
1 / 41 2024 :3

Constructive Separations
and Their Consequences

Received Mar 29, 2022
Revised Jan 18, 2024
Accepted Jan 24, 2024
Published Feb 15, 2024

Key words and phrases
complexity classes, lower bounds,
refuters

Lijie Chena � �

Ce Jina � �

Rahul Santhanamb � �

Ryan Williamsa � �

a Massachusetts Institute of
Technology, USA

b University of Oxford, UK

ABSTRACT. For a complexity class C and language 𝐿, a constructive separation of 𝐿 ∉ C
gives an efficient algorithm (also called a refuter) to find counterexamples (bad inputs) for
every C algorithm attempting to decide 𝐿. We study the questions: Which lower bounds can
be made constructive? What are the consequences of constructive separations? We build
a case that “constructiveness” serves as a dividing line between many weak lower bounds
we know how to prove, and strong lower bounds against P, ZPP, and BPP. Put another way,
constructiveness is the opposite of a complexity barrier: it is a property we want lower bounds
to have. Our results fall into three broad categories.

For many separations, making them constructive would imply breakthrough lower
bounds. Our first set of results shows that, for many well-known lower bounds against
streaming algorithms, one-tape Turing machines, and query complexity, as well as lower
bounds for the Minimum Circuit Size Problem, making these lower bounds constructive
would imply breakthrough separations ranging from EXPNP ≠ BPP to even P ≠ NP. For
example, it is well-known that distinguishing binary strings with (1/2 − 𝜀)𝑛 ones from
strings with (1/2+ 𝜀)𝑛 ones requires randomized query complexity Θ(1/𝜀2). We show that
a sufficiently constructive refuter for this query lower bound would imply P ≠ NP.
Most conjectured uniform separations can be made constructive. Our second set of
results shows that for most major open problems in lower bounds against P, ZPP, and
BPP, including P ≠ NP, P ≠ PSPACE, P ≠ PP, ZPP ≠ EXP, and BPP ≠ NEXP, any proof of the
separation would further imply a constructive separation. Our results generalize earlier

A preliminary version of this article appeared at FOCS 2021 [13]. Ryan Williams was supported by NSF CCF-2127597 and
CCF-1909429. Part of this work was completed while Ryan Williams was visiting the Simons Institute for the Theory of
Computing, participating in the ‘Theoretical Foundations of Computer Systems’ and ‘Satisfiability: Theory, Practice, and
Beyond’ programs.

Cite as Lijie Chen, Ce Jin, Rahul Santhanam, Ryan Williams. Constructive
Separations and Their Consequences. TheoretiCS, Volume 3 (2024), Article 3,
1-41.

https://theoretics.episciences.org
DOI 10.46298/theoretics.24.3

mailto:lijieche@mit.edu
https://orcid.org/0000-0002-6084-4729
mailto:cejin@mit.edu
https://orcid.org/0000-0001-5264-1772
mailto:rahul.santhanam@cs.ox.ac.uk
https://orcid.org/0000-0002-8716-6091
mailto:rrw@mit.edu
https://orcid.org/0000-0003-2326-2233


2 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

results for P ≠ NP [Gutfreund, Shaltiel, and Ta-Shma, CCC 2005] and BPP ≠ NEXP [Dolev,
Fandina and Gutfreund, CIAC 2013]. Thus any proof of these strong lower bounds must
also yield a constructive version, in contrast to many weak lower bounds we currently
know.
Some separations cannot bemade constructive. Our third set of results shows that certain
complexity separations cannot be made constructive. We observe that for 𝑡(𝑛) ≥ 𝑛𝜔(1)

there are no constructive separations for RKt (which is known to be not in P) from any
complexity class, unconditionally. We also show that under plausible conjectures, there are
languages in NP \ P for which there are no constructive separations from any complexity
class.

1. Introduction

A primary goal of complexity theory is to derive strong complexity lower bounds for natural
computational problems. When a lower bound holds for a problem Π against a modelM
of algorithms, this implies that for each algorithm 𝐴 fromM, there is an infinite sequence
of counterexamples {𝑥𝑖} for which 𝐴 fails to solve Π correctly.1 In this paper, we study the
question: can such a family of counterexamples be constructed efficiently, for fixed Π and a
given algorithm 𝐴 inM? We call a positive answer to this question a constructive separation
of Π fromM.

There are several motivations for studying this question in a systematic way for natural
problems Π and modelsM. Computer science is inherently a constructive discipline, and it
is natural to ask if a given lower bound can be made constructive. Indeed, this can be seen
as an “explicit construction” question of the kind that is studied intensively in the theory of
pseudorandomness, where we may have a proof of existence of certain objects with optimal
parameters, e.g., extractors, and would like to construct such objects efficiently.

Our primary motivation is to understand the general lower bound problem better! Con-
structive lower bounds have led to some recent resolutions of lower bound problems in com-
plexity theory, and we believe they will lead to more. In his Geometric Complexity Theory
approach, Mulmuley [47] suggests that in order to break the “self referential paradox” of P vs
NP and related problems2, one has to shoot for algorithms which can efficiently find counterex-
amples for any algorithms claiming to solve the conjectured hard language. This view has been
dominant in the GCT approach towards the VNP vs. VP problem [48, 49, 33].

1 If the family of counterexamples was finite, we could hard-code them into the algorithm 𝐴 to give a new algorithm 𝐴′

that solves Π correctly, for most ”reasonable” modelsM.

2 Namely, since the P vs. NP problem is a universal statement about mathematics that says that discovery is hard, why
could it not preclude its own proof and hence be independent of the axioms of set theory?



3 / 41 Constructive Separations and Their Consequences

The ability to “construct bad inputs for a hard function” has also been critical to some recent
developments in (Boolean) complexity theory. Chen, Jin, and Williams [15] studied a notion of
constructive proof they called explicit obstructions. They show several “sharp threshold” results
for explicit obstructions, demonstrating (for example) that explicit obstructions unconditionally
exist for 𝑛2−𝜀-size DeMorgan formulas, but if they existed for 𝑛2+𝜀-size formulas then one could
prove the breakthrough lower bound EXP ⊄ NC1. (We discuss the differences between their
work and ours in Section 2.4, along with other related work.)

Constructive lower bounds have also been directly useful in proving recent lower bounds.
Chen, Lyu, and Williams [16] recently showed how to strengthen several prior lower bounds for
ENP based on the algorithmic method to hold almost everywhere. A key technical ingredient in
this work was the development of a constructive version of a nondeterministic time hierarchy
that was already known to hold almost everywhere [23]. The “refuter” in the constructive
lower bound (the algorithm producing counterexamples) is used directly in the design of the
hard function in ENP. This gives a further motivation to study when lower bounds can be made
constructive.

The Setup. Define typical complexity classes as the classes P, BPP, ZPP, NP, Σ𝑘P, PP, ⊕P, PSPACE,
EXP, NEXP, EXPNP and their complement classes.

Intuitively, a refuter for 𝑓 against an algorithm 𝐴 is an algorithm𝑅 that finds a counterexam-
ple on which 𝐴 makes a mistake, proving in an algorithmic way that 𝐴 cannot compute 𝑓 . (This
notion seems to have first been introduced by Kabanets [37] in the context of derandomization;
see Section 2.4 for more details.)

DEF IN IT ION 1.1 (Refuters and constructive separation). For a function 𝑓 : {0, 1}★→ {0, 1}
and an algorithm 𝐴, a P-refuter for 𝑓 against 𝐴 is a deterministic polynomial time algorithm 𝑅

that, given input 1𝑛, prints a string 𝑥 ∈ {0, 1}𝑛, such that for infinitely many 𝑛, 𝐴(𝑥) ≠ 𝑓 (𝑥).
We extend this definition to randomized refuters as follows:
A BPP-refuter for 𝑓 against 𝐴 is a randomized polynomial time algorithm 𝑅 that, given
input 1𝑛, prints a string 𝑥 ∈ {0, 1}𝑛, such that for infinitely many 𝑛, 𝐴(𝑥) ≠ 𝑓 (𝑥) with
probability at least 2/3.3

A ZPP-refuter for 𝑓 against 𝐴 is a randomized polynomial time algorithm 𝑅 that, given input
1𝑛, prints 𝑥 ∈ {0, 1}𝑛 ∪ {⊥}, such that for infinitely many 𝑛, either 𝑥 =⊥ or 𝐴(𝑥) ≠ 𝑓 (𝑥)
with probability 1, and 𝑥 ≠⊥ with probability at least 2/3.

ForD ∈ {P, BPP, ZPP} and a typical complexity class C, we say there is aD-constructive
separation of 𝑓 ∉ C, if for every algorithm 𝐴 computable in C, there is a refuter for 𝑓 against 𝐴
that is computable inD.

3 We remark that here it is not necessarily possible to amplify the success probability, so the choice of the constant 2/3
matters.



4 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

Note that we allow the refuter algorithm to depend on the algorithm 𝐴.
In Definition 1.1, we allow the algorithm 𝐴 being refuted to be randomized, but we only

consider randomized algorithms 𝐴 with bounded probability gap, that is, on every input 𝑥 there
is an answer 𝑏 ∈ {0, 1} such that 𝐴 outputs 𝑏 with at least 2/3 probability, and we denote this
answer 𝑏 by 𝐴(𝑥).

In Definition 1.1 we restrict C and D to come from a small list of complexity classes in
order to be formal and concrete; the definition can of course be generalized naturally to other
classes of algorithms.

The length requirement that |𝑅(1𝑛) | = 𝑛 in Definition 1.1 is important.4 For example, if
𝑥 = 𝑅(1𝑛) has very short length |𝑥 | = log(𝑛), then the task of refutation would be much easier,
as one has exponential 2𝑂( |𝑥 |) time to produce an input 𝑥.

Our work is certainly not the first to consider the efficiency of producing “bad” inputs for
weak algorithms. Gutfreud, Shaltiel, and Ta Shma [28] showed that if P ≠ NP, then there is a P-
constructive separation ofP ≠ NP (in other words, there is aP-constructive separation of SAT∉ P).
They also proved analogous results for ZPP ≠ NP andNP ⊄ BPP; in these results, they considered
the setting where the randomized algorithm being refuted may have unbounded probability gap,
which is more general than what we consider in this paper. Building on the technique of [28],
Dolev, Fandina and Gutfreund [21] established a BPP-constructive separation of BPP ≠ NEXP
(assuming BPP ≠ NEXP is true). They also proved a similar result for ZPP ≠ NEXP.5 Atserias [6]
showed that if NP ⊄ P/poly, then there is a BPP-constructive separation of NP ⊄ P/poly.

At this point it is natural to ask:

Question 1: Which lower bounds imply a corresponding constructive lower bound?

Naively, one might expect that the answer to Question 1 is positive when the lower bound
is relatively easy to prove. We show that this intuition is wildly inaccurate. On the one hand,
we show that for many natural examples of problems Π and weak modelsM, a lower bound is
easily provable (and well-known), but constructivizing the same lower bound would imply a
breakthrough separation in complexity theory (a much stronger type of lower bound). On the
other hand, we show that for many ”hard” problems Π and strong modelsM, a lower bound
for Π againstM automatically constructivizes: the existence of the lower bound alone can be
used to derive an algorithm that produces counterexamples. So, in contrast with verbs such
as “relativize” [7], “algebrize” [1], and “naturalize” [58], we want to prove lower bounds that
constructivize! We are identifying a desirable property of lower bounds.

We now proceed to discuss our results in more detail, and then give our interpretation of
these results.

4 This requirement seems somewhat strong, but it is easy to show that if there is a refuter which on infinitely many
1𝑛 always outputs a string of length in {𝑛, 𝑛𝑐1 , . . . , 𝑛𝑐𝑘 } for some constants 𝑐1, . . . , 𝑐𝑘 > 0, then there is another refuter
which outputs a string of length 𝑛 on infinitely many 1𝑛. See Section 5.

5 We remark that [21] only considered refuting algorithms with one-sided error.



5 / 41 Constructive Separations and Their Consequences

1.1 Most Conjectured Poly-Time Separations Can Be Made Constructive

Generalizing prior work [28, 21], we show that for most major open lower bound problems
regarding polynomial time, their resolution implies corresponding constructive lower bounds
for most complete problems.

THEOREM 1.2. Let C ∈ {P, ZPP, BPP} and letD ∈ {NP, Σ2P, . . . , Σ𝑘P, . . . ,PP, PSPACE, EXP, NEXP,
EXPNP}. Then D ⊈ C implies that for every paddable D-complete language 𝐿, there is a C-
constructive separation of 𝐿 ∉ C.6 Furthermore, ⊕P ⊈ C implies that for every paddable ⊕P-
complete language 𝐿, there is a BPP-constructive separation of 𝐿 ∉ C.

In other words, for many major separation problems such as PP ≠ BPP, EXP ≠ ZPP, and
PSPACE ≠ P, proving the separation automatically implies constructive algorithms that can
produce counterexamples to any given weak algorithm. We find Theorem 1.2 to be mildly
surprising: intuitively it seems that proving a constructive lower bound should be strictly
stronger than simply proving a lower bound. (Indeed, we will later see other situations where
making known lower bounds constructive would have major consequences!) Moreover, for
separations beyond P ≠ NP, the polynomial-time refuters guaranteed by Theorem 1.2 are
producing hard instances for problems that presumably do not have short certificates. For
example, we do not believe that PSPACE = NP (we do not believe PSPACE has short certificates),
yet one can refute polynomial-time algorithms attempting to solve QBF with other polynomial-
time algorithms, under the assumption that PSPACE ≠ P. The point is that such polynomial-
time refuters intuitively cannot check their own outputs for correctness. We find this very
counterintuitive.

1.2 Unexpected Consequences of Making Some Separations Constructive

Given Theorem 1.2, we see that most of the major open problems surrounding polynomial-time
lower bounds would yield constructive separations. Can all complexity separations be made
constructive? It turns out that for several “weak” lower bounds proved by well-known methods,
making them constructive requires proving other breakthrough lower bounds!

Thus, there seems to be an algorithmic “dividing line” between many lower bounds we are
able to prove, and many of the longstanding lower bounds that seem perpetually out of reach.
The longstanding separation questions (as seen in Theorem 1.2) require a constructive proof: an
efficient algorithm that can print counterexamples. Here we show that many lower bounds we
are able to prove do not require constructivity, but if they could be made constructive then we
would prove a longstanding separation! In our minds, these results confirm the intuition of

6 Throughout this paper when we say a language 𝐿 is D-complete, we mean it is D-complete under polynomial-time
many-one reductions. A language 𝐿 is paddable if there is a deterministic polynomial-time algorithm that receives
(𝑥, 1𝑛) as input, where string 𝑥 has length at most 𝑛 − 1, and then outputs a string 𝑦 ∈ {0, 1}𝑛 such that 𝐿(𝑥) = 𝐿( 𝑦).



6 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

Mulmuley that we should “go for explicit proofs” in order to make serious progress on lower
bounds, especially uniform ones.

Constructive Separations for (Any) Streaming Lower Bounds Imply Breakthroughs.
It is well-known that various problems are unconditionally hard for low-space randomized
streaming algorithms. For example, from the randomized communication lower bound for the
Set-Disjointness (DISJ) problem [39, 57, 8], it follows that no 𝑛1−𝜀-space randomized streaming
algorithm can solve DISJ on 2𝑛 input bits.7

Clearly, every 𝑛𝑜(1)-space streaming algorithm for DISJ must fail to compute DISJ on some
input (indeed, it must fail on many inputs). We show that efficient refuters against streaming
algorithms attempting to solve any NP problem would imply a breakthrough lower bound on
general randomized algorithms, not just streaming algorithms.

Similarly to Definition 1.1, we can consider PNP-refuters against streaming algorithms,
which are deterministic polynomial time algorithms given a SAT oracle that output counterex-
amples for streaming algorithms on infinitely many input lengths. We can also similarly define
PNP-constructive separations.

THEOREM 1.3. Let 𝑓 (𝑛) ≥ 𝜔(1). For every language 𝐿 ∈ NP, a PNP-constructive separation
of 𝐿 from uniform randomized streaming algorithms with 𝑂(𝑛 · (log 𝑛) 𝑓 (𝑛)) time and 𝑂(log 𝑛) 𝑓 (𝑛)

space8 implies EXPNP ≠ BPP.

Essentially every lower bound proved against streaming algorithms in the literature holds
for a problem whose decision version is in NP. Theorem 1.3 effectively shows that if any of
these lower bounds can be made constructive, even in a PNP sense, then we would separate
randomized polynomial time from EXPNP, a longstanding open problem in complexity theory.
We are effectively showing that the counterexamples printed by such a refuter algorithm must
encode a function that is hard for general randomized streaming algorithms.

Stronger lower bounds follow from more constructive refuters (with an algorithm in a
lower complexity class than PNP) against randomized streaming algorithms. At the extreme end,
we find that uniform circuits refuting DISJ against randomized streaming algorithms would
even imply P ≠ NP. Similarly to Definition 1.1, we can consider polylogtime-uniform-AC0-
refuters against streaming algorithms, which are polylogtime-uniform-AC0 circuits that output
counterexamples for streaming algorithms on infinitely many input lengths.

7 Recall in the DISJ problem, Alice is given an 𝑛-bit string 𝑥, Bob is given an 𝑛-bit string 𝑦, and the goal is to determine
whether their inner product ∑𝑛

𝑖=1 𝑥𝑖 𝑦𝑖 is nonzero.

8 That is, for every such randomized streaming algorithm 𝐴, there is a PNP refuter 𝐵 such that 𝐵(1𝑛) prints an input 𝑥 of
length 𝑛 such that 𝐴 decides whether 𝑥 ∈ 𝐿 incorrectly, for infinitely many 𝑛.



7 / 41 Constructive Separations and Their Consequences

THEOREM 1.4. Let 𝑓 (𝑛) ≥ 𝜔(1). A polylogtime-uniform-AC0-constructive separation of DISJ
from randomized streaming algorithms with𝑂(𝑛 · (log 𝑛) 𝑓 (𝑛)) time and𝑂(log 𝑛) 𝑓 (𝑛) space9 implies
P ≠ NP.

To recap, it is well-known that DISJ does not have randomized streaming algorithms with
𝑂(𝑛 · (log 𝑛) 𝑓 (𝑛)) time and 𝑂(log 𝑛) 𝑓 (𝑛) space, even for 𝑓 (𝑛) ≤ 𝑜(log 𝑛/log log 𝑛), by communi-
cation complexity arguments. We are saying that, if (given the code of such an algorithm) we
can efficiently construct hard instances of DISJ for that algorithm, then strong lower bounds
follow. That is, making communication complexity arguments constructive would imply strong
unconditional lower bounds.

