to 2D circuits,
which makes a novel use of 1D Matrix Product States (MPS) carefully tailored to the 2D geom-
etry of the circuit in question. Surprisingly, it is not clear that it is possible to extend this use
of MPS to address the case of 3D circuits in polynomial time. This raises a natural question as
to whether the computational complexity of the 3D problem might be drastically higher than
that of the 2D problem. In this work we address this question by exhibiting a quasi-polynomial
time algorithm for the 3D case. In order to surpass the technical barriers encountered by pre-
viously known techniques we are forced to pursue a novel approach: instead of using MPS
techniques, we construct a recursive sub-division of the given 3D circuit using carefully de-
signed block-encodings. To our knowledge this is the first use of the block-encoding technique
in a purely classical algorithm.

Our algorithm has a Divide-and-Conquer structure, demonstrating how to approximate the
desired quantity via several instantiations of the same problem type, each involving 3D-local
circuits on about half the number of qubits as the original. This division step is then applied
recursively, expressing the original quantity as a weighted combination of smaller and smaller
3D-local quantum circuits. A central technical challenge is to control correlations arising from
entanglement that may exist between the different circuit “pieces” produced this way. We
believe that the division step, which makes use of block-encodings [GSLW19, LC16, AG19], to-
gether with an Inclusion-Exclusion argument to reduce error in each recursive approximation,
may be of independent interest.

*Authors are listed alphabetically.
†ncoble@terpmail.umd.edu
‡mcoudron@umd.edu - Corresponding Author

1

ar
X

iv
:2

01
2.

05
46

0v
2

 [
qu

an
t-

ph
]

 6
 J

un
 2

02
1

1 Introduction

Many schemes for obtaining a quantum computational advantage with near-term quantum hard-
ware are motivated by mathematical results proving the computational hardness of sampling from
near-term quantum circuits. In this work we consider quantum circuits which are geometrically
local and have polylogarithmic circuit-depth. It is known to be #P-hard to compute output prob-
abilities of n-qubit, geometrically-local, constant-depth quantum circuits to within 2−n2

additive
error [Mov20], a result which builds on an extensive line of research focusing on the hardness
of sampling from quantum circuits [AA11, BJS11, BMS17, NSC+17, BFNV19]. It has even been
shown, under several computational assumptions, that there is no classical polynomial time algo-
rithm which, given a geometrically-local, constant-depth quantum circuit, K, can produce samples
whose distribution lies within a constant, in the `1 distance, of the output distribution of K in the
computational basis [BVHS+18].

On the other hand, a series of works on the classical complexity of sampling from near-
term quantum circuits, and related tasks, highlights the subtle nature of identifying an actual
quantum advantage based on these tasks [DHKLP20, HZN+20, NPD+20]. These results frame
the significance of the algorithm presented as Theorem 5 in [BGM20], which estimates output
probabilites of 2D-local constant depth circuits to inverse polynomial additive error in poly-
nomial time. In fact, the original algorithm in [BGM20], actually estimates quantities of the
form 〈0⊗n|C† (⊗n

i=1Pi
)

C |0⊗n〉, where each Pi ∈ {X, Y, Z, I} is a single-qubit Pauli observable
operator. However, it is straightforward to convert their algorithm to compute the quantity
〈0⊗n|C† (⊗n

i=1 |xi〉 〈xi|
)

C |0⊗n〉 = | 〈x|C |0⊗n〉 |2, x ∈ {0, 1}n, instead. Theorem 5 of [BGM20] con-
stitutes a pertinent observation. While it is hard to sample from constant-depth quantum circuits,
it is still unresolved whether it is hard to estimate any property of such a circuit which could have
been computed using a polynomial number of samples from the output of the quantum circuit
itself. In particular: A polynomial number of samples from a 2D-local, constant-depth quantum
circuit only allows one to estimate output probabilites of that circuit to inverse polynomial addi-
tive error. But, it is shown in Theorem 5 of [BGM20] that this same task can be done in classical
polynomial time! One might ask: Is there a well-defined Decision problem which can be solved
using only a polynomial number of samples from such a quantum circuit, together with classical
post-processing, and yet cannot also be efficiently solved using classical computing alone? This is
unknown.

We note, at this point, some basic facts about the task of computing the quantity
| 〈0⊗n|C |0⊗n〉 |2 which explain why we can focus on this task WLOG, and may motivate our in-
terest in it:

• If there is an algorithm to estimate the quantity | 〈0⊗n|C |0⊗n〉 |2, for any 3D-local depth-d
quantum circuit C, then that algorithm can be used to estimate | 〈x|C |0⊗n〉 |2 for any x ∈
{0, 1}n. The reason is that | 〈x|C |0⊗n〉 |2 = | 〈0⊗n|G |0⊗n〉 |2 where G is taken to be the 3D-
local circuit G ≡ C

(
⊗n

i=1Xxi
)
. Here X represents the single qubit Pauli operator σX. Note

that G is still a depth-O(d) quantum circuit.

• Any such algorithm can also estimate | 〈0⊗n|CZnC† |0⊗n〉 |2, which is the magnitude of the
expected bias of the Parity of the output bits of C, when measured in the computational
basis. This is true by virtue of the fact that CZnC† is, itself, a 3D local, depth-O(d) circuit. So,
this type of computational problem allows us to study the power of depth-d geometrically-
local, quantum circuits combined with certain limited types of classical post-processing, like
the Parity function.

2

• The algorithm we present in this work can easily be modified to approximate marginal prob-
abilities (e.g., the probability that x1 = 1 for x ∈ {0, 1}n sampled from the given circuit, etc).
Consequently, it is straightforward to use this algorithm to search for all x ∈ {0, 1}n which
have probability at least δ in the output distribution of a given depth-d geometrically-local
circuit C. That is, searching for all of the “δ-heavy” strings of C. When δ = 1/poly(n) there
can be at most poly(n) such strings and our algorithm can find them all in quasi-polynomial
time.

The algorithm for 2D circuits presented in Theorem 5 of [BGM20] makes a novel use of 1D
Matrix Product States, carefully tailored to the 2D geometry of the circuit in question. However,
the authors of [BGM20] point out that it is not clear that it is possible to extend this use of MPS to
address the case of 3D circuits in polynomial time. Instead they provide a sub-exponential time
algorithm for the 3D case, which has time complexity O(2n1/3

poly(1/ε)) for computing the desired
quantity to within additive error ε. In this work we introduce a new set of techniques culminating
in a divide-and-conquer algorithm which solves the 3D case in quasi-polynomial time.

Our algorithm has a divide-and-conquer structure with the goal being to divide the circuit
C into pieces, and reduce the original problem to a small number of new 3D-circuit problems
involving circuits on only a fraction of the number of qubits as the original. This division step re-
quires the ability to construct Schmidt vectors of the state C |0⊗n〉, across a given cut, via a depth-d
geometrically-local quantum circuit, so that the new subproblems can be expressed as smaller in-
stantiations of the original problem type. We accomplish this through the use of block-encodings,
a technique designed for quantum algorithms [GSLW19, LC16, AG19, LMR14, KLL+17], but used
here as a subroutine of a classical simulation algorithm instead. However, to date, we are only
able to construct, as a block-encoding circuit, the leading Schmidt vector across certain “heavy”
cuts. Due to this restriction we are forced to use a novel division step in our Divide-and-Conquer
approach. Instead of dividing about a single cut and constructing many of its Schmidt vectors
as depth-d geometrically-local block-encodings, we must divide across many cuts and construct
only their leading Schmidt vectors. Interestingly, this process can still lead to low approximation
error via an Inclusion-Exclusion style argument, as shown in Lemma 18.

These techniques culminate in a worst-case quasi-polynomial time algorithm for 3D circuits,
which is our main result:

Theorem 1. There exists a classical algorithm which, for any 3D geometrically-local, depth-d quantum
circuit C on n qubits, can compute the scalar quantity | 〈0⊗n|C |0⊗n〉 |2 to within 1/nlog(n) additive error
in time

T(n) = 2d3polylog(n) (1)

See Algorithm 1 in Section 5 for a precise definition of this classical algorithm.

Note that our Theorem statement gives an inverse quasi-polynomial additive error approxima-
tion. This is, therefore, asymptotically better than an inverse polynomial additive approximation
for any polynomial. There is a more explicit trade-off between runtime and approximation error
given in Theorem 28, and in fact, Theorem 1 follows from Theorem 28 with δ = 1/nlog(n), but we
use the above statement here for simplicity. Note also, when the depth, d, is polylogarithmic our
algorithm runs in quasi-polynomial time.

2 Dividing the Cube: Some Notation

Given a 3D-local, depth-d circuit C, we wish to estimate the quantity | 〈0⊗n|C |0⊗n〉 |2. To begin
our divide-and-conquer approach we will divide the circuit C in half via a cut through the center

3

as shown in Figure 1. The width of the cut is dependent on d, and we will discuss how to select
this width below. To begin with, we make the width large enough to have the non-empty sets B,
M, and F defined below.

Figure 1: Cutting the Cube: (left) 3D cube of qubits. (center) Choose a location to cut the qubits.
The qubits to the left and right of the cut are denoted by L and R, respectively. (right) Within the
cut there are three regions: a center region M and regions to the left and right of M, denoted by B
and F, respectively.

Definition 2 (M, B, F, R, and L (see Figure 1)). Let M be the set of all qubits in the “Middle of the
cut” (the middle part of the cut which is not in the lightcone of qubits from outside the cut). Let
B be the set of all qubits within the cut which are to the left of M. Let F be the set of all qubits
within the cut which are to the right of M. We will choose the width of M to be O(d) such that the
lightcones of B and F are disjoint. We will choose the widths of B and F to be O(d) such that the
lightcone of M is contained in B∪M∪ F. For concreteness we set the width of each of B, M, F to be
10d. Since C is geometrically-local, this is sufficiently large width to satisfy the above conditions
on lightcones.

Let L be all qubits outside the cut which are to the left of the cut (that is, to the left of B). The
set L is colored blue. Let R be the set of all qubits outside to the right of the cut (that is, to the right
of F). The set R is colored red.

We will now define a 2D geometrically local, depth-d circuit CB∪M∪F which can be thought of
as the sub-circuit of C which lies within the light-cone of M. Intuitively this circuit captures all of
the local information that must be accounted for in the division step across this particular slice in
our divide-and-conquer algorithm.

Definition 3 (CB∪M∪F). Now, let us begin with the all zeroes state on all the qubits |0〉L∪B∪M∪F∪R =
|0ALL〉, and apply the minimum number of gates from the circuit C such that every gate on the
qubits within M has been applied. We will call this unitary CB∪M∪F. Note that this unitary does
not act on any qubits outside of B ∪ M ∪ F. This is because the lightcone of M is contained in
B ∪ M ∪ F by Definition 2. Note that CB∪M∪F can be thought of as an approximately 2D (not

4

3D) geometrically-local, depth-d circuit, since the third dimension of the circuit is O(d) which for
d = polylog(n) grows asymptotically slower than O(n1/3).

We define CL∪R to be the unitary composed of the remainder of the gates of C not yet applied
in CB∪M∪F, so that C = CL∪R ◦ CB∪M∪F. We define CL (resp. CR) to be the unitaries composed of
the remainder of the gates of C not yet applied in CB∪M∪F and which lie to the left (resp. right) of
the M. Note that CL ◦ CR = CL∪R since none of the circuits CL, CR, CL∪R act non-trivially on M.
See Figure 2 for an illustration of these unitaries with a 1D geometrically-local circuit, and Figure
3 for an illustration in a 2D circuit.

Figure 2: Block depiction of the unitaries defined in Definition 3 and Definition 5 for the case of a
1D geometrically-local constant-depth circuit C. Here the vertical dimension represents the depth
of the circuit, so the rectangle has the same dimensions as the circuit diagram would. CB∪M∪F is
defined to be the unitary produced by the gates in the lightcone of M, which are colored magenta
in this diagram. The unitaries Cwrap, CL−Wrap, CR−Wrap, formally defined in Definition 5, are also
depicted here. Cwrap is the unitary consisting of all the orange gates in the diagram, and CL−Wrap
(resp. CR−Wrap) is the unitary consisting of all the orange gates acting on the left (resp. right) of
M. Furthermore, C′L (resp. C′R) denote the unitaries consisting of all the blue (resp. red) gates to
the left (resp. right) of M in the diagram. We also illustrate the 2D case in Figure 3 below.

The sub-normalized quantum state produced by CB∪M∪F, defined below, is the state whose
Schmidt decomposition we consider in our division step.

Definition 4. Let |ψ〉B∪F ≡ 〈0|M CB∪M∪F |0〉B∪M∪F.

Note that, 〈0|ALL CL∪R |0〉L∪R ⊗ |ψ〉B∪F = 〈0|ALL C |0〉ALL.
(Throughout this document, the notation |0ALL〉 will refer to the zero state on all unmeasured

qubits for a given state. It’s meaning will be clear from context.)

Definition 5 (CWrap). Define a new unitary CWrap which consists of all the gates from C which are
in the reverse light-cone of B∪M∪ F, but not in CB∪M∪F itself. That is, let CL−Wrap (resp. CR−Wrap)
be the unitary consisting of all the of the gates in C which are in the reverse light-cone of B (resp.
F), but not in CB∪M∪F itself, and let CWrap ≡ CL−Wrap ◦ CR−Wrap. Therefore,

C†
Wrap ◦ C = C′L ◦ CB∪M∪F ◦ C′R (2)

Where C′L ≡ C†
L−Wrap ◦ CL (see Definition 3 for the definition of CL) is a unitary acting only or

L (the remaining, untouched gates of C within L), and C′R ≡ C†
R−Wrap ◦ CR (see Definition 3 for

5

the definition of CR) is a unitary acting only on R (the remaining, untouched gates of C within R).
Since C is depth-d it is clear that every qubit in the non-trivial support of CWrap lies within some
O(d) distance of M. Let RWrap (resp. LWrap) be the subset of qubits in R (resp. L) that lie in the non-
trivial support of CWrap. In other words, RWrap (resp. LWrap) is the non-trivial support of CR−Wrap
(resp. CL−Wrap). See Figure 2 for an illustration of these unitaries with a 1D geometrically-local
circuit, and Figure 3 for an illustration in a 2D circuit.

Figure 3: Geometric depiction of the unitaries defined in Definition 3 and Definition 5 for the
case of a 2D grid of qubits. Here the vertical dimension represents the depth of the circuit, so
the rectangular prism has the same dimensions as the circuit diagram would. We do not have an
analogous figure for 3D circuits, which are the main focus of this work, because it would require
4 dimensions to illustrate. However, we believe the reader will gain sufficient intuition for the
definitions from the 1D and 2D diagrams.

3 Divide and Conquer: Schmidt Vectors and Block Encodings

In this section we will show how to construct a geometrically-local, shallow quantum circuit for
the largest Schmidt vector of the unnormalized state 〈0M|C |0ALL〉 across the cut M, in the case
that the largest Schmidt coefficient is very large. Let us begin, however, by outlining the intu-
ition behind our divide-and-conquer approach, which explains why we are interested in approx-
imating Schmidt vectors via shallow quantum circuits in the first place. Consider expanding the
quantity 〈0ALL|C |0ALL〉 = 〈0|ALL CL∪R |0〉L∪R ⊗ |ψ〉B∪F as a sum over the Schmidt decomposi-
tion of |ψ〉B∪F across the cut M. Suppose, that |ψ〉B∪F has almost all of its weight on the top
polynomially many Schmidt vectors (In Section 4 we will show that, in fact, we can restrict this
part of the analysis WLOG to cases where |ψ〉B∪F has a large fraction of its weight on λ1). Then

|ψ〉B∪F ≈ ∑
p(n)
i=1 λi |vi〉B ⊗ |wi〉F, and we have:

〈0|ALL CL∪R |0〉L∪R ⊗ |ψ〉B∪F ≈
p(n)

∑
i=1

λi 〈0|ALL CL∪R |0〉L∪R ⊗ |vi〉B ⊗ |wi〉F (3)

=
p(n)

∑
i=1

λi 〈0|L∪B CL |0〉L ⊗ |vi〉B · 〈0|F∪R CR |0〉R ⊗ |wi〉F , (4)

6

where ALL ≡ L ∪ B ∪ F ∪ R.
Suppose we could produce approximations for the Schmidt vectors |vi〉B and |wi〉F via 2D

geometrically-local, shallow quantum circuits. Then, the quantity in Equation 4 would be a sum
of polynomially many scalar quantities, each of which is the product of output probabilities of
two new 3D geometrically-local circuit problems (CL and CR). Furthermore, these new 3D cir-
cuit problems involve about half the number of qubits as the original problem we were trying to
solve. This leads to a divide-and-conquer recursion which can yield a more efficient runtime for
the original problem. The base case in this divide-and-conquer algorithm consists of estimating
output probabilities of 3D-local, depth-d quantum circuits which have small width (width at most
w = polylog(n)) in one of their dimensions. This base case can be solved efficiently using the
algorithm from Theorem 5 of [BGM20], as discussed in Remark 6 below.

