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Abstract

We study the problem of extracting random bits from weak sources that are sampled by
algorithms with limited memory. This model of small-space sources was introduced by Kamp,
Rao, Vadhan and Zuckerman (STOC’06), and falls into a line of research initiated by Tre-
visan and Vadhan (FOCS’00) on extracting randomness from weak sources that are sampled by
computationally bounded algorithms. Our main results are the following.

1. We obtain near-optimal extractors for small-space sources in the polynomial error regime.
For space s sources over n bits, our extractors require just k ≥ s·polylog(n) entropy. This is
an exponential improvement over the previous best result, which required k ≥ s1.1 ·2log0.51 n

(Chattopadhyay and Li, STOC’16).

2. We obtain improved extractors for small-space sources in the negligible error regime. For
space s sources over n bits, our extractors require entropy k ≥ n1/2+δ · s1/2−δ, whereas the
previous best result required k ≥ n2/3+δ · s1/3−δ (Chattopadhyay, Goodman, Goyal and
Li, STOC’20).

To obtain our first result, the key ingredient is a new reduction from small-space sources to
affine sources, allowing us to simply apply a good affine extractor.

To obtain our second result, we must develop some new machinery, since we do not have
low-error affine extractors that work for low entropy. Our main tool is a significantly improved
extractor for adversarial sources, which is built via a simple framework that makes novel use
of a certain kind of leakage-resilient extractors (known as cylinder intersection extractors),
by combining them with a general type of extremal designs. Our key ingredient is the first
derandomization of these designs, which we obtain using new connections to coding theory and
additive combinatorics.
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1 Introduction

Randomness is a powerful computational resource that has found beautiful applications in algorithm
design, cryptography, and combinatorics (see [Vad12] for an excellent survey). Unfortunately, such
applications require access to uniform bits, but randomness harvested from natural phenomena
(e.g., radioactive decay, atmospheric noise) rarely looks so pure. Such motivates the study of
randomness extractors, which are algorithms that convert these weak sources of randomness into
distributions that are close to uniform:

Definition 1.1 (Randomness extractor). Let X be a family of distributions over {0, 1}n. A function
Ext : {0, 1}n → {0, 1}m is an extractor for X with error ǫ if for every X ∈ X ,

|Ext(X)−Um| ≤ ǫ,

where Um is the uniform distribution over {0, 1}m, and | · | denotes statistical distance.

Beyond purifying natural sources of randomness, extractors have found deep connections to
complexity theory, cryptography, coding theory, and combinatorics (see, e.g., [Sha11,Vad12]). Con-
structing these objects has thus produced a fruitful line of research over the past 30 years, where
various distribution families X and errors ǫ have been considered depending on the motivating
application.

In order for extraction to be possible, each source X ∈ X must have some randomness. In
this field, it is standard to measure the randomness content of X as its min-entropy, defined as
H∞(X) := minx log(1/Pr[X = x]). Unfortunately, it turns out that a min-entropy requirement
alone is not enough to enable extraction. Indeed, an easy folklore argument shows that even if
every source X ∈ X has min-entropy k ≥ n − 1, there cannot exist an extractor Ext for X that
achieves nontrivial error ǫ < 1/2.

To circumvent this impossibility result, researchers have considered two main directions. In
the first direction, one assumes that each source X ∈ X comes with a uniform seed Ud, which
can be used to extract uniform bits from the rest of the source, which has some min-entropy
guarantee. Extractors in this setting are called seeded extractors, and near-optimal constructions
of these objects are now known [LRVW03,GUV09,DKSS13]. In this paper, we focus on the second
direction, where one assumes each source X ∈ X has some additional structure beyond its min-
entropy guarantee.

Samplable sources One natural way to equip each distribution X ∈ X with some additional
structure is to assume that it can be sampled efficiently, i.e., generated by an algorithm that has
limited computational resources. Such sources were introduced by Trevisan and Vadhan [TV00],
under the suggestion that they are a good model for distributions that would actually arise in
nature. In [TV00], and the follow-up works of Viola [Vio14] and Li [Li16], the authors consider
circuit sources: distributions that can be sampled by small circuits. Such sources can be thought
of as distributions sampled by algorithms with limited time.

In this paper, we consider distributions that can be sampled by algorithms with limited memory.
Known as small-space sources, this family of distributions was introduced by Kamp, Rao, Vadhan,
and Zuckerman [KRVZ06], and further studied in recent work [CL16,CGGL20]. To define this class
of sources formally, one uses branching programs to model the evolution of state in the small-space
algorithm. A branching program of width w and length n is a directed acyclic graph with n + 1
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layers, where the first layer has one node, the remaining layers have w nodes each, and every edge
starting in layer i terminates in layer i+ 1. Small-space sources are then defined as follows.

Definition 1.2 (Small-space source). A distribution X over {0, 1}n is a space s source if it is
generated by a random walk starting on the first layer of a branching program of width 2s and
length n, where each edge is labeled with an output bit and some transition probability.

Beyond their motivation in modeling distributions that one might actually find in nature, small-
space sources are powerful enough to capture several other well-studied models. As noted in
[KRVZ06], small-space sources can simulate: von Neumann’s model of a coin with unknown bias
[vN51]; the finite Markov chain model of Blum [Blu86]; the space-bounded models of Vazirani
[Vaz87] and Koenig and Maurer [KM04,KM05]; and the popular models of oblivious bit-fixing and
symbol-fixing sources [CGH+85,KZ06] and independent sources [CG88]. In fact, it is suggested
in [KRVZ06] that the only model of sources that appears unrelated to small-space sources is the
class of affine sources [GR08].

1.1 Summary of our results

In this paper, we explicitly construct two significantly improved extractors for small-space sources.
Along the way, we prove a new structural result for small-space sources, and provide new explicit
constructions of several related pseudorandom objects. Our extractors follow easily from these new
key ingredients, which may be of independent interest. We formally state these results, below.

1.1.1 Small-space extractors for polylogarithmic entropy

In our first main theorem, we construct near-optimal extractors for small-space sources in the
polynomial error regime.

Theorem 1. There exists a universal constant C > 0 such that for all n, k, s ∈ N satisfying
k ≥ s · logC(n), there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s sources with
min-entropy k, which has output length m = (k/s)Ω(1) and error ǫ = n−Ω(1).

Thus, our extractor requires min-entropy k ≥ s · logC(n), which is an exponential improvement

over the previous best requirement [CL16] of k ≥ s1.1 ·2log0.51(n). In particular, in the natural setting
of sources sampled by s = polylog(n) space algorithms, our extractor is the first construction that
works for polylogarithmic entropy. Non-constructively, it is known that small-space extractors exist
for min-entropy k ≥ O(s+ log n+ log(1/ǫ)), and thus our result is nearly optimal when the desired
error is at most polynomially small.

The key ingredient we use to prove Theorem 1 is a new structural result, which establishes a
connection between small-space sources and affine sources. An affine source X over n bits with
min-entropy k is a distribution that is uniform over some (unknown) affine subspace of Fn

2 . A long
line of work has considered the problem of constructing extractors for affine sources [GR08,DG10,
Bou07,Yeh11, Li11,Rao09, Li16,CGL21], and in this work we show that such extractors can also
extract from small-space sources. In particular, we prove the following.

Theorem 2. Let X be a space s source over {0, 1}n with min-entropy k. Then X is 2−Ω(k)-close
to a convex combination of affine sources with min-entropy Ω( k

s log(n/k)).
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By combining this structural result with the explicit affine extractor of Li [Li16], which works
for polylog(n) min-entropy and has polynomially small error, we immediately obtain Theorem 1.
Furthermore, if we are only interested in outputting one bit with constant error, we can use the
recent affine extractor of Chattopadhyay, Goodman, and Liao [CGL21] to extract from small-space
sources with min-entropy k ≥ s · log2+o(1)(n).

1.1.2 Small-space extractors with exponentially small error

While polynomially small error suffices for many applications, it is sometimes important to achieve
negligible error in applications such as cryptography [DOPS04]. However, since the best low-error
affine extractors require entropy k ≥ Ω(n/

√
log log n) [Bou07, Yeh11, Li11], Theorem 2 does not

yield any new result in the negligible error setting.
In our next main result, we develop some new machinery in order to obtain improved low-error

extractors for small-space sources. Until recently, the best extractors for such sources [KRVZ06]
required entropy k ≥ Cn1−γsγ , where γ > 0 is some tiny constant and C is a large one. In
[CGGL20], the entropy requirement was improved to k ≥ Cn2/3+δs1/3−δ. We reduce this entropy
requirement further, and prove the following.

Theorem 3. For any fixed δ ∈ (0, 1/2] there is a constant C > 0 such that for all n, k, s ∈ N

satisfying k ≥ Cn1/2+δs1/2−δ, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s

sources of min-entropy k, with output length m = nΩ(1) and error ǫ = 2−nΩ(1)
.

Observe that the line of improvements described above (from [KRVZ06] to [CGGL20] to
Theorem 3) is strict, since we always have s < n (or else the bounds are trivial). In particular,
note that for, say s = nδ space, the entropy requirement has dropped from k ≥ O(n1−γ) to
k ≥ O(n2/3+δ) to k ≥ O(n1/2+δ).

To prove Theorem 3, we start with the standard approach [KRVZ06] of reducing small-space
sources to the class of adversarial sources [CGGL20]. Informally, an adversarial sourceX consists of
many independent sources, where only a few of them are guaranteed to be “good” (i.e., contain some
min-entropy). Formally, an (N,K, n, k)-adversarial source X consists of N independent sources
X1, . . . ,XN , each over n bits, with the guarantee that at least K of them have min-entropy at least
k. Such sources have applications in generating a (cryptographic) common random string in the
presence of adversaries, and in harvesting randomness from unreliable sources.

To prove Theorem 3, we explicitly construct significantly improved extractors for adversarial
sources:

Theorem 4. There is a universal constant C > 0 such that for any fixed δ > 0 and all sufficiently
large N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ N δ, there exists an explicit extractor Ext :
({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources, with output length m = kΩ(1) and error

ǫ = 2−kΩ(1)
.

Previously, the best extractor for this setting [CGGL20] required K ≥ N0.5+o(1) good sources,
and our improvement to K ≥ N δ is crucial in obtaining better extractors for small-space sources.
An added bonus is that our extractor construction is arguably much simpler compared to [CGGL20].

To prove Theorem 4, we develop a simple new framework for extracting from adversarial sources
by combining (i) a general type of combinatorial design; and (ii) a specific kind of leakage-resilient
extractor [KMS19, CGG+20]. While such leakage-resilient extractors were recently constructed
explicitly in [CGG+20], the only known construction of such designs is probabilistic [RŠ94].
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Thus, the key ingredient we use to prove Theorem 4, and subsequently Theorem 3, is the first
explicit construction of such designs. In more detail, an (n, r, s)-design is an r-uniform hypergraph
over n vertices with pairwise hyperedge intersections of size < s. To instantiate our framework,
we need explicit (n, r, s)-designs with small independence number1 α. Previously, Chattopadhyay,
Goodman, Goyal and Li [CGGL20] constructed (n, 3, 2)-designs with independence number α ≤
O(n0.923). To obtain our improved extractors in Theorems 3 and 4, we need designs with much
smaller independence number. Our final main theorem constructs exactly such designs.

Theorem 5. For all constants r ≥ s ∈ N with r even, there exist explicit (n, r, s)-designs (Gn)n∈N
with independence number

α(Gn) ≤ O(n
2(r−s)

r ).

