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Abstract

We study population protocols, a model of distributed computing appropriate for modeling well-mixed
chemical reaction networks and other physical systems where agents exchange information in pairwise
interactions, but have no control over their schedule of interaction partners. The well-studied majority
problem is that of determining in an initial population of n agents, each with one of two opinions A or
B, whether there are more A, more B, or a tie. A stable protocol solves this problem with probability
1 by eventually entering a configuration in which all agents agree on a correct consensus decision of A,
B, or T, from which the consensus cannot change. We describe a protocol that solves this problem using
O(logn) states (log logn + O(1) bits of memory) and optimal expected time O(logn). The number of
states O(logn) is known to be optimal for the class of polylogarithmic time stable protocols that are
“output dominant” and “monotone” [5]. These are two natural constraints satisfied by our protocol,
making it simultaneously time- and state-optimal for that class. We introduce a key technique called a
“fixed resolution clock” to achieve partial synchronization.

Our protocol is nonuniform: the transition function has the value dlogne encoded in it. We show that
the protocol can be modified to be uniform, while increasing the state complexity to Θ(logn log log n).
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1 Introduction
Population protocols [9] are asynchronous, complete networks that consist of computational entities called
agents with no control over the schedule of interactions with other agents. In a population of n agents,
repeatedly a random pair of agents is chosen to interact, each observing the state of the other agent before
updating its own state.1 They are an appropriate model for electronic computing scenarios such as sensor net-
works and for “fast-mixing” physical systems such as animal populations [48], gene regulatory networks [23],
and chemical reactions [46], the latter increasingly regarded as an implementable “programming language”
for molecular engineering, due to recent experimental breakthroughs in DNA nanotechnology [27,47].

Time complexity in a population protocol is defined by parallel time: the total number of interactions
divided by the population size n, henceforth called simply time. This captures the natural timescale in which
each individual agent experiences expected O(1) interactions per unit time. All problems solvable with zero
error probability by a constant-state population protocol are solvable in O(n) time [11,31]. The benchmark
for “efficient” computation is thus sublinear time, ideally polylog(n), with Ω(log n) time a lower bound on
most nontrivial computation, since a simple coupon collector argument shows that is the time required for
each agent to have at least one interaction.

As a simple example of time complexity, suppose we want to design a protocol to decide whether at
least one x exists in an initial population of x’s and q’s. The single transition x, q → x, x indicates that
if agents in states x and q interact, the q agent changes state to x. If x outputs “yes” and q outputs “no”,
this takes expected time O(log n) to reach a consensus of all x’s (i.e., O(n log n) total interactions, including
null interactions between two x’s or between two q’s). However, the transitions x, x → y, y; y, x → y, y;
y, q → y, y, where x, q output “no” and y outputs “yes”, which computes whether at least two x’s exist, is
exponentially slower: expected time O(n). The worst-case input is exactly 2 x’s and n − 2 q’s, where the
first interaction between the x’s takes expected

(
n
2

)
= Θ(n2) interactions, i.e., Θ(n) time.

To have probability 0 of error, a protocol must eventually stabilize: reach a configuration where all agents
agree on the correct output, which is stable, meaning no subsequently reachable configuration can change
the output.2 The original model [9] assumed states and transitions are constant with respect to n. However,
for important problems such as leader election [32], majority computation [4], and computation of other
functions and predicates [13], no constant-state protocol can stabilize in sublinear time with probability 1.3
This has motivated the study of population protocols whose number of states is allowed to grow with n, and
as a result they can solve such problems in polylogarithmic time [4–6,8, 14,16–21,24,29,30,35,37,38].

1.1 The majority problem in population protocols
Angluin, Aspnes, and Eisenstat [12] showed a protocol they called approximate majority, which means that
starting from an initial population of n agents with opinions A or B, if |A−B| = ω(

√
n log n) (i.e., the gap

between the initial majority and minority counts is greater than roughly
√
n), then with high probability

the algorithm stabilizes to all agents adopting the majority opinion in O(log n) time. A tighter analysis by
Condon, Hajiaghayi, Kirkpatrick, and Maňuch [28] reduced the required gap to Ω(

√
n log n).

Mertzios, Nikoletseas, Raptopoulos, and Spirakis [41], and independently Draief and Vojnović [33], showed
a 4-state protocol that solves exact majority problem, i.e., it identifies the majority correctly, no matter how
small the initial gap.4 We henceforth refer to this simply as the majority problem. The protocol of [33, 41]
is also stable in the sense that it has probability 1 of getting the correct answer. However, this protocol
takes Ω(n) time in the worst case: when the gap is O(1). Known work on the stable majority problem is
summarized in Table 1. Gąsieniec, Hamilton, Martin, Spirakis, and Stachowiak [36] investigated Ω(n) time

1Using message-passing terminology, each agent sends its entire state of memory as the message.
2Technically this connection between probability 1 correctness and reachability requires the number of producible states for

any fixed population size n to be finite, which is the case for our protocol.
3These problems have O(1) state, sublinear time converging protocols [40]. A protocol converges when it reaches the

correct output without subsequently changing it—though it may remain changeable for some time after converging—whereas
it stabilizes when the output becomes unchangeable. See [17, 32] for a discussion of the distinction between stabilization and
convergence. In this paper we consider only stabilization time.

4The 4-state protocol doesn’t identify ties, (gap = 0), but this can be handled with 2 more states; see Stable Backup.
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Table 1: Summary of results on the stable exact majority problem in population protocols, including this
paper [∗]. Gray regions are provably impossible: o(log log n) state, o(n) time unconditionally [4], o(log n)
state, O(n1−ε) time for monotone, output-dominant protocols [5], and o(log n) time unconditionally.

Time

O(1)

O(log n)

O(log3/2 n)

O(log5/3 n)

O(log2 n)

Ω(n)

StatesO
(1)

O
(log n)

O
(log 2

n)

O
(log 3

n)

O
(n ε

)

Ω
(n)

[9, 11,33,41]

[4][21]

[14]

[16]

[5, 17] [8]

[17] [43, 44][∗]

protocols for majority and the more general “plurality consensus” problem. Blondin, Esparza, Jaax, and
Kučera [22] show a similar stable (also Ω(n) time) majority protocol that also reports if there is a tie.

Alistarh, Gelashvili, and Vojnović [8] showed the first stable majority protocol with worst-case poly-
logarithmic expected time, requiring Ω(n) states. A series of positive results reduced the state and time
complexity for stable majority protocols [4, 5, 14, 16, 17, 21, 43, 44]. Ben-Nun, Kopelowitz, Kraus, and Porat
showed the current fastest stable sublinear-state protocol [14] using O(log3/2 n) time and O(log n) states.
The current state-of-the-art protocols use alternating phases of cancelling (two biased agents with opposite
opinions both become unbiased, preserving the difference between the majority and minority counts) and
splitting (a.k.a. doubling): a biased agent converts an unbiased agent to its opinion; if all biased agents that
didn’t cancel can successfully split in that phase, then the count difference doubles. The goal is to increase
the count difference until it is n; i.e., all agents have the majority opinion. See [7, 35] for relevant surveys.

Some non-stable protocols solve exact majority with high probability but have a small positive probability
of incorrectness. Berenbrink, Elsässer, Friedetzky, Kaaser, Kling, and Radzik [17] showed a protocol that with
initial gap α uses O(s + log log n) states and WHP converges in O(log n logs(

n
α )) time.5 Setting α = 1 and

s = O(1), their protocol uses O(log log n) states and converges in O(log2 n) time. Kosowski and Uznański [40]
showed a protocol using O(1) states and converging in poly-logarithmic time with high probability.

On the negative side, Alistarh, Aspnes, and Gelashvili [5] showed that any stable majority protocol
taking (roughly) less than linear time requires Ω(log n) states if it also satisfies two conditions (satisfied by
all known stable majority protocols, including ours): monotonicity and output dominance. These concepts
are discussed in Section 9. In particular, the Ω(log n) state bound of [5] applies only to stable (probability
1) protocols; the high probability protocol of [17], for example, uses O(log log n) states and O(log2 n) time.

1.2 Our contribution
We show a stable population protocol solving the exact majority problem in optimal O(log n) time (in
expectation and with high probability) that uses O(log n) states. Our protocol is both monotone and output
dominant (see Section 9 or [5] for discussion of these definitions), so by the Ω(log n) state lower bound of [5],
our protocol is both time and space optimal for the class of monotone, output-dominant stable protocols.

A high-level overview of the algorithm is given in Sections 3.1 and 3.2, with a full formal description given
in Section 3.4. Like most known majority protocols using more than constant space (the only exceptions

5This protocol is SimpleMajority in [17], which they then build on to achieve multiple stable protocols. The stable
protocols require either Ω(n) stabilization time or Ω(logn) states to achieve sublinear stabilization time.
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being in [17]), our protocol is nonuniform: agents have an estimate of the value dlog ne embedded in the
transition function and state space. Section 8 describes how to modify our main protocol to make it uniform,
retaining the O(log n) time bound, but increasing the state complexity to O(log n log log n) in expectation
and with high probability. That section discusses challenges in creating a uniform O(log n) state protocol.

2 Preliminaries
We write log n to denote log2 n, and lnn to denote the natural logarithm. We write x ∼ y to denote that x
and y are asymptotically equivalent (implicitly in the population size n), meaning lim

n→∞
x(n)
y(n) = 1.

2.1 Population protocols
A population protocol is a pair P = (Λ, δ), where Λ is a finite set of states, and δ : Λ × Λ → Λ × Λ is
the transition function.6 In this paper we deal with nonuniform protocols in which a different Λ and δ are
allowed for different population sizes n (one for each possible value of dlog ne), but we abuse terminology
and refer to the whole family as a single protocol. In all cases (as with similar nonuniform protocols), the
nonuniformity is used to embed the value dlog ne into each agent; the transitions are otherwise “uniformly
specified”. See Section 8 for more discussion of uniform protocols.

A configuration c of a population protocol is a multiset over Λ of size n, giving the states of the n agents
in the population. For a state s ∈ Λ, we write c(s) to denote the count of agents in state s. A transition
(a.k.a., reaction) is a 4-tuple α = (r1, r2, p1, p2), written α : r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2).
If an agent in state r1 interacts with an agent in state r2, then they change states to p1 and p2. For every
pair of states r1, r2 without an explicitly listed transition r1, r2 → p1, p2, there is an implicit null transition
r1, r2 → r1, r2 in which the agents interact but do not change state. For our main protocol, we specify
transitions formally with pseudocode that indicate how agents alter each independent field in their state.

More formally, given a configuration c and transition α : r1, r2 → p1, p2, we say that α is applicable to c
if {r1, r2} ⊆ c, i.e., c contains 2 agents, one in state r1 and one in state r2. If α is applicable to c, then we
write c⇒α c′, where c′ = c− {r1, r2}+ {p1, p2} is the configuration that results from applying α to c. We
write c⇒ c′, and we say that c′ is reachable from c, if there is a sequence (α0, α1, . . . , αk) of transitions such
that c⇒α0

c1 ⇒α1
. . .⇒αk

c′. This notation omits mention of P; we always deal with a single protocol at
a time, so it is clear from context which protocol is defining the transitions.

2.2 Stable majority computation with population protocols
There are many modes of computation considered in population protocols: computing integer-valued func-
tions [13, 26, 31] where the number of agents in a particular state is the output, Boolean-valued predi-
cates [10, 11] where each agent outputs a Boolean value as a function of its state and the goal is for all
agents eventually to have the correct output, problems such as leader election [4, 6, 18, 19, 32, 37, 38], and
generalizations of predicate computation, where each agent individually outputs a value from a larger range,
such as reporting the population size [20, 29, 30]. Majority computation is Boolean-valued if computing the
predicate “A ≥ B?”, where A and B represent the initial counts of two opinions A and B. We define the
slightly generalized problem that requires recognizing when there is a tie, so the range of outputs is {A,B,T}.

Formally, if the set of states is Λ, the protocol defines a disjoint partition of Λ = ΛA ∪ ΛB ∪ ΛT. For
u ∈ {A,B,T}, if a ∈ Λu for all a ∈ c, we define output φ(c) = u (i.e., all agents in c agree on the output u).
Otherwise φ(c) is undefined (i.e., agents disagree on the output). We say o is stable if φ(o) is defined and,
for all o2 such that o⇒ o2, φ(o) = φ(o2), i.e., the output cannot change.

The protocol identifies two special input states A,B ∈ Λ. A valid initial configuration i satisfies a ∈
{A,B} for all a ∈ i. We say the majority opinion of i is M(i) = A if i(A) > i(B), M(i) = B if i(A) < i(B),

6To understand the full generality of our main protocol, we include randomized transitions in our model. However, there is
only one type of randomized transition in the protocol (the “drip reactions” of Phase 3 described in Section 3.2), parameterized
by probability p, and in fact we prove the protocol works even when these transitions are deterministic, i.e., when p = 1.
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and M(i) = T if i(A) = i(B). The protocol stably computes majority if, for any valid initial configuration i,
for all c such that i⇒ c, there is a stable o such that c⇒ o and φ(o) = M(i). Let Oi = {o : φ(o) = M(i)}
be the set of all correct, stable configurations. In other words, for any reachable configuration, it is possible
to reach a correct, stable configuration, or equivalently reach a strongly connected component in Oi.

2.3 Time complexity
In any configuration the next interaction is chosen by selecting a pair of agents uniformly at random and
applying an applicable transition, with appropriate probabilities for any randomized transitions. Thus the
sequence of transitions and configurations they reach are random variables. To measure time we count the
total number of interactions (including null transitions such as a, b → a, b in which the agents interact but
do not change state), and divide by the number of agents n. In the population protocols literature, this is
often called “parallel time”: n interactions among a population of n agents equals one unit of time.

If the protocol stably computes majority, then for any valid initial configuration i, the probability of
reaching a stable, correct configuration, P[i⇒ Oi] = 1.7 We define the stabilization time S to be the random
variable giving the time to reach a configuration o ∈ Oi.

When discussing random events in a protocol of population size n, we say event E happens with high
probability if P[¬E] = O(n−c), where c is a constant that depends on our choice of parameters in the pro-
tocol, where c can be made arbitrarily large by changing the parameters. In other words, the probability of
failure can be made an arbitrarily small polynomial. For concreteness, we will write a particular polynomial
probability such as O(n−2), but in each case we could tune some parameter (say, increasing the time com-
plexity by a constant factor) to increase the polynomial’s exponent. We say event E happens with very high
probability if P[¬E] = O(n−ω(1)), i.e., if its probability of failure is smaller than any polynomial probability.

3 Nonuniform majority algorithm description
The goal of Sections 3 through 7 is to show the following theorem:

Theorem 3.1. There is a nonuniform population protocol Nonuniform Majority, using O(log n) states, that
stably computes majority in O(log n) stabilization time, both in expectation and with high probability.

3.1 High-level overview of algorithm
In this overview we use “pseudo-transitions” such as A,B → O,O to describe agents updating a portion of
their states, while ignoring other parts of the state space.

Each agent initially has a bias: +1 for opinion A and −1 for opinion B, so the population-wide sum
g =

∑
v v.bias gives the initial gap between opinions. The majority problem is equivalent to determining

sign(g). Transitions redistribute biases among agents but, to ensure correctness, maintain the population-
wide g as an invariant. Biases change through cancel reactions + 1

2i ,− 1
2i → 0, 0 and split reactions ± 1

2i , 0→
± 1

2i+1 ,± 1
2i+1 , down to a minimum ± 1

2L . The constant L = dlog2(n)e ensures Θ(log n) possible states. The
gap is defined to be

∑
v sign(v.bias), the difference in counts between majority and minority biases. Note

the gap should grow over time to spread the correct majority opinion to the whole population, while the
invariant g should ensure correctness of the final opinion.

The cancel and split reactions average the bias value between both agents, but only when the average
is also a power of 2, or 0. If we had averaging reactions between all pairs of biases (also allowing, e.g.,
1
2 ,

1
4 →

3
8 ,

3
8 ), then all biases would converge to g

n , but this would use too many states.8 With our limited
set {0,± 1

2 ,±
1
4 , . . . ,±

1
2L } of possible biases, allowing all cancel and split reactions simultaneously does not

work. Most biases appear simultaneously across the population, reducing the count of each bias, which slows
7Since population protocols have a finite reachable configuration space, this is equivalent to the stable computation definition

that for all c reachable from i, there is a o′ ∈ Oi reachable from c.
8This was effectively the approach used for majority in [8, 44], for an O(n) state, O(logn) time protocol.
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(a) Cancel/split reactions with no synchronization. All
states become present, many in about equal counts. Rate
of cancel reactions and fraction of 0 agents are Θ( 1

logn
).
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(b) Later snapshot of the simulation in Fig. 1a. The initial
minority B now has a much larger count, because those
agents happened to undergo more split reactions.
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(c) Cancel/split reactions, fully synchronized into
O(logn) time hours, at the beginning of hour 16. All
minority are eliminated by hour logn in O(log2 n) time.
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(d) Main phase of our protocol, split reactions partially
synchronized using the clock in Fig. 2, at the end of
this O(logn) time phase. Most agents are left with
bias ∈

{
+ 1

218
,+ 1

219
,+ 1

220

}
. Later phases eliminate the

remaining minority agents.

Figure 1: Cancel / split reactions with no synchronization (1a,1b), perfect synchronization (1c), and partial
synchronization (1d) via the fixed-resolution phase clock of our main protocol. Plots generated from [1].

the rate of cancel reactions. Then the count of unbiased 0 agents is reduced, which slows the rate of split
reactions, see Fig. 1a. Also, there is a non-negligible probability for the initial minority opinion to reach
a much greater count, if those agents happen to do more split reactions, see Fig. 1b. Thus using only the
count of positive versus negative biases will not work to solve majority even with high probability.

To solve this problem, we partially synchronize the unbiased agents with a field hour, adding log n states
00, 01, 02, . . . , 0L. The new split reactions

± 1

2i
, 0h → ±

1

2i+1
,± 1

2i+1
if h > i

will wait until hour ≥ h before doing splits down to bias = ± 1
2h . We could use existing phase clocks to

perfectly synchronize hour, by making each hour use Θ(log n) time, enough time for all opinionated agents
to split. Then WHP all agents would be in states {0h,+ 1

2h ,− 1
2h } by the end of hour h, see Fig. 1c. The

invariant g =
∑
v v.bias implies that all minority opinions would be eliminated by hour dlog2

1
g e ≤ L. This

would give an O(log n)-state, O(log2 n)-time majority algorithm, essentially equivalent to [5, 17].
The main idea of our algorithm is to use these rules with a faster clock using only O(1) time per hour.

The hour field of unbiased agents is synchronized to a separate subpopulation of clock agents, who use a
field minute, with k consecutive minutes per hour. Minutes advance by drip reactions Ci, Ci → Ci, Ci+1,
and catch up by epidemic reactions Ci, Cj → Cmax(i,j), Cmax(i,j). See Fig. 2 for an illustration of the clock
minute and hour dynamics.

Since O(1) time per hour is not sufficient to bring all agents up to the current hour before advancing
to the next, we now have only a large constant fraction of agents, rather than all agents, synchronized in
the current hour. Still, we prove this looser synchronization keeps the values of hour and bias relatively
concentrated, so by the end of this phase, we reach a configuration as shown in Fig. 1d. Most agents have
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Figure 2: Clock rules of our protocol, showing a travelling wave distribution over minutes, on a larger
population of size n = 1017 to emphasize the distribution. The distribution’s back tail decays exponentially,
and its front tail decays doubly exponentially. A large constant fraction of agents are in the same two
consecutive hour’s (here 7 and 8). Plot generated from [1].

the majority opinion (WLOG positive), with three consecutive biases + 1
2l ,+

1
2l+1 ,+

1
2l+2 .

Detecting ties. This algorithm gives an elegant way to detect a tie with high probability. In this case,
g = 0, and with high probability, all agents will finish the phase with bias ∈

{
0,± 1

2L

}
. Checking this

condition stably detects a tie (i.e., with probability 1, if this condition is true, then there is a tie), because
for any nonzero value of g, there must be some agent with |bias| > 1

2L .

Cleanup Phases. We must next eliminate all minority opinions, while still relying on the invariant g =∑
v v.bias to ensure correctness. Note that is it possible with low probability to have a greater count of

minority opinions (with smaller values of bias), so only relying on counts of positive and negative biases
would give possibilities of error.

We first remove any minority agents with large bias, by using an additional subpopulation of Reserve
agents that enable additional split reactions for large values of |bias| > 1

2l . Then after cancel reactions with
the bulk of majority agents, the only minority agents left must have |bias| < 1

2l+2 .
To then remove minority agents with small bias, we allow agents with larger bias to “consume” agents

with smaller bias, such as an interaction between agents + 1
4 and − 1

256 . Here the positive agent can be
thought to hold the entire bias + 1

4 −
1

256 = + 63
256 , but since this value is not in the allowable states, it can

only store that its bias is in the range + 1
8 ≤ bias ≤ + 1

4 . Without knowing its exact bias, this agent cannot
participate in future averaging interactions. However, we show there are enough available majority agents to
eliminate all remaining minority via these consumption reactions. Thus with high probability, all minority
agents are eliminated.

A final phase checks for the presence of both positive and negative bias, and if one has been completely
eliminated, it stabilizes to the correct output. In the case where both are present, this is a detectable error,
where we can move to a slow, correct backup that uses the original inputs. Due to the low probability of
this case, it contributes negligibly to the total expected time.

3.2 Intuitive description of each phase
Our full protocol is broken up into 11 consecutive phases. We describe each phase intuitively before presenting
full pseudocode in Section 3.4. Note that some further separation of phases was done to create more
straightforward proofs of correctness, so simplicity of the proofs was optimized over simplicity of the full
protocol pseudocode. It is likely possible to have simpler logic that still solves majority via the same strategy.
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Phase 0: “Population splitting” [7] divides agents into roles used in subsequent phases: Main,Reserve,Clock.
In timed phases (those not marked as Untimed or Fixed-resolution clock, including the current phase),
Clock agents count from Θ(log n) to 0 to cause the switch to the next phase after Θ(log n) time.

