
Sharper bounds on the Fourier concentration of DNFs

Victor Lecomte

Stanford

vlecomte@stanford.edu

Li-Yang Tan

Stanford

liyang@cs.stanford.edu

October 19, 2021

Abstract

In 1992 Mansour proved that every size-s DNF formula is Fourier-concentrated on sO(log log s)

coefficients. We improve this to sO(log log k) where k is the read number of the DNF. Since k is
always at most s, our bound matches Mansour’s for all DNFs and strengthens it for small-read

ones. The previous best bound for read-k DNFs was sO(k3/2). For k up to Θ̃(log log s), we
further improve our bound to the optimal poly(s); previously no such bound was known for
any k = ωs(1).

Our techniques involve new connections between the term structure of a DNF, viewed as a
set system, and its Fourier spectrum.

ar
X

iv
:2

10
9.

04
52

5v
2

 [
cs

.C
C

]
 1

5
O

ct
 2

02
1

1 Introduction

The relationships between combinatorial and analytic measures of Boolean function complexity is
the subject of much study. A classic result of this flavor is Mansour’s theorem [Man92], which
shows that every size-s DNF formula is Fourier-concentrated on sO(log log s) coefficients (that is, it
is well-approximated by a polynomial with sO(log log s) monomials). More precisely:

Mansour’s theorem. For every size-s DNF f and every ε, the Fourier spectrum of f is ε-
concentrated on (s/ε)O(log log(s/ε) log(1/ε)) coefficients.

However, Mansour conjectured that this bound was not tight, and that the correct bound was
actually polynomial in s.

Mansour’s conjecture. For every size-s DNF f and every ε, the Fourier spectrum of f is ε-
concentrated on sOε(1) coefficients.

Our main result is a sharpening of Mansour’s theorem that takes the read number of the DNF
into account. We say that a DNF is read-k if every variable occurs in at most k of its terms.

Theorem 1. For every size-s read-k DNF f and every ε, the Fourier spectrum of f is ε-concentrated
on (s/ε)O(log log k log(1/ε)) coefficients.

Since k is always at most s, our bound matches Mansour’s for all DNFs (indeed, it slightly
improves the dependence on ε) and strengthens it for small-read ones. The dependence on k

in Theorem 1 is a doubly-exponential improvement of the previous best bound of sO(k3/2) for read-

k DNFs [ST19]; this was in turn an exponential improvement of an sO(16k) bound by Klivans, Lee,
and Wan [KLW10], who gave the first nontrivial bounds for k ≥ 2.

For small values of k, we further improve our bound to the optimal poly(s):

Theorem 2. For every size-s DNF f with read up to Θ̃(log log s) and for every ε, the Fourier
spectrum of f is ε-concentrated on (s/ε)O(log(1/ε)) coefficients.

Previously no poly(s) bound was known for any k = ωs(1) (even for constant ε).

Regarding the dependence on ε in these bounds, Mansour showed a lower bound sΩ̃(log(1/ε)) on
the sparsity of any polynomial that ε-approximates Tribes, a read-once DNF formula.

Theorems 1 and 2 immediately yield faster membership query algorithms for agnostically learn-
ing small-read DNF formulas under the uniform distribution. This is via a powerful technique
of Gopalan, Kalai, and Klivans [GKK08], showing that if every function in a concept class over
{±1}n can be ε-approximated by t-sparse polynomials, then it can be agnostically learned in time
poly(n, t, 1/ε). As this implication is blackbox and by now standard, we do not elaborate further.

1.1 Other related work

Recent work of Kelman, Kindler, Lifshitz, Minzer, and Safra [KKL+20] proves that every boolean
function f is Fourier concentrated on I(f)Oε(I(f)) coefficients, where I(f) is the total influence of f .
Since I(f) ≤ O(log s) for size-s DNFs f , this result also recovers Mansour’s bound as a special case
and strengthens it for DNFs with small total influence (modulo the dependence on ε).

This result is incomparable to Theorems 1 and 2. On one hand it is more general, applicable to
all functions rather than just DNF formulas. On the other hand, there are small-read DNFs that
saturate the I(f) ≤ O(log s) bound (e.g. Tribes is a read-once DNF with total influence Θ(log s)).

1

1.2 Our techniques

It is well known that small-size DNFs are well-approximated by small-width1 DNFs (see Fact 5 in
the preliminaries), so in this discussion and most of the paper, we focus on the “width” version of
the question: that is, showing Fourier concentration for a width-w DNF f .

Our main conceptual contribution is to bound Fourier coefficients f̂(S) by a quantity that

depends on how S relates to the term structure of f as a DNF: we bound |f̂(S)| by the probability
over a random input x that S can be “covered” by the terms that x satisfies2 in f (that is, the
probability that each variable of S occurs in some satisfied term). Let us call this probability the

cover probability of S. We use this bound on |f̂(S)| twice, to prove the two main ingredients of our
proof: a Fourier 1-norm bound (Lemma 20) and a 2-norm bound (Lemma 23).

The next three headings describe what happens in Sections 3 through 5.

The 1-norm bound. The first ingredient is a sharpening of Mansour’s [Man92] bound on the
Fourier 1-norm due to low-degree monomials. The broad structure of the proof in [Man92] is to
first show that f is concentrated up to degree O(w), then to show that the Fourier 1-norm up to
that degree is at most wO(w), which gives concentration on the same number of coefficients. As
Mansour himself showed, this bound on the 1-norm is tight, even for read-once DNFs like Tribes.
Therefore, wΘ(w) seemed to be the end of the story for 1-norm-based methods.

It turns out that we can make Mansour’s Fourier 1-norm bound more precise by splitting
monomials xS into groups Su based on (roughly) the size u of a minimal union of terms that
includes S. We show a bound of

(
u

O(w)

)
on the Fourier 1-norm due to Su. Note that this is a

strict improvement on Mansour’s bound: the minimal cover of a set S of size O(w) can involve at
most |S| terms and therefore will have total size at most w|S| = O(w2), in which case our bound(

u
O(w)

)
matches Mansour’s bound wO(w). On the other hand, for u� w2, our bound

(
u

O(w)

)
is much

smaller than wO(w).
We prove this bound by tweaking Razborov’s [Raz95] proof of H̊astad’s switching lemma [H̊as87]

to take this cover size u into account during the encoding phase. We first relate the absolute value
of the Fourier coefficient |f̂(S)| to the probability that a random restriction to S has decision tree
depth |S|, then use Razborov’s encoding to show that this probability is small. Then, instead of
separately identifying each variable of S by encoding their position within a term (which costs logw
bits per variable), we encode their positions all together within the union of the terms they appear
in (which costs

(
u
|S|
)

in total).