Theorem 5 gives the first derandomization of a result by Rödl and Šinajová [RŠ94], and our
explicit designs are optimal up to a factor of 2 in the power. We show that it is easy to extend
Theorem 5 to also work for odd r (up to a small loss in parameters), and we also show that our
construction remains explicit for most super-constant r, s: we refer the reader to Section 4 for more
detail.

Finally, we can combine our explicit designs with the leakage-resilient extractors from [CGG+20]
to obtain our improved adversarial sources (Theorem 4), which immediately yields our improved
extractors for small-space sources (Theorem 3). It is known that the technique of reducing small-
space sources to adversarial sources has a barrier at min-entropy

√
n (see Remark 6.7). Thus, the

result in Theorem 3 has almost the best parameters one can hope to achieve using this technique.

2 Overview of Techniques

We use this section to sketch the explicit constructions of our small-space extractors. We start with
our low-error small space extractors (Theorem 3) and the ingredients that go into it (Theorems 4
and 5). Then, we sketch the construction of our small-space extractor for polylogarithmic entropy
(Theorem 1) and its key ingredient (Theorem 2).

2.1 Small-space extractors with exponentially small error

To construct our low-error small-space extractors, the first step is to use a standard reduction [KZ06]
(which we slightly optimize) from small-space sources to adversarial sources. This reduction starts
with the observation of [KRVZ06] that if we chop up the small space source X into t consecutive
(equal-sized) chunks, and condition on any fixing of the vertices reached at the end of each chunk in
the random walk that generates X, then these t chunks become t independent sources. Furthermore,
if X originally had k bits of entropy, then it follows from the entropy chain rule that X will still
have roughly k − st bits of entropy. A Markov argument then shows that at least a few of the t
sources will have relatively high entropy. In other words, X now looks like an adversarial source,
and we may now focus on constructing (low-error) extractors for adversarial sources.

1Recall that an independent set in a hypergraph is a subset of vertices that contain no hyperedge, and the
independence number of a hypergraph is the size of its largest independent set.
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Improved low-error extractors for adversarial sources To construct our low-error extrac-
tors for adversarial sources, we develop a new framework that combines a certain type of leakage-
resilient extractor (LRE) with the (n, r, s)-designs discussed earlier. An LRE for r sources offers the
guarantee that its output looks uniform even conditioned on the output of many leakage functions,
each called on up to r − 2 of the same inputs fed to the original LRE. Furthermore, recall that an
(n, r, s)-design is an r-uniform hypergraph over n vertices with pairwise hyperedge intersections of
size < s.

Now, given an (N,K, n, k)-adversarial source X, we extract from it as follows, using an LRE
and an (N, r, r − 1)-design G with independence number α(G) < K. First, we identify the vertices
of our design with the N independent sources in X. Then, for each hyperedge in our design, we
call a leakage-resilient extractor on the r sources it contains, and finish by taking the bitwise XOR
over the outputs of the LRE calls.

This construction successfully outputs uniform bits for the following reasons. Because α(G) <
K, we are guaranteed that some LRE call is given only good sources. By the extractor property
of the LRE, this call will output uniform bits. Meanwhile, the bounded intersection property of
the (N, r, r − 1)-design, paired with the leakage-resilience property of the LRE, guarantees that
these uniform bits still look uniform even after taking their bitwise XOR with the outputs of all
other LRE calls. Using these ideas, we actually provide a slightly more general framework to
combine (N, r, s)-designs with LREs of various strength. Our framework leverages the “activation
vs. fragile correlation” paradigm introduced in [CGGL20], yet it is able to do so in a much more
simple, general, and effective way, by combining two very general pseudorandom objects: LREs
and designs.

To make our framework explicit, we will need explicit LREs and explicit designs with small inde-
pendence number. Our explicit LREs will come from the work of Chattopadhyay et al. [CGG+20],
where they gave the first explicit LREs that work for entropy k = o(n), and in fact their LREs work
for entropy k ≥ polylog(n). Thus all that remains is to provide an explicit construction of designs
with small independence number.2 We provide such a construction in this paper, and sketch it
below.

Explicit designs with small independence number In order to construct our (n, r, s)-designs
G = (V,E), we start with a linear code Q ⊆ F

n
2 of distance d > 2(r− s), and then restrict it to the

set Qr ⊆ Q of elements in Q that have Hamming weight r. Our design G = (V,E) is constructed
by identifying V with [n], and by creating a hyperedge for each x ∈ Qr in the natural way. The
distance of the code and the definition of Qr immediately guarantees that G is an (n, r, s)-design.

In order to upper bound the independence number α(G) of our design, we observe that any
independent set in G corresponds to a subcube S ⊆ F

n
2 that contains no vector in Q of weight r;

in other words, since Q is a linear code, this means that the subspace T ∗ := S ∩ Q has no vector
of Hamming weight r. If our linear code Q had very high dimension, then even if the subcube
S was relatively small, we would have found a relatively large subspace T ∗ containing no vector
of Hamming weight r. But intuitively, it seems like as the dimension of a subspace grows large
enough, at some point it must be guaranteed to have such a vector. It turns out this is true,
and it follows immediately from Sidorenko’s recent bounds [Sid18, Sid20] on the size of sets in F

n
2

2Explicit (N, 3, 2)-designs with independence number α < O(N0.923) were constructed in [CGGL20]. However, we
need more general (N, r, r−1)-designs to push the independence number low enough to obtain our desired adversarial
extractors, and (to the best of our knowledge) no such explicit designs were known prior to our work.

5



containing no r elements that sum to zero. Thus if Q has large enough dimension, S cannot be too
large, and thus neither can α(G). All that remains is to explicitly construct (the weight-r vectors
of) a high-dimensional linear code Q ⊆ F

n
2 with distance d > 2(r − s), which can easily be done

using BCH codes [BRC60,Hoc59].

2.2 Small-space extractors for polylogarithmic entropy

Unfortunately, it is impossible to extract from small-space sources with entropy k <
√
n using

a reduction of the previous type (i.e., to adversarial sources), since setting t ≥ √n will leave
k − st ≤ k − 1 · √n < 0 bits of entropy after the above fixing, while setting t <

√
n will produce

a chunk of size n/t >
√
n > k, which could hold all of the entropy and thus make extraction

impossible. To circumvent this barrier, we provide a new reduction from small-space sources to
affine sources. This reduction bypasses the

√
n barrier by adaptively choosing vertices to fix:

this was not possible above, because such adaptive fixings can produce independent sources of
unknown and varying lengths, which cannot be captured by adversarial sources. We describe our
new reduction in more detail below.

A reduction from small-space sources to affine sources Our new reduction from small-
space sources to affine sources starts the same way as before: by fixing t vertices in the random
walk generating the space s source X, to create t independent sources with roughly k − st bits of
total entropy. The key idea now is to use a nice observation of [CGGL20], which says that any
source with entropy at least 1 is a convex combination of affine sources with entropy 1. Given this
observation, we can say that as long as t′ of the t independent sources have just one bit of entropy,
then X currently looks like a convex combination of affine sources with min-entropy t′.

On the other hand, if no t′ of the t independent sources have just one bit of entropy, then
the k − st remaining bits of entropy must be very highly concentrated on the t′ − 1 most entropic
independent sources. In this case, we can simply recursively apply the reduction on these t′ −
1 independent sources. Because the entropy rate increases on each recursive call, we know the
recursion must eventually stop, or else we will end up with a source with entropy rate exceeding 1,
a contradiction. Thus, via a win-win argument, we are able to show that X is a convex combination
of affine sources with entropy t′.

We show that even if X starts with entropy just k ≥ polylog(n), our resulting affine source will
have almost all of the entropy of the original source; namely, t′ will barely be smaller than k. We
are able to achieve such an efficient reduction for two reasons. First, our use of affine sources allows
an adaptive and recursive reduction that bypasses the k ≥ √n entropy barrier arising from existing
reductions to source types of fixed lengths (like total-entropy sources [KRVZ06] and adversarial
sources [CGGL20]). Second, our reduction to a sequence of t′ independent sources with entropy 1
(which we argue is an affine source with entropy t′ using the observation of [CGGL20]) results in a
negligible amount of lost entropy from each recursive step, whereas similar recursive reductions to a
constant number of sources with relatively high entropy [CL16] are forced to lose much more entropy
in each such step. As a result, we are able to bypass the k ≥ 2

√
logn entropy barrier of [CL16].

Finally, we note that by carefully tracking the random variables that pop up in our recursion,
we are able to describe all of the fixings that occur throughout the recursion by the fixing of a single
random variable. As a result, we only need to apply the chain rule for min-entropy (Lemma 3.3)

once, which keeps the error of our reduction very low: 2−Ω(k), compared to an error of 2−kΩ(1)
in

the recursive reduction of [CL16].
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Organization In Section 3 we provide several preliminaries. In the remainder of our paper, we
follow a bottom-up strategy for presenting our main results. In Section 4, we provide an explicit
construction of designs with small independence number, proving Theorem 5. In Section 5, we
show how to combine these designs with leakage-resilient extractors to create a new, simple frame-
work for extraction from adversarial sources. By instantiating our framework with our explicit
designs and the explicit leakage-resilient extractors of [CGG+20], we obtain our improved extrac-
tors for adversarial sources, Theorem 4. In Section 6, we provide the standard reduction from
small-space sources to adversarial sources for completeness, and we apply our adversarial extrac-
tors (Theorem 4) to obtain our small-space extractors with exponentially small error, Theorem 3.
In Section 7, we provide our new reduction from small-space sources to affine sources (Theorem 2)
and apply the affine extractor of Li [Li16] to obtain our small-space extractors for polylogarithmic
entropy, Theorem 1. We conclude with some remarks and present some open problems in Section 8.

3 Preliminaries

General notation Given two strings x, y ∈ {0, 1}m, we let x⊕ y denote their bitwise XOR. For
a number n ∈ N, [n] denotes the interval [1, n] ⊆ N. We let ◦ denote string concatenation, and
for a collection {xi : i ∈ I} indexed by some finite set I, we let (xi)i∈I denote the concatenation
of all strings xi, i ∈ I. If I is already equipped with some total order, this is used to determine
the concatenation order; otherwise, I is arbitrarily identified with [|I|] to induce a total ordering.
Given a domain D, and some string x ∈ DN , we let xi ∈ D denote the value at the ith coordinate
of x. Given a subset S ⊆ [N ], we let xS := (xi)i∈S . Even if D = Rn for some other domain R and
number n ∈ N, the definition of xS ∈ D|S| does not change.

Basic coding theory and extractor definitions We let F2 denote the finite field of size two,
and we let F

n
2 denote a vector space over this field. The Hamming weight of a vector x ∈ F

n
2 is

defined as ∆(x) := #{i ∈ [n] : xi = 1}, and the Hamming distance between two vectors x, y ∈ F
n
2 is

defined as ∆(x, y) := ∆(x− y), where the subtraction is over F2. The standard basis vectors in F
n
2

is the collection E∗ := {ei}i∈[n], where ei ∈ F
n
2 holds a 1 at coordinate i and 0 everywhere else, and

a subcube is a subspace spanned by some subset of E∗. An (n, k, d)-code is a subset Q ⊆ F
n
2 of size

2k with the guarantee that any two distinct points x, y ∈ Q have Hamming distance ∆(x, y) ≥ d.
A linear [n, k, d]-code is simply an (n, k, d) code that is a subspace. Finally, we say that a source X
over {0, 1}n is an (n, k) source if it has min-entropy at least k, and we say that an extractor Ext an
N -source extractor for entropy k if it is an extractor for a family of sources X , where each X ∈ X
consists of N independent (n, k) sources.

