
ar
X

iv
:2

10
6.

04
63

3v
2

 [
qu

an
t-

ph
]

 1
2

N
ov

 2
02

1

A Quantum Advantage for a Natural Streaming Problem

John Kallaugher

The University of Texas at Austin

jmgk@cs.utexas.edu

Abstract

Data streaming, in which a large dataset is received as a “stream” of updates, is an important
model in the study of space-bounded computation. Starting with the work of Le Gall [SPAA ‘06],
it has been known that quantum streaming algorithms can use asymptotically less space than
their classical counterparts for certain problems. However, so far, all known examples of quantum
advantages in streaming are for problems that are either specially constructed for that purpose,
or require many streaming passes over the input.

We give a one-pass quantum streaming algorithm for one of the best-studied problems in
classical graph streaming—the triangle counting problem. Almost-tight parametrized upper and
lower bounds are known for this problem in the classical setting; our algorithm uses polynomially
less space in certain regions of the parameter space, resolving a question posed by Jain and Nayak
in 2014 on achieving quantum advantages for natural streaming problems.

1 Introduction

1.1 Streaming Algorithms

Streaming algorithms are a class of algorithms for processing very large datasets that arrive “one
piece at a time”—some dataset too large to fit into memory is built up by a series of updates. More
formally, a vector x ∈ Z

N is received as a series of updates (σt)t=1..., where each update σt = zei
consists of adding a scalar z ∈ Z to a co-ordinate i ∈ [N], and the goal of a streaming algorithm is
to estimate some statistic of x =

∑
t σt in o(n) space1.

Streaming algorithms have been studied for a wide variety of problems, such as cardinality esti-
mation [FN85], approximating the moments of a vector [AMS96], and subgraph counting [BKS02].
In this paper we will be concerned with quantum streaming algorithms.

Quantum Streaming The prospect of space-constrained quantum computers has motivated the
study of quantum streaming, in which a stream of updates is received by an algorithm that is able
to maintain a quantum state and perform quantum operations (including measurements) on this
state as it processes the stream2.

1Space has been the primary object of study in the theory of streaming algorithms. Update and pre- and post-
processing time are typically, although not necessarily, manageable if the space required by the algorithm is small.

2Note that, despite the deferred measurement principle, we may want to perform measurements between updates,
as the measurements we make may depend on the updates we see, and therefore we cannot automatically push them
to the end of the stream.

1

http://arxiv.org/abs/2106.04633v2

The study of quantum streaming algorithms started with [LG06], in which a problem was con-
structed that exhibits an exponential separation between quantum and classical space complexity.
The problem in question is not quite a streaming problem in the sense we defined above, as the
function tested depends on the order of the updates of the stream, but in [GKK+08] it was shown
that such a separation exists for an update-order-independent function.

This suggests the question, raised in [JN14], of whether it is possible to obtain such separations
for “natural” problems. They proposed as a candidate the problem of recognizing the Dyck(2) lan-
guage in the stream3, but while better lower bounds for this problem have since been shown [NT17],
better-than-classical upper bounds are still unknown.

When many passes are allowed over the stream, [Mon16, HM19] demonstrate a quantum advan-
tage for the problem of estimating the frequency moments of a vector, giving algorithms for various
settings of the problem that can save a k2 factor in space complexity when they make k passes,
instead of the k factor possible in classical streaming [AMS96, CR11]. But typically in streaming
the objective is to make only one pass over the stream, or at most O(1) passes.

We resolve the question of [JN14], giving a new one-pass streaming algorithm for the triangle
counting problem, one of the best-studied problems in graph streaming.

Triangle Counting In the (insertion-only) graph streaming model a graph G = (V,E) is received
as a sequence of edges4 (σt)

m
t=1 from E. The first problem to be studied in this setting was that of

estimating the number of triangles (three-cliques) in G [BKS02].

All algorithms for this problem are parametrized, as counting triangles requires Ω
(
n2
)

space
if the number of them is sufficiently small [BKS02], and even graphs with Ω(m) triangles can be
hard to distinguish from triangle-free graphs in sufficiently “hard” graphs [BOV13]. The space
complexity of such algorithms is therefore typically quoted in terms of these parameters—it will
often be unreasonable to assume that the algorithm knows these parameters exactly in advance,
but constant factor bounds on them will suffice.

The best-known classical algorithm in this setting is from [JK21], which gives an

Õ

(
m

T
·
(
∆E +

√
∆V

)
· 1
ε2

log
1

δ

)

space upper bound for obtaining a (1 ± ε)-multiplicative approximation with probability5 1 − δ
in a graph with m edges, T triangles, and in which no more than ∆E triangles share an edge
and no more than ∆V share a vertex. This algorithm is known to be classically optimal for this

parametrization, up to log factors, as [BOV13] gives a Ω
(
m∆E
T

)
lower bound and [KP17] gives

Ω
(
m
√
∆V
T

)
when T = O(m).

These two lower bounds are both based on reductions from communication complexity. The
first is from the Indexing problem [KNR95], which is as hard for quantum communication as

3They use the broader definition of streaming that encompasses update-order-dependent functions, but any sep-
aration for a function that does not depend on the order would also be one in that model.

4In our vector model described earlier, this corresponds to receiving the adjacency matrix of the graph as a series
of positive updates to individual co-ordinates. Other models of graph streaming, in which edges can be deleted as
well as added, also exist.

5For the remainder of this discussion we will assume ε, δ are constant. Most algorithms for this problem have a
1

ε2
log 1

δ
dependence, which comes from taking the average of Θ

(

1

ε2

)

constant-variance estimators to obtain a (1± ε)-
multiplicative approximation with 2/3 probability, then repeating Θ

(

log 1

δ

)

times and taking the median in order to
amplify the success probability to 1− δ.

2

it is for classical communication (see [ANTSV02], in which it is called the problem of quantum
random access codes) and so the bound directly applies to any quantum streaming algorithm.
However, the second is from the Boolean Hidden Matching problem, in particular the variant
studied in [GKK+08]. This problem is easier in quantum communication, and indeed was already
used to prove a quantum-classical streaming separation.

We give a quantum triangle counting algorithm that beats the classical lower bound.