The 2-norm bound. For the second ingredient, we give concrete bounds on the absolute value
of the individual Fourier coefficients (as opposed to bounding their sum). Indeed, if the Fourier

1-norm due to a family of sets is ≤ M and, for each S in that family, |f̂(S)| ≤ δ, then the total
Fourier weight due to that family is at most Mδ. In particular, if Mδ � 1, then we can simply
discard that family. For S ∈ Su, we can bound |f̂(S)| by (roughly) 2−u times the number of ways
to cover S by terms of f .

Concluding using small read. The read of f allows us to bound the number of ways a set can
be covered by terms. We do this in two regimes:

1the width of a DNF is the maximal length number of variables queried in a single term
2we say x “satisfies” some term if the values given by x make the term output true

2

• In general, if the read of f is k, then it is easy to see that any set S can only be (minimally)
covered in (k + 1)|S| ways. Thus we can bound the 2-norm due to family Su by Mδ ≤(

u
O(w)

)
2−u(k + 1)O(w), which is negligibly small for u = ω(w log k). This means we can cut

off at u = O(w log k), getting 1-norm at most
(
O(w log k)
O(w)

)
= (log k)O(w) for the remaining

coefficients, and thus concentration on (log k)O(w) coefficients (Theorem 26).

• If the read of f is small enough (k ≤ logw
log logw), then we can improve on the trivial (k + 1)|S|

bound by using a combinatorial result of [ST19] which states that the expected number of
satisfied terms of an unbiased read-k DNF is O(k). This allows us to cut off as low as
u = O(w), giving concentration on 2O(w) coefficients, and thus proving Mansour’s conjecture
for that entire family of functions (Theorem 30).

We note that this choice of coefficients (keeping only f̂(S) for sets S that are contained in a small
union of terms) follows almost exactly the approach suggested by Lovett and Zhang [LZ19] for
proving Mansour’s conjecture, although we did not end up using their sparsification result.

2 Preliminaries

In this section we define Boolean functions, the Fourier spectrum, and DNFs along with their
complexity metrics (size, width, read). We also recall some facts that are used in Mansour’s
original proof [Man92]. For an in-depth treatment, see [O’D14, O’D12].

2.1 Boolean functions and Fourier analysis

We view Boolean functions as functions f : {−1, 1}n → R, where an input of −1 represents “true”
and an input of 1 represents “false”. However, for output values, we will use 1 for “true” and −1
for “false”, as usual.

This choice of input values makes the Fourier spectrum of f more convenient to define. For
S ⊆ [n], let

f̂(S) = Ex∈{−1,1}n [f(x)xS]

where xS :=
∏
i∈S xi. Any Boolean function is uniquely represented as a multilinear polynomial,

where the coefficients are exactly the values f̂(S), which we call Fourier coefficients:

f(x) =
∑
S⊆[n]

f̂(S)xS .

We say f is ε-concentrated on a family S ⊆ 2[n] if
∑
S 6∈S f̂(S)2 ≤ ε, and we say that f is ε-

concentrated on M coefficients if there is such an S with |S| ≤ M . We define the Fourier p-norm
of f as ∑

S⊆[n]

|f̂(S)|p
1/p

,

and the special case p = 1 has the following property:

3

Fact 3 (Exercise 3.16 in [O’D14]). Let M =
∑
S⊆[n]|f̂(S)| be the Fourier 1-norm of f , then f is

ε-concentrated on M2/ε coefficients.

Finally, we say a function g : {−1, 1}n → {0, 1} ε-approximates a function f : {−1, 1}n → {0, 1}
if they differ on at most an ε fraction of inputs, that is,

Prx∈{−1,1}n [f(x) 6= g(x)] ≤ ε.

Fact 4 (Exercise 3.17 in [O’D14]). If g ε1-approximates f and is ε2-concentrated on a family S,
then f is 2(ε1 + ε2)-concentrated on S.

2.2 DNFs

A function f : {−1, 1}n → {0, 1} is a DNF if it can be represented as an OR of ANDs of the input
variables. Each AND is called a term, and the number of terms is called the size. We write a size-s
DNF as f = T1 ∨ · · · ∨ Ts, and by abuse of notation, we frequently use Tj to represent the set of
variables in the jth term.

A DNF has width w if each of its terms queries at most w variables (i.e. |Tj | ≤ w for all j), and
read k if each variable occurs in at most k terms. We only use w and k as upper bounds (except in
Theorem 27, where it is explicitly stated), which justifies us occasionally assuming “large enough
w” or “large enough k”. A small-size DNF can be approximated by a small-width DNF:

Fact 5. Let f be a size-s DNF. Then there is a DNF g of width log(s/ε) that ε-approximates f .
In fact, g is simply obtained from f by dropping some terms from f , so g’s size and read are both
at most f ’s.

This means that to prove Theorem 1 and Theorem 2, it is enough to prove the corresponding
statements for width w: respectively, that width-w read-k DNFs are ε-concentrated on 2O(w log log k log 1/ε)

coefficients (Theorem 26), and that width-w DNFs with read up to Ω̃(logw) are ε-concentrated on
2O(w log 1/ε) coefficients (Theorem 30).

2.3 Restrictions and H̊astad’s switching lemma

Let S ⊆ [n] be a set of variables, let S̄ = [n] \ S, and let xS̄ ∈ {−1, 1}S̄ be an assignment to only
the variables in S̄. Then the restriction of f to S at xS̄ is the function fS|xS̄

: {−1, 1}S → R that
maps xS ∈ {−1, 1}S to f(xS ◦ xS̄), where ◦ denotes the act of combining vectors xS and xS̄ into a
vector of {−1, 1}S∪S̄ = {−1, 1}n. We call the variables of S “free” and the variables of S̄ “fixed”.

Let DT(f) denote f ’s decision tree depth: the smallest depth of a decision tree computing f
exactly. H̊astad’s switching lemma [H̊as87] states that a random restriction of f (where both S and
xS̄ are chosen randomly) is unlikely to have high decision tree depth. It is used twice in the proof of
Mansour’s theorem [Man92]: once to show that f is concentrated on low-degree monomials (Fact 6
below), and once to show that after removing the high-degree monomials, the Fourier 1-norm is
low.

Fact 6. There is a constant C > 1 such that any width-w DNF f is ε-concentrated up to degree
Cw log 1/ε.