“Standard” population splitting uses reactions such as x, x → r1, r2 to divide agents into two roles
r1, r2. This takes Θ(n) time to converge, which can be decreased to Θ(log n) time via r1, x → r1, r2

and r2, x → r2, r1, while maintaining that #r1 and #r2 are both n/2 ±
√
n WHP. However, since all

agents initially have an opinion, but Clock and Reserve agents do not hold an opinion, agents that
adopt role Clock or Reserve must first pass off their opinion to a Main agent.

From each interacting pair of unassigned agents, one will take the Main role and hold the opinions
of both agents, interpreting A as +1 and B as −1. This Main agent will then be allowed to take at
most one other opinion (in an additional reaction that enables rapid convergence of the population
splitting), and holding 3 opinions can end up with a bias in the range {−3,−2,−1, 0,+1,+2,+3}.

Phase 1: Agents do “integer averaging” [6] of biases in the set {−3, . . . ,+3} via reactions i, j → b i+j2 c, d
i+j
2 e.

Although taking Θ(n) time to converge in some cases, this process is known [45] to result in three
consecutive values in O(log n) time. If those three values are detected to be {−1, 0,+1} in the next
phase, the algorithm continues.

Phase 2: (Untimed) Agents propagate the set of opinions (signs of biases) remaining after Phase 1 to detect
if only one opinion remains. If so, we have converged on a majority consensus, and the algorithm halts
here (see Fig. 6). At this point, this is essentially the exact majority protocol of [41], which takes
O(log n) time with an initial gap Ω(n), but longer for sublinear gaps (e.g., Ω(n) time for a gap of 1).
Thus, if agents proceed beyond this phase (i.e., if both opinions A and B remain at this point), we
will use later that the gap was smaller than 0.025 ·#Main. With low probability both opinions remain
but some agent has |bias| > 1, in which case we proceed directly to a slow stable backup protocol in
Phase 10.

Phase 3: (Fixed-resolution clock) The key goal at this phase is to use cancel and split reactions to average
the bias across the population to give almost all agents the majority opinion. Biased agents hold a
field exponent ∈ {−L, . . . ,−1, 0}, describing the magnitude |bias| = 2exponent, a quantity we call the
agent’s mass. Cancel reactions eliminate opposite biases + 1

2i ,− 1
2i → 0, 0 with the same exponent;

cancel reactions strictly reduce total mass. Split reactions ± 1
2i , 0 → ± 1

2i+1 ,± 1
2i+1 give half of the

bias to an unbiased agent, decrementing the exponent; split reactions preserve the total mass. The
unbiased O agents, with role = Main, opinion = bias = 0, act as the fuel for split reactions.

We want to obtain tighter synchronization in the exponents than Fig. 1a, approximating the ideal
synchronized behavior of the O(log2 n) time algorithm of Fig. 1c while using only O(log n) time. To
achieve this, the Clock agents run a “fixed resolution” clock that keeps them roughly synchronized
(though not perfectly; see Fig. 2) as they count their “minutes” from 0 up to L′ = kL, using O(1)
time per minute. This is done via “drip” reactions Ci, Ci → Ci, Ci+1 (when minute i gets sufficiently
populated, pairs of Ci agents meet with sufficient likelihood to increment the minute) and Cj , Ci →
Cj , Cj for i < j (new higher minute propagates by epidemic).9 If randomized transitions are allowed,
by lowering the probability p of the drip reaction, the clock rate can be slowed by a constant factor.

9This clock is similar to the power-of-two-choices leaderless phase clock of [5], where the agent with smaller (or equal)
minute increments their clock (Cj , Ci → Cj , Ci+1 for i ≤ j), but increasing the smaller minute by only 1. Similarly to our
clock, the maximum minute can increase only with both agents at the same minute. A similar process was analyzed in [15],
and in fact was shown to have the key properties needed for our clock to work—an exponentially-decaying back tail and a
double-exponentially-decaying front tail—so it seems likely that a power-of-two-choices clock could also work with our protocol.

The randomized variant of our clock with drip probability p is also similar to the “junta-driven” phase clock of [37], but with
a linear number 2pn of agents in the junta, using O(1) time per minute, rather than the O(nε)-size junta of [37], which uses
O(logn) time per minute. There, smaller minutes are brought up by epidemic, and only an agent in the junta seeing another
agent at the same minute will increment. The epidemic reaction is exactly the same in both rules. The probability p of a drip
reaction can be interpreted as the probability that one of the agents is in the junta. For similar rate of O(1) time per minute
phase clock construction see also Dudek and Kosowski work [34].
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Although we prove a few lemmas about this generalized clock, and some of our simulation plots
in Section 3.3 use p < 1, our proofs work even for p = 1, i.e., a deterministic transition function,
although this requires constant-factor more states (by increasing the number of “minutes per hour”,
explained next).

Now the O agents will use Θ(log n) states to store an “hour”, coupled to the C clock agents via
Cbi/kc,Oj → Cbi/kc,Obi/kc if bi/kc > j, i.e., every consecutive k Clock minutes corresponds to one
Main hour, and clock agents drag O agents up to the current hour (see Fig. 3). Our proofs require
k = 45 minutes per hour when p = 1, but smaller values of k work in simulation. For example, the
simulation in Fig. 1d showing intended behavior of this phase used only k = 3 minutes per hour with
p = 1.

This clock synchronizes the exponents because agents with exponent = −i can only split down to
exponent = −(i + 1) with an O agent that has hour ≥ i + 1. This prevents the biased agents from
doing too many splits too quickly. As a result, during hour i, most of the biased agents have |bias| = 1

2i ,
so the cancel reactions + 1

2i ,− 1
2i → 0, 0 happen at a high rate, providing many O agents as “fuel” for

future split reactions. We tune the constants of the clock to ensure hour i lasts long enough to bring
most biased agents down to exponent = −i via split reactions and then let a good fraction do cancel
reactions (see Fig. 4c).

The key property at the conclusion of this phase is that unless there is a tie, WHP most majority agents
end up in three consecutive exponents −l,−(l+ 1),−(l+ 2), with a negligible mass of any other Main
agent (majority agents at lower/higher exponents, minority agents at any exponent, or O agents).10
Phases 5-7 use this fact to quickly push the rest of the population to a configuration where all minority
agents have exponents strictly below −(l + 2); Phase 8 then eliminates these minority agents quickly.

Phase 4: (Untimed) The special case of a tie is detected by the fact that, since the total bias remains the
initial gap g, if all biased agents have minimal exponent −L, g has magnitude less than 1:

|g| =

∣∣∣∣∣ ∑
a.role=Main

a.bias

∣∣∣∣∣ ≤ ∑
a.role=Main

|a.bias|

≤
∑

a.role=Main

1

2L
<

n

2dlog2(n)e ≤ 1.

The initial gap g is integer valued, so |g| < 1 =⇒ g = 0. Thus this condition implies there is a tie
with probability 1; the converse that a tie forces all biased agents to exponent −L holds with high
probability. If only exponent −L is detected, the algorithm halts here with all agents reporting output
T (see Fig. 7). Otherwise, the algorithm proceeds to the next phase.

Phase 5, Phase 6: Using the key property of Phase 3, these phases WHP pull all biased agents above
exponent −l down to exponent −l or below using the Reserve R agents. The R’s activate themselves
in Phase 5 by sampling the exponent of the first biased agent they meet. This ensures WHP that
sufficiently many Reserve agents exist with exponents −l,−(l+1),−(l+2) (distributed similarly to the
agents with those exponents). Then in Phase 6, they act as fuel for splits, via Ri,± 1

2j → ± 1
2j+1 ,± 1

2j+1

when |i| > |j|. The reserve agents, unlike the O agents in Phase 3, do not change their exponent in
response to interactions with Clock agents. Thus sufficiently many reserve agents will remain to allow
the small number of biased agents above exponent −l to split down to exponent −l or below.11

10l is defined such that if all biased agents were at exponent −l, the difference in counts between majority and minority agents
would be between 0.4 ·#Main and 0.8 ·#Main.

11The reason we do this in two separate phases is to ensure that the Reserve agents have close to the same distribution of
exponents that the Main agents have at the end of Phase 3. If Reserve agents allowed split reactions in the same phase that
they sample the exponent of Main agents, then the splits would disrupt the distribution of the Main agents before all Reserve
agents have finished sampling. This would possibly give the Reserve agents a significantly different distribution among levels
than the Main agents had at the start. While this may possibly work anyway, we find it is more straightforward to prove if the
Reserve agents have a close distribution over exponent values to that of the Main agents.
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Phase 7: This phase allows more general reactions to distribute the dyadic biases, allowing reactions be-
tween agents up to two exponents apart, to eliminate the opinion with smaller exponent: 1

2i ,− 1
2i+1 →

1
2i+1 , 0 and 1

2i ,− 1
2i+2 → 1

2i+1 ,
1

2i+2 (and the equivalent with positive/negative biases swapped). Since
all agents have exponent −l or below, and many more majority agents exist at exponents −l,−(l +
1),−(l + 2) than the total number of minority agents anywhere, these (together with standard cancel
reactions 1

2i ,− 1
2i → 0, 0) rapidly eliminate all minority agents at exponents −l,−(l+1),−(l+2), while

maintaining Ω(n) majority agents at exponents ≥ −(l+ 2) and < 0.01n total minority agents, now all
at exponents ≤ −(l + 3).

Phase 8: This phase eliminates the last minority agents, while ensuring that if any error occurred in previous
phases, some majority agents remain, to allow detecting the error by the presence of both opinions.12

The biased agents add a Boolean field full, initially False, and consumption reactions that allow an
agent at a larger exponent i to consume (set to mass 0 by setting it to be O) an agent at an arbitrarily
smaller exponent j < i. Now the remaining agent represents some non-power-of-two mass m = 2i−2j ,
which it lacks sufficient memory to track exactly. Thus setting the flag full = True corresponds to the
agent having an uncertain mass m in the range 2i−1 ≤ m < 2i. Because of this uncertainty, full agents
are not allowed to consume other smaller levels. However, there are more than enough high-exponent
majority agents by this phase to consume all remaining lower exponent minority agents.
Crucially, agents that have consumed another agent and set full = True may themselves then be
consumed by a third agent (with full = False) at an even larger exponent. This is needed because a
minority agent at exponent i ≤ −(l + 3) may consume a (rare) majority agent at exponent j < i, but
the minority agent itself can be consumed by another majority agent with exponent k > i.

Phase 9: (Untimed) This is identical to Phase 2: it detects whether both biased opinions A and B remain.
If not (the likely case), the algorithm halts, otherwise we proceed to the next phase.

Phase 10: (Untimed) Agents execute a simple, slow stable majority protocol [22], similar to that of [33,41]
but also handling ties. This takes Θ(n log n) time, but the probability that an earlier error forces us
to this phase is O(1/n2), so it contributes negligibly to the total expected time.

3.3 Simulation of full algorithm
In this section we show simulation results, where the complete pseudocode of Section 3.4 was translated into
Java code available on GitHub [2]. In these simulations, we stop the protocol once all agents reach Phase 9.
For the low probability case that agents switch to the Phase 10, the simulator prints an error indicating
the agents should switch to slow back up, but as expected this was not observed in our simulations. For all
our plots, we collect data from simulations with n ≈ 223, p (drip probability) = 0.1. The first simulation in
Fig. 3 shows the relationship between minute of Clock agents and hour of Main agents. Here we used k = 5
minutes per hour to show clearly the relationship and the discrete nature of the hours.

All remaining simulations used the even weaker value k = 2, to help see enough low probability behavior
that the logic enforcing probability-1 correctness in later phases is necessary. We show 3 simulations corre-
sponding to the 3 different types of initial gap. Figs. 4 and 5 show constant initial gap g = +2. This is our
“typical” case, where the simulation eventually stabilizes to the correct output in Phase 9. Fig. 6 shows linear
initial gap g ≈ n

10 , which stabilizes in Phase 2 after quickly cancelling all minority agents. Fig. 7 shows initial
tie g = 0, which stabilizes in Phase 4 after all biased agents reach the minimum exponent = −L = −23.

All three simulations show various snapshots of configurations of the biased agents. These particular
snapshots are at special times marked in Figs. 4d, 6a and 7a. In all cases, an animation is available at
GitHub [3], showing the full evolution of these distributions over all recorded time steps from the simulation.

12A naïve idea to reach a consensus at this phase is to allow cancel reactions 1
2i

,− 1
2j
→ 0, 0 between arbitrary pairs of

exponents with opposite opinions. However, this has a positive probability of erroneously eliminating the majority. This is
because the majority, while it necessarily has larger mass than the minority at this point, could have smaller count. For example,
we could have 16 A’s with exponent = −2 and 32 B’s with exponent = −5, so A’s have mass 16 · 2−2 = 4 and B’s have smaller
mass 32 · 2−5 = 1, but larger count than A.

9



300 400 500 600 700 800 900
Parallel Time (Phase 3)

n/2

n/4

n/8

n/16
n/32

C
ou

nt
 o

f A
ge

nt
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18

19

Distribution of Minutes and Hours

unbiased agent hour
clock agent minute

Figure 3: Fixed-resolution phase clock used in Phase 3, with n ≈ 223. All Clock agents set minute = 0 and count up to k · L
with special rules defined in Phase 3. The solid curves show the distributions of the counts at each value of minute in the Clock
agents. Blocks of k = 5 consecutive minutes correspond to a hour in the unbiased O agents with role = Main and bias = 0.
The dashed curves show the distribution of the counts of each value of hour, with the value written on top. We show every
k minutes with one color equal to its hour color. Near the end of Phase 3, the O count falls to 0 as the majority count takes
over. This plot used the value k = 5 to emphasize the clock behavior. Later plots will all use the weaker constant k = 2. In
later plots we also omit the minute distribution and only show the hour from the O agents.

3.4 Algorithm pseudocode
In this section we give a full formal description of the main algorithm.

Every agent starts with a read-only field input ∈ {A,B}, a field output ∈ {A,B,T} corresponding
to outputs that the majority is A, B, or a tie. The protocol is broken up into 11 consecutive phases,
marked by the additional field phase = 0 ∈ {0, . . . , 10}. The phase updates via the epidemic reaction
u.phase, v.phase ← max(u.phase, v.phase). Some fields are only used in particular phases, to ensure the
total state space is Θ(log n).13 Such fields and the initial behavior of an agent upon entering a phase are
described in the Init section above each phase. Whenever an agent increments their phase, they execute
Init for the new phase (and sequentially for any phases in between if they happen to increment phase by
more than 1). We refer to the “end of phase i” to mean the time when the first agent sets phase← i+1. Note
that the agents actually enter each new phase by epidemic, so there is technically no well-defined “beginning
of phase i”. To simplify the analysis, we formally start our arguments for each phase assuming each agent
is in the current phase, although technically Θ(log n) time will pass between the time the first agent enters
phase i and the last agent does.

Each timed phase i each requires setting agents to count from ci lnn down to 0, where the minimum
required value of ci depends on the phase. These constants can be derived from the technical analysis
in Sections 5-7 but for brevity we avoid giving them concrete values in the pseudocode. Our simulations
(Section 3.3) that used the same small constant 5 log2(n) for all counters seem to work, but the proofs require
larger constants to ensure the necessary behavior within each phase can complete with high probability
1 − O(1/n2). By increasing these constants ci (along with changing the phase clock constants p, k; see
Phase 3 and Theorem 6.9), we could also push high probability bound to 1 − O(1/nc) for any desired
constant c. For concreteness, use 1−O(1/n2) for most high probability guarantees, since this is large enough
to take appropriate union bounds and ensure the extra time from low probability failures does not contribute
meaningfully to the total O(log n) time bound.

Phase 0 is a timed phase that splits the population into three subpopulations: Main to compute majority,
Clock to time the phases and the movement through exponents in Phase 3, and Reserve to aid in cleanup
during Phase 6. An agent can only move into role Clock or Reserve by “donating” its opinion to a Main agent,
who can collect up to two other opinions in addition to their own, leading to a bias of up to ±3. After this
phase, the populations of the three roles are near the expected one quarter Main, one quarter Clock, and one
half Reserve. Lemma 5.2 shows that all initial opinions have been given to assigned Main agents and these

13Note that using two fields, both with O(logn) possible values, requires O(log2 n) states, not O(logn).
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(a) The phase distribution, giving counts of the agents with each value of phase. We show these markers on the horizontal axis
in later plots. We have set max counter = 5 log2(n), and removed the counting requirements for Clock agents in Phase 0. This
makes all timed phases 0, 1, 5, 6, 7, 8 take around the same parallel time 2.5 log2(n). The fixed-resolution clock in Phase 3 uses
O(logn) time with a larger constant. Phase 2 and Phase 4 are untimed, so they end almost immediately and are not labeled
above.
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(b) The role distribution. All agents start in role RoleMCR. By the end of Phase 0 almost all agents decide on a role. They
enter Phase 1 with ≈ n

2
, ≈ n

4
, and ≈ n

4
agents in the respective roles Main, Clock, and Reserve. An agent’s role remain the

same in the following phases except Phase 6, where split reactions convert Reserve agents into Main agents.

Figure 4: The phase and role distributions.

Nonuniform MajorityL(u, v). Nonuniform majority algorithm for population sizes n with L = dlog ne.
Init: phase← 0 ∈ {0, 1, . . . , 10} and execute Init for Phase 0.

1: if i.phase < j.phase where {i, j} = {u, v} then
2: for p = {i.phase + 1, . . . , j.phase} do
3: execute Init for Phase p on agent i
4: i.phase← j.phase

5: execute Phase u.phase(u, v)
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(c) The distribution of exponent and hour in biased and unbiased Main agents. This plot only shows the time during Phase 3,
the only time hour is used. The values for exponent can decrease from 0 to −L. As described in Phase 3, during hour h,
only agents with exponent > −h are allowed to split and decrease their exponent by one. Thus, the changes of exponent are
synchronized with the the changes in the hour values. In this simulation, the Phase 3 stopped with majority of agents having 3
consecutive values (−19,−20,−21) in their exponent. The hour values are shown behind the next plot in Fig. 4d, which shows
the totals of these 3 types of Main agents.
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(d) The distribution of opinion over allMain agents, with count shown on a log scale. The green line shows the difference in count
between majority and minority agents. Special snapshots at times marked S0, S1, S2, S3, S4, S5 are shown in Fig. 5. All Main
agents are assigned in Phase 0, with bias ∈ {0,±1,±2,±3}, and all initial biases represented held by this Main subpopulation.
Here the gap depends randomly on the distribution of |bias| ∈ {1, 2, 3}. Then Phase 1 brings all bias ∈ {−1, 0,+1}, so the gap
returns to exactly the initial gap of 2, and the biased counts decrease polynomially like 1

t
from cancel reactions. In the first

part of Phase 3 the gap oscillates randomly about 0, (S0 in Fig. 5a). Once we reach a high enough hour / low enough exponent,
the doubling trend takes over and the gap undergoes constant exponential growth (S1 in Fig. 5b). Finally, this becomes visible
as a separation between counts of majority and minority agents (S2 in Fig. 5c). Phase 3 ends with a small but nonzero count of
minority agents and the count of unbiased O agents brought near 0 (S3 in Fig. 5d). Then during Phase 6, this minority count
is amplified slightly by more split reactions bringing the minority exponents down (S4 in Fig. 5e). During Phase 7, additional
cancel reactions bring the minority count to 0 (S5 in Fig. 5f). Since minority agents are gone, Phase 8 has no effect, and the
protocol stabilizes to the correct majority output in Phase 9.

Figure 4: The case of constant initial gap g = 2, from simulation with n = 5122666 ≈ 223, p = 0.1 (drip
probability), k = 2 (number of minutes per hour). The horizontal axis is in units of parallel time, with the
ranges corresponding to each phase marked. All agents converge to the correct majority output in Phase 9.
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(a) Snapshot S0. At the start of Phase 3. The count of mi-
nority agents (blue) currently exceeds the count of majority
agents because the minorities have done more split reactions.
Summing the signed biases, however, gives +50101− 49955 +
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2
= +146− 144 = +2, the invariant initial gap.
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(b) Snapshot S1. A typical distribution at hour = 10, when
split reactions have brought most agents to exponent = −10.
Only a few O agents leaked ahead to hour = 11 and enabled
splits down to exponent = −11, and no agents have leaked
further ahead than this.
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(c) Snapshot S2. We have reached the special exponent −l =
−19. The count of minority (blue) agents has vastly decreased
over the last few hours, and now there will be few more cancel
reactions to produce more O agents.
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Time step 364 (Phase 4)

(d) Snapshot S3. We end Phase 3 with most Main agents with
the majority opinion, and bias ∈ {−19,−20,−21} in a range
of 3 consecutive values, as shown in Theorem 6.2. Only a few
minority agents are left.
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Time step 440 (Phase 6)

(e) Snapshot S4. After Phase 6, where Reserve agents with
sample ∈ {−19,−20,−21} enabled additional split reactions
that brought all minority agents down.
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(f) Snapshot S5. After Phase 7, additional generalized cancel
reactions eliminate all minority agents at the higher exponent
values. At this point, there are no minority agents left, and we
will stabilize to the correct output in Phase 9.

Figure 5: Snapshots S0, S1, S2, S3, S4, S5 from Fig. 4d, showing the distribution of bias among agents with
|bias| > 0. The red and blue bars give the count of A (majority, with bias > 0) and B (minority, with
bias < 0) agents respectively. The exact counts are written above the bars, and everywhere not explicitly
written the count of is 0. See the link to animations of these plots at the end of this section.

13



phase=0 phase=1 phase=2

Parallel Time

n/4

n/8

n/16
n/32

C
ou

nt
 o

f A
ge

nt
s

S0 S1

Distribution of Opinions in Main Agents

Majority: bias > 0, opinion = +1
Minority: bias < 0, opinion = -1
Unbiased: bias = 0, role = Main
Gap: # majority - # minority

(a) The distribution of opinion in the Main agents in case of a linear size gap g = n/10. The red line gives the majority count
(opinion = +1), the blue line the minority count (opinion = −1), and the green line their difference. The black line gives the
unbiased O agents.
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(b) Snapshot S0. At the end of Phase 0, the biased agents
have |bias| ∈ {1, 2, 3}.
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(c) Snapshot S1. The discrete averaging of Phase 1 first brings
all bias ∈ {−1, 0,+1}. Then all bias = −1 cancel, leaving
bias = +1 as the only nonzero bias. With the minority opinion
eliminated, we converge in Phase 2.