Theorem 1. For any ε, δ ∈ (0, 1], there is a quantum streaming algorithm that uses

O

(
m8/5

T 6/5
∆

4/5
E log n · 1

ε2
log

1

δ

)

quantum and classical bits in expectation to return a (1 ± ε)-multiplicative approximation to the
triangle count in an insertion-only graph stream with probability 1− δ.

m is the number of edges in the stream, T the number of triangles, and ∆E the greatest number
of triangles sharing any given edge.

In particular, this means that when ∆E = O(1), ∆V = Ω(T) = Ω(m) (i.e. maximizing the
separation, as T must be O(m) if the classical lower bounds are to hold), we require Õ

(
m2/5

)
space

instead of the Ω(
√
m) required by any classical algorithm6.

1.2 Other Related Work

Other work has investigated streaming problems with quantum inputs [BKCG13, Yu20], as well
as quantum versions of models closely related to streaming, such as online algorithms [KKM18],
limited-width branching programs [NHK00, SS05, AAKV18, HMWW20], and finite automata [KW97,
AF98, MC00, ANTSV02].

Of particular relevance to streaming (see, e.g. [BGW20]) is the coin problem, in which a coin
is flipped repeatedly, and the task is to determine whether it is p-biased or (p + ε)-biased. This
problem actually exhibits arbitrary quantum advantage, as any classical algorithm requires at least
log(p(1− p)) + log(1/ε) space, while a quantum algorithm can solve it with a single qubit [AD11],
although not if ε is unknown [KO17].

2 Overview of the Algorithm

2.1 Classical Triangle Counting

To understand how maintaining a quantum state will help us with triangle counting, we will start
by describing an optimal classical algorithm, from [JK21]. For ease of exposition we will consider
the related problem of triangle distinguishing—determining whether a graph G = (V,E) has 0
triangles or whether it has at least T triangles. As is often (although not necessarily) the case with
subgraph counting problems, converting to a counting algorithm will be almost immediate.

6It remains open whether this is the best separation possible—the Ω
(

m∆E

T

)

lower bound from Indexing disappears

with these parameter settings and so it is possible that even exponential advantages can be achieved.

3

The classical algorithm is as follows:

1. Sample vertices with probability p.

2. Sample edges incident to sampled vertices with probability q.

3. Whenever an edge arrives that “completes” a pair of sampled edges incident to some sampled
vertex (“a wedge centered at a sampled vertex”) we will note that we have found a triangle.

For any triangle in G, we will find it iff we sample its “first” vertex, the vertex shared by the first
two of its edges to arrive, and then sample both of those edges. We can then distinguish between
graphs with 0 triangles and those with T by reporting whether we found a triangle or not (for
counting, we count the number of triangles we found and scale it by p−1q−2). The vertex sampling
can be implemented with a pairwise independent hash function, so the expected space needed is
O(pqm log n) for a graph with m edges and n vertices, as each edge is kept with probability pq.

How small can pq be? This is given by the graph parameters T (the number of triangles in the
graph), ∆E (the maximum number of triangles sharing an edge), and ∆V (the maximum number
of triangles sharing a vertex). Ignoring constant factors, if we want to find a triangle with constant
probability:

• p must be at least ∆V /T , as the triangles might share as few as T/∆V “first” vertices.

• pq must be at least ∆E/T , as there might be a set S, containing as few as T/∆E edges, such
that every triangle has an edge from S as one of its first two edges.

• pq2 must be at least 1/T , as each triangle will be found with probability pq2.

It turns out that these are also sufficient, and subject to them pq is minimized when

p =
∆V

T
, q = max

{
∆E

∆V
,

1√
∆V

}

giving an algorithm that uses

O
(m
T

(
∆E +

√
∆V

)
log n

)

space. Lower bounds from [BOV13, KP17] establish that (up to log factors) both the ∆E and ∆V

terms are necessary. However, while the first of these is based on a reduction from the Indexing
problem, which is known to require as much quantum communication as classical communication
to solve [ANTSV02], the latter is based on a reduction from the Boolean Hidden Matching problem
(in particular, the “α-Partial Matching” variant αPMn of [GKK+08]), which is known to exhibit
an exponential separation between classical and quantum communication.

2.2 Quantum Triangle Counting

2.2.1 Two Players

In seeking a quantum advantage, we consider the hard instance of [KP17], depicted in Figure 1.
This is as follows:

1. T/∆V stars of degree m∆V /T arrive. We call the central vertices of these “hubs” and their
neighboring vertices “spokes”.

4

(a) The first half of the stream is T/∆V “hubs”,
each a vertex with edges to m∆V /T “spokes”.

(b) They are followed by m edges, disjoint from
each other but potentially incident to the “spoke”
vertices of the hubs.

(c) The union of these two halves may contain 0 or T triangles.

Figure 1: A hard graph for classical algorithms, when ∆E = 1 but ∆V is unrestricted.

2. Another m edges arrive, all disjoint from each other. We have that either, for each hub, ∆V

of these edges form triangles by connecting two spokes of the hub, or none of them do for any
hub.

We will start by considering this in the simpler7 two-player setting—Alice gets the first half of the
stream, Bob gets the second half of the stream, and Alice wants to send Bob a message that he
can use with his input to determine whether the graph has 0 or T triangles.

If she wanted to do this by sending some subset of the edges, she would need to send O
(
m
√
∆

T

)
of

them—within any given hub the edges are indistinguishable, so at best she can choose one specific
hub and send a 1/

√
∆V fraction of its edges, to have a (1/

√
∆V)

2 = 1/∆V chance of finding any
given one of its ∆V triangles8. By embedding an instance of (T/m)PMm∆V /T in a hub, and then
copying that hub T/∆V times, it can be shown that there is no asymptotically better classical
message Alice can send.

What if Alice is allowed to send a quantum message? We cannot emulate the αPM protocol

7Any streaming algorithm for this problem immediately gives a one-way protocol for the two-player version, with
message size equal to the space needed by the algorithm. Alice can run the streaming algorithm on her input, send
the algorithm’s state to Bob, and then he can initialize it with that state and run it on his input.

8This is essentially identical to running the algorithm of [JK21] on the input.