In the next section, we prove a variant of H̊astad’s switching lemma in order to improve on the
second application. Since the proof format of switching lemmas is quite unusual and complex, it
is definitely helpful to be familiar with the proof of the original version beforehand. An excellent
pedagogical presentation of the proof can be found in [O’D09].

4

2.4 Miscellaneous

We use log to denote the base-2 logarithm (though the base will rarely matter). For a finite set S,
we define

(
S
k

)
to be the family of subsets of S that have size k. Finally, for a finite alphabet A, we

use A∗ to denote the set of strings over A, and we write the empty string as ().

3 Cover sizes and the switching lemma

As we mentioned before, the proof of Mansour’s theorem works by first proving concentration on
degree up to O(w log 1/ε), then showing that the Fourier 1-norm due to monomials of degree at
most d is at most wO(d). In this paper, we use the first part as is, and focus on improving the
second part: the wO(d) bound on the Fourier 1-norm for degree at most d. The only fact we will
ever use about the Fourier spectrum of f is the following lemma, which bounds the absolute value
|f̂(S)| of the Fourier coefficient of S by the probability that a random restriction to S has decision
tree depth |S|.

Lemma 7. Let S ⊆ [n]. Then |f̂(S)| ≤ PrxS̄∈{−1,1}S̄ [DT(fS|xS̄
) = |S|].

Proof. First, observe that for any Boolean function g : {−1, 1}m → {0, 1}, if DT(g) < m, then
ĝ([m]) = 0 (indeed, the degree of g is at most DT(g)), and in all cases |ĝ([m])| ≤ 1. Because of
this, ĝ([m]) ≤ 1[DT(g) = m], and applying this to g := fS|xS̄

, we get

|f̂(S)| =
∣∣∣ExS̄

[f̂S|xS̄
(S)]

∣∣∣ ≤ ExS̄

[
|f̂S|xS̄

(S)|
]
≤ PrxS̄

[DT(fS|xS̄
) = |S|].

Remark 8. For intuition, we think it is helpful to mentally replace the probability in Lemma 7
with the “cover probability” of S which we mentioned in Section 1.2: the probability over a random
input x that every variable of S is present in at least one term that x satisfies. More broadly, the
notion of “cover by terms” will be a key player throughout this whole paper. A formal link between
these two probabilities is that when DT(fS|xS̄

) = |S|, it is possible to assign the variables of S
to make sure that they are all involved in at least one satisfied term.3 This directly implies the
following fact (although we will not use in this paper).

Fact 9. Let S ⊆ [n]. Then |f̂(S)| ≤ 2|S| Prx∈{−1,1}n [S is covered by satisfied terms].

For pedagogical reasons, we first reprove Mansour’s bound on the Fourier 1-norm at degree d as
a warmup, but using our Lemma 7. We will then slightly tweak the proof so that it tells us more
about which coefficients contribute the most to the 1-norm (within a given degree d).

We start by summing up Lemma 7 over all sets S of size d, and get a bound on the Fourier
1-norm at degree d that depends on the number of restrictions of f to d variables that require full
decision tree depth.

Lemma 10.
∑
S:|S|=d |f̂(S)| ≤ 2−(n−d) ×#{(S, xS̄) : |S| = d ∧DT(fS|xS̄

) = d}.

Proof. By Lemma 7,
∑
S:|S|=d |f̂(S)| ≤

∑
S:|S|=d PrxS̄∈{−1,1}S̄ [DT(fS|xS̄

) = d], and we can rewrite

each probability in this sum as the average 2−(n−d) ×#{xS̄ : DT(fS|xS̄
) = d}.

3If f is monotone, then it is easy to see: the fact that DT(fS|xS̄
) = |S| shows that all variables of S are present

in some term that is alive in fS|xS̄
, and by assigning all variables of S to true, we can satisfy all those terms. For f

non-monotone it is only slightly subtler.

5

This now allows us to reprove Mansour’s bound on the 1-norm, using H̊astad’s switching lemma
[H̊as87]. In the following proof, the sets of free variables correspond exactly to the sets whose
Fourier coefficients we are trying to bound, rather than random selections of a Θ(1/w) fraction of
the variables, as is usual. This allows us to avoid using facts about how random restrictions affect
the Fourier spectrum, and will later allow us to take into account properties of the specific sets S
we are encoding.

Lemma 11.
∑
S:|S|=d |f̂(S)| ≤

(
wd
d

)
22d = wO(d).

Proof. By Lemma 10, we only need to show

#{(S, xS̄) : |S| = d ∧DT(fS|xS̄
) = d} ≤ 2n+d ×

(
wd

d

)
.

We will follow Razborov’s [Raz95] version of the proof of the switching lemma. This version uses
an encoding argument, which consists of an encoding algorithm and a decoding algorithm. The
encoding algorithm will take as inputs a set S of size d and an assignment xS̄ of the remaining
variables such that DT(fS|xS̄

) = d (one of the couples (S, xS̄) that we want to show are rare). It

will produce as outputs an assignment x ∈ {−1, 1}n of all the variables, an element σ ∈
(

[wd]
d

)
(indicating a d-size subset of [wd]), and a d-bit binary string a ∈ {−1, 1}d. The decoding algorithm
will uniquely recover S and xS̄ from (x, σ, a), showing that the encoding is injective, and therefore
that there are only

2n︸︷︷︸
number of x’s

×
(
wd

d

)
︸ ︷︷ ︸

number of σ’s

× 2d︸︷︷︸
number of a’s

possible values of (S, xS̄) such that |S| = d and DT(fS|xS̄
) = d, as desired.

The encoding algorithm Algorithm 1 will identify a number of terms Tj1 , , . . . , Tjl which together
contain every variable of S, and complete the partial assignment xS̄ in a way that makes those terms
easy to find (with some “hints” stored in a). It then suffices to encode which variables of the union
Tj1 ∪ · · · ∪ Tjl belong to S, which is the role of the second output σ. Note that this is different
from Razborov’s encoding, instead of separately encoding the position of each variable within its
term, we encode the positions of all of the variables at once, within the union of all of the terms
Tj1 , . . . , Tjl

More precisely (but still in words), Algorithm 1 does the following:

• Initialize S′ to S. S′ will represent the set of free variables.

• Initialize two partial assignments xsat, xdt to xS̄ . xsat will be the string sent to the encoder,
and is progressively made to satisfy the terms Tj1 , . . . , Tjl (which will be identified later). xdt,
on the other hand, will progressively assign the variables of S in a way that maximizes the
decision tree depth.

• Initialize a Boolean string a, which will contain the set of changes that the decoder needs to
make to the variables of S in order to go from xsat to xdt during the decoding.