Note that this divide-and-conquer approach only works if we can produce explicit approxima-
tions for the Schmidt vectors |vi〉B and |wi〉F via 2D geometrically-local, shallow quantum circuits.
In the case when λ1 is sufficiently large, it turns out that we can at least produce the top Schmidt
vectors |v1〉B and |w1〉F in this way. (Note, we will also need to compute λ1 efficiently, and this
can also be done using Theorem 5 of [BGM20], as described in Definition 25 and Remark 6.) How-
ever, we do not know how to construct 2D geometrically-local, shallow quantum circuits that
approximate |vi〉B and |wi〉F for i > 1, and so we cannot pursue the divide-and-conquer approach
described in Equation 4 verbatim. Nonetheless, we will see in Section 4 that just approximating
the top Schmidt vectors |v1〉B and |w1〉F is already sufficient to produce a (more involved) divide-
and-conquer algorithm for the whole estimation problem. The complete algorithm is explicitly
written out in Section 5 (see Algorithms 1 and 2). The key additional insight is to combine the
intuition from Equation 4 above, with an additional expansion trick, expressed in Lemma 18.

Remark 6. Theorem 5 of [BGM20] shows that the output probabilities of 2D constant-depth cir-
cuits can be computed to inverse polynomial additive error in polynomial time. Technically, this
does not exactly cover the base case of our divide-and-conquer approach because our base case
will consist of circuits which are 3D, but have a small width in the third dimension. One might
say that the base case circuits have a 2D structure with small “thickness” in the third dimension.
Fortunately, this extended case is also covered by additional analysis from the [BGM20] paper,
in which the authors show, on pages 25 and 26 (of the arXiv version), that a slightly modified
version of their algorithm can, in fact, compute output probabilities of 3D-local, depth-d circuits
to additive error ε in time nε−22O(d2·w), where w is the width of the third dimension of the cir-
cuit. For convenience, throughout the remainder of this paper every reference to Theorem 5 of
[BGM20] will refer instead to this modified algorithm which can handle these “small-width” 3D-
local, depth-d circuits. Additionally, when we refer to 2D-local circuits we are including, within
that definition, 3D-local circuits where the width in the third dimension is w = polylog(n). The
reason that this is a reasonable use of terminology in the context of this paper is that Theorem 5 of
[BGM20], and the subsequent discussion, can handle these small-width 3D-local circuits in time
exponential in the size of w (which, for w = polylog(n), is quasi-polynomial).

Our approach for explicitly constructing |w1〉F is based on a tool called a “block-encoding”,
which aims to generate a unitary whose top left corner contains the Hermitian matrix ρF ≡
trB(|ψ〉 〈ψ|B∪F), or the integer powers ρK

F for K = polylog(n). In fact, under an assumption that
λ1 is sufficiently large, 1

λK
1

ρK
F is already very close to a projector onto |w1〉F (see Lemma 15 for the

explicit scaling).

Lemma 7 (Lemma 45 of [GSLW19]). The following is a 2D-local (see Remark 6), depth-d circuit which
gives a block encoding for ρF ≡ trB(|ψ〉 〈ψ|B∪F):

7

(C†
B∪M∪F ⊗ IF′)(IB∪M ⊗ SWAPFF′)(CB∪M∪F ⊗ IF′)

Proof. From Lemma 45 of [GSLW19] it follows that the circuit (C†
B∪M∪F ⊗ IF′)(IB∪M ⊗

SWAPFF′)(CB∪M∪F ⊗ IF′) is a block-encoding of ρF. Here F′ is a fresh register which is identi-
cal in size to F. Note that SWAP is not geometrically local a priori, but if we interleave the qubits
of F and F′ in the geometrically appropriate way, which we are free to do, then the SWAPFF′ can
be implemented in a geometrically local, depth-1 manner. Thus the entire block-encoding is still
given by a depth-d 2D-local circuit.

One additional subtlety: We are neglecting to measure the M register in the |0〉 basis here,
but this is still a block-encoding for ρF nonetheless. The reason is that that measurement can be
absorbed into the definition of block-encoding.

Following Lemma 53 of [GSLW19], we can now create a block encoding for the Kth power of
ρF by creating K distinct F registers F1,, FK (interwoven in the geometrically appropriate way
just as in the proof of Lemma 7), and multiplying K different block encodings for ρF, each using a
different one of the registers Fi, as so:

K

∏
i=1

(C†
B∪M∪F ⊗ IF1,...,FK)(IB∪M ⊗ SWAPFFi)(CB∪M∪F ⊗ IF1,...,FK) (5)

We therefore have the following Lemma.

Lemma 8 (Lemma 53 of [GSLW19]). For any constant integer K > 0, the following is a 2D-local (see
Remark 6) quantum circuit which gives a block encoding for ρK

F , and has depth O(dK2):

K

∏
i=1

(C†
B∪M∪F ⊗ IF1,...,FK)(IB∪M ⊗ SWAPFFi)(CB∪M∪F ⊗ IF1,...,FK) (6)

Proof. The fact that Equation 6 gives a block encoding of ρK
F follows by repeated application of

Lemma 53 of [GSLW19]. The circuit in Equation 6, disregarding geometric locality, has depth
O(dK) because it is a composition of 3K circuits each having depth O(d). The circuit can be made
2D-local if we choose, WLOG, for the Fj registers to be interleaved with the other qubits in a
manner that matches the 2D geometry. Since there are now K different Fj registers, this can increase
the depth of our circuit by another factor of K (adding nearest-neighbor SWAP gates to ensure that
every gate is exactly 2D-local at each step). So the depth of the geometrically-local version of the
circuit is O(dK2).

For brevity we do not include a more explicit description of this process for interleaving regis-
ters in order to make the circuit geometrically local because we believe that the reader will under-
stand this process from the above description. We note that, in any case, the scaling of the depth
of the circuit in Equation 6 could be any polynomial in K and our final result in Theorem 1 would
still hold.

Stated concretely, the fact that the circuit in Equation (6) is a block encoding for ρK
F simply

means that, if we define |0ancilla〉 = |0F1,...Fk ,M,B〉, then:

ρK
F = 〈0ancilla|

K

∏
i=1

(C†
B∪M∪F ⊗ IF1,...,FK)(IB∪M ⊗ SWAPFFi)(CB∪M∪F ⊗ IF1,...,FK) |0ancilla〉 . (7)

8

4 Divide and Conquer: Splitting Over Heavy Slices

In this section we will prove a set of results which will allow us to precisely define and analyze the
division step in our divide-and-conquer algorithm. The process begins by identifying slices of the
depth-d circuit C which are appropriate division points. Those are the slices which have “heavy
weight” as defined below.

Consider a set of O(d)-width 2D slices K = {Ki} of the qubits of C, where each slice Ki is par-
allel to the cut B ∪M ∪ F shown in Figure 1, and is made up of three analogous sections Bi, Mi, Fi
(see Figure 4). Let the the slices in K be evenly spaced at an O(d) distance apart, where this value
is chosen to be large enough that the light cones of Ki and Kj are disjoint when i 6= j. For con-
creteness we will say that the distance between slices Ki is equal to 10d. We will also set the width
of each of the sections Bi, Mi, Fi to be 10d, just as discussed in Definition 2. This ensures that the
properties stipulated by Definition 2 are satisfied by Bi, Mi, Fi.

Figure 4: Set of slices {Ki}

Definition 9. Let I[Mi = 0] be the indicator random variable for the event that all of the qubits in
Mi collapse to 0 when measured in the computational basis. Here joint probabilities are defined
according the probability distribution ptotal produced by measuring C |0⊗n〉 in the computational
basis. Let pMi=0 := Eptotal [I[Mi = 0]] be the probability that all of the bits in Ki evaluate to 0
according to the distribution ptotal .

Lemma 10. The I[Mi = 0] are independent random variables. Therefore,

ptotal(Mi = 0 ∀i) = ∏
i

ptotal(Mi = 0).

Proof. The I[Mi = 0] are independent random variables because the cuts Ki are light-cone sepa-
rated by definition. The desired results follows.

Note that the variables I[Mi = 0] may well be conditionally dependent when conditioned on
the outcomes of measuring the qubits in between the Ki slices. Indeed, that’s what makes the

9

global problem non-trivial in the first place. But, when measuring the Ki slices alone we see that
the I[Mi = 0] are independent as stated in Lemma 10.

Lemma 11. If | 〈0⊗n|C |0⊗n〉 | > |1/q(n)|, then, for any 0 ≤ h ≤ 1, h|K| of the slices Ki in K have the
property that:

ptotal(Mi = 0) ≥ (|1/q(n)|)
1

(1−h)|K| (8)

We will let Kheavy be the subset of K consisting of those Ki satisfying Equation (8).

Proof. The proof of Lemma 11 is given in Appendix A.

Definition 12. We define any particular slice Ki as Ki = Bi ∪ Mi ∪ Fi., where Bi, Mi, Fi are the
analogous regions to B, M, F (respectively) in Figure 1. These slices are depicted in Figure 4. Let
|ψ〉Bi∪Fi

be analogous to |ψ〉B∪F ≡ 〈0|M CB∪M∪F |0〉B∪M∪F. Let Li and Ri be sets of qubits analogous
to the sets L and R. We define the unitaries CBi∪Mi∪Fi , Cwrapi , C′Li

≡ C†
L−Wrapi

◦ CLi , and C′Ri
≡

C†
R−Wrapi

◦ CRi exactly as given in Definition 5 for the case of a single cut.

Lemma 13. For any slice Ki ∈ Kheavy satisfying:

ptotal(Mi = 0) ≥ 1− e(n), (9)

the top Schmidt coefficient of |ψ〉Bi∪Fi
satisfies λi

1 ≥ 1−O(e(n)). (Where the Schmidt decomposition
is taken across the partition Bi, Fi.)

Proof. The proof of Lemma 13 is given in Appendix A.

The proof of Lemma 13 (See Appendix A) suggests a way to perform a division step, dividing
the original computational problem into the product of two new problems, but at the cost of an
additive error that scales like Θ(e(n)). But, note that, if we want, say, 1/nd additive error for d ≥ 2,
then this additive error term is way too large (in some cases e(n) scales like 1/ log(n)). This means
that, a priori, we cannot even afford to make use of Lemma 13 one single time! However, Lemma
20 below shows how we can use this type of division step to divide the circuit at ∆ different,
light-cone separated cuts, Ki, simultaneously, and thereby achieve additive error that scales like
e(n)∆.

Definition 14. For any Ki define the following two operators inspired by the block-encoding ap-
proach in Section 3:

PK
Fi
≡ 1

λK
1

〈
0Bi ,Mi ,F1

i ,...Fk
i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IF1
i ,...,FK

i
)(IBi∪Mi ⊗ SWAPFi F

j
i
)(CBi∪Mi∪Fi ⊗ IF1

i ,...,FK
i
)
∣∣∣0Bi ,Mi ,F1

i ,...Fk
i

〉
and (10)

PK
Bi
≡ 1

λK
1

〈
0Fi ,Mi ,B1

i ,...BK
i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IB1
i ,...,BK

i
)(IFi∪Mi ⊗ SWAPBi B

j
i
)(CBi∪Mi∪Fi ⊗ IB1

i ,...,BK
i
)
∣∣∣0Fi ,Mi ,B1

i ,...BK
i

〉
Here the first equation gives a linear operator on Fi, and the second equation gives a linear

operator on Bi. The registers Fj
i (resp. Bj

i) are dummy registers that are used to create K block
encodings of the density matrix of the Fi (resp. Bi) register of the state CBi∪Mi∪Fi

∣∣0Fi ,Mi ,Bi
〉
. These

K block encodings are then composed (multiplied) with each other in such a manner that they
produce the block encoding of the Kth power of the density matrix, as described in Section 3.

10

Lemma 15. For any Ki ∈ Kheavy,

‖PK
Fi
− |w1〉 〈w1|Fi

‖1 ≤ g(n) (11)

and

‖PK
Bi
− |v1〉 〈v1|Bi

‖1 ≤ g(n) (12)

where g(n) ≡
(

1−λi
1

λi
1

)K
, and |w1〉 〈w1|Fi

, |v1〉 〈v1|Bi
are the projectors onto the top Schmidt vectors of

|ψ〉Bi∪Fi
in Fi and Bi respectively.

Proof. The proof of Lemma 15 is given in Appendix A.

Definition 16. Define ΠK
Fi
≡ CWrapi P

K
Fi

C†
Wrapi

.

Note that the operator ΠK
Fi

is in tensor product with |0Mi〉 (it acts as the identity on the Mi

register since CWrapi and PK
Fi

act trivially on that register).

Definition 17. Let σ ∈ P[∆] \∅ where [∆] = {1, . . . , ∆}. Define the unormalized states

|Ψσ〉 = ⊗j∈σΠK
Fj
⊗i∈[∆] 〈0Mi |C |0ALL〉

And,
|Ψ∅〉 = ⊗i∈[∆] 〈0Mi |C |0ALL〉

Lemma 18. Consider a set Kheavy of slices such that, for every Ki ∈ Kheavy, |ψ〉Bi∪Fi
satisfies λi

1 ≥ 1− e(n),
and such that for any Ki, Kj ∈ Kheavy, the operators ΠK

Fi
and ΠK

Fj
are light-cone separated whenever i 6= j.

Then, for any set of ∆ slices, {Ki}i∈[∆] ⊆ Kheavy, we have that:

∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ| |Ψσ〉 〈Ψσ|
∥∥∥∥∥ =

∥∥∥∥∥|Ψ∅〉 〈Ψ∅| − ∑
σ∈P([∆])\∅

(−1)|σ|+1 |Ψσ〉 〈Ψσ|
∥∥∥∥∥ ≤ (2e(n) + 2g(n))∆,

(13)

where g(n) ≡
(

1−λi
1

λi
1

)K
.

Proof. The proof of Lemma 18 is given in Appendix A.

Intuition for the statements of Lemmas 18 and 20: We will show, in Lemma 20 below, that each
of the states |Ψσ〉 〈Ψσ|, with σ 6= ∅, is very close to a product state about at least one of the ∆ slices.
Thus, Lemma 18 gives us a way to approximate |Ψ∅〉 〈Ψ∅| (which is the original state of interest)
by a linear combination of product states |Ψσ〉 〈Ψσ|. Lemma 20 and Definition 14 then provide us
with a way of constructing the corresponding product states using low-depth quantum circuits
acting on approximately half as many qubits as the original circuit (this process is also further
formalized in Definition 23). This combined use of Lemmas 18 and 20 forms the backbone of our
divide-and-conquer approach.

In order to state Lemma 20 we now define three new states that are dependent on a particular
choice of Ki.

11

Definition 19. Given a shallow, 3D geometrically local quantum circuit C, and given a slice Ki of
C, define the states:

|Ωi〉 = ΠK
Fi
〈0Mi |C |0ALL〉 (14)

|ΞLi〉 = PK
Fi
〈0Mi |CLi CBi∪Mi∪Fi |0Li∪Bi∪Mi∪Fi〉 (15)

|ΞRi〉 = PK
Bi
〈0Mi |CRi CBi∪Mi∪Fi |0Ri∪Bi∪Mi∪Fi〉 (16)

At this point it is pertinent to state Lemma 20:

Lemma 20. For any Ki ∈ Kheavy (recall this means that |ψ〉Bi∪Fi
satisfies λi

1 ≥ 1 − e(n)), the state
|Ωi〉 〈Ωi| is within 6g(n) of an unnormalized product state about Mi, described as follows:∥∥∥|Ωi〉 〈Ωi| − 1/λi

1 trFi (|ΞLi〉 〈ΞLi |)⊗ trBi (|ΞRi〉 〈ΞRi |)
∥∥∥ ≤ 6g(n) (17)

Here g(n) ≡
(

1−λi
1

λi
1

)K
≤
(

e(n)
1−e(n)

)K
just as in Lemma 15.