Figure 6: The case of linear size gap g = n/10, again with n = 5122666 ≈ 223, p = 0.1, k = 2. With
large initial gap, the simulation converges in Phase 2. Fig. 6a shows the counts of each opinion among the
population of Main agents. Two special times S0 and S1, and the configurations of biased agents at these
snapshots are shown in Figs. 6b and 6c. See link to animations of these plots at the end of this section.
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(a) The distribution of opinion in the Main agents in case of a tie. The red line gives the majority count (opinion = +1), the
blue line the minority count (opinion = −1), though they overlap everywhere, and the green line their difference. The black
line gives the unbiased O agents. In Phase 3 we see the same qualitative behavior as the first part of Phase 3 with a constant
initial gap in Fig. 4d. Now this continues the whole phase, with the gap in counts oscillating about 0 until finally reaching 0
when all biased agents have exponent = −23 at time S2. With no exponent > −23, we stabilize to output T in Phase 4.
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(b) Snapshot S0. We enter Phase 3 with an equal number of
bias = ±1.
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(c) Snapshot S1. We see similar distributions as in Fig. 5b all
the way until the end of Phase 3.
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(d) Snapshot S2. After reaching synchronous hour 23, split
reactions bring all remaining biased agents down to exponent =
−23, which is only possible with an initial tie.

Figure 7: The case of a tie, with initial gap g = 0, again with n = 5122666 ≈ 223, p = 0.1, k = 2. The simulation converges
in Phase 2. Fig. 6a shows the counts of each opinion among the population of Main agents. Three special times S0, S1, S2, and
the configurations of biased agents at these snapshots are shown in Figures 7b, 7c, 7d. See the link to animations of these plots
at the end of this section. 15



subpopulations are near their expected fractions, both with high probability.
It is likely that we could use a simpler population splitting scheme. For example, we could simply

have each pair of agents with initially opposite opinions change to roles Clock and Reserve. However, this
would mean the number of agents in the role Main after Phase 0 would depend on the initial gap. The
current method of population splitting gives us stronger guarantees on the number of each agent in each
role, simplifying subsequent analysis.

Phase 0 Initialize Roles. Agent u interacting with agent v.
Init role← RoleMCR ∈ {Main,Clock,Reserve,RoleMCR,RoleCR}
assigned← False ∈ {True,False}
if input = A, bias← +1 ∈ {−3,−2,−1, 0,+1,+2,+3}
if input = B, bias← −1 ∈ {−3,−2,−1, 0,+1,+2,+3}
we always maintain the invariant opinion = sign(bias) ∈ {−1, 0,+1}
if role = Clock, counter← c0 lnn ∈ {0, . . . , c0 lnn} only used in the current phase

1: if u.role = v.role = RoleMCR then . Allocate ≈ 1
2Main agents

2: u.role← Main; u.bias← u.bias + v.bias
3: v.bias← 0; v.role← RoleCR . v won’t use its bias subsequently
4: if i.role = RoleMCR, j.role = Main, j.assigned = False where {i, j} = {u, v} then
5: j.assigned← True; j.bias← j.bias + i.bias . Main agents can assign 1 non-Main agent
6: i.bias← 0; i.role← RoleCR . i won’t use its bias subsequently
7: if i.role = RoleMCR, j.role 6= Main,RoleMCR, j.assigned = False where {i, j} = {u, v} then
8: j.assigned← True . non-Main agents can assign 1 Main agent
9: i.role← Main

10: if u.role = v.role = RoleCR then . Allocate ≈ 1
4Clock agents, ≈ 1

4Reserve agents
11: u.role← Clock; u.counter← Θ(log n)
12: v.role← Reserve
13: if u.role = v.role = Clock then . time the phase once we have at least 2 Clock agents
14: execute Standard Counter Subroutine(u), execute Standard Counter Subroutine(v)

Standard Counter Subroutine(c). Agent c with field counter.
1: c.counter← c.counter− 1
2: if c.counter = 0 then
3: c.phase← c.phase + 1 . move to next phase

Phase 1 is a timed phase that averages the biases in Main agents; with high probability at the end of
the phase the bias fields have three consecutive values, shown in Lemma 5.3. Phase 1 expects no agent to
remain in role RoleMCR by this point, signaling an error otherwise.14

14role = RoleMCR is an error because we need all agents not in role Main to have “donated” their bias to a Main agent. It
is okay for RoleCR agents to be undecided about Clock versus Reserve. All such agents because Reserve, which WHP leaves
sufficiently many agents in role Clock to make the clock interactions sufficiently fast.
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Phase 1 Discrete Averaging. Agent u interacting with agent v.
Init if role = RoleMCR, phase← 10 (error, skip to stable backup)
if role = RoleCR, role← Reserve
if role = Clock, counter← c1 lnn ∈ {0, . . . , c1 lnn} only used in the current phase

1: if u.role = v.role = Main then
2: u.bias← bu.bias+v.bias2 c; v.bias← du.bias+v.bias2 e
3: for c ∈ {u, v} with c.role = Clock do
4: execute Standard Counter Subroutine(c)

Phase 2 (an untimed phase) checks to see if the entire minority population was eliminated in Phase 1
by checking whether both positive and negative biases still exist. It assumes a starting condition where all
bias ∈ {−1, 0,+1} (like the initial condition, but allowing some cancelling to have already happened). So
the Init checks if any |bias| > 1, which can only happen with low probability (since Phase 1 WHP reaches
the three consecutive values {−1, 0,+1}), and we consider this an error and simply proceed immediately to
Phase 10. If not, the minority opinion is gone, and the protocol will stabilize here to the correct output.
Otherwise, we proceed to the next phase; note this phase is untimed and proceeds immediately upon detection
of conflicting opinions. Lemma 5.3 shows that starting from a large initial gap, we will stabilize here with
high probability.

Phase 2 Output the Consensus. Agent u interacting with agent v.
Init if |bias| > 1, phase← 10 (error, skip to stable backup)
opinions← {opinion} ⊆ {−1, 0,+1}
1: u.opinions, v.opinions← u.opinions ∪ v.opinions . union opinions

2: if {−1,+1} ⊆ opinions then
3: u.phase, v.phase← u.phase + 1 . no consensus, move to next phase
4: else if +1 ∈ opinions then
5: u.output, v.output← A . current consensus is A
6: else if −1 ∈ opinions then
7: u.output, v.output← B . current consensus is B
8: else if opinions = {0} then
9: u.output, v.output← T . current consensus is T

Phase 3 is where the bulk of the work gets done. The biased agents (with non-zero opinion) have
an additional field exponent ∈ {−L, . . . , 0}, initially 0, where L = dlog2(n)e, corresponding to holding
2exponent units of mass. The unbiased O agents have an additional field hour = L ∈ {0, . . . , L}, and will only
participate in split reactions with −exponent > hour. The field hour is set by the Clock agents, who have a
field minute = 0 ∈ {0, . . . , kL}, which counts up as Phase 3 proceeds. Intuitively, there are k minutes in an
hour, so hour = d minutek e ranges from 0 to L.15 Fig. 3 shows how nonconsecutive minutes in the Clock agents
may overlap significantly, but non-consecutive hours in the O agents have negligible overlap. Once a Clock
agent has minute at its maximum value kL, they initialize a new field counter = Θ(log n) ∈ {0, . . . ,Θ(log n)}
to wait for the end of the phase (waiting for any remaining O agents to reach hour = L and the distribution
to settle).

See the overview in Section 3.2 for an intuitive description of this phase. Theorem 6.1 gives the main result
of Phase 3 in the case of an initial tie, where all remaining biased agents are at the minimal exponent = −L.
In the other case, Theorem 6.2 gives the main result that most of the population settle on the majority
output with exponent ∈ {−l,−(l + 1),−(l + 2)}.

15The drip reaction Ci, Ci → Ci, Ci+1 implemented by line 5 is asymmetric, but could be made symmetric, i.e., Ci, Ci →
Ci+1, Ci+1 without affecting the analysis meaningfully.
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Phase 3 Synchronized Rational Averaging. Agent u interacting with agent v.
Init if role = Main and opinion ∈ {−1,+1}, exponent ← 0 ∈ {−L, . . . ,−1, 0}, and we define bias =
opinion · 2exponent
if role = Main and opinion = 0, hour← 0 ∈ {0, . . . , L}
if role = Clock, minute← 0 ∈ {0, . . . , kL} and counter← c3 lnn ∈ {0, . . . , c3 lnn}
1: if u.role = v.role = Clock then
2: if u.minute 6= v.minute then
3: u.minute, v.minute← max(u.minute, v.minute) . clock epidemic reaction
4: else if u.minute < kL then
5: u.minute← u.minute + 1 with probability p . clock drip reaction, p = 1 in Theorem 6.9
6: else . count only when both clocks finished
7: execute Standard Counter Subroutine(u), Standard Counter Subroutine(v)
8: if m.role = Main,m.opinion = 0 and c.role = Clock where {m, c} = {u, v} then
9: m.hour← max

(
m.hour, b c.minutek c

)
. clock update reaction

10: else if u.role = v.role = Main then
11: if {u.opinion, v.opinion} = {−1,+1} and u.exponent = v.exponent = −h then
12: u.opinion, v.opinion← 0; u.hour, v.hour← h . cancel reaction
13: if t.opinion = 0, i.opinion ∈ {−1,+1} and |t.hour| > |i.exponent|, where {t, i} = {u, v} then
14: t.opinion← i.opinion . split reaction
15: i.exponent, t.exponent← i.exponent− 1 . sets i.bias, t.bias← i.bias/2

In Phase 4 (an untimed phase), the population checks if all Main agents have reached the minimum
exponent = −L, which only happens in the case of a tie. If so, the population will stabilize to the tie
output. Otherwise, any Main agent with exponent above L can trigger the move to the next phase.

Phase 4 Output Tie. Agent u interacting with agent v.
Init output← T

1: if |m.bias| > 2−L where m ∈ {u, v} then . stable if all bias ∈
{
− 1

2L , 0,+
1

2L

}
2: u.phase, v.phase← u.phase + 1 . end of this phase

If there was not a tie detected in Phase 4, then most agents should have the majority opinion, with
exponent ∈ {−l,−(l+1),−(l+2)} in a small range. The next goal is to bring all agents with exponent > −l
down to exponent ≤ −l. This will be accomplished by the Reserve agents, whose goal is to let exponents
above l do split reactions.

The Reserve agents do this across two consecutive phases. In Phase 5, the Reserve agents become active,
and will set sample = ⊥ ∈ {⊥, 0, . . . , L} to the exponent of the first biased agent they meet, which is likely
in {−l,−(l + 1),−(l + 2)}. The Clock agents now only hold a field counter = Θ(log n) ∈ {0, . . . ,Θ(log n)}
to act as a simple timer for how long to wait until moving to the next phase. This allows the Reserve agents
to adopt a distribution of exponent values approximately equal to that of the Main agents. This behavior is
proven in Lemma 7.1 and Lemma 7.2.

Phase 5 Reserves Sample exponent. Agent u interacting with agent v.
Init if role = Reserve, sample← ⊥ ∈ {⊥,−L, . . . ,−1, 0}
if role = Clock, counter← c5 lnn ∈ {0, . . . , c5 lnn}
1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then
2: if r.sample = ⊥ then . sample exponent of biased agent m
3: r.sample← m.exponent

4: for c ∈ {u, v} with c.role = Clock do
5: execute Standard Counter Subroutine(c)
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In Phase 6, the Reserve agents can help facilitate more split reactions, with any agent at an exponent above
their sampled exponent. Because they have approximately the same distribution across all exponents as Main
agents, particular exponents −l,−(l+ 1),−(l+ 2), this allows them to bring all agents above exponent = −l
down to −l or below. Again, the Clock agents keep a counter ∈ {0, . . . , c6 lnn}. Lemma 7.2 proves that
Phase 6 works as intended, bringing all agents down to exponent ≤ −l with high probability.

Phase 6 Reserve Splits. Agent u interacting with agent v.
Init if role = Clock, counter← c6 lnn ∈ {0, . . . , c6 lnn}
1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then
2: if r.sample 6= ⊥ and r.sample < m.exponent then
3: r.role← Main; r.opinion← m.opinion . split reaction
4: r.exponent,m.exponent← m.exponent− 1 . sets r.bias,m.bias← m.bias/2

5: for c ∈ {u, v} with c.role = Clock do
6: execute Standard Counter Subroutine(c)

Now that all agents are exponent ≤ −l, the goal of Phase 7 is to eliminate any minority agents with
exponents −l,−(l+1),−(l+2). This is done by letting the biased agents do generalized cancel reactions that
allow their difference in exponents to be up to 2, while still preserving the mass invariant. Again, the Clock
agents keep a counter ∈ {0, . . . , c7 lnn}. Lemma 7.5 shows that by the end of this phase, any remaining
minority agents must have exponent < −(l + 2), with high probability.

Phase 7 High-exponent Minority Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c7 lnn ∈ {0, . . . , c7 lnn}
1: if u.role = v.role = Main and {u.opinion, v.opinion} = {−1,+1} then
2: if u.exponent = v.exponent then
3: u.opinion, v.opinion← 0 . cancel reaction
4: else if i.exponent = j.exponent + 1 where {i, j} = {u, v} then
5: i.exponent← i.exponent− 1 . gap-1 cancel reaction
6: j.opinion← 0 . example bias update: + 1

4 ,−
1
8 → + 1

8 , 0
7: else if i.exponent = j.exponent + 2 where {i, j} = {u, v} then
8: j.opinion← i.opinion . gap-2 cancel reaction
9: i.exponent← i.exponent− 1 . example bias update: + 1

4 ,−
1
16 → + 1

8 ,+
1
16

10: j.exponent← i.exponent− 2

11: for c ∈ {u, v} with c.role = Clock do
12: execute Standard Counter Subroutine(c)

Now that all minority agents occupy exponents below −(l + 2), yet a large number of majority agents
remain at exponents −l,−(l+ 1),−(l+ 2), in Phase 8, the algorithm eliminates the last remaining minority
opinions at any exponent. It allows opposite-opinion agents of any two exponents to react and eliminate the
smaller-exponent opinion. The larger exponent 1

2i “absorbs” the smaller − 1
2j , setting the smaller to mass 0;

the larger now represents mass 1
2i − 1

2j , which it lacks the memory to track exactly, so it cannot absorb any
further agents (though it can itself be absorbed by − 1

2m form > i). Lemma 7.6 shows that Phase 8 eliminates
any remaining minority agents with high probability. A key property is that it cannot violate correctness
since, although the biases held by some agents becomes unknown, the allowed transitions maintain the sign
of the bias. Thus the only source of error is failing to eliminate all minority agents, detected in the next
phase.
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Phase 8 Low-exponent Minority Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c8 lnn ∈ {0, . . . , c8 lnn}
1: if u.role = v.role = Main and {u.bias, v.bias} = {−1,+1} then
2: if i.exponent > j.exponent and i.full = False where {i, j} = {u, v} then
3: i.full← True . consumption reaction
4: j.opinion← 0

5: for c ∈ {u, v} with c.role = Clock do
6: execute Standard Counter Subroutine(c)

Phase 9 (an untimed phase) acts exactly as Phase 2, to check that agents have reached consensus. Note
that the initial check for |bias| > 1 is not required, since it is guaranteed to pass if we reach this point:
it passed in Phase 2, and the population-wide maximum |bias| could only have decreased in subsequent
phases.

Phase 9 Output the Consensus. Exact repeat of Phase 2.

In Phase 10, the agents give up on the fast algorithm, having determined in Phase 9 that it failed to reach
consensus, or detected an earlier error with role or bias assignment. Instead they rely instead on a slow
stable backup protocol. This is a 6-state protocol that stably decides between the three cases of majority
A, B, and tie T. They only use the fields output = input ∈ {A,B,T}, and the initial field active = True ∈
{True,False}. Lemma 7.7 proves this 6-state protocol stably computes majority in O(n log n) time.

Phase 10 Stable Backup. Agent u interacting with agent v. Similar to 6-state algorithm from [22], slight
modification of 4-state algorithm from [33,41].
Init output← input, active← True

1: if u.active = v.active = True then
2: if {u.output, v.output} = {A,B} then
3: u.output, v.output← T . cancel reaction
4: else if i.output ∈ {A,B} and t.output = T where {i, t} = {u, v} then
5: t.output← i.output, t.active← False . biased converts unbiased
6: if a.active = True and p.active = False where {a, p} = {u, v} then
7: p.output← a.output . active converts passive

4 Useful time bounds
This section introduces various probability bounds which will be used repeatedly in later analysis.

We will use the following standard multiplicative Chernoff bound:

Theorem 4.1. Let X = X1 + . . . + Xk be the sum of independent {0, 1}-valued random variables, with
µ = E[X]. Then for any δ > 0, P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2+δ

)
.

We use the standard Azuma inequality for supermartingales:

Theorem 4.2. Let X0, X1, X2, . . . be a supermartingale such that, for all i ∈ N, |Xi+1−Xi| ≤ ci. Then for
all n ∈ N and ε > 0, P[(Xn −X0)− E[Xn −X0] ≥ ε] ≤ exp

(
− 2ε2∑n

i=0 c
2
i

)
.

In application we will consider potential functions φ that decay exponentially, with E[φj+1] ≤ (1− ε)φj .
In this case, we will take the logarithm Φ = ln(φ), which we will show is a supermartingale upon which we
can apply Azuma’s Inequality to conclude that φ achieves a requisite amount of exponential decay.
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We will also use the following two concentration bounds on heterogeneous sums of geometric random
variables, due to Janson [39, Theorems 2.1, 3.1]:

Theorem 4.3. Let X be sum of k independent geometric random variables with success probabilities p1, ..., pk,
let µ = E[X] =

∑k
i=1

1
pi
, and let p∗ = min

1≤i≤k
pi. For all λ ≥ 1, P[X ≥ λµ] ≤ e−p

∗µ(λ−1−lnλ). For all λ ≤ 1,

P[X ≤ λµ] ≤ e−p∗µ(λ−1−lnλ).

The expression λ − 1 − lnλ is hard to work with if we are not fixing exact constant values for λ. The
following Corollary gives asymptotic approximation to the error bound:

Corollary 4.4. Let X be sum of k independent geometric random variables with success probabilities
p1, ..., pk, let µ = E[X] =

∑k
i=1

1
pi
, and let p∗ = min

1≤i≤k
pi. For any 0 < ε < 1, we have (1−ε)µ ≤ X ≤ (1+ε)µ

with probability 1− exp
(
−Θ(ε2p∗µ)

)
.

Proof. Setting λ = 1+a in Theorem 4.3, where a = ε in the upper bound and a = −ε in the lower bound, by
Taylor series approximation of ln(1 + a), λ−1−ln(λ) = a−ln(1 + a) ≥ a−(a− a2

2 + a3

3 ) = a2( 1
2−

a
3 ) = Θ(ε2).

The stated inequality then follows from Theorem 4.3.

The following lemmas give applications of Theorem 4.3 and Corollary 4.4 to common processes that we
will repeatedly analyze. When the fractions we consider are distinct and independent of n, Corollary 4.4
applies to give tight time bounds with very high probability. We also consider cases where we run a process
to completion and bring a count to 0. Here we must use Theorem 4.3 and only get a high probability bound
with times at most a constant factor above the mean.

First we consider the epidemic process, i, s → i, i, moving from a constant fraction infected to another
constant fraction infected.

Lemma 4.5. Let 0 < a < b < 1. Consider the epidemic process starting from a count of a ·n infected agents.
The expected parallel time t until there is a count b · n of infected agents is

E[t] =
ln
(
b− 1

n

)
− ln

(
1− b+ 1

n

)
− ln(a) + ln(1− a)

2
∼ ln(b)− ln(1− b)− ln(a) + ln(1− a)

2
.

Let c = min(a, 1 − b + 1
n ) and 0 < ε < 1. Then (1 − ε)E[t] < t < (1 + ε)E[t] with probability at least

1− exp
[
−Θ(ε2E[t]nc)

]
.

Proof. When there are i infected agents, the probability the next reaction infects another agent and increases
this count is i(n−i)

(n
2)

. The number of interactions T for the count to increase from a · n to b · n is a sum of

geometric random variables, with expected value

E[T ] =
b·n−1∑
i=a·n

(
n
2

)
i(n− i)

∼ 1

2

b·n−1∑
i=a·n

1
i
n (1− i

n )
∼ n

2

∫ b− 1
n

x=a

dx

x(1− x)

=
n

2
[ln(x)− ln(1− x)]

b− 1
n

a = n ·
ln
(
b− 1

n

)
− ln

(
1− b+ 1

n

)
− ln(a) + ln(1− a)

2
,

giving the stated value of E[t] after converting from interactions to parallel time. The minimum probability
p∗ = Θ(min(a, 1− b+ 1

n )), so using Corollary 4.4 we have Then (1− ε)E[t] < t < (1 + ε)E[t] with probability
at least 1− exp

[
−Θ(ε2E[T ]p∗)

]
.

Note that if a, (1 − b), ε are all constants independent of n, then the bound above is with very high
probability. If we wanted to consider the complete epidemic process (which starts with a = 1/n and ends
with (1 − b) = 1/n), we would have E[t] = Θ(log n) and minimum probability p∗ = Θ( 1

n ). Then the
probability bound would become 1 − exp[−Θ(log n)] = 1 − n−Θ(1), which is high probability, but requires
carefully considering the constants to get the exact polynomial bound. In our proofs, we only use the very
high probability case. For tight bounds on a full epidemic with precise constants, see [24,42].