Constructive Separations for One-Tape Turing Machines Imply Breakthroughs. Next,
we show how making some rather old lower bounds constructive would imply a circuit complex-
ity breakthrough. It has been known at least since Maass [43] that nondeterministic one-tape
Turing machines require Ω(𝑛2) time to simulate nondeterministic multitape Turing machines.
However, those lower bounds are proved by non-constructive counting arguments. We show
that if there is a PNP algorithm that can produce bad inputs for a given one-tape Turing machine,
then ENP requires exponential-size circuits. This in turn would imply BPP ⊆ PNP, a breakthrough
simulation of randomized polynomial time.

THEOREM 1.5. For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time RAM, a
PNP-constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machines
implies ENP ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.

Constructive Separations for Query Lower Bounds Imply Breakthroughs. Now we turn
to query complexity. Consider the following basic problem PromiseMAJORITY𝑛,𝜀 for a parameter
𝜀 < 1/2.

PromiseMAJORITY𝑛,𝜀: Given an input 𝑥 ∈ {0, 1}𝑛, letting 𝑝 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 , distinguish between

the cases 𝑝 < 1/2 − 𝜀 or 𝑝 > 1/2 + 𝜀.

This is essentially the “coin problem” [10]. It is well-known that every randomized query
algorithm needs Θ(1/𝜀2) queries to solve PromiseMAJORITY𝑛,𝜀 with constant success probability
(uniform random sampling is the best one can do). That is, any randomized query algorithm
making 𝑜(1/𝜀2) queries must make mistakes on some inputs, with high probability. We show
that constructing efficient refuters for this simple sampling lower bound would imply P ≠ NP!

THEOREM 1.6. Let 𝜀 be a function of 𝑛 satisfying 𝜀 ≤ 1/(log 𝑛)𝜔(1) , and 1/𝜀 is a positive integer
computable in poly(1/𝜀) time given 𝑛 in binary.

9 That is, for every such randomized streaming algorithm 𝐴, there is a polylogtime-uniform AC0 circuit family {𝐶𝑛} such
that 𝐴 fails to solve DISJ on 2𝑛-bit inputs correctly on the output 𝐶𝑛 (1𝑛) for infinitely many 𝑛.



8 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

If there is a polylogtime-uniform-AC0-constructive separation of PromiseMAJORITY𝑛,𝜀 from
randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then NP ≠ P.
If there is a polylogtime-uniform-NC1-constructive separation of PromiseMAJORITY𝑛,𝜀 from
randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then PSPACE ≠ P.

Note that PromiseMAJORITY𝑛,𝜀 can be easily computed in NC1. If for every randomized
query algorithm 𝐴 running in 𝑛𝛼 time and making 𝑛𝛼 queries for some 𝛼 > 0, we can always
find inputs in NC1 on which 𝐴 makes mistakes, then we would separate P from PSPACE.

Constructive Separations for MCSP Against AC0 Imply Breakthroughs. Informally, the
Minimum Circuit Size Problem (MCSP) is the problem of determining the circuit complexity of
a given 2𝑛-bit truth table. Recent results on the phenomenon of hardness magnification [53, 44,
14, 12, 15] show that, for various restricted complexity classes C:

Strong lower bounds against C are known for explicit languages.
Standard complexity-theoretic hypotheses imply that such lower bounds should hold also
for MCSP (and its variants).
However, actually proving that MCSP ∉ C would imply a breakthrough complexity separa-
tion.
There is also often a slightly weaker lower bound against C that can be shown for MCSP,
suggesting that we are quantitatively “close” to a breakthrough separation in some sense.

The scenario where all four conditions above hold is called a “hardness magnification
frontier” in [12]. We show that a similar phenomenon holds for constructive separations. It is
well known that versions of MCSP are not in AC0 [4], but strongly constructive separations are
not known. We show that strongly constructive separations would separate P from NP, and that
they exist under a standard complexity hypothesis. Moreover, we show that slightly weaker
constructive separations do exist, and the strong constructive separations we seek do hold for
other hard problems such as Parity.

In the following, MCSP[𝑠(𝑛)] is the computational problem that asks whether a Boolean
function on 𝑛 bits, represented by its truth table, has circuits of size at most 𝑠(𝑛). Similarly to
Definition 1.1, a polylogtime-uniform-AC0[ 𝑓 (𝑛)]-refuter for MCSP[𝑠(𝑛)] against an algorithm 𝐴 is
defined as a polylogtime-uniform-AC0 circuit of size 𝑓 (𝑛) that outputs a string 𝑥 ∈ {0, 1}𝑁 given
input 1𝑁 (where 𝑁 = 2𝑛), such that for infinitely many 𝑁 = 2𝑛, 𝐴(𝑥) ≠ MCSP[𝑠(𝑛)] (𝑥).10 We
also consider a natural relaxation of refuter (Definition 1.1), called list-refuter, which outputs a
list of 𝑛-bit strings 𝑥𝑖 (instead of a single 𝑛-bit string 𝑥) given input 1𝑛, and we only require that
at least one of the strings 𝑥𝑖 is a counterexample.

10 Note that here we restrict the input lengths 𝑁 to be powers of two, since otherwise the MCSP problem is ill-defined.



9 / 41 Constructive Separations and Their Consequences

THEOREM 1.7. Let 𝑠(𝑛) ≥ 𝑛log(𝑛)𝜔 (1) be any time-constructive super-quasipolynomial function. In
the following, we consider MCSP[𝑠(𝑛)] and Parity problems of input length 𝑁 = 2𝑛. The following
hold:

1. (Major Separation from Constructive Lower Bound) If there exists a polylogtime-uniform
AC0[quasipoly] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0 algorithm,
then P ≠ NP.

2. (Constructive Lower Bound Should Exist) If PH ⊈ SIZE(𝑠(𝑛)2), then there is a polylogtime-
uniform-AC0[quasipoly] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0

algorithm.
3. (Somewhat Constructive Lower Bound) For 𝑠(𝑛) ≤ 𝑜(2𝑛/𝑛), there is a polylogtime-uniform-

AC0[2poly(𝑠(𝑛))] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0 algorithm.
4. (Constructive Lower Bound for a Different Hard Language) There is a polylogtime-uniform-

AC0[quasipoly]-list-refuter for Parity against every polylogtime-uniform AC0 algorithm.

Note that in item 3, the input size 𝑁 to the problem is 𝑁 = 2𝑛, hence 2poly(𝑠(𝑛)) is only
slightly super-quasipolynomial in 𝑁 .

Comparison with Theorem 1.2. It is very interesting to contrast Theorem 1.2 with the various
theorems of this subsection. Theorem 1.2 tells us that many longstanding open problems in
lower bounds would automatically imply constructive separations, when resolved. In contrast,
theorems from this subsection say that extending simple and well-known lower bounds to
become constructive would resolve other major lower bounds! Taken together, we view the
problem of understanding which lower bounds can be made constructive as a significant key to
understanding the future landscape of complexity lower bounds.

1.3 Certain Lower Bounds Cannot Be Made Constructive

Finally, we can give some negative answers to our Question 1. We show that for some hard
functions, there are no constructive separations from any complexity classes. Specifically, we
show (unconditionally or under plausible complexity conjectures) that there are no refuters
for these problems against a trivial decision algorithm that always returns the same answer
(zero, or one). Hence, there can be no constructive separations of these hard languages from
any complexity class containing the constant zero or constant one function. (All complexity
classes that we know of contain both the constant zero and one function.)

For a string 𝑥 ∈ {0, 1}∗, the 𝑡-time-bounded Kolmogorov complexity of 𝑥, denote by Kt(𝑥), is
defined as the length of the shortest program prints 𝑥 in time 𝑡( |𝑥 |). We use RKt to denote the set
of strings 𝑥 such that Kt(𝑥) ≥ |𝑥 |−1. Hirahara [32] recently proved that for any super-polynomial
𝑡(𝑛) ≥ 𝑛𝜔(1) , RKt ∉ P. We observe that this separation cannot be made P-constructive.



10 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

PROPOS IT ION 1.8. For any 𝑡(𝑛) ≥ 𝑛𝜔(1) , there is no P-refuter for RKt against the constant zero
function.

Since RKt is a function in EXP, it would be interesting to find functions in NP with no
constructive separations.11 We show that under plausible conjectures, such languages in NP
exist.

THEOREM 1.9. The following hold:
If NE ≠ E, then there is a language in NP\P that does not have P refuters against the constant
one function.12

If NE ≠ RE, then there is a language in NP \ P that does not have BPP refuters against the
constant one function.13

Thus, under natural conjectures about exponential-time classes, there are some problems
in NP with no constructive separations at all, not even against the trivial algorithm that always
accepts.

1.4 Intuition

Let us briefly discuss the intuition behind some of our results. We will first focus on the
results showing that constructive separations of known lower bounds would imply complexity
breakthroughs, as we believe these are the most interesting of our paper.

Constructive Separations of Known Lower Bounds Imply Breakthroughs. Suppose for
example we want to show that a constructive separation of SAT from quick low-space streaming
algorithms implies EXPNP ≠ BPP. The proof is by contradiction: assuming EXPNP = BPP, we aim
to construct a streaming algorithm running in 𝑛(log 𝑛)𝜔(1) time and (log 𝑛)𝜔(1) space which
solves 3SAT correctly on all instances produced by PNP algorithms. Given a PNP algorithm 𝑅,
EXPNP = BPP implies EXPNP ⊂ P/poly, which further implies that the output of 𝑅(1𝑛) must have
circuit complexity at most polylog(𝑛) (construed as a truth table).

Extending work of McKay, Murray, and Williams [44], we show that NP ⊂ BPP (implied by
EXPNP = BPP) implies there is an 𝑛(log 𝑛)𝜔(1) time and (log 𝑛)𝜔(1) space randomized algorithm
with one-sided error for finding a polylog(𝑛)-size circuit encoding the given length-𝑛 input,
if such a circuit exists. So given any input 𝑅(1𝑛) from a potential refuter 𝑅, our streaming
algorithm can first compute a polylog(𝑛)-size circuit 𝐶 encoding 𝑅(1𝑛), and it construes this
circuit 𝐶 as an instance of the Succinct-3SAT problem. Since Succinct-3SAT ∈ NEXP = BPP,

11 Note that RKt is in coNTIME[𝑡(𝑛)], but it is likely not in coNP.

12 Here, E = TIME[2𝑂(𝑛) ], the class of languages decidable in (deterministic) 2𝑂(𝑛) time, and NE is the corresponding
nondeterministic class.

13 Here, RE = RTIME[2𝑂(𝑛) ], the class of languages decidable in randomized 2𝑂(𝑛) time with one-sided error.



11 / 41 Constructive Separations and Their Consequences

our streaming algorithm can solve Succinct-3SAT(𝐶) in polylog(𝑛) randomized time, which
completes the proof.

For our results on constructive query lower bounds, we use ideas from learning theory. Set
𝜀 ≪ 1/poly(log 𝑛). Assuming PSPACE = P, we want to show that for every 𝑛-bit string printed
by an uniform NC1 circuit 𝐶 on the input 1𝑛, we can decide the PromiseMAJORITY𝑛,𝜀 problem
with 𝑜(1/𝜀2) randomized queries in poly(1/𝜀) time. (Then, any sufficiently constructive lower
bound that PromiseMAJORITY𝑛,𝜀 requires Ω(1/𝜀2) queries would imply P ≠ PSPACE.) PSPACE = P
implies that for every uniform NC1 circuit 𝐶, its output can be encoded by some polylog(𝑛)-size
circuit 𝐷. Now, also assuming PSPACE = P, this circuit 𝐷 can be PAC-learned with error 𝜀/2
and failure probability 1/10 using only poly log(𝑛)/𝜀 queries (and randomness). Let 𝐷′ be the
circuit we learnt through this process; it approximates 𝐷 well enough that we can make 𝑂(1/𝜀2)
random queries to the circuit 𝐷′, without querying 𝐷 in poly(1/𝜀, log 𝑛) time, and return the
majority answer as a good answer for the original 𝑛-bit answer. Such an algorithm only makes
polylog(𝑛)/𝜀 ≪ 𝑜(1/𝜀2) queries to the original input and runs in poly(1/𝜀) time.

Constructive Separations for Uniform Complexity Separations. Next, we highlight some
insights behind the proof of Theorem 1.2. The proof is divided into several different cases (Theo-
rem 5.3, Theorem 5.5, and Theorem 5.7), and we will focus on the intuition behind Theorem 5.5,
which applies to all complexity classes with a downward self-reducible complete language (such
as PSPACE or Σ𝑘P).

We take the PSPACE vs. P problem as an example. Gutfreund, Shaltiel, and Ta-Shma [28]
showed how to construct refuters for P ≠ NP, but their proof utilizes the search-to-decision
reduction for NP-complete problems, and no such reduction exists for PSPACE. We show how a
downward self-reduction can be used to engineer a situation similar to that of [28].

Let 𝑀 be a downward self-reducible PSPACE-complete language and let 𝐴 be a P algorithm.
We also let 𝐷 be a polynomial-time algorithm defining a downward-self reduction for 𝑀 , so
that for all but finitely many 𝑛 ∈ N and 𝑥 ∈ {0, 1}𝑛,

𝐷(𝑥)𝑀≤𝑛−1 = 𝑀 (𝑥). (1)

That is, 𝐷 can compute 𝑀 (𝑥) given access to an 𝑀-oracle for all strings of length less than |𝑥 |.
Our key idea is that (1) also defines 𝑀 . Assuming the polynomial-time algorithm 𝐴 cannot
compute 𝑀 , it follows that (1) does not always hold if 𝑀 is replaced by 𝐴. In particular, the
following NP statement is true for infinitely many 𝑛:

∃𝑥 ∈ {0, 1}𝑛 such that 𝐷(𝑥)𝐴≤𝑛−1 ≠ 𝐴(𝑥). (2)

Now we use a similar approach as in [28]: we use 𝐴 and a standard search-to-decision
reduction to find the shortest string 𝑥∗ so that (2) holds. If 𝐴 fails to do so, we can construct a
counterexample to the claim that 𝐴 solves the PSPACE-complete language 𝑀 similarly to [28].



12 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

If 𝐴 finds such an 𝑥∗, then by definition 𝐴( 𝑦) = 𝑀 ( 𝑦) for all 𝑦 with | 𝑦 | ≤ |𝑥∗ | − 1 and we have
𝐴(𝑥∗) ≠ 𝑀 (𝑥∗) from (2), also a counterexample.14

1.5 Organization

In Section 2 we introduce the necessary definitions and technical tools for this paper, as well
as review other related work. In Section 3 we show that making known streaming and query
lower bounds constructive implies major complexity separations, and prove Theorem 1.3
and Theorem 1.4. In Section 4 we show that certain constructive separations for MCSP imply
breakthrough lower bounds such as P ≠ NP, and prove Theorem 1.7. In Section 5 we study
constructive separations for uniform classes and prove Theorem 1.2. In Section 6 we show that
several hard languages do not have constructive separations from any complexity class, and
prove Proposition 1.8 and Theorem 1.9. Finally, in Section 7 we conclude with some potential
future work.

2. Preliminaries

2.1 Notation

We use 𝑂( 𝑓 ) as shorthand for 𝑂( 𝑓 · polylog( 𝑓 )) throughout the paper. All logarithms are base-2.
We use 𝑛 to denote the number of input bits. We say a language 𝐿 ⊆ {0, 1}★ is 𝑓 (𝑛)-sparse if
|𝐿𝑛 | ≤ 𝑓 (𝑛), where 𝐿𝑛 = 𝐿 ∩ {0, 1}𝑛. We assume knowledge of basic complexity theory (see [5,
25]).

2.2 Definitions of MCSP and time-bounded Kolmogorov complexity

The Minimum Circuit Size Problem (MCSP) [38] and 𝑡-time-bounded Kolmogorov complexity
(Kt) are studied in this paper. We recall their definitions.

DEF IN IT ION 2 .1 (MCSP). Let 𝑠 : N→ N satisfy 𝑠(𝑛) ≥ 𝑛 − 1 for all 𝑛.
Problem: MCSP[𝑠(𝑛)].
Input: A function 𝑓 : {0, 1}𝑛 → {0, 1}, presented as a truth table of 𝑁 = 2𝑛 bits.
Decide: Does 𝑓 have a (fan-in two) Boolean circuit 𝐶 of size at most 𝑠(𝑛)?

We will also consider search-MCSP, the search version ofMCSP, in which the small circuit𝐶
must be output when it exists.

For a time bound 𝑡 : N → N, recall that the Kt complexity (𝑡-time-bounded Kolmogorov
complexity) of string 𝑥 is the length of the shortest program which outputs 𝑥 in at most 𝑡( |𝑥 |)
time.

14 Note the argument above only finds a single counterexample; using a paddable PSPACE-complete language, one can
adapt the above argument to find infinitely many counter examples, see the proof of Theorem 5.5 for details.



13 / 41 Constructive Separations and Their Consequences

DEF IN IT ION 2 .2 (RKt). Let 𝑡 : N→ N.
Problem: RKt .
Input: A string 𝑥 ∈ {0, 1}𝑛.
Decide: Does 𝑥 have Kt(𝑥) complexity at least 𝑛 − 1?

2.3 Implications of Circuit Complexity Assumptions on Refuters

The following technical lemma shows that, assuming uniform classes have non-trivially smaller
circuits, the output of a refuter may be assumed to have low circuit complexity. This basic fact
will be useful for several proofs in the paper.

LEMMA 2.3. Let 𝑠 : N→ N be an increasing function. The following hold:

1. Assuming ENP ⊂ SIZE[𝑠(𝑛)], then for every PNP algorithm 𝑅 such that 𝑅(1𝑛) outputs 𝑛 bits,
it holds that 𝑅(1𝑛) has circuit complexity at most 𝑠(𝑂(log 𝑛)).

2. Assuming E ⊂ SIZE[𝑠(𝑛)], then for every P algorithm 𝑅 such that 𝑅(1𝑛) outputs 𝑛 bits, it
holds that 𝑅(1𝑛) has circuit complexity at most 𝑠(𝑂(log 𝑛)).

3. Assuming SPACE[𝑂(𝑛)] ⊂ SIZE[𝑠(𝑛)], then for every LOGSPACE algorithm 𝑅 such that
𝑅(1𝑛) outputs 𝑛 bits, it holds that 𝑅(1𝑛) has circuit complexity at most 𝑠(𝑂(log 𝑛)).

PROOF . In the following we only prove the first item, the generalization to the other two items
are straightforward.

Consider the following function 𝑓𝑅(𝑛, 𝑖), which takes two binary integers 𝑛 and 𝑖 ∈ [𝑛] as
inputs, and output the 𝑖-th bit of the output of 𝑅(1𝑛). The inputs to 𝑓𝑅 can be encoded in 𝑂(log 𝑛)
bits in a way that all inputs (𝑛, 𝑖) with the same 𝑛 has the same length.