Proof. The proof of Lemma 20 is given in Appendix A.

Definition 21 (Synthesis). We say that an unnormalized quantum state φ is synthesized by a quan-
tum circuit Γ, if Γ has three registers of qubits L, M, N such that:

φ = φ(Γ,L,M,N) = trL∪M(〈0M| Γ |0L∪M∪N〉 〈0L∪M∪N | Γ† |0M〉). (18)

In this case we say that the circuit Γ together with a specification of the registers L, M, N con-
stitutes a synthesis of φ. When φ is implicit we will call this collection (Γ, L, M, N) a synthesis.

When Γ is a 3D geometrically-local, depth-d circuit, and the register N is one contiguous cubic
subset of the qubits that Γ acts on, with L, and M only containing qubits on the “edges”, we call
(Γ, L, M, N) a 3D geometrically-local, depth-d synthesis.

Definition 22. [The Circuits Γi,j, ΓL,i, ΓR,j] Recall, from Definition 3, that ΓBk∪Mk∪Fk (k ∈ {i, j}) is
defined to be the circuit containing the minimal number of gates of Γ such that every gate acting
on Mk is included. Taking this definition for both k = i and k = j, we now define Γi,j to be a
sub-circuit of Γ consisting of the minimal number of gates of Γ such that Γi,j ◦ ΓBi∪Mi∪Fi ◦ ΓBj∪Mj∪Fj

contains all of the gates of Γ that lie between Mi and Mj. Similarly define ΓLi (resp. ΓRj) to be
te sub-circuit of Γ consisting of the minimal number of gates of Γ such that ΓLi ◦ ΓBi∪Mi∪Fi (resp.
ΓRj ◦ ΓBj∪Mj∪Fj) contains all of the gates of Γ that lie between Mi (resp. Mj)and the left-hand side
(resp. right-hand side) of the Cube.

Definition 23. Let S = (Γ, G, H, N) be a 3D local, depth-d synthesis, and let Ki, Kj (i < j) be
two slices on the register N, as described in Definition 12. Let Mi, Fi, Bi, and Mj, Fj, Bj be the
subregisters of slices Ki and Kj respectively, as defined in Definition 12. Recall, from Definition 21,
that the state synthesized by S is:

φS = trG∪H(〈0H | Γ |0G∪H∪N〉 〈0G∪H∪N | Γ† |0H〉).

12

We define three new pure states as follows:

|ϕL,i〉 = (λi
1)

KPK
Fi
〈0Mi ,H | ΓLi ΓBi∪Mi∪Fi |0Li∪Bi∪Mi∪Fi∪G∪H〉∣∣ϕj,R

〉
= (λ

j
1)

KPK
Bj

〈
0Mj,H

∣∣∣ ΓRj ΓBj∪Mj∪Fj

∣∣∣0Rj∪Bj∪Mj∪Fj∪G∪H

〉
∣∣ϕi,j

〉
= (λi

1λ
j
1)

KPK
Bi
◦ PK

Fj

〈
0Mi ,Mj,H

∣∣∣ Γi,j ◦ ΓBi∪Mi∪Fi ◦ ΓBj∪Mj∪Fj

∣∣∣0Ni,j∪Bi∪Mi∪Fi∪Bj∪Mj∪Fj∪G∪H

〉
(19)

Here PK
Fi

, PK
Bj

are defined as in Definition 14. In the above the notation Ni,j is defined to be the
sub-register of N containing all of the qubits between Fi and Bj.

From these, we define three new synthesized states (with corresponding syntheses) as follows:

φL,i = trFi∪Mi∪G∪H (|ϕL,i〉 〈ϕL,i|)
φj,R = trBj∪Mj∪G∪H

(∣∣ϕj,R
〉 〈

ϕj,R
∣∣)

φi,j = trBi∪Mi∪Mj∪Fj∪G∪H
(∣∣ϕi,j

〉 〈
ϕi,j
∣∣) (20)

We can now write out the explicit synthesis for each of these synthesized states as follows:
Recalling, from Definition 14 that,

PK
Fi
≡ 1

(λi
1)

K

〈
0Bi ,Mi ,F1

i ,...FK
i

∣∣∣ K

∏
j=1

(Γ†
Bi∪Mi∪Fi

⊗ IF1
i ,...,FK

i
)(IBi∪Mi ⊗ SWAPFi F

j
i
)(ΓBi∪Mi∪Fi ⊗ IF1

i ,...,FK
i
)
∣∣∣0Bi ,Mi ,F1

i ,...FK
i

〉
(21)

We have that the explicit synthesis corresponding to φL,i is:

SL,i ≡
(

ΓPK
Fi
◦ ΓLi ◦ ΓBi∪Mi∪Fi , (Fi ∪ G), (Mi ∪M′i ∪ B′i ∪ F1

i , ...∪ FK
i ∪ H)

, (Li ∪ Bi ∪Mi ∪ Fi ∪M′i ∪ B′i ∪ G ∪ H ∪ F1
i , ...∪ FK

i)
)

,

where ΓPK
Fi

is defined as

ΓPK
Fi
≡

K

∏
j=1

(Γ†
B′i∪M′i∪Fi

⊗ IF1
i ,...,FK

i
)(IB′i∪M′i

⊗ SWAPFi F
j
i
)(ΓB′i∪M′i∪Fi

⊗ IF1
i ,...,FK

i
), (22)

where ΓB′i∪M′i∪Fi
is the same as ΓBi∪Mi∪Fi except that it does not act on registers Bi or Mi at all,

but instead, acts on dummy registers B′i and M′i in their place.
Symmetrically, for the explicit synthesis for

∣∣φj,R
〉
, recall that:

PK
Bi
≡ 1

(λi
1)

K

〈
0Fi ,Mi ,B1

i ,...BK
i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IB1
i ,...,BK

i
)(IFi∪Mi ⊗ SWAPBi B

j
i
)(CBi∪Mi∪Fi ⊗ IB1

i ,...,BK
i
)
∣∣∣0Fi ,Mi ,B1

i ,...BK
i

〉
,

(23)

and, therefore, we have that the explicit synthesis corresponding to
∣∣φj,R

〉
is:

13

Sj,R ≡
(

ΓPK
Bj
◦ ΓRj ◦ ΓBj∪Mj∪Fj , (Bj ∪ G), (Mj ∪M′j ∪ F′j ∪ B1

j , ...∪ BK
j ∪ H)

, (Rj ∪ Bj ∪Mj ∪ Fj ∪M′j ∪ F′j ∪ G ∪ H ∪ B1
j , ...∪ BK

j)
)

,

where ΓPK
Bi

is defined as

ΓPK
Bj
≡

K

∏
l=1

(C†
Bj∪M′j∪F′j

⊗ IB1
j ,...,BK

j
)(IF′j∪M′j

⊗ SWAPBjBl
j
)(CBj∪M′j∪F′j

⊗ IB1
j ,...,BK

j
), (24)

where ΓBj∪M′j∪F′j
is the same as ΓBj∪Mj∪Fj except that it acts on new dummy registers F′j and M′j

instead of the original registers Fj or Mj.
Finally, reusing Equations 21, 22, 23, and 24, the explicit synthesis for

∣∣φi,j
〉

can be written as
(See Equation 19 for definition of

∣∣φi,j
〉
):

Si,j ≡
(

ΓPK
Bi
◦ ΓPK

Fj
◦ Γi,j ◦ ΓBi∪Mi∪Fi ◦ ΓBj∪Mj∪Fj , (Bi ∪ Fj ∪ G),

(Mi ∪M′i ∪ F′i ∪ B1
i , ...∪ BK

i ∪Mj ∪M′j ∪ B′j ∪ F1
j , ...∪ FK

j ∪ H)

, (Ni,j ∪ Fi ∪ Bj ∪ Bi ∪ Fj ∪ G ∪Mi ∪M′i ∪ F′i ∪ B1
i , ...∪ BK

i ∪Mj ∪M′j ∪ B′j ∪ F1
j , ...∪ FK

j ∪ H)
)

,

where Ni,j is defined in the same manner as before: the register containing all of the qubits
between Ki and Kj.

Definition 24. Define syntheses

Λj,T
1 ≡

(
ΓPT

Bj
◦ ΓBj∪Mj∪Fj , (Bj ∪ Fj), (Mj ∪M′j ∪ F′j ∪ B1

j , ...∪ BT
j)

, (Bj ∪Mj ∪ Fj ∪M′j ∪ F′j ∪ B1
j , ...∪ BT

j)
)

,

ZT
j ≡

(
ΓPT

Bj
, (Bj), (M′j ∪ F′j ∪ B1

j , ...∪ BT
j)

, (Bj ∪M′j ∪ F′j ∪ B1
j , ...∪ BT

j)
)

,

Note that these two objects are, in this case, scalars (see Definition 21 to understand why). In
fact,

ZT
j = tr

(
ρT

Bj

)
,

and (25)

Λj,T
1 = tr

(
ρT

Bj
|ψ〉 〈ψ|Bj∪Mj∪Fj

ρT
Bj

)
(26)

where

14

ρK
Bi
≡
〈

0Fi ,Mi ,B1
i ,...BK

i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IB1
i ,...,BK

i
)(IFi∪Mi ⊗ SWAPBi B

j
i
)(CBi∪Mi∪Fi ⊗ IB1

i ,...,BK
i
)
∣∣∣0Fi ,Mi ,B1

i ,...BK
i

〉
as in Lemma 8.
We write the scalars ZT

j , Λj,T
1 as 2D geometrically-local, shallow depth syntheses to emphasize

that they can be computed by any algorithm which computes the probability of zero being output
by a 2D geometrically-local, shallow depth synthesis. In the following analysis we will use the 2D
algorithm in Theorem 5 of [BGM20] to compute these quantities to inverse polynomial additive
error (see Remark 6).

Now we will give a definition of a scalar quantity κi
T,ε2

which is meant to be an approximation
for the quantity λi

1 that we can compute using the “base case” algorithm B described below. We
need this because we want to use λi

1 to normalize terms in Algorithm 2 below. We will use its
approximation, κi

T,ε2
, as a substitute, since it is a quantity that we can compute in quasi-polynomial

time (even when T = logc(n) and ε2 = O(1/nlog(n)), see Definition 25). The quality of this
approximation is the subject of Lemma 26.

Definition 25.

κ
j
T,ε2
≡

B(Λj,T
1 , ε2)

B(Z2T
j , ε2)

=
tr
(

ρT
Bj
|ψ〉 〈ψ|Bj∪Mj∪Fj

ρT
Bj

)
± ε2

tr
(

ρ2T
Bj

)
± ε2

Here the notation B(Λj,T
1 , ε2) (resp. B(Z2T

j , ε2)) denotes a use of algorithm B, which we define
to be the algorithm from Theorem 5 of [BGM20] (applied according the prescription in Remark
6), to compute the scalar quantity Λj,T

1 (resp. Z2T
j) to within additive error ε2. We will elaborate

further on this computational task (time complexity, etc) in the analysis of Algorithm 2.

Lemma 26. If λi
1 ≥ 1− e(n) then |κi

T,ε2
− λi

1| ≤ O
(
(e(n))2T+ε2
(λi

1)
2T+1

)
.

Proof. Starting with the definition:

κi
T,ε2
≡

B(Λi,T
1 , ε2)

B(Z2T
i , ε2)

=
tr
(

ρT
Bi
|ψ〉 〈ψ|Bi∪Mi∪Fi

ρT
Bi

)
± ε2

tr
(

ρ2T
Bi

)
± ε2

=
(λi

1)
2T+1 + O(e(n)2T) + O(ε2)

(λi
1)

2T + O(e(n)2T) + O(ε2)
=

(λi
1)

2T+1(1 + O(e(n)2T+ε2
(λi

1)
2T+1))

(λi
1)

2T(1 + O(e(n)2T+ε2
(λi

1)
2T))

= λi
1

(1 + O(e(n)2T+ε2
(λi

1)
2T+1))

(1 + O(e(n)2T+ε2
(λi

1)
2T))

= λi
1

(
1 + O

(
e(n)2T + ε2

(λi
1)

2T+1

))

= λi
1 + O

(
e(n)2T + ε2

(λi
1)

2T+1

)
(27)

The desired result follows.

15

Definition 27. For any natural number ∆, we define [∆] ≡ {1, ...∆}. We define P([∆]) to be the set
of all subsets of [∆], that is, the power set of [∆]. For any set σ ∈ P([∆]), we let σmax denote the
largest element of σ. We let |σ| denote the size of the set σ, and for any 0 < i ≤ |σ| we let σ(i)
denote the ith smallest element of σ.

5 Estimating Amplitudes in Quasi-polynomial Time

In this section we define and analyze our algorithm for computing | 〈0⊗n|C |0⊗n〉 |2.

5.1 Run-Time and Error Analysis for Algorithm 1

Theorem 28. Let C be any depth-d, 3D geometrically local quantum circuit on n qubits. Algorithm 1,
A f ull(C,B, δ), where B is the base case algorithm specified in Theorem 5 of [BGM20], will produce the
scalar quantity | 〈0⊗n|C |0⊗n〉 |2 to within δ error in time

T(n) = δ−22d3polylog(n)(1/δ)1/ log2(n)
(31)

Proof of Theorem 28: The proof proceeds in two parts, the first bounding the approximation error
obtained by the algorithm, and the second bounding the runtime. See Table 10 for a brief summary
of the parameters used throughout Algorithms 1 and 2.

Approximation Error: The analysis of the approximation error obtained by A f ull(C,B, δ) can be
broken into four cases according to the IF statements on Lines 1, 3, 9, and 10 of Algorithm 1. The
first three cases are easy. If the condition in Line 1 is satisfied, then the specified additive error δ
is so small that we can compute the desired quantity, | 〈0ALL|C |0ALL〉 |2, exactly, by brute force, in
2O(n) time, and this will still take less time than the guaranteed runtime:

T(n) = δ−22d3polylog(n)(1/δ)1/ log2(n)
.

So, if the condition in Line 1 is satisfied, then we are done. If not, we proceed.
Next, if the condition in Line 3 is satisfied, then δ ≥ 1/2, in which case, outputting 0 is clearly

a δ additive approximation of | 〈0ALL|C |0ALL〉 |2, since 0 ≤ | 〈0ALL|C |0ALL〉 |2 ≤ 1. So, if this is the
case, we are done, otherwise we proceed.

Next, if the condition in Line 9 is satisfied, then, either δ ≥ 1/2 (in which case, outputting 1/2
is clearly a δ additive approximation of | 〈0ALL|C |0ALL〉 |2, since 0 ≤ | 〈0ALL|C |0ALL〉 |2 ≤ 1), OR
there is a set of slices Klightweight of size at least h(n), such that every slice Ki ∈ Klightweight satisfies:

‖ 〈0Mi |C |0ALL〉 ‖2 = tr
(
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉

)
< 2

log(δ)
h(n) .

In this case, since, for all Ki, Kj ∈ Klightweight with Ki 6= Kj we know that Ki is lightcone sepa-
rated from Kj. It follows that:

| 〈0ALL|C |0ALL〉 | ≤ ΠKi∈K‖ 〈0Mi |C |0ALL〉 ‖ ≤
(

2
log(δ)
2h(n)

)h(n)

= 2log(δ)/2 =
√

δ. (32)

So,

| 〈0ALL|C |0ALL〉 |2 ≤ δ. (33)

16

Algorithm 1: A f ull(C,B, δ): Quasi-Polynomial Time Additive Error Approximation for
| 〈0ALL|C |0ALL〉 |2.