Next we consider the cancel reactions a, b→ 0, 0, which are key to the majority protocol.
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Lemma 4.6. Consider two disjoint subpopulations A and B of initial sizes |A| = a ·n and |B| = b ·n, where
0 < b < a < 1. An interaction between an agent in A and an agent in B is a cancel reaction which removes
both agents from their subpopulations. Thus after i cancel reactions we have |A| = a ·n− i and |B| = b ·n− i.

The expected parallel time t until d · n cancel reactions occur, where d < b is

E[t] =
ln(b)− ln(a)− ln

(
b− d+ 1

n

)
+ ln

(
a− d+ 1

n

)
2(a− b)

.

Let c = (a− d+ 1
n )(b− d+ 1

n ) and 0 < ε < 1. Then (1− ε)E[t] < t < (1 + ε)E[t] with probability at least
1− exp

[
−Θ(ε2E[t]nc)

]
.

The parallel time t until all b · n cancel reactions occur has E[t] ∼ lnn
2(a−b) and satisfies t ≤ 5 lnn

2(a−b) with
high probability 1−O(1/n2).

Again, the first bound is with very high probability if all constants a, b, d are independent of n.

Proof. After i cancel reactions, the probability of the next cancel reaction is p ∼ 2|A|·|B|
n2 = 2(a− i

n )(b− i
n ),

and the number of interactions until this cancel reaction is a geometric random variable with mean p. The
number of interactions T for d · n cancel reactions to occur is a sum of geometrics with mean

E[T ] =

d·n−1∑
i=0

1

2(a− i
n )(b− i

n )
∼ n

∫ d− 1
n

x=0

dx

2(a− x)(b− x)
=

n

2(a− b)

∫ d− 1
n

x=0

(
1

b− x
− 1

a− x

)
dx

=
n

2(a− b)

[
− ln(b− x) + ln(a− x)

]d− 1
n

0

= n ·
ln(b)− ln(a)− ln

(
b− d+ 1

n

)
+ ln

(
a− d+ 1

n

)
2(a− b)

.

Translating to parallel time and using Corollary 4.4 gives the first result, where minimum probability p∗ =
Θ(c).

In the second case where d = b and we are waiting for all cancel reactions to occur, then

E[t] ∼ ln(b)− ln(a) + ln(n) + ln(a− b)
2(a− b)

=
lnn

2(a− b)
,

and µ = E[T ] ∼ n lnn
2(a−b) . Now the minimum geometric probability is when i = bn − 1 and p∗ ∼ 2(a−b)

n .
Choosing λ = 5 so that λ− 1− lnλ > 2, by Theorem 4.3 we have

P
[
t ≥ 5 lnn

2(a− b)

]
≤ P[T ≥ λµ] ≤ e−p

∗µ(λ−1−lnλ) = exp

(
−2(a− b)

n
· n lnn

2(a− b)
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability.

Note we get the same result for this second case also by assuming a fixed minimal fraction a − b in |A|
is always there to cancel the agents from |B|, and using the next Lemma 4.7.

Now we consider a “one-sided” cancel process, where reactions a, b → a, 0 change only the b agents into
a different state. This process happens for example when Clock agents change the hour of O agents.

Lemma 4.7. Let 0 < a, b1, b2, ε < 1 be constants with b1 > b2. Consider a subpopulation A maintaing its
size above a ·n, and B initially of size b1 ·n. Any interaction between an agent in A and in B is meaningful,
and forces the agent in B to leave its subpopulation.

The expected parallel time t until the subpopulation B reaches size b2 · n is

E[t] =
ln(b1)− ln(b2)

2a
,

and satisfies (1− ε)E[t] < t < (1 + ε)E[t] with probability at least 1− exp
[
−Θ(ε2E[t]nab2)

]
.

The parallel time t until the subpopulation B reaches size 0 has E[t] ∼ lnn
2a and satisfies t ≤ 5 lnn

2a with
high probability 1−O(1/n2).

22



Again, the first bound is with very high probability if constants a, b2 are independent of n.

Proof. When |B| = i, then the probability of a meaningful interaction p ∼ 2ia
n . Then the number of

interactions before the next meaningful interaction is a geometric with probability p, and the total number
T of interaction is a sum of geometrics with mean

E[T ] =

b1n∑
i=b2n+1

n

2ia
=

n

2a

(
b1n∑
i=1

1

i
−
b2n+1∑
i=1

1

i

)
∼ n

2a
(ln(b1n)− ln(b2n+ 1)) ∼ n

ln(b1)− ln
(
b2 + 1

n

)
2a

.

Translating to parallel time and using Corollary 4.4 gives the first result, where minimum probability
p∗ = Θ(a · b2).

In the case where b2 = 0, we have µ = E[T ] ∼ n lnn
2a and E[t] ∼ ln(n)

2a . Now the minimum geometric
probability p∗ = 2a

n . Choosing λ = 5 so that λ− 1− lnλ > 2, by Theorem 4.3 we have

P
[
t ≥ 5 lnn

2a

]
≤ P[T ≥ λµ] ≤ e−p

∗µ(λ−1−lnλ) = exp

(
−2a

n
· n lnn

2a
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability.

5 Analysis of initial phases
DefineM, C, and R to be the sub-populations of agents with roles Main, Clock, Reserve when they first set
phase = 1. Let |M| = m · n, |C| = c · n, |R| = r · n, where m+ c+ r = 1.

The population splitting of Phase 0 will set the fractions m ≈ 1
2 , c ≈

1
4 , and r ≈ 1

4 . The rules also
ensure deterministic bounds on these fractions once all RoleMCR agents have been assigned. The probability
1 guarantees on subpoplation sizes using this method will be key for a later uniform adaptation of the
protocol. We first prove the behavior of the rules used for this initial top level split in Phase 0 between the
roles Main and RoleCR.

Lemma 5.1. Consider the reactions

U,U → Sf ,Mf

Sf , U → St,Mf

Mf , U →Mt, Sf

starting with n U agents. Let u = #U , s = #Sf + #St, and m = #Mf + #Mt. This converges to u = 0
in expected time at most 2.5 lnn and in 12.5 lnn time with high probability 1 − O(1/n2). Once u = 0,
n
3 ≤ s,m ≤

2n
3 with probability 1, and for any ε > 0, n2 (1− ε) ≤ s,m ≤ n

2 (1 + ε) with very high probability.

Proof. Let sf = #Sf , st = #St,mf = #Mf ,mt = #Mt.
First we consider the interactions that happen until u = 2n/3. Note that while u ≥ 2n/3, the probability

of the first reaction is ∼
(
u
n

)2 ≥ 4
9 and the probability of the other two reactions is ∼ 2

(
u
n

)(mf+sf
n

)
≤

2 · 2
3 ·

1
3 = 4

9 . Thus until u = 2n/3, each non-null interaction is the top reaction with at least probability 1/2.
Then by standard Chernoff Bounds, with very high probability, at least a fraction 1

2 − ε of these reactions
are the top reaction, which create a count sf +mf ≥ 2

9 (1− ε)n > n
5 .

Now notice that this count sf +mf can never decrease, so we have sf +mf >
n
5 for all future interactions.

Now we can use the rate of the second and third reactions to bound the completion time. The probability
of decreasing u is at least 2

(
u
n

)
( 1

5 ), so the number of interactions it takes to decrement u is stochastically
dominated by a geometric random variable with probability p = 2u

5n . Then the number of interactions for u
to decrease from 2n

3 down to 0 is dominated by a sum T of geometric random variables with mean

E[T ] =

2n/3∑
u=1

5n

2u
=

5n

2

2n/3∑
u=1

1

u
∼ 5n

2
ln(2n/3) ∼ 5

2
n lnn.
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Now we will apply the upper bound of Theorem 4.3, using µ = 5
2n lnn, p∗ = 2

5n (when u = 1) and λ = 5,
where λ− 1− ln(λ) > 2, so we get

P[T ≥ λµ] ≤ exp(−p∗µ(λ− 1− lnλ)) ≤ exp

(
− 2

5n
· 5

2
n lnn · 2

)
= n−2.

Thus with high probability 1−O(1/n2), this process converges in at most λµ
n = 12.5 lnn parallel time.

Observe that the reactions all preserve the following invariant: sf + 2st = mf + 2mt. The probability-1
count bounds follow by observing that when u = 0 (i.e., we have converged) we have sf + st +mf +mt = n.
Maximizing s = sf + st and minimizing m = mf + m + t is achieved by setting sf = 2n/3, st = 0,mf =
0,mt = n/3, and symmetrically for maximizing m.

Assume we have s > m at some point in the execution, so sf + st > mf +mt. Subtracting the invariant
equation gives −st > −mt, which implies st < mt. Together with the first inequality this implies that
sf > mf . Thus the rate of second reaction is higher than the rate of the third reaction, so it is more likely
that the next reaction changing the value s−m decreases it.

By symmetry the opposite happens when m > s, so we conclude that the absolute value |m− s| is more
likely to decrease than increase. Thus we can stochastically dominate |m− s| by a sum of independent coin
flips. The high probability count bounds follow by standard Chernoff bounds.

Now we can prove bounds on the sizes |M| = mn, |C| = cn, |R| = rn of Main, Clock, and Reserve agents
from the population splitting of Phase 0.

Lemma 5.2. For any ε > 0, with high probability 1 − O(1/n2), by the end of Phase 0, |RoleMCR| = 0,
n
2 (1 − ε) ≤ |M| ≤ n

2 (1 + ε) and |C|, |R| ≥ n
4 (1 − ε). If |RoleMCR| = 0 and Phase 1 initializes without error,

then with probability 1, 1
3n ≤ |M| ≤

2
3n,

1
6n ≤ |R| ≤

2
3n, and 2 ≤ |C| ≤ 1

3n.

Proof. The top level of splitting of RoleMCR into RoleCR and Main is equivalent to the reactions of Lemma 5.1,
with U = RoleMCR, M = Main, S = RoleCR, and the f and t subscripts representing the Boolean value of the
field assigned. Lemma 5.1 gives the stated bounds on Main, if there were no further splitting of RoleCR.

Lemma 5.1 gives that with high probability, all RoleMCR are converted to RoleCR andMain in 12.5 lnn time;
we begin the analysis at that point, letting s be the number of RoleCR agents produced, noting n/3 ≤ s ≤ 2n/3
with probability 1, and for any ε′ n2 (1− ε′) ≤ s ≤ n

2 (1 + ε′) with high probability.
The splitting of RoleCR into Clock and Reserve follows a simpler process that we analyze here. Let r = |R|

and c = |C| at the end of Phase 0. To see the high probability bounds on r and c, we model the splitting
of RoleCR by the reaction U,U → R,C during Phase 0 and U → R at the end of Phase 0, since all un-split
RoleCR agents become Reserve agents upon leaving Phase 0.

The reaction U,U → R,C reduces the count of U from its initial value s (= n/2 ± ε′n/2 WHP) to
ε′s, with the number of interactions between each reaction when #U = l governed by a geometric random
variable with success probability O(l2/n2). Applying Corollary 4.4 with k = s − ε′s, pi = O((i + ε′s)2/n2)
for i ∈ {1, . . . , k}, the reaction U,U → R,C takes O(1) time to reduce the count of U from its initial value
m (= n/2 ± ε′n/2 WHP) to ε′m with very high probability. This implies that after O(1) time, r and c are
both at least

s/2− ε′s = s(1/2− ε′) ≥ (n/2− ε′n/2)(1/2− ε′)
= n/4− ε′n/2− ε′n/4 + (ε′)2n/2

> n/4− ε′n = n/4(1− 4ε′)

with very high probability. Choosing ε = ε′/4 gives the high probability bounds on r and c. Thus we require
12.5 lnn + O(1) ≤ 13 lnn time, and for appropriate choice of counter constant c0, this happens before the
first Clock agent advances to the next phase with high probability.

We now argue the probability-1 bounds. The bound r ≤ 2n/3 follows from |M| ≥ n/3. The bound
r ≥ n/6 follows from |M| ≤ 2n/3, so RoleCR ≥ n/3 if no U,U → R,C splits happen, and the fact that at
least half of RoleCR get converted to Reserve: exactly half by U,U → R,C and the rest by U → R.
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Although the reactions U,U → R,C and U → R can produce only a single C, there must be at least
two Clock agents for Standard Counter Subroutine to count at all and end Phase 0, so if Phase 1 initializes,
c ≥ 2. The bound c ≤ n/3 follows from the fact that c is maximized when |M| = n/3 and no U → R
reactions happen, i.e., all 2n/3 RoleCR agents are converted via U,U → R,C, leading to c = n/3.

We now reason about Phase 1, which has different behavior based on the initial gap g.

Lemma 5.3. If the initial gap |g| ≥ 0.025|M|, then we stabilize to the correct output in Phase 2. If
|g| < 0.025|M|, then at the end of Phase 1, all agents have bias ∈ {−1, 0,+1}, and the total count of biased
agents is at most 0.03|M|. Both happen with high probability 1−O(1/n2).

Proof. In the case where all agents enter Phase 1, none are still in RoleMCR, so every non-Main agent has given
their bias to a Main agent via Line 2 or Line 5 of Phase 0. Thus the initial gap g =

∑
m.role=Mainm.bias.

Let µ = b g
|M|e be the average bias among all Main agents, rounded to the nearest integer. By [45], we

will converge to have all bias ∈ {µ − 1, µ, µ + 1}, in O(log n) time with high probability 1 − O(1/n2). We
use Corollary 1 of [45], where the constant K = O(

√
n) and δ = 1

n2 . This gives that with probability 1− δ,
all bias ∈ {µ− 1, µ, µ+ 1} after a number of interactions

t ≥ (n− 1)(2 ln
(
K +

√
n
)
− ln(δ)− ln(2)) ∼ n(2 ln

(√
n
)

+ ln
(
n2
)
) = 3n lnn.

Thus after time 3 lnn, all bias ∈ {µ− 1, µ, µ+ 1} with high probability 1− 1/n2.
If |g| > 0.5|M|, then |µ| ≥ 1, so all remaining biased agents have the majority opinion, and we will

stabilize in Phase 2 to the correct majority output.
If |g| ≤ 0.5|M|, then µ = 0, so now all bias ∈ {−1, 0,+1}. We will use Lemma 4.6, with the sets of

biased agents A = {a : a.bias = +1} and B = {b : b.bias = −1}, which have initial sizes |A| = a · n and
|B| = b · n.

In the first case where 0.025|M| ≤ |g| ≤ 0.5|M|, we have a − b ≥ 0.025m (assuming WLOG that A is
the majority). Then by Lemma 4.6, with high probability 1−O(1/n2), the count of B becomes 0 in at most
time 5 lnn

2(a−b) = lnn 5
2·0.025m = 100

m lnn ≤ 201 lnn. With all minority agents eliminated, we will again stabilize
in Phase 2 with the correct output.

In the second case where |g| < 0.025|M|, we can use Lemma 4.6 with constant d = b − 0.0025m. Then
even with maximal gap a−b = 0.025m, with very high probability in constant time we bring the counts down
to b = 0.0025m and a = 0.0275m. Thus the total count of biased agents is at most (0.0025m+ 0.0275m)n =
0.03|M|.

Since all the above arguments take at most O(log n) time, for appropriate choice of counter constant c1,
the given behavior happens before the first Clock agent advances to the next phase with high probability.

6 Analysis of main averaging Phase 3
The longest part in the proof is analyzing the behavior of the main averaging Phase 3. The results of this
section culminate in the following two theorems, one for the case of an initial tie, and the other for an initial
biased distribution.

In the case of an initial tie, we will show that all biased agents have minimal exponent = −L by the end
of the phase.

Theorem 6.1. If the initial configuration was a tie with gap 0, then by the end of Phase 3, all biased agents
have exponent = −L, with high probability 1−O(1/n2).

Note that the where all biased agents have exponent = −L gives a stable configuration in the next
Phase 4, with all agents having output = T. Thus from Theorem 6.1, we conclude that from an intial tie,
the protocol will stabilize in Phase 4 with high probability. Conversely, we have already observed that this
configuration can only be reached in the case of a tie, since the sum of all biased agents would bound the
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magnitude of the initial gap |g| < 1. Thus in the other case of a majority initial distribution, the agents will
proceed through to Phase 5 with probability 1.

In this majority case, we will show that a large majority of the Main agents have opinion set to the
majority opinion and exponent ∈ {−l,−(l + 1),−(l + 2)} is in a consecutive range of 3 possible exponents,
where the value −l depends on the initial distribution. In addition, we show the upper tail above this
exponent −l is very small.

Theorem 6.2. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = blog2( g
0.4|M| )c. Let i = sign(g)

be the majority opinion and M be the set of all agents with role = Main, opinion = i, exponent ∈
{−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l
|a.bias| ≤ 0.002|M|2−l, and the

total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

Note the assumption of small initial gap g that we get from Phase 1 is just for convenience in the proof, to
reason uniformly about the base case behavior at hour h = 0 for our inductive argument. The rules of Phase 3
would also work as intended with even larger initial gaps, just requiring a variant of the later analysis to
acknowledge that the initial exponent = 0 is quite close to the final range exponent ∈ {−l,−(l+1),−(l+2)}.

6.1 Clock synchronization theorems
We will first consider the behavior of the Clock agents in Phase 3. The goal is to show their minute fields
remain tightly concentrated while moving from 0 up to kL, summarized in Theorem 6.9. See Fig. 8 for
simulations of the clock distribution. The back tail behind the peak of the minute distribution decays
exponentially, since each agent is brought ahead by epidemic at a constant rate and thus their counts each
decay exponentially. The front part of the distribution decays much more rapidly. With a fraction f of
agents at minute = i, the rate of the drip reaction is proportional to pf2. This repeated squaring leads to
the concentrations at the leading minutes decaying doubly exponentially. The rapid decay is key to showing
that very few Clock agents can get very far ahead of the rest.

While our algorithm runs for only O(log n) minutes, the clock behavior we require can be made to continue
for O(nc) minutes for arbitrary c. Our proofs rely on induction on minutes, and all results in this section
hold with very high probability. Thus, we can take a union bound over polynomially many minutes and still
keep the very high probability guarantees. If the clock runs for a superpolynomial number of minutes, the
results of this section no longer hold.

We start by consider an entire population running the clock transitions (lines 1-5 of Phase 3), so |C| = n.
The following lemmas describe the behavior of just this clock protocol. In our actual protocol, the clock
agents are a subpopulation |C| = c · n, and these clock transitions only happen when two clock agents meet
with probability

(|C|
2

)/(
n
2

)
∼ 1

c2 . This more general situation is handled in later theorems applying to our
exact protocol.

Definitions of values used in subsequent lemma statements. Throughout this section, we reference
the following quantities. For each minute i and parallel time t, define c≥i(t) = |{c : c.minute ≥ i}|/|C| to
be the fraction of clock agents at minute i or beyond at time t. Then define t+≥i = min{t : c≥i(t) > 0},
t0.1≥i = min{t : c≥i(t) ≥ 0.1} and t0.9≥i = min{t : c≥i(t) ≥ 0.9} to be the first times where this fraction becomes
positive, hits 0.1 and hits 0.9.

We first show that the c≥i+1 is significantly smaller than c≥i while both are still increasing, so the front
of the clock distribution decays very rapidly. In our argument, we consider three types of reactions that
change the counts at minutes i or above:

(i) Drip reactions i, i→ i, (i+ 1) (Line 5 in Phase 3)

(ii) Epidemic reactions j, k → j, j, for any minutes j, k with k ≤ i < j (Line 3 in Phase 3)

26



0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
Minute

0100
101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015
1016
1017

Co
un

t (
n

=
10

17
)

Clock distribution after time  30.0 ( 0.77 ln n), p=1.0
hour

2
3
4
5
6
7
8

(a) Simulating the clock rules with p = 1.
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Figure 8: Simulating the clock rules on a large population of size n = 1017, with k = 5 minutes per hour
and multiple values of p. The minute distribution gets tighter for smaller values of p. To make the hour

distribution tighter, we can also simply make k larger. The full evolution of these distributions can be seen
in the example notebook [1], along with the code that ran the large simulation to generate the data.
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(iii) Epidemic reactions j, k → j, j, for any minutes j, k with k < i ≤ j (Line 3 in Phase 3)

Note we ignore the drip reactions (i − 1), (i − 1) → (i − 1), i, which would only help the argument, but we
do not have guarantees on the count at minute i− 1.

We will try to show the relationship pictured in Fig. 8, that c≥(i+1)(t) ≈ c≥i(t)
2. One challenge here

is that this relationship will no longer hold with high probability for small values of c≥i. For example, if
c≥i(t) = n−1/2−ε, the desired relationship would require c≥i+1(t) < 1

n , meaning the count above minute i is
0. A drip reaction at minute i could happen with non-negligible probability ≈ n−2ε.

To handle this difficulty, we define the set of early drip agents D≥i+1(t), the set of agents that moved
above minute i via a drip reaction at a time ≤ t when c≥i(t) < n−0.45, or that were brought above minute
i via an epidemic reaction with another early drip agent in d≥i+1. Note that the latter group of agents
can move to minute ≥ i + 1 after time t+≥i+1. Thus, this set represents the effect of any drip reactions
that happen before c≥i(t) grows large enough for our large deviation bounds to work. We then define
d≥i+1(t) = |D≥i+1(t)|/|C| to be the fraction of early drip agents (including effects that persist beyond this
time due to epidemic reactions). The set of agents above minute i that comprise the fraction c≥(i+1) is then
partitioned into the early drip agents that comprise D≥i+1, and the rest. By first ignoring these early drip
agents D≥i+1, we can show that the rest of c≥(i+1) stays small compared to c≥i.

Lemma 6.3. With very high probability, if n−0.45 ≤ c≥i(t) ≤ 0.1, then c≥i+1(t) ≤ 0.9pc≥i(t)
2 + d≥i+1(t).

Proof. The proof will proceed by induction on time t. As a base case, for all t such that c≥i(t) < n−0.45, the
statement holds simply by definition of d≥i+1(t), which is equal to c≥i+1(t).

For the inductive step, to show the relationship c≥(i+1)(t) < 0.9pc≥i(t)
2 + d≥i+1(t) holds at time t, we

will use the inductive hypothesis that c≥(i+1)(t− 0.1) < 0.9pc≥i(t− 0.1)2 + d≥i+1(t− 0.1). Let x(t) = c≥i(t)
and y(t) = c≥i+1(t)− d≥i+1(t), so we need to show y(t) < 0.9px(t)2.