• Initialize a string c, which will contain the union of the variables of Tj1 , . . . , Tjl , in the order
that they appear (i.e. c starts with the variables of Tj1 , then the variables of Tj2 \ Tj1 , etc.).

• While S′ is not empty (i.e. there are free variables in xsat and xdt):

6

– Let Tj be the first term not fixed by xdt (we will call j1, . . . , jl the successive values that
j takes in this loop).

– Let Sj be the set of free variables in Tj .

– Let xsat
Sj

be the assignment to the variables of Sj that make Tj satisfied.

– Let xdt
Sj

be the assignment to the variables of Sj that maximizes the remaining decision

tree depth of f (after it is restricted by xsat ◦ xsat
Sj

).

– Extend xsat with xsat
Sj

and xdt with xdt
Sj

.

– Remove the variables of Sj from S′.

– Add xdt
Sj

to string a.

– Add to c the variables of Tj that were not contained in the previously identified terms.

• Let σ be the set of indices within c where the variables of S are located (σ is a subset of [wd]).

• Return xsat, σ, and a.

The decoding algorithm will progressively re-identify terms Tj1 , . . . , Tjl by looking at the first
satisfied term in f , and progressively replacing the assignments xsat

Sj
(which satisfy Tj) by the

assignments xdt
Sj

(which maximize decision tree depth). It will identify which variables of Tj are
part of S by using σ. Crucially, string c in the encoding algorithm, which represents the union
Tj1 ∪ · · ·∪Tjl , follows the order of the terms, so even though at the rth step the decoding algorithm
knows only terms Tj1 , . . . , Tjr , it can reconstruct the first |Tj1 ∪ · · · ∪ Tjr | characters of c, and
therefore correctly recover the set Sr using σ.

More precisely (but still in words), Algorithm 2 does the following:

• Initialize the set of variables S to an empty set.

• Initialize string c to an empty string. This string replicates string c from the decoding algo-
rithm, and will take the exact same sequence of values as the algorithm progresses.

• While |S| < d (we have not found all the variables yet):

– Let Tj be the first term satisfied by x.

– Add to c all the variables of Tj that have not been added to it in previous iterations.

– Within the variables newly added to c, look at the one whose indices within c are in
σ, and call this set of variables Sj . This will be the same as set Sj in the encoding
algorithm.

– Replace x’s assignment of the variables of Sj by the values a|S|+1, . . . , a|S|+|Sj |. This

replaces xsat
Sj

by xdt
Sj

within x (where xsat
Sj

and xdt
Sj

are defined in the encoding algorithm).

– Extend S with Sj .

• Return S and the values of x on S̄.

7

Algorithm 1: Encode(S, xS̄)

S′ ← S

xsat, xdt ← xS̄
a← () ∈ {−1, 1}∗ // empty Boolean string
c← () ∈ [n]∗ // empty string of variables
while S′ 6= ∅ do

j ← min{j : Tj(x
dt) 6≡ 0} // Tj is the first term unfixed by xdt

Sj ← Tj ∩ S′ // the set of variables unfixed in Tj
xsat
Sj
← the assignment of Sj such that Tj(x

dt
Sj
◦ xsat

Sj
) ≡ 1

xdt
Sj
← any assignment of Sj such that DT(f(S′\Sj)|(xdt◦xdt

Sj
)) = |S′ \ Sj |

xsat ← xsat ◦ xsat
Sj

xdt ← xdt ◦ xdt
Sj

S′ ← S′ \ Sj = S′ \ Tj
Append a with xdt

Sj

Append c with all variables of Tj that are not yet in c

end
σ ← {k ∈ |c| : ck ∈ S} // the positions of the variables of S within c
return (xsat, σ, a)

Definition 12. Let j1 < · · · < jl be the successive values taken by j in Algorithm 1.

Claim 13. The encoding algorithm runs successfully, and in particular,

(i) at the start of each run of the while loop, xsat and xdt are both assignments of all variables
except S′, and DT(fS′|xdt) = |S′|;

(ii) xdt
Sj

always exists;

(iii) S = Sj1 ∪ · · · ∪ Sjl ;

(iv) c contains all variables of S;

(v) |c| ≤ wd.

Proof. (i) Clear by induction and the choice of xdt
Sj

.

(ii) By (i), DT(fS′|xdt) = |S′|, and there is always a way to assign |Sj | variables without decreasing
the decision tree depth by more than |Sj |.

(iii) Clear since Sjr ⊆ S for all r ∈ [l] and by the end of the algorithm, ∅ = S′ = S \ Sj1 \ · · · \ Sjl .

(iv) By (iii), S = Sj1 ∪ · · · ∪ Sjl ⊆ Tj1 ∪ · · · ∪ Tjl , and c is constructed to contain exactly the
variables of Tj1 ∪ · · · ∪ Tjl .

(v) Each Tjr contains at least one variable of S, so l < |S| = d, and each term has at most w
variables, so |c| = |Tj1 ∪ · · · ∪ Tjl | ≤ wd.

8

Algorithm 2: Decode(x, σ, a)

S ← ∅
c← () ∈ [n]∗

while |S| < d do
j ← min{j : Tj(x) = 1} // Tj is the first term satisfied by x
Append c with all variables of Tj that are not yet in c
Sj ← {ck : k ∈ σ ∧ k ≤ |c|} \ S
Replace x’s assignment of Sj by the values a|S|+1, . . . , a|S|+|Sj |
S ← S ∪ Sj

end
return (S, x|S̄)

Claim 14. The successive values that j and Sj take in Decode(Encode(S, xS̄)) are exactly j1, . . . , jl
and Sj1 , . . . , Sjl (i.e. the same values they took in Encode(S, xS̄)).

Proof. We will show by induction that when the rth run of the while loop starts, we have

• S = Sj1 ∪ · · ·Sjr−1
;

• c contains the variables of the union Tj1 ∪ · · · ∪ Tjr−1 ;

• x = xS̄ ◦ xdt
Sj1
◦ · · · ◦ xdt

Sjr−1
◦ xsat

Sjr
◦ · · · ◦ xsat

Sjl
.

If this is the case r, then we argue that the first term satisfied by x at the start of the rth run is
Tjr . Indeed,

• x′ := xS̄ ◦ xdt
Sj1
◦ · · · ◦ xdt

Sjr−1
is exactly the value of xdt in the rth run of the while loop in

Encode(S, xS̄);

• by Claim 13(ii), f is undecided by x′, so f(Sjr∪···∪Sjl
)|x′ has no satisfied term, and in particular,

by the definition of Tjr , all terms before Tjr are unsatisfied by x′;

• xsat
Sjr

is defined to satisfy Tjr .