Since 𝑅 is in PNP, we have 𝑓𝑅 ∈ ENP. By our assumption and fix the first part of the input
to 𝑓𝑅 as 𝑛, it follows that 𝑅(1𝑛) has circuit complexity at most 𝑠(𝑂(log 𝑛)). ■

The following simple corollary of Lemma 2.3 will also be useful.

COROLLARY 2 .4. If ENP ⊂ P/poly (E ⊂ P/poly or SPACE[𝑂(𝑛)] ⊆ P/poly), then for every PNP (P or
LOGSPACE) algorithm 𝑅 such that 𝑅(1𝑛) outputs 𝑛 bits, it holds that 𝑅(1𝑛) has circuit complexity
at most polylog(𝑛).

We also observe that P = NP has strong consequences for polylogtime-uniform AC0 circuits.

LEMMA 2.5. The following hold:
1. Assuming P = NP, then for every polylogtime-uniform AC0 algorithm 𝑅 such that 𝑅(1𝑛)

outputs 𝑛 bits, it holds that 𝑅(1𝑛) has circuit size complexity at most polylog(𝑛).
2. Assuming P = PSPACE, then for every polylogtime-uniform NC1 algorithm 𝑅 such that 𝑅(1𝑛)

outputs 𝑛 bits, it holds that 𝑅(1𝑛) has circuit size complexity at most polylog(𝑛).



14 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

PROOF . Let 𝐵 be a polylogtime-uniform algorithm that, on the integer 𝑛 (in binary) and
𝑂(log 𝑛)-bit additional input, reports gate and wire information for an AC0 circuit 𝑅𝑛. Consider
the function 𝑓 (𝑛, 𝑖) which determines the 𝑖-th output bit of the circuit 𝑅𝑛 on the input 1𝑛,
given 𝑛 and 𝑖 in binary. The function 𝑓 is a problem in PH: given input of length 𝑚 = 𝑂(log 𝑛),
by existentially and universally guessing and checking gate/wire information (and using the
polylog(𝑛)-time algorithm 𝐵 to verify the information), the 𝑅𝑛 of 𝑛𝑂(1) size can be evaluated
in Σ𝑑TIME[𝑚𝑘] for a constant 𝑑 depending on the depth of 𝑅𝑛, and a constant 𝑘 depending on
the algorithm 𝐵. Since P = NP, 𝑓 is computable in P, i.e., 𝑓 is in time at most 𝛼𝑚𝛼 for some
constant 𝛼 depending on 𝑘, 𝑑, and the polynomial-time SAT algorithm. Therefore 𝑓 has a circuit
family of size at most 𝑚𝑐 for some fixed 𝑐, where 𝑚 = 𝑂(log 𝑛). Thus the output of such a family
always has small circuits.

The same argument applies if we replace AC0 by NC1 and replace PH by PSPACE. ■

2.4 Other Related Work

Beyond the prior work on efficient refuters stated in the introduction (such as [28, 6, 21]), other
work on efficient methods for producing hard inputs includes [41, 27, 9, 65, 53]).

As mentioned in the introduction, Kabanets [37] defined and studied refuters in the context
of derandomization. A primary result from that paper is that it is possible to simulate one-sided
error polynomial time (RP) in zero-error subexponential time (ZPSUBEXP) on all inputs produced
by refuters (efficient time algorithms that take 1𝑛 and output strings of length 𝑛).15 In other
words, nontrivial derandomization is indeed possible when we only consider the outputs of
refuters: there is no constructive separation of RP ⊄ ZPSUBEXP. This result contrasts nicely with
some of our own, which show that if we could prove (for example) EXP = ZPP holds with respect
to refuters, then EXP = ZPP holds unconditionally. (Of course this is a contrapositive way of
stating our results; we don’t believe that EXP = ZPP holds!) Kabanets’ work effectively shows that
if RP ⊈ ZPSUBEXP implied a constructive separation of RP ⊈ ZPSUBEXP, then RP ⊆ ZPSUBEXP
holds unconditionally (because there is no constructive separation of RP from ZPSUBEXP). Other
works in this direction include [35, 63, 42, 29, 59, 17, 18].

Chen, Jin, and Williams [15] studied a notion of constructive proof they called explicit ob-
structions. Roughly speaking, an explicit obstruction against a circuit class C is a (deterministic)
polynomial-time algorithm 𝐴 outputting a list 𝐿𝑛 of input/output pairs {(𝑥𝑖 , 𝑦𝑖)} with distinct 𝑥𝑖 ,
such that all circuits in C fail to be consistent on at least one input/output pair. Chen, Jin, and
Williams show several “sharp threshold” results for explicit obstructions, demonstrating (for
example) that explicit obstructions unconditionally exist for 𝑛2−𝜀-size DeMorgan formulas, but
if they existed for 𝑛2+𝜀-size formulas then one could prove the breakthrough lower bound
EXP ⊄ NC1. In this work, we are considering a “uniform” version of this concept: instead of

15 The exact statement involves an “infinitely-often” qualifier, which we omit here for simplicity. A version of the simulation
that removes the restriction to refuters, with the addition of a small amount of advice, was given in [67].



15 / 41 Constructive Separations and Their Consequences

outputting a list of bad input/output pairs (that do not depend on the algorithm), here we only
have to output one bad instance that depends on the algorithm given.

An additional motivation for studying constructive proofs comes from proof complexity
and bounded arithmetic. A circuit lower bound for a language 𝐿 ∈ P can naturally be expressed
by a Π2 statement 𝑆𝑛 that says: ”For all circuits 𝐶 of a certain type, there exists 𝑥 of length 𝑛

such that 𝐶(𝑥) ≠ 𝐿(𝑥)”. In systems of bounded arithmetic such as Cook’s theory 𝑃𝑉1 [20]
(formalizing poly-time reasoning) or Jeřábek’s theory 𝐴𝑃𝐶1 [36] (formalizing probabilistic
poly-time reasoning), a proof of 𝑆𝑛 for infinitely many 𝑛 immediately implies a constructive
separation. The reason is that these theories have efficient witnessing: informally, any proof of
a “∀∃-statement” ∀𝑥∃ 𝑦𝑅(𝑥, 𝑦) (for polynomial-time computable 𝑅) in these theories constructs
an efficiently computable function 𝑓 such that 𝑅(𝑥, 𝑓 (𝑥)) holds. Here the function 𝑓 plays the
role of the refuter in a constructive separation. Therefore, situations in which constructive
separations are unlikely to exist may provide clues about whether complexity lower bounds
could be independent of feasible theories. Conversely, the constructiveness of a separation is a
precondition for the provability of that separation in these feasible theories.16

Hardness Magnification. Another related line of work is hardness magnification [53, 44,
52, 12]. This line of work shows how very minor-looking lower bounds actually hide the
whole difficulty of P vs NP and related problems. However, one might say that those results
simply illuminate large holes in our intuition: those minor-looking lower bounds are far more
difficult to prove than previously believed. One has to be skeptical in considering hardness
magnification as a viable lower bounds approach, because we really don’t understand how
difficult the “minor-looking” lower bounds actually are.

In this paper, in contrast, we are mainly focused on situations where we already know the
lower bound holds (and can prove that in multiple ways), but we are striving to prove the known
lower bound in a more constructive, algorithmic way. This sort of situation comes up routinely
in applications of the probabilistic method, where an object we want can be constructed with
randomness, but it is a major open problem to construct it deterministically. Our results indicate
that there is a deep technical gap between the major complexity class separation problems,
versus many lower bounds we know how to prove. The former type of lower bound problem
automatically has constructive aspects built into it, while the latter type of lower bound requires
a breakthrough in derandomization in order to be made constructive.

16 We note, however, that these connections depend on the complexity classes being separated. A circuit lower bound
for an NP problem does not have an obvious Π2 formulation, so the efficient witnessing results mentioned above do
not directly apply. More complicated witnessing theorems might still be relevant; we refer to [55], [46], and the recent
book on Proof Complexity by Kraj́ıček [40] for a more detailed discussion of these matters.



16 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

3. Constructive Separations for Streaming and Query Algorithms
imply Breakthrough Lower Bounds

Streaming lower bounds and query complexity lower bounds are often regarded as well-
understood, and certain lower bounds against one-tape Turing machines have been known
for 50 years. In this section we show that surprisingly, making these separations constructive
would imply breakthrough separations such as EXPNP ≠ BPP or even P ≠ NP.

3.1 Making Most Streaming Lower Bounds Constructive Implies Breakthrough
Separations

We show that if randomized streaming lower bounds for any language 𝐿 in NP can be made
constructive, even with a PNP refuter, then EXPNP ≠ BPP.

THEOREM 1.3. (Restated) Let 𝑓 (𝑛) ≥ 𝜔(1). For every language 𝐿 ∈ NP, a PNP-constructive
separation of 𝐿 from uniform randomized streaming algorithms with 𝑂(𝑛 · (log 𝑛) 𝑓 (𝑛)) time and
𝑂(log 𝑛) 𝑓 (𝑛) space implies EXPNP ≠ BPP.

REMARK 3.1. Let 𝑉 (𝑥, 𝑦) be a verifier for 𝐿, and assume that the witness length | 𝑦 | is at
most |𝑥 |.17 Then the randomized streaming algorithms 𝐴 considered in Theorem 1.3 can be
further assumed to solve the search-version of 𝐿 with one-sided error in the following sense:
(1) 𝐴 is also required to output a witness 𝑦 when it decides 𝑥 ∈ 𝐿 (2) whenever 𝐴 outputs a
witness 𝑦, we have 𝑉 (𝑥, 𝑦) = 1.

We need the following lemma for solving search-MCSP, which adapts an oracle algorithm
from [44]. The original algorithm of [44] has two-sided error: that is, when 𝑥 ∉ MCSP[𝑠(𝑛)],
there is a small probability that the algorithm outputs an incorrect circuit. We modify their
approach with a carefully designed checking approach so that the algorithm has only one-sided
error.

LEMMA 3.2 ([44, Theorem 1.2], adapted). Assuming NP ⊆ BPP, for a time-constructive 𝑠 : N→
N, there is a randomized streaming algorithm for search-MCSP[𝑠(𝑛)] on 𝑁 -bit instances (where
𝑁 = 2𝑛) with 𝑂(𝑁 · 𝑠(𝑛)𝑐) time and 𝑂(𝑠(𝑛)𝑐) space for a constant 𝑐 such that the following holds.

If the input 𝑥 ∈ MCSP[𝑠(𝑛)], the algorithm outputs a circuit 𝐶 of size at most 𝑠(𝑛) computing
𝑥 with probability at least 1 − 1/𝑁 .
If the input 𝑥 ∉ MCSP[𝑠(𝑛)], the algorithm always outputs NO.

Alternatively, if we assume NP = P instead, the above randomized streaming algorithm can
be made deterministic.

17 That is, 𝑥 ∈ 𝐿 if and only if there exists 𝑦 ∈ {0, 1}∗ such that | 𝑦 | ≤ |𝑥 | and 𝑉 (𝑥, 𝑦) = 1.



17 / 41 Constructive Separations and Their Consequences

PROOF . We first recall the Σ3P problem Circuit-Min-Merge introduced in [44]; here, we will
only consider the version with two given input circuits. In the following we identify the integer 𝑖
from [2𝑛] with the 𝑖-th string from {0, 1}𝑛 (ordered lexicographically).

Circuit-Min-Merge[𝑠(𝑛)]

Input: Given two circuits 𝐶1, 𝐶2 on 𝑛 = log 𝑁 input bits and three integers 𝛼 < 𝛽 ≤ 𝛾 ∈ [2𝑛].
Output: The lexicographically first circuit 𝐶′ of size at most 𝑠(𝑛) such that for all 𝛼 ≤ 𝑧 ≤ 𝛽 − 1,
𝐶′(𝑧) = 𝐶1(𝑧), and for all 𝛽 ≤ 𝑧 ≤ 𝛾, 𝐶′(𝑧) = 𝐶2(𝑧). If there are no such circuits, it outputs an
all-zero string.

Problem 1. Circuit-Min-Merge

Note that since NP ⊆ BPP, it follows that Circuit-Min-Merge is also in BPP. We can without
loss of generality assume we have a BPP algorithm for Circuit-Min-Merge with error at most
1/𝑁3.

We give a brief overview of the proof idea. In the proof of the original two-sided error
version [44, Theorem 1.2], they designed a streaming algorithm which maintains a circuit 𝐶
such that 𝐶(𝑧) = 𝑥𝑧 for all the processed input bits 𝑥𝑧 so far, where 𝐶 is periodically updated
as more input bits arrive, with the help of the BPP algorithm for Circuit-Min-Merge. In our
one-sided error case, we need to verify that the circuit returned by the BPP algorithm is indeed
correct. In order to perform this verification efficiently, our streaming algorithm proceeds in a
binary-tree-like structure (in contrast to the linear structure in [44, Theorem 1.2]), so that we
can reduce the total time spent on verification by performing expensive checks less frequently.

After processing the first 𝑝 ∈ [2𝑛] bits of the input 𝑥, our streaming algorithm maintains a
list of at most 𝑛 circuits. Specifically, let 𝑝 =

∑𝑛
𝑘=0 𝑎𝑘 · 2𝑘 be the binary representation of 𝑝. For

each 𝑘 ∈ [𝑛], we maintain a circuit 𝐶𝑘 that is intended to satisfy 𝐶𝑘 (𝑧) = 𝑥𝑧 for all
∑

ℓ>𝑘 𝑎ℓ · 2ℓ <
𝑧 ≤ ∑

ℓ≥𝑘 𝑎ℓ · 2ℓ. Note that when 𝑎𝑘 = 0, there is indeed no requirement on the circuit 𝐶𝑘 and
we can simply set it to a trivial circuit.

Now, suppose we get the 𝑝+ 1 bit of the input 𝑥. We update the circuit list via the following
algorithm.

We initialize 𝐷 to be the linear-size circuit which outputs 𝑥𝑝+1 on the input 𝑝 + 1, and
outputs 0 on all other inputs.
For 𝑘 from 0 to 𝑛:

If 𝑎𝑘 = 1, we set 𝐷 = Circuit-Min-Merge(𝐶𝑘, 𝐷, 𝛼, 𝛽, 𝛾) with suitable 𝛼, 𝛽, 𝛾, and set
𝑎𝑘 = 0 and 𝐶𝑘 to be a trivial circuit. We next check whether 𝐷 is indeed the correct
output of Circuit-Min-Merge(𝐶𝑘, 𝐷, 𝛼, 𝛽, 𝛾) by going through all inputs in [𝛼, 𝛾]. We
output NO and halt the algorithm immediately if we found 𝐷 is not the correct output
(if Circuit-Min-Merge(𝐶𝑘, 𝐷, 𝛼, 𝛽, 𝛾) outputs the all-zero string, we also output NO and
halt the algorithm).



18 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

If 𝑎𝑘 = 0, we set 𝐶𝑘 = 𝐷, and set 𝑎𝑘 ← 1, 𝑎𝑘−1, 𝑎𝑘−2, . . . , 𝑎0 ← 0 (in this way the binary
counter

∑𝑛
𝑘=0 𝑎𝑘2𝑘 is incremented by 1), and halt the update procedure.

After we have processed the 2𝑛-bit of 𝑥, we simply output 𝐶𝑛. If 𝑥 ∈ MCSP[𝑠(𝑛)], then
by a simple union bound, with probability at least 1 − 1/𝑁 , all calls to our BPP algorithm for
Circuit-Min-Merge are answered correctly. In this case 𝐶𝑛 is a correct algorithm computing the
input 𝑥. If 𝑥 ∉ MCSP[𝑠(𝑛)], since we have indeed checked the output of all Circuit-Min-Merge
calls, our algorithm will only output the circuit 𝐶𝑛 if it is indeed of size at most 𝑠(𝑛) and
computes 𝑥 exactly. Since 𝑥 ∉ MCSP[𝑠(𝑛)] implies there is no such circuit 𝐶𝑛, our algorithm
always outputs NO in this case.

For the running time, note that the above algorithm calls Circuit-Min-Merge at most 𝑁 ·
log 𝑁 ≤ 𝑂(𝑁 · 𝑠(𝑛)) times on input of length 𝑂(𝑠(𝑛)). Therefore calling Circuit-Min-Merge only
takes 𝑁 · poly(𝑠(𝑛)) time in total. Note that merging 𝐶𝑘 and 𝐷 takes 2𝑘 · poly(𝑠(𝑛)) time to verify
the resulting circuit, but this only happens at most 𝑁/2𝑘 times. So the entire algorithm runs in
𝑁 · poly(𝑠(𝑛)) time and poly(𝑠(𝑛)) space as stated. ■

Now we are ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3 . The idea is to show that if EXPNP = BPP then we can construct a
randomized streaming algorithm for 𝐿 ∈ NP that “fools” all possible PNP refuters. Interestingly,
the assumption is used in three different ways: (1) to bound the circuit complexity of the outputs
of PNP algorithms, (2) to obtain a randomized streaming algorithm that finds a small circuit
encoding the input, and (3) to get an efficient algorithm to find a small circuit encoding a correct
witness when it exists.

Let 𝐿 ∈ NP, and 𝑉 (𝑥, 𝑦) be a polynomial-time verifier for 𝐿. Assuming EXPNP = BPP, we
are going to construct a randomized streaming algorithm 𝐴, such that it solves 𝐿 correctly on
all possible instances which can be generated by a PNP refuter.

Let 𝐵 be an arbitrary PNP refuter. First, by Corollary 2.4, EXPNP = BPP ⊂ P/poly implies that
for all 𝑛 ∈ N, the length-𝑛 string 𝐵(1𝑛) has a circuit complexity of 𝑤(𝑛) = polylog(𝑛).

Second, note that EXPNP = BPP also implies that NP ⊆ BPP. Let 𝑓 (𝑛) ≥ 𝜔(1) be time-
constructive and for 𝑛 = 2𝑚 let 𝑠(𝑚) = (log 𝑛) 𝑓 (𝑛)/𝑐1 for a sufficiently large constant 𝑐1 >

1. By Lemma 3.2, we have a one-sided error randomized streaming algorithm 𝐴MCSP for
search-MCSP[𝑠(𝑚)] with running time 𝑛 · 𝑠(𝑚)𝑂(1) and space 𝑠(𝑚)𝑂(1) . Since 𝑤(𝑛) ≤ 𝑠(𝑚),
we apply 𝐴MCSP to find an 𝑠(𝑚)-size circuit 𝐶 encoding 𝐵(1𝑛).