We first lower bound how much x(t) grows by epidemic reactions, in order to show x(t− 0.1) < 0.84x(t).
Using Lemma 4.5, the expected amount of time for an epidemic to grow from fraction 0.84x to x is

1

2

[
ln(x)− ln(0.84x) + ln

(
1− 0.84x

1− x

)]
≤ 1

2

[
− ln(0.84) + ln

(
1− 0.84 · 0.1

1− 0.1

)]
< 0.096,

where we used the fact that 1−0.84x
1−x is nondecreasing and x(t) ≤ 0.1.

The minimum probability p∗ is Θ(x(t)) = Ω(n−0.45), and the expected number of interactions µ is Θ(n).
So the application of Theorem 4.3 will give probability 1− e−Ω(n0.55) for the epidemic to have grown enough
within time 0.1. Thus x(t− 0.1) < 0.84x(t) with very high probability.

Next we bound how much y(t) grows, by both epidemic reactions and drip reactions. The probability of a
drip reaction is at most px(t)2, so the expected number of drip reactions in time 0.1 is 0.1px(t)2. A standard
Chernoff bound then gives that there are at most 0.11px(t)2 drip reactions with very high probability. We
assume in the worst case all these drip reactions happen at time t − 0.1, and then y grows by epidemic
starting from z = y(t− 0.1) + 0.11px(t)2.

By Lemma 4.5, the expected amount of time for an epidemic to grow from fraction z to 1.23z is

1

2

[
ln(1.23z)− ln(z) + ln

(
1− z

1− 1.23z

)]
≥ 1

2
ln(1.23) > 0.103.

The minimum probability p∗ = Ω(x(t)2) = Ω(n−0.9), and the expected number of interactions µ = Θ(n). So
the application of Theorem 4.3 will give probability 1− e−Ω(n0.1). Thus with very high probability

y(t) ≤ 1.23[y(t− 0.1) + 0.11px(t)2]

≤ 1.23[0.9px(t− 0.1)2 + 0.11px(t)2]

≤ 1.23[0.9p(0.84x(t))2 + 0.11px(t)2] < 0.9px(t)2.
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In order to bound c≥(i+1)(t) as a function of c≥i(t) only (Theorem 6.5), we need to bound how large the
set D≥i+1 of early drip agents can be. The strategy will be to show there is not enough time for the set
D≥i+1 to grow very large starting from t+≥i+1, the first time any agent appears at minute ≥ i + 1 (i.e., the
first drip reaction into minute i+1), because there are only O(log log n) minutes in the front tail (see Fig. 8),
so the time between t+≥i+1 and t0.1≥i+1 is O(log log n).

We will first need an upper bound on how long it takes the clock to move from one minute to the next.

Lemma 6.4. t0.1≥i+1 − t0.1≥i ≤ 2.11 + 1
2 ln

(
1
p

)
with very high probability.

Proof. First we argue that c≥i+1(t0.1i + 1
2 ) > 0.0045p. If not, the count at minute i, c≥i(t) − c≥i+1(t) >

0.1 − 0.0045 = 0.0955 for all t0.1i < t < t0.1i + 0.5. Then, the probability of a drip reaction is at least
0.09552p > 0.0091p. By standard Chernoff bounds, we then have that in time 1

2 , there are at least 0.0045p
drip reactions with very high probability. Thus c≥i+1(t0.1i + 1

2 ) > 0.0045p from just those drip reactions
alone.

Now we argue that the amount of time it takes for epidemic reactions to bring c≥(i+1) up to 0.1. By
Lemma 4.5, the expected amount of time for an epidemic to grow from fraction 0.0045p to 0.1 is

1

2
[ln(0.1)− ln(0.0045p) + ln(1− 0.0045p)− ln(0.9)] <

ln(0.1)− ln(0.0045)− ln(0.9)

2
− ln p

2
< 1.603− ln p

2
.

As long as p = Θ(1), then the minimum probability p∗ = Θ(p) is constant, and by Lemma 4.5, the
epidemic takes at most time 1.61− ln p

2 with very high probability.

In total, we then get that t0.1i+1 − t0.1i ≤ 0.5 + 1.61− ln p
2 = 2.11 + 1

2 ln
(

1
p

)
with very high probability.

Proving that the set D≥i+1 remains small will let us prove the main theorem about the front tail of the
clock distribution:

Theorem 6.5. With very high probability, if n−0.4 ≤ c≥i(t) ≤ 0.1, then c≥(i+1)(t) < pc≥i(t)
2.

Proof. The proof will proceed by induction on the minute i, where the base case is vacuous because c≥0(0) =
1, so c≥0(t) > 0.1 for all times t.

The inductive hypothesis will use two claims. The first is that the time t0.1≥i −t
+
≥i = O(log log n) for minute

i. The second is that d≥i+1(t0.1≥i ) = O(n−0.85). Note that using this second claim along with Lemma 6.3
proves the Theorem statement at minute i: when n−0.4 ≤ c≥i(t) ≤ 0.1, by Lemma 6.3 we have

c≥(i+1)(t) < 0.9pc≥i(t)
2 + d≥i+1(t) ≤ pc≥i(t)2,

because c≥i(t)2 ≥ n−0.8, so the d≥i+1 term is negligible for sufficiently large n.
We will prove the first claim in two parts. First we argue that t0.1≥i − t

+
≥i = O(log log n), because the width

of the front tail is at most 2 log log n. We will show that at t+≥i, when the first agent arrives at minute = i,
we already have c≥j(t+≥i) ≥ 0.1, where j = i− 2 log log n (for i < 2 log log n, we just have j = 0 and there is
nothing to show because the width of the front tail can be at most i). First we move log log n levels back to
k = i− log log n, to show c≥k(t+≥i) ≥ n−0.4.

Assume, for the sake of contradiction that c≥k(t+≥i) < n−0.4. Between t+≥k and tn
−0.4

≥k , consider the
number of drips that happen from levels k + 1 and above. By the inductive hypothesis, we have c≥k+1(t) ≤
pc≥k(t)2 < n−0.8 during this whole time. Thus in any interaction of this period the probability of a drip
above level k + 1 is at most p · (n−0.8)2 ≤ n−1.6. The interval length is tn

−0.4

≥k − t+≥k = O(log log n) by the
inductive hypothesis, so the probability of having at least log log n drips during this interval is at most(

O(n log log n)

log log n

)
(n−1.6)log logn ≤

(
O(n log logn)

n1.6

)log logn

= n−ω(1).
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This implies c≥i(tn
−0.4

≥k ) = 0 with very high probability.
Thus with very high probability, we already have c≥k(t+≥i) ≥ n−0.4. Then we can iterate the inductive

hypothesis cl(t) ≤ p(cl−1(t))2 for the log log n minutes l = k, k − 1, . . . , j, which implies c≥j(t+≥i) ≥ 0.1.
Now that we have shown the width of the front tail is at most 2 log log n, we use Lemma 6.4, which shows
that each minute takes O(1) time, so it takes O(log log n) time between t+≥i when the first agent gets to
minute = i and t0.1≥i , when the fraction at minute ≥ i reaches 0.1.

Now we prove the second claim, arguing that in this O(log log n) time, d≥i+1 can grow to at most
O(n−0.85). By definition of d≥i+1, the drip reactions that increase d≥i+1 happen with probability at most
p(n−0.45)2 = pn−0.9. By a standard Chernoff bound, the number of drip reactions in O(log log n) time is
O(log log n · n−0.9) = O(n−0.89). Then we assume in the worst case this maximal number of drip reactions
happen, and then d≥i+1 can grow by epidemic. By Lemma 4.5, the time for an epidemic to grow from
fraction O(n−0.89) to Ω(n−0.85) is Ω(log n) > O(log log n) with very high probability. Thus, with very high
probability, we still have d≥i+1 = O(n−0.85) within O(log log n) time.

Now the relationship proven in Theorem 6.5 implies that c≥(i+1)(t
0.1
≥i ) ≤ 0.01p. We can now use this

bound to get lower bounds on the time required to move from one minute to the next.

Lemma 6.6. With very high probability, t0.1i+1 − t0.1i ≥ 1
2 ln
(

1 + 2
9p

)
− 0.01.

Proof. We start at time t0.1≥i , where by Theorem 6.5 we have c≥i+1(t0.1≥i ) ≤ 0.01p with very high probability.
Define x = x(t) = c≥i(t) and y = y(t) = c≥i+1(t). The number of interactions for Y = yn to increase

by 1 is a geometric random variable with mean 1
P[(i)]+P[(ii)] , where the drip reaction (i) has probability

P[(i)] ∼ p(x − y)2 ≤ p(1 − y)2 and the epidemic reaction (ii) has probability P[(ii)] ∼ 2y(1 − y). Assuming
in the worst case that y(t0.1i ) = 0.01p, then the number of interactions T = (t0.1i+1 − t0.1i )n for Y to increase
from 0.1pn to 0.1n is a sum of independent geometric random variables with mean

E[T ] ≥
0.1n−1∑
Y=0.01pn

1

p(1− Y/n)2 + 2(Y/n)(1− Y/n)
∼ n

∫ 0.1

0.01p

dy

p(1− y)2 + 2y(1− y)

= n

∫ 0.1

0.01p

dy

(1− y)(p+ (2− p)y)
= n

∫ 0.1

0.01p

1/2

1− y
+

1− p/2
p+ (2− p)y

dy

= n

[
−1

2
ln(1− y) +

1

2
ln (p+ (2− p)y)

]0.1

0.01p

=
n

2
[− ln(0.9) + ln(1− 0.01p) + ln(p+ 0.1(2− p))− ln(p+ 0.01p(2− p))]

=
n

2

[
− ln(0.9) + ln

(
1− 0.01p

p− 0.01p2 + 0.02p

)
+ ln(0.9p+ 0.2)

]
≥ n

2

[
− ln(0.9) + ln

(
0.9p+ 0.2

1.02p

)]
≥ n

2

[
−0.02 + ln

(
1 +

2.04

9p

)]
Note that the probability in the geometric includes the term p(1 − y)2 ≥ 0.81p since y ≤ 0.1, thus the

minimum geometric probability p∗ ≥ 0.81p is bounded by a constant. Also the mean µ = Θ(n) so by
Corollary 4.4, P[T ≤ n(−0.01+ 1

2 ln
(

1 + 2
9p

)
] ≤ exp(−Θ(n)), so the time t0.1i+1− t0.1i = T/n ≥ 1

2 ln
(

1 + 2
9p

)
−

0.01 with very high probability.

The worst case upper bound for the dripping probability, p(1− y)2, used in the above Lemma, is weakest
when p = 1. We now give a special case lower bound that is stronger in the deterministic case with p = 1.

Lemma 6.7. With very high probability, t0.1i+1 − t0.1i ≥ 0.45.
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Proof. We assume in the worst case that p = 1. Then by Theorem 6.5, we have c≥i+1(t0.1i ) ≤ 0.01. This
initial fraction will grow by epidemic to at most 0.01 ·e2·0.45(1+ ε) with very high probability by Lemma 4.5.
We must also consider all agents that later make it to minute i+ 1 by a drip reaction, and how much they
grow by epidemic.

By time t0.1i +s, the fraction c≥i could have increased to at most 0.1+s, since at most 1 agent can increase
its minute in each interaction. Then the probability of a drip reaction at this time is at most (0.1 + s)2.
By standard Chernoff bounds, there will be at most (1 + ε)(0.1 + s)2n0.5 drip reactions in the next n0.5

interactions with very high probability. Then by Lemma 4.5, these agents can grow by epidemic by at most
a factor (1 + ε)e2·(0.45−s) by time t0.1i + 0.45, with very high probability. Summing over consecutive groups
of n0.5 interactions at time i · n

0.5

n and using the union bound, we get a total bound

c≥i+1(t0.1i + 0.45) ≤ 0.01 · e2·0.45(1 + ε) +

0.45n0.5∑
i=0

(1 + ε)(0.1 + n−0.5i)2n0.5 · e2·(0.45−n−0.5i)

∼ (1 + ε) · e0.9

[
0.01 +

∫ 0.45

0

(1 + s)2e−2sds

]
≤ 0.45.

We now summarize all bounds on the length of a clock minute in a single theorem:

Theorem 6.8. Let t0.1≥i+1− t0.1≥i be the time between when a fraction 0.1 of agents have minute ≥ i and when
a fraction 0.1 of agents have minute ≥ i+ 1. Then with very high probability,

max

(
0.45,

1

2
ln

(
1 +

2

9p

)
− 0.01

)
≤ t0.1≥i+1 − t0.1≥i ≤ 2.11 +

1

2
ln

(
1

p

)
These bounds are shown in Fig. 9, along with sampled minute times from simulation. This suggests the

actual time per minute is roughly 0.75 + 1
2 ln
(

1
p

)
.
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Figure 9: The upper and lower bounds from Theorem 6.8 for the time of one clock minute, along with samples
from simulation. For each value of n, 100 minute times were sampled, taking t0.1i+1 − t0.1i for i = 9, . . . , 18
over 10 independent trials. All our proofs assume p is constant, and for any fixed value of p, will only hold
for sufficiently large n. The case n = 103 shows that when p = O(1/n), the bounds no longer hold. This is
to be expected because the expected number of drips becomes too small for large deviation bounds to still
hold.

We can now build from these theorems to get bounds on the values of hour. For a clock agent a, define
a.hour = ba.minutek c. Define starth = min

(
t : |{a : a(t).hour ≥ h}| ≥ 0.9|C|

)
be the first time when the
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fraction of clock agents at hour h or beyond reaches 0.9 and endh = min
(
t : |{a : a(t).hour > h}| ≤ 0.001|C|

)
be the first time when the fraction of clock agents beyond hour h reaches 0.001. Define the synchronous
hour h to be the parallel time interval [starth, endh], i.e. when fewer than 0.1% are in any hour beyond h
and at least (90 - 0.1) = 89.9% are in hour h. Note that if endh < starth then this interval is empty, but we
show this happens with low probability. We choose the threshold 0.001|C| to be a sufficiently small constant
for later proofs.

Recall c = |C|/n is the fraction of clock agents and k is the number of minutes per hour.

Theorem 6.9. Consider a fraction c of agents running the clock protocol, with p = 1. Then for every
synchronous hour h, its length endh − starth ≥ 1

c2 [0.45k− 3.1], with very high probability. The time between
consecutive synchronous hours starth+1 − starth ≤ 1

c2 [2.11k + 2.2] with very high probability.

Proof. Note that the previous lemmas assumed |C| = n, so the entire population was running the clock
algorithm. In reality, we have a fraction c = |C|/n of clock agents. The reactions we considered only happen
between two clock agents, which interact with probability ∼ c2. Thus we can simply multiply the bounds
from our lemmas by the factor 1

c2 to account for the number of regular interactions for the requisite number
of clock interactions to happen, which is very close to its mean with very high probability by standard
Chernoff bounds.

Because our definition references time t0.9≥i when the fraction reaches 0.9, we will first bound the time it
takes an epidemic to grow from 0.1 to 0.9. By Lemma 4.5, this takes parallel time t, where

E[t] ∼ ln(0.9)− ln(1− 0.9)− ln(0.1) + ln(1− 0.1)

2
= ln(9) < 2.2.

Since ln(9)(1 + ε) < 2.2, this completes within parallel time 2.2 with very high probability.
Since c.hour = h ⇐⇒ hk ≤ c.minute < (h + 1)k, the times starth = t0.9hk and endh = t0.001

hk . For the
upper bound, by Lemma 6.4 we have t0.1i+1− t0.1i ≤ 2.11/c2 with very high probability. We start at t0.9hk ≥ t0.1hk ,
and sum over the k minutes in hour h, then add at most time 2.2

c2 between t0.1(h+1)k and t0.1(h+1)k. This gives
that starth+1 − starth ≤ 1

c2 [2.11k + 2.2] with very high probability.
For the lower bound, by Theorem 6.5, at time t0.1(h+1)k−2, we have c≥(h+1)k ≤ (0.12)2 = 10−4 < 0.001, so

t0.1(h+1)k−2 < endh. Then starth ≤ t0.1hk + 2.2
c2 . Using Lemma 6.7, we have t0.1i+1 − t0.1i ≤ 0.45/c2 with very high

probability, for each i = hk, . . . , hk + k − 3. All together, this gives endh − starth ≥ 1
c2 [0.45(k − 2)− 2.2] =

1
c2 [0.45k − 3.1].

We will set k = 45 to give us sufficiently long synchronous hours for later proofs. Since every hour takes
constant time with very high probability, all L hours will finish within O(log n) time.

We finally show one more lemma concerning how the Clock agents affect the Main agents. The Clock
agents will change the hour of the O agents via Line 9 of Phase 3. There are a small fraction 0.001|C| of
Clock agents that might be running too fast and thus have a larger hour than the synchronized hour. We
must now show these agents are only able to affect a small fraction of the Main agents. Intuitively, the Clock
agents with hour > h bring up the hour of both O agents and other Clock agents. The following lemma will
show they don’t affect too many Main agents before also bringing in a large number of Clock agents.

We will redefine c>h = c>h(t) = |{c : c.hour > h}|/|C| to be the fraction of Clock agents beyond hour h,
and similarly m>h = m>h(t) = |{m : m.hour > h}|/|M| to be the fraction of Main agents beyond hour h.

Lemma 6.10. For all times t ≤ endh, we have m>h(t) ≤ 1.2c>h(endh) = 0.0012 with very high probability.

Proof. We have c>h(endh) = 0.001 by the definition of synchronous hour h. Thus it suffices to show that
m>h(t) ≤ 1.2c>h(endh).

Recall c = |C|/n and m = |M|/n, so c · c>h and m · m>h are rescaled to be fractions of the whole
population.

We will assume in the worst case that every Main agent can participate in the clock update reaction

Ch,Mj → Ch,Mh where h > j,
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so the probability of clock update reaction is 2c ·c>h ·m(1−m>h). Among the Clock agents, we will now only
consider the epidemic reactions Ch, Cj → Ch, Ch between agents in different hours h > j, so the probability
of the clock epidemic reaction is 2c2 · c>h(1− c>h).

We use the potential Φ(t) = m>h(t) − 1.1 · c>h(t). Note that initially Φ(0) = 0 since both terms are
0. The desired inequality is Φ(endh) ≤ 0.1c>h(endh) = 0.0001, and we will show this holds with very high
probability by Azuma’s Inequality because Φ is a supermartingale. The clock update reaction increases Φ
by 1
|M| = 1

mn . The clock epidemic reaction decreases Φ by 1.1
|C| = 1.1

cn . This gives an expected change

E[Φ(t+ 1/n)− Φ(t)] =
1

mn
[2c · c>h ·m(1−m>h)]− 1.1

cn

[
2c2 · c>h(1− c>h)

]
=

2c · c>h
n

[(1−m>h)− 1.1(1− c>h)]

≤ 2c · c≥i
n

[1− 1.1(0.999)] < 0.

Thus the sequence
(
Φj = Φ( jn )

)n·endh

j=0
is a supermartingale, with bounded differences |Φj+1 − Φj | ≤

max
(

1
mn ,

r
cn

)
= O( 1

n ). So we can apply Azuma’s Inequality (Theorem 4.2) to conclude

P[Φn·endh
≥ δ] ≤ exp

(
− δ2

2
∑n·endh

j=0 O( 1
n )2

)
= exp

(
−O(n)δ2

)
,

since by Theorem 6.9, we have time endh = O(1) with very high probability. Thus we can choose δ =
0.1c>h(endh) = 0.0001 to conclude thatm>h(endh) ≤ 1.2c>h(endh) with very high probability 1−exp(−Ω(n)) =
1−O(n−ω(1)).

The lemma statement for times t ≤ endh simply follows from the monotonicity of the value m>h, since
agents only decrease their hour field.

6.2 Phase 3 exponent dynamics
We now analyze the behavior of the Main agents in Phase 3. We will show their exponent fields stay roughly
synchronized with the hour of the Clock agents, decreasing from 0 toward −L. We first use the above results
on the clock to conclude that during synchronous hour h, the tail of either O agents with hour > h or biased
agents with exponent < −h is sufficiently small.

Lemma 6.11. Until time endh, the count |{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤ 0.0024|M| with
very high probability.

Proof. By Lemma 6.10, the count of O agents that have been pulled up by a Clock agent to hour > h is at
most 0.0012|M| with very high probability. Each of these agents could participate in a split reaction that
results in two biased agents with exponent < −h, increasing the total count of |{O : O.hour > h} ∪ {b :
b.exponent < −h}| by 1. Thus this total count can be at most twice as large: ≤ 0.0024|M|.

Our main argument will proceed by induction on synchronous hours. During each synchronous hour h,
we will first show that at least a constant fraction 0.77|M| of agents have bias = T with hour = h. Then
we will show that split reactions bring most biased agents down to exponent = −h. Finally we will show
that cancel reactions will reduce the count of biased agents, leaving sufficiently many O agents for the next
step of the induction.

Recall that the initial gap

g = (|{a : a.input = A}| − |{b : b.input = B}|) =
∑

m.role=Main

m.bias

is both the difference between the counts of A and B agents in the initial configuration and the invariant value
of the total bias. We define β+ = β+(t) =

∑
a.opinion=+1 |a.bias| and β− = β−(t) =

∑
b.opinion=−1 |b.bias|

33



to be the total unsigned bias of the positive A agents at time t and negative B agents at time t. Then the
net bias g = β+ − β− is the invariant.

We also define µ = µ(t) = β+ + β− to be the total unsigned bias, which we interpret as “mass”. Note
that split reactions preserve µ, while cancel reactions strictly decrease µ. The initial configuration has mass
µ(0) = n, and if we eliminate all of the minority opinion then we will get β− = 0 and µ = g. Thus decreasing
the mass shows progress toward reaching consensus. Also, if every biased agent decreased their exponent
by 1, this would exactly cut the µ in half. We will show an upper bound on µ that cuts in half after each
synchronous hour, which implies that on average all biased agents are moving down one exponent.