Input : 3D Geometrically-Local, depth-d circuit C, base-case algorithm B, approximation
error δ

Output: An approximation of | 〈0ALL|C |0ALL〉 |2 to within additive error δ.
/* We begin by handling the case in which δ is so small that it trivializes

our runtime, and the case in which δ is so large that it causes

meaningless errors: */

1 if δ ≤ 1/nlog2(n) then
2 return The value | 〈0ALL|C |0ALL〉 |2 computed with zero error by a “brute force”

2O(n)-time algorithm.
3 if δ ≥ 1/2 then return 1/2
/* Here begins the non-trivial part of the algorithm: */

4 Let N be the register containing all of the qubits on which C acts. Since these qubits are
arranged in a cubic lattice, one of the sides of the cube N must have length at most n

1
3 .

We will call the length of this side the “width” and will now describe how to “cut” the
cube N, and the circuit C, perpendicular to this particular side.

5 Select 1
10d n

1
3 light-cone separated slices Ki of 10d width in N, with at most 10d distance

between adjacent slices. Let h(n) = log7(n). Use the base case algorithm B to check if at
least 1

10d n
1
3 − h(n) of the slices obey:

6 ∣∣∣tr(〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉
)∣∣∣ ≥ 2

log(δ)
h(n) .

7 OR, there are fewer than 1
10d n

1
3 − h(n) slices that obey:

8 ∣∣∣tr (〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉
)∣∣∣ ≥ 2

log(δ)
h(n) .

/* See the runtime analysis in the proof of Theorem 28 for a detailed

explanation of how the base case algorithm B can efficiently distinguish

between the above two cases (via Remark 6). */

9 if Fewer than 1
10d n

1
3 − h(n) of the slices obey Line 8 then return 0

10 if At least 1
10d n

1
3 − h(n) of the slices obey Line 8 then

11 We will denote the set of these slices by Kheavy. Note that the maximum amount of
width between any two adjacent slices in Kheavy is 10d · h(n). Furthermore, the
maximum amount of width collectively between ∆ slices in Kheavy is
10d∆ + 10d · h(n). Now that the set Kheavy has been defined, we will use this fixed set
in the recursive algorithm, Algorithm 2.

12 Define the geometrically-local, depth-d synthesis S ≡ (C, L, M, N), where L = M = ∅,
are empty registers, and N is the entire input register for the circuit C.

13 return
A(S, η = log(n)

3 log(4/3) , ∆ = log(n), ε = δ2−10 log(n) log(log(n))), h(n) = log7(n), Kheavy,B)

17

Algorithm 2: A(S, η, ∆, ε, h(n), Kheavy,B): Recursive Divide-and-Conquer Subroutine for
Algorithm 1.

Input : 3D Geometrically-Local, depth-d synthesis S, number of iterations η, number of
cuts ∆, positive base-case error bound ε > 0, base-case algorithm B, a set of
heavy slices Kheavy

Output: An approximation of the quantity 〈0N | φS |0N〉 where φS is the un-normalized
mixed state specified by the 3D geometrically-local, depth-d synthesis S, and |0N〉
is the 0 state on the entire N register of that synthesis. The approximation error is
bounded in the analysis below.

1 Given the geometrically-local, depth-d synthesis S = (Γ, L, M, N), let us ignore the
registers L and M as they have already been measured or traced-out.

2 Let ` be the width of the N register of the synthesis S. Define the stopping width
w0 ≡ 20d(∆ + h(n) + 2).

3 if ` < w0 = 20d(∆ + h(n) + 2) OR η < 1 then
4 Use the base-case algorithm B to compute the quantity 〈0N | φS |0N〉 to within error ε.
5 return B(S, ε)

6 else
7 We will “slice” the 3D geometrically-local, depth-d synthesis S in ∆ different locations,

as follows:
8 Since N is 3D we define a region Z ⊂ N to be the sub-cube of N which has width

10d(∆ + h(n) + 2), and is centered at the halfway point of N width-wise (about the
point `/2 of the way across N). Since the maximum amount of width collectively
between ∆ slices in Kheavy is 10d∆ + 10d · h(n) (see Algorithm 1), we are guaranteed
that the region Z will contain at least ∆ slices, K1, K2, . . . , K∆, from Kheavy. For any two
slices Ki, Kj ∈ Kheavy, let the un-normalized states |ϕL,i〉 ,

∣∣ϕi,j
〉

,
∣∣ϕj,R

〉
, and

corresponding sub-syntheses SL,i, Si,j, Sj,R be as defined in Definition 23, with
K = log3(n). We will use these to describe the result of our division step below.

9 For each Ki ∈ Kheavy pre-compute the quantity κi
T,ε2

, with T = log3(n), and
ε2 = δ2−10 log(n) log(log(n))).

10 return

∆

∑
i=1

1
(κi

T,ε2
)4K+1

A(SL,i, η − 1) ·A(Si,R, η − 1) (28)

−
∆

∑
i=1

∆

∑
j=i+1

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1) (29)

+
∆

∑
i=1

∆

∑
j=i+2

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·
[

∑
σ∈P({i+1,··· ,j−1})\∅

(−1)|σ|+1B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)]
(30)

/* In the above B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
, ε

2∆

)
denotes an ε

2∆

approximation of the quantity
(
〈0ALL| ⊗k∈σ ΠK

Fk

)
φi,j

(
⊗k∈σΠK

Fk
|0ALL〉

)
obtained via base case Algorithm B. Note that for brevity it is

implied that A(S, η) = A(S, η, ∆, ε, h(n), Kheavy,B). */

18

Parameter Value Description

C — 3D geometrically-local quantum circuit on n qubits. Re-
call that approximating | 〈0⊗n|C |0⊗n〉 |2 is the goal of Al-
gorithm 1.

B — Algorithm for 2D geometrically-local circuits to be used in
the base case of Algorithm 2. See Remark 6 and Theorem 5
of [BGM20] for the base case algorithm used in our analy-
sis.

δ 1/n− log(n) Desired additive error for the approximation output by Al-
gorithm 1. Note that this is better than inverse polynomial
error, for any polynomial.

h(n) log7(n) Helps control the overall width of the central region Z (see
Description of Z below).

Kheavy — Set of slices {Ki} satisfying Line 8 of Algorithm 1. Exis-
tence of these slices follows from an application of Lemma
11.

S — Synthesis for a circuit Γ as described in Definition 23. Dur-
ing the first run of Algorithm 2 this will correspond to a
synthesis for the circuit C.

η
log(n)

3 log(4/3) Maximum depth for the recursive calls to Algorithm 2.
η = 0 is one stopping condition for using the base case
algorithm in Line 5 of Algorithm 2.

∆ log(n) Number of slices from Kheavy that will be used in the divi-
sion step for Algorithm 2.

ε δ2−10 log(n) log(log(n))) Desired error for applications of the base-case algorithm in
the return statement of Algorithm 2.

d — Depth of the circuit C
` — Width of the N register of the synthesis S.

w0 20d(∆ + h(n) + 2) Stopping width for Algorithm 2. ` < w0 is one stopping
condition for using the base case algorithm in Line 5 of Al-
gorithm 2.

Z — Subset of width 10d(∆ + h(n) + 2) in the center of the N
register, specified in Algorithm 2, from which ∆ slices in
Kheavy will be chosen. Note that any subproblems con-
tained within Z will, by definition, satisfy the stopping
condition ` < w0, and will consequently be handled by
the base-case algorithm B (see also Remark 6).

K log3(n) The number of repeated compositions of the block encod-
ing for ρFi used to produce the approximation ρK

Fi
for the

top Schmidt vector |w1〉 〈w1|Fi
.

T log3(n) The number of repeated compositions of the block encod-
ing for ρBi used to produce the approximation κi

T,ε2
for the

top Schmidt coefficient λi
1, as prescribed in Definition 25.

ε2 δ2−10 log(n) log(log(n))) Desired error for applications of the base-case algorithm
when computing the quantities κi

T,ε2
in Line 9 of Algorithm

2.

Table 1: Parameters used within Algorithms 1 and 2
19

Therefore, in this case, Algorithm 1 returns the quantity 0 as an answer , which is trivially a
δ-additive error approximation of | 〈0ALL|C |0ALL〉 |2 by Equation 32.

On the other hand, if the IF statement on Line 9 of Algorithm 1 is not satisfied, then that means
that the IF statement of Line 10 must be satisfied, by definition. In that case Algorithm 1 returns
the quantity:

A(S, η =
log(n)

3 log(4/3)
, ∆ = log(n), ε = δ2−10 log(n) log(log(n)), h(n) = log7(n), Kheavy,B)

which we know is an f (S, η, ∆, ε)-additive error approximation of | 〈0ALL|C |0ALL〉 |2. With
η = log(n)

3 log(4/3) , by Lemma 32 we know that:

f (S, η, ∆, ε) ≤ η20η∆2η
(

E3(n, K, T, ε2, ε, ∆) + (2e(n) + 2g(n))∆
)

= η20η∆3ηO
(

2∆(2e(n))K + 2∆K
(

e(n)2T + ε2

)
+ ε
)

= 1/3 log(4/3) · log(n)20
log(n)

3 log(4/3) (log(n))3 log(n)
3 log(4/3) O

(
2log(n)(2(1− 2

log(δ)
log7(n)))log3(n)

+2log(n) log3(n)
(
(1− 2

log(δ)
log7(n))2 log3(n) + ε2

)
+ δ2−10 log(n) log(log(n))

)
≤ (log(n))2 log(n) · poly(n) ·

(
(2(1− 2

log(δ)
log7(n)))log3(n) + ε2 + δ2−10 log(n) log(log(n))

)

≤ (log(n))2 log(n) · poly(n) ·

(O

(
1

log4(n)

))log3(n)

+ 2 · δ2−10 log(n) log(log(n))


≤ 22 log(n) log(log(n)) · poly(n) ·

(
O

(
1

log4(n)

))log3(n)

+ δ2−8 log(n) log(log(n))

≤ o(1) · δ + o(1) · δ = o(1) · δ (34)

where the first inequality follows from Lemma 32 and the rest follows by calculation, noting
that E3(n, K, T, ε2, ε, ∆) ≥ (2e(n) + 2g(n))∆ for our specific choice of parameters (in particular

∆ = log(n)), recalling that e(n) ≤ (1− 2
log(δ)

log7(n)) = O(1/ log4(n)) (since δ ≥ n− log2(n) = 2− log(n)3

as verified in Algorithm 1), K = log3(n), T = log3(n), and ε2 = δ2−10 log(n) log(log(n)). The final

inequality, which claims 22 log(n) log(log(n)) · poly(n) ·
(

O
(

1
log2(n)

))log2(n)
= o(1) · δ, again follows

because δ ≥ n− log2(n) as verified in the driver algorithm, Algorithm 1.

Runtime: The runtime analysis of Algorithm 1, A f ull(C,B, δ), proceeds by considering the same
four cases in the IF statements on Lines 1, 3, 9, and 10, just as in the error analysis above. Just
as before, the first three cases are easy. If the IF statement Line 1 is satisfied, then the specified
additive error δ is so small that we can compute the desired quantity, | 〈0ALL|C |0ALL〉 |2, exactly,
by brute force, in 2O(n) time, and this will still take less time than the guaranteed runtime:

T(n) = δ−22d3polylog(n)(1/δ)1/ log2(n)
.

20

So, if the IF statement on Line 1 is satisfied, then we are done.
If the the IF statement in Line 3 is satisfied then the algorithm outputs 1/2, which is a constant

time operation, and we are done.
On the other hand, in the case that these first two IF statements are not satisfied, we must

bound the running time of Line 5. Line 5 can clearly be done in polynomial time, which is an
additive cost that is significantly less than our ultimate quasi-polynomial running time upper
bound, so we can absorb it into the O(·) notation, and continue without explicitly tracking it. Line
5 calls for the use of the base case algorithm B (which we have specified to be the algorithm from
Theorem 5 of [BGM20]) to estimate, for every slice Ki, the quantity:

〈0ALL|C† |0Mi〉 〈0Mi |C |0ALL〉 = tr
(
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉

)
,

In particular we use B to estimate this quantity to within additive error ε̃ ≡ 2
log(δ)
2h(n) −1− 2

log(δ)
h(n) −1,

and we count only those slices for which the approximation output by B is at least 2
log(δ)
h(n) + ε̃. So,

all the slices accepted by this count will necessarily have weight at least 2
log(δ)
h(n) + ε̃ − ε̃ = 2

log(δ)
h(n) .

Furthermore, any slice with weight at least 2
log(δ)
h(n) + 2ε̃ = 2

log(δ)
2h(n) will certainly be counted by this

process. Therefore, this procedure is able to determine which of Line 5 or Line 7 is true. (As
noted in a comment in the Algorithm, one of these two must be the case.) It remains to bound the
running time cost of these uses of algorithm B. The key observation here is that the quantity:

tr
(
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉

)
,

only depends on the part of the circuit C that lies in the lightcone of slice Mi. By definition
the lightcone of Mi is contained in Ki, and Ki is a 2D slice with thickness 30d = O(d) in third
dimension. By the discussion in Remark 6 it follows that the base case algorithm B can compute
the quantity:

tr
(
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉

)
,

to within additive error ε̃ ≡ 2
log(δ)
2h(n) −1 − 2

log(δ)
h(n) −1 in time O(poly(n)/ε̃2) = O(poly(n)/(1 −

δ1/2h(n))2) = O(2polylog(n)), where the final equality follows by straightforward calculation when-
ever δ ≤ 1/2 (recall that we previously established that δ ≤ 1/2 by checking that the IF statement
in Line 3 was not satisfied).

Next, if the IF statement in Line 9 is satisfied, then our Algorithm 1 returns the quantity 0 as
an answer, which is a constant time operation, and we are done.

On the other hand, if the IF statement on Line 9 of Algorithm 1 is not satisfied, then that means
that the IF statement of Line 10 must be satisfied, by definition. In that case Algorithm 1 returns
the quantity:

A(S, η = 1/3 log(n), ∆ = log(n), ε = δ2−10 log(n) log(log(n))), h(n) = log3(n), Kheavy,B)

which we know is an f (S, η, ∆, ε)-additive error approximation of | 〈0ALL|C |0ALL〉 |2, and takes
T(n) < δ−22d3polylog(n) time to compute. This time bound follows directly from the runtime bound
on Algorithm 2, which is given in Theorem 33 of Subsection 5.3. All together, regardless of which

IF statements are true, no step of Algorithm 1 exceeds a running time of δ−22d3polylog(n)(1/δ)1/ log2(n)
,

and so we are done.

21

5.2 Error Analysis for Algorithm 2

In this subsection we will derive, by induction, an error bound on the estimate produced by Algo-
rithm 2, A(S, η, ∆, ε,B, Kheavy, r). We will only pursue an error analysis of A under the assumption
that the driver algorithm, Algorithm 1, has actually called Algorithm 2, and has thus constructed
the set Kheavy according to specification. This is because, if Algorithm 1 does not call Algorithm
2, that means that it has already found an easier approximation to the answer, and the output
of A (Algorithm 2) is not relevant. Recall that, given a synthesis S, the goal of Algorithm 2 is to
compute the quantity | 〈0N |φ〉 〈φ|0N〉 |2 where |φ〉 is the state synthesized by synthesis S, and N
is the active register, as defined in Definition 21. The Algorithm A(S, η, ∆, ε,B, Kheavy, r) is a re-
cursive algorithm and, since the variables ∆, ε,B, Kheavy, and r remain unchanged throughout, we
will use a simplification A(S, η, ∆, ε,B, Kheavy, r) = A(S, η) throughout this analysis. The output
of Algorithm 2 is the scalar quantity:

A(S, η) ≡
∆

∑
i=1

1
(κi

T,ε2
)4K+1

A(SL,i, η − 1) ·A(Si,R, η − 1)

−
∆

∑
i=1

∆

∑
j=i+1

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1)

+
∆

∑
i=1

∆

∑
j=i+2

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·
[

∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)]
(35)

Here the notation B(T, ε) denotes the use of the “base case” algorithm to estimate the quantity
| 〈0ALL|φT〉 〈φT|0ALL〉 |2 to within a desired additive error ε, for the specified synthesis T. For us
the “base case” algorithm will be defined to be the algorithm from Theorem 5 of [BGM20]. This al-
gorithm can be used for middle sections of the circuit since these sections have a 2D geometry with
a “thickness” of at most a polylogarithmic number of qubits in the third dimension. The algorithm
from Theorem 5 of [BGM20] can compute an ε-additive-error approximation of output probabil-
ities of such syntheses in O(2polylog(n)poly(1

ε)) time. Note this is not stated explicitly in [BGM20],
which technically only handles true 2D circuits (in other words, circuits with “thickness” exactly 1
in the third dimension), but their techniques can be extended to the case of polylogarithmic thick-
ness in a straightforward manner (to do so, increase the bond dimension of their Matrix Product
States to polylogarithmic size account for the added “thickness” of qubits).