Discrete probability In general, for a random variable X : Ω→ V , we are only concerned with
the distribution over V induced by X. We will therefore typically not define the outcome space Ω,
and can assume it has any form we like (so long as the distribution induced by X does not change).
Given random variables X,Y and any y ∈ support(Y), we let (X | Y = y) denote a random
variable that takes value x with probability Pr[X = x | Y = y]. Given a random variable X and a
family of random variables Y, we say that X is a convex combination of random variables from Y if
there exists a random variable Z such that for each z ∈ support(Z), it holds that (X | Z = z) ∈ Y.
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We define the statistical distance between two random variables X,Y over V as

|X−Y| := max
S⊆V
|Pr[X ∈ V ]− Pr[Y ∈ V ]| = 1

2

∑

v∈V
|Pr[X = v]− Pr[Y = v]|,

and we say that X,Y are ǫ-close if |X−Y| ≤ ǫ. Given these definitions, the following two standard
facts are easy to show, and are extremely useful.

Fact 3.1. For any random variable X ∼ {0, 1}m and any constant c ∈ {0, 1}m, it holds that

|X−Um| = |(X⊕ c)−Um|.
Fact 3.2. For any random variables X,Y, where X ∼ {0, 1}m, it holds that

|X−Um| ≤ Ey∼Y[|(X | Y = y)−Um|].
Finally, we will need the following standard lemma about conditional min-entropy.

Lemma 3.3 ([MW97]). Let X,Y be random variables such that Y can take at most ℓ values. Then
for any ǫ > 0, it holds that

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log ℓ− log(1/ǫ)] ≥ 1− ǫ.

4 Explicit extremal designs via slicing codes and zero-sum sets

In this section, we will construct our explicit designs and thereby prove Theorem 5. Before we state
the formal theorem and proof, we begin with some background and discussion on (n, r, s)-designs.

4.1 Background and discussion

A combinatorial design is a special type of well-balanced set system, where each set has the same size,
and no two sets intersect at too many points. More formally, we say that an r-uniform hypergraph
G = (V,E) over n vertices is an (n, r, s)-design, or (n, r, s)-partial Steiner system, if |e1∩e2| < s for
all distinct e1, e2 ∈ E. Beyond the fact that they are pseudorandom objects themselves, it turns
out that (n, r, s)-designs enjoy several interesting applications in pseudorandomness.

A notable application of designs is in the seminal work of Nisan and Wigderson [NW94], where
they are used to construct pseudorandom generators (PRGs). In this application, the authors
require (and provide) explicit designs that are extremal in the sense that they have a large number
of hyperedges. More recently, explicit designs of a different extremal flavor have been used in the
construction of extractors: in [CGGL20], Chattopadhyay, Goodman, Goyal, and Li show how to
construct extractors for adversarial sources using explicit partial Steiner triple systems ((n, 3, 2)-
designs) with small independence number.

Given these applications, it is natural to ask about the smallest possible independence number
of more general (n, r, s)-designs. Rödl and Šinajová answered this question in 1994, proving the
following:

Theorem 4.1 ([RŠ94]). Given any n ≥ r ≥ s ∈ N with r ≥ 2, there exists an (n, r, s)-design G
with independence number

α(G) ≤ Cr,s · n
r−s

r−1 (log n)
1

r−1 ,

where Cr,s = C(r, s) depends only on r, s.
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In fact, they also showed this result is tight up to the term Cr,s that depends only on r, s.
In order to prove Theorem 4.1, Rödl and Šinajová apply the Lovász Local Lemma to show that

a random r-uniform hypergraph is such a design. Thus, while their result proves the existence
of such designs, it does not provide an explicit way to construct them - and, unfortunately, an
explicit construction is needed if one hopes to apply this result to construct other explicit objects
(like extractors). Furthermore, all subsequent work appears to focus on improving the term Cr,s

[EV13,Eus13] or extending their result to more general types of designs [GPR95,KMV14,TL18],
while still relying on probabilistic constructions.

In this section, we will provide explicit constructions of these extremal designs. Our designs
give the first derandomization of Theorem 4.1, and differ from the optimal bound by just a square.

4.2 Main theorem about explicit designs

We are now ready to state our main theorem that describes our construction of explicit designs
with small independence number.

Theorem 4.2 (Theorem 5, formal version). There exists an Algorithm A such that given any
n ≥ r ≥ s ∈ N as input with r an even number, A runs in time poly

((
n
r

))
and outputs an

(n, r, s)-design G with independence number

α(G) ≤ Cr,s · n
2(r−s)

r , (1)

where Cr,s = C · r4 for some universal constant C ≥ 1.

Remark 4.3. It is easy to extend Theorem 4.2 to construct (n, r, s)-designs (Gn)n∈N with odd r,
at the expense of a small loss in parameters: simply construct an (n, r + 1, s)-design G′

n using
Theorem 4.2, and remove an arbitrary vertex from each hyperedge to create Gn. Gn will be an

(n, r, s)-design, and will have independence number α(Gn) ≤ Cr+1,s · n
2(r+1−s)

r+1 .

For all constants r ≥ s ∈ N with r even, Theorem 4.2 constructs an explicit family of (n, r, s)-
designs (Gn)n∈N with small independence number. Like the non-explicit designs of Theorem 4.1
from [RŠ94], our derandomization focuses on the case where r, s are constant. However, it turns out
that even for most super-constant r, s, our algorithm is still efficient. In particular, before proving
Theorem 4.2, we make (and quickly prove) the following remark.

Remark 4.4. Let A be the algorithm from Theorem 4.2, and let m = m(n, r, s) be the number of
hyperedges in the design produced by A on input (n, r, s). Then for any functions r = r(n), s = s(n),
Algorithm A is guaranteed to run in time poly(n,m) over the collection I = {(n, r(n), s(n))}n∈N
as long as at least one of the following holds:

• The functions r, s are constant: r(n) = O(1) and s(n) = O(1); or

• There is a constant ǫ > 0 such that inequality (1) is bounded above by O(n1−ǫ),∀(n, r, s) ∈ I.

The first bullet in Remark 4.4 reiterates the fact that the algorithm in Theorem 4.2 is efficient
when r, s are constant. The second bullet gives a more general remark on the performance of
Algorithm A on super-constant r, s: it says that as long as Theorem 4.2 gave a “non-trivial” bound
on the independence number in the first place, then the algorithm will run efficiently. This effectively
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covers all “interesting” regimes of r, s: indeed, the main application of selecting non-constant r, s
would be to achieve independence bounds that are stronger than those achieved by constant r, s
(and any constant r, s that achieve α(G) < n in Theorem 4.2 in fact achieve the second bullet).

To prove that Algorithm A is efficient given the condition in the second bullet, we use standard
bounds on Turán numbers. The Turán number T (n, β, r) is defined as the fewest number of edges in
an r-uniform hypergraph with no independent set of size β, and it is known [Sid95] that T (n, β, r) ≥(n
r

)
/
(β
r

)
. Thus, the second bullet implies the number of edges, m = m(n, r, s), in the design is at

least

T (n,Cn1−ǫ + 1, r) ≥ T (n, n1−ǫ/2, r) ≥
(
n

r

)
/

(
n1−ǫ/2

r

)
≥

(
n

r

)
/

(
n

r

)1−ǫ/4

≥
(
n

r

)ǫ/4

,

where we use the observation that the Turán number is non-increasing in its second argument, the
fact that we can assume n, r are sufficiently large (since otherwise the efficiency claim is trivial),
and a simple application of Stirling’s formula. Thus, Algorithm A runs in time

(n
r

)
= poly(n,m).

In fact, since we gave a lower bound on m based on the independence number, it trivially holds
that any algorithm that achieves independence numbers as small as A must output m edges,
meaning that the runtime of A is optimal up to constant powers. This completes our discussion on
Remark 4.4.

4.3 Proof of Theorem 4.2

We now turn to proving Theorem 4.2. We start with the simple observation that hypergraphs
over n vertices can be identified with subsets of Fn

2 . In particular, any subset T ⊆ F
n
2 induces

a hypergraph GT = (V,E) in the following way: identify V with [n], and for each x ∈ T add a
hyperedge e ⊆ [n] to E that contains exactly the coordinates that take the value 1 in x. Using this
correspondence, we can instead focus on constructing special subsets of Fn

2 , and thereby leverage
the tools of linear algebra and coding theory.

To obtain our designs, we will need to explicitly construct a subset T ⊆ F
n
2 such that (1) GT is

an (n, r, s)-design; and (2) GT has small independence number. We can make sure this happens via
the following two simple facts, which describe how these hypergraph properties can be identified
with properties of subsets in F

n
2 .

Fact 4.5. For any subset T ⊆ F
n
2 , the hypergraph GT is an (n, r, s)-design if and only if (i) every

x ∈ T has ∆(x) = r; and (ii) any two distinct x, y ∈ T have ∆(x, y) > 2(r − s).

Proof. The two conditions are sufficient because the first one guarantees that GT will be r-uniform,
and the second one guarantees that any two edges in GT intersect at < s points. They are both
necessary because if the first does not hold, GT will not be r-uniform, and if the first holds but the
second does not, then two edges will end up sharing ≥ s points.

Fact 4.6. For any subset T ⊆ F
n
2 , the hypergraph GT has independence number α(GT ) < ℓ if and

only if every subcube A ⊆ F
n
2 of dimension at least ℓ has at least one point in T .

Proof. If α(GT ) ≥ ℓ, there is an independent set S ⊆ V = [n] of size at least ℓ, and thus the
subcube A := span({ei}i∈S) of dimension ℓ has no points in T . If there is a subcube A ⊆ F

n
2 of

dimension ℓ with no points in T , the set S ⊆ [n] indexing the standard basis vectors that span A
must have size ℓ and constitute an independent set in GT .
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By Fact 4.5 and Fact 4.6, we see that the task of constructing an (n, r, s)-design G with small
independence number is equivalent to the task of constructing a subset T ⊆ F

n
2 with the following

three properties:

1. T lies in the Hamming slice ∆r := {x ∈ F
n
2 : ∆(x) = r},

2. Points in T have pairwise Hamming distance > 2(r − s), and

3. Any subcube of relatively small dimension intersects T .

In order to construct a set T ⊆ F
n
2 with these three properties, we use connections to coding

theory and zero-sum problems. In particular, recall that an (n, k, d)-code is a subset Q ⊆ F
n
2 of size

2k with the guarantee that any two distinct points x, y ∈ Q have Hamming distance ∆(x, y) ≥ d.
Thus, if we take any (n, k, d)-code Q ⊆ F

n
2 with d > 2(r − s) and intersect it with the Hamming

slice ∆r, we obtain a set T = Q ∩∆r that enjoys properties (1) and (2). In order to endow it with
property (3), we will need to start with some code Q such that for any relatively large subcube S,
the set S ∩ T = S ∩ (Q ∩∆r) = (S ∩Q) ∩∆r is non-empty.

The trick here is to start with a linear code Q. A linear [n, k, d]-code Q ⊆ F
n
2 is simply an

(n, k, d) code that is also a subspace. The condition (S ∩Q)∩∆r 6= ∅ required for property (3) now
becomes more concrete: since Q is a subspace, S ∩Q is also a subspace, and thus we can make sure
it contains some vector of Hamming weight r as long as we can show that every large subspace
contains such a vector. In particular, defining Λr(n) to be the dimension of the largest subspace
R ⊆ F

n
2 containing no vector of Hamming weight r, we prove the following lemma.