Now, we have an 𝑠(𝑚)-size circuit encoding the 𝑛-bit input 𝐵(1𝑛), and we wish to solve
the Succinct-𝐿 problem18 on this circuit. Note that Succinct-𝐿 is a problem in NEXP.

EXPNP = BPP implies NEXP ⊂ P/poly, so every Succinct-𝐿 instance has a succinct witness
with respect to the verifier 𝑉 : this follows from the easy witness lemma of [34]. Formally, there

18 Here, we define “Succinct-𝐿” to be: given a circuit 𝐶 with ℓ input bits, decide whether tt(𝐶) ∈ 𝐿, where tt(𝐶) is the truth
table of 𝐶.



19 / 41 Constructive Separations and Their Consequences

exists a universal constant 𝑘 ∈ N such that, for every 𝑠(𝑚)-size circuit 𝐷 such that tt(𝐷) ∈ 𝐿,
there exists an 𝑠(𝑚)𝑘-size circuit 𝐸 such that 𝑉 (tt(𝐷), tt(𝐸)) = 1.

We consider the following problem:

Given an 𝑠(𝑚)-size circuit 𝐷 with truth-table length 𝑛 = 2𝑚 and an integer 𝑖 ∈ [log(𝑠(𝑚)𝑘)],
exhaustively try all circuits of size at most 𝑠(𝑚)𝑘, find the first circuit 𝐸 such that𝑉 (tt(𝐷), tt(𝐸)) =
1, and output the 𝑖-th bit of the description of 𝐸.

Note that the above algorithm runs in 2poly(𝑠(𝑚))-time on poly(𝑠(𝑚))-bit inputs, hence it is
in EXP. Since EXP = BPP, this problem is also in BPP. Therefore there is a BPP algorithm which,
given a Succinct-𝐿 instance 𝐷 of size 𝑠(𝑚), outputs a description of a canonical circuit of size
𝑠(𝑚)𝑘 which encodes a witness for input tt(𝐷) with respect to verifier 𝑉 .

Thus we obtain a randomized algorithm for 𝐿 on all instances with 𝑠(𝑚)-size circuits.
When the witness for 𝑥 has length at most |𝑥 | = 𝑛, the algorithm can take 𝑛 · poly(𝑠(𝑚)) time to
output the found witness, by outputting the truth-table of the circuit encoding the witness.

Setting 𝑐1 to be large enough and putting everything together, we get the desired ran-
domized streaming algorithm which solves all instances generated by PNP refuters, which is a
contradiction to our assumption. Therefore, it follows that EXPNP ≠ BPP. ■

3.2 Separating P and NP via Uniform-AC0-Constructive Separations

Now we discuss a different setting, in which the existence of particular refuters would even
imply P ≠ NP.

It is well-known (via communication complexity arguments) that DISJ does not have
efficient streaming algorithms; in fact, any streaming algorithm must give incorrect answers on
many inputs. So it is clear that counterexamples to DISJ exist, for every candidate streaming
algorithm. But how efficiently can they be constructed? We show that the ability to construct
counterexamples in uniform AC0 would actually imply P ≠ NP.

THEOREM 1.4. (Restated) Let 𝑓 (𝑛) ≥ 𝜔(1). A polylogtime-uniform-AC0-constructive separation
of DISJ from randomized streaming algorithms with 𝑂(𝑛 · (log 𝑛) 𝑓 (𝑛)) time and 𝑂(log 𝑛) 𝑓 (𝑛) space
implies P ≠ NP.

PROOF . We prove the contrapositive. Assuming P = NP, we will show that there is an efficient
streaming algorithm that solves all disjointness instances that are generated by polylogtime-
uniform AC0 circuit families.

From Lemma 2.5, we know that the output string of any polylogtime-uniform AC0 circuit
family has circuit size complexity at most 𝑐(log 𝑛)𝑐 for some constant 𝑐.

Next, by Lemma 3.2 we know that P = NP implies that search-MCSP on input strings
with circuits of size 𝑐(log 𝑛)𝑐 can be solved by a streaming algorithm in 𝑛 · (log 𝑛)𝑘𝑐 time and



20 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

𝑂(log 𝑛)𝑘𝑐 space for some 𝑘. Also assuming P = NP, DISJ on any 𝑛-bit input represented by a
𝑐(log 𝑛)𝑐-size circuit can be solved in 𝑐𝑘(log 𝑛)𝑐𝑘 time for some 𝑘; indeed, the “Succinct-DISJ”
problem given a circuit 𝐶 on 𝑛 + 1 inputs, does its truth table on 2𝑛+1 inputs encode two 2𝑛-bit
strings which are disjoint? is a coNP problem.

For every function 𝑓 (𝑛) ≥ 𝜔(1), we can therefore design a streaming algorithm for DISJ
as follows. First, on an input 𝑥, the algorithm solves search-MCSP using 𝑛 · (log 𝑛) 𝑓 (𝑛) time and
(log 𝑛) 𝑓 (𝑛) space to get an 𝑂((log 𝑛) 𝑓 (𝑛)) size circuit 𝐶 encoding 𝑥 (we abort the algorithm if it
ever uses more than this time complexity or space complexity). Then, we run a (log 𝑛)𝑂( 𝑓 (𝑛))-
time algorithm for Succinct-DISJ on the circuit 𝐶 (in the theorem statement we omit the big-O on
the exponent because we can use 𝑓 (𝑛)/𝑐′ instead of 𝑓 (𝑛) for a sufficiently large constant 𝑐′). This
will correctly decide disjointness on all inputs 𝑥 that are generated by a polylogtime-uniform
AC0 circuit family. ■

3.2.1 Constructive Separations in Query Complexity

Finally we show certain uniform-AC0-constructive separations in query complexity would imply
P ≠ NP.

THEOREM 1.6. (Restated) Let 𝜀 be a function of 𝑛 satisfying 𝜀 ≤ 1/(log 𝑛)𝜔(1) , and 1/𝜀 is a
positive integer computable in poly(1/𝜀) time given 𝑛 in binary.

If there is a polylogtime-uniform-AC0-constructive separation of PromiseMAJORITY𝑛,𝜀 from
randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then NP ≠ P.
If there is a polylogtime-uniform-NC1-constructive separation of PromiseMAJORITY𝑛,𝜀 from
randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then PSPACE ≠ P.

PROOF . Assuming P = NP, we will show that there is an efficient query algorithm that solves all
PromiseMAJORITY𝑛,𝜀 instances that are generated by polylogtime-uniform AC0 circuit families.

At the beginning, our query algorithm first computes the value of 𝜀 in poly(1/𝜀) time.
From Lemma 2.5, if P = NP, then for every polylogtime-uniform AC0 circuit family {𝐶𝑛},

the 𝑛-bit output of 𝐶𝑛(1𝑛) has circuit size (𝑐 log 𝑛)𝑐 for some constant 𝑐. (The same size bound
also holds for polylogtime-uniform NC1 circuits, under the stronger assumption P = PSPACE.)
By the assumption that 𝜀 = 𝜀(𝑛) ≤ 1/(log 𝑛)𝜔(1) , this circuit size is at most (𝑐 log 𝑛)𝑐 ≤ 1/𝜀0.9

for sufficiently large 𝑛, and the number of circuits of size at most 1/𝜀0.9 is 2𝑂(𝜀−0.9 log 𝜀−1) . Hence,
such a circuit can be PAC-learned with error 𝜀/2 and failure probability 𝛿 = 1/10 using 𝑂(𝜀−1 ·
(𝜀−0.9 log 𝜀−1+log 1

𝛿)) ≤ 𝑂(𝜀−1.91) samples (random queries) (see e.g. [45, Theorem 2.5] on learning
a finite class of functions). The learning algorithm achieving this sample complexity simply
computes a minimum-size circuit that is consistent with all the observed samples.



21 / 41 Constructive Separations and Their Consequences

Under the assumption of P = NP, this learning algorithm can be executed in poly(1/𝜀)
time. Indeed, the following problem is in the polynomial-time hierarchy:

Given a set 𝐿 = {(𝑥𝑖 , 𝑦𝑖)} ⊂ {0, 1}𝑛 × {0, 1}, a positive integer 𝑠, and an index 𝑗, output the 𝑗-th bit
of the lexicographically first circuit 𝐶 of size at most 𝑠 such that 𝐶(𝑥𝑖) = 𝑦𝑖 for all 𝑖.

Assuming P = NP (or P = PSPACE) the above problem is in P and hence can be solved in
poly( |𝐿|, 𝑠, log 𝑛) time. Here 𝑠 = 1/𝜀0.9, |𝐿| ≤ 𝑂(𝜀−1.91), so we can find a minimum-size circuit
consistent with any given input/output sample in poly(1/𝜀, log 𝑛) = poly(1/𝜀) time. Let 𝐷 be the
circuit we have learned.

Next, we decide PromiseMAJORITY𝑛,𝜀/2 on the truth table of 𝐷, by computing its average
output value on Θ(1/𝜀2) uniform random inputs. This process takes poly(1/𝜀) time, and makes
no queries to the original input string. Since the learned circuit 𝐷 only has error 𝜀/2 compared
with the original input string, we can simply return the result as our answer to the original
PromiseMAJORITY𝑛,𝜀 problem. The overall algorithm has success probability 2/3, time com-
plexity at most poly(1/𝜀), and sample complexity 𝑂(𝜀−1.91) = 𝑜(1/𝜀2), because we do not need
further samples from the original input string after we already learned the circuit 𝐷. ■

3.3 Constructive Separations for One-Tape Turing Machines imply Breakthrough
Lower Bounds

Maass [43] showed that a one-tape nondeterministic Turing machine takes at least Ω(𝑛2) time
to decide the language of palindromes PAL = {𝑥𝑛 · · · 𝑥1𝑥1 · · · 𝑥𝑛 | 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}𝑛, 𝑛 ∈ N}.
This is a very basic lower bound that is often cited as a canonical application of communication
complexity. In this subsection, we show that a constructive proof of this lower bound would
imply a breakthrough circuit lower bound.

In fact, we will prove a much more general statement. We will also generalize the proof to
show that for every language 𝐿 computable by nondeterministic 𝑛1+𝑜(1)-time RAMs, a construc-
tive proof that “𝐿 cannot be decided by 𝑛1.1-size nondeterministic one-tape Turing machines”
would yield uniformly-computable functions with exponential circuit complexity. That is, we
would obtain major circuit lower bounds even from the task of distinguishing RAMs from
one-tape Turing machines in a constructive way.

We begin by a simple lemma showing that nondeterministic one-tape Turing machines
can solve PAL on inputs that have small circuits.

LEMMA 3.3. For every constant 𝛿 ∈ (0, 1], there is a nondeterministic 𝑛1+𝑂(𝛿)-time one-tape
Turing machines solving PAL on every 𝑥 with circuit complexity at most |𝑥 |𝛿.

PROOF . Let 𝛿 ∈ (0, 1]. Our nondeterministic (one-tape) Turing Machine 𝑀 runs as follows:

𝑀 guesses a circuit 𝐶 of size 𝑛𝛿, and checks that 𝐶(𝑖) equals the 𝑖-th input bit for all 1 ≤ 𝑖 ≤ 𝑛,
which can be done in 𝑛 · 𝑛𝑂(𝛿) time by moving the head on the tape from the first input bit to



22 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

the last, while storing the 𝑛𝛿-size circuit 𝐶 in the cells close to the current position of the head.
Finally 𝑀 checks that the string 𝐶(1)𝐶(2) · · ·𝐶(𝑛) is a palindrome by evaluating 𝐶 on every 𝑖

and 𝑛 − 𝑖, in 𝑛 · 𝑛𝑂(𝛿) total time. 𝑀 accepts the input on a guess 𝐶 if and only if all checks are
passed.

Observe that 𝑀 recognizes PAL correctly on every string 𝑥 with circuit complexity at most 𝑛𝛿,
and its running time is bounded by 𝑛1+𝑂(𝛿) . ■

Now we show that breakthrough separations follow from constructive proofs of lower
bounds for PAL.

THEOREM 3.4. The following hold:
A PNP-constructive separation of PAL from nondeterministic 𝑂(𝑛1.1) time one-tape Turing
machines implies ENP ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.
A P-constructive separation of PAL from nondeterministic 𝑂(𝑛1.1) time one-tape Turing
machines implies E ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.
A LOGSPACE-constructive separation of PAL from nondeterministic 𝑂(𝑛1.1) time one-tape
Turing machines implies PSPACE ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.

PROOF . We will only prove the first item; it is straightforward to generalize to the other two
items. Let 𝛿 > 0 be a small enough constant such that, by Lemma 3.3, there is a nondeterministic
𝑂(𝑛1.1)-time one-tape Turing machine solving PAL correctly on inputs 𝑥 with circuit complexity
at most 𝑛𝛿.

Now suppose there is a PNP refuter for 𝑀 : a polynomial-time algorithm 𝐴 with an NP
oracle, which on input 1𝑛 outputs an 𝑛-bit string. Assuming that ENP ⊂ SIZE[2𝛿1𝑛] for a constant
𝛿1 > 0 that is small enough compared to 𝛿, by Lemma 2.3 there is a circuit 𝐶 of size at most
𝑛𝑂(𝛿1) ≤ 𝑛𝛿 that on input (𝑛, 𝑖) computes the 𝑖-th bit of 𝐴(1𝑛). That is, the output of any such 𝐴

on 1𝑛 has circuit complexity at most 𝑛𝛿. By construction, 𝑀 will always decide 𝐴(1𝑛) correctly,
contradicting the assumption that 𝐴 is a refuter. Hence, there must exist a constant 𝛿 > 0 such
that ENP ⊄ SIZE[2𝛿𝑛]. ■

We say a family of 3-SAT formulas {𝐶𝑛}𝑛∈N such that 𝐶𝑛 has 𝑆(𝑛) clauses is strongly explicit,
if there is an algorithm 𝐴 such that 𝐴(𝑛, 𝑖) outputs the 𝑖-th clause of 𝐶𝑛 in polylog(𝑆(𝑛)) time.
We need the following efficient reduction from nondeterministic 𝑇 (𝑛)-time RAMs to 𝑇 (𝑛) ·
polylog(𝑇 (𝑛))-size 3-SAT instances.

LEMMA 3.5 ([62, 22]). Let 𝑀 be a 𝑇 (𝑛)-time nondeterministic RAM. There exists a strongly
explicit family of 3-SAT formulas {𝐶𝑛}𝑛∈N of 𝑇 · polylog(𝑇 ) size, such that for every 𝑥 ∈ {0, 1}𝑛,
𝑀 (𝑥) = 1 if and only if there exists 𝑦 such that 𝐶𝑛(𝑥, 𝑦) = 1.

Now we are ready to generalize Theorem 3.4 to other problems.



23 / 41 Constructive Separations and Their Consequences

THEOREM 1.5. (Restated) For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time
RAM, a PNP-constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing
machines implies ENP ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.

PROOF . Let 𝑀RAM be a nondeterministic 𝑛1+𝑜(1)-time RAM for 𝐿. We apply Lemma 3.5 to obtain
a strongly explicit family of 3-SAT formulas {𝐶𝑛}𝑛∈N with 𝑛1+𝑜(1) size and 𝑠 = 𝑛1+𝑜(1) variables.

Let 𝛿1 > 0 be a small enough constant, and consider the following nondeterministic
(one-tape) Turing machine 𝑀 :

𝑀 guesses a circuit 𝐷 of size 𝑛𝛿1 , and checks that 𝐷(𝑖) equals the 𝑖-th input bit for all 1 ≤ 𝑖 ≤ 𝑛,
which can be done in 𝑛 · 𝑛𝑂(𝛿1) time by moving the head on the tape from the first input bit to
the last, while storing the 𝑛𝛿1-size circuit 𝐷 in the cells close to the current position of the head.

Next, 𝑀 guesses a circuit 𝐸 of size 𝑛𝛿1 , and accepts if and only if

𝐷(1), . . . , 𝐷(𝑛), 𝐸(1), . . . , 𝐸(𝑠 − 𝑛)

satisfies 𝐶𝑛. Note that this can be checked in 𝑛1+𝑂(𝛿1) time by enumerating all 𝑛1+𝑜(1) clauses
in 𝐶𝑛 and evaluating 𝐷 and 𝐸 to obtain the assignments to the corresponding variables.

We take 𝛿1 to be small enough so that the above machine 𝑀 runs in 𝑂(𝑛1.1) time. Suppose
there is a PNP refuter 𝐵 for 𝐿 against 𝑀 , and we further assume towards a contradiction that
ENP ⊂ SIZE(2𝛿𝑛) for all 𝛿 > 0.

By Lemma 2.3, it follows that 𝐵(1𝑛) has an 𝑛𝛿1-size circuit. It also follows that if 𝐵(1𝑛) ∈ 𝐿,
then the lexicographically first string 𝑦𝑛 ∈ {0, 1}𝑠−𝑛 such that 𝐶𝑛(𝐵(1𝑛), 𝑦𝑛) has an 𝑛𝛿1-size
circuit. By Lemma 3.5, this means that 𝑀 solves 𝐵(1𝑛) correctly, a contradiction. Hence, we
have that ENP ⊄ SIZE(2𝛿𝑛) for some 𝛿 > 0.19 ■

We conclude this section with a remark on the proofs. In the proofs of Lemma 3.3 and
Theorem 1.5, we can naturally view our constructions as nondeterministic streaming algorithms
with total time 𝑛1+𝑂(𝛿) and space 𝑛𝑂(𝛿) . Hence, both results apply to low-space nondeterministic
algorithms equally well. We only state the generalization of Theorem 1.5 below.

REMARK 3.6. For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time RAM,
a PNP-constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time 𝑛0.1-space streaming
algorithms implies ENP ⊄ SIZE[2𝛿𝑛] for some constant 𝛿 > 0.

This remark is stronger than Theorem 1.5, as any (𝑛 · 𝑡)-time 𝑡-space nondeterministic
streaming algorithm can be simulated by an 𝑛 · poly(𝑡) time nondeterministic one-tape Turing
machine (see, e.g., [19, Lemma 9]). However, we have chosen not to emphasize it because the
model of “nondeterministic streaming” is less common.

19 As noted by an anonymous reviewer, if in the statement of Theorem 1.5 we instead have a P-constructive separation,
then we would get NEXP ⊄ P/poly. The idea is that one can use both NEXP ⊂ P/poly and the easy witness lemma [34]
to argue that there exists a string 𝑦𝑛 of small circuit complexity such that 𝐶𝑛 (𝐵(1𝑛), 𝑦𝑛) holds.



24 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

4. Constructive Separations for MCSP Imply Breakthrough Lower
Bounds

In this section we show that constructive separations forMCSP against uniform AC0 imply break-
through lower bounds. In particular, we prove Theorem 1.7 (restated below for convenience).
Recall that a circuit of size 𝑆 is said to be polylogtime-uniform, if there is a polylog(𝑆)-time
algorithm that decides the type of a gate 𝑔 given its 𝑂(log 𝑆)-bit index, and decides whether
there is a wire from gate 𝑔1 to gate 𝑔2 given their indices.