Since we have assumed that Algorithm 1 has called Algorithm 2, we know that every slice Ki
in the input set Kheavy to A(S, η, ∆, w0, ε,B, Kheavy, r) = A(S, η) satisfies:∣∣∣tr (〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉

)∣∣∣ ≥ 2
log(δ)
h(n) = 2

− log(1/δ)
h(n) .

Equivalently, ptotal(Mi = 0) ≥ 1− e(n), where we define:

e(n) ≡ (1− 2
− log(1/δ)

h(n)). (36)

It follows from Lemma 13 that, ∀Ki ∈ Kheavy, λi
1 ≥ 1−O(e(n)).

22

We know, by Lemma 18 that,

∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ| |Ψσ〉 〈Ψσ|
∥∥∥∥∥ =

∥∥∥∥∥|Ψ∅〉 〈Ψ∅| − ∑
σ∈P([∆])\∅

(−1)|σ|+1 |Ψσ〉 〈Ψσ|
∥∥∥∥∥ ≤ (2e(n) + 2g(n))∆

(37)

where g(n) ≡
(

1−λi
1

λi
1

)K
≤
(

e(n)
1−O(e(n))

)K
, and the states |Ψσ〉 are defined as:

|Ψσ〉 = ⊗j∈σΠK
Fj
⊗i∈[∆] 〈0Mi |C |0ALL〉 ,

|Ψ∅〉 = ⊗i∈[∆] 〈0Mi |C |0ALL〉 .

Note that, 〈0ALL|Ψ∅〉 〈Ψ∅|0ALL〉 is exactly the quantity that we wish for Algorithm 2 to output!
So, the error between the returned output of Algorithm 2, (defined on Line 10 of that algorithm),
which we will denote by A for short, and the desired output quantity 〈0ALL|Ψ∅〉 〈Ψ∅|0ALL〉 is:

f (S, η, ∆, ε) ≤
∥∥∥ 〈0ALL|Ψ∅〉 〈Ψ∅|0ALL〉 −A

∥∥∥ (38)

≤
∥∥∥ 〈0ALL|Ψ∅〉 〈Ψ∅|0ALL〉 − ∑

σ∈P([∆])\∅
(−1)|σ|+1 〈0ALL|Ψσ〉 〈Ψσ|0ALL〉

∥∥∥ (39)

+
∥∥∥ ∑

σ∈P([∆])\∅
(−1)|σ|+1 〈0ALL|Ψσ〉 〈Ψσ|0ALL〉 −A

∥∥∥ (40)

≤ (2e(n) + 2g(n))∆ +
∥∥∥ ∑

σ∈P([∆])\∅
(−1)|σ|+1 〈0ALL|Ψσ〉 〈Ψσ|0ALL〉 −A

∥∥∥
= (2e(n) + 2g(n))∆ +

∥∥∥∥∥ ∑
σ∈P([∆])\∅

(−1)|σ|+1 〈0ALL|Ψσ〉 〈Ψσ|0ALL〉

−
(

∆

∑
i=1

1
(κi

T,ε2
)4K+1

A(SL,i, η − 1) ·A(Si,R, η − 1)

−
∆

∑
i=1

∆

∑
j=i+1

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1)

+
∆

∑
i=1

∆

∑
j=i+2

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·
[

∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)])∥∥∥∥∥

(41)

Grouping analogous terms and using triangle inequality gives:

23

f (S, η, ∆, ε) ≤ (2e(n) + 2g(n))∆

+

∥∥∥∥∥ ∆

∑
i=1

(
1

(κi
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Si,R, η − 1)−

〈
0ALL

∣∣Ψ{i}〉 〈Ψ{i}∣∣0ALL
〉)

−
∆

∑
i=1

∆

∑
j=i+1

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1)−

〈
0ALL

∣∣∣Ψ{i,j}〉 〈Ψ{i,j}
∣∣∣0ALL

〉)

+
∆

∑
i=1

∆

∑
j=i+2

∑
σ∈P({i+1,...,j−1})\∅

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

· (−1)|σ|+1B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉) ∥∥∥∥∥
≤ (2e(n) + 2g(n))∆

+
∆

∑
i=1

∥∥∥∥∥
(

1
(κi

T,ε2
)4K+1

A(SL,i, η − 1) ·A(Si,R, η − 1)−
〈
0ALL

∣∣Ψ{i}〉 〈Ψ{i}∣∣0ALL
〉) ∥∥∥∥∥

+
∆

∑
i=1

∆

∑
j=i+1

∥∥∥∥∥
(

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1)−

〈
0ALL

∣∣∣Ψ{i,j}〉 〈Ψ{i,j}
∣∣∣0ALL

〉) ∥∥∥∥∥
+

∆

∑
i=1

∆

∑
j=i+2

∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉) ∥∥∥∥∥ (42)

The three summations in Equation 42 are written separately for notational convenience. The
first summation includes all the terms corresponding to the case when the input synthesis is
“sliced” at exactly one cut, and these terms are bounded in Lemma 29. The second summation in-
cludes all the terms involving “slices” at exactly 2 cuts, and these terms are bounded in Lemma 30.
The third summation includes all the remaining terms, which cover all the cases involving “slices”
at three or more of the ∆ cuts. Each of these terms is bounded in Lemma 31. For a depiction of
these three cases see Figure 5.

Lemma 29. ∥∥∥∥∥
(

1
(κi

T,ε2
)4K+1

A(SL,i, η − 1) ·A(Si,R, η − 1)−
〈
0ALL

∣∣Ψ{i}〉 〈Ψ{i}∣∣0ALL
〉) ∥∥∥∥∥

≤ E1(n, K, T, ε2) + 2 f (S, η − 1, ∆, ε),

where E1(n, K, T, ε2) ≡ 10K(e(n)2T + 6g(n) + ε2).

Proof. The proof of this Lemma is a simpler special case of the proof of Lemma 31 below. It is
simpler in that it follows by using Lemma 26, and Lemma 20, and does not require the use of

24

Lemma 18 as the proof of Lemma 31 does. For succinctness, instead of writing out this entire
proof, we refer the reader to the proof of Lemma 31 in the Appendix, of which the proof of this
Lemma is a special case.

Lemma 30.∥∥∥∥∥
(

1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·B(Si,j, ε) ·A(Sj,R, η − 1)−

〈
0ALL

∣∣∣Ψ{i,j}〉 〈Ψ{i,j}
∣∣∣0ALL

〉) ∥∥∥∥∥
≤ E2(n, K, T, ε2, ε) + 2 f (S, η − 1, ∆, ε),

(43)

where E2(n, K, T, ε2, ε) ≡ 10K(e(n)2T + 6g(n) + ε2) + ε

Proof. The proof of this Lemma is a simpler special case of the proof of Lemma 31 below. It is
simpler in that it follows by using Lemma 26, and Lemma 20, and does not require the use of
Lemma 18 as the proof of Lemma 31 does. For succinctness, instead of writing out this entire
proof, we refer the reader to the proof of Lemma 31 in the Appendix, of which the proof of this
Lemma is a special case.

Lemma 31.∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σ ΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉)∥∥∥∥∥ (44)

≤ E3(n, K, T, ε2, ε, ∆) + 16 f (S, η − 1, ∆, ε),

where

E3(n, K, T, ε2, ε, ∆) ≡ O
(

2∆(6g(n)) + 2∆K
(

e(n)2T + ε2

)
+ ε
)

Proof. The proof follows by two uses Lemma 20, Lemma 26, AND (unlike the previous two Lem-
mas) Lemma 18. See Appendix A for a full proof.

Returning to where we left off in Equation 42, using all three of the above Lemmas, we have

f (S, η, ∆, ε) ≤ (2e(n) + 2g(n))∆ + ∆ (E1(n, K, T, ε2, ε) + 2 f (S, η − 1, ∆, ε))

+ ∆2 (E2(n, K, T, ε2, ε) + 2 f (S, η − 1, ∆, ε)) + ∆2 (E3(n, K, T, ε2, ε, ∆) + 16 f (S, η − 1, ∆, ε))

≤ (2e(n) + 2g(n))∆ + 3∆2E3(n, K, T, ε2, ε, ∆) + 20∆2 f (S, η − 1, ∆, ε),
(45)

where the final inequality follows because E3(n, K, T, ε2, ε, ∆) ≥ E2(n, K, T, ε2, ε) ≥
E1(n, K, T, ε2, ε).

We note that, when η = 0 we have f (S, η, ∆, ε) = f (S, 0, ∆, ε) ≤ ε. This is because, in the
definition of Algorithm 2, if η < 1 the algorithm the calls subroutine B(S, ε) and computes the
final desired quantity with error ε. This gives us the base case that we need to bound f (S, η, ∆, ε)
via standard recursive analysis:

25

Figure 5: Depiction of the types of terms that appear in Equation 42: (a) those involving exactly
one cut, {i}, (b) those involving exactly two cuts, {i, j}, and (c) those involved three or more of
the ∆ cuts, {i, j} ∪ σ, for σ ∈ P({i + 1, . . . , j− 1}) \∅. For brevity we have denoted Ki ≡ 1

(κi
T,ε2

)4K+1

and Ki,j ≡ 1
(κi

T,ε2
κ

j
T,ε2

)4K+1
.

Lemma 32. The error function f (S, η, ∆, ε) obeys the following bound:

f (S, η, ∆, ε) ≤ η20η∆2η
(

E3(n, K, T, ε2, ε∆) + (2e(n) + 2g(n))∆
)

(46)

Proof. The Lemma follows by using standard analysis of the recursion in Equation 45, and with
the base case f (S, 0, ∆, ε) ≤ ε ≤ E3(n, K, T, ε2, ε).

5.3 Run-Time Analysis for Algorithm 2

In this section we will derive a bound on the run-time for Algorithm 2. Recall that, given a syn-
thesis S, the goal of Algorithm 2 is to compute the quantity | 〈0N | φS |0N〉 |2 where φS is the state
synthesized by synthesis S, and N is the active register, as defined in Definition 21. Recall that ` is
defined, in Algorithm 2, to be the width of the N register for our input synthesis S. We use T(`)
to denote the run-time bound for our algorithm on a synthesis with an N register of width `.

The main time cost for Algorithm 2 is accrued by the return line of the algorithm, which makes
recursive calls to Algorithm 2 on a variety of smaller subproblems, as well as calls to the base case
algorithm B, and computing the κi

T,ε2
quantities. All of the steps performed in Algorithm 2 before

the return line (selecting the region Z, etc), can easily be done in (lesser) polynomial time, and
their total cost will be absorbed into the term µ(·) in our calculations below.

Note that the return line of Algorithm 2 makes 2∆ distinct recursive calls to itself, which each
only need to be computed once, even though they are reused multiple times in Equations 28, 29,
and 30. Furthermore, the width of the active register of the synthesis input to each of the recursive

26

calls to Algorithm 2 is at most `+|Z|
2 ≤ 3

4` (where the inequality follows because, in the context of
Algorithm 2, the relationship |Z| ≤ `

2 is enforced by lines 3 and 8). Therefore, we know that our
recursive time analysis will have the form:

T(`) < 2∆T
(

3
4
`

)
+ ζ1(n)

Where ζ1(n) absorbs the time cost of all steps in Algorithm 2 other than the 2∆ recursive calls.
We will now explicitly bound the term ζ1(n) in order to obtain a complete runtime bound. The
main time cost in ζ1(n) comes from executing the calls to the base case algorithm B in lines 29,
and 30 of Algorithm 2, as well as computing the values κi

T,ε2
that appear throughout the return

line of Algorithm 2. We will analyze the time cost of these two tasks separately in the two corre-
sponding paragraphs below. The only remaining time cost then comes from the steps performed
in Algorithm 2 before the return line (selecting the region Z, etc), and can easily be done with (less
significant) polynomial time cost, which we will denote by µ(n).

Uses of B in the return line of Algorithm 2: There are at most 2∆2 calls to the base case al-
gorithm B in the return line of Algorithm 2, which all occur in Equations 29 and 30 of the re-
turn line. The terms in Equation 29 have the form B(Si,j, ε), and the terms in Equation 30 have

the form B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
, ε

2∆

)
. By Remark 6 we know that, for any 3D

geometrically-local, depth-D synthesis S (on n qubits, total) we can use the algorithm from Theo-
rem 5 of [BGM20] to compute the quantity B(S, ε) = | 〈0ALL| φS |0ALL〉 |2 ± ε in time nε−22O(D2·w),
where w is the width of the “active register”, N, of the synthesis S in the third dimension (see Def-
inition 21 for the definitions of syntheses S, and the register N). Using Remark 6 in this way, we
see that the quantities B(Si,j, ε) = | 〈0ALL| φi,j |0ALL〉 |2± ε from Equation 29 can each be computed
in time nε−22O((dK2)2·10d(∆+h(n)+2)), because the synthesis Si,j has depth at most O(dK2) 1, and has
an active region of width at most 10d(∆ + h(n) + 2) in the third dimension (this width is enforced
by line 8 of Algorithm 2, where Si,j is explicitly specified in conjunction with Definition 23).

Similarly, using Remark 6 in the same way, we see that the quantities:

B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
= | 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 |2 ±

ε

2∆ ,

can be computed in time n22∆ε−22O((dK2+2dK2)2·10d(∆+h(n)+2)), because the synthesis(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
has an active region that is a subset of the active region

of the synthesis Si,j for φi,j, and therefore still has width as most 10d(∆ + h(n) + 2)) in the third

dimension. Additionally, the depth of the synthesis
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
is at

most O(2dK2) higher than the depth of the synthesis Si,j for φi,j, because the depth of the operator
⊗k∈σΠK

Fk
is at most the maximum depth of the operator ΠK

Fk
for any k, which is at most O(dK2),

by Lemma 8 and Definitions 14 and 16. Note that we are making a slight abuse of notation in that
we have always referred to the state

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
as a synthesis, since

1The reason that the depth of the synthesis Si,j is bounded by O(dK2) is that Si,j is constructed using the original
depth-d circuit C, acted on by a number of operators ΠK

Fk
. However, it is important to note that each ΠK

Fk
is always

acts in tensor product with ΠK
Fj

on any other cut Kj for j 6= k. Also, each cut is only acted on at most once this way.
It follows that these additive depths do not pile up during the course of Algorithm 2, and thus the total depth never
exceeds O(dK2).

27

it’s first appearance in the return line of Algorithm 2, even though we never wrote out the ex-
plicit synthesis structure for this state according to Definition 21. This was done in order to keep
the statement of Algorithm 2 and the subsequent discussion succinct. We leave to the reader the
exercise of expressing the state

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
as a synthesis according to

Definition 21, which is accomplished by a straightforward modification of the (already defined)
synthesis Si,j for φi,j, in order to include the operators and projections

(
⊗k∈σΠK

Fk
〈0Mk |

)
into the

synthesis (this is something that the definition of a synthesis was designed to do in the first place).
So, we are now ready to explicitly include, in our recursive time analysis, the time cost for the

use of the base case algorithm B in the return line of Algorithm 2. We now have:

T(`) < 2∆T
(

3
4
`

)
+∆2nε−22O((dK2)2·10d(∆+h(n)+2))+∆2n22∆ε−22O((dK2+2dK2)2·10d(∆+h(n)+2))+ ζ2(n)+µ(n)

Where ζ2(n) denotes the time cost for computing the quantities κi
T,ε2

in the return line of Algo-
rithm 2 (discussed below), and µ(n) denotes the (less significant) polynomial time cost that comes
from the steps performed in Algorithm 2 before the return line (selecting the region Z, etc), as
previously discussed.