Therefore, j will be assigned to jr, c will be appropriately extended, which will allow the algorithm
to correctly recover Sjr add it to S, and replace the values of x on Sjr by the values xdt

Sjr
stored in

a, proving the inductive hypothesis for r + 1.

As a consequence, the first output of Decode is indeed Sj1 ∪· · ·∪Sjr = S, and the second output
must be xS̄ , since the values of the variables outside of S were never modified by either algorithm.
Therefore, for all valid (S, xS̄), we have Decode(Encode(S, xS̄)) = (S, xS̄), which concludes the
proof of Lemma 11.

The main cost in the above lemma is the
(
wd
d

)
factor, where the wd comes from the fact that

covering a set S of size d by terms of f can take up to d terms, for a total size wd. This suggests
that one might get savings if we know that a set S is “typically” covered by terms whose union has
size much less than wd. This motivates the following definitions.

9

Definition 15 (cover(S, xS̄), u(S, xS̄)). Given (S, xS̄) such that DT(fS|xS̄
) = |S|, let cover(S, xS̄) :=

{j1, · · · , jl} and u(S, xS̄) := |Tj1 ∪ · · · ∪ Tjl | where j1, . . . , jl are the successive values of j obtained
when running Encode(S, xS̄) (just like in Definition 12).

Fact 16. For any (S, xS̄) such that DT(fS|xS̄
) = |S|,

(i) S ⊆
⋃
j∈cover(S,xS̄) Tj;

(ii) |cover(S, xS̄)| ≤ |S|;

(iii) for all j ∈ cover(S, xS̄), Tj is alive under the partial assignment xS̄ (not yet fixed to 0 or 1);

(iv) for all j ∈ cover(S, xS̄), Tj contains at least one variable of S.

Proof. Clear by inspecting Algorithm 1.

Definition 17 (Sd,u). Let Sd,u be the family of sets S of d variables such that the most frequent
value of cover(S, xS̄) is u (breaking ties arbitrarily). In other words,

Sd,u = {S ⊆ [n] : |S| = d ∧ u = arg maxu PrxS̄
[DT(fS|xS̄

) = d ∧ u(S, xS̄) = u]}.

When S ∈ Sd,u, we get to assume that cover(S, xS̄) = u for only a small extra factor. In doing
this, we replace Lemmas 7 and 10 by the following two lemmas.

Lemma 18. If S ∈ Sd,u, then |f̂(S)| ≤ (wd+ 1)× PrxS̄
[DT(fS|xS̄

) = d ∧ u(S, xS̄) = u].

Proof. As we showed before, the maximum value of u(S, xS̄) is wd, so it can take at most wd + 1
values.4 Therefore, since u maximizes PrxS̄

[DT(fS|xS̄
) = d ∧ u(S, xS̄) = u], we have

PrxS̄
[DT(fS|xS̄

) = d] ≤ (wd+ 1) PrxS̄
[DT(fS|xS̄

) = d ∧ u(S, xS̄) = u].

We then conclude by Lemma 7.

Lemma 19.
∑
S∈Sd,u |f̂(S)| ≤ (wd+1)2−(n−d)×#{(S, xS̄) : |S| = d∧DT(fS|xS̄

) = d∧u(S, xS̄) = u}

Proof. Sum up Lemma 18 then transform the probability into an average, similar to Lemma 10.

We can now run the same encoding argument, but with the guarantee that |Tj1 ∪ . . .∪ Tjl | = u,
to show the following more specialized 1-norm bound.

Lemma 20.
∑
S∈Sd,u |f̂(S)| ≤ (wd+ 1)

(
u
d

)
22d =

(
u
d

)O(d)
.

Proof. Same as the proof of Lemma 11, but now with a bound of u on the final size of c, which
allows us to pick σ from the smaller set

(
[u]
d

)
.

4In fact at most wd− d + 1 values, since u(S, xS̄) is always at least d.

10

4 In how many ways can a set of variables be covered by
terms?

At this point, a fair question would be: what was the point of proving these refined bounds for the
Fourier 1-norm based on the typical cover size u if the worst case (d = w, u = wd) gives wΘ(w)

anyway? To see how this is useful, let us look at the contribution of family Sd,u to the Fourier
weight: ∑

Sd,u

f̂(S)2 ≤

∑
Sd,u

|f̂(S)|

×max
Sd,u
|f̂(S)| ≤ (wd+ 1)

(
u

d

)
22d max

Sd,u
|f̂(S)|. (1)

If we can bound maxSd,u |f̂(S)| by something that decreases faster than (wd + 1)
(
u
d

)
22d increases,

then we can bound Sd,u’s contribution to the Fourier weight.

Now, how can we use the fact that S ∈ Sd,u to bound |f̂(S)|? Well, we know from Lemma 18
that

|f̂(S)| ≤ (wd+ 1)× PrxS̄
[DT(fS|xS̄

) = d ∧ u(S, xS̄) = u]. (2)

It turns out that we can bound the above probability by bounding the number of ways that one
can cover S by a union of terms whose total size is u.

Definition 21. Given S ∈ Sd,u, let

numCovers(S) := #

T ⊆ [m] : S ⊆
⋃
j∈T

Tj ∧ |T | ≤ |S| ∧

∣∣∣∣∣∣
⋃
j∈T

Tj

∣∣∣∣∣∣ = u

.
This roughly represents the “number of ways S can be covered by terms”, and as we will see, this
is an upper bound on the number of possible values of cover(S, xS̄).

Lemma 22. Let S ∈ Sd,u. Then

PrxS̄
[DT(fS|xS̄

) = d ∧ u(S, xS̄) = u] ≤ 2−(u−d)#{cover(S, xS̄) : DT(S, xS̄) = d ∧ u(S, xS̄) = u}
≤ 2−(u−d) numCovers(S).

Proof. Let us first show the first inequality. Let {j1, . . . , jl} be the value of cover(S, xS̄) for some
xS̄ such that DT(fS|xS̄

) = d and u(S, xS̄) = u. Then by Fact 16(iii), terms Tj1 must all be alive
under partial assignment xS̄ . This constraint fixes the values of all variables in (Tj1 ∪ · · · ∪ Tjl) \S,
of which there are u−d, so this value of cover(S, xS̄) can only contribute 2−(u−d) to the probability.
This shows the first inequality. The second inequality is a consequence of Fact 16(i) and (ii).

Putting together (1), (2) and Lemma 22, we obtain the following.