5

of [GKK+08] directly, as not all graphs of this form will correspond to an embedding of αPM.
Instead, if the set of hub vertices is H, with spoke vertices Su for each u ∈ H, Alice may construct
the O(logm)-bit quantum state

1√
m

∑

u∈H

∑

v∈Su

|−→uv〉

where −→uv denotes the directed edge from9 u to v. As Bob’s edges are disjoint, he can then construct
an orthonormal basis of R|V 2| which contains

|−→wu〉+ |−→wv〉√
2

,
|−→wu〉 − |−→wv〉√

2

for every w ∈ V and edge uv in his set of m edges. If he measures Alice’s state in this basis, he
will see:

• Each basis element of the form |−→wu〉+|−→wv〉√
2

with probability 1/2m if Alice has a hub w with

exactly one of the spokes u, v, and 2/m if Alice has a hub w with both of these as spokes (i.e.
if uv completes a triangle in Alice’s input).

• Each basis element of the form |−→wu〉−|−→wv〉√
2

with probability 1/2m if Alice has a hub w with

exactly one of the spokes u, v, and 0 if Alice has a hub w with both of these as spokes.

So if G is triangle-free these are the same, but if G has T triangles they differ by 2T/m, and so
Bob can work out which situation they are in if Alice sends him Θ(m2/T 2) copies of this state, at

the cost of Θ
(
m2

T 2 logm
)

qubits.

To generalize this technique, we will need to address two questions: how to construct and
measure the state in the stream, and what to do when the edges we want to measure by are not
disjoint, and therefore do not give an orthonormal basis.

2.2.2 Streaming

Constructing the State We start by constructing the superposition

1√
2m

2m∑

i=1

|i〉

of 2m “dummy” states. Then, whenever we process the ith edge uv in the stream, we swap the
dummy states |2i− 1〉, |2i〉 for |−→uv〉, |−→vu〉.

Measurements If we could remember all of the measurements we want to make, we could take
this state and perform the measurements we made in the two-player game at the end of the stream.
However, this would require remembering every edge we see, so instead we perform the measure-
ments one edge at a time.

9Of course, in the general case, we won’t know which vertices are hubs and which are spokes, so each edge uv will
need to be included as both −→uv and −→vu.

6

When the edge uv arrives, we construct the set of projectors Ouv = {Ouv
b : b ∈ {−1, 0, 1}} given

by

Ouv
1 =

1

2

∑

w∈V
(|−→wu〉+ |−→wv〉)(〈−→wu|+ 〈−→wv|)

Ouv
−1 =

1

2

∑

w∈V
(|−→wu〉 − |−→wv〉)(〈−→wu| − 〈−→wv|)

Ouv
0 = I −

∑

w∈V
(|−→wu〉〈−→wu|+ |−→wv〉〈−→wv|)

and measure with them10, with b the outcome corresponding to the operator Ouv
b . If we see +1 or

−1 we terminate the algorithm and return with that value, while if we see 0 we continue processing
the stream.

This gives us a somewhat different result from performing the measurement at the end of the
stream, since now when we measure by an edge uv we can only pick up on triangles wuv such that
wu and wv appear before uv. However, this is not a concern, as for each triangle there will be
exactly one final edge that arrives.

Non-Disjoint Edges However, there is a problem with this strategy. The two-player strategy
worked because the edges in Bob’s set B were disjoint, and so the elements

{ |−→wu〉+ |−→wv〉√
2

,
|−→wu〉 − |−→wv〉√

2
: w ∈ V, uv ∈ B

}

could be a subset of an orthonormal basis of R|V 2|. But in the general setting, we have to measure
by every edge, as we do not know in advance which edges will be “last edges” of triangles.

Now, the individual edge measurements described in the previous section are still valid, but
what will be the impact of measuring by them? After measuring with Ouv, if we do not terminate
the algorithm, then the state has been projected onto Ouv

0 (and re-weighted appropriately). This
means that for all w ∈ V , if either |−→wu〉 or |−→wv〉 were present in the superposition, they will now
be gone.

The consequence of this is that instead of an estimator of the number of triangles in the graph,
we instead have an estimator of the number of triangles wuv such that wu, wv appear in the stream
and then no edges incident to u or v arrive before uv does. However, this is not very useful, as this
could easily be 0 even in a graph with many triangles.

In order to have at least some chance of finding triangles that do not fit this description, we
will refrain from measuring with all of the edges we see. Suppose that when seeing the edge uv
we only perform the Ouv measurement with probability 1/k, for some k. Then, for every triangle
wuv, if its edges arrive in the order wu, wv, uv, the probability that, |−→wu〉 and |−→wv〉 are still in the
state when uv arrives is

(1− 1/k)d
→
wuv+d→wvu

where d→wuv denotes the degree between wu and uv, the number of edges incident to u that arrive
in between wu and uv. So as the measurement Ouv itself is performed with probability 1/k, the

10If performing all the measurements at the end of the stream is desired, an alternative with the same outcome (and

using only a constant factor extra qubits) is to perform the unitary swapping |−→wu〉+|−→wv〉
2

with |−−→wuv+〉 and |−→wu〉−|−→wv〉
2

with |−−→wuv−〉 for each w, and then measuring in the standard basis at the end of the stream.

7

(a) T wedges (uwivi)
T
i=1

arrive,
all incident to u.

(b) m more edges (uzi)
m
i=1

arrive
incident to u.

(c) T triangles (wiuvvi)
T
i=1

are
formed, each with d→

wiuvi
= m.

Figure 2: A hard graph for our quantum estimator, with d→wuv+d→wvu large for every triangle wuv.

probability that we perform it and both |−→wu〉 and |−→wv〉 are in the state at the time is

1

k
(1− 1/k)d

→
wuv+d→wvu .

This means that any triangle with d→wuv + d→wvu ≤ k has at least an Ω(1/k) probability of
contributing to our estimator. More specifically, we can estimate T<k, given by down-weighting
every triangle by (1− 1/k)d

→
wvu+d→wuv , by running Θ

(
(km/T<k)2

)
copies of the estimator in parallel,

as now the probability of seeing +1 is only m/kT<k greater than the probability of seeing −1.
If we only care to estimate it to εT accuracy for some constant ε (i.e. we are fine having a poor
multiplicative estimate when T<k is small) we can replace this with Θ

(
(km/T)2

)
copies instead.