THEOREM 1.7. (Restated) Let 𝑠(𝑛) ≥ 𝑛log(𝑛)𝜔 (1) be any time-constructive super-quasipolynomial
function. In the following, we consider MCSP[𝑠(𝑛)] and Parity problems of input length 𝑁 = 2𝑛.
The following hold:

1. (Major Separation from Constructive Lower Bound) If there exists a polylogtime-uniform
AC0[quasipoly] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0 algorithm,
then P ≠ NP.

2. (Constructive Lower Bound Should Exist) If PH ⊈ SIZE(𝑠(𝑛)2), then there is a polylogtime-
uniform-AC0[quasipoly] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0

algorithm.
3. (Somewhat Constructive Lower Bound) For 𝑠(𝑛) ≤ 𝑜(2𝑛/𝑛), there is a polylogtime-uniform-

AC0[2poly(𝑠(𝑛))] refuter for MCSP[𝑠(𝑛)] against every polylogtime-uniform AC0 algorithm.
4. (Constructive Lower Bound for a Different Hard Language) There is a polylogtime-uniform-

AC0[quasipoly]-list-refuter for Parity against every polylogtime-uniform AC0 algorithm.

Throughout this section, we use 𝑁 to refer to the size of a truth table of a Boolean function
on 𝑛 = log(𝑁) bits.

To prove Theorem 1.7, we will heavily use known results about pseudo-random generators
against AC0.

THEOREM 4.1 ([51, 66]). Let 𝑑, 𝑐 be any positive integers. There is a pseudo-random generator
𝐺 = {𝐺𝑁 }, 𝐺𝑁 : {0, 1}log(𝑁)𝑂(𝑑 ) → {0, 1}𝑁 , such that for each 𝑁 , the PRG 𝐺 1/𝑁 -fools depth-𝑑 AC0

circuits of size 𝑁 𝑐. Moreover, 𝐺 is computable by polylogtime-uniform-AC0 circuits of size poly(𝑁),
and 𝐺𝑁 (𝑧) has circuit complexity polylog(𝑁) for each seed 𝑧 of length log(𝑁)𝑂(𝑑) .

COROLLARY 4.2 ([3]). For 𝑁 = 2𝑛, let 𝑠(𝑛) ≥ 𝑛𝜔(1) be any time-constructive function such that
𝑠(𝑛) ≤ 𝑜(2𝑛/𝑛). Then MCSP[𝑠(𝑛)] is not in AC0.

Corollary 4.2 follows from Theorem 4.1 by observing that MCSP[𝑠(𝑛)] distinguishes the
uniform distribution on 𝑁 = 2𝑛 bits from the output of 𝐺𝑁 , since every output of 𝐺𝑁 is a YES
instance ofMCSP[𝑠(𝑛)], while a random string of length 𝑁 is a NO instance with high probability.
In fact, it follows that for 𝑠(𝑛) quite close to maximum, the AC0 lower bounds are exponential



25 / 41 Constructive Separations and Their Consequences

(but with an inverse dependence in the exponent on the circuit depth), similar to known lower
bounds for Parity.

First, we show that uniform AC0 refuters for separations of MCSP from uniform AC0 would
solve the main open problem in complexity theory. This establishes the first item of Theorem 1.7.
We find it more convenient here to state the size bound 𝑠(𝑛) for MCSP in terms of the input size
𝑁 = 2𝑛 than in terms of 𝑛, so we usually write MCSP[ 𝑓 (𝑁)] (where 𝑓 (𝑁) = 𝑠(𝑛)). Since 𝑠(𝑛) is
required to be a time-constructive function in the statement of Theorem 1.7, 𝑓 (𝑁) should be
computable in poly( 𝑓 (𝑁)) time given 𝑁 represented in binary.

The following theorem implies Item (1) of Theorem 1.7, since the constant 1 function can
be trivially implemented by a polylogtime-uniform AC0 algorithm.

PROPOS IT ION 4.3 (Item (1) of Theorem 1.7). Let 𝑓 (𝑁) ≥ 2log log(𝑁)𝜔 (1) be a function com-
putable in poly( 𝑓 (𝑁)) time. If there exists a polylogtime-uniform-AC0[quasipoly] refuter for
MCSP[ 𝑓 (𝑁)] against the constant 1 function, then P ≠ NP.

PROOF . Assume that P = NP and that there is a polylogtime-uniform-AC0 refuter 𝑅 for
MCSP[ 𝑓 (𝑁)] against the constant 1 function. We derive a contradiction. Using the same argu-
ment as in the proof of Theorem 1.4, the refuter 𝑅 always outputs a string 𝑥 of circuit complexity
2log log(𝑁)𝑂(1) . But such a string is a YES instance of MCSP[ 𝑓 (𝑁)] since 𝑓 (𝑁) ≥ 2log log(𝑁)𝜔 (1) . This
contradicts the assumption that 𝑅 refutes the algorithm that always outputs YES. ■

By inspecting the proof carefully, it can be seen that the conclusion above holds even
if the hypothesis is that there is a quasipolynomial-size uniform AC0 list-refuter running in
quasi-polynomial time.

Next, we show that if a certain natural circuit lower bound assumption holds for the
Polynomial Hierarchy, we do get the strongly constructive separations we seek. We obtain these
separations by using a win-win argument: for any uniform AC0 algorithm, either the algorithm
outputs NO with noticeable probability, in which case the refuter exploits a PRG whose range is
supported on strings of low circuit complexity, or it outputs YES with noticeable probability, in
which case the refuter exploits a PRG (obtained using our assumption) whose range is supported
on strings of high circuit complexity. This establishes the second item of Theorem 1.7.

PROPOS IT ION 4.4 (Item (2) of Theorem 1.7). Let 𝑓 (𝑁) ≥ 2log log(𝑁)𝜔 (1) be a function com-
putable in poly( 𝑓 (𝑁)) time. If PH ⊈ SIZE( 𝑓 (𝑁)2), then there exists a polylogtime-uniform-
AC0[quasipoly] refuter for MCSP[ 𝑓 (𝑁)] against every polylogtime-uniform AC0 algorithm.

PROOF . Let 𝑓 be as in the statement of the theorem, 𝐹 ∈ PH be such that 𝐹 ∉ SIZE( 𝑓 (𝑁)2), and
𝐴 be a polylogtime-uniform-AC0 algorithm. We construct a polylogtime-uniform-AC0[quasipoly]
refuter 𝑅 against 𝐴.

Let 𝐺 be the PRG from Theorem 4.1 where 𝑑 is the depth of the uniform AC0 algorithm 𝐴,
and let 𝐺′ = {𝐺′𝑁 } be the generator from log(𝑁)𝑂(𝑑) bits to 𝑁 bits defined by 𝐺′𝑁 (𝑧) = 𝐺𝑁 (𝑧) ⊕ 𝑦𝑁



26 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

for each seed 𝑧, where 𝑦𝑁 is the truth table of 𝐹 on log(𝑁) input bits (recall 𝑁 is a power of
two). The refuter 𝑅 outputs the lexicographically first string 𝑥 in the range of 𝐺 such that
𝐴(𝑥) = 0, or in case such a string does not exist, the lexicographically first string 𝑥′ in the
range of 𝐺′ such that 𝐴(𝑥′) = 1. We will show that either 𝑥 or 𝑥′ exists. Note that 𝑅 can be
implemented by polylogtime-uniform quasipolynomial-size AC0 circuits, since both 𝐺 and 𝐺′

have quasi-polynomial sized range and can be computed in uniform AC0 - this is true for 𝐺 by
Theorem 4.1 and it is true for 𝐺′ because the truth table of any PH function on log(𝑁) bits can
be computed by uniform AC0 circuits of size poly(𝑁).

Since 𝐺 1/𝑁 -fools depth-𝑑 AC0 circuits and 𝐺′ is a linear translate of the range of 𝐺, 𝐺′ also
1/𝑁 -fools depth-𝑑 AC0 circuits. We show that there is either a string 𝑥 in the range of 𝐺 such
that 𝐴(𝑥) = 0 or a string 𝑥′ in the range of 𝐺′ such that 𝐴(𝑥′) = 1. 𝐴 either outputs NO with
probability at least 1/2 on randomly chosen input of length 𝑁 , or it outputs YES with probability
at least 1/2. In the first case, since 𝐺 1/𝑁 -fools 𝐴, there is a string 𝑥 in the range of 𝐺 such that
𝐴(𝑥) = 0. Moreover, since every string in the range of 𝐺 is a YES instance of MCSP[ 𝑓 (𝑁)] by
Theorem 4.1, we have that 𝑥 refutes that 𝐴 solves MCSP[ 𝑓 (𝑁)] correctly. In the second case,
since 𝐺′ 1/𝑁 -fools 𝐴, there is a string 𝑥′ in the range of 𝐺′ such that 𝐴(𝑥′) = 1. Moreover, since
𝐹 ∉ SIZE( 𝑓 (𝑁)2) and every string in the range of 𝐺 has polylog(𝑁) size circuits, it follows that
every string in the range of 𝐺′ is a NO instance of MCSP[ 𝑓 (𝑁)]. Thus 𝐴 makes a mistake on 𝑥′,
implying that 𝑅 is a correct refuter. ■

We also show that slightly weaker constructive separations than desired do hold uncondi-
tionally. The argument is similar to the argument in the proof of Theorem 4.4, but since we do
not use an assumption, we need to argue differently in the case where the algorithm we are
refuting outputs YES with high probability. We do so by exploiting the sparsity of the language
against which we are showing a lower bound. This establishes the third item of Theorem 1.7.

PROPOS IT ION 4.5 (Item (3) of Theorem 1.7). Let 𝑓 (𝑁) ≥ log(𝑁)𝜔(1) be a function com-
putable in poly( 𝑓 (𝑁)) time, such that 𝑓 (𝑁) ≤ 𝑜(𝑁/log(𝑁)). There is a polylogtime-uniform-
AC0[2poly( 𝑓 (𝑁))] refuter for MCSP[ 𝑓 (𝑁)] against every polylogtime-uniform AC0 algorithm.

PROOF . Given a polylogtime-uniform AC0 algorithm 𝐴, we define a uniform AC0 refuter 𝑅 of
size 2poly( 𝑓 (𝑁)) . For any 𝑑, let 𝐺𝑑 be the PRG from Theorem 4.1 corresponding to depth 𝑑, and
let 𝐺 = 𝐺𝑑 where 𝑑 is the depth of the uniform AC0 algorithm 𝐴, so that 𝐺 1/𝑁 -fools 𝐴 on input
length 𝑁 . Let 𝐺′ be the generator with seed length poly( 𝑓 (𝑁)) obtained by truncating the output
of 𝐺𝑑′

2 𝑓 (𝑁 )𝑐 to 𝑁 bits (where 𝑑′ and 𝑐 are to be specified later), so that 𝐺′ 1/𝑁 -fools depth-𝑑′ AC0

circuits of 2poly( 𝑓 (𝑁)) size. 𝑅 works as follows. It outputs the lexicographically first string 𝑥 in the
range of 𝐺 for which 𝐴(𝑥) = 0, and if such an 𝑥 does not exist, it outputs the lexicographically
first string 𝑥′ in the range of 𝐺′ that is not a YES instance of MCSP[ 𝑓 (𝑁)] for which 𝐴(𝑥′) = 1.
We show that such an 𝑥′ always exists in the case that 𝑥 does not, and that moroeover 𝐴 is a
correct refuter. Since 𝐺 and 𝐺′ can be computed by uniform AC0 circuits of size exponential



27 / 41 Constructive Separations and Their Consequences

in poly( 𝑓 (𝑁)) and moreover the YES instances of MCSP[ 𝑓 (𝑁)] can be enumerated by uniform
AC0 circuits of size exponential in poly( 𝑓 (𝑁)), we have that the refuter can be implemented by
uniform AC0 circuits of size exponential in poly( 𝑓 (𝑁)).

Either 𝐴 outputs NO with probability greater than 1/2 on a uniformly chosen input of
length 𝑁 , or it does not. In the first case, since𝐺 1/𝑁 -fools 𝐴, there must be a string 𝑥 in the range
of 𝐺 for which 𝐴(𝑥) = 0. Moreover, since every string in the range of 𝐺 has circuit complexity
polylog(𝑁) ≪ 𝑓 (𝑁), we have that 𝑥 is a YES instance of MCSP[ 𝑓 (𝑁)], and hence the refuter
correctly outputs an input on which 𝐴 makes a mistake in this case.

Suppose 𝐴 outputs YES with probability at least 1/2. We define a uniform AC0 algorithm
𝐴′ of size 2poly( 𝑓 (𝑁)) as follows. 𝐴′ first enumerates all YES instances of MCSP[ 𝑓 (𝑁)]. Note that
there are at most 2𝑂( 𝑓 (𝑁) log 𝑁) YES instances, and they can be enumerated by an AC0 algorithm
of size 2poly( 𝑓 (𝑁)) by running over all circuits of size at most 𝑓 (𝑁) and guessing and checking
their computations. 𝐴′ checks if its input 𝑥′ is in the list of YES instances of MCSP[ 𝑓 (𝑁)] or not.
If it is, it outputs NO, otherwise it runs 𝐴 on 𝑥′ and outputs the answer. 𝐴′ can be implemented
by polylogtime-uniform AC0 circuits of size 2poly( 𝑓 (𝑁)) and constant depth. Note that 𝐴′ outputs
YES with probability at least 1/2 − 2𝑂( 𝑓 (𝑁 ) log 𝑁 )

2𝑁 > 0.49 (where we used 𝑓 (𝑁) ≤ 𝑜(𝑁/log 𝑁)). Now,
by choosing the parameters 𝑐 and 𝑑′ in the first paragraph large enough so that 𝐺′ 1/𝑁 -fools 𝐴′,
we have that at least a 0.49 − 1/𝑁 fraction of outputs 𝑥′ of 𝐺′ have 𝐴′(𝑥′) = 1, and hence there
is a lexicographically first such output. Moreover, since 𝐴′ outputs NO on all YES instances of
MCSP[ 𝑓 (𝑁)], it must be the case that 𝑥′ is a NO instance of MCSP[ 𝑓 (𝑁)]. By definition of 𝐴′ we
know 𝐴(𝑥′) = 𝐴′(𝑥′) = 1, so 𝐴 makes a mistake on 𝑥′ when trying to solve MCSP[ 𝑓 (𝑁)]. ■

Finally, we observe that the strongly constructive separations we seek do hold in the case
of the well-known lower bound for Parity against AC0. Indeed, in this case we actually get an
oblivious list-refuter (a.k.a. an explicit obstruction), meaning that the list-refuter does not need
to depend on the algorithm being refuted. This establishes the fourth item of Theorem 1.7.

THEOREM 4.6 ([2, 24, 68, 30]). For each integer 𝑑, Parity does not have depth-(𝑑 + 1) AC0

circuits of size 2𝑂(𝑁1/𝑑) .

PROPOS IT ION 4.7 (Item (4) of Theorem 1.7). There is a polylogtime-uniform-AC0[quasipoly]-
list-refuter for Parity against every polylogtime-uniform AC0 algorithm.

PROOF . In fact, we show that for all 𝑑 there is an oblivious list-refuter 𝑅 that refutes depth-
(𝑑 +1) AC0 algorithms by outputting a quasipoly-size set of strings of length 𝑁 . The list-refuter 𝑅
simply outputs the set of all strings of the form 𝑦0𝑁−log(𝑁)𝑑 where 𝑦 ∈ {0, 1}log(𝑁)𝑑 . Suppose, for
the sake of contradiction, that there is a uniform depth-(𝑑 + 1) AC0 algorithm 𝐴 that correctly
solves Parity on all strings output by 𝑅. Then we can compute Parity by circuits of size 2𝑂(𝑚1/𝑑)

on input 𝑦 of length 𝑚 as follows: pad 𝑦 to length 2𝑚1/𝑑 by suffixing it with zeroes, then run 𝐴

on the padded string. This contradicts the lower bound of Theorem 4.6. ■



28 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

5. Most Conjectured Uniform Separations Can BeMade Construc-
tive

In this section we show many uniform separations imply corresponding refuters. We will prove
Theorem 1.2 (restated below).

THEOREM 1.2. (Restated) Let C ∈ {P, ZPP, BPP} and letD ∈ {NP, Σ2P, . . . , Σ𝑘P, . . . ,PP, PSPACE,
EXP, NEXP, EXPNP}. Then D ⊈ C implies that for every paddable D-complete language 𝐿, there
is a C-constructive separation of 𝐿 ∉ C. Furthermore, ⊕P ⊈ C implies that for every paddable
⊕P-complete language 𝐿, there is a BPP-constructive separation of 𝐿 ∉ C.

We will prove the case ofD ∈ {PSPACE, EXP,NEXP, EXPNP} in Section 5.1,D ∈ {Σ𝑘P}𝑘≥1 in
Section 5.2, andD ∈ {PP, ⊕P} in Section 5.3.

In the proofs of this section we frequently use the following notion of list-refuters, which
is a relaxation of refuters (Definition 1.1) that allows outputting a constant number of strings
with possibly different lengths (instead of a single string), and only requires at least one of the
strings is a counterexample:

DEF IN IT ION 5.1 (Constant-size list-refuters). For a function 𝑓 : {0, 1}★ → {0, 1} and an
algorithm 𝐴, a constant-size P-list-refuter for 𝑓 against 𝐴 is a deterministic polynomial time
algorithm 𝑅 that, given input 1𝑛, prints a list of 𝑐 strings 𝑥

(1)
𝑛 , 𝑥

(2)
𝑛 , . . . , 𝑥

(𝑐)
𝑛 ∈ {0, 1}∗ (for a

constant 𝑐 independent of 𝑛), such that for infinitely many 𝑛, there exists 𝑖 ∈ [𝑐] for which
𝐴(𝑥 (𝑖)𝑛 ) ≠ 𝑓 (𝑥 (𝑖)𝑛 ). Moreover, for every 𝑖 ∈ [𝑐], there is a strictly increasing polynomial ℓ(𝑖) : N→
N such that |𝑥 (𝑖)𝑛 | = ℓ(𝑖) (𝑛) ≥ 𝑛 for all integers 𝑛.

This definition can be generalized to constant-size BPP-list-refuters and constant-size
ZPP-list-refuters similarly to Definition 1.1.

The following simple lemma says that a constant-size list-refuter as defined in Definition 5.1
can be converted to a refuter as defined in Definition 1.1.