Lemma 23.
∑
Sd,u f̂(S)2 ≤ (wd+ 1)2

(
u
d

)
23d2−u ×max|S|=d numCovers(S).

Among the factors in front of the max, 2−u is the one that will dominate. So if we can prove
that max|S|=d numCovers(S) � 2u, that is, that there are significantly less than 2u ways to cover
a set of d variables by a union of terms of total size u, then we can show that Sd,u’s contribution
to the Fourier weight is negligible.

11

5 Proof of our main theorems

Let us summarize the approach. We approximate f in three ways:

1. First, Fact 6 tells us that f is (ε/3)-concentrated on degree at most Cw log(3/ε) (for some
constant C > 1). In particular, this shows that f is (ε/3)-concentrated on the union of the
families Sd,u for d ≤ Cw log(3/ε).

2. Second, using Lemma 23 we will show that among those families Sd,u, f is (ε/3)-concentrated
on the families with u ≤ u∗ for some u∗ (for Theorem 26, we obtain u∗ = O(w log k log 1/ε),
and for Theorem 30, we obtain u∗ = O(w log 1/ε)). In other words, we will prove

∞∑
u=bu∗c+1

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤ ε/3.

3. Finally, using Lemma 20, we will show that the Fourier 1-norm for u ≤ u∗ is at most some
quantity M . In other words, we will prove

bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

|f̂(S)| ≤M.

By Fact 3, this implies that the sum of the corresponding monomials is (ε/3)-concentrated
on 3M2/ε coefficients.

Those three approximations together will show that the original function f is (ε/3+ε/3+ε/3 = ε)-
concentrated on 3M2/ε coefficients.

To make our job in step 2 slightly easier in advance of proving Theorem 26 and Theorem 30,
let us sum up, specialize and simplify Lemma 23.

Corollary 24. For large enough w, if u ≥ 100Cw log(3/ε), then

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤ 2−u/2 max
|S|≤Cw log(3/ε)

numCovers(S).

Proof. By Lemma 23 and ugly arithmetics, for large enough w,

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤
bCw log(3/ε)c∑

d=0

(wd+ 1)2

(
u

d

)
23d2−u × max

|S|=d
numCovers(S)

≤
bCw log(3/ε)c∑

d=0

(Cw2 log(3/ε)) + 1)2

(
u

Cw log(3/ε)

)
23Cw log(3/ε)2−u

× max
|S|≤Cw log(3/ε)

numCovers(S)

≤ uO(1)2(log(eu
Cw log(3/ε)

)+3)Cw log(3/ε)2−u × max
|S|≤Cw log(3/ε)

numCovers(S)

≤ 2−u/2 max
|S|≤Cw log(3/ε)

numCovers(S).

12

5.1 General improvement to Mansour’s theorem

How large can numCovers(S) get for |S| = d if f has read k? In other words, how many ways are
there to cover a set S by terms of a read-k DNF? By Fact 16(iv), each term in the cover must
contain a variable of S, and each variable is present in at most k terms, so there are at most kd
terms to choose from. In addition, by Fact 16(ii), the cover can contain at most d terms, so

numCovers(S) ≤
d∑
i=0

(
kd

i

)
≤
(
kd+ d

d

)
≤ (e(k + 1))d = O(k)d.

Now, looking at Corollary 24, we see that we need to choose u∗ big enough that this is much
smaller than 2u

∗/2. Thus it suffices to pick u∗ to be about Θ(d log k) = Θ(Cw log k log 1/ε). The
following lemma makes this precise

Lemma 25. For u∗ = 100Cw log(k + 2) log(3/ε),

∞∑
u=bu∗c+1

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤ ε/3.

Proof. By Corollary 24,

∞∑
u=bu∗c+1

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤
∞∑

u=bu∗c+1

2−u/2 max
|S|≤Cw log(3/ε)

numCovers(S)

≤
∞∑

u=bu∗c+1

2−u/2(e(k + 1))Cw log(3/ε)

≤
∞∑

u=bu∗c+1

2−u/42−25Cw log(k+2) log(3/ε)2log(e(k+1))Cw log(3/ε)

≤
∞∑

u=bu∗c+1

2−u/4

≤ 1

1− 2−1/4
× 2−25Cw log(k+2) log(3/ε)

≤ ε/3.

Now, all we have to do is to plug this value of u∗ into Lemma 20 to get the following theorem.

Theorem 26 (“width” version of Theorem 1). Let f be a width-w, read-k DNF. Then f is ε-
concentrated on log(k + 2)O(w log 1/ε) coefficients.

Proof. By Fact 6, f is ε/3-concentrated up to degree Cw log(3/ε), and by Lemma 25, the coefficients
in Sd,u for d ≤ Cw log(3/ε) and u > u∗ = 100Cw log(k + 2) log(3/ε) also only amount to Fourier

13

weight at most ε/3. In addition, by Lemma 20 the remaining coefficients have total 1-norm at most

bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

|f̂(S)| ≤
bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

(wd+ 1)

(
u

d

)
22d

≤ (u∗ + 1)

bCw log(3/ε)c∑
d=0

(wd+ 1)

(
u∗

d

)
22d

≤ (u∗ + 1)(Cw log(3/ε) + 1)(Cw2 log(3/ε) + 1)

×
(

100Cw log(k + 2) log(3/ε)

Cw log(3/ε)

)
22Cw log(3/ε)

≤ (u∗ + 1)(w log 1/ε)O(1)(400e log(k + 2))Cw log(3/ε)

= log(k + 2)O(w log 1/ε).

Therefore, using Fact 3 with error ε/3, f is ε-concentrated on 3
(
log(k + 2)O(w log 1/ε)

)2
/ε = log(k+

2)O(w log 1/ε) coefficients.

5.2 A proof of Mansour’s conjecture for small enough read

In the previous subsection, we bounded the number of covers of S by O(k)d, which was only small
enough when O(k)d < 2u/4 ⇔ u = O(d log k). If we want to prove Mansour’s conjecture, we need
to do better: we need to bound the number of covers by 2u/4 for any u = ω(d).

The way to achieve this is to bound the number of terms that can be involved in the cover. In
the previous subsection, we simply observed that the cover is made of at most |S| = d terms among
the kd terms that contain variables of S. But when the read is small, we can do better.

To build some intuition, suppose that every term involves exactly w variables, rather than at
most w. Since every variable can only occur in at most k terms, this would mean (by double
counting) that any union of l terms has total size at least lw/k. Therefore, if we want the union to
have size u, there can only be ku/w terms in it. Thus there would be at most(

kd

ku/w

)
≤
(

ku

ku/w

)
≤ (ew)ku/w = 2ku log(ew)/w

ways to cover S with total size u. As long as k ≤ w
4 log(ew) , this is at most 2u/4, and we easily get

the following theorem.