However, this is not helpful on its own, as it is possible to have a graph stream where T<k is
much smaller than T for any k ≪ m. Consider the following stream, depicted in Figure 2:

1. The edges (uwi)
T
i=1 and (wivi)

T
i=1 arrive for some sequences of unique vertices (wi)

m
i=1, (vi)

m
i=1

and some unique fixed vertex u.

2. The edges (uzi)
m
i=1 arrive for some sequence of unique vertices (zi)

m
i=1.

3. The edges (uvi)
T
i=1 arrive.

Now every triangle wiuvvi in this stream has d→wiuvi = m, and so T<k will be very small if k ≪ m.

However, even though this corresponds to a graph where ∆V is large, it will still be easy for
the classical algorithm we described at the start of this section.

Hybrid Quantum-Classical Algorithm In the stream described above, the first two edges of
each triangle wiuvi are wiu, wivi, and so if we run the classical algorithm from the start of this
section with q = 1, the triangle will be found if wi is sampled by the vertex sampling stage. As the
vertices (wi)

T
i=1 are disjoint, the classical algorithm can succeed with p = Θ(1/T), for a classical

space complexity of O(m/T).

More generally, if Ω(m/k) triangles (wuivi)
m/k
i=1 share the same “first” vertex w, with distinct

(ui)
m/k
i=1 , (vi)

m/k
i=1 then

m/k∑

i=1

(
d→wviui

+ d→wuivi

)
≤

m/k∑

i=1

(dui + dvi) ≤ 2m

8

and so the average value of
(
d→wuivi + d→wviui

)
across these triangles is at most O(k). This means

that, if we consider the set of triangles wuv with d→wuv + d→wvu ≥ k, at most O(m/k) of them can
share any one “first” vertex.

This means that a classical algorithm can count them to εT accuracy (for some constant ε)
with s space by sampling vertices with probability p = m/Tk and incident edges with probability√

k/m, for O
(
m3/2/T

√
k
)

total samples in expectation. Moreover, by maintaining degree counters

for the endpoints of each edge it samples, such an algorithm can record d→wuv+d→wvu for each triangle
wuv it samples, and therefore estimate11 T>k = T − T<k.

In other words, triangles that are hard for the classical algorithm to count are easier for the
quantum algorithm to count, and vice-versa. This suggests the following hybrid algorithm:

1. Choose k appropriately.

2. Use the quantum algorithm to estimate T<k to εT/2 error.

3. Use the classical algorithm to estimate T>k = T − T<k to εT/2 error.

4. Return the sum of the estimates.

What should k be? We want to minimize
(
km

T

)2

+
m3/2

T
√
k
.

Setting k = T 2/5/m1/5 gives us a

Õ

(
m8/5

T 6/5

)

space algorithm, that becomes

Õ

(
m8/5

T 6/5
∆

4/5
E

)

when our bounds are modified to account for up to ∆E triangles sharing an edge. When e.g.
∆E = O(1), ∆V = Ω(T) and T = ω

(
m6/7

)
, this is less space than the best possible classical

algorithm.

3 Preliminaries

3.1 General Notation

k ∈ [0,m] is a parameter shared by the quantum and classical algorithms, to be specified later.

Let G = (V,E) be a graph on n vertices, received as a stream of undirected edges, adversarially
ordered. Let m ≤

(n
2

)
be an upper bound on the number of edges in the graph (and thus the

number of updates in the stream). We write the stream σ = (σi)
m
i=1, for σ ∈ E. We will write

σ≤t = (σi)
t
i=1.

11Technically the algorithm described here only allows estimating the sum of 1− (1− 1/k)d
→

wuv
+d→

wvu over triangles
where d→wuv + d→wvu ≥ k. But by analyzing the variance of the estimator more carefully it is possible to replace this
with the sum of that over all triangles, i.e. T − T<k.

9

We will write N(v) for the neighborhood of any v ∈ V , and dv for |N(v)|.
We will use −→uv to denote a directed edge from u to v, and uv (or vu) to refer to the undirected

edge (and so uv = vu while −→uv 6= −→vu). We will write
−→
E for the set of directed edges and E for the

set of edges.

We will use I(p) to denote the indicator on whether the predicate p holds.

3.2 Triangles

We use T to refer to the number of triangles in G, ∆E ≥ 1 to refer to the maximum number of
them sharing a single edge (or 1 if G is triangle-free).

Fix any ordering of the stream. For any edges e, f , we will write e 4 f if e arrives before f
in the stream. For any vertices u, v, w ∈ V such that uv, vw ∈ E and uv 4 vw, let the degree
between uv and vw, d→uvw be the number of edges incident to v that arrive in between uv and vw
(not including uv or vw themselves).

For any triple of vertices (u, v, w) ∈ V 3 let

t<k
uvw =

{
(1− 1/k)d

→
uvw+d→uwv if {u, v, w} is a triangle in the graph and uv 4 uw 4 vw

0 otherwise.

Likewise, let

t>k
uvw =

{
1− (1− 1/k)d

→
uvw+d→uwv if {u, v, w} is a triangle in the graph and uv 4 uw 4 vw

0 otherwise.

We will write T<k, T>k for
∑

(u,v,w)∈V 3 t<k
uvw,

∑
(u,v,w)∈V 3 t>k

uvw, respectively, so that T = T<k+T>k.

For any vertex u ∈ V , we will write T<k
u =

∑
(v,w)∈V 2 t<k

uvw and T>k
u =

∑
(v,w)∈V 2 t>k

uvw, so∑
u∈V T<k

u = T<k and
∑

u∈V T>k
u = T>k.

4 Quantum Estimator

Each instance of the quantum algorithm will maintain β = 2⌈log n⌉ + 1 qubits, indexing the set−→
E ∪ [2m]. We will write the basis states as |−→uv〉, |t〉 for −→uv ∈ −→E , t ∈ [2m].

Let f : [m]→ {0, 1} be a fully independent hash function such that

f(t) =

{
1 with probability 1/k

0 otherwise.

While f is a fully random function, and so would be infeasible to store, our algorithm will only
need to query f(t) at the time step t, and therefore will not need to store it.

After the tth update, the algorithm will either terminate or maintain the state

Σt =

∑2m
i=2t+1|i〉+

∑
−→uv∈St

|−→uv〉
√

2m− 2t+ |St|

10

where
St = {−→uv : ∃i ∈ [t], σi = uv,∀j = i+ 1, . . . , t, f(j) = 0 ∨ v 6∈ σj}.