LEMMA 5.2. For function 𝑓 : {0, 1}★→ {0, 1} and algorithm 𝐴,
A constant-size P-list-refuter for 𝑓 against 𝐴 implies that there exists a P-refuter for 𝑓

against 𝐴.
ForD ∈ {BPP, ZPP}, a pseudo-deterministic constant-sizeD-list-refuter (i.e., for each input
length 𝑛 there is a canonical list such that the refuter outputs the canonical list with 1 − 𝑜(1)
probability given input 1𝑛) for 𝑓 against 𝐴 implies that there exists aD-refuter for 𝑓 against 𝐴.

PROOF . Suppose we have a constant-size P-list-refuter (Definition 5.1) which outputs the
list 𝑥 (1)𝑛 , 𝑥 (2)𝑛 , . . . , 𝑥

(𝑐)
𝑛 ∈ {0, 1}∗ given input 1𝑛, where |𝑥 (𝑖)𝑛 | = ℓ(𝑖) (𝑛). Then, for every 𝑖 ∈ [𝑐],



29 / 41 Constructive Separations and Their Consequences

define 𝐵(𝑖) to be the algorithm that prints 𝑥 (𝑖)𝑛 on input 1ℓ (𝑖 ) (𝑛) . Note that algorithm 𝐵(𝑖) is well-
defined because ℓ(𝑖) (𝑛) is strictly increasing (and hence injective), and it runs in poly(𝑛) ≤
poly(ℓ(𝑖) (𝑛)) time. By Definition 5.1, observe that at least one of 𝐵(1) , 𝐵(2) , . . . , 𝐵(𝑐) prints valid
counterexamples for infinitely many 𝑛. Hence, there exists at least one 𝑖 ∈ [𝑐] such that 𝐵(𝑖) is a
P-refuter (Definition 1.1).

Similarly, if a constant-size BPP (or ZPP) list-refuter is pseudo-deterministic, then the same
argument also applies, and we can obtain a BPP (or ZPP) refuter. ■

5.1 Refuters for PSPACE, EXP, and NEXP

We first consider the case whenD is a complexity class from {PSPACE, EXP,NEXP}. Our proof
below generalizes the refuter construction of [21] which only discussed the case ofD = NEXP.

Let (∃ poly(𝑛))D denote the complexity class that contains languages 𝐿 satisfying the
following property: there exists a polynomial 𝑝(𝑛) and a language 𝐿′ ∈ D such that for all
strings 𝑥, 𝐿(𝑥) = 1 if and only if there exists 𝑦 ∈ {0, 1}𝑝( |𝑥 |) such that 𝐿′(𝑥, 𝑦) = 1. Similarly, we
define the complexity class (∀poly(𝑛))D.

THEOREM 5.3. Let C ∈ {P, BPP, ZPP}, andD be a complexity class such that C ⊆ D. SupposeD
satisfies (∃ poly(𝑛))D ⊆ D and (∀poly(𝑛))D ⊆ D.

IfD ⊈ C, then for every paddableD-complete language 𝐿, there is a C-constructive separa-
tion of 𝐿 ∉ C.

PROOF . We first consider the case of C = P. Let 𝐴 be a polynomial-time algorithm. Let 𝑛 be an
input length such that 𝐴 does not correctly solve 𝐿 on all 𝑛-bit inputs; sinceD ⊈ P, we know
there are infinitely many such input lengths. For 𝑏 ∈ {0, 1}, define the language

𝐺
(𝑏)
𝐴 := {(1𝑛, 𝑥) : there exists 𝑦 ∈ {0, 1}𝑛 with prefix 𝑥, such that 𝐿( 𝑦) = 𝑏, 𝐴( 𝑦) = 1 − 𝑏}.

Observe that 𝐺 (1)𝐴 ∈ (∃ poly(𝑛))D ⊆ D, 𝐺 (0)𝐴 ∈ (∃ poly(𝑛))coD ⊆ coD. Define

𝐺𝐴 := 𝐺
(0)
𝐴 ∪ 𝐺

(1)
𝐴 = {(1𝑛, 𝑥) : there exists 𝑦 ∈ {0, 1}𝑛 with prefix 𝑥, such that 𝐿( 𝑦) ≠ 𝐴( 𝑦)}.

Since 𝐿 is D-complete, there is a polynomial-time procedure 𝑅𝐿 that can decide 𝐺𝐴 by
making two queries to an oracle for 𝐿. Since 𝐿 is paddable, we may assume the queries to the
𝐿-oracle always have length exactly ℓ(𝑛), for some strictly increasing polynomial ℓ : N → N.
If we let 𝑅 query the algorithm 𝐴 instead of the 𝐿-oracle, then on any (1𝑛, 𝑥), either 𝑅𝐴 solves
𝐺𝐴(1𝑛, 𝑥) correctly, or 𝐴 gives the incorrect answer on at least one of the queries.

Our list-refuter performs a search-to-decision reduction which repeatedly calls 𝑅𝐴(1𝑛, 𝑥)
and extends the prefix 𝑥 one bit at a time. It either eventually finds a string 𝑦 ∈ {0, 1}𝑛 such that
𝐿( 𝑦) ≠ 𝐴( 𝑦), or detects the inconsistency of 𝐴’s answers. The pseudocode of this list-refuter is
presented in Algorithm 2.



30 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

Initialize 𝑥 as an empty string
For 𝑖 ← 1, 2, . . . , 𝑛:

If 𝑅𝐴(1𝑛, 𝑥 ◦ 1) = 1:
𝑥 ← 𝑥 ◦ 1

Else if 𝑅𝐴(1𝑛, 𝑥 ◦ 0) = 1:
𝑥 ← 𝑥 ◦ 0

Else:
Return all the queries sent to 𝐴 by 𝑅𝐴(1𝑛, 𝑥), 𝑅𝐴(1𝑛, 𝑥 ◦ 0), and 𝑅𝐴(1𝑛, 𝑥 ◦ 1)

Return 𝑥 and all the queries sent to 𝐴 by 𝑅𝐴(1𝑛, 𝑥)

Algorithm 2. The list-refuter against 𝐴

To prove the correctness of this list-refuter, we suppose for contradiction that 𝐴 could
correctly solve every string in the list. Consider three cases according to the final length of 𝑥
when the refuter terminates:

(1) |𝑥 | = 0. Then (1𝑛, 1) and (1𝑛, 0) are not in 𝐺𝐴, which is impossible, since 𝐴 cannot solve 𝐿

correctly on every 𝑛-bit input.
(2) 1 ≤ |𝑥 | < 𝑛. Then (1𝑛, 𝑥) ∈ 𝐺𝐴, but (1𝑛, 𝑥 ◦ 1) and (1𝑛, 𝑥 ◦ 0) are not in 𝐺𝐴. This is also

impossible.
(3) |𝑥 | = 𝑛. Then (1𝑛, 𝑥) ∈ 𝐺𝐴, meaning that 𝐿(𝑥) ≠ 𝐴(𝑥). But 𝑥 is also in the list and 𝐴 should

solve 𝑥 correctly, a contradiction.

Hence, 𝐴 answers incorrectly on at least one string in the list returned by Algorithm 2.
The list contains at most six strings, each of which has length 𝑛 or ℓ(𝑛). By Lemma 5.2, this

constant-size list-refuter can be converted into a refuter.
Now we consider the case of C = BPP. Since 𝐴 ∈ BPP, by standard amplification20, there

is another BPP algorithm 𝐴′ which decides the same language as 𝐴 and has success probability
1−2−2𝑛. Then, for a uniformly chosen random seed 𝑟, with 1−2−𝑛 probability, 𝐴′(·, 𝑟) decides the
same language as 𝐴 on input length 𝑛. From this point, we may apply the same proof of the C = P
case to 𝐴′(·, 𝑟). Hence we have a BPP-refuter against 𝐴. If we further assume 𝐴 ∈ ZPP, then the
refuter also has zero error. Note that our randomized refuters are pseudo-deterministic. ■

COROLLARY 5.4. Let (C,D) be a pair of complexity classes from

{P, ZPP, BPP} × {PSPACE, EXP,NEXP, EXPNP}.

AssumingD ⊈ C, for every paddableD-complete language 𝐿, there is a C-constructive separation
of 𝐿 ∉ C.

20 We remark that [28] also studied the case where 𝐴 does not have bounded probability gap, which we do not consider
here.



31 / 41 Constructive Separations and Their Consequences

PROOF . Note that all pairs (C,D) satisfy the requirements in Theorem 5.3 (where the inclusion
(∀poly(𝑛))NEXP ⊆ NEXP follows from concatenating the witnesses for every possibility in the
universal quantifier). ■

5.2 Refuters for NP and the Polynomial Hierarchy

Now we move to the case thatD = Σ𝑘P for an integer 𝑘.

THEOREM 5.5 (Adaptation of [28]). Let C ∈ {P, BPP, ZPP}. Suppose NP ⊆ D, and there is a
D-complete language 𝑀 which is downward self-reducible.

IfD ⊈ C, then for every paddableD-complete language 𝐿, there is a C-constructive separa-
tion of 𝐿 ∉ C.

PROOF SKETCH. Let 𝐴 be any algorithm in C. We will construct a refuter for 𝐿 against 𝐴.
Here we only prove the case of C = P. (For C ∈ {BPP, ZPP}, we use the same proof as the C = P
case, and apply the amplification argument described at the end of the proof of Theorem 5.3.)

Since 𝑀 is downward self-reducible, there is a polynomial-time procedure 𝐷 such that for
every 𝑥 ∈ {0, 1}𝑚, 𝑀 (𝑥) = 𝐷𝑀≤𝑚−1 (𝑥).

Since 𝐿 isD-complete and𝑀 ∈ D, there is a poly(𝑛)-time reduction 𝑝𝑛 : {0, 1}𝑛 → {0, 1}𝑞(𝑛)

such that 𝑀 (𝑥) = 𝐿(𝑝𝑛(𝑥)), where 𝑞(𝑛) : N → N is some strictly increasing polynomial. For
convenience of later proof, we extend the domain of 𝑝𝑛 to 𝑝𝑛 : {0, 1}≤𝑛 → {0, 1}𝑞(𝑛) so that
𝑀 (𝑥) = 𝐿(𝑝𝑛(𝑥)) holds for |𝑥 | < 𝑛 as well. This can be done by first mapping 𝑥 to 𝑝|𝑥 | (𝑥), and
then use the paddability of 𝐿 to pad 𝑝|𝑥 | (𝑥) to a string of length 𝑞(𝑛).

For large enough 𝑛, there must exist an 𝑥 ∈ {0, 1}≤𝑛 such that 𝐴(𝑝𝑛(𝑥)) ≠ 𝑀 (𝑥), since
otherwise we would have a C algorithm that decides 𝑀 , contradictingD ⊈ C. Then we argue
that there must be a string 𝑥 of length 𝑚 ≤ 𝑛, such that

𝐴(𝑝𝑛(𝑥)) ≠ 𝐷𝑂𝑚−1 (𝑥), where 𝑂𝑚−1 := {𝑥 ∈ {0, 1}≤𝑚−1 : 𝐴(𝑝𝑛(𝑥)) = 1}, (3)

since otherwise the definition of 𝐷 (by downward self-reducibility of 𝑀) together with an
induction on 𝑚 would imply 𝐴(𝑝𝑛(𝑥)) = 𝑀 (𝑥) for all 𝑥 ∈ {0, 1}≤𝑛, contradicting 𝐴(𝑝𝑛(𝑥)) ≠
𝑀 (𝑥). Let 𝑥∗ be the shortest string 𝑥 satisfying condition (3). Then the minimality of |𝑥∗ | implies
𝐷𝑂 |𝑥∗ |−1 (𝑥∗) = 𝑀 (𝑥∗), and hence 𝐴(𝑝𝑛(𝑥∗)) ≠ 𝑀 (𝑥∗) by (3). Then from 𝑀 (𝑥∗) = 𝐿(𝑝𝑛(𝑥∗)) we
know 𝐴(𝑝𝑛(𝑥∗)) ≠ 𝐿(𝑝𝑛(𝑥∗)), so 𝑝𝑛(𝑥∗) is a counterexample showing 𝐴 does not solve 𝐿.

Observe that condition (3) can be checked in polynomial time, so such 𝑥∗ can be found if
we had an NP machine. Since 𝐴 claims to decide an NP-hard language, we can try to find 𝑥∗ by
a search-to-decision reduction using 𝐴, similarly to what we did in the proof of Theorem 5.3.
More specifically, our list-refuter does the following:

First consider the oracle algorithm 𝑅𝐴
0 (1𝑚′ , 1𝑛) which claims to solve the following NP

question by making one query to 𝐴: “does there exist a string 𝑥 of length |𝑥 | = 𝑚 ≤ 𝑚′ such
that condition (3) is satisfied by 𝑛, 𝑥, and 𝑚?” The answer to 𝑅𝐴

0 (1𝑛, 1𝑛) is supposed to be



32 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

YES; if it returns NO, then we know the query made to 𝐴 by 𝑅𝐴
0 (1𝑛, 1𝑛) is a counterexample,

and we are done. Otherwise, we find the smallest length𝑚 ≤ 𝑛 such that 𝑅𝐴
0 (1𝑚, 1𝑛) returns

YES but 𝑅𝐴
0 (1𝑚−1, 1𝑛) returns NO. Then 𝑚 is supposed to be the length of the shortest 𝑥∗.

Then, consider the oracle algorithm 𝑅𝐴( 𝑦, 1𝑚, 1𝑛) which claims to solve the following NP
question: “does there exist 𝑥 ∈ {0, 1}𝑚 whose prefix is 𝑦 such that condition (3) is satisfied
by 𝑛, 𝑥, and 𝑚?” We gradually extend the prefix 𝑦 in the same way as in Theorem 5.3, until
either we find inconsistency between the answers for 𝑦, 𝑦◦0, 𝑦◦1, or we eventually extend
it to full length | 𝑦 | = 𝑚 and obtain 𝑥∗ = 𝑦. In the former case, we add the queries made
to 𝐴 by 𝑅𝐴( 𝑦, 1𝑚, 1𝑛), 𝑅𝐴( 𝑦 ◦ 0, 1𝑚, 1𝑛), 𝑅𝐴( 𝑦 ◦ 1, 1𝑚, 1𝑛) into our list of counterexamples.
In the latter case, if 𝑅𝐴(𝑥∗, 1𝑚, 1𝑛) returns YES but condition (3) is not satisfied, then we
know 𝑅𝐴(𝑥∗, 1𝑚, 1𝑛) made a mistake and we also get a counterexample.
The remaining case is where we obtained an 𝑥∗ of length 𝑚 that indeed satisfies condition
(3). In this case, we add 𝑝𝑛(𝑥∗) to the list of counter examples. We also need to add the
query made to 𝐴 by 𝑅𝐴

0 (1𝑚−1, 1𝑛) to the list of counterexamples. By our discussion earlier,
if 𝑥∗ is the shortest string satisfying condition (3), then 𝑝𝑛(𝑥∗) is a counterexample. If 𝑥∗ is
not the shortest, then the answer NO returned by 𝑅𝐴

0 (1𝑚−1, 1𝑛) is a mistake, and we also
get a counterexample.

Hence we have designed a constant size list-refuter for 𝐿 against 𝐴, and the rest of the proof
follows in the same way as Theorem 5.3. ■

We can compare this proof with the earlier proof of Theorem 5.3. In Theorem 5.3, we used an
(∃ poly(𝑛))D machine to find counterexamples for aD problem, so we needed the assumption
thatD is closed under ∃ (and ∀). Here in Theorem 5.5, we side-step this ∃-closure assumption
by using the downward self-reducibility of D instead. In this way, we get a polynomial-time
checkable condition (3), which allows us to find a counterexample using only an NP machine.

The following corollary follows immediately from Theorem 5.5 and the fact that Σ𝑘P has a
downward self-reducible complete language Σ𝑘SAT.

COROLLARY 5.6. Let (C,D) be a pair of complexity classes from the following list

{P, ZPP, BPP} × {Σ𝑘P}𝑘≥1.

IfD ⊈ C, then for every paddableD-complete language 𝐿, there is a C-constructive separation of
𝐿 ∉ C.

5.3 Refuters for PP and Parity-P

Finally we prove Theorem 1.2 for the caseD ∈ {PP, ⊕P}.

THEOREM 5.7. Let C ∈ {P, BPP, ZPP}. If PP ⊈ C, then for every paddable PP-complete lan-
guage 𝐿, there is a C-constructive separation of 𝐿 ∉ C.



33 / 41 Constructive Separations and Their Consequences

PROOF . Let 𝐴 be any C-algorithm. We will construct a refuter for 𝐿 against 𝐴. Here we only
prove the case of C = P. (For C ∈ {BPP, ZPP}, we use the same proof as the C = P case, and
apply the amplification argument described at the end of the proof of Theorem 5.3.)

We first review the well-known polynomial-time algorithm 𝐷PP that solves #3SAT with
the help of a PP oracle. Given a 3-CNF formula 𝜙 with 𝑛 variables, let 𝑐𝑛𝑐𝑛−1 · · · 𝑐0 denote the
number of satisfiable assignments of 𝜙 in binary, i.e.,

#3SAT(𝜙) =
∑︁

0≤𝑖≤𝑛
𝑐𝑖 · 2𝑖 ,

where 𝑐𝑖 ∈ {0, 1} for 𝑖 = 0, . . . , 𝑛. The algorithm computes the values of 𝑐𝑖 in decreasing order
of 𝑖: after 𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐𝑖+1 are determined, 𝑐𝑖 is the truth value of the statement

#3SAT(𝜙) ≥ 2𝑖 +
∑︁

𝑖+1≤ 𝑗≤𝑛
𝑐 𝑗 · 2 𝑗 ,

which can be determined by the PP oracle. Hence 𝐷PP can compute #3SAT(𝜙) using 𝑛+ 1 queries
to a PP oracle. Observe that this query algorithm 𝐷PP must have asked the queries

#3SAT(𝜙) ≥
∑︁
𝑖≤ 𝑗≤𝑛

𝑐 𝑗 · 2 𝑗

for all 0 ≤ 𝑖 < 𝑛, and the oracle answers 1 to these queries. (For example, if 𝑛 = 4 and
𝑐4𝑐3𝑐2𝑐1𝑐0 = 01011, then 𝐷PP asked queries “#3SAT(𝜙) ≥ 𝑥” for 𝑥 ∈ {10000, 01000, 01100,
01010, 01011}.) Similarly, observe that 𝐷PP must have asked the query

#3SAT(𝜙) ≥ 1 +
∑︁

0≤ 𝑗≤𝑛
𝑐 𝑗 · 2 𝑗 ,

to which the oracle answered 0.
Since 𝐴 claims to decide a PP-complete language, we replace the PP oracle by 𝐴 and try to

use 𝐷𝐴 to solve #3SAT on 𝑛 variables. By padding, we assume the input strings received by 𝐴 have
length exactly ℓ(𝑛), for some strictly increasing polynomial ℓ : N→ N. The polynomial-time
algorithm 𝐷𝐴 cannot correctly solve #3SAT on all possible 𝜙, since otherwise it would contradict
the assumption that PP ⊈ P. Hence there exists a formula 𝜙 such that 𝐷𝐴(𝜙) ≠ 𝐷𝐴(𝜙0) + 𝐷𝐴(𝜙1),
where 𝜙𝑏 denotes the formula obtained by setting the first variable in 𝜙 to 𝑏. Since NP ⊆ PP,
we can try to find such a 𝜙 by a search-to-decision reduction using 𝐴, analogously to the proof
of Theorem 5.5 and Theorem 5.3. We either find such a 𝜙, or detect inconsistency during the
search and find a constant-size list that contains a counterexample.