Lemma 4.7. If Q ⊆ F
n
2 is a linear [n, k, d]-code with d > 2(r − s), then the hypergraph GQ∩∆r

is
an (n, r, s)-design with independence number α = α(GQ∩∆r

) that obeys the following inequality:

α− Λr(α) ≤ n− k

Proof. It follows immediately from Fact 4.5 that GQ∩∆r
is an (n, r, s)-design. By Fact 4.6, there

is a subcube A = span(ei1 , . . . , eiα) ⊆ F
n
2 of dimension α that does not intersect Q ∩∆r. Thus, if

we define A′ := A ∩ Q, then A′ contains no vector of Hamming weight r, and furthermore it has
dimension dim(A′) = dim(A∩Q) ≥ dim(A)+dim(Q)−n = α+k−n. Notice now that if we define
the projection π : Fn

2 → F
α
2 as the map (x1, . . . , xn) 7→ (xi1 , . . . , xiα), then the subset π(A′) is still a

subspace (albeit now of Fα
2 ) of dimension dim(π(A′)) ≥ α+k−n containing no vector of Hamming

weight r. Thus, by definition of Λr, it must hold that α+ k − n ≤ dim(π(A′)) ≤ Λr(α).

In order to construct an (n, r, s)-design from Lemma 4.7 with the smallest possible independence
number α, we will want an explicit [n, k, d > 2(r−s)]-linear code with the largest possible dimension
k, along with a strong upper bound on Λr(n). We start with the latter.

Getting a good upper bound on Λr(n) is closely related to the theory of zero-sum problems. In
this field, one parameter of great interest is the (generalized) Erdős-Ginzburg-Ziv constant(s) of a
finite abelian group. Given n ≥ r ∈ N where r is even, this parameter is defined for F

n
2 as the

smallest integer sr(n) such that any sequence of sr(n) values in F
n
2 contains a subsequence of length

r that sums to zero. For our application, it will be more convenient to use an almost identical
parameter βr(n), defined as the size of the largest subset of Fn

2 containing no r elements that sum
to zero. Using slightly different terminology, the relationship between βr(n) and Λr(n) was shown
in [Sid20]. We include it here, in our language, for completeness.
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Lemma 4.8 ([Sid20]). For every n ≥ r ∈ N where r is even,

βr(n− Λr(n)) ≥ n.

Proof. Let R ⊆ F
n
2 be a subspace of dimension k := Λr(n) that contains no vector of Hamming

weight r, and define d := n − k. Let v1, . . . , vd be a basis for the orthogonal complement of R,
and define the matrix M ∈ F

d×n
2 so that its ith row is vi. Notice that R contains exactly the

solutions to Mx = 0, and thus R has a vector of Hamming weight r if and only if there are r
columns in M that sum to zero. By definition of R, we know R has no such vector, and thus
n ≤ βr(d) = βr(n− Λr(n)).

To get a good upper bound on Λr(n), we need a good upper bound on βr(n). In 2018, Sidorenko
provided a very strong bound of this type:

Theorem 4.9 ([Sid18], Theorem 4.4). There is a universal constant C > 0 such that for every
n, r ∈ N where r is even,

βr(n) ≤ C · r3 · 22n/r.

By plugging this bound into Lemma 4.8, we get the following corollary.

Corollary 4.10 ([Sid20]). There is a universal constant C > 0 such that for any n ≥ r ∈ N where
r is even, the largest subspace S ⊆ F

n
2 with no vector of Hamming weight r has dimension

Λr(n) ≤ n− (r log n− 3r log r − r logC)/2.

We are finally ready to prove our main design lemma, which reduces the problem of constructing
(n, r, s)-designs with small independence number to constructing high-dimensional linear codes.

Lemma 4.11 (Main design lemma). There is a universal constant C > 0 such that for every
n ≥ r ≥ s with r even, if Q ⊆ F

n
2 is a linear [n, k, d]-code with d > 2(r − s), then GQ∩∆r

is an
(n, r, s)-design with independence number

α(GQ∩∆r
) ≤ C · r3 · 22(n−k)/r.

Proof. Simply plug the bound on Λr(α) from Corollary 4.10 into Lemma 4.7.

To complete the proof of Theorem 4.2, we now just need to explicitly construct a linear code
with very high dimension. In 1959-1960, Bose, Ray-Chaudhuri [BRC60], and Hocquenghem [Hoc59]
explicitly constructed codes of exactly this type (see [GB10] for a great exposition of these codes,
which are known as BCH codes). In particular, they proved the following theorem.

Theorem 4.12 ([BRC60, Hoc59]). For every m, t ∈ N, there exists an [n, k, d]-linear code
BCHm,t ⊆ F

n
2 with block length n = 2m − 1, dimension k ≥ n − mt, and distance d > 2t.

Furthermore, there exists an Algorithm B that given any m, t ∈ N and x ∈ F
n
2 as input, checks if

x ∈ BCHm,t in poly(n) time.

By instantiating Lemma 4.11 with Theorem 4.12, we can finally prove Theorem 4.2.
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Proof of Theorem 4.2. We start by assuming that n = 2m − 1 for some m ∈ N. Then, we let
t = r − s, and use Theorem 4.12 to define the [n, k, d]-linear code Q := BCHm,t ⊆ F

n
2 , where

k ≥ n−mt = n−m(r− s) and d > 2t = 2(r− s). Algorithm A will simply output the hypergraph
GQ∩∆r

. By Lemma 4.11, we know that GQ∩∆r
is an (n, r, s)-design with independence number

α(GQ∩∆r
) ≤ C · r3 · 22(n−k)/r ≤ C · r3 · 22mt/r = C · r3 · (2m)2(r−s)/r ≤ 2C · r3 · n2(r−s)/r.

Furthermore, note that GQ∩∆r
can be constructed in poly(

(n
r

)
) time if Q ∩∆r can be constructed

in poly(
(n
r

)
) time, and this can be done by simply checking (and appropriately including) whether

each of the
(n
r

)
elements in ∆r belong to Q, using Algorithm B from Theorem 4.12.

If n is of the form 2m, we can follow the previous procedure to draw hyperedges around the
first n − 1 vertices, and then add one more isolated vertex (contained in no edges) at the end to
finish the hypergraph. Clearly we will still have α(GQ∩∆r

) ≤ 3C · r3 · n2(r−s)/r.
If n is not of the form 2m − 1 nor 2m, then it can be written as a sum x02

0 + · · ·+ xd2
d over N,

where d = ⌈log n⌉ and each xi ∈ {0, 1}. We can then follow the most recent procedure to construct
a graph Gi over 2i vertices separately for each nonzero xi. The final graph G =

⋃
iGi is clearly

still an (n, r, s)-design, and it has independence number

α(G) =
∑

i:xi=1

α(Gi) ≤
∑

0≤i≤⌈logn⌉
3C · r3 · (2i)2(r−s)/r = 3C · r3

∑

0≤i≤⌈logn⌉
(2i)2(r−s)/r

= 3C · r3 · (2
⌈log n⌉+1)2(r−s)/r − 1

22(r−s)/r − 1
.

It is straightforward to verify that for a large enough universal constant C ′, the above fraction is
bounded above by C ′ · r · n2(r−s)/r, which completes the proof.

5 Extractors for adversarial sources via designs and LREs

Perhaps the most popular model of seedless extraction is to assume that each source X actually
consists of several independent sources X = (X1,X2, . . . ,XN ), each guaranteed to have some min-
entropy. A long line of work has focused on constructing extractors for this setting [CG88,BIW06,
Li15,Coh16,CZ19,Li19], and has culminated in extractors with a near-optimal entropy requirement
[Li19]. Recently, the idea of generalizing this model to allow for bad sources with no entropy guar-
antee and/or limited dependence has received considerable attention [AOR+20,CGGL20,BGM19].
Motivated by applications in generating a (cryptographic) common random string in the presence
of adversaries, and in harvesting randomness from unreliable sources, Chattopadhyay, Goodman,
Goyal, and Li [CGGL20] introduced the class of adversarial sources:

Definition 5.1 (Adversarial sources). A source X over ({0, 1}n)N is an (N,K, n, k)-adversarial
source if it is of the form X = (X1,X2, . . . ,XN ), where each Xi is an independent source over
{0, 1}n, and at least K of them are good: i.e., there is some set S ⊆ [N ] of size K such that
H∞(Xi) ≥ k, for all i ∈ S.

In fact, the authors in [CGGL20] provide a more general definition that also allows for some
limited dependence between the sources, but Definition 5.1 is already general enough to capture
many of their motivating applications and generalize several well-studied settings: (N,N, n, k)-
adversarial sources capture the independent source model [CG88], (N,K, 1, 1)-adversarial sources

13



capture oblivious bit-fixing sources [CGH+85], and (N,K, n, n)-adversarial sources capture so-called
symbol-fixing sources [KZ06].

In this section, we will show how to combine our designs from Section 4 with a specific kind
leakage-resilient extractor (LRE) known as extractors for cylinder intersection that was introduced
in [KMS19] (see Definition 5.3), in order to obtain improved extractors for adversarial sources. The
following is our main result of the section:

Theorem 5.2 (Theorem 4, restated). There is a universal constant C > 0 such that for any fixed
δ > 0 and all sufficiently large N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ N δ, there exists an
explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources, with output length

m = kΩ(1) and error ǫ = 2−kΩ(1)
.

Previously, the best explicit extractor for this setting was constructed by Chattopadhyay et
al. [CGGL20], and required K ≥ N0.5+o(1) good sources. On the other hand, it is easy to give a
non-explicit extractor that requires justK ≥ 2 good sources.3 Thus, while our explicit constructions
greatly improve the state-of-art (and most notably break the “

√
N barrier”), there is still a lot of

room for improvement. Further improvement, however, will require significantly new techniques.
In order to prove Theorem 5.2, we start by reviewing the activation vs. fragile correlation

paradigm from [CGGL20] for extracting from adversarial sources in Section 5.1. We prove
Theorem 5.2 in Section 5.2, where we will describe how to extend the activation vs. fragile
correlation technique into a general framework for extracting from adversarial sources. We use
this new framework by combining the recent explicit LREs from [CGG+20] with our new explicit
designs from Section 4 to obtain our adversarial source extrators.

5.1 The activation vs. fragile correlation paradigm of [CGGL20]

Our construction leverages the “activation vs. fragile correlation” paradigm introduced
in [CGGL20] for extracting from adversarial sources. This paradigm was first introduced in
an attempt to construct a low-error extractor for (N,K, n, k)-adversarial sources, given just
k ≥ polylog n entropy and as a few good sources, K, as possible. Since there exists a three-source
extractor Ext0 for k0 ≥ polylog n entropy and exponentially small error [Li15], a natural idea is to
somehow employ this object as a subroutine. Using this idea, [CGGL20] proposed an extractor for
adversarial sources that works as follows. Given as input an adversarial source X = (X1, . . . ,XN ),
the extractor carefully selecting triples of sources, calls Ext0 over each triple, and XORs the
results. [CGGL20] argued that this procedure outputs uniform bits as long as the following two
properties hold:

1. Activation: some Ext0 call is activated, i.e., only given good sources as input.

2. Fragile correlation: fixing the (XOR of the) output of all other Ext0 calls does not affect
the output of the activated Ext0 call (with high probability).

It is not hard to see why these conditions suffice: activation guarantees that some Ext0 call
outputs uniform bits, while fragile correlation guarantees that these uniform bits will be propa-
gated through to the overall output of the extractor (by Fact 3.1 and Fact 3.2). Thus, the main

3This extractor calls an optimal two-source extractor over every pair of sources in the adversarial source, and takes
the XOR of the results [CL16]. To see why this works, we refer the reader to a similar proof sketch for a slightly
more involved construction, provided in the following paragraphs.
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challenge considered in [CGGL20] is determining how to select triples such that activation and
fragile correlation are guaranteed.