Noting that, in Algorithm 2, the parameters are set as ∆ = log(n), K = log3(n), h(n) = log7(n),
ε = δ2−10 log(n) log(log(n)) we have:

T(`) < 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) + ζ2(n) + µ(n)

We now bound the remaining time cost, ζ2(n), in the following paragraph.

Computation of quantities κi
T,ε2

in the return line of Algorithm 2: The task of computing the
κi

T,ε2
values in the return line of Algorithm 2 requires using the base case algorithm B as specified

and discussed in Definition 25 (via the usual prescription in Remark 6). In particular, according to
Definition 25, we have that:

κi
T,ε2
≡

B(Λj,T
1 , ε2)

B(Z2T
j , ε2)

=
tr
(

ρT
Bj
|ψ〉 〈ψ|Bj∪Mj∪Fj

ρT
Bj

)
± ε2

tr
(

ρ2T
Bj

)
± ε2

where the syntheses Λj,T
1 , and Z2T

j are explicitly specified as

Λj,T
1 ≡

(
ΓPT

Bj
◦ ΓBj∪Mj∪Fj , (Bj ∪ Fj), (Mj ∪M′j ∪ F′j ∪ B1

j , ...∪ BT
j)

, (Bj ∪Mj ∪ Fj ∪M′j ∪ F′j ∪ B1
j , ...∪ BT

j)
)

,

ZT
j ≡

(
ΓPT

Bj
, (Bj), (M′j ∪ F′j ∪ B1

j , ...∪ BT
j)

, (Bj ∪M′j ∪ F′j ∪ B1
j , ...∪ BT

j)
)

,

28

Note that this is a different way of using syntheses that in other parts of Algorithm 2 because
Λj,T

1 , and Z2T
j are scalars rather density matrices (see Definition 21 to understand why). These

scalars can, nonetheless, be described, as above, by 3D geometrically-local, shallow depth synthe-
ses as described above. In fact,

ZT
j = tr

(
ρT

Bj

)
,

and (47)

Λj,T
1 = tr

(
ρT

Bj
|ψ〉 〈ψ|Bj∪Mj∪Fj

ρT
Bj

)
(48)

where

ρK
Bi
≡
〈

0Fi ,Mi ,B1
i ,...BK

i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IB1
i ,...,BK

i
)(IFi∪Mi ⊗ SWAPBi B

j
i
)(CBi∪Mi∪Fi ⊗ IB1

i ,...,BK
i
)
∣∣∣0Fi ,Mi ,B1

i ,...BK
i

〉
as in Lemma 8.
So, applying Theorem 5 of [BGM20] according to Remark 6, as usual, we see that the

time cost of computing B(Λj,T
1 , ε2) = tr

(
ρT

Bj
|ψ〉 〈ψ|Bj∪Mj∪Fj

ρT
Bj

)
± ε2 is at most nε−2

2 2O(D2)w =

nε−2
2 2O(d2T2K4)30d because the synthesis Λj,T

1 has depth O(dTK2), and width at most 30d (the width
of the slice Kj) in the third dimension. The same depth and width bounds apply to the syn-

thesis Z2T
j , and so, the time cost of computing B(Z2T

j , ε2) = tr
(

ρ2T
Bj

)
± ε2 is also bounded by

nε−2
2 2O(d2T2K4)30d. So, the total time cost of computing κi

T,ε2
according to Definition 25 is at most

2nε−2
2 2O(d2T2K4)30d + poly(n). Since there are ∆ distinct κi

T,ε2
values appearing in the return line of

Algorithm 2, the total time ζ2(n), for computing all of the κi
T,ε2

values, is 2∆nε−2
2 2O(d2T2K4)30d +

∆poly(n). We an now update our recursive time analysis for Algorithm 2 as follows:

T(`) < 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) + ζ2(n) + µ(n) (49)

= 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) + 2∆nε−2

2 2O(d2T2K4)30d + ∆poly(n) + µ(n) (50)

Recalling that, in Algorithm 2, we specify parameter scalings ∆ = log(n), K = T = log3(n),
ε2 = δ2−10 log(n) log(log(n)), this gives

T(`) < 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) + δ−22d3polylog(n) + µ(n) (51)

= 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) + poly(n) (52)

= 2∆T
(

3
4
`

)
+ δ−22d3polylog(n) (53)

Note that Equation 53 is a recursive run-time whereby, at each level, we have at most 2∆
subproblems, each with size at most 3

4 of the original problem. This is a common formula, and we

29

can use the Master Theorem for divide-and-conquer algorithms to determine an upper bound for
our run-time as

T(n1/3) < (2∆)η · T
((

3
4

)η

n
1
3

)
+

η

∑
i=0

(2∆)iδ−22d3polylog(n) (54)

< (2∆)η · T
((

3
4

)η

n
1
3

)
+

(2∆)η+1 − 1
(2∆)− 1

· δ−22d3polylog(n) (55)

< (2∆)η · T
((

3
4

)η

n
1
3

)
+ (2∆)η+1 · δ−22d3polylog(n) (56)

T(n1/3) < (2∆)η

[
T
((

3
4

)η

n
1
3

)
+ 2∆δ−22d3polylog(n)

]
(57)

where η is the depth of our recursive calls. Note that the reason we start our recursion at n1/3

instead of at n is because of the technical definition of T(`). Recall that, we use T(`) to denote the
run-time bound for our algorithm on a synthesis with an N register of width `. The starting point
of our recursion is a cube of n qubits, which has side length N1/3 in each dimension, and this is
the reason that the total runtime for the original problem is bounded by T(n1/3).

Theorem 33. Suppose η = log(n)
3 log(4/3) and ∆ = log n. Given these values, the run-time for Algorithm 2

will be bounded by
T(n) < δ−22d3polylog(n) (58)

Proof. Theorem 33 follows directly from the above calculations.

Acknowledgments
MC thanks David Gosset and Sergey Bravyi for helpful discussions. Part of this work was

completed while MC was attending the Simons Institute Quantum Wave in Computing workshop.

30

Appendices

A Proofs of Lemma Statements

A.1 Statements from Section 4

Lemma (Restatement of Lemma 11). If | 〈0⊗n|C |0⊗n〉 | > |1/q(n)|, then, for any 0 ≤ h ≤ 1, h|K| of
the slices Ki in K have the property that:

ptotal(Mi = 0) ≥ (|1/q(n)|)
1

(1−h)|K| (59)

We will let Kheavy be the subset of K consisting of those Ki satisfying Equation (59).

Proof. Using 10 we have that:

ptotal(Mi = 0 ∀i) = ∏
i

ptotal(Mi = 0) ≥ |
〈
0⊗n∣∣C

∣∣0⊗n〉 | > |1/q(n)| (60)

So,

log

(
∏

i
ptotal(Mi = 0)

)
= ∑

i
log(ptotal(Mi = 0)) ≥ log(|1/q(n)|) (61)

Since every term on both sides of the equation is negative, it follows that at least h|K| of the
slices Ki in K must satisfy log(ptotal(Mi = 0)) ≥ 1

(1−h)|K| log(|1/q(n)|).
So, at least h|K| of the slices Ki in K must satisfy

ptotal(Mi = 0) ≥ exp
{

1
(1− h)|K| log(|1/q(n)|)

}
= (|1/q(n)|)

1
(1−h)|K|

Lemma (Restatement of Lemma 13). For any slice Ki ∈ Kheavy satisfying:

ptotal(Mi = 0) ≥ 1− e(n), (62)

the top Schmidt coefficient of |ψ〉Bi∪Fi
satisfies λi

1 ≥ 1−O(e(n)). (Where the Schmidt decomposition
is taken across the partition Bi, Fi.)

Proof. For any Ki ∈ Kheavy, recall that, by definition, the width of Mi is chosen large enough that
Bi and Fi do not have any intersecting light cones (so the two halves of the circuit are lightcone
separated). It follows that,

trMi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

) =

trMi∪Fi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

)⊗ trMi∪Bi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

)

But, from Equation 62, which is an assumption of the Lemma, we see that,

31

tr
(
|0Mi〉 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

|0Mi〉 〈0Mi |
)

(63)

= tr
(
|ψ〉 〈ψ|Bi∪Fi

)
= ptotal(Mi = 0) ≥ 1− e(n), (64)

and so, ∥∥∥CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

− |0Mi〉 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

|0Mi〉 〈0Mi |
∥∥∥

≤ 1− ptotal(Mi = 0) ≤ e(n)

So,

|ψ〉 〈ψ|Bi∪Fi
= trMi(|0Mi〉 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

|0Mi〉 〈0Mi |)
= trMi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

) + O(e(n))

= trMi∪Fi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

)

⊗ trMi∪Bi(CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

) + O(e(n))

= trMi∪Fi(|0Mi〉 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C
†
Bi∪Mi∪Fi

|0Mi〉 〈0Mi |)
⊗ trMi∪Bi(|0Mi〉 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

|0Mi〉 〈0Mi |) + O(e(n))

= trFi(|ψ〉 〈ψ|Bi∪Fi
)⊗ trBi(|ψ〉 〈ψ|Bi∪Fi

) + O(e(n)) (65)

Now, by definition, the largest Schmidt coefficient λi
1 of |ψ〉Bi∪Fi

is equal to the largest eigen-
value of the mixed state trFi(|ψ〉 〈ψ|Bi∪Fi

), which is equivalent to the largest eigenvalue of the mixed
state trBi(|ψ〉 〈ψ|Bi∪Fi

) (since |ψ〉 〈ψ|Bi∪Fi
is an unormalized pure state).

For notational brevity we define ρBi ≡ trFi(|ψ〉 〈ψ|Bi∪Fi
) and ρFi ≡ trBi(|ψ〉 〈ψ|Bi∪Fi

). By
Holder’s Inequality (with Holder parameters set top p = 1 and q = ∞) we have that:

‖ρ2
Bi
‖1 ≤ ‖ρBi‖1‖ρBi‖∞ = ‖ρBi‖∞ = λi

1,

and,

‖ρ2
Fi
‖1 ≤ ‖ρFi‖1‖ρFi‖∞ = ‖ρFi‖∞ = λi

1,

where the second to last inequality follows because ‖ρBi‖1 = tr(ρBi) ≤ 1 (resp. ‖ρFi‖1 =
tr(ρFi) ≤ 1), and the last equality follows by the definition of λi

1. So, we have:

(λi
1)

2 ≥ ‖ρ2
Bi
‖1‖ρ2

Fi
‖1 = tr

(
ρ2

Bi

)
tr
(
ρ2

Fi

)
= tr

(
ρ2

Bi
⊗ ρ2

Fi

)
= tr

(
(ρBi ⊗ ρFi)

2
)

= tr
((
|ψ〉 〈ψ|Bi∪Fi

)2
)
+ O(e(n)) ≥ 1−O(e(n)), (66)

Where the first three equalities follow by definition, the fourth equality follows by two uses of
Equation 65 (and the fact that ‖ |ψ〉 〈ψ|Bi∪Fi

‖1 ≤ 1), and the final inequality follows by Equation
64. It follows that:

32

λi
1 ≥ 1−O(e(n)) (67)

Lemma (Restatement of Lemma 15). For any Ki ∈ Kheavy,

‖PK
Fi
− |w1〉 〈w1|Fi

‖1 ≤ g(n) (68)

and

‖PK
Bi
− |v1〉 〈v1|Bi

‖1 ≤ g(n) (69)

where g(n) ≡
(

1−λi
1

λi
1

)K
, and |w1〉 〈w1|Fi

, |v1〉 〈v1|Bi
are the projectors onto the top Schmidt vectors of

|ψ〉Bi∪Fi
in Fi and Bi respectively.

Proof. Here we will write the proof for Equation 68, but the proof for Equation 69 is exactly anal-
ogous. In particular, by Lemma 8 we have that:

For any constant integer K > 0, the following is a 2D-local circuit which gives a block encoding
for ρK

Fi
:

K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IF1
i ,...,FK

i
)(IBi∪Mi ⊗ SWAPFi F

j
i
)(CBi∪Mi∪Fi ⊗ IF1

i ,...,FK
i
).

It follows, by the definition of a block encoding, that,

ρK
Fi
=
〈

0Bi ,Mi ,F1
i ,...Fk

i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IF1
i ,...,FK

i
)(IBi∪Mi ⊗ SWAPFi F

j
i
)(CBi∪Mi∪Fi ⊗ IF1

i ,...,FK
i
)
∣∣∣0Bi ,Mi ,F1

i ,...Fk
i

〉
Recall the definition of PK

Fi
:

PK
Fi
≡ 1

(λi
1)

K

〈
0Bi ,Mi ,F1

i ,...Fk
i

∣∣∣ K

∏
j=1

(C†
Bi∪Mi∪Fi

⊗ IF1
i ,...,FK

i
)(IBi∪Mi ⊗ SWAPFi F

j
i
)(CBi∪Mi∪Fi ⊗ IF1

i ,...,FK
i
)
∣∣∣0Bi ,Mi ,F1

i ,...Fk
i

〉
.

And thus,

PK
Fi
=

1
(λi

1)
K

ρK
Fi
=

(
ρFi

λi
1

)K

.

By the definition of λi
1 and the leading Schmidt coefficient we have that:

ρFi

λi
1
= |w1〉 〈w1|Fi

+ E,

where E ≡ (
ρFi
λi

1
− |w1〉 〈w1|Fi

) is a PSD operator with trace norm ‖E‖ ≤ 1−λi
1

λi
1

, and which is

orthogonal to 〈w1|Fi
(i.e. |w1〉 〈w1|Fi

· E = 0). It follows that:

33

(
ρFi

λi
1

)K

=
(
|w1〉 〈w1|Fi

+ E
)K

=
(
|w1〉 〈w1|Fi

)K
+ EK. (70)

So,

∥∥∥PK
Fi
− |w1〉 〈w1|Fi

∥∥∥ =

∥∥∥∥∥∥
(

ρFi

λi
1

)K

− |w1〉 〈w1|Fi

∥∥∥∥∥∥ = ‖EK‖ = ‖E‖K ≤
(

1− λi
1

λi
1

)K

(71)

Lemma (Restatement of Lemma 18). Consider a set Kheavy of slices such that, for every Ki ∈ Kheavy,
|ψ〉Bi∪Fi

satisfies λi
1 ≥ 1− e(n), and such that for any Ki, Kj ∈ Kheavy, the operators ΠK

Fi
and ΠK

Fj
are

light-cone separated whenever i 6= j. Then, for any set of ∆ slices, {Ki}i∈[∆] ⊆ Kheavy, we have that:

∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ| |Ψσ〉 〈Ψσ|
∥∥∥∥∥ =

∥∥∥∥∥|Ψ∅〉 〈Ψ∅| − ∑
σ∈P([∆])\∅

(−1)|σ|+1 |Ψσ〉 〈Ψσ|
∥∥∥∥∥ ≤ (2e(n) + 2g(n))∆,

(72)

where g(n) ≡
(

1−λi
1

λi
1

)K
.

Proof. For the following, we use the shorthand ρM(U) for the density matrix of the state pre-
pared by linear operator U acting on the all 0 state of the M register. For instance, ρALL(U) =
U |0ALL〉 〈0ALL|U†. Note that ρM(VU) = VρM(U)V†.

Following the definition of |Ψσ〉 in Definition 17, we are trying to upper bound the quantity∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ| |Ψσ〉 〈Ψσ|
∥∥∥∥∥ =

∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj
)(⊗i∈[∆] 〈0Mi |)C

)∥∥∥∥∥ . (73)

The proof proceeds in three parts. First, we consider Equation 73 without the post-selection
on ⊗i∈[∆] 〈0Mi |, and give an equivalent formulation in terms of a product of similar quantities.
Second, we show this formulation holds under the post-selection. And lastly, we bound each term
in this product formulation.