Now suppose we have found such a 𝜙 with 𝑚 variables satisfying 𝐷𝐴(𝜙) ≠ 𝐷𝐴(𝜙0)+𝐷𝐴(𝜙1).
Then we know that 𝐴 answered incorrectly on one of the (𝑚 + 1) + 𝑚 + 𝑚 = 3𝑚 + 1 queries
asked by 𝐷. In the following we show how to reduce the size of this list to 𝑂(1).



34 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

Let 𝑎𝑚 · · · 𝑎0, 𝑏𝑚 · · · 𝑏0, 𝑐𝑚 · · · 𝑐0 be the binary representation of 𝐷𝐴(𝜙0), 𝐷𝐴(𝜙1), and 𝐷𝐴(𝜙),
respectively (where 𝑎𝑚 = 𝑏𝑚 = 0). Since 𝐷𝐴(𝜙) ≠ 𝐷𝐴(𝜙0) + 𝐷𝐴(𝜙1), we know∑︁

0≤ 𝑗≤𝑚
(𝑐 𝑗 − 𝑎 𝑗 − 𝑏 𝑗) · 2 𝑗 ≠ 0.

We assume 𝐷𝐴(𝜙) ≤ 2𝑚 (and similarly, 𝐷𝐴(𝜙0), 𝐷𝐴(𝜙1) ≤ 2𝑚−1); otherwise 𝐴 must have an-
swered 1 to the query “#3SAT(𝜙) ≥ 𝑆” for some 𝑆 ≥ 2𝑚 + 1, which is an obvious counterexample.
Now consider two cases:

(1)
∑

0≤ 𝑗≤𝑚(𝑐 𝑗 − 𝑎 𝑗 − 𝑏 𝑗) · 2 𝑗 ≤ −1. We know that 𝐴 answered 0 to the query “#3SAT(𝜙) ≥
1 + ∑0≤ 𝑗≤𝑚 𝑐 𝑗 · 2 𝑗”, and answered 1 to the queries “#3SAT(𝜙0) ≥

∑
0≤ 𝑗≤𝑚 𝑎 𝑗 · 2 𝑗” and

“#3SAT(𝜙1) ≥
∑

0≤ 𝑗≤𝑚 𝑏 𝑗 · 2 𝑗”. Assuming that all three answers are correct, we have

0 = #3SAT(𝜙) − #3SAT(𝜙0) − #3SAT(𝜙1)
< (1 +

∑︁
0≤ 𝑗≤𝑚

𝑐 𝑗 · 2 𝑗) − (
∑︁

0≤ 𝑗≤𝑚
𝑎 𝑗 · 2 𝑗) − (

∑︁
0≤ 𝑗≤𝑚

𝑏 𝑗 · 2 𝑗)

= 1 +
∑︁

0≤ 𝑗≤𝑚
(𝑐 𝑗 − 𝑎 𝑗 − 𝑏 𝑗) · 2 𝑗

≤ 0,

a contradiction.
(2)

∑
0≤ 𝑗≤𝑚(𝑐 𝑗 − 𝑎 𝑗 − 𝑏 𝑗) · 2 𝑗 > 0. We know that 𝐴 answered 1 to the query “#3SAT(𝜙) ≥∑
0≤ 𝑗≤𝑚 𝑐 𝑗 · 2 𝑗”, and answered 0 to the queries “#3SAT(𝜙0) ≥ 1 + ∑0≤ 𝑗≤𝑚 𝑎 𝑗 · 2 𝑗” and

“#3SAT(𝜙1) ≥ 1 +∑0≤ 𝑗≤𝑚 𝑏 𝑗 · 2 𝑗”. Assuming that all three answers are correct, we have

0 = #3SAT(𝜙) − #3SAT(𝜙0) − #3SAT(𝜙1)
≥ (

∑︁
0≤ 𝑗≤𝑚

𝑐 𝑗 · 2 𝑗) − (
∑︁

0≤ 𝑗≤𝑚
𝑎 𝑗 · 2 𝑗) − (

∑︁
0≤ 𝑗≤𝑚

𝑏 𝑗 · 2 𝑗)

=
∑︁

𝑘≤ 𝑗≤𝑚
(𝑐 𝑗 − 𝑎 𝑗 − 𝑏 𝑗) · 2 𝑗

> 0,

a contradiction.

In either of the two cases, we obtain a list of three strings that contains at least one counterex-
ample. This finishes our construction of the constant-size list-refuter, which can be converted
into a refuter by applying Lemma 5.2. ■

THEOREM 5.8. Let C ∈ {P, BPP, ZPP}. If ⊕P ⊈ C, then for every paddable ⊕P-complete lan-
guage 𝐿, there is a BPP-constructive separation of 𝐿 ∉ C.

PROOF SKETCH. Let 𝐴 be any algorithm in C. We will construct a refuter for 𝐿 against 𝐴.
Here we only prove the case of C = P. (For C ∈ {BPP, ZPP}, we use the same proof as the C = P
case, and apply the amplification argument described at the end of the proof of Theorem 5.3.)



35 / 41 Constructive Separations and Their Consequences

The proof is similar to that of Theorem 5.7. Let 𝑅 be a reduction from ⊕3SAT to 𝐿. Then
there must exist a 3-CNF formula 𝜙 such that 𝐴(𝑅(𝜙)) ≠ 𝐴(𝑅(𝜙0)) ⊕ 𝐴(𝑅(𝜙1)), where 𝜙𝑏 denotes
the formula obtained by setting the first variable in 𝜙 to 𝑏. If we can find such 𝜙, then we
immediately obtain three strings which contain a counterexample for 𝐴.

Our requirement for 𝜙 can be encoded as a SAT instance 𝜋. By the Valiant-Vazirani theorem
[64] and the fact that P⊕P = ⊕P [54], there is a polynomial-time reduction 𝑓 with random seed 𝑟

such that if 𝑥 ∉ SAT, then Pr𝑟 [ 𝑓 (𝑥, 𝑟) ∉ ⊕3SAT] = 1, and if 𝑥 ∈ SAT, then Pr𝑟 [ 𝑓 (𝑥, 𝑟) ∈ ⊕3SAT] ≥
2/3.21 We pick a random seed 𝑟, and consider two cases:

If 𝐴(𝑅( 𝑓 (𝜋, 𝑟))) = 1, then we can use the downward self-reducibility of ⊕3SAT to perform
a search-to-decision reduction using 𝐴 (similar to the proof of Theorem 5.3). Either we
find a satisfying assignment for 𝑓 (𝜋, 𝑟), or we detect that 𝐴’s answers are inconsistent. In
the first case, note that the reduction 𝑓 of [64] is simple enough so that we can efficiently
convert any satisfying assignment for 𝑓 (𝜋, 𝑟) to a satisfying assignment for 𝜋, which can
then be converted to a formula 𝜙 that satisfies the desired property 𝐴(𝑅(𝜙)) ≠ 𝐴(𝑅(𝜙0)) ⊕
𝐴(𝑅(𝜙1)).
If 𝐴(𝑅( 𝑓 (𝜋, 𝑟))) = 0, then our refuter simply outputs 𝑅( 𝑓 (𝜋, 𝑟)). Observe that this string
is indeed a counterexample for 𝐴 if 𝑓 (𝜋, 𝑟) ∈ ⊕3SAT, which happens with probability at
least 2/3. ■

Remark: These refuters are non-black-box. Observe that all refuter constructions in this
section do require access to the code of the algorithm 𝐴 being refuted. (That is, our refuter
constructions are not “black-box” in terms of the algorithm 𝐴.) Atserias [6] constructed a
black-box refuter for the separation NP ⊄ BPP (more strictly speaking, Atserias’ refuter is only
“grey-box” in that it needs to know the running time of the BPP algorithm it fools). It may be
possible to improve our refuter constructions to be black-box (or “grey-box”) as well. However,
it seems challenging to use the techniques of [6] for this, because he crucially relies on the
ZPPNP learning algorithm for polynomial-size circuits [11]. It is unclear how one might prove
P-constructive separations using such an algorithm.

6. Hard LanguagesWith No Constructive Separations

In this section we show there are hard languages without constructive separation from any
complexity class. We first observe there are no constructive separations for RKt unconditionally.

21 In more detail, Valiant-Vazirani says that there is a randomized Turing reduction from SAT to ⊕SAT such that a given
formula 𝑥 is reduced to a sequence of formulas 𝑥1, . . . , 𝑥𝑂(𝑛) which are called on ⊕SAT. We take the entire Turing
reduction from SAT to ⊕SAT, with success probability increased to at least 2/3, and apply the fact that P⊕P = ⊕P, to
obtain a single ⊕SAT instance.



36 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

PROPOS IT ION 1.8. (Restated) For any 𝑡(𝑛) ≥ 𝑛𝜔(1) , there is no P-refuter for RKt against the
constant zero function.

PROOF . A P refuter for RKt against the constant zero function needs to output in poly(𝑛) time
an 𝑛-bit string 𝑦𝑛 with Kt complexity at least 𝑛 − 1, for infinitely many integers 𝑛. But by the
definition of Kt complexity, all these 𝑦𝑛 can be computed in poly(𝑛) time by a uniform algorithm
given the input 𝑛 of log 𝑛 bits, hence Kt( 𝑦𝑛) = 𝑂(log 𝑛) for all 𝑛, a contradiction. ■

Next we show that, under plausible conjectures, there are languages in NP \ P with no
constructive separations from any complexity class.

THEOREM 1.9. (Restated) The following hold:
If NE ≠ E, then there is a language in NP\P that does not have P refuters against the constant
one function.
If NE ≠ RE, then there is a language in NP \ P that does not have BPP refuters against the
constant one function.22

PROOF . Assume NE ≠ E, and let 𝐿′ ∈ NE\E. Suppose for some constant 𝑐 ≥ 1 there is a 2𝑂(𝑛)

time reduction 𝑅 : {0, 1}𝑛 → {0, 1}2𝑐𝑛 such that 𝑥 ∈ 𝐿′⇔ 𝑅(𝑥) ∈ SAT.
We define a language 𝐿 as follows:

For 𝑚 ∈ N, 𝐿 is given the concatenated string

(𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1, 𝑠) ∈ {0, 1}2
𝑚 ×

(
{0, 1}2𝑐𝑚)2𝑚 × {0, 1}2𝑐(𝑚+1)

as input.
Here, 𝑚 is intended as the input length to the language 𝐿′, 𝑡 is interpreted as a potential
truth table of 𝐿′ on all 𝑚-bit inputs which needs to be verified, 𝑤0, . . . , 𝑤2𝑚−1 are interpreted
as potential witnesses for every 𝑚-bit inputs to 𝐿′ to help the verification, and 𝑠 is intended
as an input to SAT.
𝐿(𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1, 𝑠) = 1 if and only if all of the following conditions hold:

(1) For every 𝑖 ∈ {0, 1}𝑚 with 𝑡𝑖 = 1, we have that 𝑤𝑖 ∈ {0, 1}2
𝑐𝑚 is a correct witness of

𝑅(𝑖) ∈ SAT (in particular, 𝑖 ∈ 𝐿′).
(2) For every 𝑖 ∈ {0, 1}𝑚 with 𝑡𝑖 = 0, we have 𝑖 ∉ 𝐿′.
(3) 𝑠 ∉ SAT.

That is, 𝐿 accepts the input 𝐿(𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1, 𝑠) if 𝑡 is the correct truth table of 𝐿′ on all
𝑚-bit inputs and all the 𝑤𝑖 are correct witnesses for the corresponding inputs to 𝐿′, and 𝑠 ∉ SAT.

The conditions (1) and (2) above mean that every input accepted by 𝐿 must reveal the truth
table of the language 𝐿′, which helps us to design an E (or RE) algorithm for 𝐿′ given a P (or BPP)
refuter for 𝐿. Condition (3) allows us to argue that if P ≠ NP, then 𝐿′ ∉ P.

22 Recall we have defined RE to be one-sided randomized time 2𝑂(𝑛) .



37 / 41 Constructive Separations and Their Consequences

The concatenated string has length 2Θ(𝑚) . We can verify condition (1) in 2𝑂(𝑚) time, and
verify conditions (2) and (3) in coNTIME[2𝑂(𝑚)], so 𝐿 ∈ coNP.

CLAIM 6.1. If 𝐿 ∈ P, then SAT ∈ P.

From Claim 6.1 we conclude 𝐿 ∉ P, since otherwise it would imply P = NP and consequently
E = NE, contradicting our assumption. Hence, 𝐿 = {0, 1}∗\𝐿 is a language in NP\P.

We will show that 𝐿 does not have P refuters against the constant one function. If there
is such a refuter, then it must output in 2𝑂(𝑚) time a string (𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1, 𝑠) ∈ 𝐿. By the
conditions (1) and (2) in the definition of 𝐿, we have 𝑡𝑖 = 𝐿′(𝑖) for all 𝑖 ∈ {0, 1}𝑚. Hence, we can
use this refuter to decide 𝐿′ on 𝑚-bit inputs in 2𝑂(𝑚) time, contradicting 𝐿′ ∉ E.

To prove the second statement of the theorem, we further assume NE ≠ RE and 𝐿′ ∈
NE\RE. Suppose 𝐿 has a BPP refuter against the constant one function, which prints a string
(𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1, 𝑠). With at least 2/3 probability, the string is in 𝐿. On a given input 𝑖 ∈
{0, 1}𝑚, if 𝑡𝑖 = 1 and 𝑤𝑖 is a correct witness of 𝑖 ∈ 𝐿′, then we return 𝐿′(𝑖) = 1; otherwise, we
return 𝐿′(𝑖) = 0. This yields a one-sided error randomized algorithm that decides 𝐿′ on 𝑚-bit
inputs in 2𝑂(𝑚) time, contradicting 𝐿′ ∉ RE.

It remains to prove Claim 6.1.

Proof of Claim 6.1. Recall that 𝐿′ ∈ NE and 𝑅 : {0, 1}𝑛 → {0, 1}2𝑐𝑛 is a 2𝑂(𝑛) time reduction
such that 𝑦 ∈ 𝐿′ ⇔ 𝑅( 𝑦) ∈ SAT. Assume 𝐿 ∈ TIME[𝑛𝑑]. The recursive algorithm Solve-SAT

(described in Algorithm 3) receives 𝑚 ∈ N and 𝑥 ∈ {0, 1}2𝑐𝑚 as input, and outputs a pair
(SAT(𝑥), 𝑤), where 𝑤 ∈ {0, 1}2𝑐𝑚 is a correct witness if SAT(𝑥) = 1.

Solve-SAT(𝑚, 𝑥) :
If 𝑚 ≤ 𝑂(1), then return the correct (SAT(𝑥), 𝑤) in constant time
For 𝑦 ∈ {0, 1}𝑚−1:

Let (𝑡 𝑦, 𝑤𝑦) := Solve-SAT(𝑚 − 1, 𝑅( 𝑦))
Let answer := 𝐿(𝑡, 𝑤0, 𝑤1, . . . , 𝑤2𝑚−1−1, 𝑥)
If answer = 1, then find a correct witness 𝑤 of 𝑥 ∈ SAT by a search-to-decision reduction
which repeatedly calls 𝐿(𝑡, 𝑤0, . . . , 𝑤2𝑚−1−1, ·)
Return (answer, 𝑤)

Algorithm 3. Solve-SAT

The correctness of Solve-SAT easily follows from the definition of 𝐿 and an induction
on 𝑚. The overall idea of this algorithm is to use 𝐿(𝑡, 𝑤0, . . . , 𝑤2𝑚−1−1, ·) as a SAT solver after
we obtain the correct 𝑡, 𝑤0, . . . , 𝑤2𝑚−1−1, which themselves can be found by solving smaller SAT
questions.

To improve the running time of the algorithm, we implement Solve-SATwith memoization.
That is, if (𝑡 𝑦, 𝑤𝑦) at the 𝑚-th level of the recursion is already computed, then later it can be



38 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

directly accessed without recursively calling Solve-SAT again. Then, the total time of Solve-
SAT is at most

∑
𝑚′≤𝑚 2𝑚′−1 · 2𝑐𝑚′ · (2𝑂(𝑚′))𝑑 ≤ 2𝑂(𝑚) . Hence, we can solve SAT(𝑥) in poly( |𝑥 |)

time. ■

This completes the proof of the overall theorem. ■

It is interesting to contrast Theorem 1.9 with Theorem 5.5, which says P ≠ NP implies that
every paddable NP-complete language has a P-constructive separation of 𝐿 ∉ P. This means the
language 𝐿 ∈ NP \ P in Theorem 1.9 is not NP-complete.

7. Conclusion

Many interesting questions remain for future work. While we have given many examples of
complexity separations that can automatically be made constructive, it is unclear how to extend
our results to separations with complexity classes within P. For example, let 𝐿 be a P-complete
language. If 𝐿 is not in uniform NC1, does a P-constructive separation of 𝐿 from uniform
NC1 follow? How about separations of P from LOGSPACE? Would establishing constructive
separations in these lower complexity classes have any interesting consequences?

Note that there is no P-constructive separation of MCSP[𝑠] ∉ P for super-polynomially
large 𝑠, unless EXP requires super-polynomial size Boolean circuits. (A polynomial-time refuter
for the trivial algorithm that always accepts, must print a hard function!) But do any interesting
consequences follow from a constructive separation of search versions of MCSP from P? The
same proof strategy (of applying the conjectured refuter for the trivial algorithm that always
accepts) does not make sense in this case, as the only hard instances for search problems are
YES instances.