That is, St contains the directed edges −→uv and −→vu for every edge uv that has arrived at time t,
except that whenever an edge wz arrives at time s, if f(s) = 1 all edges directed towards either w
or z are removed.

At each step t, the algorithm will first apply a unitary transformation, depending on t and the
edge σt, to take Σt−1 to Σt, and then, if f(t) = 1, it will measure Σt with an operator depending
only on σt. We now define this transformation and measurement operator.

Definition 2. Take {|x〉 : x ∈ −→E ∪ [m]} and extend it to a basis of Rβ. For each t ∈ [m], uv ∈ E,
if u < v the unitary transformation U t

uv is given by swapping the basis elements |(2t− 1)〉 and |−→uv〉,
and swapping |2t〉 and |−→vu〉. If v < u, U t

uv = U t
vu.

Definition 3. For any uv ∈ E, the set of measurement operators Ouv = {Ouv
b : b ∈ {−1, 0, 1}} is

given by

Ouv
1 =

1

2

∑

w∈V
(|−→wu〉+ |−→wv〉)(〈−→wu|+ 〈−→wv|)

Ouv
−1 =

1

2

∑

w∈V
(|−→wu〉 − |−→wv〉)(〈−→wu| − 〈−→wv|)

Ouv
0 = I −

∑

w∈V
(|−→wu〉〈−→wu|+ |−→wv〉〈−→wv|)

with b the outcome corresponding to operator Ouv
b .

Note that Ouv
1 Ouv

−1 = 0, and Ouv
0 = I − Ouv

1 − Ouv
−1, so this is a complete set of orthogonal

projectors.

We can now define the algorithm.

Algorithm 1 Quantum estimator for T<k

1: procedure QuantumEstimator(k)
2: t← 1
3: Σt ← 1√

m

∑m
i=1|i〉

4: for each update uv do
5: Σt ← U t

uvΣt−1

6: if f(t) = 1 then ⊲ f(t) is not re-used so we can generate it here.
7: Measure Σt with the operators Ouv, storing the result in b.
8: if b 6= 0 then
9: return b

10: end if
11: end if
12: t← t+ 1
13: end for
14: b← 0
15: return b

16: end procedure

11

Lemma 4. For all t = 0, . . . ,m, after QuantumEstimator(k) has processed t updates, either it
will have returned or

Σt =

∑2m
i=2t+1|i〉+

∑
−→uv∈St

|−→uv〉
√

2m− 2t+ |St|
where

St = {−→uv : ∃i ∈ [t], uv = σi,∀j = i+ 1, . . . , t, f(j) = 0 ∨ v 6∈ σj}.

Proof. We proceed by induction. For t = 0,

Σt =
1√
m

2m∑

i=1

|i〉

and so the result holds. Now, for any t ∈ [m − 1], suppose that the result holds after t updates.
Let xy (with x < y) be the (t+ 1)th update. Then after applying the unitary U t+1

xy ,

Σt+1 =

∑2m
i=2t+3|i〉 +

∑
−→uv∈St∪{−→xy,−→yx}|

−→uv〉
√

2m− 2t+ |St|

as U t+1
xy swapped the basis vectors |(2t+ 1)〉, |(2t+ 2)〉 for |−→xy〉, |−→yx〉.

So if f(t+ 1) = 0, the result continues to hold for t+ 1, as in this case

St+1 = St ∪ {−→xy,−→yx}

and so 2m− 2t+ |St| = 2m− 2(t+ 1) + |St+1|. Now suppose f(t+ 1) = 1. Let

W = {−→wz ∈ St : z ∈ {x, y}}.

Then
St+1 = {−→xy,−→yx} ∪ St \W

and

U t+1
xy Σt =

∑2m
i=2t+3|i〉+

∑
−→uv∈St∪{−→xy,−→yx}|

−→uv〉
√
2m− 2t+ |St|

=

∑2m
i=2t+3|i〉+

∑
−→uv∈St+1

|−→uv〉
√

2m− 2t+ |St|
+

∑
−→uv∈W |−→uv〉√

2m− 2t+ |St|
.

If QuantumEstimator does not return after this update, that means the measurement operation
returned 0. Therefore, after the measurement,

Σt+1 =
Oxy

0 U t+1
xy Σt∥∥Oxy

0 U t+1
xy Σt

∥∥
2

=

∑2m
i=2t+3|i〉+

∑
−→uv∈St+1

|−→uv〉
‖∑2m

i=2t+3|i〉+
∑

−→uv∈St+1
|−→uv〉‖2

=

∑2m
i=2t+3|i〉+

∑
−→uv∈St+1

|−→uv〉
√

2m− 2(t+ 1) + |St+1|

and so the result holds for all t ∈ [m].

12

Lemma 5.

E[b] =
T<k

km

Proof. For b to take a non-zero value, it must be returned from the measurement step at some t such
that f(t) = 1, and the algorithm must not return before time t. Condition on the value of f . For any
t such that f(t) = 1, let xy = σt, so St = {−→xy,−→yx}∪St−1\Wt, where Wt = {−→wz ∈ St−1 : z ∈ {x, y}}.

Suppose that the algorithm has not yet returned a value. By Lemma 4,

Σt−1 =

∑2m
i=2t−1|i〉+

∑
−→uv∈St−1

|−→uv〉
√

2m− 2(t− 1) + |St−1|

and so

U t
xyΣt−1 =

∑2m
i=2t+1|i〉+

∑
−→uv∈St

|−→uv〉
√

2m− 2(t− 1) + |St−1|
+

∑
−→uv∈Wt

|−→uv〉
√

2m− 2(t− 1) + |St−1|

=

∑2m
i=2t+1|i〉+

∑
−→uv∈St

|−→uv〉
√

2m− 2(t− 1) + |St−1|
+

∑
w∈W+

t
(|−→wx〉+ |−→wy〉)

√
2m− 2(t− 1) + |St−1|

+

∑
w∈W−

t
(|−→wx〉+ |−→wy〉)

2
√

2m− 2(t− 1) + |St−1|
+

∑
w∈W−

t
(|−→wx〉 − |−→wy〉)

2
√

2m− 2(t− 1) + |St−1|
(−1)I(−→wy∈Wt)

where

W+
t = {w ∈ V : |{−→wx,−→wy} ∩Wt| = 2}

W−
t = {w ∈ V : |{−→wx,−→wy} ∩Wt| = 1}.