Theorem 27. Let f be a DNF whose terms are all conjunctions of exactly w variables, and suppose
f has read k ≤ w

4 log(ew) . Then f is ε-concentrated on 2O(w log 1/ε) coefficients.

Proof. By Fact 6, f is ε/3-concentrated up to degree Cw log(3/ε). Let u∗ = 100Cw log(3/ε). Then,

14

by Corollary 24,

∞∑
u=bu∗c+1

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤
∞∑

u=bu∗c+1

2−u/2 max
|S|≤Cw log(3/ε)

numCovers(S)

≤
∞∑

u=bu∗c+1

2−u/2
(
kCw log(3/ε)

ku/w

)

≤
∞∑

u=bu∗c+1

2−u/2
(

ku

ku/w

)

≤
∞∑

u=bu∗c+1

2−u/22ku log(ew)/w

≤
∞∑

u=bu∗c+1

2−u/4

≤ 1

1− 2−1/4
× 2−25Cw log 1/ε

≤ ε/3.

In addition, by Lemma 20, the remaining coefficients have total 1-norm at most

bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

|f̂(S)| ≤
bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

(wd+ 1)

(
u

d

)
22d

≤ (u∗ + 1)(Cw log(3/ε) + 1)(Cw2 log(3/ε) + 1)2u
∗
22Cw log(3/ε)

= 2O(w log 1/ε).

Therefore, using Fact 3 with error ε/3, f is ε-concentrated of 3
(
2O(w log 1/ε)

)2
/ε = 2O(w log 1/ε)

coefficients.

However, this reasoning breaks down if some terms of f are allowed to have width smaller than
w. For example, if f contained the one-variable term xi for each i ∈ S, then the union could after
all contain as many as d terms, rather than ku/w.

We get out of this issue (though not without some loss) by using the following lemma from
[ST19], which tells us in essence that f cannot contain too many short terms without being very
biased.

Fact 28 (Lemma 1.1 in [ST19], rephrased). Let f = T1 ∨ · · · ∨ Ts be a read-k DNF. Then

s∑
j=1

2−|Tj | ≤ k ln

(
1

1− Prx[f(x)]

)
.

For the purposes of ε-approximation, we can thus assume that

s∑
j=1

2−|Tj | ≤ k ln 1/ε

15

(otherwise, we can simply approximate f by the constant 1 function).
We can now show that the union will be made of few terms by proving the following combinatorial

lemma.

Lemma 29. Let A1, . . . , Al be a family of finite sets such that

(i) |A1|+ · · ·+ |Al| ≤ v;

(ii) 2−|A1| + · · ·+ 2−|Al| ≤ F ,

with v > F . Then l ≤ 4v
log(v/F) .

Proof. Intuitively, the two constraints are in direct tension: if we want to keep |Ar| small, this

makes 2−|Ar| big, and vice versa. So we will show that each set Ar uses up a log(v/F)
2v fraction of

the “budget” for either sum (i) or sum (ii). Concretely, for any Ar, either |Ar| ≥ log(v/F)/2 ≥(
log(v/F)

2v

)
v, or

2−|Ar| ≥
√
F

v
≥ F

v
× log(v/F)

2
=

(
log(v/F)

2v

)
F,

where the second inequality comes from the fact that
√
x ≥ log x

2 for x > 0, applied to x = v/F .
Both of those cases can only happen 2v

log(v/F) times without violating either (i) or (ii), which means

there can only be l ≤ 4v
log(v/F) sets in the family.

Since f is read-k, if a union of terms has size u, then the sum of the size of its terms is at most
ku. In addition, by Fact 28, the terms Tj1 , . . . , Tjl forming the union must obey

2−|Tj1
| + · · ·+ 2−|Tjl

| ≤
s∑
j=1

2−|Tj | ≤ k ln 1/ε.

Therefore, we can apply Lemma 29 with v = ku and F = k ln 1/ε to show that there are at most(
kd
4ku

log(u/ ln(1/ε))

)
≤
(

ku
4ku

log(u/ ln(1/ε))

)
≤
(
e log(u/ ln(1/ε))

4

) 4ku
log(u/ ln(1/ε))

≤ 2ku
4 log log(u/ ln(1/ε)))

log(u/ ln(1/ε))

ways to cover S by a union of terms of total size u.

As long as k ≤ log(u/ ln(1/ε))
16 log log(u/ ln(1/ε)) for the smallest value of u we have to consider, this is at most

2u/4. We will set u∗ := 100Cw log(3/ε), so the smallest value we have to consider is

bu∗c+ 1 ≥ 100Cw log(3/ε) ≥ w ln(1/ε).

Therefore, k ≤ logw
16 log logw suffices, and we get the following theorem.

Theorem 30 (“width” version of Theorem 2). Let f be a width-w DNF that has read k ≤ logw
16 log logw .

Then f is ε-concentrated on 2O(w log 1/ε) coefficients.

16

Proof. The proof is very similar to the proof of Theorem 27. By Fact 6, f is ε/3-concentrated up
to degree Cw log(3/ε). Let u∗ := 100Cw log(3/ε). Then, by Corollary 24,

∞∑
u=bu∗c+1

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

f̂(S)2 ≤
∞∑

u=bu∗c+1

2−u/2 max
|S|≤Cw log(3/ε)

numCovers(S)

≤
∞∑

u=bu∗c+1

2−u/2
(
kCw log(3/ε)

4ku
log(u/ ln(1/ε))

)

≤
∞∑

u=bu∗c+1

2−u/2
(

ku
4ku

log(u/ ln(1/ε))

)

≤
∞∑

u=bu∗c+1

2−u/22ku
4 log log(u/ ln(1/ε)))

log(u/ ln(1/ε))

≤
∞∑

u=bu∗c+1

2−u/22ku
4 log log(u∗/ ln(1/ε)))

log(u∗/ ln(1/ε))

≤
∞∑

u=bu∗c+1

2−u/4

≤ 1

1− 2−1/4
× 2−25Cw log(3/ε)

≤ ε/3.

In addition, by Lemma 20, the remaining coefficients have total 1-norm at most

bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

∑
S∈Sd,u

|f̂(S)| ≤
bu∗c∑
u=0

bCw log(3/ε)c∑
d=0

(wd+ 1)

(
u

d

)
22d

≤ (u∗ + 1)(Cw log(3/ε) + 1)(Cw2 log(3/ε) + 1)2u
∗
22Cw log(3/ε)

= 2O(w log 1/ε).