We also define µ(>−i)(t) =
∑
m.exponent>−i |m.bias| as the total mass of all biased agents above exponent

−i. Note that a bound µ(>−i) ≤ x2−i+1 gives a bound on total count |{a : a.exponent > −i}| ≤ x, since
even if all agents above exponent −i + 1 split down to exponent −i + 1, they would have count at most x.
Also note that µ(t) and µ(>−i)(t) are nonincreasing in t, since the mass above a given exponent can never
increase.

This inductive argument on synchronous hours will stop working once we reach a low enough exponent
that the gap has been sufficiently amplified. We define gi = g · 2i, which we call the relative gap to hour i
/ exponent −i, because if all agents had exponent = −i, then a gap gi = |{a : a.opinion = +1}| − |{b :
b.opinion = −1}| would maintain the invariant g =

∑
v v.bias =

∑
a.opinion=+1

1
2i −

∑
b.opinion=−1

1
2i = gi

2i .
Note that g0 = g, and the relative gap doubles as we increment the hour and decrement the exponent. So
if the Main agents have roughly synchronous exponents, there will be some minimal exponent where the
relative gap has grown to exceed the number of Main agents |M|, and there are not enough agents available
to maintain the invariant using lower exponents.

We now formalize this idea of a minimal exponent. In the case where there is an initial majority, gi 6= 0,
and because we assume the majority is A, we have gi > 0. Define the minimal exponent −l = blog2( g

0.4|M| )c
to be the unique exponent corresponding to relative gap 0.4|M| ≤ gl < 0.8|M|. For larger exponents
−i ≥ −l + 5 = −(l − 5), we have gi ≤ gl−5 < 0.025|M|. Thus for hours 0, 1, . . . , l − 5 and exponents
0,−1, . . . ,−l + 5, the gap is still very small. The small gap makes the inductive argument stronger, and we
will use this small gap to show a high rate of cancelling keeps shrinking the mass µ in half each hour and
keeps the count of O agents large, above a constant fraction 0.77|M|.

For the last few hours l− 4, . . . , l and exponents −l+ 4, . . . ,−l, the doubling gap weakens the argument.
Thus we have separate bounds for each of these hours. These weaker bounds acknowledge the fact that the
majority count is starting to increase while the count of O agents is starting to decrease.

Theorem 6.12. With very high probability the following holds. For all synchronous hours h = 0, . . . , l,
during times [starth + 2

c , endh], the count Oh of O agents at hour = h, obeys |Oh| ≥ τh|M|. Then by
time starth + 2

c + 41
m , the mass µ(>−h) above exponent −h satisfies µ(>−h) ≤ 0.001 · 2−h+1. Then by time

starth + 2
c + 47

m ≤ endh, the total mass µ(endh) ≤ ρh|M|2−h.
The constant ρh = 0.1 for h ≤ l−5. Then we have ρl−4 = 0.104, ρl−3 = 0.13, ρl−2 = 0.212, ρl−1 = 0.408,

and ρl = 0.808.
The constant τh ≥ 0.97− 2ρ(h−1), so τh ≥ 0.77 for h ≤ l − 4, and the minimum value τl ≥ 0.15.

Note that in the case of a tie, l is undefined since we always have gap gi = 0. Here the stronger inductive
argument will hold for all hours and exponents. In the tie case, we will technically define l = L + 5 so the
stronger h ≤ l − 5 bounds apply to all hours.

We will prove the three sequential claims via three separate lemmas. The first argument of Lemma 6.13,
where the clock brings a large fraction of O agents up to hour h, will need parallel time 2

c . The second
argument of Lemma 6.15, where the O agents reduce the mass above exponent −h by split reactions, will
need parallel time 41

m . The third argument of Lemma 6.16, where cancel reactions at exponent −h reduce
the total mass, will need parallel time 6

m . Thus the total time we need in a synchronous hour is

2

c
+

47

m
≤ 49

c
≤ 17

c2
≤ 0.45 · 45− 3.1

c2
,

where we use that c < 1
3 < m by Lemma 5.2. Thus by Theorem 6.9, since we have constant k = 45 minutes

per hour, each synchronous hour is long enough with very high probability.
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The argument proceeds by induction, with each lemma using the previous lemmas and the inductive
hypotheses at previous hours. The base case comes from Lemma 5.3, where we have that the initial gap
|g| < 0.025m, so l − 5 ≥ 0, and the starting mass is at most 0.03|M|. This mass bound gives the base case
for Lemma 6.16, whereas since h = 0 is the minimum possible hour, the base cases for Lemma 6.13 and
Lemma 6.15 are trivial.

Lemma 6.13. With very high probability the following holds. For each hour h = 0, . . . , l, during the whole
synchronous hour [starth, endh], the count of O agents |O| ≥ (0.9976 − 2ρ(h−1))|M|. Then during times
[starth + 2

c , endh], the count of O agents at hour = h, |Oh| ≥ (0.97− 2ρ(h−1))|M|.

Proof. We show the first claim, that during synchronous hour h, the count |O| ≥ (0.9976− 2ρ(h−1))|M| by
process of elimination. By Lemma 6.16, by time endh−1 < starth, the total mass µ ≤ ρ(h−1)|M|2−h+1, which
implies the total count {a : a.exponent ≥ −h} ≤ 2ρ(h−1)|M| in all future configurations, since total mass is
nonincreasing. Then by Lemma 6.11, the count |{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤ 0.0024|M|
until time endh. This leaves |M|− 0.0024|M|− 2ρ(h−1)|M| = (0.9976− 2ρ(h−1))|M| agents who must be O
agents with hour ≥ h until time endh.

By definition of time starth, there are at least 0.9|C| Clock agents with hour ≥ h that will bring these
O agents up to hour = h. We need to bring all but 0.0276|M| of these agents up to hour = h to achieve
the desired bound |Oh| ≥ (0.97 − 2ρ(h−1))|M|. We can apply Lemma 4.7, with a = 0.9c, b1 = (0.9976 −
2ρ(h−1))m < (0.9976 − 2 · 0.1)m, and b2 = 0.0276m to conclude this happens after parallel time t, where
t < (1 + ε)E[t] with very high probability. The expected time

E[t] =
ln(b1)− ln(b2)

2a
≤ ln(0.7976m)− ln(0.0276m)

2 · 0.9c
≤ 1.89

c
.

Thus for small constant ε > 0, we have t < (1 + ε) 1.89
c < 2

c with very high probability.

In order to reason about the total mass µ(>−h) above exponent −h, we will define the potential function
φ(>−h), where for a biased agent a with a.exponent = −i ≥ −h+ 1 at time t, φ(>−h)(a, t) = 4−i+h−1. The
global potential

φ(>−h)(t) =
∑

a.exponent>−h

φ(a, t) ≥
∑

a.exponent>−h

4−h+1+h−1 = |{a : a.exponent > −h}|.

Since φ(>−h) upper bounds the count above exponent h, we can bound the mass µ(>−h)(t) ≤ 2−h+1φ(>−h)(t).
Also note that unlike the mass, φ(>−h)(t) strictly decreases via split reactions since 4−i > 4−i−1 + 4−i−1.
This will let us show that φ(>−h) exponentially decays to 0 when there are a constant fraction of O agents
to do these splits.

We first show that by hour h exponents significantly far above −h are empty. Letting q = b lnn
3 c, we will

show the potential φ(>−h+q) hits 0 by hour h.

Lemma 6.14. For each hour h = 0, . . . , l, by time starth + 2
c , the maximum level among all biased agents

is at most −h+ q with high probability 1−O(1/n12).

Proof. The statement is vacuous for hours h < q, so we must only consider hours h ≥ q. We use the potential
φ(>−h+q), and start the argument at time tstart = start(h−q) + 2

c + 41
m where inductively by Lemma 6.15

φ(>−h+q)(tstart) ≤ 0.001|M|. We must show that by time tend = starth + 2
c , we have φ(>−h+q)(tend) = 0.

By Lemma 6.13, the count of O agents with hour ≥ h− q, |O(≥h−q)| ≥ 0.77|M| during all synchronous
hours after start(h−q) + 2

c and up through synchronous hour l − 5 ≥ h − 5. Thus the interval we consider
consists of at least q − 5 synchronous hours. By Theorem 6.9, each synchronous hour takes at least time
[1.48(45 − 2) − 2.2]/c2 ≥ 17/c2 ≥ 51/m, since c < 1

3 < m by Lemma 5.2. Thus the total time for this
argument is at least tend − tstart ≥ 51(q−5)

m time.
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For each of the 51(q−5)
m n interactions in this interval, we consider the expected change to φ(>−h+q).

For each biased agent a with a.exponent = −i > −h + q, a split reaction will change the potential by
∆φa ≤ 4h−1(2 · 4−i−1 − 4−i) = 4h−1(− 1

24−i) = − 1
2φa. Then in each interaction at parallel time t, the

expected change in the potential

E[φ(>−h+q)(t+ 1/n)− φ(>−h+q)(t)] ≤
∑

a.exponent>(−h+q)

P[a splits] ·∆φa

≤
∑

a.exponent>(−h+q)

2 · 0.77m

n
· −1

2
φa = −0.77m

n
φ(>−h+q)(t).

Then we have E[φ(>−h+q)(t+ 1/n)|φ(>−h+q)(t)] ≤ (1− 0.77m
n )φ(>−h+q)(t).

We now recursively apply this bound to all 51(q−5)
m n interactions beginning at time tstart:

E
[
φ(>−h+q)(tend)|φ(>−h+q)(tstart)

]
≤
(

1− 0.77m

n

) 51(q−5)
m n

φ(>−h+q)(tstart)

E
[
φ(>−h+q)(tend)

]
≤ exp(−0.77 · 51 lnn/3) · exp(51 · 5 · 0.77) · 0.001|M|
≤ n−13 exp(197) · 0.001mn

= O
(
n1−13

)
= O

(
n−12

)
.

Finally, since φ(>−h+q) takes nonnegative integer values, we can apply Markov’s Inequality to conclude
P[φ(>−h+q)(tend) > 0] = O(1/n12).

Now we can reason about the potential φ(>−h) during hour h, which will decrease by a large constant
factor. The upper bound on φ(>−h) gives the a bound on the mass of the upper tail µ(>−h).

Lemma 6.15. For each hour h = 0, . . . , l, by time starth + 2
c + 41

m , the potential φ(>−h) ≤ 0.001|M| with
very high probability. This implies the mass above exponent −h is µ(>−h) ≤ 0.001|M|2−h+1.

Proof. By Lemma 6.13, after time starth + 2
c , we have a count |Oh| ≥ τh|M|, where the weakest bound is

at hour l, where τl = 0.15.
Inductively, we have φ(>−h+1)(starth) ≤ 0.001|M| by time start(h−1) + 2

c + 41
m . By Lemma 6.16, by

time end(h−1), the total mass µ ≤ ρ(h−1)|M|2−h+1 ≤ ρ(l−1)|M|2−h+1. Thus there are at most ρ(l−1)|M| =
0.408|M| biased agents with exponent −h + 1, which lets us bound the potential φ(>−h)(starth + 2

c ) ≤
(0.408 + 4 · 0.001)|M| = 0.412|M|. Thus we must drop the potential by the constant factor 412.

To show that φ drops by a constant factor, we will use Φ(t) = ln
(
φ(>−h)(t)

)
, which will be a supermartin-

gale. If agent a at with exponent −i splits, with φa = 4−i+h−1, this changes the potential φ by ∆φa = − 1
2φa.

The potential Φ then changes by

∆Φa = ln
(
φ(>−h) + ∆φa

)
− ln

(
φ(>−h)

)
= ln

(
1 +

− 1
2φa

φ(>−h)

)
≤ − φa

2φ(>−h)
.

The expected change in Φ is then

E[∆Φ] ≤
∑

a.exponent>−h

P[a splits] ·∆Φa ≤
∑

a.exponent>−h

2τhm

n
· − φa

2φ(>−h)
= −0.15m

n
.

We define the supermartingale (Φj)
41
m n
j=0, where Φj = Φ(starth + 2

c + j
n ). Then the desired inequality is

φ>(h+1)(starth + 2
c + 41

m ) ≤ 0.001|M| ≤ φ>(h+1)(starth + 2
c )/412, so we need to show Φ 41

m n − Φ0 ≤ ln
(

1
412

)
.

The expected value

E[Φ 41
m n − Φ0] ≤ −0.15m

n
· 41

m
n = −6.15 ≤ ln

(
1

412

)
− 0.12.
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To apply Azuma’s Inequality, we will need a bound on the difference |Φj+1 − Φj | ≤ max
∣∣∣ φa

2φ(>−h)

∣∣∣.
During the interval we consider, φ(>−h) ≥ 0.001|M|, since after that the desired inequality will hold. By
Lemma 6.14, by time starth+ 2

c , the maximum exponent in the population is at most −h+q, where q = b lnn
3 c,

so φa ≤ 4(−h+q)+h−1 = 4q−1. Using the fact that 4q = eln 4 lnn/3 = O(n0.47), we can bound the largest change
in Φ as

|Φj+1 − Φj | ≤
4q−1

0.002|M|
= O

(
4q

n

)
= O(n0.47/n) = O(1/n0.53).

Now by Azuma’s Inequality (Theorem 4.2) we have

P
[
(Φ 41

m n − Φ0)− E[Φ 41
m n − Φ0] ≥ 0.12] ≤ exp

− 0.122

2
∑ 41

m n
j=0(O(n−0.53))2

 = exp
(
−Θ(n0.06)

)
.

Thus φ(>−h) will drop by at least the constant factor 412 with very high probability, giving φ(>−h)(starth +
2
c + 41

m ) ≤ 0.001|M|.

Lemma 6.16. For each hour h = 0, . . . , l, by time starth + 2
c + 47

m ≤ endh, the total mass µ ≤ ρh|M|2−h
with very high probability. The constant ρh = 0.1 for all h ≤ l+ 5, then the last few constants ρl−4 = 0.104,
ρl−3 = 0.13, ρl−2 = 0.212, ρl−1 = 0.408, and ρl = 0.808.

Proof. We start the argument at time starth + 2
c + 41

m . Let A = {a : a.opinion = +1, a.exponent = −h}
and B = {b : b.opinion = −1, b.exponent = −h}. We will show that by time endh, large number of cancel
reactions happen between the agents in A and B to reduce the total mass. Inductively, by endh−1 we have
total mass µ ≤ ρ(h−1)|M|2−h+1. We assume in the worst case (since we need the total mass to be small)
that we start with the maximum possible amount of mass µ = ρ(h−1)|M|2−h+1. We use the upper bound
on the gap gh ≤ α|M|, where α = 0.8 · 2h−l and assume in the worst case (since larger gaps reduce the rate
of cancelling reactions) the largest possible gap β+ − β− = gh2−h = α|M|2−h. This gives majority mass
β+ = (ρ(h−1) + α

2 )|M|2−h and minority mass β− = (ρ(h−1) − α
2 )|M|2−h.

Since the minority is the limiting reactant in the cancelling reactions, we assume in the worst case the
smallest possible minority count at exponent −h, where all mass outside of exponent −h is the minority.
Then the majority count at exponent −h is |A| = (ρ(h−1) + α

2 )|M|. By Lemma 6.15, the mass above
exponent −h is µ(>−h)(starth+ t2) ≤ 0.001|M|2−h+1. By Lemma 6.11, the maximum count below exponent
−h is 0.0024|M|, so the mass µ(<−h) ≤ 0.0024|M|2−h−1. This leaves a minority count at exponent −h of
|B| = (ρ(h−1) − α

2 − 0.002− 0.0012)|M|.
Now we will apply Lemma 4.6 with a = (ρ(h−1) + α

2 )m and b = (ρ(h−1)− α
2 −0.0032)m. First we consider

the cases where h ≤ l + 5, where ρh = ρ(h−1) = 0.1 There the bound on the gap α = 0.8 · 2(l−5)−l = 0.025.
This gives a = 0.1125m and b = 0.0843m. By Lemma 4.6, the time t to cancel a fraction d = 0.05m from
both a and b has mean

E[t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)
=

ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,

so E[t](1 + ε) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the total mass
by 2dn2−h = 0.1|M| · 2−h = ρ(h−1)|M|2−h+1 − ρh|M|2−h. Then the total mass is at most ρh|M|2−h by
time starth + 2

c + 47
m .

For the remaining levels h = l−4, l−3, l−2, l−1, l, we will repeat the above argument and calculation, but
now the bound will change so ρh 6= ρ(h−1). First our bound on the gap α will double as we move down each
level. This causes the worst case fractions a and b to be spread further apart. Then d, the largest fraction
which will cancel from both sides within 6

m time with high probability, will be smaller. This gives the new
mass bound ρh, since from the equation ρ(h−1)|M|2−h+1−ρh|M|2−h = 2dn2−h, we have d = (ρ(h−1)− ρh

2 )m

and ρh = 2(ρ(h−1) − d
m ). This relative total mass bound ρh will be growing larger as h decreases. This is
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to be expected, since we do in fact see the count of biased agents growing as they reach the final exponents
before the count of O agents runs out (see Fig. 4c and Fig. 4d, where the value −l = −19).

The following table shows the constants used in the computations at each of the steps h = l−5, l−4, . . . , l.
The top row h = l− 5 corresponds to the exact calculations above, then the following rows are the constants
used in the same argument for lower levels.

h = l − 5 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E[t] < 5.53/m ρ(l−5) = 0.1
h = l − 4 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E[t] < 5.83/m ρ(l−4) = 0.104
h = l − 3 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E[t] < 5.66/m ρ(l−3) = 0.13
h = l − 2 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E[t] < 5.29/m ρ(l−2) = 0.212
h = l − 1 α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E[t] < 2.95/m ρ(l−1) = 0.408
h = l α = 0.8 a = 0.808m b = 0.0048m d = 0.004m E[t] < 1.11/m ρl = 0.808

Note that for the last couple hours, the worst case for b is very small, so the amount of cancelling that
happens is negligible, and the relative mass bound essentially doubles. We will see later that the minority
count does in fact sharply decrease, so it is accurate that the rate of cancellation drops to zero, and the
count of biased majority agents is roughly doubling for these last couple rounds.

6.3 End of Phase 3
Now that we have proven Theorem 6.12, we will finish analyzing separately the cases of an initial tie and an
initial majority opinion.

In the case of a tie, the stronger bounds from Theorem 6.12 hold all through the final hour h = L. Thus
at hour L we still have a constant fraction 0.77|M| of O agents. We now show that in the remaining O(log n)
time in Phase 3, while the Clock agents with hour = h decrement their counter in Line 6, these O agents
can keep doing split reactions to bring all remaining biased agents down to exponent −L. This lets us now
prove Theorem 6.1, the main result of the section for the case of a tie.

Theorem 6.1. If the initial configuration was a tie with gap 0, then by the end of Phase 3, all biased agents
have exponent = −L, with high probability 1−O(1/n2).

Proof. We start by using Theorem 6.12, where at hour L, the total mass µ(endL) ≤ 0.1|M|2−L. Thus the
count of biased agents is at most 0.1|M|. We also have at least 0.77|M| O agents with hour = L (this count
is actually slightly higher, as we could show almost all of the 0.9|M| O agents reach hour = L quickly by
the same argument as Lemma 6.13, but this bound will suffice).

We use the potential φ(>−L), where by Lemma 6.15, we have φ(>−L)(end0) ≤ 0.001|M|. The goal is to
now show that φ(>−L) = 0 within the O(log n) time it takes for any counter to hit 0 and trigger the move
to the next phase. This proof proceeds identically to the proof of Lemma 6.14, where we had shown that
E[φ(>−L)(t + 1/n)|φ(>−L)(t)] ≤ (1 − 0.77m

n )φ(>−L)(t). We again recursively bound the expected value of
φ(>−L) after an additional 16 lnn time.

E[φ(>−L)(endL + 16 lnn)|φ(>−L)(end0)] ≤
(

1− 0.77m

n

)16n lnn

φ(>−L)(end0)

E[φ(>−L)(endL + 16 lnn)] ≤ exp(−0.77 · 0.25 · 16 lnn) · 0.001|M|
≤ n−3.080.001mn = O(1/n2).

Again we conclude by Markov’s Inequality that P[φ(>−L)(endL + 16 lnn) > 0] ≤ O(1/n2).
Finally we must argue that Phase 3 lasts at least until time endL+16 lnn. We will bound the probability

that a Clock agent can decrement its counter down to 0 before time endL + 16 lnn. Note the if statement
on Line 6 will only decrement the counter when both Clock agents have reached the final minute. Even if in
the worst case an agent was at the final minute at the beginning of the phase, until time endL−1 the count
of other Clock agents with minute = kL is at most 0.1p|C| = 0.001|C|. By Theorem 6.9, the time between
consecutive hours is at most 3.86k

c2 < 290
c using k = 45 and the bound c > 0.2 with very high probability

from Lemma 5.2. Then the number of interactions until endL−1 is at most 290
c Ln. In each interaction, the

38



probability of the Clock agent decrementing its counter is at most 2 · 0.001c · 1
n , so the expected number of

decrements E[X] ≤ 290L · 0.002 ≤ 0.58(log2(n)) ≤ 0.84 lnn. Then by Chernoff bounds in Theorem 4.1, with
µ = 0.84 lnn, δ = 5, we have

P[X ≥ 5.04 lnn] ≤ P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
= exp(−3 lnn) = n−3.

Then after time endL−1, we assume that all Clock agents have minute = kL. In this case, the probability
a given Clock agent decrements its counter is at most 2c

n . Thus in 16n lnn interactions, the expected number
of decrements E[X] ≤ 32c lnn ≤ 11 lnn, using c < 1

3 from Lemma 5.2. We again use Theorem 4.1, with
µ = 11 lnn, δ = 0.9, to conclude

P[X ≥ 20.9 lnn] ≤ P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
≤ exp(−3.07 lnn) ≤ n−3.