Therefore, conditioned on f and the algorithm not having returned yet, after the measurement
(breaking the 1 case into two for clarity)

b =





1 with probability
2|W+

t |
2m−2(t−1)+|St−1|

1 with probability
|W−

t |
2(2m−2(t−1)+|St−1|)

−1 with probability
|W−

t |
2(2m−2(t−1)+|St−1|)

0 with probability 2m−2t+|St|
2m−2(t−1)+|St−1| .

Now, let ti be the ith t such that f(t) = 1, and let l = |{t ∈ [m] : f(t) = 1}|. For each i ∈ [l],

let Hf
i be the expected value of b when it is returned, conditioned on f and on the algorithm not

returning at a time step before ti. Then, by the above we have

Hf
i =

2|W+
ti
|

2m− 2(ti − 1) + |Sti−1|
+

2m− 2ti + |Sti |
2m− 2(ti − 1) + |Sti−1|

Hf
i+1

with Hf
l+1 defined to be 0. We will prove by reverse induction on i that

Hf
i =

2
∑l

j=i|W+
tj
|

2m− 2(ti − 1) + |Sti−1|

13

for all i ∈ [l + 1]. We have Hf
l+1 = 0 by definition. Now, for any i < l + 1, suppose

Hf
i+1 =

2
∑l

j=i+1|W+
tj
|

2m− 2(ti+1 − 1) + |Sti+1−1|
.

Then

Hf
i =

2|W+
ti
|

2m− 2(ti − 1) + |Sti−1|
+

2m− 2ti + |Sti |
2m− 2(ti − 1) + |Sti−1|

2
∑l

j=i+1|W+
tj
|

2m− 2(ti+1 − 1) + |Sti+1−1|

=
2
∑l

j=i|W+
tj
|

2m− 2(ti − 1) + |Sti−1|

as |Sti+1−1| = |Sti |+ 2(ti+1 − ti − 1), as f(s) = 0 when ti < s < ti+1, and so the set grows by two
edges at each such s.

So we now have

E[b|f] = Hf
1

=
1

m

l∑

j=1

|W+
tj
|

=
1

m

m∑

t=1

|W+
t |

by defining W+
t to be the empty set when f(t) = 0. And so

E[b] =
1

m

m∑

t=1

E
[
|W+

t |
]

Now, recall that, when f(t) = 1, W+
t consists of the vertices w in V such that, if uv is the edge

that arrives at time t, wu and wv arrive at times s1, s2 < t, and there is no time s′1 ∈ (s1, t) ∩ [m]
such that f(s′1) = 1 and σs′ is incident to u, nor time s′2 ∈ (s2, t)∩ [m] such that f(s′2) = 1 and σs′2
is incident to v.

If both wu and wv arrived before uv, the probability that this happens conditioned on f(t) = 1
is (1− 1/k)d

→
uvw+d→uwv = t<k

wuv + t<k
wvu.

So
E
[
|W+

t |
∣∣f(t) = 1

]
=
∑

w∈V

(
t<k
wuv + t<k

wvu

)

where uv = σt and so

E
[
|W+

t |
]
=

1

k

∑

w∈V

(
t<k
wuv + t<k

wvu

)
.

14

As t<k
xyz is 0 whenever yz is not an edge that appears in the stream, this gives us

E[b] =
1

km

m∑

t=1
uv:=σt

∑

w∈V

(
t<k
wuv + t<k

wvu

)

=
1

km

∑

(u,v,w)∈V 3

t<k
uvw

=
T<k

km

completing the proof.

Lemma 6.
Var(b) ≤ 1

Proof. This follows immediately from the fact that |b| is at most 1.

Lemma 7. For any ε, δ ∈ (0, 1], there is a quantum streaming algorithm, using

O

((
km

T

)2

log n
1

ε2
log

1

δ

)

quantum and classical bits, that estimates T<k to εT precision with probability 1− δ.

Proof. By taking the average of Θ
(
(km/Tε)2

)
copies of QuantumEstimator(k) and multiplying

by km, we obtain an estimator with expectation T<k and variance at most ε2T 2/4. So by Cheby-
shev’s inequality the estimator will be within εT of T<k with probability 3/4. We can then repeat
this O(log 1

δ) times and take the median of our estimators to estimate T<k to Tε precision with
probability 1− δ.

Each copy of QuantumEstimator uses 2⌈log n⌉+1 qubits and O(log n) classical bits, and so
the result follows.

5 Classical Estimator

For this algorithm we will use a hash function g : V → {0, 1} such that

E[g(v)] = 1/
√
km

for each v ∈ V . We will need to store this function, but instead of making it fully independent we
will make it pairwise independent, so this will only require O(log n) bits.

15

Algorithm 2 Classical estimator for T>k.

1: procedure ClassicalEstimator(k)
2: S ← ∅
3: D ← the empty map from S to N.
4: X = 0
5: for each update uv do
6: for w ∈ V do
7: if −→wu,−→wv ∈ S then

8: X← X+ 1− (1− 1/k)D[
−→wu]+D[−→wv] ⊲ Add t>k

wuv + t>k
wvu to X.

9: end if
10: end for
11: for −→xy ∈ S do
12: if y ∈ {u, v} then
13: D[−→xy]← D[−→xy] + 1
14: end if
15: end for
16: if g(u) = 1 then
17: Add −→uv to S with probability

√
k/m.

18: If −→uv was added, set D[−→uv] = 0.
19: end if
20: if g(v) = 1 then
21: Add −→vu to S with probability

√
k/m.

22: If −→vu was added, set D[−→vu] = 0.
23: end if
24: end for
25: return X.
26: end procedure

Lemma 8. The expected space usage of ClassicalEstimator is O(log n) bits.

Proof. For each edge in G, ClassicalEstimator will keep it with probability 1√
km
×
√

k/m = 1
m

for each of its endpoints. So the algorithm keeps O(1) edges in expectation, along with a counter
(of size at most m) for each edge. The edge and the counter can each be stored in O(log n) bits,
and so the result follows.