From the definition of C we have∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj
)C
)∥∥∥∥∥ = (74)∥∥∥∥∥ ∑

σ∈P([∆])
(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj
)(CL,σ1 ◦ ⊗j∈[|σ|−1]Cσj,σj+1 ◦ Cσ|σ|,R ◦ ⊗j∈[|σ|]CBσj∪Mσj∪Fσj

)
)∥∥∥∥∥ , (75)

and by the definitions of ΠK
Fj

and Cwrapi we have

=

∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ|ρALL

(
CL,σ1 ◦ ⊗j∈[|σ|−1]Cσj,σj+1 ◦ Cσ|σ|,R ◦ ⊗j∈[|σ|]P

K
Fj

CBσj∪Mσj∪Fσj

)∥∥∥∥∥ . (76)

34

We can rewrite this by expanding the summation and regrouping terms in tensor product

=
∥∥∥(CL,1 ◦ ⊗j∈[∆−1]Cσj,σj+1 ◦ Cσ∆,R) ◦ ⊗j∈[∆]

(
ρBj∪Mj∪Fj(CBj∪Mj∪Fj)− ρBj∪Mj∪Fj(PK

Fj
CBj∪Mj∪Fj)

)
(77)

⊗ρALL\∪j∈[∆]Bj∪Mj∪Fj
(I) ◦ (CL,1 ◦ ⊗j∈[∆−1]Cσj,σj+1 ◦ Cσ∆,R)

†
∥∥∥ . (78)

Lastly, by standard properties of the trace norm and noting that CL,1 ◦ ⊗j∈[∆−1]Cσj,σj+1 ◦ Cσ∆,R is
a unitary operator, we have∥∥∥∥∥ ∑

σ∈P([∆])
(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj
)C
)∥∥∥∥∥ = ∏

j∈[∆]

∥∥∥ρBj∪Mj∪Fj(CBj∪Mj∪Fj)− ρBj∪Mj∪Fj(PK
Fj

CBj∪Mj∪Fj)
∥∥∥ .

(79)
Now, since the terms ⊗i∈[∆] |0Mi〉, ⊗i∈[∆] 〈0Mi | commute with the terms ⊗j∈σΠK

Fj
, PK

Fj
for all i, j,

and σ, the form of Equation 79 holds even under post-selection:∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj

〈
0Mj

∣∣∣)C)∥∥∥∥∥ =

∏
j∈[∆]

∥∥∥ρBj∪Mj∪Fj

(〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
− ρBj∪Mj∪Fj

(
PK

Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)∥∥∥ . (80)

We now bound each term of this product. By adding and subtracting
ρBj∪Mj∪Fj

(
|w1〉 〈w1|Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
(where |w1〉 〈w1|Fj

is the projector onto the top Schmidt
vector of |Ψ〉Bj∪Fj

) and using the triangle inequality we have∥∥∥ρBj∪Mj∪Fj

(〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
− ρBj∪Mj∪Fj

(
PK

Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)∥∥∥ ≤ (81)∥∥∥ρBj∪Mj∪Fj

(〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
− ρBj∪Mj∪Fj

(
|w1〉 〈w1|Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)∥∥∥+∥∥∥ρBj∪Mj∪Fj

(
|w1〉 〈w1|Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
− ρBj∪Mj∪Fj

(
PK

Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)∥∥∥ . (82)

By using Lemma 15 (twice) we can bound the right summand by 2g(n) ≡ 2
(

1−λi
1

λi
1

)K
. By as-

sumption in the lemma statement we have that the top Schmidt coefficient of |ψ〉Bj∪Fj
satisfies

λ
j
1 ≥ 1− e(n) (for every j), and so (applying this bound twice) the left summand is bounded by

2e(n). Thus, we have∥∥∥ρBj∪Mj∪Fj

(〈
0Mj

∣∣∣CBj∪Mj∪Fj

)
− ρBj∪Mj∪Fj

(
PK

Fj

〈
0Mj

∣∣∣CBj∪Mj∪Fj

)∥∥∥ ≤ 2(e) + 2 f (n). (83)

Combining Equations 80 with Equation 83 we have the desired∥∥∥∥∥ ∑
σ∈P([∆])

(−1)|σ|ρALL

(
(⊗j∈σΠK

Fj

〈
0Mj

∣∣∣)C)∥∥∥∥∥ ≤ ∏
j∈[∆]

(2(e) + 2g(n)) = (2(e) + 2g(n))∆. (84)

Lemma (Restatement of Lemma 20). For any Ki ∈ Kheavy (recall this means that |ψ〉Bi∪Fi
satisfies

λi
1 ≥ 1− e(n)), the state |Ωi〉 〈Ωi| is within 6g(n) of an unnormalized product state about Mi, described

as follows: ∥∥∥|Ωi〉 〈Ωi| − 1/λi
1 trFi (|ΞLi〉 〈ΞLi |)⊗ trBi (|ΞRi〉 〈ΞRi |)

∥∥∥ ≤ 6g(n) (85)

35

Here g(n) ≡
(

1−λi
1

λi
1

)K
≤
(

e(n)
1−e(n)

)K
just as in Lemma 15. Recall the definitions:

|Ωi〉 ≡ ΠK
Fi
〈0Mi |C |0ALL〉

|ΞLi〉 ≡ PK
Fi
〈0Mi |CLi CBi∪Mi∪Fi |0Li∪Bi∪Mi∪Fi〉

|ΞRi〉 ≡ PK
Bi
〈0Mi |CRi CBi∪Mi∪Fi |0Ri∪Bi∪Mi∪Fi〉

Proof. The proof proceeds in two parts. First, we demonstrate that the quantity

|Ωi〉 〈Ωi| − 1/λi
1 trFi (|ΞLi〉 〈ΞLi |)⊗ trBi (|ΞRi〉 〈ΞRi |)

is equal to the sum of three error terms, E, H1, and H2. We then bound the trace norm of each of
these quantities using applications of Lemma 15. By definition of |Ωi〉 we have

|Ωi〉 〈Ωi| = ΠK
Fi
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉ΠK

Fi
. (86)

Now, recall by Definition 16, ΠK
Fi
≡ CWrapi P

K
Fi

C†
Wrapi

. So,

ΠK
Fi
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉ΠK

Fi
= 〈0Mi |Π

K
Fi

C |0ALL〉 〈0ALL|C†ΠK
Fi
|0Mi〉

= 〈0Mi |CWrapi P
K
Fi

C†
Wrapi

C |0ALL〉 〈0ALL|C†CWrapi P
K
Fi

C†
Wrapi

|0Mi〉
= 〈0Mi |CWrapi ◦ PK

Fi
◦ C′Li

◦ CBi∪Mi∪Fi ◦ C′Ri
|0ALL〉 〈0ALL| (C′)†

Li
◦ C†

Bi∪Mi∪Fi
◦ (C′)†

Ri
◦ PK

Fi
◦ C†

Wrapi
|0Mi〉

= CWrapi P
K
Fi

(
〈0Mi | ◦ C′Li

◦ CBi∪Mi∪Fi ◦ C′Ri
|0ALL〉 〈0ALL| (C′)†

Li
◦ C†

Bi∪Mi∪Fi
◦ (C′)†

Ri
|0Mi〉

)
PK

Fi
C†

Wrapi

= CWrapi P
K
Fi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ 〈0Mi |CBi∪Mi∪Fi |0Bi∪Mi∪Fi〉 〈0Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

|0Mi〉

⊗C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
PK

Fi
C†

Wrapi

= CWrapi P
K
Fi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |ψ〉 〈ψ|Bi∪Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
PK

Fi
C†

Wrapi

= CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi
(87)

Here the first equality holds because the ΠK
Fi

operators only act on register Fi, which is disjoint
from register Mi. The second equality holds by the the definition of ΠK

Fi
, see Definition 16. The

third equality holds by Equation 2, repeated below for the convenience of the reader.

C†
Wrapi

◦ C = C′Li
◦ CBi∪Mi∪Fi ◦ C′Ri

The fourth equality holds because neither the operator CWrapi , nor the operator PK
Fi

act (non-
trivially) on the register Mi. The fifth equality holds because the operators C′Li

, C′Ri
, and CBi∪Mi∪Fi

all act on disjoint registers and are therefore in tensor product by definition. The sixth equal-
ity holds by the definition of |ψ〉Bi∪Fi

. The seventh equality follows because PK
Fi

only acts (non-
trivially) on the register Fi, by definition.

Now, define:

36

E ≡ CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |w1〉 〈w1|Fi

|ψ〉 〈ψ|Bi∪Fi
|w1〉 〈w1|Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
C†

Wrapi

− CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi

= CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗
(
|w1〉 〈w1|Fi

|ψ〉 〈ψ|Bi∪Fi
|w1〉 〈w1|Fi

− PK
Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
⊗C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi
(88)

This error term quantifies the difference between using our block-encoding construction PK
Fi

versus using the true projector onto the top Schmidt vector, |w1〉 〈w1|Fi
, which is PK

Fi
is meant to

approximate. We will show below, using Lemma 15, that the trace norm of E is small. We have,
from Equation 87, that:

ΠK
Fi
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉ΠK

Fi

= CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi

= CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |w1〉 〈w1|Fi

|ψ〉 〈ψ|Bi∪Fi
|w1〉 〈w1|Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
C†

Wrapi
+ E

= CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗
(

λi
1 |v1〉Bi

|w1〉Fi
〈v1|Bi

〈w1|Fi

)
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi
+ E

= λi
1CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗
(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi
+ E

= λi
1CL−Wrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

)
C†

L−Wrapi

⊗ CR−Wrapi

(
|w1〉 〈w1|Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
C†

R−Wrapi
+ E

= λi
1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
+ E (89)

Now that we have successfully approximated the starting state by a product state (plus an error
term E) we want to switch back from the true Schmidt vector projectors |v1〉 〈v1|Bi

, |w1〉 〈w1|Fi
, to

the original block encoding approximations of those projectors PK
Bi

, PK
Fi

, in order to complete the
proof. To do this we define two new error terms H1, and H2 as follows:

H1 ≡ λi
1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

− CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
(90)

37

and

H2 = CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

− 1/λi
1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
PK

Bi
|ψ〉 〈ψ|Bi∪Fi

PK
Bi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
(91)

(we will later show that both error terms H1 and H2 are small in the trace norm) it follows from
Equation 89 that:

ΠK
Fi
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉ΠK

Fi

= λi
1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
+ E

= CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
+ E + H1

= 1/λi
1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
PK

Bi
|ψ〉 〈ψ|Bi∪Fi

PK
Bi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi
+ E + H1 + H2

= 1/λi
1 trFi

(
PK

Fi
CL−Wrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |ψ〉 〈ψ|Bi∪Fi

)
C†

L−Wrapi
PK

Fi

)
⊗ trBi

(
PK

Bi
CR−Wrapi

(
|ψ〉 〈ψ|Bi∪Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

)
C†

R−Wrapi
PK

Bi

)
+ E + H1 + H2

= 1/λi
1 trFi

(
PK

Fi
〈0Mi |CLi CBi∪Mi∪Fi |0Li∪Bi∪Mi∪Fi〉 〈0Li∪Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

C†
Li
|0Mi〉 PK

Fi

)
⊗ trBi

(
PK

Bi
〈0Mi |CRi CBi∪Mi∪Fi |0Ri∪Bi∪Mi∪Fi〉 〈0Ri∪Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

C†
Ri
|0Mi〉 PK

Bi

)
+ E + H1 + H2

= 1/λi
1 trFi (|ΞLi〉 〈ΞLi |)⊗ trBi (|ΞRi〉 〈ΞRi |) + E + H1 + H2

It follows, by triangle inequality, that:

∥∥∥ΠK
Fi
〈0Mi |C |0ALL〉 〈0ALL|C† |0Mi〉ΠK

Fi

−1/λi
1 trFi

(
PK

Fi
〈0Mi |CLi CBi∪Mi∪Fi |0Li∪Bi∪Mi∪Fi〉 〈0Li∪Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

C†
Li
|0Mi〉 PK

Fi

)
⊗ trBi

(
PK

Bi
〈0Mi |CRi CBi∪Mi∪Fi |0Ri∪Bi∪Mi∪Fi〉 〈0Ri∪Bi∪Mi∪Fi |C

†
Bi∪Mi∪Fi

C†
Ri
|0Mi〉 PK

Bi

)∥∥∥ (92)

=
∥∥∥|Ωi〉 〈Ωi| − 1/λi

1 trFi (|ΞLi〉 〈ΞLi |)⊗ trBi (|ΞRi〉 〈ΞRi |)
∥∥∥ (93)

= ‖E + H1 + H2‖ ≤ ‖E‖+ ‖H1‖+ ‖H2‖ (94)

It remains to bound the norms (in this case the trace norm) of E, H1, H2. We will start with E:
From the definition of E (Equation 88) we see that:

38

‖E‖ =
∥∥∥CWrapi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗
(
|w1〉 〈w1|Fi

|ψ〉 〈ψ|Bi∪Fi
|w1〉 〈w1|Fi

− PK
Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
⊗C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

Wrapi

∥∥∥
= ‖C′Li

|0Li〉 〈0Li | (C
′)†

Li
‖ · ‖ |w1〉 〈w1|Fi

|ψ〉 〈ψ|Bi∪Fi
|w1〉 〈w1|Fi

− PK
Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
‖

· ‖C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri
‖

= ‖ |0Li〉 〈0Li | ‖ · ‖ |w1〉 〈w1|Fi
|ψ〉 〈ψ|Bi∪Fi

|w1〉 〈w1|Fi
− PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
‖ · ‖ |0Ri〉 〈0Ri | ‖

= ‖ |w1〉 〈w1|Fi
|ψ〉 〈ψ|Bi∪Fi

|w1〉 〈w1|Fi
− PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi
‖ ≤ 2g(n) = 2

(
1− λi

1

λi
1

)K

Here the first equality follows by definition of E (Equation 88), the second equality follows
because CWrapi is unitary and by using the tensor product structure after CWrapi is removed,
the third equality follows because C′Li

and C′Ri
are unitary, the fourth equality follows because

‖ |0Li〉 〈0Li | ‖ = ‖ |0Ri〉 〈0Ri | ‖ = 1, and the inequality follows by two sequential applications of
Lemma 15.

Next we will bound ‖H1‖. From the definition of H1 in Equation 90 we have that:

39

‖H1‖ ≡
∥∥∥λi

1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

⊗ CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

− CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

⊗CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

∥∥∥
=
∥∥∥(λi

1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

−CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

)
⊗CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

∥∥∥
=
∥∥∥(λi

1CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
C†

L−Wrapi

−CL−Wrapi trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

)
C†

L−Wrapi

)∥∥∥
·
∥∥∥CR−Wrapi trBi

(
|v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
⊗ C′Ri

|0Ri〉 〈0Ri | (C
′)†

Ri

)
C†

R−Wrapi

∥∥∥
=
∥∥∥(λi

1 trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi

)
− trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗ PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

))∥∥∥
·
∥∥∥|w1〉 〈w1|Fi

⊗ C′Ri
|0Ri〉 〈0Ri | (C

′)†
Ri

∥∥∥
=
∥∥∥trFi

(
C′Li
|0Li〉 〈0Li | (C

′)†
Li
⊗
(

λi
1 |v1〉 〈v1|Bi

⊗ |w1〉 〈w1|Fi
− PK

Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

))∥∥∥
·
∥∥∥|w1〉 〈w1|Fi

⊗ |0Ri〉 〈0Ri |
∥∥∥

≤
∥∥∥λi

1 |v1〉 〈v1|Bi
⊗ |w1〉 〈w1|Fi

− PK
Fi
|ψ〉 〈ψ|Bi∪Fi

PK
Fi

∥∥∥
≤ 2λi

1g(n) ≤ 2g(n) = 2

(
1− λi

1

λi
1

)K

Here the first equality follows by definition (Equation 90), the second equality follows by re-
grouping terms, and the third equality follows by the tensor product structure.

The proof for the bound on H2 is extremely similar to the bound on H1, and so we will not
repeat the argument.

40

A.2 Proofs for Statements in Section 5

Lemma (Restatement of Lemma 31).∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σ ΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉)∥∥∥∥∥ (95)

≤ E3(n, K, T, ε2, ε, ∆) + 16 f (S, η − 1, ∆, ε),

where

E3(n, K, T, ε2, ε, ∆) ≡ O
(

2∆(6g(n)) + 2∆K
(

e(n)2T + ε2

)
+ ε
)

Proof. The proof proceeds in two parts. First, we show by direct calculation that the desired error
quantity can be upper bounded by the sum of four error quantities G1, G2, G3, and G4:∥∥∥∥∥ ∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σ ΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉)∥∥∥∥∥
≤ G1 + G2 + G3 + G4. (96)

We then bound these four terms individually. We begin by demonstrating Equation 96, and defin-
ing G1, G2, G3, and G4 in the process.