The key idea in [CGGL20] is to select triples using the hyperedges of a 3-uniform hypergraph,
G = (V,E). Then, we know that activation is guaranteed as long as the good sources cover some
hyperedge e ∈ E, which is guaranteed to happen whenever K > α(G). In order to ensure fragile
correlation, [CGGL20] observed that it suffices to require that G = (V,E) is a partial Steiner triple
system, also known as an (N, 3, 2)-design. Such a hypergraph guarantees that each Ext0 call shares
at most one source with the activated Ext0 call. Thus, if we start by fixing all sources that are not
inputs to the activated Ext0 call, it is then easy to fix the outputs of all other Ext0 calls without
introducing correlation between the inputs to the activated call. Furthermore, by Lemma 3.3, we
can show that this process barely decreases the entropy of the inputs to the activated call, and thus
its output remains uniform.

This shows that the construction above provides a low-error extractor for (N,K, n, k)-adversarial
sources, where k ≥ polylog n and K > α(G). Thus, the goal becomes to explicitly construct an
(N, 3, 2)-design G = (V,E) with small independence number. Using cap set bounds, Chattopadhyay
et al. [CGGL20] construct such an object with α(G) < N0.923, and thus gave an explicit extractor
when there are K ≥ N0.923 good sources. In order to improve this requirement on K, it is natural
to try to construct an (N, 3, 2)-design with smaller independence number. However, this seems
difficult, and furthermore the tightness of Theorem 4.1 implies that this technique cannot possibly
give an extractor that requires fewer than K ≥ N0.5+o(1) good sources.

Chattopadhyay et al. [CGGL20] take a different approach. By using objects known as strong
two-source condensers [BACDTS19] and non-malleable extractors [CGL20], the authors are able to
create more robust versions of three-source extractors. These robust extractors have stronger con-
ditioning properties, and allow the authors to use different hypergraphs (beyond (N, 3, 2)-designs)
in their construction. As a result, they are able to reduce the requirement on good sources from
K ≥ N0.923 to K ≥ N0.5+o(1). Unfortunately, however, the conditioning properties of their ro-
bust subroutine extractors are extremely specific, and as a result they can only be combined with
very specialized types of hypergraphs. These hypergraphs offer no clean generalization of (N, 3, 2)-
designs, and furthermore they appear to be too specialized to offer any further improvement on K
(and, in particular, break the “

√
N barrier”).

5.2 A new framework using leakage-resilient extractors and extremal designs

If one hopes to significantly improve K, it appears that one would need a multi-source extractor
with even stronger conditioning properties to use as a subroutine. Recently, exactly such an object
was constructed in [CGG+20], and is known as a leakage-resilient extractor (LRE). LREs are
very general objects with extremely strong conditioning properties. The exact variant that will be
useful here is actually a specialization known as extractors for cylinder intersections, first introduced
in [KMS19]. Informally, we define an (r, s)-leakage-resilient extractor to be an r-source extractor
LRE that outputs bits that look uniform, even conditioned on the output of several functions that
each act on fewer than s of the inputs to LRE. Formally, it is defined as follows.

Definition 5.3 ([KMS19,CGG+20]). A function LRE : ({0, 1}n)r → {0, 1}m is an (r, s)-leakage-
resilient extractor for entropy k and error ǫ if the following holds. Let X := (X1, . . . ,Xr) be any
r independent (n, k) sources, let T :=

( [N ]
s−1

)
, and let L := {LeakT : ({0, 1}n)s−1 → {0, 1}m}T∈T be
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any collection of functions. Then:

|LRE(X) ◦ (LeakS(XS))S∈S −Um ◦ (LeakS(XS))S∈S | ≤ ǫ.

Given such a robust extractor, it is now easy to generalize the original extractor of [CGGL20] in
a clean, natural way: instead of calling a three-source extractor over the hyperedges of an (N, 3, 2)-
design and XORing the results, we call an (r, s)-leakage-resilient extractor over the hyperedges
of an (N, r, s)-design and XOR the results. Once again, we can ensure activation as long as the
number of good sources, K, exceeds the independence number of the design. On the other hand,
instead of using Lemma 3.3 to ensure fragile correlation, we simply use the leakage-resilience of our
leakage-resilient extractor: to see why this works, simply observe that an (N, r, s)-design guarantees
that the intersection of two hyperedges has size < s, while a leakage-resilient extractor guarantees
to output uniform bits even conditioned on several leaks that each act on < s of its inputs.

Formally, we prove the following lemma, which provides a framework for combining leakage-
resilient extractors with general designs in order to extract from adversarial sources.

Lemma 5.4. Let G = ([N ], E) be an (N, r, s)-design with independence number α, and let Ext0 :
({0, 1}n)r → {0, 1}m be an (r, s)-leakage resilient extractor for entropy k0 with error ǫ0. Then for
any K > α and k ≥ k0, the function ExtG : ({0, 1}n)N → {0, 1}m defined as

ExtG(X) :=
⊕

e∈E(G)

Ext0(Xe)

is an extractor for (N,K, n, k) adversarial sources with error ǫ = ǫ0.

Proof. Let X be an (N,K, n, k) adversarial source. We must show that |ExtG(X) − Um| ≤ ǫ.
Because K > α, there is some e∗ ∈ E containing only good sources, i.e., Xi has entropy at least
k for each i ∈ e∗. Without loss of generality, we assume e∗ = [r]. We now fix all other sources
Z1 = (Xj)j /∈e∗ , using Fact 3.2:

|ExtG(X)−Um| ≤ Ez1∼Z1 [|(ExtG(X) | Z1 = z1)−Um|].

Consider any z1 = (xj)j /∈e∗ . For each e ∈ E(G), we define the restriction Ext
e
0 : ({0, 1}n)|e∩e

∗| →
{0, 1}m as Exte0(Y1, . . . , Y|e∩e∗|) = Ext0(Y1, . . . , Y|e∩e∗|, (xj)j∈e\e∗), so that we may write

(ExtG(X) | Z = z1) =
⊕

e∈E(G)

Ext
e
0(Xe∩e∗) = Ext0(Xe∗)⊕

⊕

e∈E(G)\{e∗}
Ext

e
0(Xe∩e∗).

Because G is an (N, r, s)-design, any two edges share at most s − 1 vertices. Thus, we may
partition E(G) \ {e∗} into

( r
s−1

)
sets, depending on the intersection behavior of each edge with e∗.

In particular, for each S ∈
(

e∗

s−1

)
, we define:

WS := {e ∈ E : e ∩ e∗ ⊆ S}.

If any e ∈ E ends up in more than oneWS , we simply remove it from all but one of these sets. Now,
for each S ∈

( e∗

s−1

)
, we define LeakS : ({0, 1}n)s−1 → {0, 1}m such that for any X ∈ ({0, 1}n)N ,

LeakS(XS) =
⊕

e∈WS
Ext

e
0(Xe∩e∗), which is a valid definition because e ∩ e∗ is always in S, by

definition of WS. We may now write

(ExtG(X) | Z1 = z1) = Ext0(Xe∗)⊕
⊕

S∈( e∗

s−1)

LeakS(XS). (2)
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To bound the distance of this random variable from uniform, we now define the second random
variable we will fix, Z2 := (LeakS(XS))S∈( e∗

s−1)
. Fixing this random variable, we have:

|(ExtG(X) | Z1 = z1)−Um| ≤ Ez2∼Z2 [|(ExtG(X) | Z1 = z1,Z2 = z2)−Um|]
= Ez2∼Z2 [|(Ext0(Xe∗) | Z2 = z2)−Um|]
= |Ext0(Xe∗) ◦ Z2 −Um ◦ Z2|,

where the first and last (in)equalities follow easily from the definition of statistical distance, and
the second (in)equality follows from Equation (2) and the fact that adding a constant to a random
variable does not change its distance from uniform. But notice that by definition of Z2 and the
leakage-resilience of Ext0, this quantity is bounded above by ǫ0, which completes the proof.

In order to highlight the generality of this framework, we observe that by Lemma 3.3, a standard
three-source extractor is, in fact, a (3, 2)-leakage-resilient extractor (up to some negligible loss in
parameters). Thus, by instantiating Lemma 5.4 with r = 3, s = 2, we recover the original extractor
and analysis of [CGGL20]. Even better, since Theorem 4.1 tells us that the independence number
α of an (N, r, s)-design decreases quickly as r, s grow large together, we see that Lemma 5.4 offers
a concrete way to construct extractors for adversarial sources with much fewer good sources, K.

If we want to realize the above plan, we need two explicit objects. First, we need explicit
(N, r, s)-designs with independence numbers that decrease quickly as r, s grow together. Theorem 5
of the current paper gives exactly this, and in fact the independence numbers of our designs decrease
with r, s almost as quickly as possible, as shown by the tightness of Theorem 4.1.

Second, we need explicit leakage-resilient extractors for polylogarithmic entropy that have ex-
ponentially small error. Very recently, these exact objects were constructed:

Theorem 5.5 ([CGG+20]). There is a universal constant C > 0 such that for any sufficiently
large constant r ∈ N and all n, k ∈ N satisfying k ≥ logC n, there exists an explicit (r, r−1)-leakage
resilient extractor Ext : ({0, 1}n)r → {0, 1}m for min-entropy k with output length m = kΩ(1) and

error ǫ = 2−kΩ(1)
.

By combining these explicit LREs with our explicit designs, we can finally prove Theorem 5.2,
which significantly improves the adversarial source extractors of [CGGL20].

Proof of Theorem 5.2. Let C be the same universal constant from Theorem 5.5, and let r ∈ N be
a sufficiently large (even) constant such that 2/r < δ, and such that Theorem 5.5 guarantees the
existence of an explicit (r, r − 1)-leakage resilient extractor Ext0 : ({0, 1}n)r → {0, 1}m for min-

entropy k ≥ logC n with output length m = kΩ(1) and error ǫ = 2−kΩ(1)
. For sufficiently large

N ∈ N, Theorem 5 guarantees the existence of an (N, r, r−1)-design G with independence number
α < N δ that is computable in poly(

(N
r

)
) = poly(N) time. The result now follows by instantiating

Lemma 5.4 with Ext0 and G.

Next, we will show how to use our new and improved low-error extractors for adversarial sources
(Theorem 5.2) to obtain improved improved low-error extractors for small-space sources.
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6 A reduction from small-space sources to adversarial sources

In this section, we will show how to use our extractors from Section 5 to obtain better extractors
for small-space sources (as defined by Definition 1.2). We will prove the following.

Theorem 6.1 (Theorem 3, restated). For any fixed δ ∈ (0, 1/2] there is a constant C > 0 such that
for all n, k, s ∈ N satisfying k ≥ Cn1/2+δs1/2−δ, there exists an explicit extractor Ext : {0, 1}n →
{0, 1}m for space s sources of min-entropy k, with output length m = nΩ(1) and error ǫ = 2−nΩ(1)

.

Until very recently, the best explicit extractor for this setting [KRVZ06] required entropy k ≥
Cn1−γsγ , where γ > 0 is a tiny constant and C is a large one. In [CGGL20], this requirement
was significantly improved to k ≥ Cn2/3+δs1/3−δ , for an arbitrarily small constant δ > 0, and the
current paper (Theorem 6.1) further improves this to k ≥ Cn1/2+δs1/2−δ. Note that this line of
improvements is strict, since we always have s < n (or else the bounds become trivial). In particular,
for say s = nδ space, the entropy requirement has dropped from k ≥ O(n1−γ) to k ≥ O(n2/3+δ) to
k ≥ O(n1/2+δ).