Lemma 9.

E[X] =
T>k
√
k

m3/2

Proof. For any triangle uvw such that uv 4 uw 4 vw, t>k will be added to X iff g(u) = 1 (which
happens with probability 1/

√
km) and both uv and uw are then kept by the algorithm (which

happens with probability (
√

k/m)2 conditioned on g(u) = 1).

Lemma 10.

Var(X) ≤ 4
T>k
√
k

m3/2
∆E

16

Proof. For each (u, v, w) ∈ V 3, let Xuvw be the contribution to X from (possibly) adding t>k
uvw. For

each u ∈ V , let Xu =
∑

(v,w)∈V 2 Xuvw. Then X =
∑

uXu and the Xu are all independent, as each
depends on g(u) and the independent edge addition events. So Var(X) =

∑
u∈V Var(Xu).

Now, for each u ∈ V ,

Var(Xu) ≤ E
[
X

2
u

]

= E






∑

(v,w)∈V 2

Xuvw




2


= E







∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

Xuvw




2


=
∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

E
[
X

2
uvw

]
+

∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

|{v,w}∩{x,y}|=1

E[XuvwXxyy] +
∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

{v,w}∩{x,y}=∅

E[XuvwXxyy]

We will bound each of these three terms in turn. First, as the probability that we add t>k
uvw to

X is 1√
km
×
(√

k/m
)2

, and 0 ≤ t>k
uvw ≤ 1,

∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

E
[
X

2
uvw

]
≤

∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

E[Xuvw]

=
T>k
u

√
k

m3/2
. (1)

Next, each triangle shares an edge with at most ∆E other triangles, and XuvwXuxy > 0 only if
g(u) = 1 and all of uv, uw, ux, uy are kept by ClassicalEstimator, which occurs with probability

1√
km
×
(√

k/m
)3

= k/m2 when there are exactly three distinct vertices among v,w, x, y. So again

using the fact that 0 ≤ t>k
uvw ≤ 1,

∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

|{v,w}∩{x,y}|=1

E[XuvwXxyy] ≤
∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

∆Et
>k
uvw

k

m2

=
T>k
u k

m2
∆E . (2)

For the final term, we will need the fact that t>k
uvw ≤ dv+dw

k . If k ≤ dv+dw, this follows immediately

17

from the fact that t>k
uvw ≤ 1. Otherwise, if t>k

uvw 6= 0,

t>k
uvw = 1− (1− 1/k)d

→
uv+d→uw

≤ 1− (1− 1/k)dv+dw

= −
dv+dw∑

i=1

(
dv + dw

i

)
(−1/k)i

=
dv + dw

k
−

dv+dw∑

i=2

(
dv + dw

i

)
(−1/k)i

≤ dv + dw
k

as the terms of
∑dv+dw

i=2

(
dv+dw

i

)
(−1/k)i alternate between positive and negative, and their magni-

tude is decreasing in i (as k > dv + dw), and they start positive, so the sum is non-negative.

Therefore, as for disjoint {v,w}, {x, y}, if t>k
uvwt

>k
uxy > 0, the probability that XuvwXuxy 6= 0 is

1√
km
× (
√

k/m)4 = k3/2

m5/2 ,

∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

{v,w}∩{x,y}=∅

E[XuvwXxyy] =
∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

{v,w}∩{x,y}=∅

k3/2

m5/2
t>k
uvwt

>k
uxy

≤
∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

k3/2

m5/2

∑

(x,y)∈N(u)2:
xy∈E

ux4uy4xy

dx + dy
k

and, as for each x ∈ N(u) there are at most ∆E elements y of N(u) such that uxy is a triangle, we
have

∑

(x,y)∈N(u)2:
xy∈E

ux4uy4xy

dx + dy
k

=
∑

x∈N(u)

∑

y∈N(u):
xy∈E
ux4xy
uy4xy
dy≤dx

dx + dy
k

≤
∑

x∈N(u)

2dx
k

∆E

≤ 2m

k
∆E

so

∑

(v,w,x,y)∈N(u)4:
vw,xy∈E

uv4uw4vw
ux4uy4xy

{v,w}∩{x,y}=∅

E[XuvwXxyy] ≤
∑

(v,w)∈N(u)2:
vw∈E

uv4uw4vw

2
√
k

m3/2
∆E

= 2
T>k
u

√
k

m3/2
∆E. (3)

18

Therefore, by adding (1), (2), and (3),

Var(Xu) ≤
T>k
u

√
k

m3/2
+

T>k
u k

m2
∆E + 2

T>k
u

√
k

m3/2
∆E

≤ 4
T>k
u

√
k

m3/2
∆E

as ∆E ≥ 1 and k ≤ m. The result then follows from summing over all u ∈ V .

Lemma 11. For any ε, δ ∈ (0, 1], there is a classical streaming algorithm, using

O

(
m3/2

T
√
k
∆E log n

1

ε2
log

1

δ

)

bits of space in expectation, that estimates T>k to εT precision with probability 1− δ.

Proof. As T>k ≤ T , we can take the average of Θ
(

1
ε2

m3/2

T
√
k
∆E

)
copies of ClassicalEstimator(k)

and multiply by m3/2√
k

to obtain an estimator with expectation T>k and variance at most ε2(T>k)2/4 ≤
ε2T 2/4. So by Chebyshev’s inequality the estimator will be within εT of T>k with probability 3/4.
We can then repeat this O(log 1

δ) times and take the median of our estimators to estimate T>k to
Tε precision with probability 1− δ.

By Lemma 8, each copy of ClassicalEstimator will require O(log n) bits of space in expec-
tation, and so the result follows.

6 Hybrid Quantum-Classical Algorithm

By combining our quantum and classical estimators, we may now prove Theorem 1.

Theorem 1. For any ε, δ ∈ (0, 1], there is a quantum streaming algorithm that uses

O

(
m8/5

T 6/5
∆

4/5
E log n · 1

ε2
log

1

δ

)

quantum and classical bits in expectation to return a (1 ± ε)-multiplicative approximation to the
triangle count in an insertion-only graph stream with probability 1− δ.

m is the number of edges in the stream, T the number of triangles, and ∆E the greatest number
of triangles sharing any given edge.