Therefore, using Fact 3 with error ε/3, f is ε-concentrated of 3
(
2O(w log 1/ε)

)2
/ε = 2O(w log 1/ε)

coefficients.

6 Conclusion

In this section, we present some open problems, and a direction that the results in this paper
suggest.

6.1 Open problems

Besides the obvious open problem which is to prove Mansour’s conjecture, we see two ways one
could extend the results in our paper.

17

The first would be to improve the dependence on k in Theorem 1. After all, if three exponential
improvements were possible starting from [KLW10], how about a fourth? In fact, any significant
improvement over the current dependence on k would strictly improve Mansour’s theorem even for
general DNFs. Indeed, given that k ≤ s, improving from sO(log log k) to, say, sO(log log log k) would
improve Mansour’s theorem from sO(log log s) to sO(log log log s).

The second (and perhaps easier) option would be to prove Mansour’s conjecture for a bigger
range of reads, improving on Theorem 2. Indeed, in Theorem 27, we showed that Mansour’s
conjecture holds for k up to Ω(w/ logw) instead of Ω(logw/ log logw) if all terms have exactly w
variables, instead of just at most w. To us, it intuitively feels like width exactly w is the “hardest
case”, and it is hard to see how having shorter terms should not help a DNF have a much more
spread-out Fourier spectrum, but we have not been able to make this intuition formal. In addition,
our argument in Theorem 2 does not feel tight: the way we use [ST19]’s lemma (Fact 28) feels
“wasteful”, since we apply it to only the very few terms that are involved in covering some set S,
rather than to the entire DNF. Because of this, we conjecture that Theorem 2 can be improved
with similar techniques to handle reads up to Ω̃(w) = Ω̃(log s) rather than the current Ω̃(log log s).

6.2 A structure vs pseudorandomness approach to Mansour’s conjec-
ture?

A recent trend in solving hard combinatorics problems has been the “structure vs pseudorandom-
ness” paradigm, which consists in decomposing an object into a “structured” part and a “pseudo-
random” part, where “pseudorandom” can mean stand for property that a randomly drawn object
would typically have. In particular, this paradigm has recently been used by Alweiss, Lovett, Wu
and Zhang [ALWZ20] to improve bounds on the sunflower lemma from wO(w) to (logw)O(w).

We think that a similar argument can be applied to Mansour’s conjecture. In fact, our techniques
(and in particular, Lemma 20) suggest a natural candidate for what it means to a DNF to be
“pseudorandom”: f is pseudorandom if for any set of variables S, there are few ways to cover S
minimally using terms of f .5 Indeed, random DNFs where poly(n) terms of size Θ(log n) are drawn
at random have this property (which gives an alternate proof of [KLW10]’s results about random
DNFs).

However, some work remains to be done in order to deal with the “structured” case. Perhaps
the most difficult case that remains unsolved is the random DNF where n terms of size log n are
drawn at random from the first log2 n variables only. Indeed, in this case, the overlaps between
terms are so strong that [KLW10]’s techniques become applicable, and each set S ⊆ [log2 n] of
variables has many minimal covers by terms. In fact, we personally know researchers who have
devoted significant amounts of time attempting to either prove Mansour’s conjecture for this DNF
or use it as a counterexample. Therefore, we feel that this DNF is a natural next challenge to
attack, and we feel optimistic that if someone manages to prove Mansour’s conjecture for it, they
would be very close to proving the general case.

Acknowledgments

We thank the anonymous reviewers, whose comments have helped improve this paper. Li-Yang is
supported by NSF CAREER Award 1942123.

5perhaps weighting covers with a factor 2−u where u is the size of the cover’s union

18

References

[ALWZ20] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for
the sunflower lemma. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 624–630, 2020. 6.2

[GKK08] Parikshit Gopalan, Adam Kalai, and Adam Klivans. Agnostically learning decision
trees. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC),
pages 527–536, 2008. 1

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. MIT press, 1987. 1.2,
2.3, 3

[KKL+20] Esty Kelman, Guy Kindler, Noam Lifshitz, Dor Minzer, and Muli Safra. Towards a
proof of the fourier-entropy conjecture? In Proceedings of the 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 247–258, 2020. 1.1

[KLW10] Adam R. Klivans, Homin K. Lee, and Andrew Wan. Mansour’s conjecture is true for
random DNF formulas. In Proceedings of the 23rd Conference on Learning Theory
(COLT), pages 368–380, 2010. 1, 6.1, 6.2

[LZ19] Shachar Lovett and Jiapeng Zhang. Dnf sparsification beyond sunflowers. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 454–460,
2019. 1.2

[Man92] Yishay Mansour. An O(nlog logn) learning algorithm for DNF under the uniform distri-
bution. In David Haussler, editor, Proceedings of the 5th Annual ACM Conference on
Computational Learning Theory (COLT), pages 53–61, 1992. 1, 1.2, 2, 2.3

[O’D09] Ryan O’Donnell. 15-855: Intensive Intro to Complexity Theory. Lecture 14: The Switch-
ing Lemma. https://www.cs.cmu.edu/˜odonnell/complexity/lecture14.pdf, 2009. 2.3

[O’D12] Ryan O’Donnell. Analysis of Boolean Functions at CMU. https://www.youtube.com/
playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA, 2012. 2

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 2,
3, 4

[Raz95] Alexander A Razborov. Bounded arithmetic and lower bounds in boolean complexity.
In Feasible Mathematics II, pages 344–386. Springer, 1995. 1.2, 3

[ST19] Rocco A. Servedio and Li-Yang Tan. Pseudorandomness for read-k DNF formulas.
In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 621–638, 2019. 1, 1.2, 5.2, 28, 6.1

19

https://www.cs.cmu.edu/~odonnell/complexity/lecture14.pdf
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA

	1 Introduction
	1.1 Other related work
	1.2 Our techniques

	2 Preliminaries
	2.1 Boolean functions and Fourier analysis
	2.2 DNFs
	2.3 Restrictions and Håstad's switching lemma
	2.4 Miscellaneous

	3 Cover sizes and the switching lemma
	4 In how many ways can a set of variables be covered by terms?
	5 Proof of our main theorems
	5.1 General improvement to Mansour's theorem
	5.2 A proof of Mansour's conjecture for small enough read

	6 Conclusion
	6.1 Open problems
	6.2 A structure vs pseudorandomness approach to Mansour's conjecture?