Non-constructively, it is known [KRVZ06] that there exist extractors for space s sources that
have error ǫ for min-entropy k ≥ O(s + log n + log(1/ǫ)). Thus, while Theorem 6.1 significantly
improves the state-of-art in low-error extraction, there is still a lot of room for improvement.
However, we note (in Remark 6.7) that any substantial improvements to our low-error extractors
(i.e., beyond entropy requirement k ≥ √n) will require a new type of reduction that bypasses the
need for so-called total-entropy sources, which are used in [KRVZ06,CGGL20] and are used here.
We will see exactly such a reduction in Section 7. (It will allow us to obtain near-optimal extractors
with polynomial error. To obtain improved low-error extractors using this new reduction, one needs
improved low-error affine extractors.)

We now proceed to prove Theorem 6.1. The techniques that follow, which will reduce the task
of extracting from small space sources to the task of extracting from adversarial sources, are just
slightly optimized versions of the exact arguments that appear in [KRVZ06,CGGL20]. However,
we include them here for completeness. The first step is to reduce small-space sources to a class of
sources known as total entropy sources, defined as follows.

Definition 6.2. A random variable X over ({0, 1}ℓ)r is an (r, ℓ, k)-total entropy source if X =
(X1,X2, . . . ,Xr), where each Xi is an independent source over {0, 1}ℓ, and ∑

i∈[r]H∞(Xi) ≥ k.

In [KRVZ06], Kamp et al. showed that upon fixing a few positions in the random walk that
generates a small space source X, it is straightforward to use Lemma 3.3 to show that X becomes
a total-entropy source, with high probability. We include the proof for completeness.

Lemma 6.3 ([KRVZ06]). Let X be a space s source over {0, 1}n with min-entropy k. Then for any
α ∈ (0, 1/4] such that r = αk/s and ℓ = ns/(αk) are positive integers, it holds that X is 2−k/4-close
to a convex combination of (r, ℓ, k/2)-total entropy sources.

Proof. For each i ∈ [n], letWi ∼ {0, 1}s be the random variable denoting the state reached in layer i
of the branching program in the random walk that generates X. Observe that fixing any Wi breaks
X into two independent sources. More generally, observe that if we define W∗ := (Wiℓ+1)i∈[0,r−1],
then if we condition X on any fixing of W∗, it must hold that X becomes an (r, ℓ,Γ)-total entropy
source, for some Γ. Furthermore, by Lemma 3.3, we know

Pr
w∼W∗

[H∞(X |W∗ = w) ≥ k − rs− k/4 = k − αk − k/4 ≥ k/2] ≥ 1− 2−k/4. (3)
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Thus, the random variable (X |W∗ = w) is an (r, ℓ, k/2)-total entropy source with probability at
least 1− 2−k/4 over w ∼W∗, which completes the proof.

The next step is to show that a total-entropy source looks like an adversarial source, using a
standard Markov-type argument:

Lemma 6.4. Let X be an (r, ℓ,Γ)-total entropy source. Then for any N,K, n, k ∈ N with Nn = rℓ
and n a multiple of ℓ, X is also an (N,K, n, k)-adversarial source, as long as Kn+Nk ≤ Γ.

Proof. By definition of total-entropy source, X = (X1, . . . ,Xr), where each Xi is an independent
source over {0, 1}ℓ. By collecting the sources Xi into N buckets containing n/ℓ sources each, we see
that X is also an (N,n,Γ)-total entropy source, and may be rewritten as X = (X1, . . . ,XN ), where
each Xi is an independent source over {0, 1}n. If X were not an (N,K, n, k)-adversarial source,
then the K − 1 highest entropy sources in X each have entropy at most n, and the remaining each
have entropy < k. This yields H∞(X) = Γ < (K−1)n+(N − (K−1))k < Kn+Nk, contradicting
the given lower bound on Γ.

Given the above reduction, we can now use our improved adversarial source extractors (from
Theorem 4) to give improved extractors for total-entropy sources.

Theorem 6.5. For any fixed δ > 0 and all sufficiently large r, ℓ,Γ ∈ N with Γ ≥
max

{
(rℓ)1/2+δ , rδℓ

}
, there exists an explicit extractor Ext : ({0, 1}ℓ)r → {0, 1}m for (r, ℓ,Γ)-total

entropy sources, with output length m = (rℓ)Ω(1) and error ǫ = 2−(rℓ)Ω(1)
.

Proof. Fix any N,n ∈ N such that Nn = rℓ and n is a multiple of ℓ. By Lemma 6.4, every (r, ℓ,Γ)-
total entropy source is also an (N,K, n, k)-adversarial source, provided Kn + Nk ≤ Γ. Thus,
by Theorem 4, for any fixed δ0 > 0 there exists an explicit extractor Ext0 : ({0, 1}r)ℓ → {0, 1}m
for (r, ℓ,Γ)-total entropy sources with output length m = nΩ(1) and error ǫ = 2−nΩ(1)

, provided
N δ0n+Nnδ0 ≤ Γ and N,n are sufficiently large. To achieve the parameters claimed in the theorem
statement, pick δ0 = δ/2 and set N,n as follows: (i) if r ≥ ℓ, set N = n =

√
rℓ; (ii) if r < ℓ,

set N = r and n = ℓ. We conclude by remarking that this casework was motivated by trying to
minimize the requirement on Γ by setting N = n. This is not possible in case (ii), but is possible
in case (i) by assuming, without loss of generality, that r = x2ℓ for some x ∈ N.

Previously, the best low-error explicit extractors for total-entropy sources [CGGL20] required
entropy Γ ≥ max{(rℓ)2/3+δ , r1/2+δℓ}. Non-constructively, we know it is possible [KRVZ06] to
achieve an entropy requirement of Γ ≥ O(ℓ + log r) and error of 2−Ω(Γ). Thus, while there is still
a lot of room to give improved explicit extractors for total-entropy sources, we remark that our
total-entropy extractor is almost optimal when the source consists of “a few long sources”:

Remark 6.6. The entropy requirement in Theorem 6.5 becomes k ≥ ℓ1+δ when ℓ ≥ r, which is
close to the optimal requirement of k ≥ O(ℓ).

Finally, we show how to combine our improved explicit extractors for total-entropy sources
(Theorem 6.5) with the standard reduction from small-space sources to total-entropy sources
(Lemma 6.3) to complete the proof of Theorem 6.1:
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Proof of Theorem 6.1. Fix any δ ∈ (0, 1/2], and let α ∈ (0, 1/4] be a sufficiently small constant
and C > 0 a sufficiently large constant. Given a space s source X over {0, 1}n with entropy
k ≥ Cn1/2+δs1/2−δ , we know by Lemma 6.3 that X is ǫ0 = 2−k/4-close to a convex combination
of (r, ℓ, k/2)-total entropy sources, where r = αk/s and ℓ = ns/(αk). (Here we assume r, ℓ ∈ N,
but it is easy to extend the argument when this is not the case.) In particular, this means there is
some random variable Y such that with probability at least 1− ǫ0 over y ∼ Y, the random variable
(X | Y = y) is an (r, ℓ, k/2)-total entropy source.

Let Ext0 : ({0, 1}ℓ)r → {0, 1}m be the extractor from Theorem 6.5 for such total-entropy sources.
We will argue that it also an extractor for the small-space source X. Notice we have |Ext0(X) −
Um| ≤ Ey∼Y[|Ext0(X | Y = y) −Um|] ≤ ǫ0 + |Ext0(X′) −Um|, where X′ is some (r, ℓ, k/2)-total
entropy source. If we can argue that r, ℓ, k/2 are sufficiently large and k/2 ≥ max{(rℓ)1/2+δ , rδℓ},
then Theorem 6.5 tells us that |Ext0(X)−Um| ≤ ǫ0+ |Ext0(X′)−Um| ≤ 2−k/4+2−(rℓ)Ω(1)

= 2−nΩ(1)

and m = (rℓ)Ω(1) = nΩ(1), which would prove the current theorem. We know that r, ℓ, k/2 are
sufficiently large because r = αk/s ≥ αC(n/s)1/2+δ ≥ αC, and ℓ = ns/(αk) ≥ 1/α, and k ≥ C,
where α is sufficiently small and C is sufficiently large. Next, we know k/2 ≥ (rℓ)1/2+δ = n1/2+δ

by the provided lower bound on k. Finally, to show k/2 ≥ rδℓ = (αk/s)δns/(αk), rearrange
the inequality to obtain k2−δ ≥ 2αδ−1s1−δn, plug in the provided lower bound on k to obtain
(Cn1/2+δs1/2−δ)2−δ ≥ 2αδ−1s1−δn, and observe that it therefore suffices to show (0.5C2−δα1−δ) ·
n(1/2+δ)(2−δ)−1 ≥ s1−δ−(2−δ)(1/2−δ) , or rather

(0.5C2−δα1−δ) · n2δ−δ/2−δ2 ≥ s2δ−δ/2−δ2 .

This holds because n ≥ s (otherwise the provided lower bound on k gives k > n), because 2δ −
δ/2 − δ2 ≥ 0 over δ ∈ (0, 1/2], and because C is sufficiently large.

We conclude this section with a remark about the
√
n “barrier” in this reduction technique.

Remark 6.7. It is not possible to obtain an entropy requirement of k <
√
n using the reduction

from small-space sources to total-entropy sources from Lemma 6.3, no matter how r, ℓ are set. This
is because rℓ = n implies either (i) ℓ ≥ √n, or (ii) r ≥ √n. In case (i), all of the entropy
could be trapped in a single source of length > k, from which extraction is impossible. In case (ii),
the application of Equation (3) in Lemma 6.3 leaves the source with 0 bits of entropy, from which
extraction is impossible.

In the following section, we will give a new reduction that allows us to bypass the
√
n barrier

(for polynomial error). We are able to do this because (like in [CL16]), we reduce to a type of
independent sources whose lengths need not be determined ahead of time. Unlike total-entropy
sources, this will allow us to recurse whenever we get stuck in a tricky situation like case (i) in
Remark 6.7.

7 A reduction from small-space sources to affine sources

In this section, we construct extractors for small-space sources that can handle just polylogarithmic
entropy in the polynomial error regime, proving Theorem 1.

Theorem 7.1 (Theorem 1, restated). There exists a universal constant C > 0 such that for all
n, k, s ∈ N satisfying k ≥ s · logC(n), there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for
space s sources with min-entropy k, which has output length m = (k/s)Ω(1) and error ǫ = n−Ω(1).
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The main tool we use to prove this theorem is a new reduction from small-space sources to
affine sources. As we have seen, an affine source is simply a uniform distribution over some affine
subspace of Fn

2 . It will be useful, however, to have the following formal definition.

Definition 7.2 (Affine source). A distribution X over F
n
2 is an affine source with min-entropy k

if there exists some shift vector v0 ∈ F
n
2 and linearly independent basis vectors v1, v2, . . . , vk ∈ F

n
2

such that X is generated by sampling k bits uniformly at random x1,x2, . . . ,xk ∼ F2 and computing
v0 +

∑
i∈[k] xivi.

Given this definition, we are now ready to define the main lemma used in proving Theorem 7.1.

Lemma 7.3 (Theorem 2, restated). Let X be a space s source over {0, 1}n with min-entropy k.
Then X is ǫ-close to a convex combination of affine sources with min-entropy Γ, where

Γ = Ω

(
k

s log(n/k)

)
,

and ǫ = 2−Ω(k).