Proof. Let

k =
T 2/5

m1/5
∆

2/5
E .

By Lemmas 7 and 11, there are algorithms for estimating each of T<k, T>k to precision εT/2 with
probability 1− δ/2, using

O

(
m8/5

T 6/5
∆

4/5
E log n

1

ε2
log

1

δ

)

quantum and classical bits in expectation. If we then sum these estimators they will be within εT
of T with probability 1− δ, by taking a union bound.

19

Acknowledgements

The author would like to thank Scott Aaronson for suggesting the technique of using “dummy
variables” to construct a superposition in the stream.

The author was supported by the National Science Foundation (NSF) under Grant Number
CCF-1751040 (CAREER). Also supported by Laboratory Directed Research and Development
program at Sandia National Laboratories, a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA-0003525. Also supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Accelerated Research in Quan-
tum Computing program.

20

References

[AAKV18] Farid Ablayev, Marat Ablayev, Kamil Khadiev, and Alexander Vasiliev. Classical
and Quantum Computations with Restricted Memory. In Adventures Between Lower
Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion
of His 60th Birthday, Lecture Notes in Computer Science, pages 129–155. Springer
International Publishing, Cham, 2018.

[AD11] Scott Aaronson and Andrew Drucker. Advice Coins for Classical and Quantum Com-
putation. In Automata, Languages and Programming, volume 6755, pages 61–72.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[AF98] Andris Ambainis and Rusins Freivalds. 1-way quantum finite automata: Strengths,
weaknesses and generalizations. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, page 332, USA, 1998. IEEE Computer
Society.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In STOC, pages 20–29, 1996.

[ANTSV02] Andris Ambainis, Ashwin Nayak, Amnon Ta-Shma, and Umesh Vazirani. Dense quan-
tum coding and quantum finite automata. J. ACM, 49(4):496–511, July 2002.

[BGW20] Mark Braverman, Sumegha Garg, and David P. Woodruff. The coin problem with
applications to data streams. Electron. Colloquium Comput. Complex., 27:139, 2020.

[BKCG13] Robin Blume-Kohout, Sarah Croke, and Daniel Gottesman. Streaming universal
distortion-free entanglement concentration. IEEE transactions on information the-
ory, 60(1):334–350, 2013.

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 623–632,
Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[BOV13] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting
triangles in the streaming model? In Automata, Languages, and Programming, pages
244–254. Springer, 2013.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-hamming-distance. In Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing, STOC ’11, page 51–60, New York, NY, USA,
2011. Association for Computing Machinery.

[FN85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[GKK+08] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separation for one-way quantum communication complexity, with appli-
cations to cryptography. SIAM J. Comput., 38(5):1695–1708, 2008.

21

[HM19] Yassine Hamoudi and Frédéric Magniez. Quantum Chebyshev’s Inequality and Ap-
plications. In 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 69:1–69:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[HMWW20] Yanglin Hu, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. Space complexity of
streaming algorithms on universal quantum computers. In Jianer Chen, Qilong Feng,
and Jinhui Xu, editors, Theory and Applications of Models of Computation, pages
275–286, Cham, 2020. Springer International Publishing.

[JK21] Rajesh Jayaram and John Kallaugher. An optimal algorithm for triangle counting
in the stream. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, Univer-
sity of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of
LIPIcs, pages 11:1–11:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[JN14] Rahul Jain and Ashwin Nayak. The Space Complexity of Recognizing Well-
Parenthesized Expressions in the Streaming Model: The Index Function Revisited.
IEEE Transactions on Information Theory, 60(10):6646–6668, October 2014.

[KKM18] K. Khadiev, A. Khadieva, and I. Mannapov. Quantum Online Algorithms with
Respect to Space and Advice Complexity. Lobachevskii Journal of Mathematics,
39(9):1377–1387, November 2018.

[KNR95] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, STOC ’95, page 596–605, New York, NY, USA, 1995. Association for
Computing Machinery.

[KO17] Guy Kindler and Ryan O’Donnell. Quantum Automata Cannot Detect Biased Coins,
Even in the Limit. In 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 15:1–15:8, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[KP17] John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1778–1797. SIAM, 2017.

[KW97] A. Kondacs and J. Watrous. On the power of quantum finite state automata. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, page 66, USA, 1997. IEEE Computer Society.

[LG06] François Le Gall. Exponential separation of quantum and classical online space com-
plexity. In Proceedings of the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures, SPAA ’06, pages 67–73, New York, NY, USA, July 2006.
Association for Computing Machinery.

[MC00] Cristopher Moore and James P. Crutchfield. Quantum automata and quantum gram-
mars. Theor. Comput. Sci., 237(1–2):275–306, April 2000.

22

[Mon16] Ashley Montanaro. The quantum complexity of approximating the frequency mo-
ments. Quantum Info. Comput., 16(13–14):1169–1190, October 2016.

[NHK00] Masaki Nakanishi, Kiyoharu Hamaguchi, and Toshinobu Kashiwabara. Ordered Quan-
tum Branching Programs Are More Powerful than Ordered Probabilistic Branching
Programs under a Bounded-Width Restriction. In Computing and Combinatorics, Lec-
ture Notes in Computer Science, pages 467–476, Berlin, Heidelberg, 2000. Springer.

[NT17] Ashwin Nayak and Dave Touchette. Augmented index and quantum streaming algo-
rithms for dyck(2). In Proceedings of the 32nd Computational Complexity Conference,
CCC ’17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[SS05] Martin Sauerhoff and Detlef Sieling. Quantum branching programs and space-
bounded nonuniform quantum complexity. Theor. Comput. Sci., 334(1-3):177–225,
2005.

[Yu20] Nengkun Yu. Quantum Closeness Testing: A Streaming Algorithm and Applications.
arXiv:1904.03218 [quant-ph], January 2020.

23

	1 Introduction
	1.1 Streaming Algorithms
	1.2 Other Related Work

	2 Overview of the Algorithm
	2.1 Classical Triangle Counting
	2.2 Quantum Triangle Counting
	2.2.1 Two Players
	2.2.2 Streaming

	3 Preliminaries
	3.1 General Notation
	3.2 Triangles

	4 Quantum Estimator
	5 Classical Estimator
	6 Hybrid Quantum-Classical Algorithm