Then by union bound, Clock agents decrements their counter at most 5.04 lnn+20.9 lnn < 26 lnn times with
high probability 1 − O(1/n2). In Phase 3, we initialize counter ← c3 lnn, so setting this counter constant
c3 = 26, we conclude that no agent moves to the next phase before time endL+16 lnn with high probability.
This gives enough time to conclude that all biased agents have exponent = −L by the end of Phase 3.

Now we consider the case where there is an initial majority, which we have assumed without loss of gen-
erality was A. Here the argument of Theorem 6.12 stops working at exponent −l, because of the substantial
relative gap 0.4|M| ≤ gl < 0.8|M|. Next we will need to show that the count of O gets brought to almost
0 by split reactions with the majority. In order to show that the count of O stays small however, we will
need some way to bound future cancel reactions. To do this, we will now show that during the last few
hours l − 4, . . . , l, the minority mass β− drops to a negligible amount. We will then use this tight bound
to show the majority consumes most remaining O agents, and finally that constraints on the majority mass
β+ will force the majority count to remain above 99% at exponents −l,−(l + 1),−(l + 2) for all reachable
configurations in the rest of Phase 3.

We first show inductively that the minority mass becomes negligible during the last few hours l−5, . . . , l.
We already showed a bound on the total mass in Lemma 6.16, which used an upper bound on the gap. If we
want the minority mass to be small, now the worst case is the smallest possible gap. Notice that just using
the final mass bound µ < ρl|M|2−l = 0.808|M|2−l in the worst case with the smallest possible gap gl = 0.4
at exponent −l, would imply β+ ≈ 0.6|M|2−l and β− ≈ 0.2|M|2−l. To get a much tighter upper bound on
minority mass, we will make a similar inductive argument to Lemma 6.16, now using the lower bound for
each gap gh, to show enough minority mass cancels at exponent −h during each hour h.

Lemma 6.17. For each hour h = l − 5, . . . , l, by time endh, the minority mass β− ≤ ξh|M|2−h with
very high probability. The constants ξ(l−5) = 0.04375, ξ(l−4) = 0.0375, ξ(l−3) = 0.0267, ξ(l−2) = 0.0145,
ξ(l−1) = 0.0056, and ξl = 0.004.

Proof. For the base case h = l− 5, by Lemma 6.16, the total mass µ(end(l−5)) ≤ 0.1|M|2−l+5. The relative
gap 0.0125|M| ≤ g(l−5) < 0.025|M|, so now in the worst case (for minority mass being small), we assume
the smallest gap g(l−5) = 0.0125|M| and largest total mass µ(end(l−5)) = β+ + β− = 0.1|M|2−l+5. Since
the invariant gap g = β+ − β− = g(l−5)2

−l+5, we have β+ = 0.05625|M|2−l+5 and β− = 0.04375|M|2−l+5,
giving an upper bound constant ξ(l−5) = 0.04375.

Now we outline the inductive step, for each level h = l − 4, . . . , l. We will show the constants for the
first step h = l − 4 here, and then list constants for the remaining steps in a table below. Let A = {a :
a.opinion = +1, a.exponent = −h} and B = {b : b.opinion = −1, b.exponent = −h}.

We start the argument at time starth+ 2
c+ 41

m , and with the previous bound β−(end(h−1)) = ξ(h−1)|M|2−h+1 =

0.0875|M|2−h. We will then assume in the worst case the smallest possible gap gh = α|M| = 0.4 ·2h−l|M| =
0.025|M|. This gives β+ = (2ξ(h−1) + α)|M|2−h. We then assume in the worst case that all mass al-
lowed outside exponent −h belongs to the minority (so doesn’t reduce by cancelling), giving majority count
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|A| = (2ξ(h−1)+α)|M|. We also assume the maximum amount of mass outside exponent−h. By Lemma 6.11,
before time endh, the count below exponent −h is at most 0.0024|M|, so the mass is at most 0.0024|M|2−h−1.
By Lemma 6.15, after time starth + 2

c + 41
m , the mass above exponent −h is µ(>−h) ≤ 0.001 · 2−h+1. This

leftover remaining mass at exponent −h gives minority count |B| = (2ξ(h−1) − 0.0012− 0.002)|M|.
Now we will apply Lemma 4.6 with fractions a = (2ξ(h−1)+α)m = 0.1125m and b = (2ξ(h−1)−0.0036)m =

0.0843m. These match the first fractions a, b used in the proof of Lemma 6.16, and again we use that the
time t to cancel a fraction d = 0.05m from both a and b has mean

E[t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)
=

ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,

so E[t](1 + ε) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the minority
mass by dn2−h = 0.05|M| · 2−h, giving a new minority mass β− = (2ξ(h−1) − d

m )|M|2−h = 0.0375|M|2−h.
Thus for ξh = 0.0375, the minority mass is at most ξh|M|2−h by time starth + 2

c + 47
m .

For the remaining levels h = l− 4, l− 3, l− 2, l− 1, l, we will repeat the above argument and calculation.
The following table shows the constants used in the computations at each of the steps h = l− 4, l− 3, . . . , l.
The top row h = l− 4 corresponds to the exact calculations above, then the following rows are the constants
used in the same argument for lower levels.

h = l − 4 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E[t] < 5.53/m ξ(l−4) = 0.0375
h = l − 3 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E[t] < 5.83/m ξ(l−3) = 0.0267
h = l − 2 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E[t] < 5.66/m ξ(l−2) = 0.0145
h = l − 1 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E[t] < 5.29/m ξ(l−1) = 0.0056
h = l α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E[t] < 2.95/m ξl = 0.004

Note that the structure of the proof yields the same sequence of values a, b as the proof of Lemma 6.16, so
we have repeated the exact same applications of Lemma 4.6. This time, however, we are using the cancelled
fraction d to show the minority mass becomes very small.

Now Lemma 6.17 gives that minority mass β− ≤ 0.004|M|2−l by time endl. The rest of the argument
will not try to reason about probabilistic guarantees on what the distribution looks like. Instead, we will
make claims purely about reachability, and show that we get to a configuration where invariants force the
count of majority agents to remain high in any reachable configuration using the transitions of Phase 3.

Lemma 6.18. By the time end(l+2), the count of majority agents with exponent ∈ {−l,−(l + 1),−(l + 2)}
is at least 0.96|M|, with very high probability. Then in all reachable configurations where all agents are still
in Phase 3, the count of majority agents with exponent ∈ {−l,−(l + 1),−(l + 2)} is at least 0.92|M|.

Proof. We argue by process of elimination. First we apply Lemma 6.11 to conclude that until time end(l+2),
the count |{O : O.hour > l + 2} ∪ {b : b.exponent < −(l + 2)}| ≤ 0.0024|M| with very high probability.

Now Lemma 6.17 gives that minority mass β− ≤ 0.004|M|2−l after time endl. Then we can bound the
maximum minority count at exponent −(l + 2) and above by 0.016|M|. In addition, these minority agents
could eliminate more majority agents by cancel reactions. The count of agents they could cancel with is at
most 0.016|M|.

This leaves at least |M|−0.0024|M|−0.016|M−|0.016|M| = 0.9656|M| agents that are either majority
or O agents at time endl. We will next show that in hour l + 2, most of any remaining O agents set
hour = l + 2 and then are consumed in split reactions with majority agents with exponent > −(l + 2).

The majority mass β+ ≥ g = gl2
−l ≥ 0.4|M|2−l. By Lemma 6.15, at most 0.001|M|2−l+1 = 0.002|M|2−l

of β+ can come from exponents above −l. Thus we need mass 0.398|M|2−l from majority agents at exponent
−l and below. Note that if the count |{a : a.opinion = +1, a.exponent ∈ {−l,−(l + 1)}}| ≤ 0.19|M|, then
the maximum majority mass could achieve would be 0.81|M| with exponent = −l − 2 and 0.19|M| with
exponent = −l, which gives ( 0.81

4 + 0.19)|M|2−l < 0.398|M|2−l. This implies we must have a count of at
least 0.19|M| of majority agents at exponents −(l + 1) and −l in all reachable configurations.

Next we show that all but at most 0.0036|M| of these O agents gets brought up to hour = l+2. We start
at time startl+2, when the count |O| ≤ (0.9656 − 0.398)M = 0.5676|M|, and the count of clock agents at
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hour = l+ 2 is at least 0.9|C|. Thus we can apply Lemma 4.7, with a = 0.9c, b1 = 0.5676m, b2 = 0.0056m to
conclude that at most 0.0056|M| of O agents are left at the wrong hour after parallel time t1 < (1 + ε)E[t1],
where the expected time

E[t1] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.0036m)

1.8c
≤ 2.82

c
.

Thus with very high probability t1 < 3
c .

Next the at least 0.19|M| majority agents at exponents −(l + 1) and −l will eliminate these O agents
by split reactions. We show that at most 0.001|M| of Oh agents are left. We again apply Lemma 4.7, with
a = 0.19m, b1 = 0.5676m, b2 = 0.01m to conclude this takes at most parallel time t2 < (1 + ε)E[t2], where

E[t2] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.001m)

0.38m
≤ 16.69

m
.

Thus with very high probability t2 < 17
m .

Account for these counts 0.0032|M| and 0.001|M| of leftover O agents, along with the maximal count
0.001|M| of biased agents above exponent −l, we are left with 0.9656|M| − 0.0032|M| − 0.001|M| −
0.001|M| = 0.96|M| agents that must be majority agents with exponent ∈ {−l,−(l + 1),−(l + 2)}.

Now we argue that no reachable configurations can bring this count below 0.92|M|. We have already
accounted for the maximum number of minority agents that can do cancel reactions at exponents −l,−(l+
1),−(l + 2). Thus we only have to argue that no amount of split reactions can bring this count down by
0.04|M|. Note that reducing the count by 0.04|M| will reduce the mass at these exponents by at least
0.04|M|2−(l+2). It will take at least 0.08|M| agents below exponent −l−2 to account for the same mass, for
a total of 0.96|M|− 0.04|M|+ 0.08|M| = |M|. Thus it is not possible to move more than 0.04|M| majority
agents below exponent −(l + 2) by split reactions, because there are not enough Main agents to account for
the mass.

We can now use the results of Lemma 6.18, Lemma 6.15, and Lemma 6.17, including the high probability
requirements from all previous lemmas, to prove Theorem 6.2, the main result for Phase 3 in the non-tie
case:

Theorem 6.2. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = blog2( g
0.4|M| )c. Let i = sign(g)

be the majority opinion and M be the set of all agents with role = Main, opinion = i, exponent ∈
{−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l
|a.bias| ≤ 0.002|M|2−l, and the

total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

7 Analysis of final phases

7.1 Reserve agent Phases 5 and 6
We now consider the behavior of the Reserve agents in Phase 5 and Phase 6. We first show that with high
probability they are also able to set their sample field during Phase 5.

Lemma 7.1. By the end of Phase 5, all Reserve agents have sample 6= ⊥, with high probability 1−O(1/n2).

Proof. By Theorem 6.2, we have at least 0.92|M| majority agents with exponent ∈ {−l,−(l+ 1),−(l+ 2)}
by the end of Phase 3. Now we can analyze the process of Reserve agents sampling the exponent of the
first biased agent they encounter in Phase 5 with Lemma 4.7, where subpopulations A = {a : a.role =
Main, a.bias = ±1} with and B = R, comprising fractions a ≥ 0.92m and b1 = r. Then by Lemma 4.7, all
Reserve agents set their sample within time t, where t ≤ 5 lnn

2·0.92m with high probability 1 − O(1/n2). Thus
for appropriate choice of counter constant c5, this will happen before the first Clock agent advances to the
next phase.
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We next show that the Reserve agents are able to bring the exponents of all biased agents down to at
most −l during Phase 6.

Lemma 7.2. By the end of Phase 6, all biased agents have exponent ≤ −l, with high probability 1−O(1/n2).

Proof. Theorem 6.2, the mass above exponent −l is µ(>−l) ≤ 0.001|M|2−l+1. We must show that all of this
mass moves down to at least exponent −l via split reactions with the Reserve agents (Line 3 in Phase 6). We
consider the following two cases based on whether the size of A−l = {a : a.opinion = +1, a.exponent = −l}.

In the first case, |A| > 0.19|M| and we will show all agents get brought down to exponent ≤ −l. Because
of the sampling process in Phase 5, the count of R−l = {r : r.role = Reserve, r.sample = −l} has size
at least |R−l| ≥ 0.18|R| with very high probability, by standard Chernoff bounds. If all the agents above
exponent −l split down to exponent −l, they would have count at most 0.002|M|, potentially all coming out
of the initial count of R−l. Thus for the entirety of Phase 6, we have

|R−l| ≥ 0.18|R| − 0.002|M| = n(0.18r − 0.002m) ≥ n(0.18 · 0.24− 0.002) ≥ 0.04n,

using the very high probability bound r > 0.24 from Lemma 5.2.
In the second case |A| ≤ 0.19|M|. Now we cannot make guarantees on the size |R−l|, so we will instead

reason about A−(l+1) = {a : a.opinion = +1, a.exponent = −(l + 1)} and R−(l+1) = {r : r.role =
Reserve, r.sample = −(l + 1)}.

We first show that |A−(l+1)| > 0.59|M|. Recall by definition of l and gl that the majority mass β+ ≥
gl2
−l ≥ 0.4|M|2−l. At most 0.001|M|2−l+1 can come from exponents above −l and at most 0.19|M|2−l

comes from exponent −l. Thus there must be at least mass (0.398 − 0.19)|M|2−l from A−(l+1) and the
exponents below. If |A−(l+1)| = 0.59|M|, then even putting all 0.41|M| remainingMain agents at exponent =

−(l+2) would only give mass 0.59|M|2−(l+1)+0.41|M|2−(l+2) = 0.3975|M|2−l. Thus we require |A−(l+1)| >
0.59|M|. Again by standard Chernoff bounds from the sampling process of Phase 5, this implies the initial
size of |R−(l+1)| ≥ 0.58|R|.

If all the agents above exponent −l split down to exponent −(l + 1), they would have count at most
0.004|M|, potentially all coming out of the initial count of R−l. In addition, we can lose count |A| ≤ 0.19|M|
from R−l from additional split reactions. This implies that for the entirety of Phase 6, we have count at
least

|R−(l+1)| ≥ 0.58|R| − 0.004|M| − 0.19|M| = n(0.58r − 0.004m− 0.19m)

≥ n(0.58 · 0.24− (0.004 + 0.19) · 0.51) ≥ 0.04n,

using the very high probability bounds r > 0.24 and m < 0.51 from Lemma 5.2.
Thus in both cases we maintain a count of at least 0.04n Reserve agents at level −l or −(l + 1). For

an agent a with a.exponent > −l, the probability that in a given interaction agent a does a split reaction
(Line 3 in Phase 6) with an agent in R−l ∪ R−(l+1) is at least 2·0.04n·1

n2 = 0.08
n . Now we proceed as in the

proofs of Lemma 6.14 and Theorem 6.1, analyzing the potential φ(>−l) to show it hits 0 in O(log n) time.
Recall that for each biased agent a with a.exponent = −i > −l and local potential φa = 4−i+l−1, a

split reaction changes the potential by ∆φa ≤ 4l−1(2 · 4−i−1 − 4−i) = 4l−1(− 1
24−i) = − 1

2φa. Then in each
interaction at parallel time t, the expected change in the potential

E[φ(>−l)(t+ 1/n)− φ(>−l)(t)] ≤
∑

a.exponent>−l

P[a splits] ·∆φa

≤
∑

a.exponent>−l

0.08

n
· −1

2
φa = −0.04

n
φ(>−l)(t).

Thus we have E[φ(>−l)(t+ 1/n)|φ(>−l)(t)] ≤ (1− 0.04
n )φ(>−l)(t).

When we begin the argument at time tstart at the beginning of Phase 6, we start with φ(>−l)(tstart) ≤
0.001|M| from the final iteration of Lemma 6.15. We will wait until time tend = tstart + 75 lnn, and now
recursively bound the potential after these 75n lnn interactions:
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E
[
φ(>−l)(tend)|φ(>−l)(tstart)

]
≤
(

1− 0.04

n

)75n lnn

φ(>−l)(tstart)

E
[
φ(>−h+q)(tend)

]
≤ exp(−0.04 · 75 lnn) · 0.001|M|
≤ n−3 · 0.001mn = O

(
n−2

)
Finally, since φ(>−l) takes nonnegative integer values, we can apply Markov’s Inequality to conclude P[φ(>−l)(tend) >
0] = O(1/n2). So after 75 lnn time in Phase 6, all biased agents have exponent ≤ −l, with high probability.
For appropriate choice of counter constant c6, this happens before any Clock agent advances to the next
phase.

Recall M is the set of all majority agents with exponent ∈ {−l,−(l+ 1),−(l+ 2)}, where |M | ≥ 0.92|M|
at the end of Phase 3 by Theorem 6.2. We finally observe that after Phase 6, M is still large.

Lemma 7.3. At the end of Phase 6, |M | ≥ 0.87|M| with very high probability.

Proof. By Theorem 6.2, |M | ≥ 0.92|M| at the end of Phase 3, so the count of all other main agents is at
most 0.08|M|. By standard Chernoff bounds on the sampling process in Phase 5, the count

|{r : r.role = Reserve, r.sample /∈ {−l,−(l + 1),−(l + 2)}}| ≤ 0.09|R| ≤ 0.05|M|.

Split reactions that consume these Reserve agents are the only way to bring agents out of the set M . Thus
at the end of Phase 6, the count is still at least

|M | ≥ 0.92|M| − 0.09|R| ≥ 0.87|M|,

using |R| < 5
9 |M| with very high probability by Lemma 5.2.

7.2 Minority elimination Phases 7 and 8
Next we argue that in Phase 7, the agents in M are able to eliminate all minority agents with exponent ∈
{−l,−(l + 1),−(l + 2)}. Note that these minority agents are able to do a cancel reaction with any agent in
M , since by design Phase 7 allows reactions between agents with an exponent gap of at most 2. We first
argue that |M | must stay large through the entirety of Phase 7:

Lemma 7.4. At the end of Phase 7, |M | ≥ 0.8|M|.

Proof. We use the bound on minority mass β− ≤ 0.004|M|2−l from Theorem 6.2. This implies the minority
count at exponent −(l+4) and above is at most 0.064|M|, since a 0.064|M|·2−(l+4) ≥ β. Note that cancelling
with these minority agents is the only way for a majority agent in M to change its state in Phase 7. Using
the previous bound from Lemma 7.3, the count of M can decrease at most to |M | = 0.87|M| − 0.064|M| ≥
0.8|M|.

Now we argue that these agents in M eliminate all high exponent minority agents.

Lemma 7.5. At the end of Phase 7, all minority agents have exponent < −(l + 2), with high probability
1−O(1/n2).

Proof. From Lemma 7.2, all minority agents already have exponent ≤ −l. Let B−l, B−(l+1), B−(l+2) be the
sets of minority agents with exponent = −l,−(l + 1),−(l + 2), respectively. We argue successively that
|B−l| = 0, then |B−(l+1)|, then |B−(l+2)| = 0.

The initial bound on minority mass β− ≤ 0.004|M|2−l from Theorem 6.2 implies that initially |B−l| ≤
0.004|M|. Note that an interaction with any agent in M will bring remove an agent from B−l via one of
the Phase 7 cancel reactions. Using the bound |M | ≥ 0.8|M| during the entire phase from Lemma 7.4, we
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can use Lemma 4.7 to bound the time for |B−l| = 0. We have constants a = 0.8m and b1 = 0.004m. Then
by Lemma 7.4, with high probability 1 − O(1/n2), the time t1 to eliminate the count of B−l is at most
t1 ≤ 5 lnn

2(0.8m−0.004m) ≤ 6.41 lnn, using the bound m ≥ 0.49 from Lemma 5.2.
Next we wait to eliminate the count of B−(l+1), by a similar argument. Initially the count is at most

|B−(l+2)| ≤ 0.008|M|, and this will all cancel in at most time t2. By Lemma 7.4, with high probability,
t2 ≤ 5 lnn

2(0.8m−0.008m) ≤ 6.45 lnn. The same argument for B−(l+2), initially |B−(l+2)| ≤ 0.016|M|, gives
t3 ≤ 5 lnn

2(0.8m−0.016m) ≤ 6.51 lnn.
Thus the entire process requires time at most t1 + t2 + t3 < 20 lnn. So for appropriate choice of counter

constant c7, this will happen before the first Clock agent advances to the next phase.

Now we will prove that the remaining 0.8|M| majority agents in M are able to eliminate all remaining
minority agents in Phase 8.

Lemma 7.6. At the end of Phase 8, there are no more minority agents, with high probability 1−O(1/n2).

Proof. From Lemma 7.4 and Lemma 7.5, by the end of Phase 7, we have |M | ≥ 0.8|M| and all minority
agents have exponent < −(l + 2). We assume in the worst case all 0.2|M| other Main agents have the
minority opinion. Note by the consumption reaction in Phase 8, every minority agent will be eliminated by
an agent in M that still has full = False. Thus we can apply Lemma 4.6, with a = 0.8m and b = 0.2m,
to conclude that all remaining minority agents are eliminated in time t, where t ≤ 5 lnn

2(0.8m−0.2m) ≤ 8.5 lnn,
using m ≥ 0.495 with very high probability from Lemma 5.2. So for appropriate choice of counter constant
c8, this will happen before the first Clock agent advances to the next phase.

7.3 Fast Stabilization
We next give a time bound for the stable backup:

Lemma 7.7. The 6-state protocol in Phase 10 stably computes majority in O(n log n) stabilization time,
both in expectation and with high probability.

Proof. Note that agents in the initial state with active = True and output ∈ {A,B} can only change their
state by a cancel reaction in Line 3 with another active agent with the opposite opinion.

First we consider the case where one opinion, without loss of generality A, is the majority. We first
wait for all active B agents to meet an active A agent and changed their state to active T via Line 3.
This is modelled by the “cancel reaction” process described in Lemma 4.6, taking expected O(n) time and
O(n log n) time with high probability. At this point, there are no active B agents and at least one active A
agent remaining. We next wait for this active A agent to interact with all remaining active T agents, which
will then become passive via Line 5. This takes O(n log n) time in expectation and with high probability by
a standard coupon-collector argument, after which point there are only active A agents and passive agents.
Finally, we wait for these active A agents to convert all passive agents to output = A via Line 7, taking
another O(n log n) time by the same coupon-collector argument.