Before proving Lemma 7.3, we use it to prove Theorem 7.1. We recall the standard fact that
if an extractor works for each source X in a family X of distributions, then it also works for any
convex combination of sources from that family. In particular, this means that any extractor for
affine sources is automatically an extractor for small-space sources, by Lemma 7.3. The following
affine extractor of Li [Li16], which can handle polylogarithmic entropy, will be of particular interest.

Theorem 7.4 ([Li16]). There exists a universal constant C > 0 such that for all n, k ∈ N satisfying
k ≥ logC n, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for affine sources with min-
entropy k, which has output length m = kΩ(1) and error ǫ = n−Ω(1).

Resetting the universal constant C as necessary, Theorem 7.1 follows immediately by combining
Lemma 7.3 and Theorem 7.4. Furthermore, since our reduction (Lemma 7.3) has extremely low
error, we note that we can also combine it with a classical affine extractor of Bourgain [Bou07] to
immediately get the following bonus result:

Theorem 7.5. For any fixed constants C, δ > 0 and all n, k, s ∈ N satisfying k ≥ δn and s ≤ C,
there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s sources with min-entropy k,
which has output length m = Ω(n) and error ǫ = 2−Ω(n).

To the best of our knowledge, this is the only nontrivial small-space extractor that achieves

super low error ǫ = 2−Ω(n), as all previous constructions [KRVZ06] have error at least ǫ = 2−Ω̃(n).
This improvement in error is extremely minor, but we include it as a nice demonstration that
our reduction has very low error and thus has the capability to produce low-error small-space
extractors; our main application of it (Theorem 7.1), however, will use a polynomial-error affine
extractor, whose error will subsume the very low error of the reduction.

At last, we are ready to prove Lemma 7.3, which will immediately yield Theorem 7.1 (and
Theorem 7.5). We do so in the following subsection.
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7.1 A reduction from small-space sources to simple bit-block sources

In this subsection, we actually show a stronger result than Lemma 7.3. In particular, we prove that
the reduction holds even for a special case of affine sources called bit-block sources. Given a vector
v ∈ F

n
2 , we define support(v) ⊆ [n] to be the subset of all coordinates where v takes the value 1,

and we define these sources as follows:

Definition 7.6 ([Vio14]). A source X over F
n
2 is a bit-block source with min-entropy k if it

is an affine source with min-entropy k (as per Definition 7.2) with the additional guarantee that
support(vi) ∩ support(vj) = ∅, for all i 6= j ∈ [k].

In fact, we even show that the reduction holds for a special case of bit-block sources, called
simple bit-block sources.

Definition 7.7. A source X over F
n
2 is a simple bit-block source with min-entropy k if it is

a bit-block source with min-entropy k (as per Definition 7.6), with the additional guarantee that
max(support(vi)) < min(support(vj)) for all i < j ∈ [k].

Given these definitions, we are now able to state the technical version of Lemma 7.3.

Lemma 7.8 (Lemma 7.3, technical version). Let X be a space s source over {0, 1}n with min-
entropy k. Then X is ǫ-close to a convex combination of simple bit-block sources with min-entropy
Γ, where

Γ = Ω

(
k

s log(n/k)

)
,

and ǫ = 2−Ω(k).

Before we prove Lemma 7.8, we remark that the reduction also works in the reverse direction,
implying that small-space sources and simple bit-block sources are roughly equivalent, up to a factor
of about s.

Remark 7.9. Using Definitions 1.2 and 7.7, it is relatively straightforward to show: a simple
bit-block source X over n bits with min-entropy Γ is also a space s = 1 source over n bits with
min-entropy Γ. Combining this with Lemma 7.8, we see that simple bit-block sources and space s
sources are roughly equivalent (in the low-error convex combination sense), up to a factor of Õ(s).

Now, in order to prove Lemma 7.8, we will use an intermediate type of source, called an indepen-
dent source sequence, which is a natural generalization of independent sources to allow for uneven
(and unknown) length. We will show that small-space sources are (close to) a convex combination
of independent source sequences, which are a convex combination of simple bit-block sources. We
prove the latter first.

Definition 7.10. A source X over {0, 1}n is an (n, r, k)-independent source sequence if there exist
some (unknown) lengths ℓ1, . . . , ℓr ∈ [n] that sum to n such that X = (X1, . . . ,Xr), where each Xi

is an independent (ℓi, k)-source.

Lemma 7.11. Let X be an (n,Γ, 1)-independent source sequence. Then X is a convex combination
of simple bit-block sources with min-entropy Γ.

22



Proof. By definition, X = (X1, . . . ,XΓ), where each Xi is an independent (ℓi, 1)-source, for some
ℓi ∈ [n]. We use the nice observation from [CGGL20] that any (ℓ, 1)-source Z is a convex combi-
nation of affine sources with min-entropy exactly 1. Recall this observation goes as follows: since
Z is an (ℓ, 1)-source, it follows via a standard argument (see, e.g., [Vad12]) that it is a convex
combination of flat sources with min-entropy exactly 1. But any such flat source Z′ is, by defi-
nition, a uniform distribution over two distinct strings x, y ∈ {0, 1}ℓ, which must differ at some
coordinate i∗ ∈ [ℓ]. Thus Z′

i∗ is a uniform bit, and it is easy to verify that every other bit Z′
j, j 6= i∗

is either constantly 0, constantly 1, or equal to exactly Z′
i∗ or Z′

i∗ ⊕ 1. Using Definition 7.2, it is
now straightforward to show this is an affine source with min-entropy 1.

Thus, we can write each Xi as a convex combination of affine sources over Fℓi
2 with min-entropy

1. This means X is a convex combination of sources of the form X′ = (X′
1, . . . ,X

′
Γ), where

each X′
i is still independent and has the same length ℓi as before, but is now also guaranteed

to be sampled by the process v
(i)
0 + biv

(i)
1 , where v

(i)
0 , v

(i)
1 ∈ F

ℓi
2 are fixed vectors with v

(i)
1 6= 0,

and bi ∼ F2 is a uniform bit. Thus, we can show X′ is a simple bit-block source with min-

entropy Γ as follows. First, define v0 := (v
(1)
0 , v

(2)
0 , . . . , v

(Γ)
0 ) ∈ F

n
2 . Next, for each i ∈ [Γ], define

vi := (1[1 = i] · v(1)1 ,1[2 = i] · v(2)1 , . . . ,1[Γ = i] · v(Γ)1 ) ∈ F
n
2 , where 1[·] is the indicator function.

Then it is straightforward to verify that X′ is sampled by v0 +
∑

i∈[k] bivi, and that the vectors

v0, v1, . . . , vk satisfy Definition 7.7. Thus X′ is a simple bit-block source with min-entropy k, and
X is a convex combination of such sources.

At last, we are ready to prove that small-space sources are close to a convex combination of in-
dependent source sequences. By combining the following lemma with Lemma 7.11, we immediately
get Lemma 7.8.

Lemma 7.12. Let X be a space s source over {0, 1}n with min-entropy k. Then X is ǫ-close

to a convex combination of (n,Γ, 1)-independent source sequences, where Γ = Ω
(

k
s log(n/k)

)
and

ǫ = 2−Ω(k).

Proof. Let W be the random walk over the width 2s, length n branching program that generates
X = (X1,X2, . . . ,Xn), and for each i ∈ [n], let Li be the vertex in layer i that is traversed by W.
In other words, (L1,L2, . . . ,Ln) is a random variable over [2s]n that lists the vertices visited by
W in order (excluding the start vertex). Furthermore, for any 1 ≤ i < j ≤ n, we define the slice
X(i,j) := (Xi+1, . . . ,Xj).

For any indices 0 = i0 < i1 < · · · < iT = n, it is straightforward to verify that the
slices X(i0,i1),X(i1,i2), . . . ,X(iT−1,iT ) become mutually independent when conditioned on fixing
Li1 , . . . ,LiT−1

to any ℓi1 , . . . , ℓiT−1
. Furthermore, given such a fixing, if we can guarantee that T ′

of these slices still have min-entropy at least 1 after this fixing, then the source X conditioned
on this fixing must be an (n, T ′, 1)-independent source sequence. This is simply because for each
“good” slice with min-entropy 1, we can just concatenate to it all slices preceding it (until we reach
another good slice or the start of the source), and for the last good slice with min-entropy 1, we
can just concatenate to it all slices following it (until we reach the end of the source). Thus, the
goal of this proof is to pick layers Li to fix such that with high probability over these fixings, we
can make the abovementioned guarantee for the largest T ′ possible. By the law of total probability,
this will immediately imply X is close to a convex combination of (n, T ′, 1)-independent source
sequences.
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Let Γ, t be parameters that we will set later. Informally, we will pick layers to fix in the following
manner. We will split up the branching program into 2Γ slices, and fix the layers in between them.
Then, we will argue that with high probability, X still has most of its entropy, and so we must be
in one of two situations: (1) the Γ slices with the most entropy out of the 2Γ slices each have at
least 1 bit of entropy; or (2) they do not. In case (1), X already looks like an (n,Γ, 1)-independent
source sequence, and we are done. In case (2), we know the entropy must be highly concentrated in
the Γ highest entropy slices, and so we can recurse on this sub-source that has half the size as the
original source, but much more entropy. We will argue that it is impossible to forever avoid case
(1) in this recursion, by showing that otherwise we would eventually (after at most t steps) find
a sub-source with more entropy than its length, a contradiction. We will now describe our fixings
more formally.

Fixings We pick layers to fix as follows.4 We start by defining a set of indices I(0) that split the

branching program into 2Γ slices of the same size. Namely, we define indices 0 = i
(0)
0 < i

(0)
1 < · · · <

i
(0)
2Γ−1 < i

(0)
2Γ = n such that i

(0)
j − i

(0)
j−1 =

n
2Γ for all j ∈ [2Γ], and set I(0) := {i(0)j : j ∈ [2Γ− 1]}. We

now fix (Li)i∈I(0) to some string ℓ(0) ∈ [2s]2Γ−1.
In order to decide what to fix next, we construct a set B(0) of the slices induced by I(0), and

we construct a set A(0) ⊆ B(0) of the Γ highest entropy slices indexed by B(0), conditioned on the

fixing we just performed. More formally, we define B(0) = {(i(0)0 , i
(0)
1 ), (i

(0)
1 , i

(0)
2 ), . . . , (i

(0)
2Γ−1, i

(0)
2Γ )}.

We now pick the Γ largest elements from B(0) to create A(0), where largest is defined via the
following total order: given (a, b), (c, d) ∈ B(0), we say (a, b) > (c, d) if H∞(X(a,b) | (Li)i∈I(0) =
ℓ(0)) > H∞(X(c,d) | (Li)i∈I(0) = ℓ(0)); or if these min-entropies are identical and a > c. We now
check the min-entropies of the slices in A(0). If H∞(Xa | (Li)i∈I(0) = ℓ(0)) ≥ 1 for all a ∈ A(0), we
stop our fixings here.