41

∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)2K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉)∥∥∥∥∥
≤
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
− 〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥
+ ∑

σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥ 〈0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉

− 1

(λi
1λ

j
1)

4K+1
〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

∥∥∥∥∥
+ ∑

σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥
(

1

(λi
1λ

j
1)

4K+1
− 1

(κi
T,ε2

κ
j
T,ε2

)4K+1

)

·A(SL,i, η − 1) ·A(Sj,R, η − 1) ·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

) ∥∥∥∥∥
which is equal to

=

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1 (A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
− 〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥
+ G1 + G2 (97)

where G1 and G2 are defined as the error quantities

G1 ≡ ∑
σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥ 〈0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉

− 1

(λi
1λ

j
1)

4K+1
〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

∥∥∥∥∥

42

and

G2 ≡ ∑
σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥
(

1

(λi
1λ

j
1)

4K+1
− 1

(κi
T,ε2

κ
j
T,ε2

)4K+1

)

·A(SL,i, η − 1) ·A(Sj,R, η − 1) ·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

) ∥∥∥∥∥.

Later we will bound the size of G1 and G2 using Lemmas 20, and 26 respectively. For now we
carry them along in our calculation. So, continuing where we left off in Equation 97:

43

∥∥∥∥∥ ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1

(
1

(κi
T,ε2

κ
j
T,ε2

)2K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
−
〈

0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉)∥∥∥∥∥
≤
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1 (A(SL,i, η − 1) ·A(Sj,R, η − 1)

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
− 〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥
+ G1 + G2

≤
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1) ∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1 (

·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

)
− 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

)∥∥∥∥∥
+

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)

· ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1 〈0ALL|
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

∥∥∥∥∥
+ G1 + G2

≤ 2∆ · ε

2∆ ·
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)

· ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1 〈0ALL|
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

∥∥∥∥∥
+ G1 + G2

44

≤ ε ·
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

∥∥∥∥∥
+

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)
· 〈0ALL| φi,j |0ALL〉

∥∥∥∥∥
+

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)

·
(
〈0ALL| φi,j |0ALL〉 − ∑

σ∈P({i+1,...,j−1})\∅
(−1)|σ|+1 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

)∥∥∥∥∥
+ G1 + G2

≤ G1 + G2 + G3 +

∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥·(∥∥∥∥∥ 〈0ALL| φi,j |0ALL〉 − ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1 〈0ALL|
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

∥∥∥∥∥+ 1

)
≤ G1 + G2 + G3 + G4

Where

G3 ≡ ε ·
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

∥∥∥∥∥
and

G4 ≡
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥·(∥∥∥∥∥ 〈0ALL| φi,j |0ALL〉 − ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1 〈0ALL|
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

∥∥∥∥∥+ 1

)

We will now prove the bounds: G1 ≤ 2∆(12g(n)), G2 ≤ O
(
2∆K

(
e(n)2T + ε2

))
, G3 ≤ O(ε),

G4 ≤ 8(1 + (2e(n) + 2g(n))∆−2) f (S, η − 1, ∆, ε) ≤ 16 · f (S, η − 1, ∆, ε). The desired result follows
from these bounds, so all that remains is to prove them, which we do below.

We begin by bounding G1. For any fixed subset σ ∈ P({j− 1, ..., i + 1}) we know, by using two
applications of Lemma 20 that:

45

∥∥∥∥∥ 〈0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉
− 1

(λi
1λ

j
1)

4K+1
〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

∥∥∥∥∥
≤
∥∥∥∥∥ ∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣− 1

(λi
1λ

j
1)

4K+1
φL,i ⊗

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
⊗ φj,R

∥∥∥∥∥
≤ 2 · 6g(n) = 12g(n)

This follows because we can use Lemma 20 to “cut” the state
∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣ twice, once
at cut i and once at cut j, which produces the above product state, incurring error 2 · 6 f (n). It
follows that:

G1 ≡ ∑
σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥ 〈0ALL

∣∣∣Ψ{i,j}∪σ

〉 〈
Ψ{i,j}∪σ

∣∣∣0ALL

〉

− 1

(λi
1λ

j
1)

4K+1
〈0ALL| φL,i |0ALL〉 · 〈0ALL|

(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉 · 〈0ALL| φj,R |0ALL〉

∥∥∥∥∥
≤ 2∆(12g(n)),

as desired.
For the next three bounds we will repeatedly use the fact that (λi

1)
4K+1 = Θ(1) = (λ

j
1)

4K+1,
and thus, 1

(λi
1λ

j
1)

4K+1
= Θ(1). The reason for this is that, we know, from the use of Lemma 13

in the error analysis of Algorithm 2, that (λi
1)

4K+1, (λj
1)

4K+1 ≥ 1−O(e(n)), where e(n) ≤ (1−

2
log(δ)

log7(n)) = O(1/ log4(n)) (since δ > n− log2(n) as verified in the check in the driver Algorithm 1).
Since K = O(log3(n)), as specified in Algorithm 2, it follows that (λi

1)
4K+1 = Θ(1) = (λ

j
1)

4K+1.
We now bound G2.

46

G2 ≡ ∑
σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥
(

1

(λi
1λ

j
1)

4K+1
− 1

(κi
T,ε2

κ
j
T,ε2

)4K+1

)

·A(SL,i, η − 1) ·A(Sj,R, η − 1) ·B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
,

ε

2∆

) ∥∥∥∥∥
≤ ∑

σ∈P({i+1,...,j−1})\∅

∥∥∥∥∥
(

1

(λi
1λ

j
1)

4K+1
− 1

(κi
T,ε2

κ
j
T,ε2

)4K+1

)∥∥∥∥∥
= 2∆−2

∥∥∥∥∥
(

1

(λi
1λ

j
1)

4K+1
− 1

(κi
T,ε2

κ
j
T,ε2

)4K+1

)∥∥∥∥∥ = 2∆−2

∥∥∥∥∥
(
(λi

1λ
j
1)

4K+1 − (κi
T,ε2

κ
j
T,ε2

)4K+1

(λi
1λ

j
1)

4K+1(κi
T,ε2

κ
j
T,ε2

)4K+1

)∥∥∥∥∥
= O(2∆)

∥∥∥∥∥(λi
1λ

j
1)

4K+1 − (κi
T,ε2

κ
j
T,ε2

)4K+1

∥∥∥∥∥ = O
(

2∆(4K + 1)
(
|λi

1 − κi
T,ε2
|+ |λj

1 − κ
j
T,ε2
|
))

≤ O

(
2∆K

(
e(n)2T + ε2

(λi
1)

2T+1

))
= O

(
2∆K

(
e(n)2T + ε2

))
Where the first inequality follows because, by definition, A(SL,i, η − 1),A(Sj,R, η −

1),B
((
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
, ε

2∆

)
= O(1) (since each is a close approximation of

a quantum state amplitude squared, which is at most 1 by definition). The remaining steps follow
by using the fact that (λi

1)
4K+1 = Θ(1) = (λ

j
1)

4K+1 as discussed above (note that (λi
1)

2T = Θ(1)
for the same reason, since T = O(log3(n))), and by using Lemma 26 which gives the error bound
for how well the κ terms approximate the λ terms.

We now bound G3:

G3 ≡ ε ·
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1
A(SL,i, η − 1) ·A(Sj,R, η − 1)

∥∥∥∥∥ ≤ O(ε)

Where we have used that (λi
1)

4K+1 = Θ(1) = (λ
j
1)

4K+1, and A(SL,i, η − 1),A(Sj,R, η − 1) =
O(1), for the same reasons as in the bound of G2.

We now bound G4:

47

G4 ≡
∥∥∥∥∥ 1

(λi
1λ

j
1)

4K+1

(
A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉

)∥∥∥∥∥·(∥∥∥∥∥ 〈0ALL| φi,j |0ALL〉 − ∑
σ∈P({i+1,...,j−1})\∅

(−1)|σ|+1 〈0ALL|
(
⊗k∈σΠK

Fk
〈0Mk |

)
φi,j

(
⊗k∈σ |0Mk〉ΠK

Fk

)
|0ALL〉

∥∥∥∥∥+ 1

)

≤ 4

∥∥∥∥∥A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉
∥∥∥∥∥·(

(2e(n) + 2g(n))∆−2 + 1

)

≤ 8

∥∥∥∥∥A(SL,i, η − 1) ·A(Sj,R, η − 1)− 〈0ALL| φL,i |0ALL〉 · 〈0ALL| φj,R |0ALL〉
∥∥∥∥∥

≤ 8 · 2 · f (S, η − 1, ∆, ε) = 16 f (S, η − 1, ∆, ε)

Here the first inequality follows by our previous argument that 1
(λi

1λ
j
1)

4K+1
= Θ(1), as well

as Lemma 18. (In fact, since we find it desirable to have an explicit constant for this particular
error term, we are using 1

(λi
1λ

j
1)

4K+1
≤ 4, which the reader may verify, although we emphasize

that the value of this constant does not matter for the asymptotic scaling and is only used for
simplicity of presentation elsewhere in this paper.) Note that our use of Lemma 18, while simple,
was key here in order to avoid a factor of 2∆ appearing in the bound of G4. The second inequality
follows because the bound (2e(n) + 2g(n))∆−2 = o(1) is immediate (in fact, since e(n), f (n) =
o(1), and ∆ = Θ(log(n)), this quantity actually quite small, but here we only need that it is o(1)).
The final inequality follows by two uses of the definition of f (S, η − 1, ∆, ε), which, we recall, is
defined, recursively, to be the error bound on A(·, η− 1), so that f (S, η− 1, ∆, ε) ≥ |A(SL,i, η− 1)−
〈0ALL| φL,i |0ALL〉 |, and f (S, η − 1, ∆, ε) ≥ |A(Sj,R, η − 1)− 〈0ALL| φj,R |0ALL〉 | by definition. (This
final step also uses the triangle inequality, and the facts that A(SL,i, η − 1),A(Sj,R, η − 1) = O(1),
etc).

Now that we have bounded G1, G2, G3, and G4, the proof is complete.

References

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of linear op-
tics. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Comput-
ing, STOC ’11, page 333–342, New York, NY, USA, 2011. Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/1993636.1993682, doi:10.1145/
1993636.1993682.

[AG19] van Joran Apeldoorn and András Gilyén. Improvements in quantum sdp-solving
with applications. arXiv:1804.05058 [quant-ph], page 15 pages, 2019. arXiv:
1804.05058. doi:10.4230/LIPIcs.ICALP.2019.99.

[BFNV19] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the
complexity and verification of quantum random circuit sampling. Nature Physics,
15(2):159–163, Feb 2019. doi:10.1038/s41567-018-0318-2.

48

https://doi.org/10.1145/1993636.1993682
http://dx.doi.org/10.1145/1993636.1993682
http://dx.doi.org/10.1145/1993636.1993682
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.99
http://dx.doi.org/10.1038/s41567-018-0318-2

[BGM20] Sergy Bravyi, David Gosset, and Ramis Movassagh. Classical algorithms for quan-
tum mean values. QIP, 2020. URL: https://arxiv.org/abs/1909.11485.

[BJS11] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of
commuting quantum computations implies collapse of the polynomial hierarchy.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
467(2126):459–472, Feb 2011. doi:10.1098/rspa.2010.0301.

[BMS17] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achieving quantum
supremacy with sparse and noisy commuting quantum computations. Quantum, 1:8,
Apr 2017. URL: http://dx.doi.org/10.22331/q-2017-04-25-8, doi:10.22331/q-
2017-04-25-8.

[BVHS+18] Juan Bermejo-Vega, Dominik Hangleiter, Martin Schwarz, Robert Raussendorf, and
Jens Eisert. Architectures for quantum simulation showing a quantum speedup.
Phys. Rev. X, 8:021010, Apr 2018. URL: https://link.aps.org/doi/10.1103/

PhysRevX.8.021010, doi:10.1103/PhysRevX.8.021010.

[DHKLP20] Alexander M. Dalzell, Aram W. Harrow, Dax Enshan Koh, and Rolando L. La Placa.
How many qubits are needed for quantum computational supremacy? Quantum,
4:264, May 2020. URL: http://dx.doi.org/10.22331/q-2020-05-11-264, doi:10.
22331/q-2020-05-11-264.

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular
value transformation and beyond: exponential improvements for quantum matrix
arithmetics. STOC, 2019. URL: https://arxiv.org/pdf/1806.01838.pdf.

[HZN+20] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai, Xun Gao, Zhengxiong
Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun Shi,
and Jianxin Chen. Classical simulation of quantum supremacy circuits, 2020. arXiv:
2005.06787.

[KLL+17] Shelby Kimmel, Cedric Yen-Yu Lin, Guang Hao Low, Maris Ozols, and Theodore J.
Yoder. Hamiltonian simulation with optimal sample complexity. npj Quantum Infor-
mation, 3(1):13, Mar 2017. doi:10.1038/s41534-017-0013-7.

[KMM21] Yasuhiro Kondo, Ryuhei Mori, and Ramis Movassagh. Fine-grained analysis and
improved robustness of quantum supremacy for random circuit sampling, 2021.
arXiv:2102.01960.

[LC16] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by qubitization.
Quantum, 3:163, Oct 2016. arXiv:1610.06546. URL: http://dx.doi.org/10.22331/q-
2019-07-12-163, doi:10.22331/q-2019-07-12-163.

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal compo-
nent analysis. Nature Physics, 10(9):631–633, Jul 2014. URL: http://dx.doi.org/10.
1038/nphys3029, doi:10.1038/nphys3029.

[Mov20] Ramis Movassagh. Quantum supremacy and random circuits. QIP, 2020. URL:
https://arxiv.org/pdf/1909.06210.pdf.

49

https://arxiv.org/abs/1909.11485
http://dx.doi.org/10.1098/rspa.2010.0301
http://dx.doi.org/10.22331/q-2017-04-25-8
http://dx.doi.org/10.22331/q-2017-04-25-8
http://dx.doi.org/10.22331/q-2017-04-25-8
https://link.aps.org/doi/10.1103/PhysRevX.8.021010
https://link.aps.org/doi/10.1103/PhysRevX.8.021010
http://dx.doi.org/10.1103/PhysRevX.8.021010
http://dx.doi.org/10.22331/q-2020-05-11-264
http://dx.doi.org/10.22331/q-2020-05-11-264
http://dx.doi.org/10.22331/q-2020-05-11-264
https://arxiv.org/pdf/1806.01838.pdf
http://arxiv.org/abs/2005.06787
http://arxiv.org/abs/2005.06787
http://dx.doi.org/10.1038/s41534-017-0013-7
http://arxiv.org/abs/2102.01960
http://dx.doi.org/10.22331/q-2019-07-12-163
http://dx.doi.org/10.22331/q-2019-07-12-163
http://dx.doi.org/10.22331/q-2019-07-12-163
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1038/nphys3029
https://arxiv.org/pdf/1909.06210.pdf

[NPD+20] John Napp, Rolando L. La Placa, Alexander M. Dalzell, Fernando G. S. L. Brandao,
and Aram W. Harrow. Efficient classical simulation of random shallow 2d quantum
circuits, 2020. arXiv:2001.00021.

[NSC+17] Alex Neville, Chris Sparrow, Raphaël Clifford, Eric Johnston, Patrick M. Birchall,
Ashley Montanaro, and Anthony Laing. Classical boson sampling algorithms with
superior performance to near-term experiments. Nature Physics, 13(12):1153–1157,
Dec 2017. doi:10.1038/nphys4270.

50

http://arxiv.org/abs/2001.00021
http://dx.doi.org/10.1038/nphys4270

	1 Introduction
	2 Dividing the Cube: Some Notation
	3 Divide and Conquer: Schmidt Vectors and Block Encodings
	4 Divide and Conquer: Splitting Over Heavy Slices
	5 Estimating Amplitudes in Quasi-polynomial Time
	5.1 Run-Time and Error Analysis for Algorithm 1
	5.2 Error Analysis for Algorithm 2
	5.3 Run-Time Analysis for Algorithm 2

	A Proofs of Lemma Statements
	A.1 Statements from Section 4
	A.2 Proofs for Statements in Section 5