Next we consider the case where the input distribution is a tie. We first wait for all n/2 pairs of active
A and B agents to cancel via Line 3, taking O(n) time in expectation and O(n log n) time with probability.
Consider the last such interaction. At this point, those two agents have become active T agents, and there are
no active A or B agents left. Thus after interacting with one of the T agents, all passive agents will output T
via Line 7. This takes O(n log n) time in expectation and with high probability by the same coupon-collector
argument.

We are now able to combine all the results from previous sections to prove Theorem 3.1, giving guarantees
on the behavior of the protocol:

Theorem 3.1. There is a nonuniform population protocol Nonuniform Majority, using O(log n) states, that
stably computes majority in O(log n) stabilization time, both in expectation and with high probability.
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Proof. We first argue that with high probability 1 − O(1/n2), the protocol Nonuniform Majority stabilizes
to the correct output in O(log n) time. We consider three cases based on the size of the initial gap |g|. For
the majority cases where |g| > 0, we assume without loss of generality g > 0, so A is the majority.

If |g| ≥ 0.025|M|, then by Lemma 5.3, we stabilize in Phase 2 to the correct output with high probability
1−O(1/n2).

If 0 < |g| < 0.025|M|, then by Theorem 6.2, with high probability 1−O(1/n2), we end Phase 3 with at
least 92% of Main agents in the set M , with the majority opinion and exponent ∈ {−l,−(l + 1),−(l + 2)}.
Then after Phase 5 and Phase 6, all biased agents have exponent ≤ −l with high probability 1 − O(1/n2)
by Lemma 7.2. Then after Phase 7 and Phase 7, there are no more minority agents with high probability
1−O(1/n2) by Lemma 7.6. Thus in Phase 9, the majority opinion +1 will spread to all agents by epidemic,
and we reach a stable correct configuration where all agents have opinions = {0,+1} and output = A.

If g = 0, then by Theorem 6.1, with high probability 1−O(1/n2), we end Phase 3 with all biased agents at
exponent = −L. Thus in Phase 4, we reach a stable correct configuration where all agents have output = T,
and there are no agents with exponent > −L to increment the phase.

Next we justify that Nonuniform Majority stably computes majority, since it is always possible to reach a
stable correct configuration. By Lemma 5.2, we must produce at least 2 Clock agents by the end of Phase 0.
Thus we must eventually advance through all timed phases 0, 1, 3, 5, 6, 7, 8 using the counter field. Also
all agents have left the initial role RoleMCR, otherwise the Init of Phase 1 will trigger all agents to move
to Phase 10 by epidemic. Thus the sum of bias across all Main agents is the initial gap g, and this key
invariant is maintained through all phases.

Using this invariant, if the agents stabilize in Phase 2, they have a consensus on their output, the sign
of their bias, and this consensus must be the sign of the sum of the biases, giving the sign of the initial
gap. If the agents stabilize in Phase 4, all |bias| ≤ 1

2L ≤ 1
n . This implies the gap |g| ≤ |M| · 1

n < 1, so
the gap g = 0 and the agents are correctly outputting T. Finally, note that in Phase 8, when the agents
set the field full = True, they can no longer actually store in memory the true bias they are holding. For
example an agent with opinion = +1, exponent = −i, full = True, is actually representing the interval

1
2i+1 ≤ bias < 1

2i . Then we still have the guarantee that if we reach stable consensus in Phase 9, then this
consensus is the sign of the sum of the biases and is thus correct. The final case is that we do not stabilize
here, and then move to Phase 10, where they agents eventually stabilize to the correct output.

We finally justify that the expected stabilization time is O(n log n). By Lemma 7.7, the stable backup
Phase 10 will stabilize in expected O(n log n) time. Note that the high probability guarantees are all at least
1− O(1/n2), so the time for the stable backup contributes at most O

(
n logn
n2

)
= o(1) to the total expected

time. Now by Lemma 5.2, with very high probability we have at least |C| ≥ 0.24n Clock agents. In this case,
the time upper bounds of Theorem 6.9 and upper bounds on the counter times using standard Chernoff
bound, imply that every timed phase lasts expected O(log n) time. If we do not stabilize in the untimed
phases, then we also pass through by epidemic expected O(log n) time. Thus we either stabilize or reach the
backup Phase 10 in expected O(log n) time. There is a final very low probability case that |Clock| = o(n),
but we must at least have |Clock| = 2. Even in this worst case, the time upper bounds of Theorem 6.9 and
all counter rounds are at most polynomial in n, whereas the low probability of such a small Clock population
is smaller than any polynomial. Thus this event adds a negligible contribution, and we conclude the total
expected stabilization time is O(log n).

8 Uniform, stable protocols for majority using more states
The algorithm described in Section 3 is nonuniform: the set of transitions used for a population of size n
depends on the value dlog ne. A uniform protocol [25,29,30] is a single set of transitions that can be used in
any population size. Since it is “uniformly specified”, the transition function is formally defined by a linear-
space16 Turing machine, where the space bound is the maximum space needed to read and write the input

16That is, the Turing machine is allowed to use a bit more than the space necessary simply to read and write the input and
output states, but not significantly more (constant-factor). This allows it to do simple operations, such as integer multiplication,
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and output states. The original model [9] used O(1) states and transitions for all n and so was automatically
uniform, but many recent ω(1) state protocols are nonuniform. With the exception of the uniform variant
in [17], all ω(1) state stable majority protocols are nonuniform [4,5,8,14,16,21]. The uniform variant in [17]
has a tradeoff parameter s that, when set to O(1) to minimize the states, uses O(log n log log n) states and
O(log2 n) time.

In this section we show that there is a way to make Nonuniform Majority in Section 3 uniform, retaining
the O(log n) time bound, but the expected number of states increases to Θ(log n log log n).17

8.1 Main idea of O(log n log log n) state uniform majority (not handling ties)
Since Nonuniform Majority uses the hard-coded value L = dlog ne, to make the algorithm uniform, we require
a way to estimate log n and store it in a field L (called logn below) of each agent. For correctness and speed,
it is only required that logn be within a constant multiplicative factor of log n.

Gąsieniec and Stachowiak [37] show a uniform O(log log n) state, O(log n) time protocol (both bounds in
expectation and with high probability) that computes and stores in each agent a value ` ∈ N+ that, with high
probability, is within additive constant O(1) of dlog logne (in particular, WHP ` ≥ blog log nc−3 [17, Lemma
8]), so 2` = Θ(log n). (This is the so-called junta election protocol used as a subroutine for a subsequent
leader election protocol.) Furthermore, agents approach this estimate from below, propagating the maximum
estimate by epidemic `′, ` → `, ` if `′ < `. This gives an elegant way to compose the size estimation with a
subsequent nonuniform protocol P that requires the estimate: agents store their estimate logn of log n and
use it in P. Whenever an agent’s estimate logn updates—always getting larger—it simply resets P, i.e., sets
the entire state of P to its initial state. We can then reason as though all agents actually started with their
final convergent value of logn.18

To make our protocol uniform, but remove its correctness in the case of a tie, as we explain below, all
agents conduct this size estimation, stored in the field logn, in parallel with the majority protocol P of
Section 3. Each agent resets P to its initial state whenever logn updates. This gives the stated O(log n)
time bound and O(log n log log n) state bound. Note that in Phase 0, agents count from counter = Θ(log n)
down to 0. It is sufficient to set the constant in the Θ sufficiently large that all agents with high probability
receive by epidemic the convergent final value of logn significantly before any agent with the same convergent
estimate counts down to 0.

Acknowledging that, with small probability, the estimate of log n could be too low for Phase 4 to be
correct, we simply remove Phase 4 and do not attempt to detect ties. So if we permit undefined behavior in the
case of a tie (as many existing fast majority protocols do), then this modification of the algorithm otherwise
retains stably correct, O(log n) time behavior, while increasing the state complexity to O(log n log log n).

8.2 How to stably compute ties
With low but positive probability, the estimate of log n could be too small. For most phases of the algorithm,
this would merely amplify the probability of error events (e.g., Phase 1 doesn’t last long enough for agents
to converge on biases {−1, 0,+1}) that later phases are designed to handle. However, the correctness of
Phase 4 (which detects ties) requires agents to have split through at least log n exponents in Phase 3. Since
the population-wide bias doubles each time the whole population splits down one exponent, the only way for
the whole population to split through log n exponents is for there to be a tie (i.e., the population-wide bias
is 0, so can double unboundedly many times). In this one part of the algorithm, for correctness we require

that require more than constant space, without “cheating” by allowing the internal memory usage of the Turing machine to
vastly exceed that required to represent the states.

17We say “expected” because this protocol has a non-zero probability of using an arbitrarily large number of states. The
number of states will be O(logn log logn) in expectation and with high probability.

18One might hope for a stronger form of composition, in which the size estimation terminates, i.e., sets an initially False
Boolean flag to True only if the size estimation has converged, in order to simply prohibit the downstream protocol P from
starting with an incorrect estimate of logn. However, when both states A and B are initially Ω(n), this turns out to be
impossible; Ω(n) agents will necessarily set the flag to True in O(1) time, long before the O(logn) time required for the size
estimation to converge [29, Theorem 4.1].
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the estimate to be at least log n with probability 1. (It can be much greater than log n without affecting
correctness; an overestimate merely slows down the algorithm.)

To correct this error, we will introduce a stable backup size estimate, to be done in Phase 4. Note that
there are only a constant number of states with phase = 4: Clock agents do not store a counter in this
phase, and Main agents that stay in this phase must have bias ∈

{
0,± 1

2L

}
. Thus we can use an additional

Θ(log n) states for the agents that are currently in phase = 4 to stably estimate the population size. If they
detect that their estimate of L was too small, they simply go to the stable backup Phase 10.

Stable computation of blog nc. The stable computation of log n has all agents start in state L0, where
the subscript represents the agent’s estimate of blog nc. We have the following transitions: for each i ∈ N,
Li, Li → Li+1, Fi+1 and, for each 0 ≤ j < i, Fi, Fj → Fi, Fi. Among the agents in state Li, half make it to
state Li+1, reaching a maximum of Lk at k = blog2 nc.19 All remaining F agents receive the maximum value
k by epidemic. A very similar protocol was analyzed in [20, Lemma 12]. We give a quick analysis below for
the sake of self-containment.

Time analysis of stable computation of blog nc. The expected time is Θ(n log n). For the upper bound,
for each i, if j is the count of Li agents, then the probability of a Li, Li → . . . reaction is O(j2/n2), so for
any possible starting count k of Li agents, it takes expected time at most O

(
1
n

∑k
j=1

n2

j2

)
= O(n) for the

count of Li agents to get from k to 0 or 1. Assuming in the worst case that no Li+1, Li+1 → . . . reaction
happens until all Li, Li → . . . reactions complete, then summing over blog nc values of i gives the O(n log n)
time upper bound to converge on one Lk agent, where k = blog nc. It takes additional O(log n) time for the
F agents to propagate k by epidemic.

For the lower bound, observe that for each value of i, the last reaction Li, Li → . . . occurs when the
count of Li is either 2 (and will increase at most once more), or 3 (and will never increase again). This takes
expected time Θ(n). Since the count of Li will increase at most once more, at that time (just before the
last Li, Li → . . . reaction), the count of Li−1 is at most 3, otherwise two more Li’s could be produced, and
this would not be the last Li, Li → . . . reaction. Thus, to produce the Li needed for this last Li, Li → . . .
reaction, the previous Li−1, Li−1 → Li, Fi reaction occurs when the count of Li−1 is at most 5, also taking
Θ(n) time. Thus the final reaction at each level takes time Θ(n) and depends on a reaction at the previous
level that also takes time Θ(n), so summing across blog nc levels gives Ω(n log n) completion time.

It is shown in [20, Lemma 12] that the time is O(n log2 n) with high probability, i.e., slower than the
expected time by a log n factor. Since the probability is O(1/n2) that we need to rely on this slow backup,
even this larger time bound contributes negligibly to our total expected time.

8.3 Challenges in creating O(log n) state uniform algorithm
It is worth discussing some ideas for adjusting the uniform protocol described above to attempt to reduce its
space complexity to O(log n) states. The primary challenge is to enable the population size n to be estimated
without storing the estimate in any agent that participates in the main algorithm (i.e., the agent has role
Main, Clock, or Reserve). If agents in the main algorithm do not store the size, then by [29, Theorem 4.1]
they will provably go haywire initially, with agents in every phase, totally unsynchronized, and require the
size estimating agents to reset them after having converged on a size estimate that is Ω(log n).

The following method would let the Size agents reset main algorithm agents, without actually having
to store an estimate of log n in the algorithm agents, but it only works with high probability. The size
estimating agents could start a junta-driven clock as in [37], which is reset whenever they update their size
estimate. Then, as long as there are Ω(n) Size agents, they could for a phase timed to last Θ(log n) time,
reset the algorithm agents by direct communication (instead of by epidemic). This could put the algorithm
agents in a quiescent state where they do not interact with each other, but merely wait for the Size agents to

19More generally, the unique stable configuration encodes the full population size n in binary in the following distributed way:
for each position i of a 1 in the binary expansion of n, there is one agent Li. Thus, these remaining agents lack the space to
participate in propagating the value k = blognc by epidemic, but there are Ω(n) followers F to complete the epidemic quickly.
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exit the resetting phase, indicating that the algorithm agents are able to start interacting again. Since there
are Ω(n) size-estimating agents, each non-size-estimating agent will encounter at least one of them with high
probability in O(log n) time.

The problem is that the reset signal is not guaranteed to reach every algorithm agent. There is some
small chance that a Main agent with a bias different from its input does not encounter a Size agent in the
resetting phase, so is never reset. The algorithm from that point on could reach an incorrect result when
the agent interacts with properly reset agents, since the sum of biases across the population has changed.
In our algorithm, by “labeling” each reset with the value logn, we ensure that no matter what states the
algorithm agents find themselves in during the initial chaos before size computation converges, every one of
them is guaranteed to be reset one last time with the same value of logn. The high-probability resetting
described above seems like a strategy that could work to create a high probability uniform protocol using
O(log n) time and states, though we have not thoroughly explored the possibility.

But it seems difficult to achieve probability-1 correctness using the technique of “reset the whole majority
algorithm whenever the size estimate updates,” without multiplying the state complexity by the number of
possible values of logn. Since we did not need blog nc exactly, but only a value that is Θ(log n), we paid only
Θ(log log n) multiplicative overhead for the size estimate, but it’s not straightforward to see how to avoid this
using the resetting technique. Of course, one could imagine that the savings could come from reducing the
state complexity of the main majority-computing agents in the nonuniform algorithm. However, reducing the
nonuniform algorithm’s state complexity to below the Ω(log n) lower bound of [5] would provably require the
algorithm to be not monotonic or not output dominant. (See Section 9 for a discussion of those concepts.)
Another possible approach is to intertwine more carefully the logic of the majority algorithm with the size
estimation, to more gracefully handle size estimate updates without needing to reset the entire majority
algorithm.

9 Conclusion
There are two major open problems remaining concerning the majority problem for population protocols.

Uniform O(log n)-time, O(log n)-state majority protocol Our main O(log n) state protocol, described
in Section 3, is nonuniform: all agents have the value dlog ne encoded in their transition function. The
uniform version of our protocol described in Section 8 uses O(log n log log n) states. It remains open to find
a uniform protocol that uses O(log n) time and states.

Unconditional Ω(log n) state lower bound for stable majority protocols The lower bound of
Ω(log n) states for (roughly) sublinear time majority protocols shown by Alistair, Aspnes, and Gelashvili [5]
applies only to stable protocols satisfying two conditions: monotonicity and output dominance.

Recall that a uniform protocol is one where a single set of transitions works for all population sizes;
nonuniform protocols typically violate this by having an estimate of the population size (e.g., the integer
dlog ne) embedded in the transition function. Monotonicity is a much weaker form of uniformity satisfied
by nearly all known nonuniform protocols. While allowing different transitions as the population size grows,
monotonicity requires that the transitions used for population size n must also be correct for all smaller
population sizes n′ < n (i.e., an overestimate of the size cannot hurt), and furthermore that the transitions
be no slower on populations of size n′ than on populations of size n (though the transitions designed for size
n may be slower on size n′ than the transitions intended for size n′). Typically the nonuniform estimate
of log n is used by the protocol to synchronize phases taking time ≈ T = Θ(log n), by having each agent
individually count from T down to 0 (a so-called “leaderless phase clock”, our Standard Counter Subroutine).
Θ(log n) is the time required for an epidemic to reach the whole population and communicate some message
to all agents before the phase ends. Most errors in such protocols are the result of some agent not receiving
a message before a phase ends, i.e., the clock runs atypically faster than the epidemic. If the size estimate
is significantly larger than log n, this slows the protocol down, but only increases the probability that all
agents receive intended epidemic messages before a phase ends; thus such protocols are monotone.
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In our nonuniform protocol Nonuniform Majority, which gives each agent the value L = dlog ne, giving
a different value of L does not disrupt the stability (only the speed) of the protocol, with one exception:
Phase 3 must go for at least log n exponents, or else (i.e., if L is an underestimate) Phase 4 could incorrectly
report a tie. If we consider running Phase 3 on a smaller population size n′ than the size n for which it was
designed, L = dlog ne of dlog n′e will be an overestimate, which does not disrupt correctness. Furthermore,
since Clock agents are counting to L in each case, they are just as fast on population size n′ as on size n.
This implies that Phase 3, thus the whole protocol Nonuniform Majority, is monotone.

Output dominance references the concept of a stable configuration c, in which all agents have a consen-
sus opinion that cannot change in any configuration subsequently reachable from c. A protocol is output
dominant if in any stable configuration c, adding more agents with states already present in c maintains the
property that every reachable stable configuration has the same output (though it may disrupt the stability
of c itself). This condition holds for all known stable majority protocols, including that described in this
paper, because they obey the stronger condition that adding states already present in c does not even disrupt
its stability. Such protocols are based on the idea that two agents with the same opinion cannot create the
opposite opinion, so stabilization happens exactly when all agents first converge on a consensus output.

To see that our protocol is output dominant, define a configuration to be silent if no transition is
applicable (i.e., all pairs of agents have a null interaction); clearly a silent configuration is also stable.
Although the definition of stable computation allows non-null transitions to continue happening in a stable
configuration, many existing stable protocols have the stronger property that they reach a silent configuration
with probability 1, including our protocol. It is straightforward to see that any silent configuration has the
property required for output dominance, since if no pair of states in a configuration can interact nontrivially,
their counts can be increased while maintaining this property. (One must rule out the special case of a state
with count 1 that can interact with another copy of itself, which does not occur in our protocol’s stable
configurations.)

Monotonicity can be seen as a natural condition that all “reasonable” non-uniform protocols must satisfy,
but output dominance arose as an artifact that was required for the lower bound proof strategy of [5]. It
remains open to prove an unconditional (i.e., removing the condition of output dominance) lower bound
of Ω(log n) states for any stable monotone majority protocol taking polylogarithmic time, or to show a
stable polylogarithmic time monotone majority protocol using o(log n) states, which necessarily violates
output dominance. If the unconditional lower bound holds, then our protocol is simultaneously optimal
for both time and states. Otherwise, it may be possible to use o(log n) states to stably compute majority
in polylogarithmic stabilization time with a non-output-dominant protocol. In this case, there may be an
algorithm simultaneously optimal for both time and states, or there may be a tradeoff.

O(log n) time, o(log n) state non-stable protocol Berenbrink, Elsässer, Friedetzky, Kaaser, Kling,
and Radzik [17] showed a non-stable majority protocol (i.e., it has a positive probability of error) using
O(log log n) states and converging in O(log2 n) time. (See Section 1 for more details.) Is there a protocol
with o(log n) states solving majority in O(log n) time?

We close with questions unrelated to majority.

Fast population protocol for parity The majority problem “X1 > X2?” is a special case of a threshold
predicate, which asks whether a particular weighted sum of inputs

∑k
i=1 wiXi > c exceeds a constant c. (For

majority, w1 = 1, w2 = −1, c = 0; our protocol extends straightforwardly to other values of wi, though not
other values of c.) The threshold predicates, together with the mod predicates, characterize the semilinear
predicates, which are precisely the predicates stably computable by O(1) state protocols [10] with no time
constraints (though Θ(n) time to stabilize is sufficient for all semilinear predicates [11] and necessary for
“most” [13]). A representative mod predicate is parity : asking whether an odd or even number of agents
exist. (More generally, asking the parity of the number of agents with initial opinion A.) Like majority,
parity is solvable by a simple protocol in O(n) time,20 and it is known to require Ω(n) time for any O(1) state

20Agents start in state L1, undergo reactions Li, Lj → L(i+j) mod 2, F(i+j) mod 2; Li, Fj → Li, Fi; Fi, Fj → Fi, Fi,
i.e., F agents adopt the parity of L agents, and two F agents with different parities adopt that of the sender. The first two
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protocol to stabilize [13]. Techniques from [4] can be used to show that stabilization requires close to linear
time even allowing up to 1

2 log log n states. An interesting open question is to consider allowing ω(1) states
in deciding parity. Can it then be decided in polylogarithmic time? Is there a parity protocol simultaneously
optimal for both polylogarithmic time and states, such as the O(log n) time, O(log log n) state protocol for
leader election [18]? Or is there a tradeoff?

Fast population protocols for function computation The transition X,Q → Y, Y , starting with
sufficiently many excess agents in state Q, computes the function f(x) = 2x, because if we start with x
agents in state X, eventually 2x agents are in state Y , taking time O(log n) to stabilize [26]. The similar
transition X,X → Y,Q computes f(x) = bx/2c, but it takes time Θ(n) to stabilize, as does any O(1)-state
protocol computing any linear function with a coefficient not in N, as well as “most” non-linear functions
such as min(x1, x2) (computable by X1, X2 → Y,Q) and max(x1, x2) [13]. Can such functions be computed
in sublinear time by using ω(1) states?
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