Otherwise, we proceed with more fixings. We initialize a counter τ = 1, and use (∗) to refer to
the current location of this text on this page (i.e., the beginning of a loop that we are creating).
Then, we define a set of indices I(τ) that split each of the good slices from the previous round of
fixings. More formally, we define I(τ) := {a1+a2

2 : (a1, a2) ∈ A(τ−1)}. We now fix (Li)i∈I(τ) to some

string ℓ(τ) ∈ [2s]Γ.
In order to decide what to fix next, we construct a set B(τ) of the new slices induced by I(τ),

and we construct a set A(τ) ⊆ B(τ) of the Γ highest entropy slices indexed by B(τ), conditioned
on all of the fixings we have performed thus far. More formally, we define B(τ) = {(a1, a1+a2

2 ) :

(a1, a2) ∈ A(τ−1)} ∪ {(a1+a2
2 , a2) : (a1, a2) ∈ A(τ−1)}. We now pick the Γ largest elements from

B(τ) to create A(τ), where largest is defined via the following total order: given (a, b), (c, d) ∈ B(τ),
we say (a, b) > (c, d) if H∞(X(a,b) | (Li)i∈I(0) = ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ )i∈I(τ) = ℓ(τ)) >
H∞(X(c,d) | (Li)i∈I(0) = ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ )i∈I(τ) = ℓ(τ)); or if these min-entropy are
identical and a > c. We now check the min-entropies of the slices in A(τ). If H∞(Xa | (Li)i∈I(0) =
ℓ(0), (Li)i∈I(1) = ℓ(1), . . . , (Lτ )i∈I(τ) = ℓ(τ)) ≥ 1 for all a ∈ A, we stop our fixings here. Also, if
τ = t, we stop our fixings here. Otherwise, we increment τ ← τ + 1, and we go back to (∗).5 This
concludes our fixings.

4To reduce notation, we assume throughout the proof that all divisions yield positive integers. It is easy to extend
the arguments to handle when this is not the case.

5In order for this process to be well-defined, we should stop if there is a slice (a, b) ∈ A(τ) with b− a = 1. We will
make sure to set our parameter t to guarantee this.
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Analysis For convenience, let Q denote a single random variable such that fixing Q is equiv-
alent to performing all of the fixings described above. Note that Q is a deterministic function
of (L1, . . . ,Ln), and is of the form (Li)i∈I , where I is not a single constant subset of [n], but
is chosen adaptively. Furthermore, observe that not all elements in the support of Q have the
same length (depending on when the fixing of layers stopped); indeed, Q is a random variable
over [2s]2Γ−1 ∪ [2s]2Γ−1+Γ ∪ · · · ∪ [2s]2Γ−1+tΓ. However, notice that for every q1, q2 ∈ support(Q),
q1 is cannot be a prefix of q2; it is therefore straightforward to construct an injection from
support(Q)→ [2s]2Γ−1+tΓ, and so |support(Q)| ≤ 2s·((t+2)Γ−1) ≤ 2(t+2)sΓ.

Recall that we currently have parameters Γ, t that we said we would fix later. We will add ǫ
to the parameters that we will fix later. The goal now is to show that with probability 1− ǫ over
fixing Q to q, the conditional distribution (X | Q = q) is an (n,Γ, 1)-independent source sequence,
since this would immediately imply X is ǫ-close to a convex combination of (n,Γ, 1)-independent
source sequences. We would like to show this holds for the best possible choices of Γ, ǫ, t.

We start by invoking Lemma 3.3, which tells us that with probability at least 1− ǫ over fixing
Q to q, we have H∞(X | Q = q) ≥ k − log(|support(Q)|) − log(1/ǫ) ≥ k − (t + 2)sΓ − log(1/ǫ).
Consider now some fixing Q = q where this holds. We know that there is some τ∗ ∈ {0, 1, . . . , t}
such that q ∈ [2s]2Γ−1+τ∗Γ, where τ∗ simply counts the number of times we iterated through
the fixing loop from above. Recall that by definition, the fixing Q = q refers to the fixings
(Li)i∈I(0) = ℓ(0), . . . , (Li)i∈I(τ∗) = ℓ(τ

∗).
Thus, by definition of our fixing procedure, the source X | Q = q is simply the concatenation

of the slices (X(β,β′)|Q = q), where (β, β′) ranges over the set

(B(0) \ A(0)) ∪ (B(1) \ A(1)) ∪ · · · ∪ (B(τ∗) \A(τ∗)) ∪Aτ∗ ,

and the concatenation happens in increasing order of β′. Also notice that the unions above are in
fact disjoint. Furthermore, given our discussion at the very beginning of the proof, we know that
these slices are mutually independent, because of the conditioning on the layers separating them.
Now, we could be in one of two cases: either τ∗ < t, or τ∗ = t.

Case (1): τ∗ < t. In this case, by definition of our fixing procedure, we know that the Γ
distinct slices in (X | Q = q) that are indexed by A(τ∗) each have min-entropy at least 1. Thus,
(X | Q = q) is a sequence of independent slices, with the guarantee that at least Γ of them have
min-entropy at least 1. By our discussion at the very beginning of this proof, (X | Q = q) is an
(n,Γ, 1)-independent source sequence.

Case (2): τ∗ = t. In this case, observe that in our fixing procedure, we only proceed from
iteration j to j+1 in the loop if some slice in A(j) has min-entropy < 1, which means that all slices
in B(j)\A(j) have min-entropy < 1 (since A(j) contains the Γ slices with the highest min-entropy out
of the 2Γ slices in B(j)). Thus, for every (β, β′) ∈ (B(0)\A(0))∪(B(1)\A(1))∪· · ·∪(B(τ∗−1)\A(τ∗−1)),
we knowH∞(X(β,β′) | Q = q) < 1. (This was also true in the previous case, but we did not need this
observation there.) For all other (β, β∗) ∈ (B(τ∗) \A(τ∗))∪A(τ), it trivially holds that H∞(X(β,β′) |
Q = q) ≤ β′ − β, since this slice is just a random variable over β′ − β bits. It is straightforward to
show that β′ − β = n

2Γ · 2−τ∗ , since our first slices B(0) divide the n bit source into 2Γ equal sized

pieces, and A(0) ⊆ B(0), and at each iteration j of the loop we cut each slice from A(j−1) in half to
get B(j). Thus, H∞(X(β,β′) | Q = q) ≤ n

2Γ · 2−τ∗ for all (β, β∗) ∈ (B(τ∗) \A(τ∗)) ∪A(τ).

Thus, we know an upper bound on the entropy of each slice in (B(0) \ A(0)) ∪ (B(1) \ A(1)) ∪
· · · ∪ (B(τ∗−1) \ A(τ∗−1)) ∪ (B(τ∗) \ A(τ∗)) ∪ Aτ∗ . Furthermore, the sets in the union are disjoint,
and each set in this union contains Γ distinct slices, which we have already mentioned are mutually
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independent. Thus, we have:

H∞(X | Q = q) < (1 + τ∗ − 1) · Γ · 1 + (1 + 1) · Γ ·
( n

2Γ
· 2−τ∗

)

= Γτ∗ + n · 2−τ∗

= Γt+ n2−t.

Combining this with the assumption we made about q near the beginning of our analysis, we have:

k − (t+ 2)sΓ− log(1/ǫ) ≤ H∞(X | Q = q) < Γt+ n2−t. (4)

We finally arrive at our last goal: setting parameters Γ, t, ǫ. We know that for any setting of
these parameters that contradicts Equation (4), Case (2) simply cannot occur. Thus, for any such
setting, we know that with probability 1− ǫ over fixing Q = q, we have H∞(X | Q = q) ≥ k− (t+
2)sΓ− log(1/ǫ), and this implies Case (1) must occur. In other words, with probability 1− ǫ over
q ∼ Q, we have that (X | Q = q) is an (n,Γ, 1)-independent source sequence, which immediately
implies that X is ǫ-close to a convex combination of (n,Γ, 1)-independent source sequences.

So all that remains is to pick the best possible Γ, t, ǫ that contradict Equation (4), and in
particular show that our selected Γ, ǫ matches the claimed parameters in the theorem statement.
We only have one minor restriction in our freedom to pick these parameters. We briefly recall the
footnote from our fixings procedure, and note that the only requirement we have is that t is set
so the procedure remains valid; namely, so that for every τ ∈ [t] and (β, β′) ∈ B(τ) created by the
fixing procedure, β′ − β ≥ 1, since this will ensure that we are creating valid slices. Above, we
showed that β − β = n

2Γ · 2−τ , and so the only restriction we have is that n
2Γ · 2−t ≥ 1.

Thus, to complete the proof, we may pick any Γ, t, ǫ that satisfy the above restriction, while
contradicting Equation (4). In particular, these parameters just need to satisfy

k − (t+ 2)sΓ− log(1/ǫ) ≥ Γt+ n2−t, and
n

2Γ
· 2−t ≥ 1.

Combining these, we just require:

Γ ≤ min

{
k − n2−t − log(1/ǫ)

t · (s− 1) + 2s
,

n

2t+1

}
.

We take t := log(4n/k) and ǫ := 2−k/2 and Γ := k
20s·log(n/k) to complete the proof.

8 Future directions

In this paper, we give new constructions of extractors for small-space sources based on (i) a new
reduction from small-space sources to affine sources, and (ii) improved extractors for adversarial
sources. The new key ingredient we use for our adversarial source extractors is (the first) de-
randomization of Rödl and Šinajová’s probabilistic designs [RŠ94], which we combine with recent
explicit constructions [KMS19,CGG+20] of a certain kind of leakage resilient extractors, known as
extractors for cylinder intersections. These constructions demonstrate new applications of these two
pseudorandom objects, and it would be interesting to explore whether these objects have further
applications in pseudorandomness and complexity.

Beyond the above, the three most natural open problems are as follows.
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Problem 1. Better low-error extractors for small-space sources: Reduce the entropy requirement
for low-error small-space extraction (Theorem 3) so that it is closer to the entropy requirement for
polynomial-error small-space extraction (Theorem 1).

Problem 2. Better extractors for adversarial sources: Improve the requirement on good sources in
Theorem 4 from K ≥ N δ to K ≥ polylog(N), or (less ambitiously) K ≥ No(1).

Problem 3. Better explicit designs with small independence number: Improve the constant in the
power of n of Theorem 5 from 2 to 1.99.

Given our new reduction from small-space extractors to affine sources, a concrete way to ap-
proach Problem 1 is to simply pursue the construction of better low-error affine extractors. In
particular, solving the affine extraction problem would effectively also “finish off” the small-space
extraction problem. Meanwhile, Problem 2 can be solved by constructing a leakage-resilient ex-
tractor against number-on-forehead leakage: that is, an extractor whose output looks uniform even
conditioned on joint functions of all but one of its inputs. Finally, it would be interesting to see if
Problem 3 could be answered using more elaborate properties of specific codes (i.e., beyond their
distance and dimension).
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[EV13] Alex Eustis and Jacques Verstraëte. On the independence number of Steiner systems.
Combinatorics, Probability & Computing, 22(2):241–252, 2013.

[GB10] Venkatesan Guruswami and Eric Blais. Notes 6: Reed-Solomon, BCH, Reed-Muller
and concatenated codes. Introduction to Coding Theory CMU: Spring, 2010.

[GPR95] David A. Grable, Kevin T. Phelps, and Vojtěch Rödl. The minimum independence
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[RŠ94] Vojtěch Rödl and Edita Šinajová. Note on independent sets in Steiner systems.
Random Structures & Algorithms, 5(1):183–190, 1994.

[Sha11] Ronen Shaltiel. An introduction to randomness extractors. In International Collo-
quium on Automata, Languages, and Programming, pages 21–41. Springer, 2011.

[Sid95] Alexander Sidorenko. What we know and what we do not know about turán numbers.
Graphs and Combinatorics, 11(2):179–199, 1995.

[Sid18] Alexander Sidorenko. Extremal problems on the hypercube and the codegree Turán
density of complete r-graphs. SIAM Journal on Discrete Mathematics, 32(4):2667–
2674, 2018.

[Sid20] Alexander Sidorenko. On generalized Erdős–Ginzburg–Ziv constants for Zd
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