It would also be interesting to consider constructive separations against non-uniform
algorithms. We say a P list-refuter 𝑅 for a language 𝐿 against circuit class C is a deterministic
polynomial time algorithm that, given the description of a circuit 𝐶𝑛 on input length 𝑛 where
{𝐶𝑛}𝑛∈N ∈ C, finds a list of 𝑥𝑖 ∈ {0, 1}𝑛 such that 𝐿(𝑥𝑖) ≠ 𝐶(𝑥𝑖) for some 𝑖, for infinitely many
input lengths 𝑛. We also say that 𝑅 gives a P-constructive separation 𝐿 ∉ C. Furthermore, we
say it is an oblivious list-refuter, if it does not need access to the description of the circuit 𝐶𝑛

(this was called explicit obstructions in [15]). It would be interesting to examine which proof
methods for circuit lower bounds can be made constructive. We list a few examples which
should be particularly interesting:

(1) the Ω̃(𝑛3) size lower bound against DeMorgan formulas for Andreev’s function [31, 61],
(2) the Ω̃(𝑛2) size lower bound against formulas for Element-Distinctness [50],
(3) AC0[𝑝] size-depth lower bounds via the approximation method [56, 60].



39 / 41 Constructive Separations and Their Consequences

Chen, Jin, and Williams [15] showed that constructing corresponding explicit obstructions for
(1) and (2) above would imply EXP ⊄ NC1, but it is unclear whether one can get a P-constructive
separation without implying a major breakthrough lower bound.

We remark that as shown in [15], most lower bounds proved by random restrictions can
be made constructive, by constructing an appropriate pseudorandom restriction generator. [15]
explicitly constructed an oblivious list-refuter for parity against subquadratic-size formulas, and
we remark that a similar oblivious list-refuter for parity against polynomial-size AC0 circuits
follows from the pseudorandom restriction generator for AC0 of [26].

Atserias [6, Theorem 3] showed that NP ⊄ P/poly implies a BPP-constructive separation
NP ⊄ P/poly (note that Atserias’ refuters only need to know the size of the circuits being refuted).
An interesting open problem following the work of Atserias is whether separations of the form
C ⊄ P/poly can be made constructive for classes C higher than NP (for example, NEXP).

References
[1] Scott Aaronson and Avi Wigderson. Algebrization:
A new barrier in complexity theory. ACM Trans.
Comput. Theory, 1(1):2:1–2:54, 2009. DOI (4)

[2] Miklós Ajtai. Sigma-formulae on finite structures.
Ann. Pure Appl. Log. 24(1):1–48, 1983. DOI (27)

[3] Eric Allender.When worlds collide:
derandomization, lower bounds, and Kolmogorov
complexity. Proceedings of the 21st Conference on
Foundations of Software Technology and
Theoretical Computer Science (FST TCS 2001),
volume 2245 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2001. DOI (24)

[4] Eric Allender, Harry Buhrman, Michal Koucký,
Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM J. Comput.
35(6):1467–1493, 2006. DOI (8)

[5] Sanjeev Arora and Boaz Barak. Computational
Complexity - A Modern Approach. Cambridge
University Press, 2009. DOI (12)

[6] Albert Atserias. Distinguishing SAT from
polynomial-size circuits, through black-box queries.
21st Annual IEEE Conference on Computational
Complexity (CCC 2006), pages 88–95. IEEE
Computer Society, 2006. URL (4, 14, 35, 39)

[7] Theodore P. Baker, John Gill, and Robert Solovay.
Relativizations of the P =?NP question. SIAM J.
Comput. 4(4):431–442, 1975. DOI (4)

[8] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. J.
Comput. Syst. Sci. 68(4):702–732, 2004. DOI (6)

[9] Andrej Bogdanov, Kunal Talwar, and Andrew Wan.
Hard instances for satisfiability and quasi-one-way
functions. Innovations in Computer Science - ICS
2010. Proceedings, pages 290–300. Tsinghua
University Press, 2010. URL (14)

[10] Joshua Brody and Elad Verbin. The coin problem
and pseudorandomness for branching programs.
51th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2010, pages 30–39, 2010.

DOI (7)

[11] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà,
Sampath Kannan, and Christino Tamon. Oracles
and queries that are sufficient for exact learning. J.
Comput. Syst. Sci. 52(3):421–433, 1996. DOI (35)

[12] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira,
Ján Pich, Ninad Rajgopal, and Rahul Santhanam.
Beyond natural proofs: hardness magnification and
locality. 11th Innovations in Theoretical Computer
Science Conference, ITCS, 70:1–70:48, 2020. DOI
(8, 15)

[13] Lijie Chen, Ce Jin, Rahul Santhanam, and
R. Ryan Williams. Constructive separations and
their consequences. 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021,
pages 646–657. IEEE, 2021. DOI (1)

[14] Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness
magnification for all sparse NP languages. 60th
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, pages 1240–1255,
2019. DOI (8)

[15] Lijie Chen, Ce Jin, and R. Ryan Williams. Sharp
threshold results for computational complexity.
Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020,
pages 1335–1348. ACM, 2020. DOI (3, 8, 14, 38,
39)

[16] Lijie Chen, Xin Lyu, and R. Ryan Williams.
Almost-everywhere circuit lower bounds from
non-trivial derandomization. 61st IEEE Annual
Symposium on Foundations of Computer Science,
FOCS 2020, pages 1–12. IEEE, 2020. URL (3)

https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1007/3-540-45294-X\_1
https://doi.org/10.1137/050628994
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1109/CCC.2006.17
https://doi.org/10.1137/0204037
https://doi.org/10.1016/j.jcss.2003.11.006
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/23.html
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1109/FOCS52979.2021.00069
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384283
https://doi.org/10.1109/FOCS46700.2020.00009


40 / 41 L. Chen, C. Jin, R. Santhanam, and R. Williams

[17] Lijie Chen and Roei Tell. Hardness vs randomness,
revised: uniform, non-black-box, and
instance-wise. 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021,
pages 125–136. IEEE, 2021. DOI (14)

[18] Lijie Chen and Roei Tell.When arthur has neither
random coins nor time to spare: superfast
derandomization of proof systems. Proceedings of
the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pages 60–69. ACM, 2023.
DOI (14)

[19] Mahdi Cheraghchi, Shuichi Hirahara,
Dimitrios Myrisiotis, and Yuichi Yoshida. One-tape
turing machine and branching program lower
bounds for MCSP. 38th International Symposium on
Theoretical Aspects of Computer Science, STACS
2021, volume 187 of LIPIcs, 23:1–23:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
DOI (23)

[20] Stephen A. Cook. Feasibly constructive proofs and
the propositional calculus (preliminary version).
Proceedings of the 7th Annual ACM Symposium on
Theory of Computing, 1975, pages 83–97. ACM,
1975. DOI (15)

[21] Shlomi Dolev, Nova Fandina, and Dan Gutfreund.
Succinct permanent is NEXP-hard with many hard
instances. Algorithms and Complexity, 8th
International Conference, CIAC 2013. Proceedings,
volume 7878 of Lecture Notes in Computer Science,
pages 183–196. Springer, 2013. DOI (4, 5, 14, 29)

[22] Lance Fortnow, Richard J. Lipton,
Dieter van Melkebeek, and Anastasios Viglas.
Time-space lower bounds for satisfiability. J. ACM,
52(6):835–865, 2005. DOI (22)

[23] Lance Fortnow and Rahul Santhanam. New
non-uniform lower bounds for uniform classes.
31st Conference on Computational Complexity
(CCC 2016), 2016. DOI (3)

[24] Merrick L. Furst, James B. Saxe, and
Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Math. Syst. Theory,
17(1):13–27, 1984. DOI (27)

[25] Oded Goldreich. Computational complexity - a
conceptual perspective. Cambridge University
Press, 2008. DOI (12)

[26] Oded Goldreich and Avi Wigderson. On
derandomizing algorithms that err extremely rarely.
Symposium on Theory of Computing, STOC 2014,
pages 109–118. ACM, 2014. DOI (39)

[27] Dan Gutfreund.Worst-case vs. algorithmic
average-case complexity in the polynomial-time
hierarchy. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and
Techniques, 9th International Workshop on
Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2006 and 10th
International Workshop on Randomization and
Computation, RANDOM 2006, Proceedings,
volume 4110 of Lecture Notes in Computer Science,
pages 386–397. Springer, 2006. DOI (14)

[28] Dan Gutfreund, Ronen Shaltiel, and
Amnon Ta-Shma. If NP languages are hard on the
worst-case, then it is easy to find their hard
instances. Computational Complexity,
16(4):412–441, 2007. DOI (4, 5, 11, 14, 30, 31)

[29] Dan Gutfreund, Ronen Shaltiel, and
Amnon Ta-Shma. Uniform hardness versus
randomness tradeoffs for arthur-merlin games.
Comput. Complex. 12(3-4):85–130, 2003. DOI
(14)

[30] Johan Håstad. Almost optimal lower bounds for
small depth circuits. Proceedings of the 18th
Annual ACM Symposium on Theory of Computing,
pages 6–20. ACM, 1986. DOI (27)

[31] Johan Håstad. The shrinkage exponent of de
Morgan formulas is 2. SIAM J. Comput. 27(1):48–64,
1998. DOI (38)

[32] Shuichi Hirahara. Unexpected hardness results for
Kolmogorov complexity under uniform reductions.
Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020,
pages 1038–1051. ACM, 2020. DOI (9)

[33] Christian Ikenmeyer and Umangathan Kandasamy.
Implementing geometric complexity theory: on the
separation of orbit closures via symmetries.
Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020,
pages 713–726. ACM, 2020. DOI (2)

[34] Russell Impagliazzo, Valentine Kabanets, and
Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time.
J. Comput. Syst. Sci. 65(4):672–694, 2002. DOI
(18, 23)

[35] Russell Impagliazzo and Avi Wigderson.
Randomness vs time: derandomization under a
uniform assumption. J. Comput. Syst. Sci.
63(4):672–688, 2001. DOI (14)

[36] Emil Jeřábek. Approximate counting in bounded
arithmetic. J. Symb. Log. 72(3):959–993, 2007.
DOI (15)

[37] Valentine Kabanets. Easiness assumptions and
hardness tests: trading time for zero error. J.
Comput. Syst. Sci. 63(2):236–252, 2001. DOI (3,
14)

[38] Valentine Kabanets and Jin-yi Cai. Circuit
minimization problem. Proceedings of the
Thirty-Second Annual ACM Symposium on Theory
of Computing, pages 73–79, 2000. DOI (12)

[39] Bala Kalyanasundaram and Georg Schnitger. The
probabilistic communication complexity of set
intersection. SIAM J. Discrete Math. 5(4):545–557,
1992. DOI (6)

[40] Jan Kraj́ıček. Proof complexity, volume 170.
Cambridge University Press, 2019. DOI (15)

[41] Richard J. Lipton and Neal E. Young. Simple
strategies for large zero-sum games with
applications to complexity theory. Proceedings of
the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, STOC 1994, pages 734–740.
ACM, 1994. DOI (14)

https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/3564246.3585215
https://doi.org/10.1145/3564246.3585215
https://doi.org/10.4230/LIPICS.STACS.2021.23
https://doi.org/10.4230/LIPICS.STACS.2021.23
https://doi.org/10.1145/800116.803756
https://doi.org/10.1007/978-3-642-38233-8\_16
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.4230/LIPICS.CCC.2016.19
https://doi.org/10.1007/BF01744431
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1145/2591796.2591808
https://doi.org/10.1007/11830924\_36
https://doi.org/10.1007/s00037-007-0235-8
https://doi.org/10.1007/s00037-003-0178-7
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384257
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1006/JCSS.2001.1780
https://doi.org/10.2178/JSL/1245158087
https://doi.org/10.2178/JSL/1245158087
https://doi.org/10.1006/JCSS.2001.1763
https://doi.org/10.1145/335305.335314
https://doi.org/10.1137/0405044
https://doi.org/10.1017/9781108242066
https://doi.org/10.1145/195058.195447


41 / 41 Constructive Separations and Their Consequences

[42] Chi-Jen Lu. Derandomizing arthur-merlin games
under uniform assumptions. Comput. Complex.
10(3):247–259, 2001. DOI (14)

[43] Wolfgang Maass. Quadratic lower bounds for
deterministic and nondeterministic one-tape turing
machines (extended abstract). Proceedings of the
16th Annual ACM Symposium on Theory of
Computing, STOC 1984, pages 401–408. ACM,
1984. DOI (7, 21)

[44] Dylan M. McKay, Cody D. Murray, and
R. Ryan Williams.Weak lower bounds on
resource-bounded compression imply strong
separations of complexity classes. Proceedings of
the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019,
pages 1215–1225. ACM, 2019. DOI (8, 10, 15–17)

[45] Mehryar Mohri, Afshin Rostamizadeh, and
Ameet Talwalkar. Foundations of machine learning.
MIT press, second edition, 2018. (20)

[46] Moritz Müller and Ján Pich. Feasibly constructive
proofs of succinct weak circuit lower bounds. Ann.
Pure Appl. Log. 171(2), 2020. DOI (15)

[47] Ketan Mulmuley. Explicit proofs and the flip. CoRR,
abs/1009.0246, 2010. DOI (2)

[48] Ketan Mulmuley. Geometric complexity theory VI:
the flip via saturated and positive integer
programming in representation theory and
algebraic geometry. CoRR, abs/0704.0229, 2007.
DOI (2)

[49] Ketan Mulmuley. The GCT program toward the P
vs. NP problem. Commun. ACM, 55(6):98–107, 2012.

DOI (2)

[50] E. Neciporuk. On a boolean function. Doklady of the
Academy of the USSR, 169(4):765–766, 1966. (38)

[51] Noam Nisan. Pseudorandom bits for constant
depth circuits. Comb. 11(1):63–70, 1991. DOI (24)

[52] Igor Carboni Oliveira, Ján Pich, and
Rahul Santhanam. Hardness magnification near
state-of-the-art lower bounds. 34th Computational
Complexity Conference, CCC 2019, 27:1–27:29,
2019. DOI (15)

[53] Igor Carboni Oliveira and Rahul Santhanam.
Hardness magnification for natural problems. 59th
IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, pages 65–76, 2018.

DOI (8, 14, 15)

[54] Christos H. Papadimitriou and Stathis Zachos. Two
remarks on the power of counting. Theoretical
Computer Science, 6th GI-Conference, 1983,
Proceedings, volume 145 of Lecture Notes in
Computer Science, pages 269–276. Springer, 1983.

DOI (35)

[55] Ján Pich. Circuit lower bounds in bounded
arithmetics. Ann. Pure Appl. Log. 166(1):29–45,
2015. DOI (15)

[56] Alexander A Razborov. Lower bounds on the size
of bounded depth circuits over a complete basis
with logical addition. Mathematical Notes of the
Academy of Sciences of the USSR, 41(4):333–338,
1987. (38)

[57] Alexander A. Razborov. On the distributional
complexity of disjointness. Theor. Comput. Sci.
106(2):385–390, 1992. DOI (6)

[58] Alexander A. Razborov and Steven Rudich. Natural
proofs. J. Comput. Syst. Sci. 55(1):24–35, 1997.
DOI (4)

[59] Ronen Shaltiel and Christopher Umans. Low-end
uniform hardness versus randomness tradeoffs for
AM. SIAM J. Comput. 39(3):1006–1037, 2009. DOI
(14)

[60] Roman Smolensky. Algebraic methods in the
theory of lower bounds for boolean circuit
complexity. Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987,
pages 77–82, 1987. DOI (38)

[61] Avishay Tal. Shrinkage of de morgan formulae by
spectral techniques. 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014,
pages 551–560, 2014. DOI (38)

[62] Iannis Tourlakis. Time-space tradeoffs for SAT on
nonuniform machines. J. Comput. Syst. Sci.
63(2):268–287, 2001. DOI (22)

[63] Luca Trevisan and Salil P. Vadhan.
Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity,
16(4):331–364, 2007. DOI (14)

[64] L. G. Valiant and V. V. Vazirani. NP is as easy as
detecting unique solutions. Theoretical Computer
Science, 47:85–93, 1986. DOI (35)

[65] Nikolay K. Vereshchagin. Improving on gutfreund,
shaltiel, and ta-shma’s paper ”if NP languages are
hard on the worst-case, then it is easy to find their
hard instances”. Computer Science - Theory and
Applications - 8th International Computer Science
Symposium in Russia, CSR 2013. Proceedings,
volume 7913 of Lecture Notes in Computer Science,
pages 203–211. Springer, 2013. DOI (14)

[66] Emanuele Viola. The complexity of constructing
pseudorandom generators from hard functions.
Comput. Complex. 13(3-4):147–188, 2005. DOI
(24)

[67] R. Ryan Williams. Natural proofs versus
derandomization. SIAM J. Comput. 45(2):497–529,
2016. DOI (14)

[68] Andrew Chi-Chih Yao. Separating the
polynomial-time hierarchy by oracles (preliminary
version). 26th Annual Symposium on Foundations
of Computer Science, FOCS 1985, pages 1–10,
1985. DOI (27)

2024 :3
This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Lijie Chen, Ce Jin, Rahul Santhanam, Ryan Williams.

https://doi.org/10.1007/s00037-001-8196-9
https://doi.org/10.1145/800057.808706
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1016/j.apal.2019.102735
https://doi.org/https://doi.org/10.48550/arXiv.1009.0246
https://doi.org/https://doi.org/10.48550/arXiv.0704.0229
https://doi.org/https://doi.org/10.48550/arXiv.0704.0229
https://doi.org/10.1145/2184319.2184341
https://doi.org/10.1007/BF01375474
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1007/BFb0009651
https://doi.org/10.1016/j.apal.2014.08.004
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1137/070698348
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1006/JCSS.2001.1767
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/978-3-642-38536-0\_18
https://doi.org/10.1007/s00037-004-0187-1
https://doi.org/10.1137/130938219
https://doi.org/10.1109/SFCS.1985.49

	Introduction
	Most Conjectured Poly-Time Separations Can Be Made Constructive
	Unexpected Consequences of Making Some Separations Constructive
	Certain Lower Bounds Cannot Be Made Constructive
	Intuition
	Organization

	Preliminaries
	Notation
	Definitions of MCSP and time-bounded Kolmogorov complexity
	Implications of Circuit Complexity Assumptions on Refuters
	Other Related Work

	Constructive Separations for Streaming and Query Algorithms imply Breakthrough Lower Bounds
	Making Most Streaming Lower Bounds Constructive Implies Breakthrough Separations
	Separating P and NP via Uniform-AC0-Constructive Separations
	Constructive Separations in Query Complexity

	Constructive Separations for One-Tape Turing Machines imply Breakthrough Lower Bounds

	Constructive Separations for MCSP Imply Breakthrough Lower Bounds
	Most Conjectured Uniform Separations Can Be Made Constructive
	Refuters for PSPACE, EXP, and NEXP
	Refuters for NP and the Polynomial Hierarchy
	Refuters for PP and Parity-P

	Hard Languages With No Constructive Separations
	Conclusion
	References

